whisker_serial_order

Serial order task for Whisker (http://www.whiskercontrol.com/). Referred to as SerialOrder in this
document. By Rudolf Cardinal (rudolf@pobox.com).

Installation

Install Python 3.4 (https://www.python.org/).

Create and activate a virtual environment (optional but recommended), so this program doesn’t install
things that interfere with any of your other Python programs.

Windows |Create virtual C:\Python34\python.exe -m venv C:\venv_whisker_serial_order
environment

Windows | Activate virtual C:\venv_whisker_serial_order\Scripts\activate.bat

environment

Linux Create virtual python3 -m virtualenv /somepath/venv_whisker_serial_order
environment'

Linux Activate virtual source /somepath/venv_whisker_serial_order/bin/activate
environment

Install SerialOrder.

pip install whisker_serial_order
Create a database (see below).

Compose your database URL (see below) and tell SerialOrder about it, either via an environment variable
or as a command-line parameter (see below), and then launch Serial Order.

The SerialOrder program itself will now be accessible as the command whisker serial order
without any PATH modifications as long as you have activated the virtual environment, as above.

Use
whisker serial order --help

for details of all possible command-line options.

Task overview

The task tests memory for serial position/order.

The task operates with a five-hole box (5 holes of the traditional 9-hole box?), with a rear food magazine at
the back. All ‘holes’ have a light inside and an infrared nosepoke detector; the food magazine can also
dispense pellets.

In brief, trials are as follows:
e Trials begin with illumination of the food magazine/tray, and the subject must respond.
* A sequence of lights is presented. For example, if a 4-light sequence is used, the task may aim to
present 4-1-3-5. After each individual light presentation, the subject must acknowledge by

responding to the location of the light, and after that to the magazine (again signalled by magazine
light illumination).

* After the sequence has been presented and acknowledged, a choice of two of the presented lights is
offered (e.g. 4, 3). The subject must choose the correct hole to answer the question: “which one
came first?” Success leads to food.

Task operation

When you start successfully, it’ll look like this:

1 Ifit can’t find virtualenv, use sudo pip3 install virtualenv then retry. Under Ubuntu 14.04, the alternative venv
package fails with complaints about ensurepip and it’s not obvious how to fix it.
2 Rodent five-choice task: Carli et al. (1983), PubMed ID 6 639 741.

First, configure:

- Choose configuration for Serial Order Task 4 B X

Select a config fram the Editable list, then click OK.

(2] ‘ Modified A| Subject ‘ Server | Port | Box | #Stages |

5 2016-03-19 00:26:49 | bob localhost 3233 bexD 1

Once a config is used, a copy is frozen. You can view {and clone to the 'editable’ list) but not use these directly.

— Read-only copies (frozen)

(2] Modified -~ Subject Server | Port | Box | #5tages =
B 2016-03-17 16:33:28 | bob wombatvmxp 3233 box0 1 =
T 2016-03-17 16:33:28 | bob wombatvmxp 3233 boxo 1 1
B 2016-03-17 16:33:28 | bob wombatvmxp | 3233 boxo 1
9 2016-03-17 16:33.28 | bob wombatvmxp 3233 box0 1
10 2016-03-17 16:33.28 | bob wombatvmxp 3233 box0 1
11 2016-03-17 16:33:28 | bob wombatvmxp 3233 box0 1 Iz‘

At the top are editable configurations. Edit them, and then select one (and click OK) when you’re ready to
run. When you run a task, the program copies the editable config into a ‘frozen’ state so it’s permanently
accessible. These frozen copies are shown at the bottom. (You can ‘clone’ a frozen config back into the
editable list, as well.)

When you edit a config, you see this:

|| Configure Serial Order Task: 4+ 0 X
— Whisker
Server | lacalhost |
Port [3233 |

Device group {box) | box0

— Subject

Subject | bob

— Reinforcer

Pellets per reinforcer | 2

Peliet dispenser pulse time (ms) | 45

Interpellet gap (ms) | 250

— Trial il

g

Intertrial interval (IT1) duration {ms) | 2000

Repeat incomplete trials O

— Overall limits

Overall session time limit (min) [50.0

Stage# | Sedq.len. | Lirn.hald{s) | Progress X | Progress Y Stop N |
1 2 10.0 2 2 100
R
] 2 4 100 3 3 100 e

Edit

Y]

Down

>
© o

Note that the default Whisker server is localhost (meaning “this computer”) and the default TCP/IP port®
is 3233. The device group (box) setting should match a device group specified in your Whisker device
definition file.*

When you edit a stage definition, you see this:

- Configure stage 4+ 0 X

— Seq e
Sequence length | 4 ‘

— Limited hold

Limited hold (s) | 10.0 ‘

Progress after X... 10
... of last ¥ trials correct | 12

Stop after N trials 100

When you’re happy with everything, select the config and click Start at the main screen. The program will
attempt to connect to Whisker and run the task.

Data is logged ‘live’ to the database, with a COMMIT at the end of every server event processed.
Make sure you use a database with appropriate concurrency (multi-user/multi-client) support; see below.

Device definitions

Within the task and its results, holes are numbered from 1-5. Existing Whisker tasks (e.g. FiveChoice) use
HOLE_0 to HOLE_4 and STIMLIGHT_0 to STIMLIGHT 4, so for backwards compatibility, we could use
those; however, that’s likely to be terribly confusing for anyone trying to debug this task. We therefore
provide new device names starting ‘SO_’ (which can co-exist with old names within one Whisker device
definition file if necessary).

Inputs
SO_HOLE _1
SO_HOLE_2
SO_HOLE _3
SO_HOLE_4
SO_HOLE_5
REARPANEL

Outputs
SO_STIMLIGHT _1
SO_STIMLIGHT_2
SO_STIMLIGHT_3
SO_STIMLIGHT _4
SO_STIMLIGHT_5
HOUSELIGHT
PELLET
MAGLIGHT

Choice of database: MySQL 5.6.4+ or PostgreSQL
SerialOrder uses SQLAlchemy (http://www.sqlalchemy.org/) to talk to database. This permits a wide
variety of back-end databases. However, some additional constraints apply (detailed below). These are:

* We want lots of task instances to be able to use the same database, because that helps analysis
enormously.

* We want to use a freely available database engine.

3 http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml?search=whisker
4 See http://www.whiskercontrol.com/

* Use of a lightweight database like SQLite poses some problems if many tasks are writing to the
same database at once’, as SQLite locks the whole database when writing. This might cause
problems if many tasks are writing events at high speed to the database - but it also prohibits one
task editing a config (with an SQLite transaction active) while other tasks write. That’s a very
common situation, which argues strongly for a formal client/server database.

* In addition, we want to store timestamps to millisecond accuracy. There are a variety of ways of
doing this, with and without timezone storage. The only entirely consistent way across databases is
to use a textual format (e.g. ISO-8601, such as 2016-03-02T22:43:03.710817+01:00 or an equivalent
with less punctuation). However, this reduces the ability to perform simple arithmetic. For the
purposes of behavioural tasks, time differences (latencies) are important, and timezones aren’t, so
we can use a high-precision UTC date/time. This gives us the DATETIME(6) type in MySQL 5.6.4+,
or the TIMESTAMP type in PostgreSQL. More detail below.

Installing PostgreSQL

To choose between MySQL and PostgreSQL, let’s compare quick installation and startup, using an old
Windows version (Windows XP, 32-bit). First PostgreSQL 9.5:

* Installation under Windows XP. Simple. The default port is 5432, and the default superuser account
is postgres. You can specify your data directory as you install, so it’s probably worth putting this
somewhere outside “C:\Program Files”, such as c:\postgresql_data.

* Running something. Using Start — Programs — PostgreSQL 9.5 — SQL Shell (psql) fails to connect
with supplied defaults.® If you use a short’ or full® command line version, it does work, so this
indicates a bug in runpsqgl.bat.” Once at the SQL command line, you can use the help
command, providing you are at the postgres=+# (command start) prompt not the postgres-#
(command continuation) prompt. The GUI administrator works better out of the box: Start —
Programs — PostgreSQL 9.5 — pgAdmin IIL.

* Creating a user. Within the GUI administrator, double-click on the local server to connect. Right-
click “Login Roles” to choose “New Login Role..”. Create a user, giving it a name (e.g. ‘researcher’)
in the Properties tab and a password in the Definition tab. Don’t forget the password, or you won’t
be able to connect with this user from the psql tool."

* Creating a database. Within the GUI administrator as before, right-click “Databases” to choose
“New Database..”. Give it a name (e.g. serialorder) and assign one of your users as its owner.

Installation of PostgreSQL under Ubuntu is also easy."

Installing MySQL
Then MySQL 5.7.1:

e Installation under Windows XP. In short, don’t use this OS. Failure details are below.

© Installation of Microsoft .NET 4.0 is a prerequisite, and this is easy. Installation of MySQL itself
is easy'”. However, the web community installer (1.6 Mb download) failed miserably. The
installer failed to start the server. The MySQL57 service reports that it isn’t a Win32 program
when you try to run it. The full community installer (377.9 Mb download) failed. MySQL
Workbench failed to install; in the depths of the very long log, it said “The operating system is
not adequate for running MySQL Workbench 6.3 CE. You need Windows 7 or newer and .Net
4.0 Client Profile installed” Then the installer crashed, saying “This class is designed only for
Windows Vista and higher” (At least the error messages are better with this installer!)

W 3w

10
11

12

http://www.sqlite.org/whentouse.html

This calls "C:\Program Files\PostgreSQL\9.5\scripts\runpsqgl.bat".

"C:\Program Files\PostgreSQL\9.5\bin\psgl.exe" --username=postgres

"C:\Program Files\PostgreSQL\9.5\bin\psgl.exe" -h localhost -U postgres -d postgres -p
5432

It gets stuck, or takes an extremely long time, on this line: for /f "delims=" %%a in ('chcp "|find /c
"932"') do @ SET CLIENTENCODING JP=%%a, presumably relating to Windows version incompatibility.
http://www.postgresql.org/docs/current/static/auth-methods.html

Install with sudo apt-get install postgresqgl postgresgl-contrib pgadmin3 libpg-dev. Connect
with sudo -u postgres psqgl postgres. Set a password for the ‘postgres’ user using \password postgres.
Quit with \ g. Use pgadmin3 for the rest.

From http://dev.mysql.com/downloads/installer/

* Installation under Windows 10. Much better.
© Prerequisite: Visual C++ Redistributable Packages for Visual Studio 2013, which you’ll want in
order to get MySQL Workbench installed.”
© Prerequisite: Python 3.4, for MySQL Connector/Python."

© The web installer works fine here. Choosing the defaults works well, and you can add

additional users during setup. The default port is 3306, and the default superuser account is
root.

* Creating a user. You might have already done this during installation, as above. If not, run MySQL
Workbench, click USERS AND PRIVILEGES, then “Add Account”. Specify the details and click
“Apply”.

* Creating a database. Run MySQL Workbench. Under SCHEMAS, right-click one and click “Create
schema..” Give the new schema (database) a name and click “Apply”, then “Apply” again to
confirm.

So either is perfectly reasonable.
Installing MySQL under Ubuntu is also easy.”
I suggest MySQL, but only because I've used it more.

Telling SerialOrder which database to use: the database URL

If your database is called ‘serialorder’, your database user is ‘researcher’ and their password is ‘blueberry’,
then you can use an environment variable or a command-line switch to tell the task how to connect with
the database, like this:

Linux, export WHISKER SERIAL_ ORDER DB _URL=postgresql: //researcher:blueberry@localhost/serialorder
environment

variable,
PostgreSQL

whisker_serial_order

Any OS, whisker serial order --dburl postgresqgl://researcher:blueberry@localhost/serialorder
command-line

switch,
PostgreSQL

Linux, export WHISKER SERIAL ORDER DB URL=mysql://researcher:blueberry@localhost/serialorder
environment

variable,
MySQL

whisker serial order

Windows, Use the “SET var=value” syntax, or (better?) set the environment variable from the Control Panel, then run
environment |whisker serial order.
variable

Any OS, whisker serial order --dburl mysql://researcher:blueberry@localhost/serialorder
command-line

switch,
MySQL

Advice on analysis using the database, focusing on MySQL

MySQL Workbench is pretty good, and free.
Start it, then connect to your MySQL instance.

You can then open a query window. To get going, presuming your database is called serialorder, you can
use the commands:

USE serialorder;

13 https://www.microsoft.com/en-GB/download/details.aspx?id=40 784

14 https://www.python.org/downloads/release/python-344/

15 For the version that comes with the OS: sudo apt-get install mysgl-server mysgl-client mysqgl-
workbench. For a more up-to-date version, download a .deb file from https://dev.mysql.com/downloads/repo/apt/, install it
(e.g. sudo dpkg -i mysgl-apt-config 0.6.0-1 all.deb), and follow the on-screen prompts. This reconfigures
APT, so you then need to run sudo apt-get update and finally sudo apt-get install mysgl-server
mysgl-workbench. If you are upgrading, note also the command mysqgl upgrade -u root -p (which you run when
the server has started); this repairs relevant tables, after which you must restart MySQL (with sudo service mysql
restart).

SELECT * FROM session;
... and click the lightning symbol to run the query.

To copy/paste results, click in the output and then use Ctrl-A to select all rows and Ctrl-C to copy. It
should paste right into spreadsheets (using commas to delimit cells and apostrophes to delimit text). If you
select rows using Ctrl-A or shift-click, then the right mouse button offers more copy/paste options.

To make your query a permanent part of the database, you can create it as a view.

A number of views are pre-created for you. Their names contain ‘view’. You’ll find them by exploring the
SCHEMAS list (e.g. SCHEMAS — serialorder — Views — ...). Similarly, you can explore the tables
directly like this (SCHEMAS — serialorder — Tables — ...); right-click a table and choose “Select Rows”
to see the raw data.

Avoid editing data in the database. It carries a significant risk of problems. There are few situations it
would be wise. Use is only for experts. The only realistic use-case is if you entered a wrong subject name
and failed to notice as you were starting the session; you are then probably looking for the SQL syntax
UPDATE config SET subject='newname' WHERE id=XXX;, where XXX is the ID number of
the record you have determined to be faulty. You can also edit cells directly from the Table view in MySQL
Workbench (right-click the cell and choose “Open Value in Editor”).

Instead, add new tables. Suppose, for example, that you have information about session numbers, or
group membership (sham or lesion?), or drug manipulation prior to the session. You should create a new
table, store the linking information, and link dynamically to produce your queries. Here’s a made-up
example:

-- This is an SQL comment. We will create a table:
CREATE TABLE lesion (
-- This table tells us which subjects have what lesion.
-- Suppose a subject can only ever be in one lesion group;
-- that means only one row per subject in this table.
-- So subject can be our primary key.
subject VARCHAR(255) NOT NULL,

expgroup VARCHAR(50), -- Avoid using the name 'group' as it is an SQL
-- keyword. We will store words like 'sham' and 'lesion'.
exclude BOOLEAN, -- In case we want to remove all data for a subject.

PRIMARY KEY (subject)
)
CREATE TABLE drug_session (
-- This table tells us which subjects had what drug/dose on which day.
drug_session_id INTEGER NOT NULL AUTO_INCREMENT,
session_id INTEGER NOT NULL,
drug VARCHAR(50), -- Maybe 'amphetamine_0_3', 'amphetamine_1 0'.
PRIMARY KEY (drug_session_id),
FOREIGN KEY (session_id) REFERENCES session(session_id)
-- The session_id field will refer to session.session_id; this prevents
-- us from creating drug information for non-existent sessions, etc.
);
-- Then, after inserting some data, we could fetch all trial
-- information and bring in matching lesion/drug details with:
SELECT
L.subject,
L.expgroup,
D.drugsession,
T.*
FROM
lesion L
INNER JOIN config C ON L.subject = C.subject
INNER JOIN session S ON S.config_id = C.config_id
INNER JOIN drug_session D ON D.session_id = S.session_id
INNER JOIN trial T ON T.session_id = S.session_id
WHERE
NOT L.exclude

Schema generation

Try whisker serial order --help to see a few other things it can do. If you have Java and the
PlantUML jar file (http://plantuml.com/), you can use the -—schema option to generate a schema picture
of the database, shown below.

Y ——
@ Event INTEGER sequence_timing_id
INTHGER trial_id
INTHGER event_id DATHTIME hole lit at
IUTHGER session_id IUTHGER hole_num
INTEGER trial_id DATETLVE hole_response_at
VARCHAR[40] event FLORT hole_response_latency_g
INTHGER eventnum_in_geszion DATETIME mag_lit_at
INTHGER eventnum_in_trial DATHTIME mag_response_at
BOOLEAN from_server FLOAT mag_response_latency_s
DATETLVE timestamp INTEGER seq_pos
INTEGER trialoum -
BIGINT whigker_timestamp_ms record hole_lit()
record_hole responzet)
record_mag_lit ()
e el e p = =10

trial_id trial_id

INTEGER trial_id

INTEGEE config_stage_id
INTEGER seszion_id

INTEGEE choice_hole earliest
THTEGER choice_hole_lateat

choice_hole_left
choice_hole_right
choica _holes

choice offered
choice_offerad at
choice_seq positions
choice_seqpos_earliest
choice_segpos_latest
initiated at
initiation_latency_s

DATETIME iti_started at
INTEGEE n_premature
FLOAT reinf_collect_latency =
DATETIME reinf_collescted at
DATHTIME reinforced_at
EBOOLEAI responded
DATETIME responded_at
THTEGER responded_hole
, . BOOLEAN responss_correct

session_id FLOAT response_latency_s
TEXT sequence_holes
INTEGEE sequence_length
THTEGER sequence_n_offered
INTEGER stagenum
DATHTIME started at
INTEGER trialnum

o events

© sequence_timings

get_choice_holes_as_str ()
get_pequence_holes_as_gtri)
record _choice_offered()
record_initiation()
record_iti_stare()
record_premature()
record_reinf_collection ()
record_reinforcement ()

record responze ()
record_sequence_hole_lit()
record_sequence_hole_responze ()
record_pequence_mag_lit ()
record_sequence_mag_response ()
set_choice ()

ser_sequence ()
wags_reinf_collected()
wag_reinforced()

session_id config_stage_id

@ Sesaion @ ConfigStage
INTEGER session_id INTEGER config_stage_id
INTEGER config_id INTEGER config_id
TEET filename FLOAT limited hold =
DATETIME started art DATETIME modified_ar
INTEGER trials_correct INTEGER progression_criterion_x
INTEGER trials_responded INTEGER progression_criterion_y
© config INTEGER sequence_length
© events INTEGER stagenum
o rrials INTEGER otop_afrer_n_rrials
config_id config id

@© coris

INTEGER config_id
VARCHAR [155] devicegroup
TNTEGER iti_duration_ms
DATETIME modified at
INTEGER port
BOOLEAN read_only
INTEGER reinf_interpellet_gap ms
TNTEGER reinf_n_pellets
INTEGER reinf_pellet_pulze mz
BOOLEAN repear_incomplete_rrials
ARCHAR[255] gerver
FLORT sezzion_time limit_min
VARCHAR [255] aubject
© stages
clone ()

get_modified at_pretty()
get_n_stagss ()
has_stages()

Additional safety data output

As always, for safety, good Whisker tasks write their data to two places: the database and a text file. In the
brave new world of real databases and Python, this task writes its data to the proper database ‘live’, so the
database is always up to date. When the task finishes, it reads that database and writes both structure and
data to a text file. It does so in SQL format, so that a fully structured representation of all data relevant to a
given session can easily be regenerated simply by replaying the SQL output into a fresh database.

The directory used for these files is one of the following, in descending order of priority: (1) the
--outdir command-line parameter; (2) the WHISKER_SERIAL,_ORDER_OUTDIR environment variable;
(3) the current working directory from which the task was started.

Some development notes

Dates and times

As above, the end user is probably best off with a native format that supports microsecond-accuracy
precision, such as the DATETIME(fsp), e.g. DATETIME(6), format available in MySQL 5.6.4 and higher.*
There are others”, notably PostgreSQL, which uses a TIMESTAMP format that has microsecond precision.
You’d think it can store time zones as well (TIMESTAMP WITH TIME ZONE), but close inspection shows
that “For TIMESTAMP WITH TIME ZONE, the internally stored value is always in UTC... [a]n input value
that has an explicit time zone is converted to UTC..”." In other words, there’s not much to choose between
PostgreSQL and MySQL on the basis of date/time handling.

Interestingly, on the commercial side, SQL Server 2008+ provides DATETIMEOFFSET, which preserves
timezone information,” and Oracle has a version of TIMESTAMP WITH TIME ZONE that can preserve
timezone information.” Neither PostgreSQL or MySQL appear to have an equivalent; the best they offer is
UTC high-precision storage (and you could store the timezone of origin separately, e.g. with the
TimezoneType from SQLAlchemy-Utils). I haven’t managed to get TimezoneType working cleanly, in that
(a) I'm unsure of the best general way to get the current timezone using either pytz or dateutil.tz.tzlocal();
(b) Alembic adds a “length=50" argument to the constructor, which is wrong and requires manual removal.
Anyway, it’s not too important here.

For general advice, see also *..

The best Python module is Arrow?, which offers arrow.now() to get a timezone-aware, microsecond-
precision object in the local timezone.

There is an ArrowType for SQLAlchemy in SQLAlchemy-Utils*; however, this converts to UTC as it sends
to the database (and UTC Arrow objects back out again), so the source timezone is lost. But this is actually
normal PostgreSQL behaviour, as above, which always uses UTC internally. An alternative (as per
CamCOPS) is to use ISO-8601 strings, but they’re much less convenient for end user comparison. So, the
best bet is to use Arrow, ArrowType, and accept that everything in the database is in UTC. This works fine
for PostgreSQL, where the default TIMESTAMP has microsecond precision. However, by default the
ArrowType uses a plain DATETIME in MySQL, which has only second precision; we need DATETIME(6).
We therefore require not only MySQL 5.6.4+ but a custom ArrowMicrosecondType. Duly added. For SQL
Server, this class uses DATETIMEZ, available from SQL Server 2008+.*

To summarize, in this task, all timestamps are in UTC.

16 http://dev.mysql.com/doc/refman/5.7/en/datetime.html

17 http://docs.sqlalchemy.org/en/latest/core/engines.html#supported-databases

18 http://www.postgresql.org/docs/9.1/static/datatype-datetime.html

19 https://msdn.microsoft.com/en-us/library/bb630 289.aspx; https://blogs.msdn.microsoft.com/bartd/2009/03/31/the-death-of-
datetime/

20 https://docs.oracle.com/cd/B19306_01/server.102/b14 225/ch4datetime.htm#i1 006 081; but see
https://tonyhasler.wordpress.com/2010/09/04/tonys-tirade-against-timestamp-with-time-zone/

21 http://stackoverflow.com/questions/1 646 171/mysql-datetime-fields-and-daylight-savings-time-how-do-i-reference-the-extra;
and especially http://stackoverflow.com/questions/2 532 729/daylight-saving-time-and-time-zone-best-practices

22 http://crsmithdev.com/arrow/

23 http://sqlalchemy-utils.readthedocs.org/en/latest/data_types.html

24 https://blogs.msdn.microsoft.com/cdnsoldevs/2011/06/22/why-you-should-never-use-datetime-again/;
http://stackoverflow.com/questions/1 334 143/sql-server-datetime2-vs-datetime

Where to store BLOBs

Completely irrelevant here, but see *.

Primary key naming convention

Primary keys as ‘id” or ‘trial_id’? There’s no right answer.” However, here we are aiming for simplicity of
use for database novices. Using SELECT a.something, b.* statements may be common, at which
point when a column labelled ‘id” pops up, people may be unclear as to what it is. So for this particular
scenario, we will use the ‘table.table_id’ convention.

For queries, duplicate column names don’t matter (and if their values don’t match, that’s an important clue
to query failure!). For views, duplicates do matter, but views should be more carefully constructed anyway.

Strings

The SQLAlchemy String() type can be of variable length in PostgreSQL and SQLite, but needs a length in
MySQL. The SQLAlchemy Text() is always of variable length.

Avoid TEXT columns for things that have a realistic maximum length, as you can’t use TEXT columns for
primary keys (e.g. for ‘subject’ tables that cross-refer).

Trial maths

Definitions. The number of k-permutations from n objects P(n, k) = n! / (n — k)!. The number of k-
combinations from n objects C(n, k) = n! / [(n - k)'k!].

In our situation, we always offer two choices and have five holes available; this gives C(5, 2) = 10 possible
spatial choices. For a stimulus sequence of length [, the number of sequences is P(5, I). The spatial choice is
not independent of the sequence (e.g. if you present lights 314 you can’t then offer a choice of 25). The

serial order choice is independent of the sequence, and there are (I, 2) of these, as follows:

Sequence length [

Number of possible
sequences, P(5,])

Number of serial
order choices, (],
2)

Number of spatial
choices, (5, 2); not
all available on any
given trial

Maximum number
of independent trial

types, P(5,) (], 2)

2 20 1 10 20

3 60 3 10 180
4 120 6 10 720
5 120 10 10 1200

In general, since this task is about serial order detection, serial order choices are the most important and
should vary most rapidly (e.g. for I = 4, every 6 trials should cover all of the 6 possible serial order choices,
in random order). Next most important is spatial choice (it’s of some importance that choices are equally
distributed spatially); note that the number of spatial choices is not always a multiple of the number of
serial order choices. Last comes sequence (it’s least important that all possible sequences are presented).
But there is no obviously consistent way of randomizing in groups across all three (since some of them are
interdependent and they are not necessarily multiples of each other), so I think the best approach is to
randomize across sequences, which should give a nice spatial spread (through randomness alone), in
addition to the guarantees about serial order sampling.

Therefore our algorithm will be:
* For each stage, we establish the possible serial order choices, and the possible sequences. We
combine them into all possible combinations.
* We then shuffle them in blocks, such that serial order is randomized in blocks with the highest rate
of change, so that in every (([, 2) trials there are all possible serial orders.
* Since that gives a rather dull and static stimulus sequence, we then randomize the sequences. So
sequences vary randomly but the serial order sampling is in blocks.

25 https://wiki.postgresql.org/wiki/BinaryFilesInDB
26 http://programmers.stackexchange.com/questions/114 728; http://stackoverflow.com/questions/1369 593

* We then sample in order from our ‘hat’. If we run out, we repopulate the hat, as above.

Progression maths

If we progress when x of the last y trials are performed correctly, then we should have some sense that this
isn’t going to happen by chance. In R, use binom.test (x, y) to get the p-value based on the

assumption of P = 0.5 for chance (and it is, after all, a two-choice test). The default values are 10 out of 12,
for p = 0.03857.

Trials can also be failed by not responding, affecting the “ignorance = P = 0.5” assumption, but in a
conservative way.

Change history

v0.1.0 — Feb—Mar 2016
Started. Released 21 Mar 2016.

