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Abstract

The increasing availability of public models begs the ques-
tion: can we train neural networks that use other networks
as input? This paper learns to represent models within a
joint space that embeds both model weights and language.
However, machine learning on model weights is challenging
as model weights often exhibit significant variation unrelated
to the models’ semantic properties (nuisance variation). We
identify a key property of real-world models: most public
models belong to a small set of Model Trees, where all mod-
els within a tree are fine-tuned from a common ancestor (e.g.,
a foundation model). Importantly, we find that within each
tree there is less nuisance variation between models. For
example, while classifying models according to their train-
ing dataset generally requires complex architectures, in our
case, even a linear classifier trained on a single layer is often
effective. While effective, linear layers are computationally
expensive as model weights are very high dimensional. To
address this, we introduce Probing Experts (ProbeX), a the-
oretically motivated, lightweight probing method. Notably,
ProbeX is the first probing method designed to learn from
the weights of just a single model layer. We also construct
and release a dataset that simulates the structure of pub-
lic model repositories. Our results show that ProbeX can
effectively map the weights of large models into a shared
weight-language embedding space. Furthermore, we demon-
strate the impressive generalization of our method, achieving
zero-shot model classification and retrieval.

1. Introduction

In recent years, the number of publicly available neural net-
work models has skyrocketed, with over one million models
now hosted on Hugging Face. This growth raises a new
research question: can we use the neural networks them-
selves as inputs for training new models? The emerging
field of weight space learning [22, 28, 36] studies how to

*Equal contribution

Figure 1. Recent Growth in Hugging Face Models: The increasing
availability of public models, with over one million now hosted on
Hugging Face, raises the question: can we train neural networks
that use other networks as input?

learn metanetworks, neural networks that take the weights
of other neural networks as inputs (see Fig. 2). Previous
works learned metanetworks that predict training data at-
tributes [21, 30], model performance [22], and even generate
new models [6, 24]. In this work, we explore metanetworks
that embed model weights into a joint space with language,
enabling tasks such as zero-shot model classification and
retrieval.

In general, the core challenge of any representation learn-
ing algorithm is to include only the semantic information
while excluding non-semantic (nuisance) factors. Model
weights, in particular, pose unique challenges. As model
weights parameterize the relationship between input data and
the target task, they capture semantic information, e.g., de-
tails about the training distribution and the target task. How-
ever, alongside this semantic information, model weights
also include nuisance factors. One notable nuisance factor
in model weights that has gained considerable attention is
neuron permutation [13]. A substantial body of research has
focused on developing methods that are invariant to these
permutations, using specialized architectures [19, 21–23, 36]
or carefully designed data augmentations [14, 28–30].

In this paper, we highlight another nuisance attribute of
model weights, known as Model Trees [16]. A Model Tree
describes a set of models that share a common ancestor,
where each model has either been fine-tuned from or used
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Figure 2. Weight Space Learning: Left. Model weights are a direct product of the objective, optimization procedure and training data. Center.
Users upload models to public repositories, e.g., Hugging Face, which are often disorganized and lack metadata on model functionality,
pre-training checkpoints, and training data. Right. Weight space learning treats model repositories as datasets where each model is a data
point. It studies how to design metanetworks, a special kind of neural networks that process the weights of other models. Here, we explore
metanetworks that embed model weights into a joint space with language, enabling tasks such as zero-shot model classification and retrieval

as pre-training for another model within the same tree. For
example, the Llama3 Model Tree [7] includes all models
that have been fine-tuned from Llama3 or any of its descen-
dants. We hypothesize that learning on models from the same
Model Tree is a much simpler task than learning on models
from many different Model Trees. This setting is practical
as most models are members of a small set of trees. To
illustrate, we analyze the Hugging Face model hub, and find
that less than 20 Model Trees already account for 50% of all
models, with each tree containing over 1,000 models 1. We
validate our hypothesis in a motivating experiment, where
we compare between learning on intra-tree and inter-tree
model populations. While a simple linear model performs
well on models within the same tree, it fails when applied to
a similar population that came from many different trees. It
also uses an infeasible number of parameters.

To address the limitations of the linear baseline, we pro-
pose a Mixture-of-Experts (MoE) approach that extends
within-tree learning to handle multiple trees in a diverse
model population. Our approach consists of two key compo-
nents: i) a model router and ii) Probing eXperts (ProbeX).
The model router identifies the tree to which a model be-
longs and directs it to the dedicated tree expert. While linear
classifiers perform well within individual trees, they become
impractical for large models due to the high dimensionality
of model weights, often requiring hundreds of millions of
parameters. To address this, we introduce ProbeX, a probing-
based expert architecture that is significantly more efficient.
Unlike conventional probing methods, ProbeX operates ef-
fectively on a single layer. Notably, ProbeX can learn on
weights of models containing hundreds of millions of param-

1These figures are from the official hub-stats dataset, though some
sampling bias may exist due to incomplete information.

eters, requiring less than 10 minutes to train. We also estab-
lish a theoretical connection between ProbeX and Tucker
tensor decomposition [32]. Furthermore, we demonstrate
the effectiveness of ProbeX by aligning its representation
with a CLIP text encoder, creating a joint embedding space
of model weights and language.

To evaluate our method, we present three datasets that
simulate real-world model repositories, comprising over
12,000 models across five disjoint Model Trees. These
datasets include both generative and discriminative models
spanning multiple architectures and tasks. We demonstrate
the efficacy of ProbeX on various tasks, such as predicting
the presence of specific classes within a model’s training
data and identifying the personalization concept a model
was fine-tuned on. To assess generalization, we align the
ProbeX weight representations of models fine-tuned from
Stable Diffusion with a CLIP text encoder. Using the result-
ing shared embedding space, we showcase the generalization
of these aligned representations on tasks such as model one-
class classification and retrieval. We also introduce the task
of zero-shot model classification, where we successfully
classify models from unseen classes based on a text prompt.

To summarize, our main contributions are:
1. Identifying that most public models belong to a small set

of Model Trees and suggesting that learning within trees
can increase accuracy.

2. Introducing a Mixture-of-Experts (MoE) approach con-
sisting of lightweight, theoretically motivated Probing
Experts (ProbeX) for weight-space learning from diverse
model populations.

3. Proposing the alignment of model weights with lan-
guage representation and introducing the task of zero-
shot model weight classification, along with releasing an
evaluation dataset.
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2. Related Works
While neural networks are fully defined by their weights, lit-
tle research has explored using weights with machine learn-
ing methods. Eilertsen et al. [8], Unterthiner et al. [33] were
among the first to systematically analyze model weights of
diverse populations to predict undocumented properties like
the training dataset or generalization error. Some works
aim to learn general representations [14, 28–30] for multiple
properties, while others incorporate specific priors [19, 21–
23, 36] to directly predict the property. A major challenge
with model weights is the presence of many parameter space
symmetries [13]. For instance, permuting neurons in hidden
layers of an MLP doesn’t change the network output. Thus,
neural networks designed to take weights as inputs must
account for these symmetries. In order to avoid the issue of
weight symmetries, recent methods [14, 19] propose using
probing. In this approach, a set of probes are optimized
to serve as inputs to the model and the outputs act as the
model representation. However, until now, this was limited
to passing the probes through the entire model and did not
apply to single layers.

Other weight-space learning applications include gener-
ating model weights [1, 6, 9, 10, 24, 31], predicting dataset
size [27], and recovering the weights of unpublished models.
This recovery can occur through an API to retrieve a single
layer [3] or by utilizing multiple fine-tuned variants of the
same foundation model to reconstruct the entire model [15].

3. Motivation
3.1. The Challenge

Representation learning aims to compress data points into
vectors that have i) low-dimension, and ii) keep as much
semantic information as possible. In recent years, effective
representation learning methods for images, text, and audio
have been developed by identifying and eliminating key
non-semantic (nuisance) factors. However, representation
learning for model weights is still in its infancy, and the key
nuisance factors remain unclear. Many approaches focused
on neuron permutations [19, 22, 35] as the core nuisance
factor. However, permutations are not likely to describe all
nuisance variation, particularly as neurons and layers can
have different roles in different models and architectures.
This paper focuses on another nuisance factor, Model Trees.

3.2. Seeing the Forest by Seeing the Trees

Background: Model Trees. Following Horwitz et al. [16],
we represent model populations as a Model Graph composed
of disjoint directed Model Trees. In this graph, each node
represents a model, with directed edges connecting a model
to those directly fine-tuned from it. Since each model has at
most one parent, the graph forms a set of non-overlapping
trees. Importantly, our approach does not require knowledge

Table 1. Intra vs. Inter Tree Model Populations: We investigate
two model populations, i) models from different trees (F ) and
ii) models from the same tree (T ). We compare the accuracy
of identifying the classes that the models were trained on. As
hypothesized, learning from models within the same Model Tree
results in almost perfect accuracy while learning from many disjoint
Model Trees results in random accuracy

Random Inter-Tree (F ) Intra-Tree (T )
Acc. ↑ 0.5 0.502 0.940

of the internal structure of these Model Trees; it is sufficient
to know whether a model belongs to a particular tree.

Divide-and-Conquer. Current weight-space methods
generally rely on a single metanetwork to learn from a di-
verse model population spanning multiple Model Trees. We
hypothesize that Model Trees are a significant nuisance fac-
tor in model weights, complicating the learning of mean-
ingful representations. We expect that dividing the popula-
tion into distinct groups based on Model Trees and learning
within each tree, can greatly simplify model representation
learning.

Nuisance factor: Tree Membership. To illustrate the
benefits of Model Trees, we conduct a simple experiment.
We randomly choose 50 classes from CIFAR100 (without
replacement), denoting this dataset A. By randomly select-
ing 25 of the remaining classes, we create dataset B and
pre-train a classifier model on it for a single epoch. The
experiment compares two similar model populations T and
F , each containing 500 ResNet9 models. For each model,
we randomly selected 25 classes from A, and learned to
classify each image into the correct class out of 25. The
models in T and F differ in one aspect only, models in F
(model forest) were initialized randomly, while the models in
T (Model Tree) were initialized from the model pre-trained
on B. Therefore, models in T all lie within the same tree,
while those in F lie in different, disjoint trees.

The task is to take each model as input and predict which
classes from A it was trained on. We thus train a metanet-
work on all models in T , and another one for all models in
F . Both metanetworks have the same simple architecture,
a single linear layer which takes as input a single weight
matrix of the input model. The results are in Tab. 1. In line
with our hypothesis, we observe an extreme performance gap
between the two settings. While learning on models within
the same tree achieved excellent results (0.940), learning
on models from heterogeneous trees achieved near random
accuracy (0.502).

This simple experiment demonstrates that even a shared
pre-training of just a single epoch can be enough to elimi-
nate significant non-semantic variations in neural weights.
Moreover, it shows that models within a single tree have a
simple, even linear, mapping from weights to semantics.

3



Figure 3. Largest Model Trees on Hugging Face: We show the sizes of the ten largest Model Trees of Hugging Face. Our insight is that
learning a Mixture-of-Experts for these trees greatly simplifies learning from model weights. This setting is practical since as shown here,
most real-world, public models belong to a small number of large Model Trees

A Few Large Trees Dominate the Landscape. While
we demonstrated that learning within trees is effective, this
insight is only useful if real models lie in a small number
of trees. To explore the broader landscape, we analyzed
approximately 250k models from the Hugging Face model
hub2. Our analysis reveals that most public models belong
to a small number of large Model Trees. For instance, less
than 20 Model Trees account for 50% of the total population.
Furthermore, 196 Model Trees have at least 100 models, col-
lectively covering over 70% of all models. This breakdown
is illustrated in Fig. 3. We conclude that learning metanet-
works on Model Trees is both effective and practical.

4. Mixture of Experts
Motivated by Sec. 3, we propose a mixture-of-experts (MoE)
approach for classifying heterogeneous model populations.
This approach has two components: i) a routing function
R, that maps each model F , to its relevant expert. This ef-
fectively divides the model population into non-overlapping
subsets. ii) A set of experts that classify model weights
within their subset of expertise.

Notation. Consider a model F with s layers and de-
note the dimension of each layer by dH and dW . Let
X(1), . . . , X(s) denote the weight matrices of the layers.
For brevity, we omit the layer index superscript in the nota-
tion, although in practice, we apply the described method to
each layer of the model individually. In case the model uses
LoRA, we can multiply the decomposed matrices X = BA
and work with the full matrix.

4.1. Routing

Differently from recent MoE methods [34] that learn the
router and experts end-to-end, we decouple the two; first
learning the routing function and then the experts. For the
routing function, we opt for a fast and simple clustering
algorithm. Specifically, we cluster the set of models using
hierarchical clustering. After completing the clustering step,

2We only consider models that include information about their pre-
training model.

we compute the center of each cluster X̂1, X̂2, · · · , X̂K . The
routing function assigns models to the nearest cluster in ℓ1:

R(X) = arg
K
min
k=1

∥X − X̂k∥1 (1)

4.2. Problem Formulation and Dense Experts

We train a dedicated expert model for each cluster. The
prediction task is mapping a model weight matrix X ∈
RdW×dH to an output vector y ∈ RdY . The output vector
can be logits or a representation.

Dense Expert. A simple choice for the expert architecture
is a linear function. As the input is a 2D weight matrix
X ∈ RdW×dH , the linear function is a 3D tensor W ∈
RdH×dW×dY . The output of an expert is simply:

yk =
∑
ij

WijkXij (2)

Although such experts can achieve surprisingly good per-
formance, they often have an extremely high number of
parameters resulting in two main limitations: i) overfitting
due to overparameterization ii) high memory cost due to the
extreme dimension of the weight matrix, in our experiments
they often require over a billion parameters.

4.3. Probing

Probing-based methods [14, 19] have emerged as a promis-
ing approach for processing neural networks. Instead of
learning a metanetwork that directly processes the weights
of the target model, probing methods pass probes (input
vectors) through the model and use the model outputs to rep-
resent the model. As each probe provides partial information
about the model, fusing information from a diverse set of
probes leads to more informative representations. Passing
probes through the model is usually cheaper than passing
all network weights through a huge metanetwork, probing
is therefore more compute and parameter efficient than the
alternatives.

4
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Traditionally, probing requires passing probes through
the entire model, circumventing many nuisance attributes
of model weights (e.g., neuron permutations) by only us-
ing model inputs and outputs. However, as working within
Model Trees already neutralizes one of the key nuisance
factors (see Sec. 3), we expect probing to succeed even when
applied just to hidden layers of the model. Our method
adapts the idea of probing to operate directly on individual
weight matrices.

Formally, let fX : RdW → RdH be the function that
we wish to analyze. To do so, we select a set of probes
u1,u2, · · · ,urU ∈ RdW , passing each probe ul through the
function fX , and recording its responses zl = fX(ul) ∈
RdH . A per-probe encoder El then maps the response zl of
each probe to a probe representation el ∈ RdV . The final
representation of the model fX is e, which is the sum of
representations el of the individual probes:

e =
∑
l

El(fX(ul)) (3)

A prediction head T : RdV → RdY , maps the model
representation e to the final prediction:

y = T (e) (4)

In practice, we learn all the probes, the probe encoders,
and the prediction head end-to-end. Note that we learn the
probe values directly (via latent optimization [2]), and a
different probe encoder El for each probe ul.

The probing network is very general. Indeed, its linear
version is as expressive as the dense expert.

Proposition 1. Assume we implement E1, E2, · · · , ErU lin-
ear operations, i.e., matrices, and use a sufficient number
of probes. The dense expert (Eq. 2) and probing network
(Eq. 4) have identical expressivity.

Proof. App. A.1

4.4. Single Layer Probing Experts

As probing is effective and efficient, we want to adapt prob-
ing for the single layer case. Here, the function that we probe
is the weights of a single layer of a model, fX = X . If the
weights are a higher dimensional tensor, we reshape it as a
2D matrix. We initially consider the case where the probing
encoders and prediction head are all linear functions. We
immediately face a challenge, there are rU probes and each
one has a dedicated encoder parameterized by a large matrix.
This requires many parameters.

We therefore factorize each probing encoder as the prod-
uct of 2 matrices. A dimensionality reduction matrix V ∈
RdW×rV that projects the high dimensional outputs of the in-
put matrix X ∈ RdW×dH to a much lower dimension rV . To
reduce the parameter count, we share the matrix V between
all encoders. The second matrix is a lower dimensional ma-
trix M [l] ∈ RrV ×rT (in practice, we use rT = rV ), which
is different for every probe encoder. Since only the smaller
matrix M [l] is specific to each probe, while all probes share
the larger matrix V , this decomposition significantly reduces
the number of parameters. Finally, the per-probe encoder is
given by:

El(zl) = MlV
T zl (5)

The prediction head T is simply the matrix T ∈ RrT×dY .
Putting everything together, our entire single layer probing
expert that we call ProbeX (Probing eXpert) is given by:

y = T
∑
l

MlV
TXT ul (6)

While we justified using ProbeX intuitively, we can prove
that the linear ProbeX has the same expressivity as using the
Tucker low-rank tensor decomposition on the weight tensor
of the dense expert (Eq. 2).
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Proposition 2. The Tucker low-rank tensor decomposition
is defined as:

W =
∑
nml

Mnml · tn ⊗ vm ⊗ ul (7)

The linear ProbeX in Eq. 6 has identical expressivity as using
the dense predictor in Eq. 2, with a weight tensor obeying
the Tucker decomposition.

Proof. App. A.2

4.4.1 Non-Linear Single Layer Probing

Although Proposition 1 showed that linear ProbeX has iden-
tical expressivity to the dense expert, ideally we would like
ProbeX to be more expressive than a linear function. We
therefore suggest a simple modification to the probe encoder,
adding a non-linearity σ between the two matrices. This
change effectively transforms ProbeX into a factorized one
hidden layer neural network:

El(zl) = Mlσ(V
T zl) (8)

We present an overview of ProbeX in Fig. 4. Unless oth-
erwise stated, in all our experiments we chose σ to be the
ReLU function. Note that while this paper uses a probe
encoder with a single hidden layer, deeper architectures can
also be utilized.

4.4.2 Training

For classification tasks, we use ProbeX to map model
weights to logits and optimize it using cross entropy. For rep-
resentation alignment, we use a contrastive loss. In all cases,
we optimize the weights of V,u1, · · · , ,ur,M1, · · · ,Mr, T
end-to-end. Note that while our formulation describes the
case of a single layer, there is no loss of generality. Given
multiple layers, we extract a representation from each layer
using ProbeX. We then concatenate them and map them to
the output y using a matrix T , training everything end-to-
end.

5. Model Jungle Dataset
We construct the Model Jungle (Model-J) dataset for realistic
evaluation of weight space learning methods. Importantly,
our dataset simulates the structure of model repositories
and contains large models that belong to a small set of dis-
joint Model Trees that vary in architecture, task, and size.
Each fine-tuned model uses a set of randomly sampled hy-
perparameters. Collectively, Model-J contains over 12,000
models, divided into two primary splits. See Tab. 2 for an
overview:

Discriminative. We fine-tune 2,500 models for image
classification. These models belong to one of three Model

Table 2. Model Jungle Dataset Summary. We train over 12,000
models, covering different architectures, tasks and model sizes.
Each model uses randomly sampled hyper parameters

Name Task Fine-tuning Split Size # Classes
Sup. ViT Full FT Att. classification 1000 50/100

MAE Full FT
Low-resource
Att. classification 500 50/100

ResNet Full FT Att. classification 1000 50/100
SD200 LoRA Fine-grained 5000 200
SD1k LoRA Low resource 5000 1000

Trees: i) Sup. ViT. A supervised pre-trained ViT-B/16 [5]
(1,000 models), ii) MAE. A masked auto-encoder (MAE)
[12] with a ViT-B/16 architecture (500 models), and iii)
ResNet. A supervised pre-trained ResNet-101 [11] (1,000
models). Each of our models is fine-tuned (using “vanilla”
full fine-tuning) to classify images from a random subset of
50 out of the 100 CIFAR100 classes.

Generative. We fine-tune 10, 000 personalized models
Ruiz et al. [26]. All of the models in this split belong to
the Stable Diffusion [25] Model Tree. Each model was
fine-tuned on 5 − 10 images, randomly sampled without
replacement, originating from the same ImageNet [4] class.
This split consists of 2 variants each with 5, 000 models: i)
SD200. A fine-grained variant consisting of 25 models per
class for the first 200 ImageNet classes (mostly different
animal breeds). ii) SD1k. A low resource split containing
5 models per class for all 1, 000 ImageNet classes. To save
compute and storage, we follow common practice and use
LoRA [17] fine-tuning. We set aside a test subset of random
holdout classes, 30 ∈ SD200 and 150 ∈ SD1k.

6. Experiments
6.1. Experimental Setting

We use Model-J presented in Sec. 5 with a 70/10/20 train,
val, test split. We train all of our methods for 500 epochs
and choose the best epoch according to the validation set.
As our method uses a single input layer, and since the results
vary significantly between layers, we train ProbeX on each
layer of the model and report the best layer according to the
validation set. We set the number of probes to be rU = 0.1 ·
dW and the dimension of output dimension of the encoder
rV = rT = 0.1 · dH . With this choice of hyperparameters,
training ProbeX on a single layer takes under 10 minutes on
a single GPU.

Baselines. Many state-of-the-art methods do not scale
to large models with hundreds of millions of parameters.
We therefore compare to the following baselines: i) StatNN
[33]. This permutation-invariant baseline extracts 7 simple
statistics (e.g. mean, variance, different quantiles.) for the
weights and biases of each layer. It then trains a gradient
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Table 3. Mixture of Experts Results. In this challenging task, each model is trained on 50 randomly selected CIFAR100 classes (out of a total
of 100). We train ProbeX tree experts to predict which of the 100 classes was used in training. While the dense expert performs moderately
well, ProbeX achieves better accuracy with two orders of magnitude fewer parameters, highlighting its effectiveness for fine-grained tasks

ResNet MAE Sup. ViT MoE

Method Acc. ↑ # Params ↓ Acc. ↑ # Params ↓ Acc. ↑ # Params ↓ Acc. ↑ # Params ↓
Random 0.5 - 0.5 - 0.5 - 0.5 -
StatNN 0.622 - 0.501 - 0.519 - 0.547 -
Dense 0.693 105m (×286) 0.609 59m (×85) 0.660 59m (×85) 0.654 223m (×111)

ProbeX 0.800 366k 0.653 694k 0.867 694k 0.773 2m

boosted tree on the concatenation of the statistics from all
layers. ii) Dense Expert. Training a single linear layer on
the flattened raw weights. Note that this baseline results in
extremely large classifiers. For instance, a single layer of
Stable often has 1.6m parameters. Therefore, even a single
linear layer trained to classify SD1k would consist of 1.4B
parameters, twice the number of parameters of the entire
Stable Diffusion model.

Metrics. We use accuracy as the evaluation metric. For
ProbeX and the dense baseline, we also report the parameter
count of the model. Finally, for one-class classification we
use the area under the ROC curve.

6.2. Training Dataset Class Prediction for Discrim-
inative Models

In this experiment, we train a metanetwork to predict the
training dataset classes for models in the discriminative split
of Model-J. As each model was trained on 50 randomly
selected classes out of 100, we treat the output as a set of
100 binary labels indicating whether each class was included
in the model’s fine-tuning data. A random prediction strategy
yields 50% accuracy on this task. Concretely, we train Eq. 5
with 100 jointly optimized binary classification heads. This
is an especially difficult task as each class is only 2% of the
training data and so its signature is likely to be quite weak.

This task is quite practical; consider a model repository
such as Hugging Face, which currently relies on the model
metadata (e.g., model card) when searching for a model.
These model cards are often poorly documented and missing
details regarding the precise classes the model was trained
on. Therefore, using model cards to understand what classes
a model can classify is unlikely to be effective. Conversely,
our metanetwork would allow users to search for suitable
models effectively.

We train ProbeX for each discriminative Model Trees, the
results are shown in Tab. 3. We can see that while the dense
expert achieves some level of accuracy. ProbeX performs
better with roughly two orders of magnitude fewer param-
eters. This demonstrates the power of our method for very
challenging, fine-grained tasks.

6.3. Aligning Weight Representations to Text Em-
bedding

In this section, we test the ability of our method to align
model weight representations to text embeddings. We learn
a mapping between layer weights of models in the generative
split of Model-J and the CLIP embedding of the concept.
This effectively creates a shared space between text prompts
and weight matrices of models from the same Model Tree.
We evaluate the aligned representation on a variety of tasks,
and show that it generalizes well. Strikingly, we believe
ProbeX is the first method that learns weight representations
with zero-shot capabilities.

Representation Alignment. We train ProbeX to map
representations of model weights to pre-trained text embed-
dings. This mapping is supervised, as we have paired data
consisting of model weights and the text embedding on the
class name of their fine-tuning dataset. Our dataset com-
prises of both SD200 and SD1k, as described in Sec. 5. We
train the representation similarly to the way that CLIP was
trained, i.e., we compute the representation of the input layer
using ProbeX (or one of the baselines). We then compute the
cosine similarity to the embedding of each of the potentially
target classes. The optimization objective is that the cosine
similarity to the ground truth class will be high, and all other
classes lower.

6.3.1 Text-Weights Zero-Shot Capabilities

We begin by testing the zero-shot capabilities of our aligned
representation on the held-out splits of Model-J (see Sec. 5).
Specifically, given a weights-to-text embedding mapping
function, we compute the similarity between the model rep-
resentation and all possible classes. The similarity score is
calculated for all held-out classes (unseen during ProbeX’s
training), and the model is labeled with the class that has
the highest matching score. See Fig. 5 for an overview of
this setting. We perform a similar experiment for in distri-
bution data (concepts seen in training time), i.e., a standard
classification setting. In Tab. 4, we show the top-1 accuracy
of our method compared to the dense expert. Importantly,
our method generalizes not only to unseen models trained
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Figure 5. Zero-Shot Inference Overview. We align model weights with a pre-trained text encoder, creating a shared text-weight embedding
space for zero-shot model classification. For each class, we extract the CLIP text embedding of the class name and use ProbeX to encode the
weight matrix X into the shared space. Classification follows by selecting the text prompt nearest to the model weight representation e using
cosine similarity. This creates a CLIP-like zero-shot setting, where model weights from unseen classes are classified via text prompts

on the same classes (i.e., in distribution samples) but also
to entirely new object categories. ProbeX can detect classes
unseen during training with over 50% accuracy when there
are 150 held-out classes, and nearly 90% accuracy with 30
held-out classes. This demonstrates that ProbeX success-
fully aligns model representations with CLIP’s, generalizing
effectively to new concepts.

6.3.2 Unsupervised Downstream Tasks

Motivated by the promising zero-shot results, we explore
our model representations in other downstream tasks. In all
experiments, we use our trained ProbeX model to extract
model representations.

Model Retrieval. Given a model, we search for the
models that were trained on the most similar datasets. We
use the cosine distance between the ProbeX representations
of the input model as the similarity metric. Fig. 6 shows the 3
nearest-neighbors for 3 query models, each fine-tuned using
a different dataset. For visualization purposes, we present
a model by showing 2 images from its training set. We see
that indeed query models are related to models within the
same concept, showing our representation captures highly
semantic attributes even in fine-grained cases. For instance,
while SD200 contains many different dog and cat breed
classes, our retrieval accurately returns the breed that the
query model was trained on.

kNN classification. In a related but different task, we
show that kNN can correctly classify the training dataset
class. We randomly split our samples into train and test
sets. For each test model, we label it by its nearest class.
The score is the average kNN distances between the ProbeX
representation of the test model and the training models from
this class. Tab. 6 compares our learned representation with
simply using raw weights, and shows that our representation
performs much better.

Table 4. Aligned Weight-Text Representation Results: We report
the text guided classification accuracy on both the in distribution
and holdout splits. Our method generalizes not only to unseen
models trained on the same classes (in-distribution samples) but
also to entirely new object categories. ProbeX detects classes
unseen during training with over 50% accuracy when 150 held-
out classes are used, and nearly 90% accuracy when there are 30
held-out classes. This demonstrates that ProbeX successfully aligns
model representations with CLIP’s, generalizing effectively to new
concepts. In the 1k case, where each class has only 5 training
samples, the dense method overfits the in-distribution classes but
fails to generalize compared to ProbeX

Method In Dist. ↑
Acc.

Zero-shot. ↑
Acc. # Params ↓

SD
20

0

Random 0.006 0.033 -
StatNNMLP 0.018 0.075 2.6m
StatNNLinear 0.030 0.147 689k
Dense 0.801 0.706 32m (×13)

ProbeX 0.973 0.898 2.5m

SD
1k

Random 0.001 0.006 -
StatNNMLP 0.001 0.029 2.6m
StatNNLinear 0.01 0.045 689k
Dense 0.382 0.343 210m (×84)

ProbeX 0.296 0.505 2.5m

One-Class-Classification. We further examine the ef-
fectiveness of our representations at discriminating in-
distribution and out-of-distribution classes. We designated
each of our classes as “normal” and computed the average
kNN distance between all test models and the training set of
the normal class. In Tab. 6 we report the mean ROC AUC
score, using the kNN similarity score for separating the nor-
mal samples from the anomalous ones. Indeed, the results
show that our method can detect out-of-distribution models
much more accurately than other methods.
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Figure 6. Qualitative Retrieval Results: For each query model, we search for the models trained on the most similar concepts, measuring
similarity by cosine distance between ProbeX representations. We present the three nearest neighbors for three query models, each fine-tuned
on a different concept. For visualization, we show two of the images used to train the model. Indeed, the retrieved models have similar
concepts to the query indicating our representations accurately align with fine-grained, semantic text embeddings. For example, in SD200

there are models of many breeds, but the retrieved models still succeed in having the same breed as the query

Table 5. Activation Ablation on SD200: Using ReLU slightly
improves in-distribution classification, but significantly improves
zero-shot classification. This suggests that while linear ProbeX
represents training samples well, ReLU enhances generalization.
The best layer contained the same number of parameters in all cases

In Dist. Acc. ↑ Zero-shot Acc ↑.

No ReLU 0.953 0.564
ReLU 0.973 0.898

7. Ablations
Activation Function. We ablate the need for the non-linear
version of ProbeX using the SD200 dataset; results are
shown in Tab. 5. Interestingly, while the use of ReLU slightly
improves in-distribution classification performance (0.953
without ReLU vs. 0.973 with ReLU), the main benefit is in
zero-shot classification (0.564 without ReLU vs. 0.898 with
ReLU). This significant difference in zero-shot performance
suggests that, while the linear version of ProbeX can effec-
tively represent the training samples, generalizing to other
classes requires a deeper model.

Text Encoder. We ablate the sensitivity of our method
to the precise language encoder used. We test CLIP, OPEN-
CLIP [18], and BLIP2 [20] in our zero-shot experiment. The
results in Tab. 7, suggest that while CLIP performs best

Table 6. kNN and OCC Results on a Single Expert: We report
mean accuracy for kNN and mean AUC (mAUC) for OCC, aver-
aging across all 30 holdout classes of SD200. ProbeX achieves
the highest results for both. Interestingly, using many neighbors is
beneficial for OCC but not for supervised kNN classification

kNN (Acc. ↑) OCC (mAUC ↑)

k Raw Dense ProbeX Raw Dense ProbeX

1 0.833 0.502 0.913 0.501 0.561 0.698
2 0.389 0.525 0.933 0.502 0.573 0.702
5 0.417 0.477 0.872 0.504 0.610 0.720
All 0.033 0.294 0.428 0.507 0.681 0.792

(which is expected, as Stable Diffusion was trained using
CLIP), our approach remains effective across different text
encoders. This shows robustness to the choice of text back-
bone.

Dataset Size. We examined the effect of dataset size
on accuracy. This ablation tested both the dense expert and
ProbeX on the supervised ViT Model Tree when 350 and 700
training models. The results in Tab. 8 show that the dense
method only improves slightly while ProbeX improves by
over 10%, this indicates that ProbeX can use extra samples
more effectively but may be more prone to overfitting.
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Table 7. Text-Encoder Ablation on SD200: We ablate the sen-
sitivity of the representation alignment to different text encoders
using the zero-shot experiment. While CLIP performs best, as
expected due to Stable Diffusion’s training, our approach remains
effective across various text encoders, demonstrating robustness to
the choice of text backbone

Encoder Acc. ↑
BLIP2 0.564
OPENCLIP 0.860
CLIP 0.898

8. Discussion

Generalizing to Unseen Model Trees. In this paper, we fo-
cus on learning within a closed set of Model Trees. However,
new Model Trees are continually added to public repositories.
A primary limitation of ProbeX is its inability to generalize
to these new Model Trees, requiring training new experts
for new trees. Despite this drawback, ProbeX’s lightweight
design, combined with the fact that each expert is trained
independently, allows for quick integration of new experts
into the MoE as new Model Trees emerge. A promising
avenue for future research is the development of a zero-shot
metanetwork capable of generating new experts for previ-
ously unseen Model Trees.

Self Supervised Learning vs. Aligning Representa-
tions. In this work, we focus on aligning weight-space
representations with existing representations. While self-
supervised (SSL) weight-space learning [28–30] could re-
duce dependence on external representations, such methods
typically require carefully crafted augmentations and priors
to make the representations invariant to nuisance factors.
For model weights, designing such augmentations is not
straightforward, and many key nuisance factors are still be-
ing identified. Identifying the Model Tree nuisance attribute
may hopefully accelerate the development of new SSL meth-
ods for weight-space learning.

Mechanistic vs. Functional Weight-Space Learning.
Herrmann et al. [14] distinguished between two approaches
to weight-space learning. The mechanistic approach treats
the weights as input data and learns directly from them, while
the functionalist approach (e.g., probing) interacts only with
a model’s inputs and outputs. Although the functionalist
approach bypasses weight-space-related nuisance factors
such as permutations or Model Trees, it treats the entire
model as a black box, limiting its scope. ProbeX can be seen
as a blend of both approaches, enabling us to operate at the
weight level while engaging with the function defined by
the weight matrix. This approach may facilitate the study of
different model layers’ functionalities. For instance, in the
case of the MAE and Sup. ViT Model Trees, which share
the same architecture, the most effective layer for our task

Table 8. Dataset Size Ablation on Sup. ViT: Doubling the dataset
size slightly improved the dense expert, but significantly improved
ProbeX (by over 10%). This indicates that ProbeX uses additional
samples more effectively but may be more susceptible to overfitting

Size Method Acc. ↑ # Params ↓

35
0 Dense 0.643 59m

ProbeX 0.757 694k

70
0 Dense 0.660 59m

ProbeX 0.867 694k

differed between the two. This suggests that, despite having
the same architecture, the two models utilize their layers for
different functions.

Deeper ProbeX Encoders. In this work, we used en-
coders with a single hidden layer. In preliminary experi-
ments, we observed that adding more layers to the encoder
reduced performance, probably due to overfitting. An in-
triguing direction for future research would be to design
deeper encoders that improve generalization or handle more
complex tasks.

9. Conclusion
In this paper, we identified Model Trees as a major source
of nuisance variation in model weights. We empirically
showed that learning from a diverse population of models
spanning multiple Model Trees is significantly more difficult
than learning from models within the same tree. Building
on this insight, and based on our analysis of real-world
model repositories, which are dominated by a few large
Model Trees, we proposed a Mixture-of-Experts approach.
Specifically, for a diverse model population, we trained our
Probing Expert (ProbeX) for each Model Tree. ProbeX is a
theoretically grounded architecture that scales weight-space
learning to large models, requiring only a few minutes to
train. We validated the effectiveness of our approach using
a dataset of over 12, 000 fine-tuned models that we created.
Furthermore, we demonstrated the powerful generalization
of ProbeX by embedding model weights into a shared space
with language representations. In this space, we successfully
performed model retrieval, one-class classification, and text-
guided zero-shot model classification—all directly from the
weights of a single model layer.
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Representing Model Weights with Language using Tree Experts

Supplementary Material

A. Proofs
A.1. Proposition 1

Proposition 1. Assume we implement E1, E2, · · · , ErU lin-
ear operations, i.e., matrices, and use a sufficient number
of probes. The dense expert (Eq. 2) and probing network
(Eq. 4) have identical expressivity.

Proof. We will prove both that the dense expert entails linear
probing (1), and that probing entails linear experts (2).

Direction (1) is trivial, as linear probing is a composition
of linear operations, it follows that the operation is a lin-
ear operation from RdW×dH → RdY . As the dense expert,
parameterized as W ∈ RdW×dH×dY , can express all lin-
ear operations in RdW×dH → RdY , it clearly entails linear
probing.

Direction (2) requires us to prove that we can find a
set of matrices U,E[1], E[2], · · · , E[rU ], T such that y =
T
∑

l E[l]Xul =
∑

ij WijkXij for every X ∈ RdW×dH

and any W ∈ RdW×dH×dY . We show a proof by con-
struction. Let T = I (the identity matrix), U = I and
E[l]ik = Wilk. We have:

yk = (T
∑
l

E[l]Xul)k =
∑
ijl

WilkXijδjl (9)

Where δjl is 1 in the diagonal and 0 otherwise, the T is the
identity matrix and cancels out. Summing over l, we obtain:

yk =
∑
ij

WijkXij (10)

This proves that linear probing can express any dense expert.

A.2. Proposition 2

Proposition 2. Let the Tucker low-rank tensor decomposi-
tion be given by:

W =
∑
nml

Mnml · tn ⊗ vm ⊗ ul (11)

The linear ProbeX in Eq. 6 has identical expressivity as using
the dense predictor in Eq. 2, with a weight tensor obeying
the Tucker decomposition.

Proof. The Tucker decomposition expresses a 3D tensor
W ∈ RdW×dH×dY by the product of a smaller tensor
M ∈ RrT×rV ×rU and three matrices U ∈ RdH×rU , V ∈
RdW×rV , T ∈ RdY ×rT as follows:

W =
∑
nml

Mnml · tn ⊗ vm ⊗ ul (12)

Where ⊗ is the tensor product, and uq, vq, tq are the qth

column vectors of matrices U, V, T respectively.
The expression for the Tucker decomposition in index

notation is:

Wijk =
∑
nml

TknMnmlVimUjl (13)

By linearity, we can reorder the sums as:

Wijk =
∑
n

Tkn

∑
ml

MnmlVimUjl (14)

We can equivalently split tensor M into r matrices
M [1],M [2], · · · ,M [r], so that:

Wijk =
∑
n

Tkn

∑
ml

M [l]nmVimUjl (15)

Multiplying tensor W by input matrix X ∈ RdW×dH , the
result is:

ỹk =
∑
ij

XijWijk =
∑
ij

Xij

∑
n

Tkn

∑
ml

M [l]nmVimUjl

(16)
By linearity, we can reorder the sums:

ỹk =
∑
n

Tkn

∑
ml

M [l]nm
∑
ij

VimXijUjl (17)

Rewriting U using its column vectors this becomes:

ỹk =
∑
n

Tkn

∑
ml

M [l]nm
∑
i

Vim(Xul)i (18)

Rewriting the sum over i as a matrix multiplication:

ỹk =
∑
n

Tkn

∑
ml

M [l]nm(V TXul)m (19)

Rewriting the sum over m as a matrix multiplication:

ỹk =
∑
n

Tkn

∑
l

(M [l]V TXul)n (20)

Rewriting the sum over n as a matrix multiplication, we
finally obtain:

ỹ = T
∑
l

M [l]V TXul (21)
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