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A B S T R A C T

A new Machine Learning algorithm for shower-head identification in the NeuLAND neutron detector is
presented. The new algorithm uses densely-connected Deep Neural Networks (DNNs) to properly classify events
and clusters, which allows accurate reconstruction of the 4-momenta of the detected neutrons. As data-events
recorded with NeuLAND vary quite a lot in size, and not all emitted neutrons always produce signals in
the detector, careful pre- and post-processing of the data turned out to be required for letting the DNNs be
successful in their classifications. However, after properly implementing these procedures, the new algorithm
offers a better efficiency than previously-used algorithms in virtually all investigated scenarios. However, the
newly-developed algorithm (as well as previous ones) suffers from systematic uncertainties. These uncertainties
mainly arise from the physics lists used in the Geant4 simulations to train the DNNs. They are particularly large
for the neutron energy range around 200 MeV and for NeuLAND configurations of few double-planes (slimmed
down version of the detector). The accuracy improves with a larger number of double-planes. Furthermore,
both model improvements and accurate benchmarks are needed for the currently used Geant4 physics lists to
reduce the systematic uncertainties of the new algorithm for high-precision studies. Further improvement of
the present DNN algorithm is also needed, especially for experiments that require high precision in the neutron
scattering angle reconstruction. However, it seems unlikely that this improvement can be realized using only
NeuLAND data.
. Introduction

The R3B setup (Reactions with Radioactive Relativistic Beams setup)
s a multi-purpose experimental setup used to study nuclear struc-
ure properties of short-lived isotopes [1]. The setup will be located
t the high-energy branch of the Super FRagment Separator (Super-
RS) [2] of the Facility for Antiproton and Ion Research (FAIR) [3]
ear Darmstadt in Germany.

The heart of the R3B setup consists of a fixed target, at which a
econdary beam generated in the Super-FRS is directed. The general
oal of the R3B experiment is to provide a kinematically complete
econstruction of all particles participating in the reaction [1], so that
he nuclear structure of the beam isotope (which could be very short-
ived) can be studied. In order to accomplish this, the fixed target is
urrounded by many different detector systems (see Fig. 1).

For most R3B experiments, the target is surrounded by silicon strip
ertex detectors [4] to measure the charged-particle tracks close to the
arget. The CALIFA (CALorimeter for In-Flight detection of gamma-rays
nd high energy charged pArticles) [5] system encloses the vacuum
hamber housing the silicon detectors. CALIFA measures gamma-rays

∗ Corresponding authors.
E-mail addresses: c.a.douma@rug.nl (C.A. Douma), n.kalantar-nayestanaki@rug.nl (N. Kalantar-Nayestanaki).

from the decay of excited nuclei and light-charged particles that are
produced at large angles. The heavier charged-particles produced at
the reaction are usually (strongly) boosted in the forward direction
and travel through the superconducting dipole magnet GLAD (Gsi
LArge Dipole magnet) [6] downstream of the target. This magnet
allows for spectrometric analysis of these charged particles. A complex
tracking system of many detectors located both upstream and down-
stream of GLAD [7] is used to measure the tracks of these heavier
charged-particles. Several of these detectors are located inside the
vacuum chamber downstream of GLAD, but some are also located
at the end of the tube downstream of the vacuum chamber. Finally,
neutrons produced at the target, which are generally also very forward-
boosted, travel right through GLAD and are detected by NeuLAND (Neu
Large-Area Neutron Detector) [8].

NeuLAND [8] is a Time-of-Flight spectrometer for the detection of
fast neutrons in the range 200 MeV − 1000 MeV [10]. The detector has a
modular design and consists almost entirely of active RP408 scintillator
material [11], which is a type of BC408 [12]. The neutrons that should
be detected can undergo hadronic scattering within the scintillators
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Fig. 1. Overview of the first version of the R3B setup in Cave C at GSI [9], used with permission.
Fig. 2. The full 30 dp NeuLAND geometry, as it was considered in our simulations.

of NeuLAND, which can lead to the production of secondary charged
particles. These secondary charged particles are then detected through
their scintillation light [10] and their energy and time of arrival are
registered by the corresponding electronics.

Each NeuLAND module, called a double-plane (dp), consists of 50
horizontally oriented scintillators of 5 cm × 5 cm × 250 cm, followed by
50 such scintillators in vertical orientation. Each scintillator is read out
by two Photo-Multiplier Tubes (PMTs) (one at each endpoint) and is
held in place with two 5 cm wide and 0.5 mm thick aluminum strips
(see Fig. 2). From these specifications, it follows that each module
(dp) has an active area of 2.5 m × 2.5 m and a thickness of 10 cm.
The NeuLAND design goal is to have 30 dp. However, in the present
situation (at the publication date of this work), funding is only secured
for 16 dp and only 8 dp are currently mounted in the R3B setup (see
Fig. 3).

The problem that we wish to address in this paper, is that a single
high-energy neutron can create a complex shower of secondary parti-
cles (both charged and uncharged) in NeuLAND, which can produce
signals in any number of scintillators between one and a hundred. This
raises the issue which of these signals corresponds to the head of the
shower; the first signal generated by the particle shower. This shower
head is the information we need from NeuLAND [13], because together
with the time and position of the reaction at the target, the time and
2

Fig. 3. The current state of the construction of the NeuLAND detector (8 dp) [10];
figure used with permission.

position of the shower head allows us to reconstruct the 4-momentum
vector of the neutron [8].

The problem of finding the shower head(s) among all the scintillator
signals in NeuLAND is challenging. Especially in the situation where
multiple neutrons have to be detected in coincidence, solutions are
far from trivial because of two reasons: (1) it is not (always) known
a priori how many neutrons have impinged on the detector and (2)
showers from distinct neutrons tend to overlap quite often. These
problems were already addressed in Refs. [8,13]. However, the solu-
tions proposed there have typical shortcomings in neutron detection,
mainly in terms of efficiency (how often one succeeds in correctly
identifying the shower heads). A good efficiency for identifying the
shower heads is crucial, because this determines the required beam-
time for an experiment. For this reason, we propose a newly-developed
Machine Learning (ML) algorithm [14] to find the shower heads in
NeuLAND.

The methodology of the new ML algorithm is discussed in Section 2.
The performance of this algorithm (mainly in terms of efficiency)
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and its systematic uncertainties are discussed in Sections 3 and 4. In
Section 5, future possibilities for further improvements on top of the
new algorithm are discussed. Finally, conclusions and a summary are
presented in Section 6.

2. Methodology

2.1. Data generation and preparation

In order to explain the implementation of the ML algorithm in the
NeuLAND data-analysis procedure, a brief overview of this procedure
is given. This procedure is explained in Fig. 4. Central in this scheme
are the NeuLAND ‘‘Hits’’. These are tuples of 5 numbers: {𝐸, 𝑡, 𝑥, 𝑦, 𝑧}.
Within one event, each scintillator that produced a signal is assigned
exactly one such a 5-tuple. 𝑡 and 𝐸 stand for the energy deposition and
the time of the scintillator hit, as reconstructed from the PMT pulses.
The position coordinate (either 𝑥 or 𝑦) along the scintillator is also
obtained from these PMT pulses. The other two position coordinates
are obtained from the geometric position of the scintillator. Together,
these 5-tuples (NeuLAND ‘‘Hits’’) contain all relevant information from
NeuLAND.

The ‘‘Hits’’ can either be obtained from the experiment, or from
simulation. In both cases, the information from all PMT pulses gen-
erated in NeuLAND is first converted to QDC ((Q)charge-to-Digital
Convert) values and TDC (Time-to-Digital Convert) values. Next, a
‘‘Hit’’ is produced for each scintillator in NeuLAND where a PMT pulse
was generated at both ends. In such a ‘‘Hit’’, 𝐸 is obtained as the
geometrical mean of the two QDC values of those two PMT pulses [8].
𝑡 is obtained as the standard mean of the two corresponding TDC
values. The position coordinate along the scintillator is obtained from
the difference of those same TDC values.

To obtain the ‘‘Hits’’ from simulation, the PMT pulses were phe-
nomenologically obtained from the outcome of the Monte Carlo trans-
port. The corresponding TDC values were calculated with respect to the
beginning of the event, which is exactly known in a simulation. This
process is called digitization and it accounts for several experimental
effects in the PMT pulses, such as time resolution (𝜎 = 150 ps), energy
resolution (𝜎 = 50 keV), detection threshold (1 MeV of deposited energy
for virtually all experiments), saturation effects, Birk’s law, and light
attenuation. For more details on how the PMT pulses were calculated,
the interested reader is referred to Sect. 7.2 in Ref. [15]. The resolution
effects result in uncertainties in the ‘‘Hit’’-values of 𝜎 = 212 ps for the
𝑡-value and 𝜎 = 3 cm for the position coordinate along the scintillator.

In this work, the simulations were carried out by R3BRoot [16,17],
which is an integral framework for simulation and data analysis of
the R3B experiment. For our simulations, the NeuLAND geometry, as
discussed in Section 1, was used (with a distance of 14 m between
NeuLAND and the target position). Individual scintillators were mod-
eled in agreement with Refs. [10,13]. For the physics list, one of the
following two reference physics lists was used: QGSP_INCLXX_HP or
QGSP_BERT_HP. Both of these physics lists have been benchmarked
against experimental data [13] and reality was found to be about
halfway between them. As event generator, the traditional NeuLAND
simulation files of the 132Sn breakup reaction with a relative energy of
500 keV were used [13]. The relative energy between the neutrons of a
single event is defined as the invariant mass of those neutrons together
minus the sum of the individual neutron masses: 𝐸𝑟𝑒𝑙 = |

∑

𝑝𝜇𝑖 | −
∑

𝑚𝑖.
The invariant mass is obtained by first adding the 4-momenta of all
neutrons within the event, and then taking the length of the resulting
4-momentum vector. As such, the relative energy is a measure for the
excitation energy of the recoil nucleus (although not exactly the same).

When the ‘‘Hits’’ are obtained from the experiment, the TDC values
are measured with respect to a common-stop signal. However, as not all
data channels have exactly the same processing speed and the common-
stop signal usually does not correspond to the beginning of the event,
the TDC values have to be synchronized before they can be used to
3

Table 1
Total cross sections in millibarn for a neutron beam at hydrogen and carbon targets
according to the physics lists INCLXX and Bertini (obtained from simulation).

Neutron Hydrogen target Hydrogen target Carbon target Carbon target
energy: INCLXX Bertini INCLXX Bertini

200 MeV 76.1 78.3 652 570
600 MeV 81.7 80.7 623 554
1000 MeV 85.2 82.8 691 632

obtain ‘‘Hits’’ that can be compared to the simulation. Since for all
NeuLAND experiments, rates are expected to be low enough (< 1 MHz)
o that different events do not overlap, this synchronization can be
andled event-by-event. Likewise, QDC values have to be calibrated
event-by-event) before they can be used to obtain such ‘‘Hits’’. This
alibration and synchronization procedure is also used to correct for
xperimental effects that were not considered in the digitization pro-
ess, such as biases and walk effects. This procedure to first apply such
orrections to the experimental data and then obtain ‘‘Hits’’ for further
ata processing, is what is typically used in NeuLAND experiments such
s Ref. [18].

A full discussion of the two considered physics lists
GSP_INCLXX_HP (INCLXX for short) and QGSP_BERT_HP (Bertini

or short) used is beyond the scope of this work, but we shall briefly
iscuss the most relevant differences between them. NeuLAND is a
eutron detector of BC408 [8], a CH2-organic scintillator. Hence, the
ost important parameters in the physics list are the neutron-to-
ydrogen and neutron-to-carbon cross sections. These cross sections
ave been tabulated in Table 1 for various neutron energies. These cross
ections were obtained by directly extracting them from simulations.
hey are not dominated by one or two specific reaction types, but are
sum of many different reactions.

The Bertini physics list (QGSP_BERT_HP) is based on the Bertini
ascade model developed to simulate high-energy particle physics [19].
n the other hand, the INCLXX physics list (QGSP_INCLXX_HP) is an
xperimental/phenomenological physics list developed for simulating
uclear physics experiments in the intermediate energy range [20].
s INCLXX is dedicated to nuclear physics, it explicitly takes the
roduction of secondary light nuclei into account, such as deuterium,
ritium and helium-3. Bertini does not do this, which is the main reason
hy the neutron-to-carbon cross sections are significantly lower for
ertini. Both Bertini and INCLXX do take the production of secondary
lphas into account. Energy spectra of the produced secondary protons
o not differ very much. However, as our benchmark in Ref. [13]
s about halfway between the two physics lists, we conclude that
NCLXX overestimates the production of light nuclei, while Bertini
nderestimates this.

.2. Multiplicity determination

After the ‘‘Hits’’ are identified, they are first clustered together
ccording to the procedure outlined in Refs. [13,15]. This procedure
ssigns ‘‘Hits’’ that have 𝛥𝑥 ≤ 7.5 cm, 𝛥𝑦 ≤ 7.5 cm, 𝛥𝑧 ≤ 7.5 cm and

𝛥𝑡 ≤ 1.0 ns to the same cluster. All these clusters (even those of a single
‘‘Hit’’) are then considered in the subsequent analysis. The next step
(see Fig. 4) is to determine the multiplicity of the event (the number of
neutrons that came from the target). For this step, we propose the use of
ML. We have chosen to use of a Deep Neural Network for this, because
this seemed to be the fastest option in terms of CPU processing time.
A Convolutional Neural Network (CNN) has also been investigated for
the multiplicity determination [21], but while this method was found to
have about the same performance (in terms of efficiency) as our work
(see Appendix), its CPU processing time was much slower.

The DNN was equipped with three input neurons per scintillator.
These input neurons contain the ‘‘Hit’’ energy deposition 𝐸, the time of
the scintillator ‘‘Hit’’ 𝑡 and the position coordinate of the ‘‘Hit’’ along
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Fig. 4. The Different steps in the NeuLAND data analysis. The upper branch illustrates the steps used for simulated data and the lower branch illustrates the steps used for
measured data.
the scintillator (either 𝑥 or 𝑦). For scintillators without a hit, three
zeros were given as inputs. This way, all ‘‘Hit’’ information (which
is all relevant information NeuLAND has to offer [8]) is fed into the
DNN. The information of the other two position coordinates from the
‘‘Hits’’ (which are determined from the geometrical position of the
scintillator) is contained in the positions of the input neurons in the
network, because the same input neuron always correspond to the same
scintillator. Since it was known from Ref. [21] that adding the total
energy deposition in the full detector per event and the total number
of clusters per event as extra inputs to the DNN improved efficiency,
these two quantities were also given to the DNN as inputs. This resulted
in 9002 input neurons for the NeuLAND design case (30 dp of 100
scintillators each) [8]. All inputs were linearly scaled to [0, 1] before
they were fed into the DNN. 𝑡-values (‘‘Hit’’-times) above a certain
threshold were artificially put to zero. This was done, because a small
fraction of the ‘‘Hits’’ (< 0.1%) has very large 𝑡-values of the order of
104 ns. Such rare and very large 𝑡-values were found to be extremely
disruptive to the DNN training procedure and, therefore, had to be
removed. The proper time threshold depends on the simulated scenario.
For the design-case of 30 dp, a neutron energy of 600 MeV and a
distance between NeuLAND’s front-end and the target of 14 m, 100 ns
was found to be a good threshold (in this situation the neutrons need
72 ns to travel to the rear end of NeuLAND).

As this DNN is supposed to classify a given event according to its
multiplicity (the number of neutrons that came from the target), a
separate output neuron for each possible multiplicity was implemented.
Typical NeuLAND simulations consider multiplicities up to five [8,13],
which would result in five output neurons. These output neurons were
equipped with the SoftMax activation function [22], as this transforms
the network output into a probability per multiplicity. As the best
method for multiplicity determination is still unknown at the time
of this work, a densely connected network was considered with the
ReLU activation function on each hidden neuron, as this a-priori allows
any combination of the input data to be considered as a possibility
to determine the output. The ReLU activation function is defined as
𝑓 (𝑥) = 𝑥 for 𝑥 ≥ 0 and 𝑓 (𝑥) = 0 for 𝑥 < 0 [23].

The network was implemented with the Keras [23] user-interface
to the TensorFlow [24] framework. Training was done with Supervised
Learning (SL) [25] using the ADGRAD [26] minimization algorithm
(learning rate 0.001, 𝜖 = 0 and zero decay) and the Categorical Cross
Entropy [27] minimization function. The number of hidden layers was
2, with 9000 (first layer) and 1200 (second layer) neurons each. These
parameters (minimization algorithm, minimization function, number
of hidden layers and number of neurons per hidden layer) were de-
termined by optimization. This procedure is discussed in detail in the
Appendix.

One million simulated events were generated for the training
(200.000 per multiplicity). During the training, only events were used
where the number of neutrons detected by NeuLAND was identical to
the number of neutrons that came from the target. This was done,
because it would be incorrect to train the DNN on events where it
will never be able to determine the correct answer, which is the case
4

when not all information is available: the situation where not all
neutrons are detected by NeuLAND. The remaining events (that passed
this condition) were subdivided into batches of 1000 events and the
network weights were updated after each of these batches. The number
of one million events and the batch size of 1000 were chosen as such,
because it was observed that these numbers were sufficient to reach
a saturated network accuracy under almost all circumstances within
2 epochs. Since the multiplicity condition implies that events with
higher multiplicities are more often discarded, the undiscarded higher-
multiplicity events were given larger weights in the minimization
function to prevent the DNN from becoming biased. This bias could
result in a loss from roughly 25% (30 dp) to several hundred percent
(few dp) in the proper reconstruction of multiplicity-five events.

2.3. ‘‘Hit’’ selection

In the last step in Fig. 4, the ‘‘Hit’’ selection, the actual shower heads
have to be identified. For this, we also propose the use of ML. The net-
work design for the ‘‘Hit’’ selection is based on the successes obtained in
the multiplicity determination. The network for the ‘‘Hit’’ selection was
chosen as a densely connected DNN with 14 input neurons, two output
neurons with the SoftMax activation function and 12 hidden layers of
200 neurons with the ReLU activation function each. An event is then
sent though this network cluster-by-cluster and a different copy of this
network was trained for each multiplicity under consideration. The 14
input neurons contain different cluster properties like Time-Of-Flight,
relativistic beta, energy deposition, number of ‘‘Hits’’ in the cluster,
etc. (all inspired by Ref. [13]). The two output neurons give the two
probabilities of the cluster containing at least one shower head, and of
not containing any shower heads at all, respectively.

Using the network output, a score is computed for each cluster as the
difference between the two output neurons. Subsequently, all clusters
in the event are sorted according to this score. Then, all clusters are
discarded, except for the ones with the highest score. The number
of clusters kept is decided by the multiplicity DNN. Subsequently,
the ‘‘Hits’’ in the clusters which have the shortest TOF define the
shower heads. The Supervised Learning for the ‘‘Hit’’ selection was done
similarly to the multiplicity determination.

The full simulation and network training as described in all sections
above required a computational time of roughly 6 h when the configu-
ration of 30 dp with a neutron beam energy of 600 MeV was used. The
generation of simulated data was done using an i7-8750H CPU and 16
GB of RAM memory. The network training was done using a 4 GB GPU
(NVIDIA GeForce GTX 1050 Ti 4 GB). The disk-storage requirements
for this computation were about 250 GB. The computer code of the
new ML algorithm (both the multiplicity determination and the ‘‘Hit’’
section) is available as public-domain software [28].

2.4. Reference algorithms

To evaluate the performance of our new ML algorithm (denoted
DNN algorithm in the following), its efficiency is compared to two
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other shower-head identification algorithms in the upcoming sections:
the TDR algorithm and the ‘‘Perfect Tracking’’ algorithm. Note that
from now on, the notion ‘DNN algorithm’ stands for the combination
of multiplicity determination and ‘‘Hit’’ selection, both handled by ML.
The ‘‘Perfect Tracking’’ algorithm relies on information from the Geant4
simulation. It traces the particle showers created by each individual
neutron to find out whether this shower produced any NeuLAND ‘‘Hits’’
(see Fig. 4). If ‘‘Hits’’ are produced, the neutron is assigned a shower
head: the first produced ‘‘Hit’’. Otherwise, the neutron is assigned no
shower head at all.

Since the ‘‘Perfect Tracking’’ algorithm relies on the ‘true’ particle
showers from the Geant4 simulation, it will always provide the best
possible shower-head identification. For this reason, its outcome was
used as the ‘correct’ output for the Supervised Learning of the DNNs.
However, despite its name the ‘‘Perfect Tracking’’ algorithm does not
always result in perfect efficiency. This is because sometimes, a neutron
may just not interact (sufficiently) with NeuLAND to produce any
‘‘Hits’’ [13]. Hence, a comparison between the DNN algorithm and
the ‘‘Perfect Tracking’’ algorithm can reveal which part of the DNN
algorithm efficiency is caused by imperfections in the algorithm and
which part is caused by external factors (the lack of proper neutron
interactions leading to ‘‘Hits’’).

The TDR algorithm refers to the algorithm originally proposed in
the NeuLAND Technical Design Report (TDR) [8]. This procedure is
illustrated in Fig. 5 for a situation of 30 dp and 600 MeV neutrons.
Here, the multiplicity is determined by plotting the number of clusters
per event versus the total energy deposition in that event and imposing
linear ‘‘decision’’ cuts (the envelopes defined by the diagonal black lines
in Fig. 5). The slope is the same for all cuts, but the distance between
the cuts is different for different multiplicities. The slope and distances
are optimized using simulation data. Subsequently, an event is assigned
a multiplicity depending on where it is located between the ‘‘decision’’
cuts.

We would like to note that the situation where all neutrons within
a single event have (almost) the same energy is actually quite com-
mon [8]. In most R3B experiments., the beam consists of a heavier
nucleus of interest with an energy of several hundred MeV per nucleon.
This nucleus is then studied in inverse kinematics by impinging it on a
very light fixed R3B-target. As such, the knocked-out neutrons typically
have energies of several hundred MeV as well, but with variations of
the order of only a few MeV (determined by the shell from which
they are removed). Hence, for such experiments, our algorithms can
be trained/optimized with mono-energetic neutrons.

The ‘‘Hit’’ selection of the TDR method is exactly as discussed for
the DNN algorithm in Section 2.3, only clusters are not sorted according
to some DNN-computed score, but according to their so-called 𝑅-value,
defined as:

𝑅 = −10 log
(

|𝛽cluster − 𝛽beam
|

𝐸cluster
dep

)

, (1)

here 𝐸cluster
dep is the total energy deposition of all ‘‘Hits’’ in the cluster,

beam is the beam speed divided by the speed of light and 𝛽cluster is
he presumed neutron speed (divided by the speed of light) between
he target reaction and the minimum TOF ‘‘Hit’’ in the cluster. Further
etails on this method can be found in Refs. [8,13,15].

The TDR algorithm was the first shower-head identification algo-
ithm proposed for NeuLAND [8] and for most situations, its efficiency
s better than all other shower-head identification algorithms known
oday [13], except for the ones that use Machine Learning. For this
eason, it serves as an excellent benchmark to judge the efficiency of
ur new DNN algorithm.

.5. Sources of uncertainties

Special attention should be paid to the fact that all shower-head
dentification algorithms discussed so far (including DNN, TDR and
5

‘Perfect Tracking’’) [13] rely on the use of simulation data to optimize
ertain decision parameters. Since simulations generally do not per-
ectly agree with experimental conditions, this dependence introduces
ystematic uncertainties to the application of all algorithms. These
ystematic uncertainties come from three different sources (the three
ain components in a GEANT4 simulation): the geometry, the event

enerator and the physics list. The systematic uncertainties from the
irst two sources can generally be suppressed by closely matching
he geometry and the event generator to the experimental conditions,
lthough one should keep in mind that this requires a re-optimization
or re-training) for each new experiment.

However, finding a physics list that closely matches the reality
ith the desired precision is still an open issue for NeuLAND ex-
eriments [10,13]. The alternative to using simulation data would
e to perform measurement of reactions such as the break-up of the
euteron which would produce neutrons with known energies and
ngles once the proton is tagged with a high precision. However, these
easurements have to be done for a large number of energies to be
seful and as such are not a very viable alternative for the large
ange of energies desired. Because of the fact that the geometry and
he event generator contributions to the systematic uncertainties can
enerally be made much smaller than the physics list contribution,
e have only concentrated on the quantitative study of the physics

ist contribution to the systematic uncertainties. For this reason, we
epeated all simulations for this work four times and changed the
hysics list between QGSP_INCLXX_HP and QGSP_BERT_HP at both
he optimization (or training) and the validation level. The mean of the
our outcomes was then considered as the algorithm performance and
he largest difference between the mean and each of the four individual
utcomes was used as our estimation of the physics list uncertainty.

As reality was determined to be halfway between two physics
ists [13], one could, in principle, also compose a realistic training set
y mixing events of the two physics lists. However, as the benchmark-
ng of the two physics lists in Ref. [13] was only done for neutron
nergies of 110 MeV and 250 MeV and only for the NeuLAND detection
fficiency, this procedure is unreliable. The appropriate weight factors
f the two physics lists are indeed roughly 50% in that situation, but
here is no experimental evidence that these weight factors remain the
ame at higher neutron energies, or for other observables. For this rea-
on, we have decided not to pursue this idea and estimate the physics
ist uncertainties as described above. However, once appropriate weight
actors have been measured over the full range of neutron energies,
vent mixing may prove to be a powerful tool in the future to reduce
he physics-list uncertainties and/or to improve the physics-list models.

. Performance of multiplicity determination

The efficiency of the NeuLAND multiplicity determination is shown
n Figs. 6–8. Results were computed for typical neutron energies of
00 MeV, 600 MeV and 1000 MeV, as is commonly done for NeuLAND
imulations [8,13] and for NeuLAND configurations of 8 dp, 12 dp,
6 dp, 23 dp and 30 dp. These configurations were chosen, because
he configuration with 8 dp is currently (at the publication date of this
ork) in use, 16 dp have secured funding at present and 30 dp is the
esign goal (see Section 1). The configurations of 12 dp and 23 dp were
dded for upcoming experimental proposals (at the publication date of
his work). The efficiency is shown as a percentage of how often the
orrect number of neutrons in the event (that came from the target)
s established. Results are shown as solid lines for the Perfect tracking
lgorithm, the TDR algorithm and the DNN algorithm (all discussed in
ection 2). The physics-list uncertainties of the three algorithms are
hown as separate bands (see Section 2). The bands are arbitrarily
laced above 100% in the figures and the band widths represent the 2𝜎

physics-list uncertainties. Note that, as the Perfect tracking algorithm
assigns a shower head to each neutron that produced at least one ‘‘Hit’’

(see Section 2.4), the black curves essentially describe the probability
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Fig. 5. Illustration of the TDR algorithm for multiplicity determination in the situation for a 30 dp NeuLAND and a 600 MeV neutron energy. The number of detected neutrons
refers to the number of assigned shower heads by the ‘‘Perfect Tracking’’ algorithm. The red numbers in the upper left corners refer to the fraction of events in each histogram
that falls between the respective cuts (black lines) in that histogram. See text for further details.

Fig. 6. Performance of the multiplicity determination in NeuLAND. For different neutron multiplicities fired by the particle gun, the percentage of events where that multiplicity
was established, is plotted against the number of NeuLAND double-planes (dp). The full results are shown as solid lines for the TDR algorithm, the new DNN algorithm and for
the ‘‘Perfect Tracking’’ algorithm, which gives the highest possible performance. The dashed lines correspond to the restricted scenario; the part of events where false-positives are
excluded. The simulations are performed with a neutron energy of 200 MeV. 200,000 events were simulated per multiplicity-figure. See text for further details.
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Fig. 7. Same as Fig. 6, but for a neutron energy of 600 MeV.
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hat all neutrons fired by the particle gun interacted with NeuLAND
nd were also detected by NeuLAND.

As can be seen in Figs. 6–8, the TDR and the DNN results (solid
ines) are sometimes higher than the results obtained by the ‘‘Perfect
racking’’ algorithm. Since the ‘‘Perfect Tracking’’ algorithm contains
he best possible shower-head identification (see Section 2), this may
eem like a contradiction. However, some events may be ‘accidentally’
ssigned the correct multiplicity by either the TDR or the DNN al-
orithm. In order to understand how this works, consider an event
here four neutrons come from the target. In this case, it is possible

hat three neutrons produce ‘‘Hits’’ in NeuLAND and that the fourth
ne does not. Subsequently, either the TDR or the DNN algorithm
ay wrongly classify the ‘‘Hits’’ produced by three neutrons as a four-
eutron event (consider, for example, the part of the blob above the
uts in the 3n-figure of Fig. 5). Hence, it is possible for the TDR and
NN algorithms that the correct multiplicity of the event is found,
hile not all neutrons were detected by NeuLAND. For these events

t is impossible to come up with a correct shower head for all neutrons
n the ‘‘Hit’’ selection stage. This phenomenon is designated as ‘false-
ositive’ multiplicity assignments. It cannot occur for the ‘‘Perfect
racking’’ algorithm, as it only assigns shower heads to neutrons that
re detected (in the sense that they produced scintillator ‘‘Hits’’, see
ection 2). As a result, it is possible that the TDR and DNN algorithms
ave a higher multiplicity performance than the ‘‘Perfect Tracking’’
lgorithm, as false-positive multiplicity assignments are included. The
ashed lines in Figs. 6–8 give the TDR and DNN result when the
alse-positive multiplicity assignments are excluded (These graphs are
esignated as the ‘Restricted’ case). However, one should realize that
he computation of the dashed lines in Figs. 6–8 requires the use of the
‘Perfect Tracking’’ algorithm (to determine how many neutrons were
ctually detected), which means that they can only be computed for
 o

7

imulation data. Hence, during an experiment only the solid lines in
igs. 6–8 will be known.

From Figs. 6–8 it can be seen that the problem of false-positive mul-
iplicity assignments gets relatively smaller as the number of double-
lanes increases. This is due to the fact that the probability of neutrons
nteracting with NeuLAND increases with the number of dp, which
akes the multiplicity determination more accurate.

From Figs. 6–8, we conclude that the DNN performance is higher
han the TDR performance for all studied neutron energies, multiplic-
ties and NeuLAND configurations (except for the 30 dp point in the
n and 4n cases of the 200 MeV neutron energies). However, in many
ituations (mostly the 3n and 4n cases) the difference in performance is
uite small. However, even such a small difference in multiplicity per-
ormance has a significant influence on the ‘‘Hit’’ selection performance
ue to our choice for handling different multiplicities with different

‘Hit’’ selection DNNs (see Section 2).
Another advantage of the new algorithm is that in several cases the

hysics-list uncertainties in Figs. 6–8 are smaller for the DNN algorithm
han for the TDR algorithm. The reason for this is that the optimization
f the cuts in Fig. 5, which only relies on two inputs (number of
lusters and total energy deposition), typically results in a very shallow
inimum. On the other hand, the DNN algorithm uses thousands of

nputs and, hence, has a less shallow minimum. A shallow minimum
auses large fluctuations in the final results when some simulation
arameters (like the physics list) are changed.

Figs. 6–8 also reveal some limitations in the use of both the conven-
ional TDR algorithm and the newly developed DNN algorithm. The
irst limitation is introduced by the physics-list uncertainties, which
an sometimes be quite significant (especially at a neutron energy

f 200 MeV, see Fig. 6). Hence, accurate multiplicity determination



C.A. Douma, E. Hoemann, N. Kalantar-Nayestanaki et al. Nuclear Inst. and Methods in Physics Research, A 990 (2021) 164951
Fig. 8. Same as Fig. 6, but for a neutron energy of 1000 MeV.
will not be possible for experimental data unless these physics-list
uncertainties are better understood. This requires both improvements
in the models used in the physics lists as well as accurate benchmarks
against experimental data. As discussed in Section 2.5, event mixing
could also help for this.

As can be seen in Figs. 6–8, the magnitudes of the physics-list
uncertainties are a complicated function of the number of dp. This
is because any error estimate (like the physics-list uncertainty bands)
is influenced by two opposite effects: overlapping particle showers
and the neutron interaction probability. As the number of NeuLAND
dp increases, so does the probability for a neutron to interact with
NeuLAND, which allows for a more accurate multiplicity determina-
tion. On the other hand, having more dp also leads to the particles
showers (produced by the neutrons) to become more complex, and, as
a result, overlap more often. This effect leads to less accuracy in the
determination of the multiplicity. Since both of these effects increase
with the number of dp, one effect may be slightly more dominant for a
certain configuration, while the other effect is slightly more dominant
for another configuration. This results in fluctuations in the magnitude
of the physics-list uncertainties as a function of the number of dp.

The physics-list uncertainties for both the TDR and DNN algorithms
for multiplicity five are relatively large (at all neutron energies). This
is because multiplicity five is the highest multiplicity considered in our
simulations, meaning that any neutron multiplicity above four will be
classified as five. For this reason, multiplicity five suffers from ‘endpoint
fluctuations’, which have a large impact on our estimate of the physics-
list uncertainties. The endpoint fluctuations can be nicely illustrated
with Fig. 5 for the TDR algorithm. Variations in the parameters of
the lower cut in any multiplicity window are partially compensated by
those same variations in the upper cut of that same window (because all
8

cuts have the same slope). However, this does not happen for multiplic-
ity five, because it does not have an upper cut. Hence, multiplicity five
suffers from larger fluctuations: the endpoint fluctuations. Fortunately,
endpoint fluctuations can be easily avoided by training the algorithms
(both TDR and DNN) up to one multiplicity higher than what is actually
expected in the experiment.

The second limitation of both the conventional TDR algorithm and
the newly-developed DNN algorithm is the number of false-positive
multiplicity assignments. Since not all neutrons from the target are
actually detected for these events, a proper reconstruction of the neu-
tron 4-momenta will not be possible, despite the fact that the correct
multiplicity was found (see next section). The number of false-positive
multiplicity assignments is particularly large for NeuLAND configu-
rations with a smaller number of dp. The severity of this problem
decreases as the number of double-planes increases. From the figures, it
can be seen why a choice of 30 double-planes was made in the original
design.

From the results presented in this section, we conclude that the DNN
algorithm offers advantages over the traditionally-used TDR algorithm,
both in terms of efficiency and in terms of physics-list uncertain-
ties (although the advantages are sometimes small). However, the
(sometimes large) physics-list uncertainties inhibit a good multiplicity
determination, meaning that both model improvements and accurate
benchmarks are needed for the physics list (for all neutron energies,
but particularly for neutron energies around 200 MeV). As discussed in
Section 2.5, event mixing could also help in this. Furthermore, the num-
ber of false-positive multiplicity assignments can, in turn, inhibit a good
shower-head identification, which is why the number of NeuLAND dp
should be as large as possible.
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4. ‘‘Hit’’ selection performance

In order to assess the performance of the ‘‘Hit’’ selection step (see
Fig. 4), it is necessary to consider the 4-momentum vectors of the neu-
trons involved [13]. Because of NeuLANDs recent use in a tetra-neutron
experiment [29,30] and its design goal for multi-neutron detection
capability, a 4-neutron invariant mass spectrum is a good method to
assess the ‘‘Hit’’ selection performance. Figs. 9–11 show such spectra
for the same neutron energies, NeuLAND configurations and shower-
head identification algorithms as studied in Section 3. Four times the
mass of the free neutron was subtracted from the total invariant mass,
which is why the 𝑥-axis is labeled ‘Invariant Mass Difference’. Physics-
list uncertainties are, again, shown as separate bands (as in the previous
section).

From Figs. 9–11 it is clear that the new DNN algorithm significantly
improves the ‘‘Hit’’ selection with respect to the traditionally-used TDR
algorithm. In terms of efficiency, the DNN algorithm has about 50%
igher performance than the TDR algorithm for 200 MeV neutrons. For

higher neuron energies, this is about a factor 3. Since an increase in
efficiency was the reason for developing the new DNN algorithm, we
conclude that the new DNN algorithm achieves that goal. Moreover,
since the difference in performance between the TDR and the DNN
algorithms was quite small for the multiplicity determination (see
previous section), we also conclude that almost all the improvement
shown in Figs. 9–11 is due to the improved ‘‘Hit’’ selection procedure.

Figs. 9–11 also confirm our conclusions made in Section 3 about
the limitations due to physics-list uncertainties and the number of Neu-
LAND dp. The physics-list uncertainties are significant for all neutron
energies and are particularly large at 200 MeV (see Fig. 9). Hence,
also for extracting more complex observables with NeuLAND, like
the invariant mass, a reduction of the physics-list uncertainties by
model improvements and more accurate benchmarks seems necessary
(especially at lower energies like 200 MeV).

These figures also effectively demonstrate the effects of false-
positive multiplicity assignments on measurable observables like the
invariant mass. As an example, we take a closer look at the situation in
Fig. 9a. In this situation, false-positive multiplicity assignments make
up about 60% of the data in this situation (see the 8 dp point in the
4n picture of Fig. 6). This is why the DNN peak has a larger area
than the ‘‘Perfect-Tracking’’ peak. Moreover, there is even a significant
shift in the peak position between these two algorithms. Since not
all four neutrons have been detected in the false-positive multiplicity
assignments, the ‘‘Hit’’ selection algorithm is forced to come up with
a false fourth shower head. The contributions of these false shower
heads to the invariant mass are the cause of the shift. From Figs. 9–
11, it can be concluded that such shifts occur for all neutron energies
and all NeuLAND configurations. However, the magnitude of the shift
decreases when the neutron energy increases (because the physics-list
uncertainties decrease) and when the number of NeuLAND dp increases
(because the ratio of true to false-positives becomes more favorable).
Hence, in order to allow accurate determination of measurable observ-
ables with NeuLAND like the invariant mass, we conclude that the
number of NeuLAND dp should be as large as possible.

Some NeuLAND configurations also suffer from large statistical
uncertainties besides the physics-list uncertainties. These statistical
uncertainties are a combination of the traditional Poisson uncertainty
and of the simulation initialization. Decision parameters (like the DNN
weights and the TDR cuts) are initialized as random numbers and
then optimized using a numerical minimization algorithm. However,
since the minimization algorithm uses a finite number of iterations
and/or the minimization could be trapped in local minima (which
happens frequently for DNNs [14]), the outcome of the minimization
procedure depends (somewhat) on the initialization. As a result, the
statistical uncertainties contain a contribution from this initialization.
This contribution was estimated by repeating both the training and the
validation twice with the exact same input parameters (but different
9

random seeds) and is shown in Figs. 9–11 as a band around the
histogram-data. This band includes the Poisson uncertainty.

From the limited number of simulations that were performed to
estimate the statistical uncertainties, the general trend seems to show
that the statistical uncertainties are smaller for the larger number of
dp. Looking at Figs. 9–11, it is advised that for measuring observables
like a 4-neutron invariant mass with a reasonable accuracy, at least 16
dp are used. However, the number of required double-planes may be
different for other neutron multiplicities.

Since false-positive multiplicity assignments and overlapping parti-
cle showers cannot occur for one-neutron events, basically any number
of NeuLAND dp can be used for one-neutron experiments, provided that
sufficient beam-time is available to compensate for the lower neutron
detection probability (for 8 dp, this is 50%–60%, see the figures in the
previous section). However, for two-neutron events and 8 dp, 40%–50%
f the multiplicity assignments are false-positives. Given the results of
ig. 9a where the number of false-positive multiplicity assignments is
oughly 60%, we conclude that 8 dp is not enough for two-neutron

experiments. However, the number of 40%–50% for two-neutron events
drops significantly (to roughly 25%) when going from 8 dp to 12 dp.
From Figs. 9a (roughly 60% false-positive multiplicity assignments)
and 9c (roughly 25% false-positive multiplicity assignments), we know
that such a drop in false-positive multiplicity assignments significantly
reduces the shift in observables. Hence, we conclude that 12 dp suffices
for two-neutron experiments. Since the ratio of true to false-positive
multiplicity assignments is roughly the same for three-neutron events,
four-neutron events and five-neutron events, we conclude that for
multiplicity above two, 16 dp are needed.

Hence, one can conclude that 8 dp would suffice for experiments
where one is interested in only one-neutron detection, 12 dp would
be enough in experiments where two neutrons are ejected and for
higher neutron multiplicities, a minimum of 16 double planes would
be required.

5. Extraction of the neutron scattering angle and its impact on
observables

From the results presented in Sections 3 and 4, it can be concluded
that the present DNN algorithm offers a significant improvement over
the TDR algorithm, mainly at the ‘‘Hit’’ selection stage. However,
there is still a significant difference in efficiency between the present
DNN algorithm and the ‘‘Perfect Tracking’’ algorithm, which gives
the maximally-achievable efficiency of any shower-head identifica-
tion algorithm. This brings up the question whether the present DNN
algorithm could be further improved.

In order to deal with this issue, it is important to realize that a
(large) difference between the DNN and ‘‘Perfect Tracking’’ algorithms
can have two different reasons: either that the present DNN algorithm
has shortcomings which should be dealt with, or that the ‘‘Perfect
Tracking’’ algorithm overestimates the maximally-achievable efficiency
when other kinematical variables of the experiment are considered. In
order to distinguish between these two possibilities, the accuracy of
the neutron detection by NeuLAND was investigated. For this purpose,
the neutron 4-momentum vectors obtained from the identified shower-
heads (using the DNN, TDR and ‘‘Perfect Tracking’’ algorithms) were
compared to their counterparts from the Monte Carlo data. Differences
between these 4-momentum vectors are typically caused by a deflection
of the incident neutron after its first interaction (at Monte-Carlo level)
with NeuLAND, while this first interaction itself failed to be detected
(due to energy thresholds).

The 4-momentum vector of a neutron is characterized by three
parameters: the neutron scattering angles (polar and azimuthal angles
at the R3B target) and the kinetic energy. The kinetic energy of the
neutron is mainly determined by its TOF, which is extracted from the
shower head. Since the TOF is dominated by the distance from the

target to the detector, the exact position of the shower head will have
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Fig. 9. Invariant Mass spectra for 4 neutrons, each carrying an energy of 200 MeV. The spectra (a, b, c, d and e) were reconstructed from different NeuLAND configurations (in
erms of dp). Four times the mass of the free neutron was subtracted from the total invariant mass, which is why the figures are labeled ‘Invariant Mass Difference’. The results
f the TDR, the DNN and the ‘‘Perfect Tracking’’ algorithms are plotted, together with their statistical uncertainties (around the data) and their systematic uncertainties from the
hysics list (separate bands). To obtain the results for each curve, 200,000 4𝑛 events were simulated. See text for further details.
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ittle effect on the extracted kinetic energy. For the determination of
he scattering angles, however, the exact position of the shower head
ithin the detection volume turns out to be important, as will be shown

n this section.
In order to quantitatively study the uncertainties in the neutron

cattering angles, a restriction was imposed on the ‘‘Perfect Tracking’’
lgorithm. If the angle between the Monte Carlo neutron 4-momentum
ector and the neutron 4-momentum vector obtained from the corre-
ponding shower-head candidate was larger than a certain value (a
esignated accuracy, 𝛥𝜃max), the neutron was assigned no shower head
n the ‘‘Perfect Tracking’’ analysis. If this angle was smaller than 𝛥𝜃max,

shower head was assigned (in the ‘‘Perfect Tracking’’ analysis) in
he same way as described in Section 2.4. Up to this point in our
nalysis, no such restrictions were considered for the ‘‘Perfect Tracking’’
lgorithm, meaning that all results presented so far correspond to an
ndefinite uncertainty in the scattering angles. The consequences of
mposing this restriction on the ‘‘Perfect Tracking’’ algorithm were
tudied for an average neutron energy of 600 MeV and a NeuLAND
onfiguration of 30 dp (the design goal). The distance between the
arget and the front-face of NeuLAND is 14 m and the physics list
sed for this study is QGSP_INCLXX_HP. The effects of imposing a
estriction on the error in the neutron scattering angles for the ‘‘Perfect
racking’’ algorithm are shown in Fig. 12. The conventions used in
igs. 6–8 also apply to Fig. 12.
 d

10
From Fig. 12, we conclude that the efficiency of the ‘‘Perfect Track-
ng’’ algorithm drops with smaller 𝛥𝜃max. Hence, for experiments that
equire good precision (small 𝛥𝜃max), the ‘‘Perfect Tracking’’ results pre-
ented in Sections 3 and 4 (which correspond to 𝛥𝜃max → ∞) are indeed
verestimations of the efficiency that can maximally be achieved by any
hower-head identification algorithm. The ‘‘Perfect Tracking’’ curves
hat were shown in the previous sections correspond to 𝛥𝜃max → ∞ and
epresent the upper limit of this efficiency. This situation corresponds,
or example, to the charge-exchange reactions discussed in Ref. [31],
here the ejectile had to be detected with a precision of at least 0.5◦.
or experiments that can afford a larger 𝛥𝜃max, the ‘‘Perfect Tracking’’
esults presented in Sections 3 and 4 are reasonably close to the
fficiency that can maximally be achieved.

Although the restriction of 𝛥𝜃max was only imposed on the ‘‘Perfect
racking’’ algorithm, the DNN and TDR results in Fig. 12 are also
ffected by it, because these algorithms use the ‘‘Perfect Tracking’’
esult for their training (see Section 2.4). During an experiment only the
olid lines of the DNN and TDR algorithms in Fig. 12 can be observed
see Section 3). Therefore, we conclude that only for experiments where
large 𝛥𝜃max is sufficient, the multiplicity classification can be done
ith reasonable efficiency. Experiments that require a small 𝛥𝜃max, will
ave a significant amount of false positives in their data (even for 30
p), which cannot be removed. For example, Fig. 12 shows that about
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Fig. 10. Same as Fig. 9, but for a neutron energy of 600 MeV.
two-thirds of the correctly-classified events in a 4n experiment that
equires 𝛥𝜃max = 0.2◦ are false positives, while this would only be one-
enth for 4n experiments that have no restrictions on 𝛥𝜃max (𝛥𝜃max → ∞
n Fig. 12).

From Fig. 12, we also observe that the restricted DNN result drops
ith smaller 𝛥𝜃max along with the ‘‘Perfect Tracking’’ result. However,

ince these results are also always (significantly) below the ‘‘Perfect
racking’’ results, one could argue that there is still room for improv-

ng the DNN algorithm which would, in particular, be important for
xperiments that require a small value of 𝛥𝜃max. However, based on our

experience in developing the present DNN algorithm, we do not expect
much further improvement. Since the relative differences between the
DNN results and the ‘‘Perfect Tracking’’ results are about the same
at the multiplicity determination stage (Section 3) as they are at the
‘‘Hit’’ selection stage (Section 4), we conclude that improvement should
start to take place at the multiplicity determination stage. However,
for this network the best possible options were already selected (for
network properties like the loss function, optimizer, learning rate, etc.).
Moreover, all available NeuLAND data were already given as inputs to
the network (see Section 2.2). Hence, the only further improvement
that could be made is to increase the network complexity (to raise the
number and/or the width of hidden layers). This has been attempted
in this work and the network training failed to converge.

We believe that the main cause of the remaining differences be-

tween the ‘‘restricted DNN’’ and the ‘‘Perfect Tracking’’ algorithm is

11
that the particle showers in NeuLAND contain too many random com-
ponents to allow for a significantly better multiplicity determination
than what was achieved with the present DNN algorithm. This con-
clusion is further supported by the observation that the present DNN
multiplicity classification is independent of 𝛥𝜃max. In Fig. 12, the ‘‘DNN
Total’’ result is more-or-less constant with 𝛥𝜃max and the ratio of the
‘‘DNN restricted’’ result to the ‘‘Perfect Tracking’’ result is also more-
or-less constant. The randomness of ‘‘Hits’’ in the detector apparently
deteriorates the information needed for a high-precision multiplicity
classification.

A possible strategy for further improvement could be to also use
information from other detectors in the setup than NeuLAND alone.
Using the other detectors and the missing mass method, it is possible
to obtain a 4-momentum vector containing the sum of all neutron
tracks produced at the target. This 4-momentum vector carries infor-
mation about the number of ejected neutrons (at the target). Therefore,
depending on the capabilities (in terms of resolutions) of the other de-
tectors in the setup, the information of this missing mass 4-momentum
vector may have the potential to significantly improve the multiplicity
classification. This option was not considered in the present study
which focuses on the information solely obtained from NeuLAND and
could be a valuable addition to the present DNN algorithm in future
studies.

The present DNN algorithm has to deal with a significant amount
of false positives for experiments that require good precision in the

neutron scattering angle (small 𝛥𝜃max). Hence, we need to explore
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Fig. 11. Same as Fig. 9, but for a neutron energy of 1000 MeV.
the impact of these false positives on observables. Since this impact
depends on the observable considered, we will limit our study to two
of the most important observables in nuclear physics: invariant mass
and cross section. To explore the impact of the false positives on
these observables, the 4-neutron invariant mass spectra introduced in
Section 4 were used. These spectra are shown in Fig. 13 for different
values of 𝛥𝜃max.

It is important to realize that the number of ‘‘restricted’’ events
shown in Fig. 12 go through another selection criterion (‘‘Hit’’ selection
stage) in order to obtain the results shown in Fig. 13. Hence, the
number of events under the peak in Fig. 13 drops faster with 𝛥𝜃max
than the corresponding result in Fig. 12.

From Fig. 13 we conclude that the mean position and width of
the peaks vary slightly with 𝛥𝜃max. Since these variations are much
smaller than the experimental resolution, we conclude that the impact
of the false positives on invariant mass values (such as resonance
locations) is small. On the other hand, the peak area strongly depends
on 𝛥𝜃max. Since during an experiment, one can only obtain the peak
area corresponding to 𝛥𝜃max → ∞, the false positives may introduce a
substantial error in the peak area. Fortunately, this can be corrected
for in the cross section computation. Cross section is proportional to
the peak area divided by the overall detection efficiency [31]. Hence,
if the false positives are included in both the peak area and the detec-
tion efficiency, the cross section can still be obtained with relatively
good precision. The overall detection efficiency can be obtained from
simulated data. First, one should divide the DNN peak area in the
12
spectrum to the ‘‘Perfect Tracking’’ peak area. Next, the result of this
division should be multiplied with the ‘‘Perfect Tracking’’ multiplicity
efficiency (as in Fig. 12) to obtain the overall detection efficiency. For
the example shown in Figs. 12 and 13 and for multiplicity 4, this would
mean an efficiency of 68% (for 𝛥𝜃max → ∞) while this efficiency would
go down to 7.8% percent for 𝛥𝜃max = 0.2◦. The corresponding numbers
for the TDR algorithm would be 27% and 1.4%, respectively.

To summarize, it can be stated that the present DNN algorithm could
be further improved. This improvement is most needed for experiments
that require good precision in the neutron scattering angle (small
𝛥𝜃max) to reduce the large number of false positives. However, based
on our experience, this improvement is unlikely to be realized using
only NeuLAND data. On the other hand, the use of the missing mass
method (from data obtained with the other detectors in the setup) may
result in improvement of the present DNN multiplicity classification.
The presently large number of false positives (for small 𝛥𝜃max) has little
impact on invariant mass values. However, the effects of these false
positives should be included in the detection efficiency for computing
cross section values.

6. Conclusion

A new Machine Learning (DNN) algorithm was developed for the
shower-head identification in the NeuLAND neutron detector. This DNN
algorithm was compared to the TDR algorithm, a representative case
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Fig. 12. Performance of the neutron multiplicity determination as a function of 𝛥𝜃max. The full results are shown as solid lines for the TDR, DNN and ‘‘Perfect Tracking’’ algorithms.
he dashed lines correspond to the restricted scenario; the part of events where the false-positives are excluded. The simulations are performed for a neutron energy of 600 MeV,
NeuLAND configuration of 30 dp and a distance between NeuLAND and the target of 14 m. See text for further details.
Fig. 13. Invariant Mass spectra for 4 neutrons, each carrying an energy of 600 MeV. A NeuLAND configuration of 30 dp at a distance of 14 m was used. Four times the mass
of the free neutron was subtracted from the total invariant mass, which is why the figures are labeled ‘Invariant Mass Difference’. The spectra are plotted for different values of
𝛥𝜃max. To obtain the results for each curve, 200,000 4𝑛 events were simulated. See text for further details.
for how shower-head identification can be done in NeuLAND without
the use of Machine Learning. The main reason for developing the
new DNN algorithm was to increase the efficiency of the shower-head
identification so that the statistical accuracy of the measurements is
increased.

In virtually all investigated scenarios (see Sections 3 and 4), the
new DNN algorithm offers a better efficiency for the shower-head
identification than the TDR algorithm. For this reason, we conclude
13
that the new DNN algorithm should be employed in the analysis of
this type of detectors. The shower-head identification consists of two
steps: the multiplicity determination and the ‘‘Hit’’ selection. For the
multiplicity determination, the improvement in efficiency of the DNN
algorithm with respect to the TDR algorithm is small. For the ‘‘Hit’’
selection, it can be very large (up to a factor 3), especially for higher
neutron energies.
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Physics-list uncertainties and a small number of double-planes (dp)
used for NeuLAND can sometimes significantly inhibit a proper shower-
head identification (see Sections 3 and 4). Therefore, we recommend to
increase the number of NeuLAND dp as much as possible and to reduce
the physics-list uncertainties. The latter requires both simulation-model
improvements and accurate benchmarks against experimental data. As
discussed in Section 2.5, event mixing could also help for this. For the
required number of dp, we conclude that 8 dp suffices only for one-
neutron experiments; for two-neutron experiments a minimum of 12
dp are needed, and for higher neutron multiplicities, at least 16 dp are
required.

Our studies indicate that further improvements on top of the present
DNN algorithm are also needed, especially for experiments that require
good precision in the neutron scattering angle. However, it is unlikely
that these improvements can be realized using only NeuLAND data.
A possible improvement could come from using the other detectors in
the setup to obtain a 4-momentum vector representing the sum of all
neutron tracks utilizing the missing-mass method. This 4-momentum
vector should then be fed into the multiplicity DNN to improve the
classification. The degree by which this would improve the results
should be further investigated.
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Appendix. Network structure optimalization

In this appendix, the optimalization procedure for the DNN network
structure is discussed. From general considerations (see Section 2.2), it
was determined that the DNN should be a densely-connected network
with ReLU activation functions on the hidden neurons and SoftMax
activation functions on the output neurons. It was also determined
that the DNN should have 9002 input neurons and (usually) 5 output
neurons. This leaves the following parameters open: the number of
hidden layers in the network, the number of neurons per hidden layer,
the choice for the minimization function (the network loss function)
and the choice for the minimization algorithm.

These parameters were found by considering different networks
with different values for one of these parameters, thereby optimizing
14
Fig. 14. This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 654002.

Table 2
Optimalization of the DNN network structure.

Loss function Layer 1 Layer 2 Optimizer Accuracy

Cross entropy 9000 0 ADAM 75.5%
Hinge 9000 0 ADAM 59.9%
Mean squared error 9000 0 ADAM 73.7%

Cross entropy 3000 0 ADAM 74.6%
Cross entropy 9000 0 ADAM 75.5%
Cross entropy 9000 100 ADAM 74.1%
Cross entropy 9000 300 ADAM 74.7%
Cross entropy 9000 800 ADAM 74.2%

Cross entropy 9000 0 ADGRAD 74.3%
Cross entropy 9000 100 ADGRAD 73.3%
Cross entropy 9000 300 ADGRAD 77.5%
Cross entropy 9000 800 ADGRAD 79.7%

Cross entropy 3000 0 ADGRAD 75.4%
Cross entropy 9000 0 ADGRAD 80.0%
Cross entropy 9000 100 ADGRAD 79.5%
Cross entropy 9000 300 ADGRAD 79.1%
Cross entropy 9000 800 ADGRAD 79.7%
Cross entropy 9000 1200 ADGRAD 81.4%
Cross entropy 9000 3000 ADGRAD 81.1%
Cross entropy 9000 3500 ADGRAD 73.2%
Cross entropy 9000 6900 ADGRAD 20.0%

CNN network [21] – – – 74.0%
TDR [13] – – – 63.4%
Bayesian [13] – – – 50.4%
Scoring [13] – – – 40.8%

these parameters one-by-one. The outcome of this optimization proce-
dure is given in Table 2. The Accuracy considered for the optimization
procedure is the average efficiency for the multiplicities one to five.
Hence, if one would take the average over the five subfigures in
Figs. 6–8, one would obtain the accuracy in Table 2. The situation
considered in Table 2, is the 30 dp design goal for NeuLAND, 600 MeV
neutrons, multiplicities ranging from 1 till 5 and a distance of 14 m
between NeuLAND and the target. The table explores different standard
options [23] for the optimizer (minimization algorithm), loss function
(minimization function) and number of neurons per hidden layer. The
last section contains different algorithms from Refs. [13,21] which have
been put into the table for comparison purposes.

As one can see from the first section of Table 2, the Categorical
Cross entropy [27] was determined to be the optimal choice for the
loss function. From the second and third section of Table 2, it is clear
that ADGRAD is the better choice for the optimizer (other choices
than ADAM or ADGRAD gave significantly worse results). It was also
determined by optimization that for ADGRAD, learning rate 0.001, 𝜖 = 0
and zero decay gave the best results. Finally, the fourth section of the
table reveals that the optimal choice for the hidden layers is 9000 and
1200 neurons (the bold-types row). Similar Networks with more than
two hidden layers failed to achieve convergence during the training.
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A single DNN network training (like in Table 2) required several
hours of computing time (we used an NVIDIA GeForce GTX 1050 Ti
Mobile GPU for the training). On the other hand, it takes several weeks
to train a single CNN network, and it could achieve an accuracy of
74% [21]. This is why we chose to use a DNN in our work rather than

CNN.
The exact values of the accuracy in Table 2 require some discussion.

he values for the accuracies in Table 2 (including the CNN, TDR, Scor-
ng and Bayesian algorithms) were obtained using the same ‘‘Perfect
racking’’ algorithm as what was used in Refs. [8,13,21]. However, this
lgorithm turned out to incorrectly handle the Geant4 TrackIDs [32],
ausing the accuracies in Table 2 to come out too high. This is an
verall effect in Table 2, which means that the conclusions about the
ptimal network parameters remain valid.

In this work, we corrected for this problem in the ‘‘Perfect Tracking’’
lgorithm, causing the bold-typed accuracy from Table 2 to drop from
1.4% to 65.5% (which is consistent with the red curves in Fig. 7).
ikewise, the TDR efficiency in Table 2 drops from 63.4% to 59.5%

(which is consistent with the blue curves in Fig. 7). All results reported
in this work (except in the Appendix) were based on the correct ‘‘Per-
fect Tracking’’ algorithm. However, for Table 2, we have deliberately
chosen to display it using the previous ‘‘Perfect Tracking’’ algorithm to
maintain backward compatibility with Refs. [8,13,21].
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