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Recent work has argued that the strong cosmic censorship (SCC) conjecture is violated by near-
extremal Reissner—Nordstrom de Sitter (RNdS) black holes but respected by Kerr-de Sitter black
holes. It has also been shown that the conjecture is violated by near-extremal BTZ black holes.
The latter result relies on a coincidence between “exterior” and “interior” quasinormal frequencies.
If this coincidence were to occur also for RNdS or Kerr-dS then it would significantly modify the
conclusions of earlier work. In this paper, it is demonstrated that this coincidence does not occur
for RNdS or Kerr-dS and so the conclusions of the earlier work remain valid.
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I. INTRODUCTION

General relativity is a deterministic theory that
describes our universe at large scales. Nevertheless,
there are solutions of Einstein equations, that are not
fully specified by the initial conditions. In fact, for
some spacetimes, we find Cauchy horizons. These are
regions beyond which there are infinitely many possible
solutions to Einstein equations that are consistent with
the initial data. This is a violation of determinism, and
an undesirable feature of the theory. To attenuate this
issue, in the 1970’s, Penrose put forward the Strong
Cosmic Censorship (SCC) conjecture [I]. In broad terms
SCC is the statement that spacetimes with Cauchy hori-
zons, come from fine tuned initial conditions. Generic
spacetimes, should be deterministic.

Several solutions of FEinstein equations are known
to admit Cauchy horizons. Famous examples in
asymptotically flat spacetimes (A = 0) are Kerr and
Reissner-Nordstrém black holes. Fortunately, there is
compelling evidence [2H8] that these horizons are not
stable. In fact signals emitted by an observer outside
the black hole (BH), suffer an infinite blueshift when
approaching the Cauchy horizon, prompting the insta-
bility. On the other hand, for asymptotically de-Sitter
spacetimes (A > 0), there is a competing redshift
effect due to the existence of a cosmological horizon,
which may weaken the strength of the Cauchy horizon
instability and make a violation of SCC more likely [9].

Recently, Cardoso et al. [I0], renewed the interest
on SCC in asymptotically de-Sitter spacetimes. The
authors showed that if we couple the Einstein field equa-
tions with a massless scalar field, then for a non-trivial
set of RNdS black holes it is possible to extend the scalar
field across the Cauchy horizon as a weak solution of the
Einstein Klein-Gordon equations. More formally, they
found that for a generic class of RNdS black holes, the
massless scalar field will have finite energy at the Cauchy
horizon. This work was based in recent mathematical
results [I1l [I2] about the boundedness of linear fields
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near the Cauchy Horizon. In [I3], the authors extended
this result for a charged scalar field. In these papers,
the authors use [I4HI6], to argue that the results should
remain valid in the non-linear case. Further work from
Dias et al. [I7, 18] showed that in the case of gravi-
toelectromagnetic perturbations, the violation is even
more drastic. For a non-trivial region of parameter space
gravitoelectromagnetic perturbations can be extended
across the Cauchy horizon with arbitrary regularity.

RNdS BHs are not very relevant as astrophysical
objects. It is not very likely that a near extremal
amount of electrical charge falls into a black hole, to
reproduce the SCC violation found in [I7]. It would
be much more interesting, if we found SCC violations
on the more physical Kerr-dS background. However,
n [19], the authors showed that this is not the case.
In fact, scalar field and gravitational perturbations are
sufficiently irregular at the Cauchy Horizon to preserve
SCC.

In a recent paper, [20] Dias et al. studied the
behaviour of several fields propagating around the
3-dimensional, asymptotically AdS, BTZ black hole
[21]. They found that for BHs sufficiently close to ex-
tremality, these fields can be continued across the inner
event horizon with arbitrary regularity. This conclusion
relies fundamentally on an unexpected coincidence
found between quasinormal mode (QNM) frequencies of
waves propagating on the exterior of the BH and waves
propagating on the interior of the BH. This coincidence
increases the regularity of fields on the Cauchy horizon,
leading to a violation of SCC.

If this coincidence also occurred for Kerr-dS or RNdS
black holes, we could find new violations of SCC in
4 dimensional gravity. In [I7] the authors found a
large class of near extremal RNdS BHs that violate
SCC, so this equality would simply increase the region
of parameter space that violates SCC. Much more
interesting is perhaps the Kerr-dS case. As discussed
above, there is no evidence for SCC violations in this
spacetime. However, if this coincidence was to occur,
the conclusion of [I9] would have to be revised. In fact,
for a set of near extremal (NE) black holes, we could
expect SCC to be violated.

In this paper we prove that this is not the case. We
study the spectrum of interior and exterior QNMs for
Kerr-dS and RNdS BHs. Using numerical and analytical
arguments, we prove that the frequencies are distinct,
maintaining the conclusions of [17] and [19].

It is also important to mention recent efforts in the
direction of restoring the faith in SCC. At the classical
level, we should mention [22]. In this paper, Dafermos
and Shlapentokh-Rothman showed that even though
some notions of SCC are not respected for a class of

RNdS black holes, if we allow non-smooth initial data,
then SCC is recovered. More recently, a couple of papers
by Hollands et al. , [23] 24] restored the faith in SCC,
when considering quantum fields on a RNdS / Kerr-dS
BH. The authors argue that the energy momentum
tensor of quantum fields is sufficiently irregular at the
Cauchy horizon, recovering SCC. The BTZ case is a bit
more complicated. In [20], the authors prove that the
stress energy of quantum fields is regular at the Cauchy
horizon. Hence, the backreaction onto the gravitational
sector, should also remain regular. However, in a recent
paper [25] Emparan et al. , argued that second order
backreaction diverges at the Cauchy Horizon, preserving
SCC.

The paper is organized as follows. In section [T we re-
view the RNdS and Kerr-dS black hole solutions. Then,
we review the notion of exterior QNMs, define inte-
rior QNMs and finally outline the argument that relates
QNMs with SCC. Then in section [[V] we study the fam-
ilies of interior and exterior QNMs that are relevant for
SCC violation in the RNdS black hole. Using analytical
approximations, we show that in the near extremal limit
exterior and interior QNM frequencies coincide to leading
order. Then, using high precision numerical methods, we
find the values of these frequencies, and show that they
are different. We conclude, that in the RNdS case, there
is no additional violation of SCC. In section [V] we use
a WKB argument to prove that exterior QNM frequen-
cies are not frequencies of interior QNMs. We conclude
reinforcing confidence of SCC in this spacetime.

II. BACKGROUND MATERIAL
A. The RNdS black hole solution

Let’s review the 4 dimensional RNdS black hole (see
e.g. [26]). This solution of Einstein’s equations describes
an electrically charged black hole in a de-Sitter back-
ground. The BH is completely specified by 3 parameters,
(M, Q,A), (mass, charge and cosmological constant). In
static coordinates (t,r, 8, ¢), the line element of the met-
ric can be written as:

2 , , dr? 2 102
where dQ? is the line element of a unit radius 52, and
+ = — = (2)

This spacetime is pathological unless f(r) has 3
positive roots. r_ < rp < r., corresponding to the
Cauchy horizon CH, event horizon Hp and cosmological
horizon He.  These will bound the different causal
regions of the black hole. (see figure [1).



FIG. 1: Penrose diagram for the RNdS and Kerr-dS
black holes (truncated to the physical regions I and II).
Each point denotes an Sz (S1) in the case of the RNdS

(Kerr-dS black hole).

Region I (the black hole exterior), is bounded by
ry < r < r.. In here r = r4 corresponds to the
white hole horizon (H~) at t = —oo and the right black
hole horizon at ¢t = +oo (H}). The radial coordinate
r = r. will correspond to the past (t = —o0) and future
(t = +00) cosmological horizons: (Hg and H).

Similarly, region II is bounded by r— < r < ry. At
r = r_ we find the Left (¢ = +00) and Right (t = —o0)
Cauchy horizons (CH} and CH}, respectively). On
the other hand, we have in the causal past r = ry,
corresponding to the left (t = —o0) and right (t = +00)
future event horizons (H} and H}).

In the calculations that follow, we will work in units
such that A = 3. Furthermore, it is instructive to use
the roots of f to characterize the black hole (instead of
M and Q). To do so, we rewrite :

where 7; may specify any of the roots of f.

To make the structure in explicit, we take r2f(r)
in and explicitly evaluate the polynomial quotient
with respect to (r — r1). Then, we divide the result by
(r — 7). Equating the remainders of this operations to

Allowed solutions
| — r=0
04 B r=r,

| — r=r,

r+

FIG. 2: Parameter space of the RNdS black hole.

zero, we obtain:

M:%(T’1+T’2)(17T$7T§) (4)
Q*=rira (L —riry —rf —13) (5)
r?f(r)

(r—r) (r —r2) (6)

P2 (r Fr)r s oy — 1

Finally, equating @ to 0, we find that

1
7‘3/4:—5 (7‘1 +’r2:l: \/4 — 2T1T2 — 3(7‘% “l‘r%))
(7)

Lets now define, ry = ry, 19 = 7., r3 = 71T_
and r4 = rz Seeking physical solutions, we must
impose that the roots r; are real valued, and obey
0 <r_- <ry <re. Aswe can see in figure [2] this
bounds the allowed RNdS black holes by three limiting
cases: 7 — 0 (Schwarzschild de Sitter limit), r— — ry
(extremal limit) and r; — r. (Nariai limit).

Although 7o, r_ and r. are quite useful to discuss
properties of the black hole, they are not the best when
scanning the BH parameter space (see [2). Instead, it
is more intuitive to consider Q%/Q2,., and y; = ry /r..
Here, Q2. is the maximal electric charge for a given
value of y;. It corresponds to the charge of an extremal
RNdS black hole. To obtain this, we take r; = r3 in

equation @, and solve with respect to ry/ro. We get:

2 _ Ui @2y + 1)
B2 4 2y + 1)

(8)

These parameters have the advantage of being defined
in the interval (0, 1), transforming the parameter space



into a square. Given equations and 7 we may
invert the definitions of y, and Q%/Q2,. to obtain
r4/_jc as a function of y4 and Q*/Q3Z,,..

In the calculations below, we will also make use of the
tortoise coordinate, defined through:

dr
fr)

Ty goes from 400 at r = r., to —oo at r = r; and back
to 400 at r = r_. It is then important to specify the r
region, when working with this coordinate. Finally, using
ingoing Eddington-Finkelstein coordinates, (see e.g. [26])
we obtain the surface gravity x of the Horizons:

dr, =

9)

f'(r:)
2

(10)

Ki:’

B. The Kerr-dS black hole solution

The Kerr-dS black hole has very similar properties to
the RNdS BH. This solution describes a rotating black
hole in a de Sitter background, see e.g. [26]. In Boyer-
Lindquist coordinates, the line element reads:

A ) 2 0>
2 r 2 2
ds® = 722/)2 (dt — asin Gdd)) + A—Tdr
Agsin® § §
S (odt = 0+ a?)de) - Lad (1)
where,

A, = (r2+a2) (1_§T2) —2Mr,

Ag = 1+ acos?b,

Y=1+4g¢, (12)
,02 =72+ a%cos? 0,

A
a==a>

3

The black hole is completely specified by the parame-
ters (M, a, A), denoting the mass, spin and cosmological
constant respectively. As before, the solution is
pathological, unless A, (r) possesses 3 positive roots,
r— < ry <r. corresponding to the Cauchy, event and
cosmological horizon. This condition imposes bounds
on the allowed values of the BH parameters, as in the
RNdS case. As before, these roots indicate the locations
of CH, H' and H..

The causal structure of a Kerr-dS black hole is very
similar to the one for a RNdS spacetime. Region I is
the exterior of the black hole, bounded by H* and Hc¢,
while region II is the BH interior, bounded by H* and

CH (see figure [I]).

As before, we may define the tortoise coordinate, by
integrating:

B % (7"2 + az) .
dr, = AT dr . (13)

Finally, we may obtain the surface gravity of the different
horizons:

1 AL(ry)
Ri = % 7 Q (Tz) ) (14)
where:
a
Qr) = 1
)= (15)

III. QUASINORMAL MODES AND STRONG
COSMIC CENSORSHIP

A. Quasinormal modes definition

Quasinormal modes have been studied extensively in
the literature, see [27), 28] for a comprehensive review.
In asymptotically de-Sitter spacetimes, QNMs are re-
sponsible for governing the late time behaviour of linear
fields. We define QNMs as solutions of a given wave
equation with specific boundary conditions. Specifically,
we require that QNMs are purely outgoing at H¢, and
ingoing into Hpg.

As a toy example, let’s study QNMs arising from the
Klein Gordon (KG) equation in these spacetimes. A
massless KG field will obey:

Oe=0 . (16)

Quasinormal mode solutions of this equation, can be
obtained by performing the Ansatz:

(I)nlm(tv T, 97 (b) = e_the_im(bRnlm (T) @nlm (9) ) (17)

where w is the Quasinormal frequency, n,land m are in-
tegers that label each mode and Ry, () and ©,,;,,(0) are
the radial and angular part of the solution. In the RNdS
black hole, spherical symmetry implies e™?0,,,, () is
given by the usual spherical harmonic functions (Y},,).
In the Kerr-dS background there is no closed form so-
lution known for ©,;,,(f). Plugging equation into
, we separate the equation into two ODEs describ-
ing the radial and angular part respectively. For conve-
nience, we will henceforth drop the nim indexes. The
radial equation reads:

d2 5
(d,rz +(w — mQpu(r))” — VBH(?")) R(r) = 0, (18)

*



where Vpp is the scattering potential, Qpg(r) = 0
in the RNdS case and Qpg(r) is given by equation
in the Kerr-dS case. For both BHs, we have
VBH(TC) = VBH(T+) = VBH(T,) = 0.

Using a Frobenius analysis, we may define solutions
of equation according to their asymptotic behaviour
near each horizon. We will denote these solutions ac-
cording to their ingoing/outgoing character (in/out) at
the horizon. For r < 7., taking the limit r — r, we
have:

Rout, (1) ~ €t @ = mSau(re)) e

Ri(zluc((/r*) ~ e_i (w_mQBH("”c))T'*, as T — +OO?

(19)

Similarly, for » > 74, we define ingoing and outgoing
modes such that:

R, r Nei(wmeBH(mr))r*
RT:,t—Q—JE?(”*;)N et (‘*’*mQBH(H))m’ as T = =00,
(20)
The same approach is valid for » < 7y in the r — ry
limit, by taking r. as a function of r € (r_, r3). The
asymptotic behaviour of such solutions is identical to the
one in . Finally, for » > r_, in the limit r — r_, we
have:

Rout. — ~ ei(w—’mQBH(r,)) T
R ~ e—i(w—mQBH(r,))r* as Ty —> $00
in, —

(21)
We can now define quasinormal modes as solutions of

that are proportional to Ri,, + and Ry, ¢
R(r) ~ Rin, + ~ Rout,c (22)

The condition of proportionality between Rj, 4 and
Rout, e is very stringent and quantizes the spectrum of
frequencies that lead to QNMs. We call these values of
w quasinormal frequencies.

This condition can be rewritten using the Wronskian
W. Given two solutions f, g of a linear ODE, W [f, g] is
defined as

Wif.gl=f9—-1fg . (23)

If f is proportional to g, we have W[f,g] = 0. We can
thus define pairs (QNM, quasinormal frequencies) as so-
lutions of

w [Rin.,+7 Rout,c} =0 . (24)

where / denotes differentiation wrt. r*.

B. Relation with Strong Cosmic Censorship

The late time behaviour of linear fields in a RNdS or
Kerr-dS background can be obtained by taking a linear

combination of QNMs. Hence, we may expect these
modes to control the regularity of fields at the Cauchy
horizon. In fact, SCC violations are fully dependent
on the behaviour of some families of QNMs. A proper
justification of this is a bit lengthy, and can be found
in refs. [I7, I8, 20]. Nevertheless, we will outline the
general idea below.

Given a RNdS or Kerr-dS black hole, there will be
a violation of SCC, if we may extend generic small
metric perturbations across the Cauchy Horizon, as a
solution of the equations of motion. QNMs describe the
late time behaviour of perturbations, so we expect the
slowest decaying QNM (lowest negative imaginary part)
to control the regularity of generic perturbations at CHg.

Black holes created by gravitational collapse do not
have a left Cauchy horizon, hence, we are interested
in characterizing the behaviour of QNMs at CHg. For
simplicity, we will restrict to the 2y = 0 case. The
same analysis is valid in the general case by performing
an adequate coordinate transformation on ¢ (see [19]).

We start by defining ingoing and outgoing EF coordi-

nates, u = t — r, and v = t + r,. Then, we define
Kruskal coordinates in the BH interior:
U_ — _e){_ u ,
25
Vo= —e"" (25)

Reinstating time-dependence in the radial equation, we
obtain:

- re — 400

e—iwt Rin o~ V:
e as t =400 . (26)

e_zthout,— ~ U7 -

The right Cauchy horizon is obtained by taking the V" —
0 limit, with U_ > 0. The outgoing solution is smooth
at the horizon, whereas the regularity of the ingoing part
is dictated by the value of

3 = —Im (:’_) . (27)

In fact, if 8 > %, Rin,— can be continued across CHrg
with finite energy. Similarly, for some positive integer
k, if 3 > k then e~™!R;, _(r) has C* regularity at the

Cauchy Horizon.

At H*, QNMs are proportional to R;, ;. Extending
this to the interior of the Black Hole, we may decompose
each mode as

Rin7+(r) = A(w) Rin,—(r) + B(w) Rout,—(r)- (28)

Given the smoothness of e_i“tRout7_, the regularity
of a QNM at CHp should be dictated by the value of
B. We may then argue that the irregular behaviour of
our generic perturbation is controlled by the frequency



of the slowest decaying QNM. Nevertheless, there is a
subtlety we must be wary of. If the slowest decaying
QNM happens to be purely ingoing at the Cauchy
Horizon, i.e. A(w) = 0, then the mode will be smooth
there. The regularity of waves will be dictated by the
slowest decaying mode, with non-vanishing A(w).

The condition A(w) = 0 can be rewritten as

W[Rin’+, Rout,f] = 0 . (29)
This condition is akin to equation (24). In fact, it
quantizes the spectrum of solutions to (16). We define

the modes in this spectrum as interior QNMs [20]. These
solutions will be purely ingoing at . and outgoing at
CHpr. We conclude that if the lowest lying exterior QNM
has the same frequency as onw of the interior modes,
the regularity of linear fields at CH g will be increased.

In [T7HI9], studies of SCC in the RNdS and Kerr-dS
BHs were performed assuming that A(w) # 0 generi-
cally. On the other hand, in [20], Dias et al. show that
A(w) = 0, for a family of exterior modes. This coinci-
dence leads to the subsequent SCC violation found in the
paper. It would be very interesting if this coincidence was
present in the Kerr-dS black hole. The increased regular-
ity of modes at the Cauchy horizon would lead to a SCC
violation in the vacuum Einstein Equations, with A > 0.
Nevertheless, the authors of [20] argue that this coinci-
dence is most likely a special case of the 3-dimensional
BTZ BH. In fact, the wave equation is hypergeometric in
this background, containing only 3 singular points. Con-
trarily, for the 4 dimensional RNdS / Kerr-dS BHs, the
equations of motion are of the Huen type, with 4 or more
singular points, with more degrees of freedom. Hence, it
is less likely we find a coincidence between interior and
exterior QNM frequencies. In this paper we will explicitly
compare the frequency spectrum of interior and exterior
QNMs, checking the validity of this argument.

IV. STRONG COSMIC CENSORSHIP IN THE
RNDS BLACK HOLE

A. Master Equation

For most cases, the equations of motion of linear fields
in a RNdS black hole, can be written in the form of the
following master equation:

(d2 + w? - V(r)) R(r) = 0, (30)

2
dr?

where V(r) is smooth for > 0. In most relevant cases,
we can further decompose

V(r) = f(r) A(r), (31)

where V(r) is smooth for » > 0. The expression for
V(r) in depends on the specifics of the field we
are considering. In this work we will focus in gravito-
electromagnetic perturbations, as studied in [I7]. These
modes may be constructed from the combination of two
scalar modes (®F(r)) and two vector modes (®F(r)),
obeying equation , with V, /s, 4 (r) given by,

Viw = 0a () + BAEL0Y + RE() L (32)

Vew = —Baf(r) S + BB + REL() ()

where,
Be=3M F /IM2 +4Q2(1—1)(1+2), (34)
E=01-1)01+2)[(-1)(14+2)+2], (35)
= f(r) (36)

(=11 +2)r + B+]

Here, [ is the integer azimuthal quantum number,
coming from the expansion in spherical harmonics
Yim (6, ¢). For <I>j/s, [ > 1 whereas for =2

In [I7] it was shown that scalar and vector pertur-
bations are isospectral, so we will henceforth drop the
v/s subscript and concern ourselves only with scalar
perturbations. It was shown that the lowest lying QNM
is either a solution for @, with [ =1 or ®_, with [ = 2.
Below, we will compare the interior QNM spectrum with
the frequencies of these two modes.

Defining 7, in the appropriate domain, the boundary
conditions that define interior and exterior QNMs can be
written as:

R(r) ~ ™ as

R(r) ~ e ™" as

Ty — —00,
(37)
Ty — +00.

For interior (exterior) QNM, we denote r_ (r.) as ro and
r+ as r1. Restoring r dependence in equation 7 we
get:

R(r) ~ |r — 7’1|_;Tw1 as T — 1,

i (38)
R(r) ~ |r —ro| 252 as 17 — 1o
It is useful to incorporate the boundary conditions in the

equations of motion. Thus, we redefine R(r):
R(r) = |r — r| 2% |r — o] %% R(r) ,  (39)

where R(r) is smooth in 7 and r5. We now define the
dimensionless variable,

r—r7r
y=——, (40)

To — T1
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FIG. 3: Comparison between the analytical approximations obtained for the Nariai limit (left panel) and the near
extremal interior spectrum (right panel) with results obtained numerically. In both cases we studied quasinormal

modes of ®_ with [ = 2. On the left panel we have Q2/Q?

Y+ = O5a Q2/Q%nax

= 0.5, y+ = 0.999 and in the right panel we have

max

= 0.999. Notice that in the right panel, the frequencies are purely imaginary, the horizontal

displacement is artificial for readability purposes.

with y =0 at r; and y = 1 at ro. Substituting and
in , we get

P(va) D/
y(y—1)

Qy,w)
yly—1)

with P(y,w) and Q(y,w) analytic functions of y and w
in [0,1] x C. For values of y > 1 or y < 0 we might
find singularities in P and Q. We now define QNMs as
solutions of that are smooth at y = 0 and y = 1,
with R(0), R(1) # 0.

R"(y) + (r) + Ry) =0 , (41)

B. Analytical approximation for confluent horizons

In [I7], violations of SCC were found for BHs that
were close to extremality. These BHs have Q% — Q2.
(see equation (8)), corresponding to r— — ry. The
authors found that the slowest decaying QNMs in these
BHs are QNMs inherited from the limiting extremal
RNdS BHs. These solutions are sharply peaked near
H*, and vanish quickly for r > r,. We denote them
as near extremal QNMs. As argued in [[ITB| we want
to explicitly check if the frequencies of these modes
coincide with a subset of the interior QNM spectrum.
If frequencies were to coincide, fields would have higher
regularity at the Cauchy Horizon.

Lets first focus in the more general case of modes
propagating between two horizons that are arbitrarily
close. This situation describes interior QNMs in the

near extremal limit, but also QNMs of near Nariai black
holes (ry — 7. limit). We will use the second case as a
control on our calculations.

Analysing the equation , in the r; — 79 limit, we
have k; — 0. Given that in w shows up always
divided by k;, and the same happens in if expanded
around y = 0, we expect that QNM frequencies will
vanish proportionally to k;. Thus, we will work with
the dimensionless parameter p = il Due to 71 and ry
being very close, we expect that A (defined in ) will
be approximately constant in r € (71, r2). We expect
the same from F' defined through

fr)=(r —r)(r —r) F(r)

Hence, a Taylor expansion of about r = ry should
yield accurate results. We now define the perturbation

parameter € = ”r_l” , and expand R and p:

R(r) = Ro(r) + e Ry (r) + ...
p=po+ep1 + ..

(42)

(43)

Plugging this into equation , to zero order in e, we
get:

y(1 — y)R{(y) + (1 —ipo — 2(1 —ipo)y) Ro(y)

+ (?EZ; + 2+ ipo) Ro(y) =0 . (44)

This is the hyper-geometric equation. In the canonical
form, we write this equation as:




y(L=y)w"(y) + (e — (a + b+ 1) y) w'(y) — abw(y) = ? j
45

This result is analogous to the one obtained in [29],
as the near horizon geometry of Black Holes is approxi-
mately AdS,. From we read off the coefficients a, b
and c:

a = —1p0 B) )

1+A
2
c=1—1pg
where,

4A(T1)

A=,4/1+ 47
F(Tl) ( )

This result is still valid for 1 4+ 4 A(r1)/F(r1) < 0.
Here, A will be the root of a negative number, and
we must choose a branch to define it. Notice that
swapping the branch choice is equivalent to swapping
the definition of a and b, so this choice can be arbitrary.

The hypergeometric equation is solved by hypergeo-
metric functions. These have been well documented in
the literature (see e.g. [30, BI] ). Following the proce-
dure in [20], we prove that requiring smoothness at y = 0
and y = 1 implies a quantization of a or b. We have that
either a = —korb = —k with &k = 0, 1, 2, .... Solving
this with respect to py we obtain two families of QNMs,
defined as type-a and type-b, with frequencies:

o (1-A
wz<+ k>+0(s) , (48)
ky 2
1+ A
sz'<++ k>+0(s) : (49)
ky 2
Taking r1 = ry and 19 = r., we can estimate the

spectrum of exterior modes in the Nariai limit (r; — r¢).
Here A will be purely imaginary as discussed above. w,
and wp will have the same imaginary part and symmetric
real parts. In figure we compare the spectrum of
Nariai modes obtained numerically (see section ,
with this analytic prediction. These are consistent with
the WKB approximation in [I7] and the supplementary
material of [10].

Similarly, taking r; = r4 and ro = r_, we obtain
an estimate for the interior frequency spectrum of
near extremal black holes. Here, A will be real and
positive, with no a-priori upper bound. In fact, there
are cases where it is greater than 1, leading to modes
with positive imaginary frequencies. This is not cause

for concern, as there is no relation between interior
QNMs and spacetime stability (see [20]). In figure
we compare the analytic prediction with the numerical
results obtained in [V _Cl

This approach is entirely analogous to the analyt-
ical approach used in [I7] to estimate exterior QNM
frequencies. In fact, we may extend y to negative
values, to explore the behaviour of Ry(y) in the BH
exterior. Taking Ro(y), to be smooth in y = 0 and
exponentially decaying at y — —oo, we get a mode that
is smooth in r; and exponentially decaying for r > r,.
These are precisely the conditions required in [I7] to
estimate NE modes. It is important to mention that
the decaying condition is purely empirical, motivated
by the behaviour of solutions observed in numerical
calculations. Analysing the solutions of equation
in terms of hypergeometric functions, we prove that
exponential decay at y — —oo implies smoothness at
y = 1. This means that extending the NE QNMs of [17]
to the interior of the BH, we get interior QNMs. Hence,
up to Oth order in € the spectrum of exterior NE QNM
frequencies is a subset of the spectrum of interior QNM
frequencies. In fact, NE QNMs coincide with the type-b
family of modes defined in .

This result might seem a bit worrying, as it hints
against the conclusion of our paper. In fact, we must
compute higher order corrections to distinguish the in-
terior and exterior spectrum. Doing this analytically is
hard, and it is not clear how to proceed. Hence, we will
resort to numerics, to pinpoint whether there is a differ-
ence between interior and exterior QNM frequencies.

C. Numerical computation

To obtain the spectrum of QNMs numerically we
approximate the continuous ODE problem by a discrete
system of equations, as seen in [32H35]. More specifi-
cally, we sample solutions of equation in a discrete
Chebyshev grid, mapping the differential operator into
a matrix operator. We then solve the resulting matrix
equation using standard linear algebra methods.

For a given interval [a, b] we may define a Chebyshev
grid with size N, as the set of points x; such that

b— ; b
xi:( a)COS(”)+a+ ’ i=0,1,2, .. N,

N, 2

(50)
Constraining the domain to the discrete Chebyshev grid,
we may rewrite the action of the derivative using matrix
multiplication. We denote this matrix D.., (see [34] for
an explicit definition). Multiplying equation by
y(y — 1) and sampling it in the Chebyshev grid above,
we obtain a quadratic matrix eigenvalue problem. The
eigenvectors will be discrete approximations of solutions
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for y4 = 0.47. On the left panel, we study quasinormal

modes corresponding to ®_, with 1=2, whereas on the right panel we have &, with [ = 1. In both plots, we zoomed
the circled region into a subplot on the top right corner. As we can see, the value of v takes very small values,
oscillating around 0. We can see that 7 tends to 0 in the Q2 — @2, limit, as predicted in section

to equation , smooth at y = 0 and y = 1. The
eigenvalues will correspond to approximations of the
Quasinormal Frequencies.

To find the frequencies we use a combination of two
methods. We start by obtaining a direct eigenvector
decomposition of the system using Mathematica’s native
Eigensystem function. This method yields an approxi-
mation of the full frequency spectrum. Bear in mind it is
very important to use a software that supports arbitrary
precision to obtain good results (we used up to 500
digits of precision in intermediate calculations). This
procedure, is not the best to approximate the frequency
of individual modes. It is too computational intensive,
and does not allow arbitrary high precision of a given
frequency. Bearing this in mind, we apply the version
of the Newton-Raphson method described in [32, [33] 36]
using the direct method as a seed. Although faster
and more precise, this method requires a very accurate
initial frequency estimate to converge. In figure @ we
plot the numerical error on the calculation of a given
quasinormal frequency as a function of the Chebyshev
grid size (N.). As expected, we see that the usage of a
Chebyshev grid actually guarantees that this method
has exponential convergence.

In the analysis below, we computed the lowest lying
NE exterior and type-b interior QNMs (see equation

max

for a definition) in a non-trivial region of the parameter
space. To achieve this, we used the direct method to ob-
tain these modes for a given RNdS BH, and then used
them as seed for a Newton-Raphson method applied to
BHs with similar mass and charge. We then used the re-
sults as estimates on other similar BHs and henceforth.
For each frequency calculated, we repeated this proce-
dure twice, once with a Chebyshev grid size of 500, and
then 550. The difference between the obtained frequen-
cies was used to estimate the precision of our calculations.
We always made sure this was at least one order of mag-
nitude below the difference between interior and exterior
QNM frequencies. This limit would only saturate close
to extremality, otherwise, the precision was usually much
higher than the difference in frequencies.

D. Comparison between interior and exterior
modes for gravitoelectromagnetic perturbations

As seen in section [[VB] in the NE limit of RNdS BHs,
there is a correspondence between the spectrum of NE
exterior modes and type-b interior modes. Using numer-
ics, we verified whether this correspondence extends to
the remainder of parameter space. To do so, we explicitly
computed the lowest lying frequency of the NE family
of exterior modes (wext) and the lowest lying frequency
of type-b interior modes (wint). To make sure we chose
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FIG. 5: As in figure @ we plot the value of v in a non-trivial region of parameter space. On the left panel we study
®_, with =2, whereas on the right panel we have ®,, with [ = 1. To produce these plots, we used the
Newton-Raphson algorithm to find the frequency of wiyy and wey discretely varying the parameter space in a
200x200 grid. As described in section [V C] we repeated the calculation twice for each black hole with different grid
sizes, to estimate the numerical precision of our method. We checked that in the whole plot, the numerical precision
was always above the difference between interior and exterior frequencies. We remark, that as seen in the one

dimensional plot, v goes to 0 as Q% — Q
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FIG. 6: In this figure we show the exponential
convergence of the Newton-Raphson method. We plot
the normalized difference between 8 = w/k_ computed

using a given Chebyshev grid size (N.) and 8 computed
using very high resolution (V. = 601). We see that the
relative numerical error decays exponentially with N, as
expected. Here, w is the lowest lying NE mode, of ®_
with [ = 1, for a BH with y; = 0.35 and

Q)@ rnar = 0.99.

the appropriate families, we compared with the analytic
prediction in the near extremal limit (equation ([49))). We
performed this calculation for &, (I = 1) and ®_ (I = 2)

2

max*

gravitoeletric QNMs in a large class of RNdS black holes.

In our plots, we characterize the difference using the

quantity
<win - wext)
Y=\""T——)"
Win + Wext
This will always be a real number, as the modes we are
concerned with have purely imaginary frequency.

(51)

In figure 4| we plot v as a function of Q?/Q2 ..
for a fixed value of y,. Similarly, in figure we
depict v in a mnon-trivial region of parameter space
using a density plot. We see that v oscillates around
0, attaining the value in some simple roots and occa-

sional double roots (as seen in the beginning of ﬁgure.

Analysing figure we see 7 is always very small,
reaching a maximum of O(10~%). Although the frequen-
cies are very similar as expected, they are not equal. It
is interesting to analyse the dark regions in[5} When the
colour changes from purple to orange, we have single 0’s
of «, whereas when there is no colour change, we have
double zeros, as seen above. In figure [7] we prove that
this features are actually present, by zooming in around
one of these roots. These features are unexpected as
both the frequencies and their gradient coincide. Close
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FIG. 7: In this figure we study the double roots of
found in figures [4 and [f] As an example we establish
that (y; =~ 0.47, Q*/Q2 .. ~ 0.908) is indeed a double
root of 7, from &, QNMs. We fixed y; and varied
Q?/Q? . in a grid of 20 entries, with values in 7o £ §o/2,
(Fo = 0.0075, §p = 0.005). We sampled + there and
found the grid point with smallest . Setting this as 7,
we created a new grid centred at this point with width
81 = 107155. We sampled values of v in this new grid
and iterated the process 10 times. In the plot we see the
value of the minimum as a function of the sampling
density p = 20/J. The value decreases exponentially
with sampling density, hinting that y, ~ 0.47,
Q?/Q2,.. ~ 0.908 is indeed a double root of .

to these lines, there is a wider region where ~ is close to
0. The roots of v are 1-dimensional regions of parameter
space. For these black holes, fields will have increased
regularity at the Cauchy horizon. Nevertheless, these
regions are not generic in the 2-dimensional parameter
space of RNdS BHs, so they are not pointers to SCC vio-
lations. Finally, it is worth remarking that ~ approaches
0 in the extremal limit, validating the discussion in

section [V Bl

We can conclude that lowest lying exterior frequencies,
generically, are not the frequencies of interior modes.
Hence the regularity of gravitoelectromagnetic perturba-
tions on a generic RNdS black hole, agree with the ones
found in [I7]. Hence, there are no new violations of SCC.

V. STRONG COSMIC CENSORSHIP IN THE
KERR-DS BLACK HOLE

A. Wave equation and QNM

As a toy example, we will focus in the behaviour of
massless scalar fields in Kerr-dS spacetime. Our argu-
ment should be extendible to other fields without much
difficulty. In the following, we will show that generic so-
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lutions of
O0® =0 (52)

do not have finite energy at the Cauchy horizon. We will
take purely ingoing modes at the event horizon, with the
frequency of an exterior mode, and scatter it through
the BH interior, studying their regularity at the Cauchy
horizon. In a Kerr-dS background, the radial and angular
parts of the KG equation are given by the Teukolsky
equation. Plugging into , we obtain the following
equations:

d
de

(Ag sin 6 de“;lm )

52 (53)
mgwlm(e)
+ K Sin(@)@wlm(a) =0 ,

d delm (7“)
— (A, 2wtimAT)
dr ( "odr )

+ {f(w(ﬁ +a%) — am)?

T

— (m — awsin® §)?

- Klm Rwlm(r) =0 5
(54)

here m € Z, |m| < [ and Kj,, is the constant arising
from separation of variables. For ease of notation we
will henceforth drop the wlm subscript.

Equation has four regular singular points at
the roots r; of A,.(r;). For r > 0 this happens at the
Cauchy horizon (r_), the event horizon (r;) and the
Cosmological horlzon rc) Solutions to this equation

are defined in and ( .

The analysis of section [[ITB] tells us that for a QNM
with
I
)] _

K_

(55)

N =

®;,,— will have infinite energy at the Cauchy horizon. In
[19], using a WKB analysis, it was proved that taking
[ large enough we find modes respecting condition .
We will now prove that for these modes the value of A(w)
in equation is non-zero, validating the conclusions of
[19].

B. Solving the wave equation in the BH interior

Below, we will study the continuation of an exterior
QNM solution, onto the interior of the BH, and show
that it has A(w) # 0. To do so, we fix K}, and w to the
values obtained for WKB QNMs defined in [I9]. Exterior
QNMs are purely ingoing at the event horizon. We use
this to set the initial conditions for the wave function in



the BH interior. Using a WKB approximation, we solve
the radial equation, decomposing it in the Ri,/our,—

basis, using equation (28]).

Consider 7, defined in (I3)), such that r.(r;) = +oo

and 7. (r_) = —oo. In terms of r,, the radial equation is
dzs
dirz + U(T,w,l,m) S(?”) =0 ) (56)
where S(r) = vr?2 + a? R(r), and
U (oo™ \ __KmAr
YT e 2(r2 + a2)?2
+ (2 +a®) 7t = A%(r? +a?) + 3A%2
, drr (r2 +a?®)| . (57)

The modes studied in [I9], are such that m = [. Using a
WKB approximation, the authors show that in the large
[ limit:

w=wp+iwr=1Q+0(1) , (58)

here Q. is the rotation frequency of a photon propagating
in the inner photon sphere, outside the black hole. This
corresponds to 7 defined in equation (4.19) of [19]. We
expand Kj; in powers of [:

K = 12 Ao + 1A + ... (59)

In appendix [A] we prove that this expansion is valid and
A_o is real and positive. We can now define:

0 __ @ 2_ A oA,
¢ r2+a2 22(T2+a2)2

U=1Uy + O() for

Uy = ,  (60)

so that
I>>1 . (61)

Notice that Uy(r,) is a real function of r,, whereas U (r..)
has non vanishing imaginary part. We explicitly verified,
that for Kerr-dS BHs:

Qr_) > Qe > Qry) (62)

where Q(r) is defined in (TF)).
Using equations (62)), and the fact that A,.(r) <0
inr € [r_,ry], we can establish that Up(r.) > 0 in

r € [r_,r4]. In the BH exterior A,(r) > 0 and this is no
longer the case.

We now solve equation using a standard WKB
expansion (see [30]):

S(r —exp< 255’ m). (63)
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Truncating to n = 1, we obtain that in the large [ limit:

S(re,w,l) =12+ a? Rip + =
Uo(r*)_i A(w,l)exp (zl/ Uo(s)éds)
0

+ B(w, ) exp (—z’l /0 Uo(s)édm)] . (64)

where A(w,l) and B(w,l) are integration constants.

Given that Uy(r.) > 0 everywhere, equation is
valid everywhere. Physically, this means that to leading
order in [, there is no scattering of WKB modes propa-
gating in the BH interior. However, to get A(w) = 0 we
would need a purely ingoing mode at HT to be fully scat-
tered into an outgoing mode at CHg. Therefore we can
already anticipate that no violations of SCC in the Kerr-
dS spacetime will be found. Nevertheless, lets explicitly
check this below.

C. Behaviour near the horizons

For ease of notation, define

wy=w—I0% , w_=w—-10_ . (65)

For r, — —oo (near H.), using equations and ,
we obtain:

T

lim (h/%—u@) =ayl , (66)

r«——00 Jq

where a; = O(1) as | — oco. Similarly, for r, — oo (near
CHy), we get

r

lim [ (WO—w ) =at . (67

r«—o0 fq

Dropping the finite term v/r2 4 a? in front of R(r), we
find that near H,,

e~ ()

A(UJ l) —i(wyrs +agl)

+ B(w,l)ei(“”*‘“rl)] as 1. — —oo . (68)
Similarly, at C’H;, we get:

_1
1

A(w, l)e—i(w,r* +a_l)

e~ (%)

+B(w,l)ei(“”+o‘l)] as 1.—o00 . (69)



Now, we take R(r.) to be R;, . The ingoing condition
(equation (20)) at H. yields Ry 4 (ry) ~ e”™“+" asr, —
oo. This gives:

B(w,l) ~0O(1™Y (70)
Alw,l) ~0O(1) . (71)

Now, focusing in the behaviour near C’HE, using equation

, we obtain:

Aw) = WT* _%A(W,Z)e*wl , (72)
B(w) = WT* _%B(w,l)em*l : (73)

where
Y= _oa) . (74)

In particular, in large [ limit, B vanishes, so A(w) must
be non zero, or we would have the trivial solution. Hence,
we prove that A(w) # 0 for w a QMN frequency. The
conclusion of [19] is maintained, preserving SCC for the
Kerr-dS BH.

VI. DISCUSSION

In this paper, we proved that there is no coincidence
between the interior and exterior spectrum of QNMs
for Kerr-dS and RNdS BHs. Hence, there is no new
violation of SCC for these spacetimes. As further work,
it would be interesting to relate the discussion in this
paper with the quantum instability of Cauchy horizons
of Kerr-dS and RNdS black holes, found in [23]. In fact,
this instability is proportional to a factor, that depends
on the reflection and transmition coefficients of waves
around the BH (see equation 123 of that paper). We
suspect that this function could vanish, if interior and
and exterior QNMs coincide, akin to A(w). In fact,
in the same paper, the authors study the case of the
3-dimensional BTZ black hole, and they find that due
to the hypergeometric nature of the wave equation, this
factor vanishes identically in there.
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Appendix A: Positivity of A_»

In this appendix, we will prove the positivity of A_q
defined in . Taking the angular Teukolsky equation
and making the substitution x = cos(), we get:

d 9 9 d
dx(l—i—ax)(l x)dx@
~ (m—aw(l - 1?))%%2 B
(1t az?)(1 - 22) 0+ K0 =0

(A1)

Multiplying both sides by ©* and integrating in x €
(—1,1), we get:

1
/ O*P,0dxr + K;,,||0|? =0 (A2)
-1

where

_d 2) (142 d | (aw(l— 2?) —m)?x?
Pz—a(l—kax)(l )d:z:+ Atod—a7)

(A3)

and

1
02 = / 0"0dz >0 (A4)
1

Integrating by parts the first term of P, and noting that
the boundary terms (evaluation at x = 1 and = —1)
vanish, we get:

1 (aw(l—z2)—m)2x?
S ( (1(+az2))(1722) [SIRE:

IR
L+ ar?)(1 - 2?)| Le2de
o]

Klm =

(A5)

Here, the second term is real and positive, whereas the
first term is complex. We have:

Klm - KlmR + iKlmI (A6)
However, taking m = [ and replacing equation in

(A5]), we obtain:

KlmR
KlmI

=40l+0(1) , (A7)
where d is some real number. This means that, to leading
order in [, the coefficients in (Al]), are real. Now, we
multiply both sides of (A1) by (1 + az?)(1 — 2?), and
define

dx

&= A

(A8)



with z* € (—o0,4+00). We rewrite (A1) as:

2
e 5 O(.) +Q(27)O(") = 0, (A9)

with

Q(z.(z)) =12 ((1 +az?)(1 - a?) KZZR

— (1 —aQ.(1—2?))? E2> +0O()
= 12Q_o(z.)+0O() . (A10)
We may now study the large [ limit of Kj;, by solving:

d2
da2

*

O_a(z) +12Q 2(2.)O_s(x.) =0 .  (All)

Using the fact that aQ, < 1 (see [19] equation 4.19) and
a < 1, we obtain that Q2(z.) has 0, 1, or 2 roots.
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Now, the angular equation must be regular at § = 0
and § = 7. This is the statement that O(z.) must de-
cay exponentially at both infinities, i.e. an ingoing wave
at @ = 0 must be fully scattered into § = 7. Using a
standard WKB approximation (see [30]) we see that this
is the case if

Kur = Ku+0(l) = PA_y+0O(1). (A12)

Hence, we prove equation . Now, the positivity of
A_s follows simply by the substitution of equations

and (59) into equation (A5). We get:
aQ.( 2
Ky =2A_ =12 S s e Pda
n=Uiq,=
el

L1+ ax?)(1 - a?)| Lo 2de
P10 )0 )m(z) - (A1)

where both leading order terms are real and positive.
Hence, we we deduce that A_o > 0.
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