Package pygeodesy :: Module sphericalBase :: Class LatLonSphericalBase
[frames] | no frames]

Class LatLonSphericalBase

   object --+            
            |            
 named._Named --+        
                |        
 named._NamedBase --+    
                    |    
latlonBase.LatLonBase --+
                        |
                       LatLonSphericalBase
Known Subclasses:

(INTERNAL) Base class for spherical LatLons.

Instance Methods
 
__init__(self, latlonh, lon=None, height=0, datum=None, wrap=False, name='')
Create a spherical LatLon point frome the given lat-, longitude and height on the given datum.
 
bearingTo2(self, other, wrap=False, raiser=False)
Return the initial and final bearing (forward and reverse azimuth) from this to an other point.
 
finalBearingTo(self, other, wrap=False, raiser=False)
Return the final bearing (reverse azimuth) from this to an other point.
 
intersecant2(self, circle, point, bearing, radius=6371008.771415, exact=False, height=None, wrap=False)
Compute the intersections of a circle and a line.
 
maxLat(self, bearing)
Return the maximum latitude reached when travelling on a great circle on given bearing from this point based on Clairaut's formula.
 
minLat(self, bearing)
Return the minimum latitude reached when travelling on a great circle on given bearing from this point.
 
parse(self, strllh, height=0, sep=',', name='')
Parse a string representing a similar, spherical LatLon point, consisting of "lat, lon[, height]".
 
rhumbAzimuthTo(self, other, radius=6371008.771415, exact=False, wrap=False)
Return the azimuth (bearing) of a rhumb line (loxodrome) between this and an other (spherical) point.
 
rhumbBearingTo(self, other)
DEPRECATED, use method .rhumbAzimuthTo.
 
rhumbDestination(self, distance, bearing, radius=6371008.771415, height=None, exact=False)
Return the destination point having travelled the given distance from this point along a rhumb line (loxodrome) at the given bearing.
 
rhumbDistanceTo(self, other, radius=6371008.771415, exact=False, wrap=False)
Return the distance from this to an other point along a rhumb line (loxodrome).
 
rhumbMidpointTo(self, other, height=None, radius=6371008.771415, exact=False, fraction=0.5, wrap=False)
Return the (loxodromic) midpoint on the rhumb line between this and an other point.
 
toNvector(self, Nvector=<class 'pygeodesy.nvectorBase.NvectorBase'>, **Nvector_kwds)
Convert this point to Nvector components, including height.
 
toWm(self, radius=6378137.0)
Convert this point to a WM coordinate.

Inherited from latlonBase.LatLonBase: PointsIter, __eq__, __ne__, __str__, antipode, bounds, boundsOf, chordTo, circin6, circum3, circum4_, compassAngle, compassAngleTo, cosineAndoyerLambertTo, cosineForsytheAndoyerLambertTo, cosineLawTo, destinationXyz, equals, equals3, equirectangularTo, euclideanTo, flatLocalTo, flatPolarTo, hartzell, haversineTo, height4, heightStr, hubenyTo, isantipode, isantipodeTo, isequalTo, isequalTo3, latlon2, latlon2round, latlon_, nearestOn6, normal, philam2, points, points2, radii11, rhumbLine, thomasTo, to2ab, to3llh, to3xyz, toCartesian, toEcef, toLocal, toLtp, toNormal, toStr, toVector, toVector3d, vincentysTo

Inherited from named._NamedBase: __repr__, others, toRepr

Inherited from named._Named: __imatmul__, __matmul__, __rmatmul__, attrs, classof, copy, dup, methodname, rename, toStr2

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

Properties
  datum
Class property with retrievable name.

Inherited from latlonBase.LatLonBase: Ecef, clipid, height, isEllipsoidal, isEllipsoidalLatLon, isSpherical, isnormal, lam, lat, latlon, latlonheight, lon, phi, philam, philamheight, xyz, xyzh

Inherited from named._Named: classname, classnaming, iteration, name, named, named2, named3, named4, sizeof

Inherited from object: __class__

Method Details

__init__ (self, latlonh, lon=None, height=0, datum=None, wrap=False, name='')
(Constructor)

 

Create a spherical LatLon point frome the given lat-, longitude and height on the given datum.

Arguments:
  • latlonh - Latitude (degrees or DMS str with N or S suffix) or a previous LatLon instance provided lon=None.
  • lon - Longitude (degrees or DMS str with E or W suffix) or C(None), indicating latlonh is a LatLon.
  • height - Optional height above (or below) the earth surface (meter, same units as the datum's ellipsoid axes or radius).
  • datum - Optional, spherical datum to use (Datum, Ellipsoid, Ellipsoid2, a_f2Tuple) or earth radius in meter, conventionally).
  • wrap - If True, wrap or normalize lat and lon (bool).
  • name - Optional name (string).
Returns:
New instance (LatLon).
Raises:
  • TypeError - If latlonh is not a LatLon or datum not spherical.
Overrides: object.__init__

bearingTo2 (self, other, wrap=False, raiser=False)

 

Return the initial and final bearing (forward and reverse azimuth) from this to an other point.

Arguments:
  • other - The other point (LatLon).
  • wrap - If True, wrap or normalize and unroll the other point (bool).
Returns:
A Bearing2Tuple(initial, final).
Raises:
  • TypeError - The other point is not spherical.

See Also: Methods initialBearingTo and finalBearingTo.

finalBearingTo (self, other, wrap=False, raiser=False)

 

Return the final bearing (reverse azimuth) from this to an other point.

Arguments:
  • other - The other point (spherical LatLon).
  • wrap - If True, wrap or normalize and unroll the other point (bool).
Returns:
Final bearing (compass degrees360).
Raises:
  • TypeError - The other point is not spherical.

Example:

>>> p = LatLon(52.205, 0.119)
>>> q = LatLon(48.857, 2.351)
>>> b = p.finalBearingTo(q)  # 157.9

intersecant2 (self, circle, point, bearing, radius=6371008.771415, exact=False, height=None, wrap=False)

 

Compute the intersections of a circle and a line.

Arguments:
  • circle - Radius of the circle centered at this location (meter, same units as radius) or a point on the circle (this LatLon).
  • point - An other point in- or outside the circle (this LatLon).
  • bearing - Bearing at the point (compass degrees360) or a second point on the line (this LatLon).
  • radius - Mean earth radius (meter, conventionally).
  • exact - If True use the exact rhumb methods for azimuth, destination and distance, if False use the basic rhumb methods (bool) or if None use the great circle methods.
  • height - Optional height for the intersection points (meter, conventionally) or None.
  • wrap - If True, wrap or normalize and unroll the point, circle and/or bearing (bool).
Returns:
2-Tuple of the intersection points (representing a chord), each an instance of this class. For a tangent line, each point is this very instance.
Raises:
  • IntersectionError - The circle and line do not intersect.
  • TypeError - If point is not this LatLon or circle or bearing invalid.
  • ValueError - Invalid circle, bearing, radius, exact or height.

maxLat (self, bearing)

 

Return the maximum latitude reached when travelling on a great circle on given bearing from this point based on Clairaut's formula.

The maximum latitude is independent of longitude and the same for all points on a given latitude.

Negate the result for the minimum latitude (on the Southern hemisphere).

Arguments:
  • bearing - Initial bearing (compass degrees360).
Returns:
Maximum latitude (degrees90).
Raises:
  • ValueError - Invalid bearing.

minLat (self, bearing)

 

Return the minimum latitude reached when travelling on a great circle on given bearing from this point.

Arguments:
  • bearing - Initial bearing (compass degrees360).
Returns:
Minimum latitude (degrees90).
Raises:
  • ValueError - Invalid bearing.

See Also: Method maxLat for more details.

parse (self, strllh, height=0, sep=',', name='')

 

Parse a string representing a similar, spherical LatLon point, consisting of "lat, lon[, height]".

Arguments:
  • strllh - Lat, lon and optional height (str), see function pygeodesy.parse3llh.
  • height - Optional, default height (meter).
  • sep - Optional separator (str).
  • name - Optional instance name (str), overriding this name.
Returns:
The similar point (spherical LatLon).
Raises:

rhumbAzimuthTo (self, other, radius=6371008.771415, exact=False, wrap=False)

 

Return the azimuth (bearing) of a rhumb line (loxodrome) between this and an other (spherical) point.

Arguments:
  • other - The other point (spherical LatLon).
  • radius - Earth radius (meter) or earth model (Datum, Ellipsoid, Ellipsoid2 or a_f2Tuple).
  • exact - If True, use the exact Rhumb (bool), default False for backward compatibility.
  • wrap - If True, wrap or normalize and unroll the other point (bool).
Returns:
Rhumb line azimuth (compass degrees180).
Raises:
  • TypeError - The other point is incompatible or radius is invalid.
Overrides: latlonBase.LatLonBase.rhumbAzimuthTo

Example:

>>> p = LatLon(51.127, 1.338)
>>> q = LatLon(50.964, 1.853)
>>> b = p.rhumbBearingTo(q)  # 116.7

rhumbBearingTo (self, other)

 

DEPRECATED, use method .rhumbAzimuthTo.

Decorators:
  • @deprecated_method

rhumbDestination (self, distance, bearing, radius=6371008.771415, height=None, exact=False)

 

Return the destination point having travelled the given distance from this point along a rhumb line (loxodrome) at the given bearing.

Arguments:
  • distance - Distance travelled (meter, same units as radius), may be negative if exact=True.
  • bearing - Bearing (azimuth) at this point (compass degrees360).
  • radius - Earth radius (meter) or earth model (Datum, Ellipsoid, Ellipsoid2 or a_f2Tuple) if exact=True.
  • height - Optional height, overriding the default height (meter, same unit as radius).
  • exact - If True, use the exact Rhumb (bool), default False for backward compatibility.
Returns:
The destination point (spherical LatLon).
Raises:
  • ValueError - Invalid distance, bearing, radius or height.
Overrides: latlonBase.LatLonBase.rhumbDestination

Example:

>>> p = LatLon(51.127, 1.338)
>>> q = p.rhumbDestination(40300, 116.7)  # 50.9642°N, 001.8530°E

rhumbDistanceTo (self, other, radius=6371008.771415, exact=False, wrap=False)

 

Return the distance from this to an other point along a rhumb line (loxodrome).

Arguments:
  • other - The other point (spherical LatLon).
  • radius - Earth radius (meter) or earth model (Datum, Ellipsoid, Ellipsoid2 or a_f2Tuple) if exact=True.
  • exact - If True, use the exact Rhumb (bool), default False for backward compatibility.
  • wrap - If True, wrap or normalize and unroll the other point (bool).
Returns:
Distance (meter, the same units as radius or radians if radius is None).
Raises:
  • TypeError - The other point is incompatible.
  • ValueError - Invalid radius.
Overrides: latlonBase.LatLonBase.rhumbDistanceTo

Example:

>>> p = LatLon(51.127, 1.338)
>>> q = LatLon(50.964, 1.853)
>>> d = p.rhumbDistanceTo(q)  # 403100

rhumbMidpointTo (self, other, height=None, radius=6371008.771415, exact=False, fraction=0.5, wrap=False)

 

Return the (loxodromic) midpoint on the rhumb line between this and an other point.

Arguments:
  • other - The other point (spherical LatLon).
  • height - Optional height, overriding the mean height (meter).
  • radius - Earth radius (meter) or earth model (Datum, Ellipsoid, Ellipsoid2 or a_f2Tuple).
  • exact - If True, use the exact Rhumb (bool), default False for backward compatibility.
  • fraction - Midpoint location from this point (scalar), may be negative if exact=True.
  • wrap - If True, wrap or normalize and unroll the other point (bool).
Returns:
The (mid)point at the given fraction along the rhumb line (spherical LatLon).
Raises:
  • TypeError - The other point is incompatible.
  • ValueError - Invalid height or fraction
Overrides: latlonBase.LatLonBase.rhumbMidpointTo

Example:

>>> p = LatLon(51.127, 1.338)
>>> q = LatLon(50.964, 1.853)
>>> m = p.rhumb_midpointTo(q)
>>> m.toStr()  # '51.0455°N, 001.5957°E'

toNvector (self, Nvector=<class 'pygeodesy.nvectorBase.NvectorBase'>, **Nvector_kwds)

 

Convert this point to Nvector components, including height.

Arguments:
  • Nvector_kwds - Optional, additional Nvector keyword arguments, ignored if Nvector is None.
Returns:
An Nvector or a Vector4Tuple(x, y, z, h) if Nvector is None.
Raises:
  • TypeError - Invalid Nvector or Nvector_kwds.
Overrides: latlonBase.LatLonBase.toNvector

toWm (self, radius=6378137.0)

 

Convert this point to a WM coordinate.

Arguments:
  • radius - Optional earth radius (meter).
Returns:
The WM coordinate (Wm).

See Also: Function pygeodesy.toWm in module webmercator for details.


Property Details

datum

Class property with retrievable name.

Get method:
datum(self) - Get this point's datum (Datum).
Set method:
datum(self, datum) - Set this point's datum without conversion (Datum, Ellipsoid, Ellipsoid2, a_f2Tuple) or scalar spherical earth radius).