
Euromod Connector

buildbuild unknownunknown

Syntax

class core.Model (model_path)

Parameters:

 model_path: string

 Path to the EUROMOD root directory.

The Euromod Connector for Python is built to facilitate and simplify the usage of the

EUROMOD microsimulation model for research purposes.

Index:

Installation

Working with the Euromod Connector

The method run(): Simulation examples

The Euromod Connector Attributes

The Euromod Connector Methods

Dependencies

Managing Errors

License

Installation

The Euromod Connector can be installed from PyPi using pip:

pip install euromod

Requirements

The Euromod Connector requires two EUROMOD components: 1) the model (coded policy

rules) , and 2) the input microdata with the variables that respect the EUROMOD naming

conventions. For more information, please, read the sections "Model" and "Input

microdata" on the Download Euromod web page.

The Dependencies section below lists other required dependencies .

Working with the Euromod Connector

Import the Euromod Connector as follows:

from euromod import Model

Creating an object of the core.Model class by passing a str path to the EUROMOD

root directory:

In [1]: mod=Model(r"C:\...\EUROMOD_RELEASES_I6.0+")

In [2]: mod

https://travis-ci.org/joemccann/dillinger
https://euromod-web.jrc.ec.europa.eu/
https://euromod-web.jrc.ec.europa.eu/
https://test.pypi.org/project/euromod/
https://euromod-web.jrc.ec.europa.eu/
https://euromod-web.jrc.ec.europa.eu/
https://euromod-web.jrc.ec.europa.eu/download-euromod
https://euromod-web.jrc.ec.europa.eu/

Out[2]: <core.Model at 0x28e67633cd0>

Object mod has two attributes: model_path , and countries which stores the

instantiated core.Country classes for the EUROMOD default countries.

Note: Objects can be accessed using a single integer or a label. For the

core.Country object the label is a two-letter country name, for the core.System

object it is the system's name, for the core.Simulation object it is the name of

the simulation output dataset (Examples: Model['PL']['PL_2020'], Model[3][10]).

Note: Countries in EUROMOD use the two-letter country codes convention. Please,

see the Eurostat Glossary: Country codes.

Use core.Model.countries to access the country object(s):

In [3]: mod.countries

Out[3]:

AT

BE

BG

...

In [4]: # The following commands are equivalent:

 # mod.countries['PL']

 # mod.countries[21]

 mod[21]

Out[4]:

Country PL

Displaying country's name using the core.Country.name attribute:

In [5]: # The following commands are equivalent:

 # mod[21].name

 # mod['PL'].name

 # mod.countries[21].name

 mod.countries['PL'].name

Out[5]: 'PL'

Method core.Country.load() instantiates new core.System class objects for each tax-

benefit system policy:

In [6]: mod[21].load()

Accessing the system object(s) calling the attribute core.System.systems :

In [7]: mod['PL'].systems

Out[7]:

PL_2005

PL_2006

PL_2007

...

In [7]: # The following commands are equivalent:

 # mod[21][17]

https://euromod-web.jrc.ec.europa.eu/
https://euromod-web.jrc.ec.europa.eu/
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Country_codes

 # mod[21].systems[17]

 # mod.countries[21].systems[17]

 mod.countries['PL'].systems['PL_2022']

Out[7]:

System PL_2022

Display some system information using attributes name , bestMatchDatasets and

currencyParam of the core.System object:

In [7]: for sys in mod[21].systems:

 print([sys.name, sys.bestMatchDatasets, sys.currencyParam])

Out[7]:

['PL_2005', ['pl_2007_b3'], 'national']

['PL_2006', ['pl_2007_b3'], 'national']

['PL_2007', ['PL_2008_b4'], 'national']

...

['PL_2021', ['PL_2020_b2'], 'national']

['PL_2022', ['PL_2020_b2'], 'national']

The method run()

Syntax

core.System.run (data,ID_DATASET,constantsToOverwrite=

[],verbose=True,outputpath="",addons=[],switches=[])

Run simulations of a EUROMOD tax-benefit system.

Return a core.Simulation class object with simulation results and other configuration

information.

Parameters:

 data: pandas.DataFrame

 Path to the EUROMOD root directory.

 ID_DATASET: str

 Name of the dataset. *Note: It determines the year of the uprating

 factros to use in the simulation.

 constantsToOverwrite: dict of {tuple(str,str): str}, default []

 A list of constants to overwrite. Note that the key is a tuple for which

 the first item is the name of the constant and the second is the group

 number.

 verbose: bool, default True

 If True then information on the output will be printed.

 outputpath: str, default ""

 When an output path is provided, there will be an output file generated.

 addons: list of [tuple(str,str)], default []

 List of addons to be integrated in the spine. The first item of the tuple

 is the name of the Addon, the second item is the name of the system in

 the Addon to be integrated (typically, it is the name of the Addon _

 two-letter country code, e.g. LMA_AT). Available Addons are: LMA, MTR,

 NRR, TCA.

 switches: list of [tuple(str,bool)], default []

 List of Extensions to be switched on or off. The first item of the tuple

https://euromod-web.jrc.ec.europa.eu/

 is the short name of the Extension, the second item is a boolean.

 Available Extensions are: BTA, TCA, FYA, UAA, EPS, PBE,MWA, HHoT_un, WEB,

 HHoT_ext, HHoT_ncp.

1. Example: Simulating two systems with default optional parameters:

In [8]: data=pd.read_csv("PL_2020_b2.txt",sep="\t")

 out=[]

 for sysnam in ['PL_2021','PL_2022']:

 out.append(mod['PL'][sysnam].run(data,"PL_2020_b2.txt"))

Out[8]:

Simulation: Sim1, System: PL_2021, Data: PL_2020_b2.txt .. done! Time to

simulate16.469298839569092s

Simulation: Sim2, System: PL_2022, Data: PL_2020_b2.txt .. done! Time to

simulate13.683719396591187s

In [9]: out

Out[9]: [

 name: Sim1

 output: pl_2021_std.txt ,

 name: Sim2

 output: pl_2022_std.txt

]

Accessing the simulation results by indexing core.Simulation.outputs with the name of

the dataset provided in the attribute core.Simulation.output :

In [10]: out1 = out[1]

 out1.outputs['pl_2022_std.txt']

Out[10]:

idhh idperson ... il_bsamt il_bsatm

0 100.0 10001.0 ... 14504.920877 14504.920877

1 100.0 10002.0 ... 6297.556928 6297.556928

38640 2047300.0 204730001.0 ... 1476.410557 1476.410557

38641 2047500.0 204750001.0 ... 2733.061980 2733.061980

[38642 rows x 454 columns]

core.Simulation.configSettings shows the simulation configuration settings:

In [11]: out1.configSettings

Out[11]:

{'PATH_EUROMODFILES': 'C:\\...\\EUROMOD_RELEASES_I6.0+',

 'PATH_DATA': 'C:\\...\\EUROMOD_RELEASES_I6.0+\\Input',

 'PATH_OUTPUT': '',

 'ID_DATASET': 'PL_2020_b2.txt',

 'COUNTRY': 'PL',

 'ID_SYSTEM': 'PL_2022'}

Attribute core.Simulation.configSettings is a struct collecting the information

about the system, dataset, addons, extensions, and other configuration settings used

in the simulation.

2) Example: Simulating changing the values of constants by passing

parameter constantsToOverwrite to run() :

In [12]: out=mod['PL']['PL_2022'].run(data,"PL_2020_b2.txt",constantsToOverwrite=

{("$f_h_cpi","2022"):'10000'})

Out[12]:

Simulation: Sim3, System: PL_2022, Data: PL_2020_b2.txt .. done! Time to

simulate15.760447263717651s

In [13]: out.constantsToOverwrite

Out[13]: {('$f_h_cpi', '2022'): '10000'}

The optional parameter constantsToOverwrite specifies which constants to overwrite.

constantsToOverwrite must be a dict , where the keys are tuples of two str objects:

the first string is the name of the constant and the second string is its group number

(Note: Pass an empty string if the group number is None); the values are str with

the new values of the constants. The default is None.

3) Example: Simulating including the EUROMOD Addons by passing parameter

addons to run() :

In [14]: out =mod['PL']['PL_2022'].run(data,"PL_2020_b2.txt",addons=

[("LMA","LMA_PL")])

Out[14]:

Simulation: Sim4, System: PL_2022, Data: PL_2020_b2.txt .. done! Time to

simulate18.564006567001343s

In [15]: out

Out[15]:

name: Sim4

output: pl_2022_lma.txt

In [16]: out.configSettings

Out[16]:

{'PATH_EUROMODFILES': 'C:\\...\\EUROMOD_RELEASES_I6.0+',

 'PATH_DATA': 'C:\\...\\EUROMOD_RELEASES_I5.0+\\Input',

 'PATH_OUTPUT': '',

 'ID_DATASET': 'PL_2020_b2.txt',

 'COUNTRY': 'PL',

 'ID_SYSTEM': 'PL_2022',

 'ADDON0': 'LMA|LMA_PL'}

The optional parameter addons is a list of EUROMOD Addons to be integrated in the

spine . Each item of the list is a tuple with two str objects. The first str is

the name of the Addon and the second str is the name of the system in the Addon to

be integrated (typically, it is the name of the Addon _ two-letter country code,

e.g. LMA_AT). Available Addons are: LMA, MTR, NRR, TCA. The default is [].

https://euromod-web.jrc.ec.europa.eu/

4) Example: Simulating switching on/off the Extensions by passing

parameter switches to run() :

In [17]: out =mod['PL']['PL_2022'].run(data,"PL_2020_b2.txt",switches=[("BTA",True)])

Out[17]:

Simulation: Sim5, System: PL_2022, Data: PL_2020_b2.txt .. done! Time to

simulate18.564006567001343s

In [18]: out

Out[18]:

name: Sim5

output: pl_2022_lma.txt

In [19]: out.configSettings

Out[19]:

{'PATH_EUROMODFILES': 'C:\\...\\EUROMOD_RELEASES_I6.0+',

 'PATH_DATA': 'C:\\...\\EUROMOD_RELEASES_I5.0+\\Input',

 'PATH_OUTPUT': '',

 'ID_DATASET': 'PL_2020_b2.txt',

 'COUNTRY': 'PL',

 'ID_SYSTEM': 'PL_2022',

 'EXTENSION_SWITCH0': 'BTA=on'}

The optional parameter switches must define a list of the EUROMOD extensions to be

switched on or off in the simulation. Each item in the list is a tuple with two

objects. The first object is a str short name of the Extension. The second object is

a boolean . Available Extensions are: BTA, TCA, FYA, UAA, EPS, PBE, MWA, HHoT_un, WEB,

HHoT_ext, HHoT_ncp. The default is [].

List of Attributes:

Model class attributes:

model_path Return a string with the path to the EUROMOD root directory.

countries Access Country class objects.

Country class attributes:

model Access Model class object.

name Return a string with the name of the country.

systems Access the System class objects. *Note: Available after the load() .

System class attributes:

bestMatchDatasets
Return a list of dataset names with best match for the

system.

comment String comment related to the country-system.

country Access the Country class objects.

https://euromod-web.jrc.ec.europa.eu/
https://euromod-web.jrc.ec.europa.eu/

currencyOutput Return a string with the currency of the simulation output.

currencyParam Return a string with currency of the system parameters.

datasets Return a list of dataset names that match the system.

headDefInc
Return a string with the main income definition for the tax

base.

iD Return a string with the system identifier.

name Return a string with the name of the system.

order Return a string defining the system order.

private Return a string with the system access.

year Return a string with the system year.

Simulation class attributes:

configSettings
Dictionary of configuration settings used in the

simulation (including addons and extensions).

constantsToOverwrite
Dictionary with constants that are overwritten in the

simulation.

errors
String Error/warning messages produced by EUROMOD during

the simulation.

currencyOutput
Return a string with the currency of the simulation

results.

name Return a string with the name of the output dataset.

outputs Return a list of datasets with simulation results.

List of Methods:

Country class methods:

load() Load the EUROMOD tax-benefit systems in the Country object.

load_data() Load data from a .csv file as a pandas.DataFrame.

System class methods:

run([data,ID_DATASET,...]) Run simulations of the EUROMOD tax-benefit systems.

Dependencies

The Euromod Connector requires the following dependencies:

Package Minimum supported version

https://euromod-web.jrc.ec.europa.eu/
https://euromod-web.jrc.ec.europa.eu/
https://euromod-web.jrc.ec.europa.eu/

pandas 2.0.3

pythonnet 3.0.2

Managing Errors

1) ModuleNotFoundError or AttributeError: If the import of the Euromod Connector

libreries fails with one of the messages below:

ModuleNotFoundError: No module named 'System'

AttributeError: module 'clr' has no attribute 'AddReference'

uninstall the Python clr package and re-install the pythonnet package:

pip uninstall clr

pip install pythonnet

This error is caused by a conflict between the Python clr package and the clr library

of the pythonnet package.

2) RuntimeError: If you encounter a RuntimeError as below, either 1) restart the

kernel, or 2) open a new console window, or 3) deselect the option User Module

Reloader (UMR) in the Tools -> Preferences -> Python Interpreter (or Tools ->

Console -> Advanced setting , depending on the Python editor version) then press

Apply and Ok and restart the consol windows.

Note: Re-enabling the UMR option has no effect on the console windows that are already

open.

This error is produced when Python reloads the libraries of the pythonnet package.

RuntimeError: Failed to initialize Python.Runtime.dll

Failed to initialize pythonnet: System.InvalidOperationException: This property must

be set before runtime is initialized

 at Python.Runtime.Runtime.set_PythonDLL(String value)

 at Python.Runtime.Loader.Initialize(IntPtr data, Int32 size)

 at Python.Runtime.Runtime.set_PythonDLL(String value)

 at Python.Runtime.Loader.Initialize(IntPtr data, Int32 size)

License
©European Union, Institute for Social and Economic Research, University of Essex

The EUROMOD model is licensed under the Creative Commons Attribution 4.0 International

(CC BY 4.0) licence. Reuse is allowed provided appropriate credit is given and any

changes are indicated.

We kindly ask you to acknowledge the use of EUROMOD in any publications or other

outputs (such as conference presentations). A recommended wording for acknowledgement

is provided below:

https://creativecommons.org/licenses/by/4.0/

'The results presented here are based on EUROMOD version I5.0+. Originally

maintained, developed and managed by the Institute for Social and Economic

Research (ISER), since 2021 EUROMOD is maintained, developed and managed by

the Joint Research Centre (JRC) of the European Commission, in collaboration

with EUROSTAT and national teams from the EU countries. We are indebted to the

many people who have contributed to the development of EUROMOD. The results

and their interpretation are the author’s(’) responsibility'

This package includes one icon ('\XMLParam\AddOns\MTR\MTR.png'), adapted from

LibreICONS, under :

MIT License

Copyright (c) 2018 Diemen Design

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

https://diemendesign.github.io/LibreICONS/,

