
FICO R⃝ Xpress Optimizer Python
interface
User’s manual

43.01

FICOFICO R⃝R⃝ Xpress OptimizationXpress Optimization

©1983–2024 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac
Corporation ("FICO"). Receipt or possession of this documentation does not convey rights to disclose,
reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes
to determine whether to purchase a license to the software described in this documentation, or as otherwise
set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this
documentation and the software described in it must conform strictly to the foregoing permitted uses, and
no other use is permitted.

The information in this documentation is subject to change without notice. If you find any problems in this
documentation, please report them to us in writing. Neither FICO nor its affiliates warrant that this
documentation is error-free, nor are there any other warranties with respect to the documentation except as
may be provided in the license agreement. FICO and its affiliates specifically disclaim any warranties,
express or implied, including, but not limited to, non-infringement, merchantability and fitness for a particular
purpose. Portions of this documentation and the software described in it may contain copyright of various
authors and may be licensed under certain third-party licenses identified in the software, documentation, or
both.

In no event shall FICO or its affiliates be liable to any person for direct, indirect, special, incidental, or
consequential damages, including lost profits, arising out of the use of this documentation or the software
described in it, even if FICO or its affiliates have been advised of the possibility of such damage. FICO and its
affiliates have no obligation to provide maintenance, support, updates, enhancements, or modifications
except as required to licensed users under a license agreement.

FICO is a registered trademark of Fair Isaac Corporation in the United States and may be a registered
trademark of Fair Isaac Corporation in other countries. Other product and company names herein may be
trademarks of their respective owners.

Patent(s): www.fico.com/en/patents

Xpress Optimizer 43.01 (FICO R⃝ Xpress 9.4)

Deliverable Version: A

Last Revised: 05 July, 2024

https://www.fico.com/en/patents

Contents

1 Introduction 1
1.1 Outline . 1
1.2 Installing the Python Xpress module . 1

1.2.1 Installation from the Python Package Index (PyPI) 2
1.2.2 Installation from Conda . 2
1.2.3 Troubleshooting the installation . 2

2 Modeling an optimization problem 4
2.1 Getting started . 4
2.2 Creating a problem . 4
2.3 Variables . 4

Variable names and Python objects . 5
2.4 Constraints . 6
2.5 Objective function . 8
2.6 Compact formulation . 9
2.7 Special Ordered Sets (SOSs) . 9
2.8 Indicator constraints . 9
2.9 Piecewise linear functions . 9
2.10 General constraints . 11
2.11 Using loadproblem for efficiency . 12
2.12 Modeling and solving nonlinear problems . 13
2.13 Solving a problem . 15
2.14 Querying a problem . 15
2.15 Reading and writing a problem . 17
2.16 Hints for building models efficiently . 18
2.17 Exceptions . 18
2.18 Warnings . 19

3 Using Python numerical libraries 20
3.1 Using NumPy in the Xpress Python interface . 20
3.2 Products of NumPy arrays . 21

4 Controls and Attributes 23
4.1 Controls . 23
4.2 Examples . 24
4.3 Attributes . 24
4.4 Examples . 25
4.5 Accessing controls and attributes as object members . 25

5 Using Callbacks 28
5.1 Introduction . 28

6 Examples of use 30
6.1 Creating simple problems . 30

6.1.1 Generating a small Linear Programming problem 30
6.1.2 A Mixed Integer Linear Programming problem . 31

Fair Isaac Corporation Proprietary Information i

Contents

6.2 Modeling examples . 32
6.2.1 A simple model . 32
6.2.2 Using IIS to investigate an infeasible problem . 32
6.2.3 Modeling a problem using Python lists and vectors 33
6.2.4 A knapsack problem . 33
6.2.5 A Min-cost-flow problem using NumPy . 34
6.2.6 A nonlinear model . 35
6.2.7 Finding the maximum-area n-gon . 35
6.2.8 Solving the n-queens problem . 36
6.2.9 Solving Sudoku problems . 36

6.3 Examples using NumPy . 37
6.3.1 Using NumPy multidimensional arrays to create variables 37
6.3.2 Using the dot product to create arrays of expressions 38
6.3.3 Using the Dot product to create constraints and quadratic functions 38
6.3.4 Using NumPy to create quadratic optimization problems 39

6.4 Advanced examples: callbacks and problem querying, modifying, and analysis 39
6.4.1 Visualize the branch-and-bound tree of a problem 39
6.4.2 Query and modify a simple problem . 41
6.4.3 Change a problem after solution . 42
6.4.4 Comparing the coefficients of two equally sized problems 43
6.4.5 Combining modeling and API functions . 44
6.4.6 A simple Traveling Salesman Problem (TSP) solver 45
6.4.7 Solving a nonconvex MIQCQP . 47

6.5 Translated Mosel examples . 56

7 Reference Manual 58
7.1 Using this chapter . 58

Format of the reference . 59
7.2 Classes of the Xpress module . 59
7.3 Global methods of the Xpress module . 60
7.4 Methods of the class problem . 60
7.5 Methods for branching objects . 62
7.6 Methods for adding/removing callbacks of a problem object 62
7.7 Methods to be used within a callback of a problem object 63
7.8 Xpress base classes . 64

xpress.attr . 65
xpress.branchobj . 66
xpress.constraint . 67

xpress.constraint . 67
xpress.ctrl . 69
xpress.expression . 70
xpress.linterm . 71
xpress.nonlin . 72
xpress.poolcut . 73
xpress.problem . 74
xpress.quadterm . 76
xpress.sos . 77

xpress.sos . 77
xpress.var . 78

xpress.var . 78
xpress.voidstar . 80
xpress.xprsobject . 81

7.9 Xpress object functions . 82
object.extractLinear . 83
object.extractQuadratic . 84

Fair Isaac Corporation Proprietary Information ii

Contents

7.10 Xpress operators . 85
xpress.abs . 86
xpress.acos . 87
xpress.And . 88
xpress.asin . 89
xpress.atan . 90
xpress.cos . 91
xpress.Dot . 92
xpress.erf . 94
xpress.erfc . 95
xpress.exp . 96
xpress.log . 97
xpress.log10 . 98
xpress.max . 99
xpress.min . 100
xpress.Or . 101
xpress.pwl . 102
xpress.Prod . 103
xpress.sign . 104
xpress.sin . 105
xpress.sqrt . 106
xpress.Sum . 107
xpress.tan . 108
xpress.user . 109

7.11 Xpress base functions . 111
xpress.addcbmsghandler . 112
xpress.evaluate . 113
xpress.examples . 115
xpress.featurequery . 116
xpress.free . 117
xpress.getbanner . 118
xpress.getcomputeallowed . 119
xpress.getcheckedmode . 120
xpress.getdaysleft . 121
xpress.getlasterror . 122
xpress.getlicerrmsg . 123
xpress.getversion . 124
xpress.getversionnumbers . 125
xpress.init . 126
xpress.manual . 127
xpress.removecbmsghandler . 128
xpress.setarchconsistency . 129
xpress.setcomputeallowed . 130
xpress.setcheckedmode . 131
xpress.setdefaults . 132
xpress.setdefaultcontrol . 133
xpress.vars . 134
xpress.getOutputEnabled . 136
xpress.setOutputEnabled . 137

7.12 Xpress problem methods . 138
problem.addcbbariteration . 139
problem.addcbbarlog . 141
problem.addcbchecktime . 142
problem.addcbchgbranchobject . 143
problem.addcbcutlog . 144

Fair Isaac Corporation Proprietary Information iii

Contents

problem.addcbdestroymt . 145
problem.addcbgapnotify . 146
problem.addcbmiplog . 148
problem.addcbinfnode . 149
problem.addcbintsol . 150
problem.addcblplog . 151
problem.addcbmessage . 152
problem.addcbmipthread . 153
problem.addcbnewnode . 154
problem.addcbnodecutoff . 155
problem.addcbnodelpsolved . 156
problem.addcboptnode . 157
problem.addcbpreintsol . 158
problem.addcbprenode . 159
problem.addcbusersolnotify . 160
problem.addcbbeforeobjective . 161
problem.addcbafterobjective . 162
problem.addcoefs . 163
problem.addcols . 165
problem.addConstraint . 167
problem.addcuts . 168
problem.adddfs . 169
problem.addgencons . 170
problem.addIndicator . 171
problem.addmipsol . 172
problem.addnames . 173
problem.addobj . 174
problem.addObjective . 175
problem.addpwlcons . 176
problem.addqmatrix . 177
problem.addrows . 178
problem.addsetnames . 179
problem.addSOS . 180
problem.addtolsets . 181
problem.addVariable . 182
problem.addVariables . 183
problem.addvars . 185
problem.basisstability . 186
problem.bndsa . 187
problem.btran . 188
problem.calcobjn . 189
problem.calcobjective . 190
problem.calcreducedcosts . 191
problem.calcslacks . 192
problem.calcsolinfo . 193
problem.cascade . 194
problem.cascadeorder . 195
problem.chgbounds . 196
problem.chgcoef . 197
problem.chgcoltype . 198
problem.chgcascadenlimit . 199
problem.slpchgcoefstr . 200
problem.chgccoef . 201
problem.chgdeltatype . 202
problem.chgdf . 203

Fair Isaac Corporation Proprietary Information iv

Contents

problem.chgglblimit . 204
problem.chgmcoef . 205
problem.chgobjn . 206
problem.chgmqobj . 207
problem.chgnlcoef . 208
problem.slpchgcoef . 209
problem.chgobj . 210
problem.chgobjsense . 211
problem.chgqobj . 212
problem.chgqrowcoeff . 213
problem.chgrhs . 214
problem.chgrhsrange . 215
problem.chgrowstatus . 216
problem.chgrowtype . 217
problem.chgrowwt . 218
problem.chgtolset . 219
problem.chgvar . 220
problem.construct . 221
problem.copy . 222
problem.copycallbacks . 223
problem.copycontrols . 224
problem.crossoverlpsol . 225
problem.delcoefs . 226
problem.delConstraint . 227
problem.delcpcuts . 228
problem.delcuts . 229
problem.delgencons . 230
problem.delindicators . 231
problem.delpwlcons . 232
problem.delobj . 233
problem.delqmatrix . 234
problem.delSOS . 235
problem.deltolsets . 236
problem.delVariable . 237
problem.delvars . 238
problem.dumpcontrols . 239
problem.estimaterowdualranges . 240
problem.evaluatecoef . 241
problem.evaluateformula . 242
problem.fixmipentities . 243
problem.fixpenalties . 244
problem.ftran . 245
problem.getAttrib . 246
problem.getattribinfo . 247
problem.getbasis . 248
problem.getbasisval . 249
problem.getccoef . 250
problem.getcoef . 251
problem.getcoefformula . 252
problem.getcoefs . 253
problem.getcolinfo . 254
problem.getcols . 255
problem.getcoltype . 256
problem.getConstraint . 257
problem.getControl . 258

Fair Isaac Corporation Proprietary Information v

Contents

problem.getcontrolinfo . 259
problem.getcpcutlist . 260
problem.getcpcuts . 261
problem.getcutlist . 262
problem.getcutmap . 263
problem.getcutslack . 264
problem.getdirs . 265
problem.getdf . 266
problem.getDual . 267
problem.getdualray . 268
problem.getgencons . 269
problem.getmipentities . 270
problem.getiisdata . 271
problem.getIndex . 273
problem.getIndexFromName . 274
problem.getindicators . 275
problem.getinfeas . 276
problem.getlastbarsol . 277
problem.getlasterror . 278
problem.getlb . 279
problem.getlpsol . 280
problem.getlpsolval . 281
problem.getmessagestatus . 282
problem.getmipsol . 283
problem.getmipsolval . 284
problem.getmqobj . 285
problem.getobjn . 286
problem.getnamelist . 287
problem.getobj . 288
problem.getObjVal . 289
problem.getpivotorder . 290
problem.getpivots . 291
problem.getpresolvebasis . 292
problem.getpresolvemap . 293
problem.getpresolvesol . 294
problem.getprimalray . 295
problem.getProbStatus . 296
problem.getProbStatusString . 297
problem.getpwlcons . 298
problem.getqobj . 299
problem.getqrowcoeff . 300
problem.getqrowqmatrix . 301
problem.getqrowqmatrixtriplets . 302
problem.getqrows . 303
problem.getRCost . 304
problem.getrhs . 305
problem.getrhsrange . 306
problem.getrowinfo . 307
problem.getrows . 308
problem.getrowstatus . 309
problem.getrowtype . 310
problem.getrowwt . 311
problem.getscaledinfeas . 312
problem.getSlack . 313
problem.getslpsol . 314

Fair Isaac Corporation Proprietary Information vi

Contents

problem.getSolution . 315
problem.getSOS . 317
problem.gettolset . 318
problem.getub . 319
problem.getunbvec . 320
problem.getvar . 321
problem.getVariable . 323
problem.hasdualray . 324
problem.hasprimalray . 325
problem.iisall . 326
problem.iisclear . 327
problem.iisfirst . 328
problem.iisisolations . 329
problem.iisnext . 330
problem.iisstatus . 331
problem.iiswrite . 332
problem.interrupt . 333
problem.loadbasis . 334
problem.loadbranchdirs . 335
problem.loadcoefs . 336
problem.loadcuts . 338
problem.loaddelayedrows . 339
problem.loaddfs . 340
problem.loaddirs . 341
problem.loadlpsol . 342
problem.loadmipsol . 343
problem.loadmodelcuts . 344
problem.loadpresolvebasis . 345
problem.loadpresolvedirs . 346
problem.loadproblem . 347
problem.loadsecurevecs . 349
problem.loadtolsets . 350
problem.loadvars . 351
problem.lpoptimize . 353
problem.mipoptimize . 354
problem.msaddcustompreset . 355
problem.msaddjob . 356
problem.msaddpreset . 357
problem.msclear . 358
problem.name . 359
problem.nlpchgformula . 360
problem.nlpchgformulastr . 361
problem.nlpgetformula . 362
problem.slpgetcoefformula . 363
problem.nlpgetformulastr . 364
problem.nlpoptimize . 365
problem.nlpsetinitval . 366
problem.optimize . 367
problem.objsa . 368
problem.postsolve . 369
problem.presolve . 370
problem.presolverow . 371
problem.printmemory . 372
problem.printevalinfo . 373
problem.read . 374

Fair Isaac Corporation Proprietary Information vii

Contents

problem.readbasis . 375
problem.readbinsol . 376
problem.readdirs . 377
problem.readslxsol . 378
problem.refinemipsol . 379
problem.reinitialize . 380
problem.removecbbariteration . 381
problem.removecbbarlog . 382
problem.removecbchecktime . 383
problem.removecbchgbranchobject . 384
problem.removecbcutlog . 385
problem.removecbdestroymt . 386
problem.removecbgapnotify . 387
problem.removecbmiplog . 388
problem.removecbinfnode . 389
problem.removecbintsol . 390
problem.removecblplog . 391
problem.removecbmessage . 392
problem.removecbmipthread . 393
problem.removecbnewnode . 394
problem.removecbnodecutoff . 395
problem.removecbnodelpsolved . 396
problem.removecboptnode . 397
problem.removecbpreintsol . 398
problem.removecbprenode . 399
problem.removecbusersolnotify . 400
problem.removecbbeforeobjective . 401
problem.removecbafterobjective . 402
problem.repairinfeas . 403
problem.repairweightedinfeas . 405
problem.repairweightedinfeasbounds . 407
problem.reset . 409
problem.restore . 410
problem.rhssa . 411
problem.save . 412
problem.scale . 413
problem.scaling . 414
problem.setcbcascadeend . 415
problem.setcbcascadestart . 416
problem.setcbcascadevar . 417
problem.setcbcascadevarfail . 418
problem.setcbcoefevalerror . 419
problem.setcbconstruct . 420
problem.setcbdestroy . 422
problem.setcbdrcol . 423
problem.setcbintsol . 424
problem.setcbiterend . 425
problem.setcbiterstart . 426
problem.setcbitervar . 427
problem.setcbmessage . 428
problem.setcbmsjobend . 429
problem.setcbmsjobstart . 430
problem.setcbmswinner . 431
problem.setcboptnode . 432
problem.setcbprenode . 433

Fair Isaac Corporation Proprietary Information viii

Contents

problem.setcbpreupdatelinearization . 434
problem.setcbslpend . 435
problem.setcbslpnode . 436
problem.setcbslpstart . 437
problem.setControl . 438
problem.setcurrentiv . 439
problem.setdefaultcontrol . 440
problem.setdefaults . 441
problem.setindicators . 442
problem.setlogfile . 443
problem.setmessagestatus . 444
problem.setObjective . 445
problem.setprobname . 446
problem.slpgetcoefstr . 447
problem.storecuts . 448
problem.strongbranch . 449
problem.strongbranchcb . 450
problem.tune . 451
problem.tuneprobsetfile . 452
problem.tunerreadmethod . 453
problem.tunerwritemethod . 454
problem.unconstruct . 455
problem.updatelinearization . 456
problem.validate . 457
problem.validatekkt . 458
problem.validaterow . 459
problem.validatevector . 460
problem.write . 461
problem.writebasis . 462
problem.writebinsol . 463
problem.writedirs . 464
problem.writeprtsol . 465
problem.writeslxsol . 466
problem.writesol . 467
problem.getOutputEnabled . 468
problem.setOutputEnabled . 469

7.13 Xpress branch object methods . 470
branchobj.addbounds . 471
branchobj.addbranches . 472
branchobj.addcuts . 473
branchobj.addrows . 474
branchobj.getbounds . 475
branchobj.getbranches . 476
branchobj.getid . 477
branchobj.getlasterror . 478
branchobj.getrows . 479
branchobj.setpreferredbranch . 480
branchobj.setpriority . 481
branchobj.store . 482
branchobj.validate . 483

8 Migrating to the linked API 484
8.1 Creating linked variables . 484
8.2 Creating linked constraints . 485
8.3 Creating linked SOS constraints . 485

Fair Isaac Corporation Proprietary Information ix

Contents

8.4 Creating linked problems . 486
8.5 Other API functions . 486
8.6 Summary . 486

Appendix 488

A Contacting FICO 488
FICO Customer Support . 488
Documentation . 488
FICO Learning . 489
Sales and maintenance . 489
About FICO . 489

Index 490

Fair Isaac Corporation Proprietary Information x

CHAPTER 1

Introduction

The Xpress Python interface allows for creating and solving optimization problems using the Python R⃝

programming language and the FICO Xpress Optimizer library. This manual describes how to use the
Xpress Python interface.

1.1 Outline
The following chapters cover:

■ Creating, handling, solving, and querying optimization problems (Chapter 2);

■ Using Python numerical libraries such as NumPy to create optimization problems (Chapter 3);

■ Setting and getting the value of parameters (controls and attributes) of a problem (Chapter 4);

■ Using Python functions as callbacks for the Xpress Optimizer and the Xpress Nonlinear solver
(Chapter 5);

■ Several examples of usage of the Xpress Python interface (Chapter 6);

■ A reference with all functions and parameters in the Python interface (Chapter 7).

It is assumed here that the reader has basic understanding of the Python programming language. Ample
documentation on Python is available at http://docs.python.org, including a tutorial and a reference
manual. Unless specified otherwise, Python 3 is used in all of the examples and code samples
throughout this manual. The current version of the Xpress Python interface works on Python 3.8 to 3.12.

Other components of the FICO-Xpress Optimization suite can interface with Python, albeit not the same
Python versions. The Mosel module python3, for example, works with Python 3.5 or later. See the Mosel
Language Reference Manual for specifics, and more in general the Xpress Insight Installation Guide,
Appendix A: Supported Platforms for information on Python support.

"Python" is a registered trademark of the Python Software Foundation.

1.2 Installing the Python Xpress module
The Xpress Python module can be installed from the two main Python repositories: The Python Package
Index (PyPI) and the Conda repository. Installing the Xpress Python interface does not require one to
install the whole Xpress suite, as all necessary libraries are provided.

The install comes with a copy of the community license, which allows for solving problems with up to
5000 between variables and constraints. If you already have an Xpress license, please make sure to set
the XPAUTH_PATH environment variable to the full path to the license file, xpauth.xpr. See also
Section 1.2.3 below.

Fair Isaac Corporation Proprietary Information 1

http://docs.python.org

Chapter 1: Introduction

The manual is located in the xpress/doc subdirectory of the Python installation folder, and its location
can be identified by invoking the xpress.manual() function.

1.2.1 Installation from the Python Package Index (PyPI)
The Xpress Python interface is available on the PyPI server and can be installed with the following
command:

pip install xpress

Packages for Python 3.8 to 3.12 are available, for Windows, Linux, and MacOS. The package contains the
Python interface module, its documentation in PDF format, the Xpress Optimizer’s libraries, various
examples of use, and a copy of the community license (see
http://subscribe.fico.com/xpress-optimization-community-license). Online documentation can be viewed
at the FICO Xpress Optimization Help page.

The above command installs the latest version of the Xpress Python module. Earlier versions of the
module can be installed by appending a "==VERSION" string to the module name, for instance

pip install xpress==8.11.2

1.2.2 Installation from Conda
A Conda package is available for download with the following command:

conda install -c fico-xpress xpress

The content of the Conda package is the same as that of the PyPI package. Similar to the PyPI package,
Conda packages for Python 3.8 to 3.12 are available, for Windows, Linux, and MacOS. Similar to PyPI, the
Conda installer fetches the latest version of the package but allows for installing earlier versions as in the
following example (note that the Conda installer only uses a single "="):

conda install -c fico-xpress xpress=8.11.3

Note that the Xpress Conda package requires the ‘intel-openmp‘ package on Intel platforms, which is
available on the ‘main‘ and ‘intel‘ Conda channels.

1.2.3 Troubleshooting the installation
Whether the Xpress Python module is downloaded from PyPI or from the Conda server, there are a few
remarks that might help ensure that the installation works right away. The advice below is independent of
the Python platform (PyCharm, Spyder, etc.) that may be in use.

The Xpress Python interface uses the Python package NumPy for some operation, hence NumPy must be
installed. It is usually installed if a Conda installation is used, nevertheless ensure that a recent-enough
version is installed.

After installation, a license is not strictly necessary as the embedded Community license is used. If you
already have a license (for example, a trial license, a full license, or one from the Academic Partnership
Program), you can set the XPAUTH_PATH environment variable to the full path to the license file. For
example, if the license file is /home/brian/xpauth.xpr, then XPAUTH_PATH should be set to
/home/brian/xpauth.xpr in order for the module to pick the right license.

If you installed the Xpress Optimization suite before downloading the Xpress Conda or PyPI package, the
Xpress Python interface will try to use the license file your Xpress installation automatically:

Fair Isaac Corporation Proprietary Information 2

http://subscribe.fico.com/xpress-optimization-community-license
http://www.fico.com/fico-xpress-optimization/docs/latest/solver/optimizer/python/HTML/GUID-616C323F-05D8-3460-B0D7-80F77DA7D046.html

Chapter 1: Introduction

■ On Windows, the Xpress installer sets the XPRESSDIR environment variable to the installation
directory, and the Xpress Python interface will look for a license file at
%XPRESSDIR%\bin\xpauth.xpr.

■ On Linux and MacOS, the Xpress installer creates a script named xpvars.sh in the bin folder of
the Xpress installation. This script sets XPRESSDIR to the installation directory, and sets
XPAUTH_PATH to the location of the license file. If xpvars.sh has been properly sourced into the
shell environment where Python is executed, the Xpress Python interface will use this
XPAUTH_PATH value to locate the license from your Xpress installation. If for some reason
XPAUTH_PATH is not set, the Xpress Python interface will look for a license file at
$XPRESSDIR/bin/xpauth.xpr.

If you do not want to use the license file from your Xpress installation, you can override this behaviour by
setting the XPAUTH_PATH environment variable to the full path to the license file that you want to use.

Fair Isaac Corporation Proprietary Information 3

CHAPTER 2

Modeling an optimization problem

This chapter illustrates the modeling capabilities of the Xpress Python interface. It shows how to create
variables, constraints of different types, add an objective function, and solving and retrieving a problem’s
solution. It also shows how to read or write a problem from/to a file.

2.1 Getting started
The Xpress Python module is imported as follows:

import xpress

A complete list of methods and constants available in the module is obtained by running the Python
command dir(xpress). Because all types and methods must be called by prepending "xpress.", it is
advisable to alias the module name upon import:

import xpress as xp

We assume that this is the way the module is imported from now on. It is also possible to import all
methods and types to avoid prepending the module name or its alias, but this practice is usually advised
against:

from xpress import ⁎

2.2 Creating a problem
Create an empty optimization problem p as follows:

p = xp.problem()

A name can be assigned to a problem upon creation:

p = xp.problem(name="My first problem")

2.3 Variables
The problem.addVariable function creates an optimization variable within the problem. All
parameters are optional.

p.addVariable(name, lb, ub, threshold, vartype)

Fair Isaac Corporation Proprietary Information 4

Chapter 2: Modeling an optimization problem

The parameters are:

1. name is a Python UTF-8 string containing the name of the variable (its ASCII version will be saved if
written onto a file); a default name is assigned if the user does not specify it;

2. lb is the lower bound (0 by default);

3. ub is the upper bound (+inf is the default);

4. threshold is the threshold for semi-continuous, semi-integer, and partially integer variables; it
must be between its lower and its upper bound; it has no default, so if a variable is defined as
partially integer the threshold must be specified;

5. vartype is the variable type, one of the six following types:

■ xpress.continuous for continuous variables;
■ xpress.binary for binary variables (lower and upper bound are further restricted to 0 and 1);
■ xpress.integer for integer variables;
■ xpress.semicontinuous for semi-continuous variables;
■ xpress.semiinteger for semi-integer variables;
■ xpress.partiallyinteger for partially integer variables.

The features of each variable are accessible as members of the associated object: after declaring a
variable with x = xpress.var(), its name, lower and upper bound can be accessed via x.name,
x.lb, and x.ub.

By default, variables added to an Xpress problems are constrained to be nonnegative. In order to add a
free variable, one must specify its lower bound to be –∞ as follows:

v = p.addVariable(lb=-xp.infinity)

Variable names and Python objects
Variables and, as described below, constraints and other objects of the Xpress Python interface can have
a name. Variable names and constraint names can be useful when saving a problem to a file and when
querying the problem for the value of a variable in an optimal solution. If a variable is not given a name
explicitly, it will be assigned a default name that is usually "C" followed by a sequence number.

Python also uses these names when printing expressions, because the variables’ __str__ function is
redirected to their name. Therefore, when querying Python for a variable or for an expression containing
that variable, its name will be printed rather than the Python object used in the program, as in the
following example:

>>> v = p.addVariable(lb=-1, ub=2)
>>> v
C1
>>> v.__str__()
'C1'
>>> x = p.addVariable(name='myvar')
>>> v + 2 ⁎ x
C1 + 2 myvar
>>>

This allows for querying a problem using both the variable object and its name, depending on what is
more convenient. The following example prints twice an optimal solution to a simple problem:

Fair Isaac Corporation Proprietary Information 5

Chapter 2: Modeling an optimization problem

import xpress as xp
p = xp.problem()
x = p.addVariable(name='var1')
y = p.addVariable(name='var2')
p.addConstraint(x + y >= 3)
p.setObjective(x + 2⁎y)
p.optimize()
print(p.getSolution([x, y]))
print(p.getSolution(['var1', 'var2']))

It can be therefore useful to create xpress.var objects with a meaningful argument, perhaps similar
to the name they have in the Python program one is writing.

2.4 Constraints
Linear, quadratic, and nonlinear constraints can be specified as follows:

constraint (constraint, body, lb, ub, sense, rhs, name)

The parameters are:

1. constraint is the full-form constraint, such as x1 + 2 ⁎ x2 <= 4;

2. body is the body of the constraint, such as 3 ⁎ x1 + x2 (it may contain constants);

3. lb is the lower bound on the body of the constraint;

4. ub is the upper bound on the body of the constraint;

5. sense is the sense of the constraint, one among xpress.leq, xpress.geq, xpress.eq, and
xpress.rng; in the first three cases, the parameter rhsmust be specified; only in the fourth case
must lb and ub be specified;

6. rhs is the right-hand side of the constraint;

7. name is the name of the constraint. Parameters lb, ub, and rhsmust be constant.

A much more natural way to formulate a constraint is possible though:

myconstr = x1 + x2 ⁎ (x2 + 1) <= 4
myconstr2 = xp.exp(xp.sin(x1)) + x2 ⁎ (x2⁎⁎5 + 1) <= 4

One or more constraints (or list of constraints) can be added to a problem via the addConstraint
method:

p.addConstraint(myconstr, myconstr2)
p.addConstraint(v1 + xp.tan(v2) <= 3)
p.addConstraint(x[i] + y[i] <= 2 for i in range(10))

In order to help formulate compact problems, the Sum operator of the xpressmodule can be used to
express sums of expressions. Its argument is a list of expressions:

p.addConstraint(xp.Sum([y[i] for i in range(10)]) <= 1)
p.addConstraint(xp.Sum([x[i]⁎⁎5 for i in range(9)]) <= x[9])

When handling variables or expressions, it is advised to use the Sum operator in the Xpress module rather
than the native Python operator, for reasons of efficiency.

Fair Isaac Corporation Proprietary Information 6

Chapter 2: Modeling an optimization problem

As for variables, an object of type constraint allows for read/write access of its features via its
members name, body, lb, and ub. The same caveat for variables holds here: any change to an object’s
members will only have an effect in the problems to which a constraint is added after the change.

A set of variables or constraint can also be created using Python’s fundamental data structure: lists and
dictionaries, as well as NumPy’s arrays. As described in Section 2.16 below, one can for example create a
list of variables x[i], all with upper bound 10, indexed from 0 to k-1 as follows:

k=24
x = [xpress.var(ub=10) for _ in range(k)]

If a more elaborate indexing is required, dictionaries can be used. Suppose we want to create an integer
variable x for each item in the list [’Seattle’,’Miami’,’Omaha’,’Charleston’]. Then

L = ['Seattle','Miami','Omaha','Charleston']
x = {i: xpress.var(vartype=xpress.integer) for i in L}

This allows one to refer to such variables using the names in L, for instance x[’Seattle’],
x[’Charleston’], etc.

Similarly, one can use lists and dictionaries to create constraints, like in the following example on lists:

import xpress as xp
p = xp.problem()
L = range(20)
x = [p.addVariable(ub=1) for i in L]
y = [p.addVariable(vartype=xp.binary) for i in L]
constr = [x[i] <= y[i] for in L]
p.addConstraint(constr)

Below is an example with dictionaries. Note that Python allows for conditional indexing on the two
parameters i and j, and each constraint can be referred to with pairs of names, e.g.
cliq[’Seattle’,’Miami’].

import xpress as xp
p = xp.problem()
L = ['Seattle','Miami','Omaha','Charleston']
x = {i: p.addVariable(vartype=xp.binary) for i in L}
cliq = {(i,j): x[i] + x[j] <= 1 for i in L for j in L if i != j}
p.addConstraint(cliq)

There is yet another function for creating an indexed set of variables: the function
problem.addVariables. It takes one or more lists, sets, or ranges, and produces as many variables
as can be indexed with all combinations from the provided lists/sets. This allows for creating a set of
variables with the same bounds and type and a similar name, in case the problem is written onto an MPS
or LP file. Its syntax is as follows:

p.addVariables(⁎indices, name='x', lb=0, ub=xp.infinity,
threshold = -xp.infinity, vartype=xp.continuous)

The parameter ⁎indices stands for one or more arguments, each a Python list, a Python set, or a
positive integer. If ⁎indices consists of one list, then the result contains one element for each element
of the list. In case of more lists, sets, or ranges in ⁎indices, the Cartesian product of these lists/sets
provides the indexing space of the result. All other arguments are the same as for the declaration of a
single variable. Here is an example of use:

myvar = p.addVariables(['a','b','c'], lb=-1, ub=+1)

The result is the three variables myvar[’a’], myvar[’b’], and myvar[’c’], all with -1 as lower

Fair Isaac Corporation Proprietary Information 7

Chapter 2: Modeling an optimization problem

bound and +1 as upper bound. The following is an example of multi-indexed variables:

y = p.addVariables(['a','b','c','d'], [100, 120, 150], vartype=xp.integer)

The result is the 12 variables y[’a’,100], y[’a’,120], y[’a’,150], y[’b’,100],..., y[’d’,150].

If argument name is not specified, a prefix "x" is used. The name of each variable resulting from a call to
xpress.vars is the given prefix and the comma-separated list of index values between brackets, for
example it will be "x(a,100)", "x(a,120)", "x(a,150)" for the example above. The call

x = p.addVariables(['a','b','c','d'], [100, 120, 150], name='var')

produces variables x[’a’,100] whose name is "var(a,120)", etc.

In the ⁎indices argument, in lieu of a list or a set one can also specify an integer positive number k,
which is interpreted as the range of numbers 0,1,...,k-1. Thus the call x = p.addVariables(5,
7, vartype = xp.integer) creates 35 variables x[0,0], x[0,1], x[0,2],..., x[4,6].

The xpress.vars function, effectively, is a more readable way to create a Python dictionary of variables.
The instruction

x = p.addVariables(['a','b','c','d'], [100, 120, 150], ub=20, name='newvar')

is equivalent to the following:

x = {(i,j): p.addVariable(ub=20, name='newvar({0},{1})'.format(i,j))
for i in ['a','b','c','d']
for j in [100, 120, 150]}

2.5 Objective function
The objective function is any expression, so it can be constructed as for constraints. The method
problem.setObjective can be used to set (or replace if one has been specified before) the objective
function of a problem. The definition of setObjective is as follows:

setObjective(objective, sense=xp.minimize)

where objective is the expression defining the new objective and sense is either xpress.minimize
or xpress.maximize. Examples follow; in the first, the objective function is to be minimized as per
default, while the second example specifies the optimization sense as maximization.

p.setObjective(xp.Sum ([y[i]⁎⁎2 for i in range (10)]))
p.setObjective (v1 + 3 ⁎ v2, sense=xp.maximize)

Finally, a note on efficiency. For creating a large number of variables, one can obtain a Numpy multiarray
of any dimension by just specifying numbers as the index arguments, as in the following example where a
4x7x5 multiarray of variables is created:

x = p.addVariables(4,7,5)

For added efficiency, one can drop variable naming if standard names (such as "C1", "C2", "C3") are
acceptable. This is done by specifying the argument name="" as in the example below.

x = p.addVariables(4,7,5, name="")

Fair Isaac Corporation Proprietary Information 8

Chapter 2: Modeling an optimization problem

2.6 Compact formulation
The interface allows for a more compact problem formulation where xpress.problem is passed all
components of the problem: for instance, consider the code below:

import xpress as xp
p = xp.problem('myexample')
x = p.addVariable(vartype=xp.integer, name='x1', lb=-10, ub=10)
y = p.addVariable(name='x2')
p.setObjective(x⁎⁎2 + 2⁎y, sense=xp.maximize)
p.addConstraint(x + 3⁎y <= 4)
p.optimize()

The declaration of p is equivalent to the following:

import xpress as xp
p = xp.problem(name='myexample')
x = p.addVariable(vartype=xp.integer, name='x1', lb=-10, ub=10)
y = p.addVariable(name='x2')
p.setObjective(x⁎⁎2 + 2⁎y, sense=xp.maximize)
p.addConstraint(x + 3⁎y <= 4)
p.optimize()

2.7 Special Ordered Sets (SOSs)
A Special Order Set (SOS) is a modeling tool for constraining a small number of consecutive variables in a
list to be nonzero. The problem.addSOS function can be used to add a SOS as follows:

p.addSOS(indices, weights, type, name)

The first argument, indices, is a list of variables, while weights is a list of floating point numbers. The
type of SOS (either 1 or 2) is specified by type. While indices and weights are mandatory
parameters, type and name are not; type is set to a default of 1 when not specified. Examples follow:

set1 = p.addSOS(x, [0.5 + i⁎0.1 for i in range(10)], type=2)
set2 = p.addSOS([y[i] for i in range(5)], [i+1 for i in range(5)])
set3 = p.addSOS([v1, v2], [2, 5], 2)

The namemember of a SOS object can be read and written by the user.

2.8 Indicator constraints
Indicator constraints are defined by a binary variable, called the indicator, and a constraint. Depending on
the value of the indicator, the constraint is enforced or relaxed.

For instance, if the constraint x + y ≥ 3 should only be enforced if the binary variable u is equal to 1, then
(u = 1 → x + y ≥ 3) is an indicator constraint.

An indicator constraint in Python can be added to a problem with the addIndicator as follows (note
the "==" as the symbol for equality):

p.addIndicator(vb == 1, v1 + v2 >= 4)

2.9 Piecewise linear functions
Other types of constraints are available for modelling. Piecewise linear constraints allow to define a

Fair Isaac Corporation Proprietary Information 9

Chapter 2: Modeling an optimization problem

variable as a piecewise linear function of another. The function does not have to be continuous, but
please see the Optimizer’s manual for information on how discontinuities are dealt with.

The most efficient way to model piecewise linear functions is through the API function
problem.addpwlcons.

import xpress as xp
p = xp.problem()
x = p.addVariable(lb=-xp.infinity)
y = p.addVariable()
z1 = p.addVariable(lb=-xp.infinity)
z2 = p.addVariable(lb=-xp.infinity)

Define z1 and z2 as a piecewise linear functions of x. Two functions
are defined.
p.addpwlcons([x, x], # input variable of each function

[z1, z2], # created variables
[0,4], # index of the first breakpoints for z1 and z2
[0,4, 4 7, -2,-1,1,2], # x values of the breakpoints
[4,12,11,20,-2,-2,2,2]) # y values

p.setObjective(z1 + 2⁎y)
p.addConstraint(z2 <= y)
p.optimize()

The above example creates variables x, y, z1, and z2, then constrains z1 and z2 to be (piecewise linear)
functions of x, to be used with y in other constraints and in the objective function.

The Xpress Python interface provides another, more intuitive way of specifying such a function with the
method xpress.pwl, which is passed a dictionary associating intervals (defined as tuples of two
elements) with linear functions. The code below exemplifies the use of xpress.pwl to construct two
functions. The first, which is included into the objective of the problem, is the piecewise linear function
2x + 4 for x ∈ [0, 4] and 3x – 1 for x ∈ [4, 7]; the second function is constant at –2 for x ≤ –1, it is equal to
2x for x ∈ [–1, 1], and is constant at 2 for x ≥ 2:

import xpress as xp
p = xp.problem()
x = p.addVariable(lb=-xp.infinity)
y = p.addVariable()

Create objective and constraint directly, without first creating
piecewise linear functions.

p.setObjective(xp.pwl({(0, 4): 2⁎x + 4, (4, 7): 3⁎x - 1}) + 2⁎y)
p.addConstraint(xp.pwl({(-xp.infinity, -1): -2,

(-1, 1): 2⁎x,
(1, xp.infinity): 2}) <= y)

p.optimize()

Here the definition of auxiliary variables z1 and z2 becomes redundant as the calls to xpress.pwl do
not need any extra variable. The dictionary that is used in xpress.pwl has tuples of two elements each
as keys and linear expressions (or constants) as values.

The tuples are treated as (pairwise disjoint) intervals, hence every tuple (a,b) in the set of keys must be
such that a ≤ b and such that, for any two tuples (a,b) and (c,d) in the keys, either b ≤ c or d ≤ a.

Piecewise linear functions should be defined over the whole domain of the input variable (x in the
example above); with the syntax of xpress.pwl, it is possible to omit a portion of the domain of the
input variable; in that case the value of the function is taken to be zero.

Piecewise linear functions can be used as operators when defining an optimization problem. For
instance, one could write the constraint

y + 3⁎z⁎⁎2 <= 3⁎xp.pwl({(0, 1): x + 4, (1, 3): 1})

Fair Isaac Corporation Proprietary Information 10

Chapter 2: Modeling an optimization problem

Note that regardless of how a piecewise linear constraint is formulated, there must always be only one
input variable, i.e., the piecewise linear function is always univariate. In addition, piecewise constant
functions need a further specification as a variable does not appear in the values: for this case, one can
specify the key-value pair None: x as in the example below.

Set a piecewise CONSTANT objective
p.setObjective(xp.pwl({(0, 1): 4, (1, 2): 1, (2,3): 3, None: x})

2.10 General constraints
The Xpress Python interface allows the user to use the mathematical operators min, max, abs, and the
logical operators and, or without having to explicitly introduce extra variables. The Xpress Optimizer
handles such operators by automatically reformulating them as MIP constraints. These constraints are
called general constraints by the Optimizer’s library.

The min (resp. max) general operators impose that a variable be the minimum (resp. maximum) of two or
more variables in a list of arguments. The abs constraints link a variable y to another variable x so that
y = |x|.

The And and Or operators express a logical link between two or more binary variables x1, x2, ..., xk. The
result of this function is itself a binary expression that can take on value 0 (false) or 1 (true).

The most efficient way, in terms of modelling speed, to formulate a model using the aforementioned
operator is through the function problem.addgencons, which adds a general constraint. In the
following example, variables y1, y2, and y3 are constrained to be, respectively, the maximum among the
set {x[0], x[1], 46}, the absolute value of x[3], and the logical and of x[4], x[5], and x[6].

import xpress as xp
p = xp.problem()
x = [p.addVariable(vartype=xp.binary) for _ in range(7)]
y1 = p.addVariable(vartype=xp.binary)
y2 = p.addVariable(vartype=xp.binary)
y3 = p.addVariable(vartype=xp.binary)
type = [xp.gencons_max, xp.gencons_abs, xp.gencons_and]
resultant = [y1, y2, y3]
colstart = [0, 2, 3]
col = [x[0], x[1], x[3], x[4], x[5], x[6]]
valstart = [0,1,1]
val = [46]
p.addgencons(type, resultant, colstart, col, valstart, val)
p.optimize()

A more intuitive way to create problems containing these operators is by using the methods max, min,
abs, And, and Or of the xpressmodule.

import xpress as xp
p = xp.problem()
x = [p.addVariable() for _ in range(4)]
y1 = p.addVariable()
y2 = p.addVariable()
p.addConstraint(y1 == xp.max(x[0], x[1], 46)) # max() accepts a tuple of arguments
p.addConstraint(y2 == xp.abs(x[3]))
p.addConstraint(y3 == xp.And(x[4], x[5], x[6]))
p.optimize()

The methods And and Or can be replaced by the Python binary operators & and |, as in the following
example

y = [p.addVariable(vartype=xp.binary) for _ in range(5)]

p.addConstraint((y[0] & y[1]) + (y[2] | y[3]) + 2⁎y[4] >= 2)

Fair Isaac Corporation Proprietary Information 11

Chapter 2: Modeling an optimization problem

Note that And and Or have a capital initial as the lower-case correspondents are reserved Python
keywords, and that the & and | operators have a lower precedence than arithmetic operators such as +
and should hence be used with parentheses.

We also point out that because the & and | operator have lower operator precedence in Python than other
arithmetic operators (+, ∗, etc.) and even comparison operators (≤, etc.), all uses of & and | should be
enclosed in brackets. as shown in the examples above.

2.11 Using loadproblem for efficiency
The high-level functions problem.addConstraint and problem.addVariables allow for efficient,
concise, and understandable modeling of any optimization problem. An even faster way to create a
problem is through the problem.loadproblem function, which uses a more direct interface to the
Optimizer’s libraries and is hence preferable with very large problems and when efficiency in model
creation is necessary.

The functon problem.loadproblem can be used to create problems with linear and/or quadratic
constraints, a linear and/or quadratic objective function, and with continuous and/or discrete variables.
Its syntax with default parameter values allows for specifying only the components of interest. We refer
the reader to its entry in Chapter 7, and present here a few examples of usages. More examples are
shown in Chapter 6.

The first example uses loadproblem to create a problem similar to that created earlier in this chapter.
We first write the problem using standard modeling functions:

import xpress as xp
p = xp.problem(name='myexample')
x = p.addVariable(vartype=xp.integer, name='x1', lb=-10, ub=10)
y = p.addVariable(name='x2')
p.setObjective(x⁎⁎2 + 2⁎y)
p.addConstraint(x + 3⁎y <= 4)
p.addConstraint(7⁎x + 4⁎y >= 8)

The following code creates a problem with the same features, including variable names and their types

import xpress as xp
p = xp.problem()
p.loadproblem(probname='myexample',

rowtype=['L', 'G'], # constraint senses
rhs=[4, 8], # right-hand sides
rng=None, # no range rows
objcoef=[0, 2], # linear obj. coeff.
start=[0, 2, 4], # start pos. of all columns
collen=None, # unused
rowind=[0, 1, 0, 1], # row index in each column
rowcoef=[1, 7, 3, 4], # coefficients
lb=[-10,0], # variable lower bounds
ub=[10,xp.infinity], # upper bounds
objqcol1=[0], # quadratic obj. terms, column 1
objqcol2=[0], # column 2
objqcoef=[2], # coeff
coltype=['I'], # variable types
entind=[0], # index of integer variable
colnames=['x1', 'x2'])

Apart from the intuitive lists qrtypes (for constraint types: ’L’ for "lesser-than", ’G’ for "greater-than",
’E’ for "equal-to"), rhs (constraints’ right-hand sides), obj (objective linear coefficients), dlb and dub
(variables’ lower and upper bounds), a few parameters deserve some attention. The three lists start,
colind, rowcoef describe the coefficient matrix: colind and rowcoef contain, respectively, the row
indices and the coefficients, while start is a list of n + 1 integers (where n is the number of variables, i.e.,
the size of obj, dlb, and dub); start[i] indicates the position, within colind and rowcoef, of the

Fair Isaac Corporation Proprietary Information 12

Chapter 2: Modeling an optimization problem

indices and coefficients of the i-th column. The last element start[n+1] indicates the number of
nonzeros in the matrix.

The following shows two equivalent knapsack problems, again created first using the high-level modeling
routines and then the lower-level API function.

import xpress as xp
N = 6
p = xp.problem(name='knapsack')
x = [p.addVariable(vartype=xp.binary) for _ in range(N)]
value = [1, 4, 6, 4, 7, 3]
weight = [1, 3, 5, 5, 8, 4]
p.setObjective(xp.Sum(value[i] ⁎ x[i] for i in range(N)), sense=xp.maximize)
p.addConstraint(xp.Sum(weight[i] ⁎ x[i] for i in range(N)) <= 12)

Note that problem.loadproblem assumes that the optimization sense is minimization and hence a
call to problem.chgobjsense is necessary to set the sense to maximization.

import xpress as xp
p = xp.problem()
N = 6
value = [1, 4, 6, 4, 7, 3]
weight = [1, 3, 5, 5, 8, 4]
p.loadproblem(probname='knapsack',

rowtype=['L'], # constraint senses
rhs=[12], # right-hand sides
rng=None, # No range rows
objcoef=value, # linear obj. coeff.
start=range(N+1), # start pos. of all columns
collen=None, # (unused)
rowind=[0] ⁎ N, # row index in each column (always 0)
rowcoef=weight, # coefficients
lb=[0] ⁎ N, # variable lower bounds
ub=[1] ⁎ N, # upper bounds
coltype=['B'] ⁎ N, # variable types
entind=range(N)) # indices of the N binary variables

p.chgobjsense(xp.maximize)

2.12 Modeling and solving nonlinear problems
A nonlinear problem can be defined by creating one or more variables and then adding constraints and an
objective function. This can be done using the same Python calls as one would do for other problems.
The available operators are +, -, ⁎, /, ⁎⁎ (which is the Python equivalent for the power operator, "ˆ").
Univariate functions can also be used from the following list: sin, cos, tan, asin, acos, atan, exp,
log, log10, abs, sign, and sqrt. Multivariate functions are min and max, which can receive an
arbitrary number of arguments.

Examples of nonlinear constraints are as follows:

import xpress as xp
import math

p = xp.problem()
x = p.addVariable()

polynomial constraint
p.addConstraint(x⁎⁎4 + 2 ⁎ x⁎⁎2 - 5 >= 0)

A terrible way to constrain x to be integer
p.addConstraint(xp.sin (math.pi ⁎ x) == 0)

p.addConstraint(x⁎⁎2 ⁎ xp.sign (x) <= 4)

Fair Isaac Corporation Proprietary Information 13

Chapter 2: Modeling an optimization problem

Note that non-native mathematical functions such as log and sinmust be prefixed with xpress or its
alias, xp in this case. This can be avoided by importing all symbols from xpress using the import ⁎
command as follows

from xpress import ⁎
x = var()
a = sin(x)

but this hides namespaces and is usually frowned upon.

User functions are also accepted in the Python interface, and must be specified with the keyword user
and the function as the first argument. They are handled in the Nonlinear solver in a transparent way, so
all is needed is to define a Python function to be run as the user function and specify it in the problem
with user, as in the following example:

import xpress as xp
import math

def mynorm(x1, x2):
return (math.sqrt(x1⁎⁎2 + x2⁎⁎2) 2⁎x1, 2⁎x2)

def myfun(v1, v2, v3):
return v1 / v2 + math.cos(v3)

p = xp.problem()
x, y = p.addVariable(), p.addVariable()

p.setObjective(xp.user (mynorm, x, y, derivatives=True))

p.addConstraint(x+y >= 2)
p.addConstraint(xp.user (myfun, x⁎⁎2, x⁎⁎3, 1/y) <= 3)

Note that user functions can be specified so that they can return derivatives. If we do not wish to return
derivatives, a Python function in k variables must return a single number. If we want to provide the solver
with derivatives, then the function must return a tuple of k+1 numbers.

When defining a user function that provides derivatives (see mynorm in the example), we must set the
derivative=True parameter in the xpress.user call. The derivative parameter is False by
default. If a function returns a tuple of values but it is defined with derivatives=False or, viceversa, if
it returns a single value but it is defined with derivatives=True, the behaviour is undefined.

As a final word of caution, solving nonlinear problem requires a preprocessing step that is transparent to
the user except for two steps: first, if the objective function has a nonlinear component f(x) then a new
constraint (called objective transfer row or objtransrow) and a new variable, the objective transfer column
or objtranscol) are called that are defined as follows:

objtransrow : –objtranscol + f(x) = 0

The resulting problem is equivalent in that the set of optimal (resp. feasible) solutions of this problem will
be the same as those of the original problem. The user, however, will notice an increase by one of both
the number of rows and of columns when a nonlinear objective function is set.

The second caveat is about yet another variable that may be added to the problem for reasons having to
do with one of the Xpress Nonlinear solvers. This variable is called equalscol and it is fixed to 1. Its
existence and value are therefore of no interest to the user.

It should also be noted that the control xslp_postsolve is set to 1 by default when the solver uses the
SLP nonlinear solver. This is necessary to ensure that the solution retrieved after a optimize() or
nlpoptimize() call refers to the original problem and not to a possible reformulation. The reader can
find more information on this in the Xpress Nonlinear reference manual.

Fair Isaac Corporation Proprietary Information 14

Chapter 2: Modeling an optimization problem

2.13 Solving a problem
Simply call problem.optimize to solve an optimization problem that was either built or read from a
file. The type of solver is determined based on the type of problem: if at least one integer variable was
declared, then the problem will be solved as a mixed integer (linear, quadratically constrained, or
nonlinear) problem, while if all variables are continuous the problem is solved as a continuous
optimization problem. If the problem is nonlinear in that it contains non-quadratic, non-conic nonlinear
constraints, then the appropriate nonlinear solver of the Xpress Optimization suite will be called, either
Xpress Global or Xpress Nonlinear, depending on available licenses. Note that non-convex quadratic
problems are included in the base offering of the Xpress Optimizer license and will by default be solved
with the Xpress Global technology.

p.optimize ()

The status of a problem after solution can be found via the solvestatus and solstatus attributes,
and also in the return value of the optimize function, as follows:

import xpress as xp

p = xp.problem()
p.read("example3.lp")
solvestatus, solstatus = p.optimize()

if solvestatus == xp.SolveStatus.COMPLETED:
print("Solve completed with solution status: ", solstatus.name)

else:
print("Solve status: ", solvestatus.name)

The output of the solver when reading and solving a problem is the same as with other interfaces of the
Xpress Optimizer. The verbosity level is determined by the control outputlog, which is 1 by default. To
turn off the solver’s output, it should be set to zero (see Chapter 4 for how to set a control).

2.14 Querying a problem
It is useful, after solving a problem, to obtain the value of an optimal solution. After solving a continuous
or mixed integer problem, the two methods problem.getSolution and problem.getSlack return
the list (of portions thereof) of an optimal solution or the slack of the constraints, respectively. If an
optimal solution was not found but a feasible solution is available, these methods will return data based
on this solution.

Both problem.getSolution and problem.getSlack can be used in multiple ways: if no argument
is passed, the whole solution or slack list is returned. If a list of indices, variable/constraint objects, or
names is passed, a list of values is returned corresponding to the range specified.

For problem.getSolution, there are more ways to call it: indices, strings, expressions are the basic
types. An index ind will yield the value of the variable whose index in that problem (i.e. the order in which
it was added to the problem) is ind; if the index is out of range, an error will occur. A string str will yield
the value of the variable whose name is equal to str, if such variable exists, otherwise an error will occur.
Finally, an expression, which can be just a variable, will yield the value of the expression given the current
solution.

These basic types can be combined, even on multiple levels, with Python’s fundamental aggregate types:
problem.getSolution can be passed a list, a dictionary, a tuple, or any sequence, including NumPy
arrays, of indices, strings, expressions, and other aggregate objects thereof. The result will have the same
structure as the argument passed (list, dictionary, etc.) containing the value corresponding to the passed
expressions, variable indices, or variable names.

The uses of problem.getSolution are exemplified in the following code:

Fair Isaac Corporation Proprietary Information 15

Chapter 2: Modeling an optimization problem

import xpress as xp
import numpy as np

p = xp.problem()

v1 = p.addVariable(name='Var1')
x = [p.addVariable(lb=-1, ub=1, vartype=xp.integer) for i in range(10)]

[...] # add constraints and objective

p.optimize()

print(p.getSolution ()) # Prints a list with an optimal solution
print("v1 is", p.getSolution(v1)) # Only prints the value of v1
a = p.getSolution(x) # Gets the values of all variables in the list x
b = p.getSolution(range(4)) # Gets the value of v1 and x[0], x[1], x[2], i.e.

the first four variables of the problem
c = p.getSolution('Var1') # Gets the value of v1 by its name
e = p.getSolution({1: x, 2: 0,

3: 'Var1'}) # Returns a dictionary containing the same keys as
in the arguments and the values of the
variables/expressions passed

d = p.getSolution(v1 + 3⁎x) # Gets the value of an expression under the
current solution

e = p.getSolution(np.array(x)) # Gets a NumPy array with the solution of x

Consider all lines after p.optimize(). The first of them returns a Python list of ncol floating point
scalars, where ncol is the number of variables of the problem (nrow is the number of constraints, the size
of the list returned by problem.getSlack) containing the full solution. The second example retrieves
the value of the single variable v1.

The third example returns an array of the same size as x with the value of all variables of the list x. The
fourth example shows that a range of indices can be specified in order to obtain a list of values without
specifying the corresponding variables. Recall that the column and row indices begin at 0. The fifth line
shows that a variable can be passed by name, while the sixth line shows that passing a dictionary with
variables, expression, indices, or variable names returns a dictionary with the same keys as the dictionary
passed, but with its values set to the values of the corresponding variables/expressions.

The seventh line shows how to request the value of an expression when evaluated with the current
solution found for the problem, and the eight line is equivalent to p.getSolution(x) but the returned
object is a NumPy array with the solution (this can be useful when using NumPy with large vectors both
for defining a problem and handling solution vectors).

The method problem.getSlack works with indices, constraint names, constraint objects, and lists
thereof. The following examples illustrate a few possible uses.

import xpress as xp
N = 10

p = xp.problem()
x = [p.addVariable(vartype=xp.binary) for i in range(N)]

con1 = xp.Sum(x[i] ⁎ i for i in range(N)) <= N)
con2 = (x[i] >= x[i+1] for i in range(N-1))

p.addConstraint(con1, con2)
p.setObjective(xp.Sum(x[i] for i in range(N))
p.optimize()

print(p.getSlack()) # prints a list of slacks for all N constraints
print("slack_1 is", p.getSlack(con1)) # only prints the slack of con1

a = p.getSlack(con2) # gets the slack of N-1 constraints con2 as a list of floats
b = p.getSlack(range(2)) # gets the slack of con1 and con2[0]

Fair Isaac Corporation Proprietary Information 16

Chapter 2: Modeling an optimization problem

In addition, for problems with only continuous variables, the two methods problem.getDual and
problem.getRCost return the list (or a portion thereof) of dual variables and reduced costs,
respectively. Their usage is similar to that of problem.getSlack.

Note that the inner workings of the Python interface obtain a copy of the whole solution, slack, dual, or
reduced cost vectors, even if only one element is requested. It is therefore advisable that instead of
repeated calls (for instance, in a loop) to problem.getSolution, problem.getSlack, etc. only one
call is made and the result is stored in a list to be consulted in the loop. Hence, in the following example:

import xpress as xp

n = 10000
N = range(n)

p = xp.problem()
x = [p.addVariable() for i in N]

p.addConstraint(xp.Sum(x[i] ⁎ i for i in N) <= n))
p.setObjective(xp.Sum(x[i] for i in N)
p.optimize()

for i in N:
if p.getSolution(x[i]) > 1e-3:

print(i)

the last three lines should be substituted as follows, as this will prevent repeatedly copying a large
(10,000) list:

sol = p.getSolution()

for i in N:
if sol[i] > 1e-3:

print(i)

A very similar function of the class problem is evaluate, which allows for running all of the above
evaluation functions while passing, rather than the solution currently available for the problem, any list or
any dictionary assigning a float to the variables used in the expressions.

2.15 Reading and writing a problem
After creating an empty problem, one can read a problem from a file via the readmethod, which only
takes the file name as its argument. An already-built problem can be written to a file with the write
method. Its arguments are similar to those in the Xpress Optimizer API function XPRSwriteprob, to
which we refer.

import xpress as xp

p = xp.problem()
p.read("example2.lp")
p.optimize()

print(p.getSolution())

p2 = xp.problem()
v1 = p.addVariable()
v2 = p.addVariable(vartype=xp.integer)

p2.addConstraint(v1 + v2 <= 4)
p2.setObjective(v1⁎⁎2 + v2)

p2.write("twovarsproblem", "lp")

Fair Isaac Corporation Proprietary Information 17

Chapter 2: Modeling an optimization problem

2.16 Hints for building models efficiently
The Xpress Python interface allows for creating optimization models using methods described in this and
other sections. As happens with other interpreted languages, using explicit loops may result in a slow
Python script. When using the Xpress Python interface, this can be noticeable in large optimization
models if multiple calls to addVariable, addConstraint, or addSOS are made. For this reason, the
Xpress module allows for generators and list, dictionaries, and sequences as arguments to many
methods, to ensure faster execution.

Let us consider an example:

import xpress as xp

N = 100000
S = range(N)

x = [p.addVariable() for i in S]
y = [p.addVariable(vartype=xp.binary) for i in S]

for i in S:
p.addConstraint(x[i] <= y[i])

p.optimize()

Consider the loop which makes N calls to addConstraint. This method adds some overhead due to
the conversion of Python objects into data that can be read by the Optimizer, and the total overhead can
be large.

Most methods of the Xpress Python interface allow for passing sequences (lists, dictionaries, NumPy
arrays, etc.) as parameters, and are automatically recognized as such. Hence the loop can be replaced
with a single call to addConstraint:

p.addConstraint(x[i] <= y[i] for i in S)

This is much faster and more elegant.

The example also contains 2N calls to addVariable, which can also result in a large overhead. This can
be made more efficient (and compact) by creating x and y using problem.addVariables, which
returns a NumPy array of variables:

import xpress as xp
import numpy as np

N = 100000

x = p.addVariables(N)
y = p.addVariables(N, vartype=xp.binary)

p.addConstraint(x <= y)

p.optimize()

See Chapter 3 for more information on how to use NumPy arrays in the Xpress Python interface.

2.17 Exceptions
The Xpress Python interface raises its own exceptions in the event of a modeling, interface, or solver
issue. There are three types of exceptions:

Fair Isaac Corporation Proprietary Information 18

Chapter 2: Modeling an optimization problem

■ xpress.ModelError: raised in case of an issue in modelling a problem, for instance if an
incorrect constraint sign is given or if a problem is amended an object that is neither a variable, a
constraint, or a SOS;

■ xpress.InterfaceError: raised when the issue can be ascribed to the API and the way it is
used, for instance when not passing mandatory arguments or specifying incorrect ones in an API
function;

■ xpress.SolverError: raised when the Xpress Optimizer or Xpress-SLP returns an error that is
given by the solver even though the model was specified correctly and the interface functions were
used correctly.

As always with Python, one can use the try/except construct in order to analyze the raised exception
as in the following example

import xpress as xp
p = xp.problem()
c = makeConstraint() # assume makeConstraint is defined elsewhere
try:
p.addConstraint(c)

except xp.ModelError as e:
print ("Modeling error:", repr(e))

2.18 Warnings
The Xpress Python interface can emit the following warnings:

■ xpress.LicenseWarning: emitted if the path to the license file is not explicitly indicated with
the lic_path argument of xpress.init or the XPAUTH_PATH environment variable.

Warnings can be suppressed using the Python warningsmodule:

import warnings
warnings.simplefilter('ignore', xp.LicenseWarning)

Fair Isaac Corporation Proprietary Information 19

CHAPTER 3

Using Python numerical libraries

The NumPy library allows for creating and using arrays of any order and size for efficiency and
compactness purposes. This chapter shows how to take advantage of the features of NumPy in the
creation of optimization problems. The Xpress Python interface aims to support the oldest version of
NumPy available as a prebuilt binary package, which varies depending on the platform and Python
version.

3.1 Using NumPy in the Xpress Python interface
NumPy arrays can be used as usual when creating variables, functions (linear and quadratic) of variables,
and constraints. All functions described in this manual that take lists or tuples as arguments can take
array’s, i.e., NumPy array objects, as well, as in the following example:

import numpy as np
import xpress as xp
N = 20
S = range(N)
p = xp.problem()
x = np.array([p.addVariable() for i in S], dtype=xp.npvar)
y = np.array([p.addVariable(vartype=xp.binary) for i in S], dtype=xp.npvar)
constr1 = x <= y
p.addConstraint(constr1)

The above script imports both NumPy and the Xpress Python interface, then declares two arrays of
variables and creates the set of constraints xi ≤ yi for all i in the set S.

The NumPy arrays must have the attribute dtype equal to xpress.npvar (abbreviated to xp.npvar
here) in order to use the matricial/vectorial form of the comparison (<=, =, >=), arithmetic (+, -, ⁎, /, ⁎⁎),
and logic (&, |) operators.

NumPy allows for multiarrays with one or more 0-based indices. Given that declaring a NumPy multiarray
of variables can result in a long line of code, the problem.addVariables function in its simplest
usage returns a NumPy array of variables with one or more indices. Consider the following three array
declarations:

import numpy as np
import xpress as xp
p = xp.problem()
x = np.array([p.addVariable(name='v({0})'.format(i)) for i in range(20)],

dtype=xp.npvar).reshape(5,4)
y = np.array([p.addVariable(vartype=xp.binary) for i in range(27)],

dtype=xp.npvar).reshape(3,3,3)
z = np.array([p.addVariable(lb=-1, ub=1) for i in range(1000)], dtype=xp.npvar)

These can be written equivalently in the compact form as

Fair Isaac Corporation Proprietary Information 20

Chapter 3: Using Python numerical libraries

import numpy as np
import xpress as xp
p = xp.problem()
x = p.addVariables(5, 4, name='v')
y = p.addVariables(3, 3, 3, vartype=xp.binary)
z = p.addVariables(1000, lb=-1, ub=1)

The only side effect is that the assigned names change. In order to preserve the naming convention of
the Xpress library, one can specify the parameter setting name=’’ in the call to p.addVariables. This
also makes the creation of large arrays of variables much faster. We use this shorter notation in the
remainder of this chapter.

The main advantage of using NumPy operations is the ability to replicate them on each element of an
array, taking into account all broadcasting features. For example, the following script “broadcasts” the
right-hand side 1 to all elements of the array, thus creating the set of constraints xi + yi ≤ 1 for all i in the
set S.

constr2 = x + y <= 1

All these operations can be carried out on arrays of any number of dimensions, and can be aggregated at
any level. The following example shows two three-dimensional array of variables involved in two systems
of constraints: the first has two variables per each of the 200 constraints, while the second has 10
constraints and 20 variables in each constraint.

z = p.addVariables(4, 5, 10)
t = p.addVariables(4, 5, 10, vartype=xp.binary)
p.addConstraint(z⁎⁎2 <= 1 + t)
p.addConstraint(xp.Sum(z[i, j, k] for i in range(4) for j in range(5)) <= 4

for k in range(10))

Finally, a note on sums of multi-dimensional NumPy arrays: in keeping with the way NumPy arrays are
handled, the sum of a multi-dimensional array results in a scalar expression with the xpress.Sum
operator. The result of such a sum is exemplified by the following code:

>>> a = np.array([[1, 2, 3], [4, 5, 6]])
>>> a
array([[1, 2, 3],

[4, 5, 6]])
>>> a.sum()
21

3.2 Products of NumPy arrays
The dot product is a useful operator for carrying out aggregate operations on vectors, matrices, and
tensors. The dot operator in NumPy allows for reducing, along one axis of a multi-dimensional arrays,
data such as floating points or integer values.

The application of the dot product of NumPy of two multi-dimensional arrays of dimensions (i1, i2, ..., ik′)
and (j1, j2, ..., jk′′), respectively, requires that ik′ = jk′′–1, i.e., the size of the last dimension of the first array
must match the size of the penultimate dimension of the second vector. For instance, the following dot
product is valid:

import numpy as np
a = np.random.random((4,6))
b = np.random.random((6,2))
c = np.dot(a,b)

and the result is a 4x2 matrix. The Xpress Python interface has its own dot product operator, which can
be used for all similar operations on variables and expression. The rules for applying the Xpress dot

Fair Isaac Corporation Proprietary Information 21

Chapter 3: Using Python numerical libraries

operator are the same as for the native Python dot product, with one extra feature: there is no limit on the
number of arguments, hence the following example is correct as per the restrictions on the dimensions,
albeit it yields a nonconvex constraint.

coeff_pre = np.random.random((6,3,7))
p = xp.problem()
x = p.addVariables(4, 7, 5)
y = p.addVariables(2, 5, 8)
coeff_post = np.random.random((6, 8, 7))
p.addConstraint(xp.Dot(coeff_pre, x, y, coeff_post) >= 0)

Similar to the NumPy dot product, the Xpress dot product has an out parameter for defining the output in
which to store the product.

The following script defines two constraints: the first restricts the squared norm ||z|| = z · z of the vector z
of variables to be at most one. It does so by applying the dot operator on the vector itself. The second
constraint (t – z)′Q(t – z) ≤ 1 restricts the quadratic form on the left-hand side to be at most 1.

p.addConstraint(xp.Dot(z, z) <= 1) # restrict norm of z to 1

Q = np.random.random(N, N) # create a random 20x20 matrix
p.addConstraint(xp.Dot((t-z), Q, (t-z)) <= 1)

As for the Sum operator, when handling variables or expressions, it is advised to use the Dot operator in
the Xpress module rather than the native Python operator, for reasons of efficiency.

Fair Isaac Corporation Proprietary Information 22

CHAPTER 4

Controls and Attributes

A control is a parameter that can influence the performance and behavior of the Xpress Optimizer. For
example, the MIP gap, the feasibility tolerance, or the type of root LP algorithms are controls that can be
set. Controls can both be read from and written to an optimization problem.

An attribute is a feature of an optimization problem, such as the number of rows and columns or the
number of quadratic elements of the objective function. They are read-only parameters in that they can
only be modified, for example, by functions for adding constraints or variables, or functions for setting
and modifying the objective function.

Both controls and attributes are of three types: integer, floating point, or string. The Xpress Python
interface allows for setting and retrieving the value of all controls of an optimization problem, as well as
getting the value of all of a problem’s attributes.

This reference manual does not describe the meaning of controls and attributes in the Xpress Optimizer;
for a detailed description of each, please refer to the Optimizer’s reference manual.

Following Python’s philosophy, one can set and obtain multiple controls/attributes with one function call.
In other words, one can set either (i) a single control and its value; or (ii) a Python dictionary coupling a
list of control names and their respective value. Similarly, with one function call one can obtain (i) the
value of a single attribute or control by specifying it as a parameter; or (ii) a dictionary associating names
to values for each of a list of controls or attributes given as an argument. See the examples below for
more information.

4.1 Controls
Use problem.setControl to set the value of one or more controls. Its synopsis is as follows:

setControl(ctrl, value)
setControl({ctrl1: value1, ctrl2: value2, ..., ctrlk: valuek})

The first form is for setting the value of the control ctrl to value. The second form is for setting ctrl1
to value1, ctrl2 to value2, ..., and ctrlk to valuek.

A list of all controls can be found on the Xpress Optimizer’s reference manual. The control parameters to
be passed in setControl are lower-case strings or upper-case strings (mixed lower- and upper-case
will return an error), although in this manual we will only use lower-case:

p.setControl('miprelstop', 1e-9)
p.setControl({'miprelstop': 1e-3, 'feastol': 1e-6})

Alternatively, the control(s) to be changed can be identified by numeric id.

Use the method getControl to retrieve the value of one or more controls. Its synopsis is one of the
following:

Fair Isaac Corporation Proprietary Information 23

Chapter 4: Controls and Attributes

getControl(ctrl)
getControl([ctrl1, ctrl2, ..., ctrlk])
getControl(ctrl1, ctrl2, ..., ctrlk)
getControl()

The first form is for obtaining the value of the control ctrl. The output will be the value of the control.
The second and third forms are for retrieving ctrl1 , ctrl2 , ..., and ctrlk. Whether the controls are
declared in a list or a tuple does not matter. The result will be a dictionary coupling each control with its
value. The last form is to obtain all controls; the result is a dictionary coupling all controls with their
respective value.

Similar to problem.setControl, the control parameters to be passed in getControl are lower-case
or upper-case strings. For a problem p the call will be as follows:

mrs = p.getControl('miprelstop')
someattr = p.getControl('miprelstop', 'feastol')

Alternatively, controls can be specified by their numeric id. In that case a returned dictionary will have that
id as key for the requested control.

4.2 Examples
import xpress as xp

p = xp.problem()

p.setControl({'miprelstop': 1e-5, 'feastol': 1e-4})
p.setControl('miprelstop', 1e-5)

print(p.getControl('miprelstop')) # print the current value of miprelstop
print(p.getControl('maxtime', 'feastol')) # print a dictionary with the current

value of miprelstop and feastol
print(p.getControl(['presolve', 'miplog'])) # Same output
print(p.getControl()) # print a dictionary with ALL control

Initialize a dictionary with two controls and their value. Then
change their value conditionally and set their new (possibly
changed) value.

myctrl = p.getControl(['miprelstop', 'feastol'])

if (myctrl['miprelstop'] <= 1e-4):
myctrl['miprelstop'] = 1e-3
myctrl['feastol'] = 1e-3

else:
myctrl['feastol'] = 1e-4

p.setControl(myctrl)

4.3 Attributes
Use the method getAttrib to retrieve the value of one or more attributes. Its synopsis is one of the
following:

getAttrib(attr)
getAttrib([attr1, attr2, ..., attrk])
getAttrib(attr1, attr2, ..., attrk)
getAttrib()

The first form is for obtaining the value of the attribute attr. The output will be the value of the attribute.
The second and third forms are for retrieving attr1 , attr2 , ..., and attrk. Whether the attributes are

Fair Isaac Corporation Proprietary Information 24

Chapter 4: Controls and Attributes

declared in a list or a tuple does not matter. The result will be a dictionary coupling each attribute with its
value. The last form is to obtain all attributes; the result is a dictionary coupling all attributes with their
respective value.

A list of all attributes can be found on the Xpress Optimizer’s reference manual. As for controls, the
attribute parameters to be passed in getAttrib are lower-case or upper-case strings (mixed lower- and
upper-case strings are, similar to controls, forbidden). For a problem p the call will be as follows:

nrows = p.getAttrib('rows')
problemsize = p.getAttrib('rows', 'cols')

Alternatively, attributes can be specified by their numeric id. In that case a returned dictionary will have
that id as key for the requested attribute.

4.4 Examples
import xpress as xp

p = xp.problem()

p.read("example.lp")

print("The problem has",
p.getAttrib('rows'), "rows and",
p.getAttrib('cols'), "columns")

Obtain dictionary with two entries: the number of rows and
columns of the problem read

print(p.getAttrib(['rows', 'cols']))

produce a Python dictionary with all attributes of problem m, and
hence of LP file example.lp

attributes = p.getAttrib()

4.5 Accessing controls and attributes as object mem-
bers
An alternative, more "prompt-friendly" way to get controls and attributes is through their direct access in a
problem or, in the case of controls, the Xpress module itself.

The Xpress module has an object, called controls, containing all controls of the Optimizer. Upon
importing the Xpress module, these controls are initialized at their default value. The user can obtain their
value at any point and can also set their value; this new value will be inherited by all problems created
after the modification. They can be read and written as follows:

xpress.controls.<controlname>
xpress.controls.<controlname> = <new value>

For example, the object xpress.controls.miprelstop contains the value of the control miprelstop.
Controls can be read (and, for example, printed) and set as follows:

import xpress as xp
print(xp.controls.heuremphasis)
xp.controls.feastol = 1e-4 # Set new default to 1e-4

These "global" controls are maintained throughout while the Xpress module is loaded. Note that the

Fair Isaac Corporation Proprietary Information 25

Chapter 4: Controls and Attributes

controls object of the Xpress module does not refer to any specific problem. All controls have default
values that are determined by the Optimizer’s library, except for the control xslp_postsolve that is set
to 1, as opposed to its default value of 0 in the Xpress Optimizer’s library.

In addition, every problem has a controls object that stores the controls related to the problem itself.
This is the object the functions getControl and setControl refer to. Similar to the Xpress module’s
controls object, all members of a problem’s object can be read and written. For a problem p, the
following shows how to read and write a problem’s control:

p.controls.<controlname>
p.controls.<controlname> = <new value>

A problem’s controls are independent of the global controls object of the Xpress module. However,
when a new problem is created its controls are copied from the current values in the global object. Note
that after creating a new problem, changing the members in xpress.controls does not affect the
problem’s controls. The following examples should clarify this:

import xpress as xp

create a new problem whose MIPRELSTOP is ten times smaller
than the default value

p1 = xp.problem("problem1")
p1.controls.miprelstop = 0.1 ⁎ xp.controls.miprelstop
p1.controls.feastol = 1e-5
p1.read("example1.lp")

xp.controls.miprelstop = 1e-8 # Set new default

The new problem will have a MIPRELSTOP of 1e-8

p2 = xp.problem("problem2")
p2.read("example2.lp")

The next problem has a less restrictive feasibility tolerance
(i.e. 1e-6) than problem 2

p2v = xp.problem("problem2 variant")
p2v.read("example2.lp")
p2v.controls.feastol = 100 ⁎ p2.controls.feastol

p1.optimize()
p2.optimize()

solve "example2.lp" with a less restrictive
feasibility tolerance
p2v.optimize()

Attributes can be handled similar as above through a member of the class problem, called
attributes, with two exceptions: first, there is no "global" attribute object, as a set of attributes only
makes sense when associated with a problem; second, an attribute cannot be set.

Once a problem p has been created (or read from a file), its attributes are available as
p.attribute.attribute_name. The example in the previous section can be modified as follows:

import xpress as xp
p = xp.problem()
p.read("example.lp")
print("The problem has",

p.attributes.rows, "rows and",
p.attributes.cols, "columns")

When using the Python prompt in creating problems with the Xpress module, the name of controls and

Fair Isaac Corporation Proprietary Information 26

Chapter 4: Controls and Attributes

attributes can be auto-completed by pressing TAB (note: this only works in Python 3.4 and subsequent
versions). For instance,

>>> import xpress
>>> p = xp.problem()
>>> p.read("example.lp")
>>> p.attributes.n<TAB>
p.attributes.namelength p.attributes.nodedepth p.attributes.nodes p.attributes.numiis
>>> p.attributes.nodedepth
0
>>> p.attributes.ma<TAB>
p.attributes.matrixname p.attributes.maxabsdualinfeas
p.attributes.maxabsprimalinfeas p.attributes.maxprobnamelength
p.attributes.maxreldualinfeas p.attributes.maxrelprimalinfeas
>>> p.attributes.matrixname
'noname'
>>> xp.controls.o<TAB>
xp.controls.oldnames xp.controls.omniformat
xp.controls.optimalitytol xp.controls.optimalitytoltarget
xp.controls.outputlog xp.controls.outputmask
xp.controls.outputtol
>>> xp.controls.omniformat
0

Fair Isaac Corporation Proprietary Information 27

CHAPTER 5

Using Callbacks

This chapter shows how to define and use callback functions from the Xpress Python interface. The
design of this part of the interface reflects as closely as possible the design of the callback functions
defined in the C API of the Xpress Optimizer.

5.1 Introduction
Callback functions are a useful tool for adapting the Xpress Optimizer to the solution of various classes
of problems, in particular Mixed Integer Programming (MIP) problems, with linear or nonlinear
constraints. Their main purpose is to provide the user with a point of entry into the branch-and-bound,
which is the workhorse algorithm for MIPs.

Using callback functions is simple: the user first defines a function (say myfunction) that is to be run
every time the branch-and-bound reaches a well-specified point; second, the user calls a function (such
as addcbpreintsol) with myfunction as its argument. Finally, the user runs the solve command
that launches the branch-and-bound, the simplex solver, or the barrier solver; it is while these are run that
myfunction is called.

A callback function, hence, is passed once as an argument and used possibly many times. It is called
while a solver is running, and it is passed the following:

■ a problem object, of the same class as an object declared with p = xpress.problem();

■ a data object.

The data object is user-defined and is given to the problem when adding the callback function. It can be
used to store information that the user can read and/or modify within the callback. For instance, the
following code shows how to add a callback function, preintsolcb, that is called every time a new
integer solution is found.

import xpress as xp

class foo:
"Simple class"
bar = 0
def __init__(self):

self.bar = 1
def update(self):

self.bar += 1

def preintsolcb(prob, data, isheuristic, cutoff):
"""
Callback to be used when an integer solution is found. The
"data" parameter is of class foo
"""

Fair Isaac Corporation Proprietary Information 28

Chapter 5: Using Callbacks

p = xp.problem()
p.read('myprob.lp') # reads in a problem, let's say a MIP

baz = foo()

p.addcbpreintsol(preintsolcb, baz, 3)
p.optimize()

While the function argument is necessary for all addcb⁎ functions, the data object can be specified as
None. In that case, the callback will be run with None as its data argument. The call also specifies a
priority with which the callback should be called: the larger the (positive) priority, the more urgently it is
called.

Any call to an addcb⁎ function, as the names imply, only adds a function to a list of callback functions for
that specific point of the BB algorithm. For instance, two calls to addcbpreintsol with two functions
preint1 and preint2, respectively with priority 3 and 5, puts the two functions in a list. The two
functions will be called (preint2 first) whenever the BB algorithm finds an integer solution.

In order to remove a callback function that was added with addcb⁎, a corresponding removecb⁎
function is provided, for instance removecbpreintsol. This function takes two arguments, i.e., the
callback function and the data object, and deletes all elements of the list of callbacks that were added
with the corresponding addcb function that match the function and the data.

The None keyword acts as a wildcard that matches any function/data object: if removecb⁎ is called with
None as the function, then all callbacks matching the data will be deleted. If the data is also None, all
callback functions of that type are deleted; this can be obtained by passing no argument to removecb⁎.

The arguments and return value of the callback functions reflect those in the C API, and this holds for
parameter names as well. As for the other API functions of the Python interface, there are a few
exceptions:

■ If a function in the C API requires a parameter n to indicate the size of an array argument to follow, n
is not required in the corresponding Python function;

■ If a function in the C API uses passing by reference as a means to allow for modifying a value and
returning it as an output, the Python counterpart will have this as the return value of the function.
Where multiple output values are comprised in the list of parameters, the return value is a tuple
composed of the returned values. Elements of this tuple can be None if no change was made to
that output value.

Most callback functions refer to a problem, therefore the addcb⁎method is called from a problem
object. The only exception is the function xpress.addcbmsghandler(), which is called on the Xpress
module itself and allows for providing a function that is called every time any output is produced within
the Optimizer.

We refer to the Reference chapter of this manual for all information regarding callback functions and how
to add/remove them from a problem.

Fair Isaac Corporation Proprietary Information 29

CHAPTER 6

Examples of use

This chapter discusses some example Python scripts that are part of the Xpress Optimizer’s Python
interface. Most of them are well commented so the user can refer directly to the source for guidance.

Most of these scripts have an initial part in common, which we reproduce here but omit in all
explanations below for compactness. These initial lines import the Xpress module itself and the NumPy
module, which is used in some of the examples. The first line is to make the print statements, which are
in Python 3 style here, work in Python 2.7 as well.

from __future__ import print_function
import xpress as xp
import numpy as np

6.1 Creating simple problems
Below are a few examples on how to create simple LP, MIP, MIQP, and similar problems. Note that they
make use of API functions that resemble the C API functions for creating problems, and are used
similarly here.

6.1.1 Generating a small Linear Programming problem
In this example, we create a problem and load a matrix of coefficients, a rhs, and an objective coefficient
list with the loadproblem function. We also assign names to both rows and columns (both are
optional). These data correspond to the following problem with three variables and four constraints:

minimize: 3 x1 + 4 x2 + 5 x3
subject to: x1 + x3 ≥ -2.4

2x1 + 3x3 ≥ -3
2x2 + 3x3 = 4

x2 + x3 ≤ 5
-1 ≤ x1 ≤ 3
-1 ≤ x1 ≤ 5
-1 ≤ x1 ≤ 8

p = xp.problem()

p.loadproblem("", # probname
['G','G','E', 'L'], # rowtype
[-2.4, -3, 4, 5], # rhs
None, # rng
[3,4,5], # objcoef
[0,2,4,8], # start

Fair Isaac Corporation Proprietary Information 30

Chapter 6: Examples of use

None, # collen
[0,1,2,3,0,1,2,3], # rowind
[1,2,2,1,1,3,3,1], # rowcoef
[-1,-1,-1], # lb
[3,5,8], # ub
colnames = ['X1','X2','X3'], # column names
rownames = ['row1','row2','row3','constr_04']) # row names

p.write("loadlp", "lp")
p.optimize()

We then create another variable and add it to the problem, then modify the objective function. Note that
the objective function is replaced by, not amended with, the new expression. After solving the problem, it
saves it into a file called update.lp.

x = p.addVariable()
p.setObjective(x⁎⁎2 + 2⁎x + 444)
p.optimize()
p.write("updated", "lp")

6.1.2 A Mixed Integer Linear Programming problem
This example uses loadproblem to create a Mixed Integer Quadratically Constrained Quadratic
Programming problem with two Special Ordered Sets. Note that data that is not needed is simply set as
None.

The Examples directory provides similar examples for different types of problems.

p = xp.problem()

p.loadproblem("", # probname
['G','G','L', 'L'], # rowtype
[-2.4, -3, 4, 5], # rhs
None, # rng
[3,4,5], # objcoef
[0,2,4,8], # start
None, # collen
[0,1,2,3,0,1,2,3], # rowind
[1,1,1,1,1,1,1,1], # rowcoef
[-1,-1,-1], # lb
[3,5,8], # ub
[0,0,0,1,1,2], # objqcol1
[0,1,2,1,2,2], # objqcol2
[2,1,1,2,1,2], # objqcoef
[2,3], # qrowind
[2,3], # nrowqcoefs
[1,2,0,0,2], # rowqcol1
[1,2,0,2,2], # rowqcol2
[3,4,1,1,1], # rowqcoef
['I','S'], # coltype
[0,1], # entind
[0,2], # limit
['1','1'], # settype
[0,2,4], # setstart
[0,1,0,2], # setind
[1.1,1.2,1.3,1.4]) # refval

p.optimize()

Fair Isaac Corporation Proprietary Information 31

Chapter 6: Examples of use

6.2 Modeling examples
6.2.1 A simple model

This example demonstrates how variables and constraints, or lists/arrays thereof, can be added into a
problem. The script then prints the solution and all attributes/controls of the problem.

N = 4
S = range(N)

m = xp.problem()

v = [m.addVariable(name="y{0}".format(i), lb=0, ub=2⁎N) for i in S]

v1 = m.addVariable(name="v1", lb=0, ub=10, threshold=5, vartype=xp.continuous)
v2 = m.addVariable(name="v2", lb=1, ub=7, threshold=3, vartype=xp.continuous)
vb = m.addVariable(name="vb", vartype=xp.binary)

c1 = v1 + v2 >= 5

m.addConstraint(c1, # Adds a list of constraints: three single constraints...
2⁎v1 + 3⁎v2 >= 5,
v[0] + v[2] >= 1,
... and a set of constraints indexed by all {i in
S: i<N-1}(recall that ranges in Python are from 0
to n-1)
(v[i+1] >= v[i] + 1 for i in S if i < N-1))

objective overwritten at each setObjective()
m.setObjective(xp.Sum([i⁎v[i] for i in S]), sense=xp.minimize)

solvestatus, solstatus = m.optimize()

print("solve status: ", solvestatus.name)
print("solution status: ", solstatus.name)

print("solution:", m.getSolution())

6.2.2 Using IIS to investigate an infeasible problem
The problem modeled below is infeasible,

import xpress as xp

minf = xp.problem("ex-infeas")

x0 = minf.addVariable()
x1 = minf.addVariable()
x2 = minf.addVariable(vartype=xp.binary)

c1 = x0 + 2 ⁎ x1 >= 1
c2 = 2 ⁎ x0 + x1 >= 1
c3 = x0 + x1 <= .5

c4 = 2 ⁎ x0 + 3 ⁎ x1 >= 0.1

The three constraints c1, c2, and c3 above are incompatible as can be easily verified. Adding all of them
to a problem will make it infeasible. We use the functions to retrieve the Irreducible Infeasible
Subsystems (IIS).

minf.addConstraint(c1,c2,c3,c4)

minf.optimize()

Fair Isaac Corporation Proprietary Information 32

Chapter 6: Examples of use

minf.iisall()
print("there are ", minf.attributes.numiis, " iis's")

miisrow = []
miiscol = []
constrainttype = []
colbndtype = []
duals = []
rdcs = []
isolationrows = []
isolationcols = []

get data for the first IIS

minf.getiisdata(1, miisrow, miiscol, constrainttype, colbndtype,
duals, rdcs, isolationrows, isolationcols)

print("iis data:", miisrow, miiscol, constrainttype, colbndtype,
duals, rdcs, isolationrows, isolationcols)

Another way to check IIS isolations
print("iis isolations:", minf.iisisolations(1))

rowsizes = []
colsizes = []
suminfeas = []
numinfeas = []

print("iisstatus:", minf.iisstatus(rowsizes, colsizes, suminfeas, numinfeas))
print("vectors:", rowsizes, colsizes, suminfeas, numinfeas)

6.2.3 Modeling a problem using Python lists and vectors
We create a convex QCQP problem. We use a list of N=5 variables and sets constraints and objective. We
define all constraints and the objective function using a Python aggregate type.

import xpress as xp

N = 5
S = range(N)

m = xp.problem("problem 1")

v = [m.addVariable(name="y{0}".format(i)) for i in S]

print("variable:", v)

m.addConstraint(v[i] + v[j] >= 1 for i in range(N-4) for j in range(i,i+4))
m.addConstraint(xp.Sum([v[i]⁎⁎2 for i in range(N-1)]) <= N⁎⁎2 ⁎ v[N-1]⁎⁎2)
m.setObjective(xp.Sum([i⁎v[i] for i in S]) ⁎ (xp.Sum([i⁎v[i] for i in S])))

m.optimize()

print("solution: ", m.getSolution())

6.2.4 A knapsack problem
Here follows an example of a knapsack problem formulated using lists of numbers. All data in the
problem are lists, and so are the variables.

import xpress as xp

S = range(5) # that's the set {0,1,2,3,4}
value = [102, 512, 218, 332, 41] # or just read them from file
weight = [21, 98, 44, 59, 9]

Fair Isaac Corporation Proprietary Information 33

Chapter 6: Examples of use

p = xp.problem("knapsack")

x = p.addVariables(5, vartype=xp.binary)
profit = xp.Sum(value[i] ⁎ x[i] for i in S)

p.addConstraint(xp.Sum(weight[i] ⁎ x[i] for i in S) <= 130)
p.setObjective(profit, sense=xp.maximize)
p.optimize()

Note that the same result could have been achieved using NumPy arrays and the Xpress module’s dot
product as follows:

import xpress as xp
import numpy as np

value = np.array([102, 512, 218, 332, 41])
weight = np.array([21, 98, 44, 59, 9])

p = xp.problem("knapsack")

x = p.addVariables(5, vartype=xp.binary)
profit = xp.Dot(value, x)

p.addVariable(x)
p.addConstraint(xp.Dot(weight, x) <= 130)
p.setObjective(profit, sense=xp.maximize)
p.optimize()

6.2.5 A Min-cost-flow problem using NumPy
This example solves a min-cost-flow problem using NumPy and the incidence matrix of the graph.

import numpy as np
import xpress as xp

digraph definition

V = [1, 2, 3, 4, 5] # vertices
E = [[1, 2], [1, 4], [2, 3], [3, 4], [4, 5], [5, 1]] # arcs

n = len(V) # number of nodes
m = len(E) # number of arcs

We then generate the incidence matrix by creating a NumPy matrix with n rows and m columns, such that
each column, which corresponds to an arc (i,j), has a -1 at row i and a 1 at row j.

Generate incidence matrix: begin with a NxM zero matrix
A = np.zeros((n,m))

Then for each column i of the matrix, add a -1 in correspondence to
the tail of the arc and a 1 for the head of the arc. Because Python
uses 0-indexing, the row of A should be the node index minus one.
for i, edge in enumerate(E):

A[edge[0] - 1][i] = -1
A[edge[1] - 1][i] = 1

We use NumPy vectors and the Xpress interface’s dot product, the xpress.Dot operator. Note that
although NumPy has a dot operator, especially for large models it is strongly advised to use the Xpress
interface’s Dot function for reasons of efficiency.

demand = np.array([3, -5, 7, -2, -3])

Fair Isaac Corporation Proprietary Information 34

Chapter 6: Examples of use

cost = np.array([23, 62, 90, 5, 6, 8])

p = xp.problem('network flow')

flow = p.addVariables(m) # flow variables declared on arcs

p.addConstraint(xp.Dot(A, flow) == - demand)
p.setObjective(xp.Dot(cost, flow))

p.optimize()

for i in range(m):
print('flow on', E[i], ':', p.getSolution(flow[i]))

6.2.6 A nonlinear model
Let’s solve a classical nonlinear problem: finding the minimum of the Rosenbrock function. For
parameters a and b, minimize (a – x)2 + b(y – x2)2.

import xpress as xp

a,b = 1,100

p = xp.problem()

x = p.addVariable(lb=-xp.infinity)
y = p.addVariable(lb=-xp.infinity)

p.setObjective((a-x)⁎⁎2 + b⁎(y-x⁎⁎2)⁎⁎2)

p.controls.xslp_solver = 0 # solve it with SLP, not Knitro

solvestatus, solstatus = p.optimize()

print("solve status: ", solvestatus.name)
print("solution status: ", solstatus.name)

print("solution:", p.getSolution())

6.2.7 Finding the maximum-area n-gon
The problem asks, given n, to find the n-sided polygon of largest area inscribed in the unit circle.

While it is natural to prove that all vertices of a global optimum reside on the unit circle, the problem is
formulated so that every vertex i is at distance rhoi from the center, and at angle thetai. We would expect
that the local optimum found has all rho’s are equal to 1. The example file contains instructions for
drawing the resulting polygon using matplotlib.

The objective function is the total area of the polygon. Considering the segment S[i] joining the center to
the i-th vertex and A(i,j) the area of the triangle defined by the two segments S[i] and S[j], the objective
function is A(0,1) + A(1,2) + ... + A(N–1,0), where A(i,j) = 1/2 ∗ rhoi ∗ rhoj ∗ sin(thetai – thetaj). We first define
the set Vertices as the set of integers from 0 to n – 1.

p = xp.problem()

rho = [p.addVariable(name='rho_{}'.format(i), lb=1e-5, ub=1.0) for i in Vertices]
theta = [p.addVariable(name='theta_{}'.format(i), lb=-math.pi, ub=math.pi)

for i in Vertices]

p.setObjective(
0.5⁎(xp.Sum(rho[i]⁎rho[i-1]⁎xp.sin(theta[i]-theta[i-1]) for i in Vertices if i != 0)

+ rho[0]⁎rho[N-1]⁎xp.sin(theta[0]-theta[N-1])), sense=xp.maximize)

Fair Isaac Corporation Proprietary Information 35

Chapter 6: Examples of use

We establish that the angles must be increasing in order to obtain a sensible solution:

p.addConstraint(theta[i] >= theta[i-1] + 1e-4 for i in Vertices if i != 0)

Note also that we enforce that the angles be different as otherwise they might form a local optimum
where all of them are equal.

6.2.8 Solving the n-queens problem
In chess, the queen can move in all directions (even diagonally) and travel any distance. The problem of
the n queens consists in placing n queens on an n × n chessboard so that none of them can be eaten in
one move.

We first create a 2D array of variables, mapping each cell of the chessboard to one variable so that we can
refer to it later. All variables are clearly binary as they indicate whether a given cell has a queen or not.

n = 10 # the size of the chessboard
N = range(n)

p = xp.problem()

Create a 2D numpy array of (i,j) variables and link them to problem p
x = p.addVariables(N, N, vartype=xp.binary, name='q')

vertical = [xp.Sum(x[i,j] for i in N) <= 1 for j in N]
horizontal = [xp.Sum(x[i,j] for j in N) <= 1 for i in N]

diagonal1 = [xp.Sum(x[k-j,j] for j in range(max(0,k-n+1), min(k+1,n))) <= 1
for k in range(1,2⁎n-2)]

diagonal2 = [xp.Sum(x[k+j,j] for j in range(max(0,-k), min(n-k,n))) <= 1
for k in range(2-n,n-1)]

p.addConstraint(vertical, horizontal, diagonal1, diagonal2)

Objective, to be maximized: number of queens on the chessboard
p.setObjective(xp.Sum(x), sense=xp.maximize)

p.optimize()

As a rudimentary form of visualization, we print the solution on the chessboard with different symbols for
variables at one or zero.

for i in N:
for j in N:

if p.getSolution(x[i,j]) == 1:
print('@', sep='', end='')

else:
print('.', sep='', end='')

print('')

6.2.9 Solving Sudoku problems
The well-known Sudoku puzzles ask one to place numbers from 1 to 9 into a 9 × 9 grid such that no
number repeats in any row, in any column, and in any 3x3 sub-grid. For a more general version of the
game, replace 3 with q and 9 with q2.

We model this problem as an assignment problem where certain conditions must be met for all numbers
in the columns, rows, and sub-grids.

These subgrids are lists of tuples with the coordinates of each subgrid. In a 9 × 9 sudoku, for instance,
subgrids[0,1] has the 9 elements in the middle top square.

Fair Isaac Corporation Proprietary Information 36

Chapter 6: Examples of use

The input is a starting grid where the unknown numbers are replaced by zero. The example file contains a
relatively hard 9 × 9 sudoku, which we show below, and also a 16 × 16 variant of the same game.

q = 3

starting_grid = \
[[8,0,0,0,0,0,0,0,0],
[0,0,3,6,0,0,0,0,0],
[0,7,0,0,9,0,2,0,0],
[0,5,0,0,0,7,0,0,0],
[0,0,0,0,4,5,7,0,0],
[0,0,0,1,0,0,0,3,0],
[0,0,1,0,0,0,0,6,8],
[0,0,8,5,0,0,0,1,0],
[0,9,0,0,0,0,4,0,0]]

n = q⁎⁎2 # the size must be the square of the size of the subgrids
N = range(n)

p = xp.problem()

x = p.addVariables(N, N, N, vartype=xp.binary)

define all q^2 subgrids
subgrids = {(h,l): [(i,j) for i in range(q⁎h, q⁎h + q)

for j in range(q⁎l, q⁎l + q)]
for h in range(q) for l in range(q)}

vertical = [xp.Sum(x[i,j,k] for i in N) == 1 for j in N for k in N]
horizontal = [xp.Sum(x[i,j,k] for j in N) == 1 for i in N for k in N]
subgrid = [xp.Sum(x[i,j,k] for (i,j) in subgrids[h,l]) == 1

for (h,l) in subgrids.keys() for k in N]

Assign exactly one number to each cell

assign = [xp.Sum(x[i,j,k] for k in N) == 1 for i in N for j in N]

Then we fix those variables that are non-zero in the input grid. We don’t need an objective function as this
is a feasibility problem. After computing the solution, we print it to the screen.

init = [x[i,j,k] == 1 for k in N for i in N for j in N
if starting_grid[i][j] == k+1]

p.addConstraint(vertical, horizontal, subgrid, assign, init)

p.optimize()

print('Solution:')

for i in N:
for j in N:

l = [k for k in N if p.getSolution(x[i,j,k]) >= 0.5]
assert(len(l) == 1)
print('{0:2d}'.format(1 + l[0]), end='', sep='')

print('')

6.3 Examples using NumPy
6.3.1 Using NumPy multidimensional arrays to create variables

Use NumPy arrays for creating a 3-dimensional array of variables, then use it to create a mode.

S1 = range(2)
S2 = range(3)

Fair Isaac Corporation Proprietary Information 37

Chapter 6: Examples of use

S3 = range(4)

m = xp.problem()

h = np.array([[[m.addVariable(vartype=xp.binary)
for i in S1]
for j in S2]
for k in S3], dtype=xp.npvar)

m.setObjective (h[0][0][0] ⁎ h[0][0][0] +
h[1][0][0] ⁎ h[0][0][0] +
h[1][0][0] ⁎ h[1][0][0] +
xp.Sum(h[i][j][k] for i in S3 for j in S2 for k in S1))

cons00 = - h[0][0][0] ⁎⁎ 2 +
xp.Sum(i ⁎ j ⁎ k ⁎ h[i][j][k]for i in S3 for j in S2 for k in S1) >= 11

m.addConstraint(cons00)

m.optimize()

The final part of the code retrieves the matrix representation of the quadratic part of the only constraint.

mstart1=[]
mclind1=[]
dqe1=[]
m.getqrowqmatrix(cons00, mstart1, mclind1, dqe1, 29, h[0][0][0], h[3][2][1])
print("row 0:", mstart1, mclind1, dqe1)

6.3.2 Using the dot product to create arrays of expressions
Here we use NumPy arrays to print the product of a matrix by a random vector, and the xpress.Dot
function on a matrix and a vector. Note that the NumPy dot operator works perfectly fine here, but should
be avoided for reasons of performance, especially when handling large arrays where at least one
contains optimization variables or expressions.

p = xp.problem()

x = p.addVariables(5)
p.addConstraint(xp.Sum(x) >= 2)

p.setObjective(xp.Sum(x[i]⁎⁎2 for i in range(5)))
p.optimize()

A = np.array(range(30)).reshape(6,5) # A is a 6x5 matrix
sol = np.array(p.getSolution()) # a vector of size 5
columns = A⁎sol # not a matrix-vector product!
v = np.dot(A,sol) # an array: matrix-vector product A⁎sol
w = xp.Dot(A,x) # an array of expressions

print(v,w)

6.3.3 Using the Dot product to create constraints and quadratic
functions

This is an example of a problem formulation that uses the xpress.Dot operator to formulate
constraints in a concise fashion. Note that the NumPy dot operator is not suitable here as the result is an
expression in the Xpress variables.

A = np.random.random(30).reshape(6,5) # A is a 6x5 matrix
Q = np.random.random(25).reshape(5,5) # Q is a 5x5 matrix

Fair Isaac Corporation Proprietary Information 38

Chapter 6: Examples of use

p = xp.problem()

Add a NumPy array of variables
x = p.addVariables(5)
x0 = np.random.random(5) # random vector

Q += 4 ⁎ np.eye(5) # add 5 ⁎ the identity matrix

Lin_sys = xp.Dot(A,x) <= np.array([3,4,1,4,8,7]) # 6 constraints (rows of A)
Conv_c = xp.Dot(x,Q,x) <= 1 # one quadratic constraint

p.addConstraint(Lin_sys, Conv_c)
p.setObjective(xp.Dot(x-x0, x-x0)) # minimize distance from x0

p.optimize()

6.3.4 Using NumPy to create quadratic optimization problems
This example creates and solves a simple quadratic optimization problem. Given an n × n matrix Q and a
point x0, minimize the quadratic function xT(Q + n3I)x subject to the linear system (x – x0)TQ + e = 0,
where e is the vector of all ones, the inequalities Qx ≥ 0, and nonnegativity on all variables. Report
solution if available.

N = 10

p = xp.problem()

Q = np.arange(1, N⁎⁎2 + 1).reshape(N, N)
x = p.addVariables(N)
x0 = np.random.random(N)

c1 = xp.Dot((x - x0), Q) + 1 == 0
c2 = xp.Dot(Q, x) >= 0

p.addConstraint(c1,c2)
p.setObjective(xp.Dot(x, Q + N⁎⁎3 ⁎ np.eye(N), x))

p.optimize('')

print("nrows, ncols:", p.attributes.rows, p.attributes.cols)
print("solution:", p.getSolution())

p.write("test5-qp", "lp")

6.4 Advanced examples: callbacks and problem query-
ing, modifying, and analysis

6.4.1 Visualize the branch-and-bound tree of a problem
This example shows how to visualize the BB tree of a problem after (partially) solving it. It is assumed
here that all branches are binary.

We first define a message callback for running code whenever the Optimizer wants to print a message.
The callback receives four arguments: the problem and callback data and, most importantly, the message
to be printed and an information number. The callback prints the output message prefixed by a time
stamp related to the creation of the problem. As the message could be on multiple lines, it is split into
multiple substrings, one per line.

import networkx as nx
import time

Fair Isaac Corporation Proprietary Information 39

Chapter 6: Examples of use

from matplotlib import pyplot as plt

def message_addtime (prob, data, msg, info):
"""Message callback example: print a timestamp before the message from the optimizer"""
if msg:

for submsg in msg.split('\n'):
print("{0:6.3f}: [{2:+4d}] {1}".format(time.time() - start_time, submsg, info))

We then define a recursive function that computes the cardinality of a subtree rooted at a node i. This is
necessary as the visualization of the BB tree is more balanced when the subtree size is taken into
account. The card_subtree array, which is filled here, is used then for computing the width of each
visualized subtree.

def postorder_count(node):
"""
Recursively count nodes to compute the cardinality of a subtree for
each node
"""

card = 0

if node in left.keys(): # see if node has a left key
postorder_count(left[node])
card += card_subtree[left[node]]

if node in right.keys():
postorder_count(right[node])
card += card_subtree[right[node]]

card_subtree[node] = 1 + card

We also define a function that determines the position of each node depending on the cardinality of the
subtree rooted at the node.

def setpos(T, node, curpos, st_width, depth):

"""
Set position depending on cardinality of each subtree
"""

Special condition: we are at the root
if node == 1:

T.add_node(node, pos=(0.5, 1))

alpha = .1 # use a convex combination of subtree comparison and
depth to assign a width to each subtree

if node in left.keys():

X position in the graph should not just depend on depth,
otherwise we'd see a long and thin subtree and it would just
look like a path

leftwidth = st_width ⁎ (alpha ⁎ .5 + (1 - alpha) ⁎ card_subtree[left[node]]
/ card_subtree[node])

leftpos = curpos - (st_width - leftwidth) / 2

T.add_node(left[node], pos=(leftpos, - depth))
T.add_edge(node, left[node])
setpos(T, left[node], leftpos, leftwidth, depth + 1)

if node in right.keys():

rightwidth = st_width ⁎ (alpha ⁎ .5 + (1 - alpha) ⁎ card_subtree[right[node]]
/ card_subtree[node])

rightpos = curpos + (st_width - rightwidth) / 2

Fair Isaac Corporation Proprietary Information 40

Chapter 6: Examples of use

T.add_node(right[node], pos=(rightpos, - depth))
T.add_edge(node, right[node])
setpos(T, right[node], rightpos, rightwidth, depth + 1)

This is the only operation we need to be carried out at every node: given a node number, newnode, and its
parent, parent, we store the information in the left and right arrays so that at the end of the BB we
have an explicit BB tree stored in these arrays.

def storeBBnode(prob, Tree, parent, newnode, branch):
Tree is the callback data, and it's equal to T

if branch == 0:
left[parent] = newnode

else:
right[parent] = newnode

We now set up the BB tree data and create a problem. We read it from a local file, but any user problem
can be read and analyzed. We set the node callback with addcbnewnode so that we can collect
information at each new node. We also save the initial time for use by message_addtime, the function
that is called every time the problem prints out a message.

T = nx.Graph()

left = {}
right = {}
card_subtree = {}
pos = {}

start_time = time.time()

p = xp.problem()
p.addcbmessage(message_addtime)

p.read('sampleprob.mps.gz')
p.addcbnewnode(storeBBnode, T, 100)
p.controls.maxnode=40000 # Limit the number of nodes inserted in the graph
p.optimize()

postorder_count(1) # assign card_subtree to each node
setpos(T, 1, 0.5, 1, 0) # determine the position of each node

depending on subtree cardinalities

pos = nx.get_node_attributes(T, 'pos')

nx.draw(T, pos) # create BB tree representation
plt.show() # display it; you can zoom indefinitely and see all subtrees

6.4.2 Query and modify a simple problem
This example shows how to change an optimization problem using the Xpress Python interface.

p = xp.problem()

x = p.addVariable()
y = p.addVariable()

cons1 = x + y >= 2
upperlim = 2⁎x + y <= 3

p.setObjective((x-4)⁎⁎2 + (y-1)⁎⁎2)
p.addConstraint(cons1, upperlim)

p.write('original', 'lp')

Fair Isaac Corporation Proprietary Information 41

Chapter 6: Examples of use

After saving the problem to a file, we change two of its coefficients. Note that the same operations can
be carried out with a single call to p.chgmcoef([cons1,1],[x,0],[3,4]).

p.chgcoef(cons1, x, 3) # coefficient of x in cons1 becomes 3
p.chgcoef(1, 0, 4) # coefficient of y in upperlim becomes 4

p.write('changed', 'lp')

6.4.3 Change a problem after solution
Construct a problem using addVariable and addConstraint, then use the Xpress API routines to amend
the problem with rows and quadratic terms.

import xpress as xp

p = xp.problem()
N = 5
S = range(N)

x = [p.addVariable(vartype=xp.binary) for i in S]

Vectors of variables can be used whole or addressed with an index or
index range

c0 = xp.Sum(x) <= 10
cc = [x[i]/1.1 <= x[i+1]⁎2 for i in range(N-1)]

p.addConstraint(c0, cc)

p.setObjective(3 - x[0])

mysol = [0, 0, 1, 1, 1, 1.4]

add a variable with its coefficients

p.addcols([4], [0,3], [c0,4,2], [-3, 2.4, 1.4], [0], [2], ['Y'], ['B'])
p.write("problem1", "lp")

load a MIP solution
p.loadmipsol([0,0,1,1,1,1.4])

We now add a quadratic term x20 – 2x0x3 + x31 to the second constraint. Note that the -2 coefficient for an
off-diagonal element must be passed divided by two.

p.addqmatrix(cc[0], [x[0],x[3],x[3]], [x[0],x[0],x[3]], [1,-1,1])

As constraint list cc was added after c0, it is the latter which has index 0 in the problem, while cc[0]
has index 1.

We then add the seventh and eighth constraints:

subject to: x0 + 2 x1 + 3x2 ≥ 4
4x0 + 5x1 + 6x2 + 7 x3 + 8 x4 -3 y ≤ 4.4

Note the new column named ’Y’ is added with its index 5 (variables’ indices begin at 0). The same would
happen if 5 were substituted by Y.

p.addqmatrix(1, [x[0],x[3],x[3]], [x[0],x[0],x[3]], [1,-1,1])

p.addrows(qrtype=['G', 'L'],
rhs=[4, 4.4],

Fair Isaac Corporation Proprietary Information 42

Chapter 6: Examples of use

start=[0, 3, 9],
colind=[x[0],x[1],x[2], x[0],x[1],x[2],x[3],x[4], 5],
rowcoef=[1,2,3,4,5,6,7,8,-3],
names=['newcon1', 'newcon2'])

p.optimize()
p.write("amended", "lp")

slacks = []

p.calcslacks(solution=mysol, calculatedslacks=slacks)

print("slacks:", slacks)

The code below first adds five columns, then solves the problem and prints the solution, if one has been
found.

p.addcols([4], [0,3], [c0,4,2], [-3, -2, 1], [0], [2], ['p1'], ['I'])
p.addcols([4], [0,3], [c0,4,2], [-3, 2.4, 1.4], [0], [10], ['p2'], ['C'])
p.addcols([4], [0,3], [c0,4,2], [-3, 2, 1], [0], [1], ['p3'], ['S'])
p.addcols([4], [0,3], [c0,4,2], [-3, 2.4, 4], [0], [2], ['p4'], ['P'])
p.addcols([4], [0,3], [c0,4,2], [-3, 2, 1], [0], [2], ['p5'], ['R'])

p.optimize()

try:
print("new solution:", p.getSolution())

except:
print("could not get solution, perhaps problem is infeasible")

Note that the single command below has the same effect as the four addcols calls above, and is to be
preferred when adding a large number of columns for reasons of efficiency.

p.addcols([4,4,4,4,4],
[0,3,6,9,12,15],
[c0,4,2,c0,4,2,c0,4,2,c0,4,2,c0,4,2],
[3, -2, 1, -3, 2.4, 1.4, 3, 2, 1, -3, 2.4, 4, 3, 2, 1],
[0,0,0,0,0],
[2,10,1,2,2],
['p1','p2','p3','p4','p5'],
['I','C','S','P','R'])

6.4.4 Comparing the coefficients of two equally sized problems
Given two problems with the same number of variables, we read their coefficient matrices into Scipy so
as to compare each row for discrepancies in the coefficients. We begin by creating two Xpress problems
and reading them from two files, prob1.lp and prob2.lp, though p1 and p2might have been created
with the module’s modeling features.

import xpress as xp
import scipy.sparse

p1 = xp.problem()
p2 = xp.problem()

p1.read('prob1.lp')
p2.read('prob2.lp')

Next we obtain the matrix representation of the coefficient matrix for both problems. Let us suppose that,
for memory reasons, we can only retrieve one million coefficients.

coef1, ind1, beg1 = [], [], []

Fair Isaac Corporation Proprietary Information 43

Chapter 6: Examples of use

coef2, ind2, beg2 = [], [], []

p1.getrows(beg1, ind1, coef1, 1000000, 0, p1.attributes.rows - 1)
p2.getrows(beg2, ind2, coef2, 1000000, 0, p2.attributes.rows - 1)

The function problem.getrows provides a richer output by filling up ind1 and ind2 with the Python
objects (i.e. Xpress variables) corresponding to the variable indices rather than the numerical indices. We
need to convert them to numerical indices using the problem.getIndex function.

ind1n = [p1.getIndex(v) for v in ind1]
ind2n = [p2.getIndex(v) for v in ind2]

The next step is to create a Compressed Sparse Row (CSR) format matrix, defined in the scipy.sparse
module, using the data from problem.getrows plus the numerical indices.

Then we convert the CSR matrix to a NumPy array of arrays, so that each row is a (non-compressed) array
to be compared in the loop below.

A1 = scipy.sparse.csr_matrix((coef1, ind1n, beg1))
A2 = scipy.sparse.csr_matrix((coef2, ind2n, beg2))

M1 = A1.toarray()
M2 = A2.toarray()

for i in range(min(p1.attributes.rows, p2.attributes.rows)):
print(M1[i] != M2[i])

The result is a few vectors of size COLS with an element-wise comparison of the coefficient vector of
each row, with True indicating discrepancies. A more meaningful representation can be given using
other functions in NumPy.

[False False True False False]
[False False False False False]
[False False False False True]
[True True False False False]
[False False False False False]

6.4.5 Combining modeling and API functions
This is an example where a problem is loaded from a file, solved, then modified by adding a Global Upper
Bound (GUB) constraint. Note that we do not know the structure of the problem when reading it, yet we
can simply extract the list of variables and use them to add a constraint.

import xpress
p = xpress.problem()

p.read("example.lp")
p.optimize()
print("solution of the original problem: ", p.getVariable(), "==>", p.getSolution())

After solving the problem, we obtain its variables through getVariable and add a constraints so that
their sum cannot be more than 1.1.

x = p.getVariable()
p.addConstraint(xpress.Sum(x) <= 1.1)
p.optimize()
print("New solution: ", p.getSolution())

Fair Isaac Corporation Proprietary Information 44

Chapter 6: Examples of use

6.4.6 A simple Traveling Salesman Problem (TSP) solver
A classical example of use of callbacks is the development of a simple solver for the well-known TSP
problem. The aim here is not to create an efficient solver (there are far better implementations), but
rather a simple solver where the user only needs to specify two callbacks: one for checking whether a
given solution forms a Hamiltonian tour and one for separating a subtour elimination constraint from the
current node solution.

After a successful solve (or an interrupted one with a feasible solution), the best Hamiltonian tour is
displayed. Note that this section omits unnecessary details (checks of return values, exceptions, etc.) of
the actual code, which can be found in the Examples/ directory.

import networkx as nx
import xpress as xp
import re, math, sys

from matplotlib import pyplot as plt

import urllib.request as ul

filename = 'dj38.tsp'

ul.urlretrieve('http://www.math.uwaterloo.ca/tsp/world/' + filename, filename)

instance = open(filename, 'r')
coord_section = False
points = {}

G = nx.Graph()

We have downloaded an instance of the TSP and now it must be read and interpreted as it does not have
a format that we know. We save in cx and cy the coordinates of all nodes in the graph, which is assumed
to be complete, i.e., all nodes are connected to one another.

for line in instance.readlines():

if re.match('NODE_COORD_SECTION.⁎', line):
coord_section = True
continue

elif re.match('EOF.⁎', line):
break

if coord_section:
coord = line.split(' ')
index = int(coord[0])
cx = float(coord[1])
cy = float(coord[2])
points[index] = (cx, cy)
G.add_node(index, pos=(cx, cy))

The next step is to define a callback function for checking if the solution forms a Hamiltonian tour, i.e., if
it connects all nodes of the graph. The callback will be passed with the method addcbpreintsol,
therefore it needs to return a tuple of two values: the first value is True if the solution should be rejected,
and the second is the new cutoff in case it has to be changed. This is not the case here, so None can be
safely returned.

After obtaining the integer solution to be checked, the function scans the graph from node 1 to see if the
solutions at one form a tour.

def check_tour(prob, G, isheuristic, cutoff):

s = []

Fair Isaac Corporation Proprietary Information 45

Chapter 6: Examples of use

prob.getlpsol(s, None, None, None)

orignode = 1
nextnode = 1
card = 0

while nextnode != orignode or card == 0:

FS = [j for j in V if j != nextnode
and s[prob.getIndex(x[nextnode,j])] == 1] # forward star

card += 1

if len(FS) < 1:
return (True, None) # reject solution if we can't close the loop

nextnode = FS[0]

If there are n arcs in the loop, the solution is feasible

return (card < n, None) # accept the cutoff: return second element as None

The second callback to be defined is a separator for subtour elimination constraints. It must return a
nonzero value if the node is deemed infeasible by the function, zero otherwise. The function addcuts is
used to insert a subtour elimination constraint.

The function works as follows: Starting from node 1, gather all connected nodes of a loop in connset. If
this set contains all nodes, then the solution is valid if integer, otherwise the function adds a subtour
elimination constraint in the form of a clique constraint with all arcs (i, j) for all i, j in connset.

def eliminate_subtour(prob, G):

s = [] # initialize s as an empty list to provide it as an output parameter

prob.getlpsol(s, None, None, None)

orignode = 1
nextnode = 1

connset = []

while nextnode != orignode or len(connset) == 0:

connset.append(nextnode)

FS = [j for j in V if j != nextnode
and s[prob.getIndex(x[nextnode, j])] == 1] # forward star

if len(FS) < 1:
return 0

nextnode = FS[0]

if len(connset) < n:

Add a subtour elimination using the nodes in connset (or, if
card(connset) > n/2, its complement)

if len(connset) <= n/2:
columns = [x[i,j] for i in connset for j in connset

if i != j]
nArcs = len(connset)

else:
columns = [x[i,j] for i in V for j in V

if not i in connset and not j in connset and i != j]
nArcs = n - len(connset)

nTerms = len(columns)

Fair Isaac Corporation Proprietary Information 46

Chapter 6: Examples of use

prob.addcuts([1], ['L'], [nArcs - 1], [0, nTerms], columns, [1] ⁎ nTerms)

return 0

We now formulate the problem with the degree constraints on each node and the objective function (the
cost of each arc (i, j) is assumed to be the Euclidean distance between i and j).

n = len(points) # number of nodes
V = range(1, n+1) # set of nodes
A = [(i,j) for i in V for j in V if i != j] # set of arcs (i.e. all pairs)

p = xp.problem()

x = {(i, j): p.addVariable(name='x_{0}_{1}'.format(i, j),
vartype=xp.binary) for (i, j) in A}

conservation_in = [xp.Sum(x[i,j] for j in V if j != i) == 1 for i in V]
conservation_out = [xp.Sum(x[j,i] for j in V if j != i) == 1 for i in V]

p.addConstraint(conservation_in, conservation_out)

xind = {(i,j): p.getIndex(x[i,j]) for (i,j) in x.keys()}

Objective function: total distance travelled
p.setObjective(xp.Sum(math.sqrt((points[i][0] - points[j][0])⁎⁎2 +

(points[i][1] - points[j][1])⁎⁎2) ⁎
x[i,j]

for (i,j) in A))

p.controls.timelimit = -20 # negative for "stop even if no solution is found"

p.addcboptnode(eliminate_subtour, G, 1)
p.addcbpreintsol(check_tour, G, 1)

We now solve the problem, and if a solution is found it is displayed using the Python library matplotlib.

p.optimize()

sol = p.getSolution()

Read solution and store it in the graph

for (i,j) in A:
if sol[p.getIndex(x[i,j])] > 0.5:

G.add_edge(i,j)

Display best tour found

pos = nx.get_node_attributes(G, 'pos')

nx.draw(G, points) # create a graph with the tour
plt.show() # display it interactively

Another solver for TSP problems is available in example_tsp_numpy.py. The two main differences
consist in the problem generation, which is now random, and in the fact that most data structures are
NumPy vectors and matrices: the optimization variables, the LP solution obtained from the
Branch-and-Bound, and the data used to check feasibility of the solutions.

6.4.7 Solving a nonconvex MIQCQP
In this example we turn the Xpress Optimizer into a solver for nonconvex MIQCQPs, i.e. problems with
nonconvex quadratic objective and/or nonconvex quadratic constraints.

Fair Isaac Corporation Proprietary Information 47

Chapter 6: Examples of use

In order to handle nonconvex quadratic constraints, we have to reformulate the problem to a MILP so that
the simplest nonlinear terms, i.e. the products of variables, are transformed into new, so-called auxiliary
variables.

Product xixj is assigned to a new variable wij so that every occurrence of that product in the problem is
replaced by wij. Assuming li and ui are the lower and upper bound on xi, respectively, we add the linear
McCormick inequalities:

■ wij ≥ lj xi + li xj - lj li

■ wij ≥ uj xi + ui xj - uj ui

■ wij ≤ lj xi + ui xj - lj ui

■ wij ≤ uj xi + li xj - uj li

The bounds on the new auxiliary variable wij are a function of the bounds on xi and xj.

Below is the code that takes care of reformulating the problem. We first have to identify all terms xixj and
create a dictionary linking each pair (i,j) to an auxiliary variable wij. The dictionary aux is used throughout
the solver and contains this information. The function create_prob checks all bilinear terms and
creates aux and the McCormick inequalities.

def create_prob(filename):

[...]

x = p.getVariable()

aux = {} # Dictionary containing the map (x_i,x_j) --> y_ij

[...]

p.addConstraint(
[aux[i, j] >= lb[j]⁎x[i] + lb[i]⁎x[j] - lb[i] ⁎ lb[j]
for (i, j) in aux.keys() if max(-lb[i], -lb[j]) < xp.infinity],
[aux[i, j] >= ub[j]⁎x[i] + ub[i]⁎x[j] - ub[i] ⁎ ub[j]
for (i, j) in aux.keys() if max(ub[i], ub[j]) < xp.infinity],
[aux[i, j] <= ub[j]⁎x[i] + lb[i]⁎x[j] - lb[i] ⁎ ub[j]
for (i, j) in aux.keys() if max(-lb[i], ub[j]) < xp.infinity],
[aux[i, j] <= lb[j]⁎x[i] + ub[i]⁎x[j] - ub[i] ⁎ lb[j]
for (i, j) in aux.keys() if max(ub[i], -lb[j]) < xp.infinity])

We also needs to tell the Optimizer that the newly created auxiliary variables and the variables that used
to appear in bilinear terms should be protected against deletion by the presolver.

securecols = list(aux.values())
secureorig = set()

for i, j in aux.keys():
secureorig.add(i)
secureorig.add(j)

securecols += list(secureorig)

p.loadsecurevecs(rowind=None, colind=securecols)

The creation of a single auxiliary variable is done in addaux, where its bounds are created and, depending
on whether it is the product of two variables or the square of one, it receives a different treatment.

def addaux(aux, p, i, j, lb, ub, vtype):

Fair Isaac Corporation Proprietary Information 48

Chapter 6: Examples of use

Find bounds of auxiliary first
if i != j:

bilinear term
l, u = bdprod(lb[i], ub[i], lb[j], ub[j])

elif lb[i] >= 0:
l, u = lb[i]⁎⁎2, ub[i]⁎⁎2

elif ub[i] <= 0:
l, u = ub[i]⁎⁎2, lb[i]⁎⁎2

else:
l, u = 0, max([lb[i]⁎⁎2, ub[i]⁎⁎2])

After setting the bounds on wij, we determine its type and create the corresponing xp.var object.

if vtype[i] == 'B' and vtype[j] == 'B':
t = xp.binary

elif (vtype[i] == 'B' or vtype[i] == 'I') and \
(vtype[j] == 'B' or vtype[j] == 'I'):
t = xp.integer

else:
t = xp.continuous

Add auxiliaries
aux[i, j] = p.addVariable(lb=l, ub=u, vartype=t,

name='aux_{0}_{1}'.format(
p.getVariable(i).name,
p.getVariable(j).name))

return aux[i, j]

Quadratic constraints and the quadratic objective (if any) are converted in convQaux, where they are
replaced by a linear expression containing auxiliary variables.

def convQaux(p, aux, mstart, ind, coef, row, lb, ub, vtype):

rcols = []
rrows = []
rcoef = []

for i,__ms in enumerate(mstart[:-1]):
for j in range(mstart[i], mstart[i+1]):

J = p.getIndex(ind[j])

if (i, J) not in aux.keys():
y = addaux(aux, p, i, J, lb, ub, vtype)

else:
y = aux[i, J]

if row < 0: # objective
mult = .5

else:
mult = 1

if i != J:
coe = 2 ⁎ mult ⁎ coef[j]

else:
coe = mult ⁎ coef[j]

if row < 0:
p.chgobj([y], [coe])

else:
rcols.append(y)
rrows.append(row)
rcoef.append(coe)

if row >= 0:

Fair Isaac Corporation Proprietary Information 49

Chapter 6: Examples of use

This is a quadratic constraint, not the objective function
Add linear coefficients for newly introduced variables
p.chgmcoef(rrows, rcols, rcoef)
Remove quadratic matrix
p.delqmatrix(row)

else:

Objective: Remove quadratic part
indI = []
for i in range(len(mstart) - 1):

indI.extend([i] ⁎ (mstart[i+1] - mstart[i]))
Set all quadratic elements to zero
p.chgmqobj(indI, ind, [0] ⁎ mstart[-1])

The new problem, called a reformulation, is then solved as a MILP with a few callbacks. Given that the
problem is nonconvex, we need to branch on continuous variables, those that appear in bilinear terms,
and we also need to keep adding McCormick inequalities when the bounds change. This is because in
branch-and-bound algorithms for nonconvex problems the linear relaxation should be exact at the
extremes of the variable bound ranges.

Another callback is to decide whether to accept or not a solution that was found by the
branch-and-bound: because the constraints linking w to x are missing, we must make sure that they are
satisfied by a solution, and must refuse a solution that does not satisfy wij = xixj.

def solveprob(p, aux):

p.addcbpreintsol(cbchecksol, aux, 1)
p.addcboptnode(cbaddcuts, aux, 3)
p.addcbchgbranchobject(cbbranch, aux, 1)

p.mipoptimize()

The callback functions are fundamental. The branch callback checks whether the auxiliary variables wij
are satisfied, and if not it creates a branching object on either xi or xj. Due to the presolved nature of the
problem at this point in the branch-and-bound, care must be applied in handling the variable indices, as
they might have changed by the presolver to allow for a smaller problem.

def cbbranch(prob, aux, branch):

lb, ub = getCBbounds(prob, len(sol))

x = prob.getVariable() # presolved variables

rowmap = []
colmap = []

prob.getpresolvemap(rowmap, colmap)

invcolmap = [-1 for _ in lb]

for i, m in enumerate(colmap):
invcolmap[m] = i

Check if all auxiliaries are equal to their respective bilinear
term. If so, we have a feasible solution

sol = np.array(sol)

discr = sol[Aux_ind] - sol[Aux_i] ⁎ sol[Aux_j]
discr[Aux_i == Aux_j] = np.maximum(0, discr[Aux_i == Aux_j])
maxdiscind = np.argmax(np.abs(discr))

if abs(discr[maxdiscind]) < eps:
return branch

Fair Isaac Corporation Proprietary Information 50

Chapter 6: Examples of use

i,j = Aux_i[maxdiscind], Aux_j[maxdiscind]

yind = prob.getIndex(aux[i, j])

For terms of the form wii = xi2, branching might still be necessary as the curve defining it is a nonconvex
set.

if i == j:

Test of violation is done on the original
space. However, the problem variables are scrambled with invcolmap

if sol[i] > lb[i] + eps and \
sol[i] < ub[i] - eps and \
sol[yind] > sol[i]⁎⁎2 + eps and \
sol[yind] - lb[i]⁎⁎2 <= (ub[i] + lb[i]) ⁎ (sol[i] - lb[i]) - eps:

Can't separate, must branch. Otherwise OA or secant
cut separated above should be enough

brvarind = invcolmap[i]
brpoint = sol[i]
brvar = x[brvarind]
brleft = brpoint
brright = brpoint

assert(brvarind >= 0)

if brvar.vartype in [xp.integer, xp.binary]:
brleft = math.floor(brpoint + 1e-5)
brright = math.ceil(brpoint - 1e-5)

b = xp.branchobj(prob, isoriginal=False)

b.addbranches(2)

addrowzip(prob, b, 0, 'L', brleft, [i], [1])
addrowzip(prob, b, 1, 'G', brright, [i], [1])

New variable bounds are not enough, add new McCormick
inequalities for y = x⁎⁎2: suppose x0,y0 are the current
solution values for x,y, yp = x0⁎⁎2 and xu,yu = xu⁎⁎2 are their
upper bound, and similar for lower bound. Then these two
rows must be added, one for each branch:
#
y - yp <= (yl-yp)/(xl-x0) ⁎ (x - x0) <===>
(yl-yp)/(xl-x0) ⁎ x - y >= (yl-yp)/(xl-x0) ⁎ x0 - yp
#
y - yp <= (yu-yp)/(xu-x0) ⁎ (x - x0) <===>
(yu-yp)/(xu-x0) ⁎ x - y >= (yu-yp)/(xu-x0) ⁎ x0 - yp
#
Obviously do this only for finite bounds

ypl = brleft⁎⁎2
ypr = brright⁎⁎2

if lb[i] > -1e7 and sol[i] > lb[i] + eps:

yl = lb[i]⁎⁎2
coeff = (yl - ypl) / (lb[i] - sol[i])

if coeff != 0:
addrowzip(prob, b, 0, 'G', coeff⁎sol[i] - ypl,

[i, yind], [coeff, -1])

if ub[i] < 1e7 and sol[i] < ub[i] - eps:

yu = ub[i]⁎⁎2

Fair Isaac Corporation Proprietary Information 51

Chapter 6: Examples of use

coeff = (yu - ypr) / (ub[i] - sol[i])

if coeff != 0:
addrowzip(prob, b, 1, 'G', coeff⁎sol[i] - ypr,

[i, yind], [coeff, -1])

return b

Similarly for bilinear terms, we must choose where to branch and on which variable.

else:

lbi0, ubi0 = lb[i], ub[i]
lbi1, ubi1 = lb[i], ub[i]

lbj0, ubj0 = lb[j], ub[j]
lbj1, ubj1 = lb[j], ub[j]

No cut violated, must branch
if min(sol[i] - lb[i], ub[i] - sol[i]) / (1 + ub[i] - lb[i]) > \

min(sol[j] - lb[j], ub[j] - sol[j]) / (1 + ub[j] - lb[j]):
lbi1 = sol[i]
ubi0 = sol[i]
brvar = i

else:
lbj1 = sol[j]
ubj0 = sol[j]
brvar = j

alpha = 0.2

brvarind = invcolmap[brvar]
brpoint = sol[brvar]
brleft = brpoint
brright = brpoint

if x[brvarind].vartype in [xp.integer, xp.binary]:
brleft = math.floor(brpoint + 1e-5)
brright = math.ceil(brpoint - 1e-5)

b = xp.branchobj(prob, isoriginal=False)

b.addbranches(2)

addrowzip(prob, b, 0, 'L', brleft, [brvar], [1])
addrowzip(prob, b, 1, 'G', brright, [brvar], [1])

As for the i==j case, the variable branch is
insufficient, so add updated McCormick inequalities.
There are two McCormick inequalities per changed bound:
#
y >= lb[j] ⁎ x[i] + lb[i] ⁎ x[j] - lb[j] ⁎ lb[i] ---> add to branch 1
y >= ub[j] ⁎ x[i] + ub[i] ⁎ x[j] - ub[j] ⁎ ub[i] ---> add to branch 0
y <= lb[j] ⁎ x[i] + ub[i] ⁎ x[j] - lb[j] ⁎ ub[i] ---> add to branch 1 if x[brvarind] == j, 0 if x[brvarind] == i
y <= ub[j] ⁎ x[i] + lb[i] ⁎ x[j] - ub[j] ⁎ lb[i] ---> add to branch 1 if x[brvarind] == i, 0 if x[brvarind] == j

addrowzip(prob, b, 0, 'G', - ubi0 ⁎ ubj0, [yind, i, j], [1, -ubj0, -ubi0])
addrowzip(prob, b, 1, 'G', - lbi1 ⁎ lbj1, [yind, i, j], [1, -lbj1, -lbi1])

if brvarind == i:
addrowzip(prob, b, 0, 'L', - lbj0 ⁎ ubi0, [yind, i, j], [1, -lbj0, -ubi0])
addrowzip(prob, b, 1, 'L', - ubj1 ⁎ lbi1, [yind, i, j], [1, -ubj1, -lbi1])

else:
addrowzip(prob, b, 0, 'L', - ubj0 ⁎ lbi0, [yind, i, j], [1, -ubj0, -lbi0])
addrowzip(prob, b, 1, 'L', - lbj1 ⁎ ubi1, [yind, i, j], [1, -lbj1, -ubi1])

return b

If no branching rule was found, return none

Fair Isaac Corporation Proprietary Information 52

Chapter 6: Examples of use

return branch

The callback for checking a solution is straightforward: for all pairs ij, check if the corresponding identity
wij = xi xj is satisfied, and if not, simply reject the solution.

def cbchecksol(prob, aux, soltype, cutoff):

global Aux_i, Aux_j, Aux_ind

if (prob.attributes.presolvestate & 128) == 0:
return (1, cutoff)

sol = []

Retrieve node solution
try:

prob.getlpsol(x=sol)
except:

return (1, cutoff)

sol = np.array(sol)

Check if all auxiliaries are equal to their respective bilinear
term. If so, we have a feasible solution

refuse = 1 if np.max(np.abs(sol[Aux_i] ⁎ sol[Aux_j] - sol[Aux_ind])) > eps else 0

Return with refuse != 0 if solution is rejected, 0 otherwise;
and same cutoff
return (refuse, cutoff)

An important part of this nonconvex solver is a function that computes a new feasible solution. The one
we attempt here is rather trivial and probably not able to find good solutions, but one could add other
algorithms, which for example might just use an alternative solver, and find a feasible solution, regardless
of how good.

def cbfindsol(prob, aux):

sol = []

try:
prob.getlpsol(x=sol)

except:
return 0

xnew = sol[:]

Round solution to nearest integer
for i,t in enumerate(var_type):

if t == 'I' or t == 'B' and \
xnew[i] > math.floor(xnew[i] + prob.controls.miptol) + prob.controls.miptol:
xnew[i] = math.floor(xnew[i] + .5)

for i, j in aux.keys():
yind = prob.getIndex(aux[i, j])
xnew[yind] = xnew[i] ⁎ xnew[j]

prob.addmipsol(xnew)

return 0

The function for adding McCormick inequalities is perhaps the most important as it allows for the lower
bound in the branch-and-bound to get tighter at every node. All violated inequalities are added for all pairs
ij.

Fair Isaac Corporation Proprietary Information 53

Chapter 6: Examples of use

def cbaddmccormickcuts(prob, aux, sol):
lb, ub = getCBbounds(prob, len(sol))

cuts = []

Check if all auxiliaries are equal to their respective bilinear
term. If so, we have a feasible solution
for i, j in aux.keys():

yind = prob.getIndex(aux[i, j])

if i == j:

Separate quadratic term

if sol[yind] < sol[i]⁎⁎2 - eps and \
abs(sol[i]) < xp.infinity / 2:

xk = sol[i]

ox = xk
oy = ox ⁎⁎ 2

Add Outer Approximation cut y >= xs^2 + 2xs⁎(x-xs)
<===> y - 2xs⁎x >= -xs^2
cuts.append((TYPE_OA, 'G', - ox⁎⁎2, [yind, i],

[1, -2⁎ox]))

Otherwise, check if secant can be of help: y0 - xl⁎⁎2 >
(xu⁎⁎2 - xl⁎⁎2) / (xu - xl) ⁎ (x0 - xl)
elif sol[yind] > sol[i]⁎⁎2 + eps and \

sol[yind] - lb[i]⁎⁎2 > (ub[i] + lb[i]) ⁎ (sol[i] - lb[i]) \
+ eps and abs(lb[i] + ub[i]) < xp.infinity / 2:
cuts.append((TYPE_SECANT, 'L',

lb[i]⁎⁎2 - (ub[i] + lb[i]) ⁎ lb[i],
[yind, i], [1, - (lb[i] + ub[i])]))

elif abs(sol[yind] - sol[i]⁎sol[j]) > eps:

Separate bilinear term, where i != j. There might be at
least one cut violated

if sol[yind] < lb[j]⁎sol[i] + lb[i]⁎sol[j] - lb[i]⁎lb[j] - eps:
if lb[i] > -xp.infinity / 2 and lb[j] > -xp.infinity / 2:

cuts.append((TYPE_MCCORMICK, 'G', - lb[i] ⁎ lb[j],
[yind, i, j], [1, -lb[j], -lb[i]]))

elif sol[yind] < ub[j]⁎sol[i] + ub[i]⁎sol[j] - ub[i]⁎ub[j] - eps:
if ub[i] < xp.infinity / 2 and ub[j] < xp.infinity / 2:

cuts.append((TYPE_MCCORMICK, 'G', - ub[i] ⁎ ub[j],
[yind, i, j], [1, -ub[j], -ub[i]]))

elif sol[yind] > lb[j]⁎sol[i] + ub[i]⁎sol[j] - ub[i]⁎lb[j] + eps:
if ub[i] < xp.infinity / 2 and lb[j] > -xp.infinity / 2:

cuts.append((TYPE_MCCORMICK, 'L', - ub[i] ⁎ lb[j],
[yind, i, j], [1, -lb[j], -ub[i]]))

elif sol[yind] > ub[j]⁎sol[i] + lb[i]⁎sol[j] - lb[i]⁎ub[j] + eps:
if lb[i] > -xp.infinity / 2 and ub[j] < xp.infinity / 2:

cuts.append((TYPE_MCCORMICK, 'L', - lb[i] ⁎ ub[j],
[yind, i, j], [1, -ub[j], -lb[i]]))

Done creating cuts. Add them to the problem

for (t, s, r, I, C) in cuts: # cuts might be the empty list
mcolsp, dvalp = [], []
drhsp, status = prob.presolverow(s, I, C, r, prob.attributes.cols,

mcolsp, dvalp)
if status >= 0:

prob.addcuts([t], [s], [drhsp], [0, len(mcolsp)], mcolsp, dvalp)

return 0

Fair Isaac Corporation Proprietary Information 54

Chapter 6: Examples of use

Another useful component of any nonconvex solver is a procedure to tighten the variable bounds based
on information that is known on other variables. For example, if new bounds are inferred on wij, possible
tighter lower or upper bounds can be deduced on xi and/or xj.

def cbboundreduce(prob, aux, sol):
cuts = []

lb, ub = getCBbounds(prob, len(sol))

Check if bounds on original variables can be reduced based on
bounds on auxiliary ones. The other direction is already taken
care of by McCormick and tangent/secant cuts.

feastol = prob.controls.feastol

for (i,j),a in aux.items():

auxind = prob.getIndex(a)

lbi = lb[i]
ubi = ub[i]
lba = lb[auxind]
uba = ub[auxind]

if i == j: # check if upper bound is tight w.r.t. bounds on
x[i]

Forward propagation for term x[i]^2: from new bounds on x[i],
infer new bound for x[i]^2.

if uba > max(lbi⁎⁎2, ubi⁎⁎2) + feastol:
cuts.append((TYPE_BOUNDREDUCE, 'L', max(lbi⁎⁎2, ubi⁎⁎2), [auxind], [1]))

if lbi > 0 and lba < lbi⁎⁎2 - feastol:
cuts.append((TYPE_BOUNDREDUCE, 'G', lbi⁎⁎2, [auxind], [1]))

elif ubi < 0 and lba < ubi⁎⁎2 - feastol:
cuts.append((TYPE_BOUNDREDUCE, 'G', ubi⁎⁎2, [auxind], [1]))

if uba < -feastol:
return 1 # infeasible node

else:
if uba < lbi⁎⁎2 - feastol:

if lbi > 0:
return 1 # infeasible node

else:
cuts.append((TYPE_BOUNDREDUCE, 'G', -math.sqrt(uba), [i], [1]))

if uba < ubi⁎⁎2 - feastol:
if ubi < - feastol:

return 1
else:

cuts.append((TYPE_BOUNDREDUCE, 'L', math.sqrt(uba), [i], [1]))

if lba > prob.controls.feastol and lbi > 0 and lbi⁎⁎2 < lba - feastol:
cuts.append((TYPE_BOUNDREDUCE, 'G', math.sqrt(lba), [i], [1]))

else:

tlb, tub = bdprod(lb[i], ub[i], lb[j], ub[j])

if lba < tlb - feastol:
cuts.append((TYPE_BOUNDREDUCE, 'G', tlb, [auxind], [1]))

if uba > tub + feastol:
cuts.append((TYPE_BOUNDREDUCE, 'L', tub, [auxind], [1]))

For simplicity let's just assume lower bounds are nonnegative

lbj = lb[j]

Fair Isaac Corporation Proprietary Information 55

Chapter 6: Examples of use

ubj = ub[j]

if lbj >= 0 and lbi >= 0:

if lbi⁎ubj < lba - feastol:
cuts.append((TYPE_BOUNDREDUCE, 'G', lba / ubj, [i], [1]))

if lbj⁎ubi < lba - feastol:
cuts.append((TYPE_BOUNDREDUCE, 'G', lba / ubi, [j], [1]))

if lbi⁎ubj > uba + feastol:
cuts.append((TYPE_BOUNDREDUCE, 'L', uba / lbi, [j], [1]))

if lbj⁎ubi > uba + feastol:
cuts.append((TYPE_BOUNDREDUCE, 'L', uba / lbj, [i], [1]))

Done creating cuts. Add them to the problem

for (t, s, r, I, C) in cuts: # cuts might be the empty list

mcolsp, dvalp = [], []
drhsp, status = prob.presolverow(s, I, C, r, prob.attributes.cols,

mcolsp, dvalp)
if status >= 0:

if len(mcolsp) == 0:
continue

elif len(mcolsp) == 1:
if s == 'G':

btype = 'L'
elif s == 'L':

btype = 'U'
else: # don't want to add an equality bound reduction

continue

assert(dvalp[0] > 0)

prob.chgbounds(mcolsp,[btype],[drhsp/dvalp[0]])
else:

prob.addcuts([t], [s], [drhsp], [0, len(mcolsp)], mcolsp, dvalp)

return 0

There are a few other functions not shown here that are used in the example. These are functions for
retrieving bounds withing a callback and other service functions. The example file provides commented
code that can be used to improve the solver.

6.5 Translated Mosel examples
The subdirectory modeling_examples of the Python examples directory contains a few examples from
the Mosel distribution that were adapted to the Xpress Python interface:

■ blend.py, blend2.py: variants of an oil blending optimization model;

■ burglari.py, burglar.py, burglarl.py, burglar_rec.py: several variants of the
knapsack problem

■ catenary.py: optimization model for finding the position of all elements of a hanging chain

■ chess.py, chess2.py: two variants on the simple problem of production management;

■ coco.py: Multiperiod production planning problem;

■ complex_test.py: an example of complex numbers (a native type in Python

■ fstns.py: the problem of firestation siting;

Fair Isaac Corporation Proprietary Information 56

Chapter 6: Examples of use

■ date_test.py: an example of dates using the datatimemodule;

■ pplan.py: a production planning example;

■ trans.py: a transportation problem.

Fair Isaac Corporation Proprietary Information 57

CHAPTER 7

Reference Manual

7.1 Using this chapter
This chapter provides a list of functions available through the Xpress Python interface. For each function,
the synopsis and an example are given.

In keeping with the Xpress Optimizer’s C API, the name and order of the parameters used in these
functions has been retained. However, in order to make optimal use of the greater flexibility provided by
Python, the argument lists and the return value of some functions has been modified so as to obtain a
more compact notation.

For example, for functions with a list as an argument, the number of elements of the list is not part of the
arguments. Compare the call to the C function XPRSaddrows, where the parameters newrow and
newnzmust be passed, to its Python counterpart:

(C) result = XPRSaddrows (prob, n, nnz, type,
rhs, NULL, mstart, indices, values);

(Python) p.addrows(type, rhs, None, mstart, indices, values)

As of version 8.12, the names in the C API have undergone a change in order to have more expressive
names in the C API. The Python API was updated accordingly. The old names still work but are now
deprecated. This reference documentation and all error messages refer to the new names.

In the Python version, the prob pointer is not provided as obviously addrows is a method of the
problem class. The C variables n and nnz, which are assigned to arguments newrow and newnz,
respectively, of the call to XPRSaddrows, are not necessary in the Python call as the length of rhs,
mstart, etc. is inferred from the passed lists. If the lengths of all lists passed as arguments are not
consistent with one another, an error will be returned.

Because lists (or tuples, generators, iterators, sequences) can be used as parameters of all functions in
this manual, their size does not need to be passed explicitly as it is detected from the parameter itself.
The interface will check the consistency and the content if the vector is referred to the variables or
constraints, and will return an error in case of a mismatch.

When passing (lists, arrays, dictionaries of) variables, constraints, or SOSs, there are three ways of
referring to these entities: by numerical index, by Python object, and by name. For instance, consider the
problem.getSolutionmethod, which admits both an empty argument and one or a list of variables.
If we define a variable with a name as follows

p = xpress.problem()
x = p.addVariable(name='myvar')

then we can refer to its index (which will be 0 here as it is the first variable added to the problem), by its
object name, i.e., x, and by its given name "myvar", in the three following (equivalent) ways:

Fair Isaac Corporation Proprietary Information 58

Chapter 7: Reference Manual

print('x is ', p.getSolution(x))
print('x is ', p.getSolution(0))
print('x is ', p.getSolution('myvar'))

Another difference between the Python methods and their C API counterpart is that some output
arguments are no longer passed (by reference) as arguments to the Python functions but rather are (part
of) the value returned by the function. Where multiple scalar output parameters are returned by the C API
function, some Python functions return a tuple containing all such output values.

The non-scalar parameters can instead be specified as lists, NumPy arrays, sequences, or generators
when applicable. The output non-scalar parameters are stored as lists.

Optional parameters can be specified as None or skipped, provided the subsequent arguments are
explicitly declared with their parameter name as Python allows:

p.addrows(rowtype=type, rhs=rhs, start=mstart,
colind=indices, rowcoef=values)

Because the Python interface relies on the Xpress Optimizer C Application Program Interface, it is
advisable to complement the knowledge in this reference manual with that of the Xpress Optimizer
reference manual.

Format of the reference
The descriptions in the following pages report, for each function:

■ Name;

■ A short description of its purpose;

■ Its synopsis, i.e., how it must be called. If it returns a value, then it will be presented as a Python
assignment statement, otherwise it will be just shown as a call without a returned value; also, if it is
a module function rather than a problem-specific function, it will be prefixed by xpress;

■ A description of its arguments and whether each argument is optional;

■ Error values;

■ Associated controls;

■ A sample usage of the function;

■ Further useful information about the function;

■ Related functions, parameters.

Note that all arguments defined in the remainder of this chapter as "array" or "vector" can be many other
Python non-scalar objects: lists, generators, and NumPy arrays are admissible as parameters, except
when specified (e.g. getControl). However, for simplicity we refer to non-scalar arguments as array.

Finally, some attributes and controls are referred to as uppercase words for clarity. For example, ROWS
indicates the attribute "rows" of a problem, hence it is equivalent to problem.attributes.rows.

7.2 Classes of the Xpress module
Below is a list of classes used in all operations of the xpressmodule. While for a few of these classes an
explicit constructor exists (for instance, xpress.problem and xpress.sos), objects of other classes,
like xpress.linterm and xpress.expression, cannot be created with a constructor methods but
are created using algebraic operators applied to constants, variables, and other expressions.

Fair Isaac Corporation Proprietary Information 59

Chapter 7: Reference Manual

xpress.attr xpress.branchobj xpress.ctrl
xpress.constraint xpress.expression xpress.linterm
xpress.nonlin xpress.problem xpress.poolcut
xpress.quadterm xpress.sos xpress.var
xpress.voidstar xpress.xprsobject

7.3 Global methods of the Xpress module
Below is a list of functions that are invoked from the Xpress module, i.e., they are not methods of the
problem or the branchobj class and can be invoked after the import statement. The invocation is
therefore as in the example that follows:

import xpress as xp
print(xp.getlasterror())

xpress.init xpress.free xpress.addcbmsghandler
xpress.getbanner xpress.getcheckedmode xpress.getdaysleft
xpress.getlasterror xpress.getlicerrmsg xpress.getversion
xpress.getversionnumbers xpress.Sum xpress.Dot
xpress.setcheckedmode xpress.And xpress.Or
xpress.pwl xpress.setdefaultcontrol xpress.setdefaults
xpress.featurequery xpress.removecbmsghandler xpress.setarchconsistency
xpress.manual xpress.examples xpress.getcomputeallowed
xpress.setcomputeallowed

7.4 Methods of the class problem
The tables below show all methods of the class problem of the Xpress Python interface, with the
exception of callbacks, which are listed separately. Their invocation is therefore to be preceded by a
problem object (the class prefix problem. is omitted in the table for compactness), as follows:

import xpress as xp
p = xp.problem()
x = p.addVariable()
p.setObjective(x + 3 ⁎ x⁎⁎2 + 2)

Fair Isaac Corporation Proprietary Information 60

Chapter 7: Reference Manual

addcols addConstraint addgencons addIndicator
addmipsol addnames addObjective addpwlcons
addqmatrix addrows addsetnames addSOS
addVariable basisstability btran calcobjective
calcreducedcosts calcslacks calcsolinfo chgbounds
chgcoef chgcoltype chgglblimit chgmcoef
chgmqobj chgobj chgobjsense chgqobj
chgqrowcoeff chgrhs chgrhsrange chgrowtype
copy copycontrols crossoverlpsol delConstraint
delgencons delpwlcons delqmatrix delSOS
delVariable dumpcontrols estimaterowdualranges fixmipentities
ftran

getAttrib getbasis getbasisval getcoef
getcols getcoltype getConstraint getControl
getdirs getDual getdualray getgencons
getmipentities getiisdata getIndex getIndexFromName
getindicators getinfeas getlastbarsol getlasterror
getlb getlpsol getlpsolval getmessagestatus
getmipsol getmipsolval getmqobj getnamelist
getobj getObjVal getOutputEnabled getpivotorder
getpivots getpresolvebasis getpresolvemap getpresolvesol
getprimalray getProbStatus getProbStatusString getpwlcons
getqobj getqrowcoeff getqrowqmatrix getqrowqmatrixtriplets
getqrows getRCost getrhs getrhsrange
getrows getrowtype getscaledinfeas getSlack
getSolution getSOS getub getunbvec
getVariable hasdualray hasprimalray

iisall iisclear iisfirst iisisolations
iisnext iisstatus iiswrite loadbasis
loadbranchdirs loaddelayedrows loaddirs loadlpsol
loadmipsol loadmodelcuts loadpresolvebasis loadpresolvedirs
loadproblem loadsecurevecs lpoptimize mipoptimize
name objsa optimize postsolve
presolverow read readbasis readbinsol
readdirs readslxsol refinemipsol repairinfeas
repairweightedinfeas repairweightedinfeasbounds restore reset
rhssa save scale setControl
setdefaults setindicators setlogfile setmessagestatus
setObjective setOutputEnabled setprobname strongbranch
tune tuneprobsetfile tunerreadmethod tunerwritemethod
write writebasis writebinsol writedirs
writeprtsol writeslxsol writesol

Fair Isaac Corporation Proprietary Information 61

Chapter 7: Reference Manual

The following table contains the problem functions to be called for nonlinear problems.

addcoefs adddfs addtolsets
addvars cascade cascadeorder
chgcascadenlimit chgdeltatype chgdf
chgrowstatus chgrowwt chgtolset
chgvar construct delcoefs
deltolsets delvars evaluatecoef
evaluateformula fixpenalties getcoefformula
getcoefs getcolinfo getdf
getrowinfo getrowstatus getrowwt
getslpsol gettolset getvar
loadcoefs loaddfs loadtolsets
loadvars msaddcustompreset msaddjob
msaddpreset msclear nlpchgformula
nlpchgformulastr nlpgetformula nlpgetformulastr
nlpsetinitval presolve printmemory
printevalinfo reinitialize scaling
setcurrentiv slpchgcoef slpchgcoefstr
slpgetcoefformula slpgetcoefstr unconstruct
updatelinearization validate validatekkt
validaterow validatevector

7.5 Methods for branching objects
The following pages present the methods of the branchobj class, i.e., the methods used when creating
and manipulating branching objects. Their invocation can be as follows:

import xpress as xp
b = xp.branchobj()
b.addbranches(3)

branchobj.addbounds branchobj.addbranches branchobj.addcuts
branchobj.addrows branchobj.getbounds branchobj.getbranches
branchobj.getid branchobj.getlasterror branchobj.getrows
branchobj.setpreferredbranch branchobj.setpriority branchobj.store
branchobj.validate

7.6 Methods for adding/removing callbacks of a prob-
lem object
The following pages present methods that can be called from a problem before optimization has started,
to add or remove callbacks. All these methods are part of the problem class and have to be instantiated
from a problem object.

Fair Isaac Corporation Proprietary Information 62

Chapter 7: Reference Manual

addcbbariteration removecbbariteration
addcbbarlog removecbbarlog
addcbchgbranchobject removecbchgbranchobject
addcbchecktime removecbchecktime
addcbcutlog removecbcutlog
addcbdestroymt removecbdestroymt
addcbgapnotify removecbgapnotify
addcbmiplog removecbmiplog
addcbinfnode removecbinfnode
addcbintsol removecbintsol
addcblplog removecblplog
addcbmessage removecbmessage
addcbmipthread removecbmipthread
addcbnewnode removecbnewnode
addcbnodecutoff removecbnodecutoff
addcbnodelpsolved removecbnodelpsolved
addcboptnode removecboptnode
addcbpreintsol removecbpreintsol
addcbprenode removecbprenode
addcbusersolnotify removecbusersolnotify
addcbbeforeobjective removecbbeforeobjective
addcbafterobjective removecbafterobjective

7.7 Methods to be used within a callback of a problem
object
The following methods can be called from within a callback function that has been passed in one of the
problem.addcb⁎methods. Calling these functions outside of a callback may result in an error and
trigger termination of the optimization process. We provide two tables: one is for the Optimizer and
another for the nonlinear solvers.

copycallbacks delcpcuts delcuts
getcpcutlist getcpcuts getcutlist
getcutmap getcutslack interrupt
loadcuts storecuts strongbranchcb
addcuts

setcbcascadeend setcbcascadestart setcbcascadevar
setcbcascadevarfail setcbcoefevalerror setcbconstruct
setcbdestroy setcbdrcol setcbintsol
setcbiterend setcbiterstart setcbitervar
setcbmessage setcbmsjobend setcbmsjobstart
setcbmswinner setcboptnode setcbprenode
setcbpreupdatelinearization setcbslpend setcbslpnode
setcbslpstart

Fair Isaac Corporation Proprietary Information 63

Chapter 7: Reference Manual

7.8 Xpress base classes

Fair Isaac Corporation Proprietary Information 64

Chapter 7: Reference Manual

xpress.attr

Purpose
Internal object class used for the attributes of an xpress.problem. The user can read attributes from a
problem, but cannot create objects of this class. Also, an attribute of a problem may be read, but it
cannot be set.

Example
The following example creates a problem and then prints one of its attributes:

import xpress as xp

p = xp.problem(x)

x = [p.addVariable() for _ in range(10)]

print(p.attributes.cols, "variables") # will print "10 variables"

Related topics
problem.getAttrib.

Fair Isaac Corporation Proprietary Information 65

Chapter 7: Reference Manual

xpress.branchobj

Purpose
Class for branching objects. These objects are created by the user within a callback when directing a
branch-and-bound solve toward different branching decisions.

Synopsis
b = xpress.branchobj(prob, branches=None, isoriginal=True)

Arguments
prob Problem object.
branches List or tuple of branching decisions. If it is a tuple, its members are constraints of distinct

branches; if it is a list, its members must be either tuples of branching constraints, each tuple for
a single branch.

isoriginal
False Column indices should refer to the current (presolved) node problem;
True Column indices should refer to the original matrix.

Fair Isaac Corporation Proprietary Information 66

Chapter 7: Reference Manual

xpress.constraint

Description
Class representing linear, quadratic, and nonlinear constraints.

Attributes
name Name of the constraint.
type Type of the constraint, one of:

xpress.leq a ≤ constraint;
xpress.eq an equality constraint;
xpress.geq a ≥ constraint;
xpress.rng a range constraint;
xpress.nonbinding a free constraint.

rhs Right-hand side of the constraint.
rhsrange Right-hand side range value for the constraint.
index Index of the constraint in the Optimization problem. None for constraints that have not yet

been added to a problem (and for unlinked constraints).
lb Lower bound on the constraint expression (read-only).
ub Upper bound on the constraint expression (read-only).

Constructors
c = xpress.constraint(constraint=None, body=None, lb=-xpress.infinity,
ub=xpress.infinity, type=None, rhs=None, name=’’, rhsrange=None)

Constructor detail

xpress.constraint

Synopsis c = xpress.constraint(constraint=None, body=None,
lb=-xpress.infinity, ub=xpress.infinity, type=None, rhs=None,
name=’’, rhsrange=None)

Arguments constraint The constraint, written as a ==, <=, or >= condition between two expressions.
Variables can appear on either or both sides of the sign. Example: x1 + 2 * x2 <= 4

body An expression indicating the function to be constrained between lb and ub or by rhs
with an assigned type. It should not be used when constraint is defined. Example:
3 * x1 + x2

lb Lower bound on body.
ub Upper bound on body.
type Type of the constraint, one of:

xpress.leq for ≤ constraints;
xpress.eq for equality constraints;
xpress.geq for ≥ constraints;
xpress.rng for range constraints.

rhs Right-hand side of the constraint if type is defined. It may not be specified if lb or ub
are.

name Name of the constraint.
rhsrange Right-hand side range of the constraint. rhs argument must also be specified. It

may not be specified if lb or ub are.

Example Constraint declared without the explicit constructor:

Fair Isaac Corporation Proprietary Information 67

Chapter 7: Reference Manual

myconstr = x1 + x2 ⁎ (x2 + 1) <= 4

One or more constraints (or lists of constraints) can be added to a problem via the
addConstraint method:

m.addConstraint(myconstr)
m.addConstraint(v1 + v2 <= 3)
m.addConstraint(x[i] + y[i] <= 2 for i in range(10))

The constraint constructor argument is provided so that constraints defined with an
inequality can be assigned a name:

myconstr = xp.constraint(x1 + x2 ⁎ (x2 + 1) <= 4, name='myconstr')

In order to help formulate compact problems, the Sum operator of the xpress module can be
used to express sums of expressions. Its argument is a list of expressions (linear or quadratic):

m.addConstraint(xp.Sum([y[i] for i in range(10)]) <= 1)
m.addConstraint(xp.Sum([x[i]⁎⁎2 for i in range(9)]) <= x[9])

See also problem.addConstraint.

Fair Isaac Corporation Proprietary Information 68

Chapter 7: Reference Manual

xpress.ctrl

Purpose
Internal object class used for the controls of an xpress.problem. The user can read and write controls
for a problem, but cannot create objects of this class.

Example
The following example creates a problem and then reads and sets a few of its controls:

import xpress as xp

p = xp.problem()

x = [p.addVariable() for _ in range(10)]

p.addConstraint(xp.Sum(x) >= 1)

print('miprelstop is currently", p.controls.miprelstop)

p.controls.miprelstop = 1e-7
p.controls.xslp_solver = 0

An equivalent way to do the two lines above
p.setControl({'miprelstop': 1e-7, 'xslp_solver': 0})

Related topics
problem.setControl, problem.getControl.

Fair Isaac Corporation Proprietary Information 69

Chapter 7: Reference Manual

xpress.expression

Purpose
Class for linear and quadratic expressions. These can be used and combined to create constraints and
objective function of an optimization problem. The user cannot explicitly create an object of this class, but
applying sum, multiplication, and squaring of variables and constants gives rise to an object of this type.

Example
An expression can be created as follows:

import xpress as xp

p = xp.problem()

x = p.addVariable()
y = p.addVariable()

e = x⁎⁎2 + 2⁎y - 5

Fair Isaac Corporation Proprietary Information 70

Chapter 7: Reference Manual

xpress.linterm

Purpose
Internal class for a first-degree monomial, i.e., the product of a constant by a variable. It can be used and
combined to create constraints and objective function of an optimization problem. The user cannot
explicitly create an object of this class.

Example
Example declaration:

import xpress as xp

p = xp.problem()

x = p.addVariable()

l = 2⁎x # l is of type xpress.linterm

Fair Isaac Corporation Proprietary Information 71

Chapter 7: Reference Manual

xpress.nonlin

Purpose
Internal class for objects representing functions which are neither quadratic nor linear nor constant. It
can be used and combined to create constraints and objective function of an optimization problem. The
user cannot explicitly create an object of this class.

Example
The following creates a nonlinear expression and sets it as the objective function of a problem:

import xpress as xp

p = xp.problem()

x = p.addVariable()

obj = x⁎⁎4 + xp.exp(x)

p.setObjective(obj)

Fair Isaac Corporation Proprietary Information 72

Chapter 7: Reference Manual

xpress.poolcut

Purpose
Class for poolcut objects. These are used by callback functions when creating cuts within a
Branch-and-bound.

Further information
These objects are created by the Optimizer within callbacks and can be used by Python callback
functions to store and pass pool cuts.

Fair Isaac Corporation Proprietary Information 73

Chapter 7: Reference Manual

xpress.problem

Purpose
Class for all optimization problems solved by the Xpress Optimizer.

Synopsis
p = xpress.problem(⁎elements=None, name=’’, sense=xpress.minimize)

Arguments
elements Variables, constraints, SOSs, or objective function of the problem. These can be specified

as single objects or lists and arrays thereof. They can be listed in the same order as would be
added to the problem through problem.addVariable, problem.addConstraint,
problem.addSOS, problem.setObjective, i.e. by making sure that the variables appearing
in a constraint or objective function appear beforehand in the list.

name Name of the problem, displayed on solve log or saved in the .lp or .mps file when saved with
problem.write.

sense Optimization sense. Can be xpress.minimize (default) or xpress.maximize.

Example 1
An object of class xpress.problem can be created from scratch or read from a file. It contains a set of
variables and constraints, and may have an objective function. An empty optimization problem is created
as follows:

myproblem = xp.problem()

A name can be assigned to a problem upon creation:

myproblem = xp.problem(name='My first problem')

The problem has no variables or constraint at this point.

Example 2
Simply call optimize() to solve an optimization problem that was either built or read from a file. The type
of solver is determined based on the type of problem: if at least one integer variable was declared, then
the problem will be solved as a mixed integer (linear or quadratically constrained) problem, while if all
variables are continuous the problem is solved as a linear or quadratic optimization problem.

m.optimize()

The status of a problem after solution can be found via the solvestatus and solstatus attributes,
and also in the return value of the optimize function, as follows:

import xpress as xp

m = xp.problem()
m.read("example3.lp")
solvestatus, solstatus = m.optimize()

print("solve status:", solvestatus)
print("solution status:", solstatus)

print("solution:", m.getSolution())

Example 3
It is useful, after solving a problem, to obtain the value of an optimal solution. After solving a continuous
or mixed integer problem, the two methods problem.getSolution and problem.getSlack return
the vector (of portions thereof) of an optimal solution or the slack of the constraints. If an optimal

Fair Isaac Corporation Proprietary Information 74

Chapter 7: Reference Manual

solution was not found but a feasible solution is available, these methods will return data based on this
solution. They can be used in multiple ways as shown in the following examples:

import xpress as xp

m = xp.problem()

v1 = m.addVariable()
x = [m.addVariable(lb=-1, ub=1, vartype=xp.integer) for i in range(10)]

[...] # add constraints and objective

m.optimize()

print(m.getSolution ()) # prints a list with an optimal solution
print("v1 is", m.getSolution(v1)) # only prints the value of v1
a = m.getSolution(x) # gets the values of all variables in the vector x
b = m.getSolution(0:4) # gets the value of v1 and x[0], x[1], x[2]

After creating an empty problem, one can read a problem from a file via the read method, which only takes
the file name as its argument. An already-built problem can be written to a file with the write method. Its
arguments are similar to those in the Xpress-Optimizer API function XPRSwriteprob, to which we refer.

Fair Isaac Corporation Proprietary Information 75

Chapter 7: Reference Manual

xpress.quadterm

Purpose
Internal class for objects representing monomials of degree two. It can be used and combined to create
constraints and objective function of an optimization problem. The user cannot explicitly create an object
of this class.

Example
Example declaration:

import xpress as xp

p = xp.problem()

x = p.addVariable()
y = p.addVariable()

q1 = 2⁎x⁎y # bilinear term
q2 = 3⁎x⁎⁎2 # quadratic term

Fair Isaac Corporation Proprietary Information 76

Chapter 7: Reference Manual

xpress.sos

Description
Class representing special ordered set (SOS) constraints. A SOS constraint is a modeling tool for
constraining a small number of consecutive variables in a vector to be nonzero.

Constructors
s = xpress.sos(indices, weights, type=1, name=’’)

(deprecated)

Related topics
problem.addSOS.

Constructor detail

xpress.sos

Synopsis s = xpress.sos(indices, weights, type=1, name=’’) (deprecated)
Use problem.addSOS to add linked SOS constraints to the problem instead.

Arguments indices List of variables composing the SOS.
weights List of weights (one per variable). These define the order for SOS2 constraints and

may be used in branching for both types.
type Type of SOS. Can be 1 (default) or 2.
name Name of the SOS.

Description 1. Weights must be sufficiently distinct (see the SOSREFTOL control in the Optimizer manual).

2. Unlinked SOS constraints are not tied to a problem but may exist globally in a Python program.
In order for them to be included into a problem, they have to be explicitly added to that problem
using problem.addSOS. Unlinked SOS constraints are deprecated.

Example The following are example declarations of SOS:

x = [xp.var() for _ in range(10)]
set1 = xp.sos(x, [0.5 + i⁎0.1 for i in range(10)], type=2)
v1, v2 = xp.vars(2)
set2 = xp.sos([v1, v2], [2, 5], 2, "mysos")

One or more SOS can be added to a problem via the addSOS method:

n = 10
w = [xp.var() for i in range(n)]
p = xp.problem(w)
p.addSOS([

xp.sos([w[i], w[i+1]], [2,3])
for i in range(n-1)

])

Fair Isaac Corporation Proprietary Information 77

Chapter 7: Reference Manual

xpress.var

Description
Class representing optimization variables.
Variables are created using problem.addVariable or problem.addVariables.

Attributes
name Name of the variable.
vartype Type of the variable, one among the following:

xpress.continuous for continuous variables;
xpress.binary for binary variables;
xpress.integer for integer variables;
xpress.semicontinuous for semi-continuous variables;
xpress.semiinteger for semi-integer variables;
xpress.partiallyinteger for partially integer variables.

lb Lower bound of the variable.
ub Upper bound of the variable.
threshold Threshold for semi-continuous, semi-integer, and partially integer variables.

Constructors
x = xpress.var(name=None, lb=0, ub=xpress.infinity, threshold=-xpress.infinity,
vartype=xpress.continuous)

(deprecated)

Related topics
problem.addVariable, problem.addVariables, xpress.vars.

Constructor detail

xpress.var

Synopsis x = xpress.var(name=None, lb=0, ub=xpress.infinity,
threshold=-xpress.infinity, vartype=xpress.continuous)
(deprecated)
Use problem.addVariable to add linked variables to the problem instead.

Arguments name A Python UTF-8 string containing the name of the variable; a default name is assigned
if the user does not specify it.

lb Lower bound (0 by default).
ub Upper bound (+infinity by default).
threshold The threshold for semi-continuous, semi-integer, and partially integer variables.
vartype Type of the variable, one among the following:

xpress.continuous for continuous variables;
xpress.binary for binary variables;
xpress.integer for integer variables;
xpress.semicontinuous for semi-continuous variables;
xpress.semiinteger for semi-integer variables;
xpress.partiallyinteger for partially integer variables.

Description Unlinked variables are not tied to a problem but may exist globally in a Python program. In order
for them to be included into a problem, they have to be explicitly added to that problem using
problem.addVariable. Unlinked variables are deprecated.

Fair Isaac Corporation Proprietary Information 78

Chapter 7: Reference Manual

Example One or more variables (or vectors of variables) can be added to a problem with the addVariable
method:

v = xp.var(lb=-1, ub=2)
m.addVariable (v)

x = [xp.var(ub=10) for i in range(10)]
y = [xp.var(ub=10, vartype=xp.integer) for i in range(10)]
m.addVariable(x,y)

Fair Isaac Corporation Proprietary Information 79

Chapter 7: Reference Manual

xpress.voidstar

Purpose
Internal class for unspecified objects in the Xpress Optimizer Library. This is an internal class and the
user cannot create an object of this class.

Fair Isaac Corporation Proprietary Information 80

Chapter 7: Reference Manual

xpress.xprsobject

Purpose
Internal class for Xpress objects used within an optimization problem solved by the Xpress Optimizer.
The user cannot explicitly create an object of this class.

Fair Isaac Corporation Proprietary Information 81

Chapter 7: Reference Manual

7.9 Xpress object functions

Fair Isaac Corporation Proprietary Information 82

Chapter 7: Reference Manual

object.extractLinear

Purpose
Returns the variables and coefficients of the linear part of any expression.

Synopsis
vars, coef = a.extractLinear()

Arguments
a An expression or variable.
vars A list containing the variable objects composing the linear expression in a.
coef A list containing the corresponding coefficients in the linear expression.

Example
The following code snippets show what is the expected result of applying extractLinear:

import xpress as xp

p = xp.problem()

x = p.addVariable()
y = p.addVariable(name='myvar')

a = x + 2⁎y
b = 3⁎x
c = y⁎⁎2 + x⁎⁎2 - 6⁎x
d = x⁎⁎5 - 7⁎x # nonlinear expression

print (a.extractLinear()) # will print "([C1, myvar], [1, 2])"
assert (a.extractLinear() == ([x, y], [1, 2]))

print (b.extractLinear()) # will print "([C1], [3])"
print (c.extractLinear()) # will print "([C1], [-6])"
print (d.extractLinear()) # will print "([C1], [-7])"

Further information
1. Note that this operator returns variable objects, not indices, in the vars portion of the output tuple. To

obtain indices, use the problem.getIndex function. Printing these lists will show the name of the
associated variables, as determined by the user when creating the variable with the name argument or, if
name was not provided, it will show the name as determined by the Optimizer’s library (default variable
names are "C"+index). See also the Modelling chapter.

2. This operator is most useful only for linear expressions with more than one element. For nonlinear
expressions, the function attempts to extract as much linear information it can, but will not be able to
infer linearity apart from the most obvious cases. For example, for the expression x⁎⁎4 +
xp.log(xp.exp(y)), which contains the linear term y, the function will return ([],[]).

Fair Isaac Corporation Proprietary Information 83

Chapter 7: Reference Manual

object.extractQuadratic

Purpose
Returns the variables and coefficients of the quadratic part of any expression.

Synopsis
vars1, vars2, coef = a.extractQuadratic()

Arguments
a An expression or variable.
vars1 A list containing the first variables of each bilinear term composing the quadratic expression in

a.
vars2 A list containing the second variables of each bilinear term of the quadratic expression in a.
coef A list containing the corresponding coefficients in the quadratic expression.

Example
The following code snippets show what is the expected result of applying extractQuadratic:

import xpress as xp

p = xp.problem()

x = p.addVariable()
y = p.addVariable()
z = p.addVariable()

a = x + 2⁎y + x⁎y + 8 ⁎ x⁎⁎2
b = 3⁎x⁎⁎2 + z + 4
c = y⁎⁎2 + x⁎⁎2 - 6⁎x⁎y
d = x⁎⁎5 - 7⁎x⁎y - 4⁎x⁎y⁎z # nonlinear expression
e = x⁎y + y⁎x # note: same bilinear term added twice. This is compressed to 2⁎x⁎y

print (a.extractQuadratic()) # will print "([C1, C1], [C2,C1], [1,8])"
assert (a.extractQuadratic() == ([x,x], [y,x], [1,8]))

print (b.extractQuadratic()) # will print "([C1], [C1], [3])"
print (c.extractQuadratic()) # will print "([C2, C1], [C2, C1], [1, 1])"
print (d.extractQuadratic()) # will print "([C1], [C2], [-7])"
print (e.extractQuadratic()) # will print "([C1], [C2], [2])"

Further information
1. Similar to object.extractLinear, this operator returns variable objects, not indices, in the vars

portion of the output tuple. To obtain indices, use the problem.getIndex function. Printing these lists
will show the name of the associated variables, as determined by the user when creating the variable with
the name argument or, if name is not provided, it will show the name as determined by the Optimizer’s
library (default variable names are "C"+index). See also the Modelling chapter.

2. This operator is most useful only for quadratic expressions with more than one element. For nonlinear,
non-quadratic expressions, the function attempts to extract as much quadratic information it can, but will
not be able to detect quadratic/bilinear expressions apart from the most obvious cases. For example, for
the expression x⁎⁎4 + xp.sqrt(y⁎⁎4), which contains the quadratic term y⁎⁎2, the function will
return ([],[]).

Fair Isaac Corporation Proprietary Information 84

Chapter 7: Reference Manual

7.10 Xpress operators

Fair Isaac Corporation Proprietary Information 85

Chapter 7: Reference Manual

xpress.abs

Purpose
Returns the absolute value of a given expression

Synopsis
a = xpress.abs(t)

Argument
t Argument of the abs() function.

Further information
Python’s native abs operator is equivalent to xpress.abs for arguments that are functions of variables.

Fair Isaac Corporation Proprietary Information 86

Chapter 7: Reference Manual

xpress.acos

Purpose
Returns the arccosine of a given expression.

Synopsis
a = xpress.acos(t)

Argument
t Argument of the arccosine function.

Further information
Using Python’s math library operator math.acos is only advisable when the argument is not an
expression that depends on variables.

Related topics
xpress.sin, xpress.cos, xpress.tan, xpress.asin, xpress.atan.

Fair Isaac Corporation Proprietary Information 87

Chapter 7: Reference Manual

xpress.And

Purpose
Returns a logical AND of two or more binary variables or expressions.

Synopsis
xpress.And(variables)

Argument
variables A list/array of binary variables or binary expressions

Example
The following example shows how to use and to model various logical constraints:

N = 10

p = xp.problem() # Creates a problem

x = p.addVariables(N, vartype=xp.binary) # Creates N binary variables

c = [1, 4, 7, 3, 5, 7, 8, 4, 4, 9]

Sets a linear objective
p.setObjective (xp.Sum(c[i] ⁎ x[i] for i in range(N)))

Linear constraint
p.addConstraint (xp.Sum(x) <= 6)

Constrains the first x variable to be the conjunction of all other x's
p.addConstraint (x[0] == xp.And(x[1:]))

Forces the logical AND between some logical expressions to
be zero, i.e., at least one of them must be zero

p.addConstraint (xp.And([x[1] | x[4], x[2] | x[1], x[3] | x[6]]) == 0)

Further information
1. For AND functions, all variables and expressions must be binary; an error will be generated otherwise.

2. A function call xpress.And(x1,x2,...,xk) is equivalent to x1 and (x2 and (x3 and ...
xk))...).

3. Note that since x1, x2, ..., xk, are binary variables, xpress.And(x1,x2,...,xk) is equivalent to
xpress.min(x1,x2,...,xk).

Related topics
problem.addgencons, problem.delgencons, problem.getgencons, xpress.Or.

Fair Isaac Corporation Proprietary Information 88

Chapter 7: Reference Manual

xpress.asin

Purpose
Returns the arcsine of a given expression.

Synopsis
a = xpress.asin(t)

Argument
t Argument of the arcsine function.

Further information
Using Python’s math library operator math.asin is only advisable when the argument is not an
expression that depends on variables.

Related topics
xpress.sin, xpress.cos, xpress.tan, xpress.acos, xpress.atan.

Fair Isaac Corporation Proprietary Information 89

Chapter 7: Reference Manual

xpress.atan

Purpose
Returns the arctangent of a given expression.

Synopsis
a = xpress.atan(t)

Argument
t Argument of the arctangent function.

Further information
Using Python’s math library operator math.atan is only advisable when the argument is not an
expression that depends on variables.

Related topics
xpress.sin, xpress.cos, xpress.tan, xpress.asin, xpress.acos.

Fair Isaac Corporation Proprietary Information 90

Chapter 7: Reference Manual

xpress.cos

Purpose
Returns the cosine of a given expression.

Synopsis
a = xpress.cos(t)

Argument
t Argument of the cosine function.

Further information
Using Python’s math library operator math.cos is only advisable when the argument is not an
expression that depends on variables.

Related topics
xpress.sin, xpress.tan, xpress.asin, xpress.acos, xpress.atan.

Fair Isaac Corporation Proprietary Information 91

Chapter 7: Reference Manual

xpress.Dot

Purpose
Alternative dot-product operator for an arbitrary number of NumPy single- or multi-dimensional arrays.
Following the convention for dot-product, the result of Dot for a list of k objects T1,T2, ...,Tk of
d1, d2, ..., dk dimensions is an object of d1 + d2 + ... + dk – 2(k – 1) dimensions. For each i-th factor in
[1,2,...,k – 1], the arity of the last dimension of Ti must match the arity of the penultimate dimension of Ti+1
(or its arity if Ti+1 is single-dimensional, i.e., a vector).

Synopsis
a = xpress.Dot(t1, t2, ..., out)

Argument
out (optional) NumPy array of the correct dimension and arity where the result is stored. If not

provided, the dot product is returned.

Example
The following code shows some possible uses of the Dot operator:

import numpy as np
import xpress as xp

N = 10
M = 20
S = range(N)

p = xp.problem()

x = np.array([p.addVariable() for i in S], dtype=xp.npvar)
x0 = np.random.random(N) # creates an N-vector of random numbers

objective function is the squared Euclidean distance of the
variable vector x from a fixed point x0
p.setObjective(xp.Dot((x-x0),(x-x0)))

A = np.random.random((M,N))
b = np.random.random(M)

constraint Ax = b, random MxN matrix A and M-vector b
p.addConstraint(xp.Dot(A, x) == b)

Create a single quadratic constraint with
a positive semidefinite matrix Q + N^3 ⁎ I

Q = np.random.random((N,N))
p.addConstraint(xp.Dot(x, Q + N⁎⁎3 ⁎ np.eye(N), x) <= 1)

Create four quadratic constraints using an order-three
tensor, i.e., a three-dimensional array.

k = 4

T = np.random.random((k,N,N))
q = np.random.random(k)
p.addConstraint(xp.Dot(x, T, x) <= q)

Fair Isaac Corporation Proprietary Information 92

Chapter 7: Reference Manual

Further information
From an operational standpoint, the dot product of k multi-dimensional arrays is the result of k – 1 dot
products of two factors each, and proceeds as in the following Python code:

result = T[0]
for i in range(1,k):

result = xpress.Dot(result, T[i])

The dot product of two multi-dimensional array T′ and T′′ of dimensions d′ and d′′ and of arities
(n1, n2, ..., nd′) and (m1,m2, ...,md′′), respectively, is a multi-dimensional array of dimension d′ + d′′ – 2,
whose arity vector is (n1, n2, ..., nd′–1,m1,m2, ...,md′′–2,md′′) and whose generic element is
vi1 ,i2 ,...,id′–1 ,j1 ,j2 ,...,jd′′–2 ,jd′′ =

∑
1≤h≤nd′

t′i1 ,i2 ,...,id′–1 ,h · t
′′
j1 ,j2 ,...,jd′′–2 ,h,jd′′

.

It is assumed here that nd′ = md′′–1. Two simple cases may help understand the behavior of the operator:
for two single-dimensional arrays v′ and v′′ of size n, the result is the inner product∑

1≤h≤n v′h · v
′′
h .

For two matrices A and B of sizes m× n and n× p respectively, the result is the m× p matrix C whose
generic element is
Cij =

∑
1≤h≤n Aih · Bhj.

The Dot operator is functionally equivalent to Python’s dot operator from the NumPy package. However,
the Xpress Dot operator is the only one that can work on variables and expressions containing variables.

Fair Isaac Corporation Proprietary Information 93

Chapter 7: Reference Manual

xpress.erf

Purpose
Returns the error function with an expression as its argument.

Synopsis
a = xpress.erf(t)

Argument
t Argument of the function.

Further information
For reasons related to compilers and math libraries, on Windows machines this function can only be used
with Python 3.

Related topics
xpress.erfc.

Fair Isaac Corporation Proprietary Information 94

Chapter 7: Reference Manual

xpress.erfc

Purpose
Returns the complementary error function with an expression as its argument.

Synopsis
a = xpress.erfc(t)

Argument
t Argument of the function.

Further information
For reasons related to compilers and math libraries, on Windows machines this function can only be used
with Python 3.

Related topics
xpress.erf.

Fair Isaac Corporation Proprietary Information 95

Chapter 7: Reference Manual

xpress.exp

Purpose
Returns the exponential of a given expression.

Synopsis
a = xpress.exp(t)

Argument
t Exponent.

Further information
Using Python’s math library operator math.exp is only advisable when the argument is not an
expression that depends on variables.

Fair Isaac Corporation Proprietary Information 96

Chapter 7: Reference Manual

xpress.log

Purpose
Returns the natural logarithm of a given expression.

Synopsis
a = xpress.log(t)

Argument
t Argument of the log function.

Further information
Using Python’s math library operator math.log is only advisable when the argument is not an
expression that depends on variables.

Fair Isaac Corporation Proprietary Information 97

Chapter 7: Reference Manual

xpress.log10

Purpose
Returns the base-10 logarithm of a given expression.

Synopsis
a = xpress.log10(t1)

Argument
t Argument.

Further information
Using Python’s math library operator math.log10 is only advisable when the argument is not an
expression that depends on variables.

Related topics
xpress.log.

Fair Isaac Corporation Proprietary Information 98

Chapter 7: Reference Manual

xpress.max

Purpose
Returns the maximum of one or more expressions.

Synopsis
a = xpress.max(t1, t2, ..., tn)

Argument
t1, t2... Arguments.

Further information
Using Python’s operator max is only advisable when the argument is not an expression that depends on
variables.

Related topics
xpress.min.

Fair Isaac Corporation Proprietary Information 99

Chapter 7: Reference Manual

xpress.min

Purpose
Returns the minimum of one or more expressions.

Synopsis
a = xpress.min(t1, t2, ..., tn)

Argument
t1, t2... Arguments.

Further information
Using Python’s operator min is only advisable when the argument is not an expression that depends on
variables.

Related topics
xpress.max.

Fair Isaac Corporation Proprietary Information 100

Chapter 7: Reference Manual

xpress.Or

Purpose
Returns a logical OR of two or more binary variables or expressions.

Synopsis
xpress.Or(variables)

Argument
variables A list/array of binary variables or binary expressions

Example
The following example shows how to use or to model various logical constraints:

N = 10

p = xp.problem() # Creates a problem

x = p.addVariables(N, vartype=xp.binary) # Creates N binary variables

c = [1, 4, 7, 3, 5, 7, 8, 4, 4, 9]

Sets a linear objective
p.setObjective (xp.Sum(c[i] ⁎ x[i] for i in range(N)))

Linear constraint
p.addConstraint (xp.Sum(x) <= 6)

Constrains the first x variable to be the conjunction of all other x's
p.addConstraint (x[0] == xp.Or(x[1:]))

Forces the logical OR between some logical expressions to
be one, i.e., at least one of them must be one

p.addConstraint (xp.Or([x[1] & x[4], x[2] & x[1], x[3] & x[6]]) == 1)

Further information
1. For OR functions, all variables and expressions must be binary; an error will be generated otherwise.

2. A function call xpress.Or(x1,x2,...,xk) is equivalent to x1 or (x2 or (x3 or ...
xk))...).

3. Note that since x1, x2, ..., xk, are binary variables, xpress.Or(x1,x2,...,xk) is equivalent to
xpress.max(x1,x2,...,xk).

Related topics
problem.addgencons, problem.delgencons, problem.getgencons, xpress.And.

Fair Isaac Corporation Proprietary Information 101

Chapter 7: Reference Manual

xpress.pwl

Purpose
Returns a piecewise linear function over a variable.

Synopsis
xpress.pwl(dict)

Argument
dict Python dictionary containing, as keys, two-elements tuples, and, as values, linear

expressions in a variable. If the piecewise linear function has only constant values
(i.e. it is a piecewise constant function), the input variable can be specified with the
key-value pair None: x.

Example
The following example shows various usages of xpress.pwl to model nonlinear functions as
piecewise-linear functions :

p = xp.problem()

x = p.addVariable() # Nonnegative variable
y = p.addVariable(lb=-xp.infinity) # dependent variable, unrestricted
t = p.addVariable()
w = p.addVariable()

Sets a piecewise linear objective: a ramp function
p.setObjective (xp.pwl({(-xp.infinity, -1): -2,

(-1, 1): 2⁎x,
(1, xp.infinity): 2}))

p.addConstraint (t == xp.pwl({(1,2): 4⁎x, (2,4): 2, (4,5): -1}))

Piecewise CONSTANT function: add a key-value pair None: x to specify
input variable
p.addConstraint (t == xp.pwl({(1,2): 4, (2,4): 2, (4,5): -1, None: x}))

p.addConstraint (xp.pwl({(-1,0): x, (0,1): 2⁎x, (1,10): 2}) <=
xp.pwl({(0,10): 2⁎z, (10,20): z+2, (20,xp.infinity): 4}))

Further information
1. A piecewise linear function must use only one variable in all of the dictionary’s values;

2. All values in the dictionary must be either constants or linear functions;

3. The intervals, specified as two-element tuples in the dictionary’s keys, must be pairwise disjoint, i.e., they
must not overlap.

4. Discontinuities in the function are allowed, i.e., one can declare a function as follows: xp.pwl({(1,
2): 2⁎x + 4, (2,3): x - 1}), which is obviously discontinuous at 2. The value of the function if
the optimal solution has x=2 will be then either 8 or 1.

Related topics
problem.addpwlcons, problem.delpwlcons, problem.getpwlcons.

Fair Isaac Corporation Proprietary Information 102

Chapter 7: Reference Manual

xpress.Prod

Purpose
Returns the product of a sequence of one or more expressions.

Synopsis
a = xpress.Prod(t1, t2, ...)

Example
The following are allowed uses of the Prod operator:

n = 10
x = [p.addVariable() for i in range(n)]
prod = xp.Prod(x)
polynomial = xp.Sum(i ⁎ xp.Prod(x[i:i+4]) for i in range(n-4))

Further information
While n-ary product operators may exist in Python and/or NumPy, it is advisable to use xpress.Prod
when creating products of many expressions as it is the most efficient alternative.

Fair Isaac Corporation Proprietary Information 103

Chapter 7: Reference Manual

xpress.sign

Purpose
Returns the sign of an expression: 1 if positive, -1 if negative, 0 if zero.

Synopsis
a = xpress.sign(t)

Argument
t Argument of the sign function.

Fair Isaac Corporation Proprietary Information 104

Chapter 7: Reference Manual

xpress.sin

Purpose
Returns the sine of a given expression.

Synopsis
a = xpress.sin(t)

Argument
t Argument of the sine function.

Further information
Using Python’s math library operator math.sin is only advisable when the argument is not an
expression that depends on variables.

Related topics
xpress.cos, xpress.tan, xpress.asin, xpress.acos, xpress.atan.

Fair Isaac Corporation Proprietary Information 105

Chapter 7: Reference Manual

xpress.sqrt

Purpose
Returns the square root of an expression.

Synopsis
a = xpress.sqrt(t)

Argument
t Radicand of the function.

Further information
Using Python’s math library operator math.sqrt is only advisable when the argument is not an
expression that depends on variables.

Fair Isaac Corporation Proprietary Information 106

Chapter 7: Reference Manual

xpress.Sum

Purpose
Alternative sum operator for an arbitrary number of objects created by a list, tuple, generator, NumPy
array, dictionary, etc.

Synopsis
a = xpress.Sum(t1, t2, ...)

Example
The following are allowed uses of the Sum operator:

import math
N = 20
S = range(S)
p = xpress.problem()
x = [p.addVariable() for i in S]
y = [p.addVariable(vartype=xpress.binary) for i in S]
p.setObjective(x[0] + xpress.Sum(x[i]⁎⁎2 for i in S))
p.addConstraint(xpress.Sum(x,y) <= 100)
p.addConstraint(xpress.Sum(x[:i]) + xpress.Sum(y[:i])

<= math.log(10 + i) for i in S)

Further information
The Sum operator is functionally equivalent to NumPy’s ndarray.sum operator but it works with Xpress
variables and expression objects. It reduces an n-dimensional array to a scalar expression.

Fair Isaac Corporation Proprietary Information 107

Chapter 7: Reference Manual

xpress.tan

Purpose
Returns the tangent of a given expression.

Synopsis
a = xpress.tan(t)

Argument
t Argument of the tangent function.

Further information
Using Python’s math library operator math.tan is only advisable when the argument is not an
expression that depends on variables.

Related topics
xpress.sin, xpress.cos, xpress.asin, xpress.acos, xpress.atan.

Fair Isaac Corporation Proprietary Information 108

Chapter 7: Reference Manual

xpress.user

Purpose
Creates an expression that is computed by means of a user-specified function. The user function can be
defined to either provide or not provide the value of all derivatives w.r.t. the variables.

Synopsis
def f(a1, a2, ..., an[, ⁎deltas]):
[...]
a = xpress.user(f, t1, t2, ..., tn)

Arguments
f User function; must be a Python function with as many (possibly optional)

arguments as specified in the declaration.
t1,...,tn Arguments of the user function.
derivatives "never" f does not return derivatives;

"always" f always returns derivatives;
"ondemand" f returns derivatives when they are requested by the solver (see

notes below).

Example
The following code shows how to define user functions and use them in an optimization problem:

import math

def mynorm(⁎v):
return math.sqrt(sum(e⁎⁎2 for e in v))

def weighted_sum(t1, t2, t3):
return (2⁎t1 + 3⁎t2 + 4⁎t1⁎t3,
2 + 4⁎t3, 3, 4⁎t1)

def ondemand_derivatives(t1, t2, ⁎deltas):
val = 2⁎t1 + 4⁎t1⁎t2
if not deltas:

No derivatives needed
return val

else:
Calculate whichever derivatives are needed
d1, d2 = deltas
return (val,

2 + 4⁎t2 if d1 != 0 else None,
4⁎t1 if d2 != 0 else None)

p = xp.problem()

x = [p.addVariable() for i in range(20)]

f1 = xp.user(mynorm, ⁎x)
f2 = xp.user(weighted_sum, x[4], x[5], x[6], derivatives="always")
f3 = xp.user(ondemand_derivatives, x[0], x[1], derivatives="ondemand")

p.addConstraint(f3 >= 4)
p.addConstraint(f2 == 1)
p.setObjective(f1)

Fair Isaac Corporation Proprietary Information 109

Chapter 7: Reference Manual

p.optimize()
print('solution:', p.getSolution(x))

Further information
1. User functions must produce a Float, as the behaviour is otherwise undefined. If the derivatives

parameter is set to "never" (the default), then the function should simply return the function value. If
derivatives="always", the function must return a tuple consisting of the function value and the
derivatives of the function w.r.t. all variables in the list of arguments. If derivatives="ondemand",
the function will either be called with numArgs arguments, or with 2 ⁎ numArgs arguments, depending
on whether derivatives are required by the solver. When derivatives are not required, only the input values
will be passed to the function, and the function can simply return the function value. When derivatives are
required, the function will be passed the input value arguments followed by a delta argument for every
input argument, and the function must return a tuple, as when derivatives="always". Note that for
this reason, the delta arguments must be declared as optional, either by providing default values, or by
using variable-length arguments syntax (⁎deltas). The function only needs to populate the tuple with a
derivative where the corresponding delta argument is nonzero. (Where the delta argument is zero, the
function should provide some placeholder value such as None or zero.) The delta can be used as a
suggested perturbation for numerical differentiation (a negative sign indicates that if a one-sided
derivative is calculated, then a backward one is preferred).

2. The variables on which the function is defined cannot be passed as lists or numpy arrays. Lists of
variables can be passed by unpacking the list: xpress.user(lambda ⁎y: sum(y),
⁎list_of_vars) Note that in this case the wrapped function must be variadic.

Related topics
problem.setcbpreupdatelinearization.

Fair Isaac Corporation Proprietary Information 110

Chapter 7: Reference Manual

7.11 Xpress base functions

Fair Isaac Corporation Proprietary Information 111

Chapter 7: Reference Manual

xpress.addcbmsghandler

Purpose
Declares an output callback function in the global environment, called every time a line of message text is
output by any object in the library. This callback function will be called in addition to any output callbacks
already added by xpress.addcbmsghandler.

Synopsis
xpress.addcbmsghandler(msghandler, data, priority)
ret = f_msghandler(vObject, vUserContext, vSystemThreadId, sMsg, iMsgType, iMsgNumber)

Arguments
msghandler The callback function which takes six arguments, vObject, vUserContext,

vSystemThreadId, sMsg, iMsgType and iMsgNumber. Use None to cancel a callback
function.

vObject The object sending the message.
vUserContext The user-defined object passed to the callback function.
vSystemThreadId The system id of the thread sending the message cast to a void ⁎.
sMsg A string containing the message, which may simply be a new line. When the callback is

called for the first time sMsg will be empty.
iMsgType Indicates the type of output message:

1 information messages;
2 (not used);
3 warning messages;
4 error messages.
When the callback is called for the first time iMsgType will be a negative value.

iMsgNumber The number associated with the message. If the message is an error or a warning then
you can look up the number in the section Optimizer Error and Warning Messages for
advice on what it means and how to resolve the associated issue.

data A user-defined object to be passed to the callback function.
priority An integer that determines the order in which multiple message handler callbacks will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Further information
To send all messages to a log file the built in message handler logfilehandler can be used. This can
be done with:

xpress.addcbmsghandler(logfilehandler, 'log.txt', 0)

Related topics
xpress.removecbmsghandler.

Fair Isaac Corporation Proprietary Information 112

Chapter 7: Reference Manual

xpress.evaluate

Purpose
Returns the evaluation of one or more expressions for a given assignment of values to optimization
variables.

Synopsis
v = xpress.evaluate(⁎args, problem=None, solution=None)

Arguments
args One or more objects to be evaluated. These can be variables, linear or nonlinear expressions;

they can also be tuples, lists, dictionaries, or NumPy arrays of variables and expressions.
problem The xpress.problem object this function is referring to. If problem is not None, then

solution is either None (in which case the current solution is used) or it is to be intended
referred to the indices of variables in problem. If problem is None, solutionmust provide
this information directly, i.e. it must be a dictionary mapping variable objects to their value

solution Either a list or NumPy array of values (in which case problemmust not be None) or a
dictionary mapping variable objects to their value. As mentioned above, if it is None then
problemmust be passed and the assignment for the function is assumed to be the solution as
retrieved via problem.getSolution

Further information
1. Variable assignments do not have to correspond to a feasible solution.

2. At least one of the arguments problem and solutionmust be specified, because the objects in ⁎args
contain variables, and all variables could be used in zero or more problems. Only the following cases are
allowed:

■ problem=None and solution is a dictionary mapping variables to values; the dictionary must
have a key for each variable appearing in ⁎args;

■ problem is not None but solution=None; then solution is taken as the result of
problem.getSolution; this call is equivalent to p.getSolution(⁎args);

■ problem is not None and solution is either a list or a NumPy array; then the size of solution
must match the number of variables of problem and the order of values in the list/array is the
same order in which the variables were added to problem.

3. Variables assignment do not have to correspond to a feasible solution.

4. When using evaluate with piecewise linear functions that have a step discontinuity, for example with
the constraint y == xp.pwl({(0,3): x, (3,5): 10⁎x}), if at an optimal solution x=3the
Optimizer library will compute a value for y that is anywhere between 3 and 30, because of numerical
issues associated with discontinuities.
In such cases, evaluate is unaware of the link between the function and y and, by convention, will
return a value of the function that correspond to the second interval, i.e., the function will be evaluated at
30. In order to obtain the value of the piecewise linear function, evaluate should be run on y instead.

Example
The following examples are valid uses of xpress.evaluate:

import xpress as xp

p = xp.problem() # Create a problem

x = p.addVariable()
y = p.addVariable(vartype=xp.binary)

Fair Isaac Corporation Proprietary Information 113

Chapter 7: Reference Manual

Uses evaluate without a problem but by assigning the variables
explicitly. Note that the dictionary is necessary as no problem is
defined. The result should be [5.4, 124.71633781453677].

v1 = xp.evaluate([x + y, x⁎⁎3 - xp.cos(x)], solution={x:5, y:0.4})

Similar to the computation of v1 but with a vector of numbers; the
order in which the variables were added to p means that this x=2,
y=3 here. The result should be {'exp1':11, 'exp2':6, 'exp3':9}.

v2 = xp.evaluate({'exp1':x + 3⁎y, 'exp2':x⁎y, 'exp3':y⁎⁎2},
problem=p, solution=[2,3])

p.addConstraint(x + y >= 3)
p.setObjective(x + 2⁎y)

p.optimize()

l = np.array([x⁎⁎2 ⁎ y, x ⁎ y⁎⁎2, x⁎⁎3], dtype=xp.npexpr)

No solution is passed, so the solution of p as computed with optimize()
above is used. It is easy to show that the solution is x=3, y=0, so
the result is np.array([0, 0, 27]).

v3 = xp.evaluate(l, problem=p)

Related topics
problem.getSolution.

Fair Isaac Corporation Proprietary Information 114

Chapter 7: Reference Manual

xpress.examples

Purpose
Returns the full path to the directory of examples of the Xpress Python interface module.

Synopsis
xpress.examples()

Further information
The modeling_examples/ subdirectory contains some of the Mosel examples translated into their
Python counterpart.

Fair Isaac Corporation Proprietary Information 115

Chapter 7: Reference Manual

xpress.featurequery

Purpose
Returns True if the provided feature is available in the current license used by the optimizer, False
otherwise.

Synopsis
xpress.featurequery(feature)

Argument
feature The feature string to be checked in the license.

Fair Isaac Corporation Proprietary Information 116

Chapter 7: Reference Manual

xpress.free

Purpose
Releases the Xpress environment, thus freeing up one license. The subsequent creation of a problem
automatically triggers a call to xpress.init.

Synopsis
xpress.free ()

Example
The following example shows how to call xpress.free and a possible use:

p = xp.problem() # This would imply a call to xp.init()
x = p.addVariable()
y = p.addVariable()
p.addConstraint(x+y <= 1)
p.setObjective(x+2⁎y, sense=xp.maximize)
p.optimize()
xp.free() # from this point on, the license

can be claimed by other users

Further information
1. Similar to a call to XPRSfree() of the C API, calling xpress.free cleans the Xpress environment. Any

problem created prior to a call to xpress.free is no longer valid, and attempting to use it will raise an
xpress.ModelError.

2. Instead of using this function, it is recommended to call xpress.init in a with statement, which
implicitly calls xpress.free at the end of the statement.

Related topics
xpress.init

Fair Isaac Corporation Proprietary Information 117

Chapter 7: Reference Manual

xpress.getbanner

Purpose
Returns the banner and copyright message.

Synopsis
i = xpress.getbanner()

Example

print(xpress.getbanner())

Fair Isaac Corporation Proprietary Information 118

Chapter 7: Reference Manual

xpress.getcomputeallowed

Purpose
Queries whether the current application is allowed to use the Insight Compute interface.

Synopsis
isComputeAllowed = xpress.getcomputeallowed()

Return value
Whether to allow use of Insight Compute, will be one of the following values:

1 Always allow solves to be sent to Compute.

0 Never allow solves to be sent to Compute.

-1 Allow solves to be sent to Compute only from non-OEM applications.

Related topics
xpress.setcomputeallowed.

Fair Isaac Corporation Proprietary Information 119

Chapter 7: Reference Manual

xpress.getcheckedmode

Purpose
Returns whether checking & validation of all Optimizer function calls is enabled for the current process.
Checking & validation is enabled by default but can be disabled by xpress.setcheckedmode.

Synopsis
i = xpress.getcheckedmode()

Related topics
xpress.setcheckedmode.

Fair Isaac Corporation Proprietary Information 120

Chapter 7: Reference Manual

xpress.getdaysleft

Purpose
Returns the number of days left until an evaluation license expires.

Synopsis
d = xpress.getdaysleft()

Example
The following calls getdaysleft to print information about the license:

try:
ndays = xpress.getdaysleft()

except RuntimeError:
print("Not an evaluation license")

else
print("Evaluation license expires in {0} days".format(ndays))

Further information
This function can only be used with evaluation licenses, and, if called when a normal license is in use, it
returns an error. The expiry information for evaluation licenses is also included in the Optimizer banner
message.

Fair Isaac Corporation Proprietary Information 121

Chapter 7: Reference Manual

xpress.getlasterror

Purpose
Returns the last error encountered during a call to the Xpress global environment.

Synopsis
(i,s) = xpress.getlasterror()

Arguments
i Error code
s Error message relating to the global environment will be returned.

Example

import xpress as xp
last error referring to the global environment
print(xp.getlasterror())

Fair Isaac Corporation Proprietary Information 122

Chapter 7: Reference Manual

xpress.getlicerrmsg

Purpose
Returns the error message string describing the last licensing error, if any occurred.

Synopsis
m = xpress.getlicerrmsg()

Example
The following calls getlicerrmsg to find out why the import of the Xpress Python module failed:

try:
import xpress

except RuntimeError:
print(xpress.getlicerrmsg())

else:
print("all good")

Fair Isaac Corporation Proprietary Information 123

Chapter 7: Reference Manual

xpress.getversion

Purpose
Returns the full Optimizer version number as a string of the form 15.10.03, where 15 is the major release,
10 is the minor release, and 03 is the build number.

Synopsis
v = xpress.getversion()

Example

print("Using Xpress Optimizer version", xpress.getversion())

Fair Isaac Corporation Proprietary Information 124

Chapter 7: Reference Manual

xpress.getversionnumbers

Purpose
Returns the Optimizer version numbers split into major, minor, and build number.

Synopsis
major, minor, build = xpress.getversionnumbers()

Example

print("Using Xpress Optimizer version %d.%02d.%02d" % xpress.getversionnumbers())

Fair Isaac Corporation Proprietary Information 125

Chapter 7: Reference Manual

xpress.init

Purpose
Initializes the Xpress environment prior to creating or reading a problem.
Note that it is not necessary to call this function after importing the Xpress module and before creating or
solving a problem, since the environment will be automatically initialized when it is needed for the first
time. However, you may want to call xpress.init in a with statement, which allows you to:

■ detect initialization errors (which will be raised as an xpress.ModelError);
■ specify the path to your license file;
■ explicitly acquire the Xpress license;
■ automatically release the Xpress license at the end of the with statement.

Synopsis
xpress.init(lic_path=None)

Argument
lic_path (optional) Path to the Xpress license file.

Example
The following example shows how to call xpress.init and why it could be useful:

try:
with xp.init(): # Acquire the Xpress license

p = xp.problem() # This would imply a call to xp.init() if it had not already been called
x = p.addVariable()
y = p.addVariable()
p.addConstraint(x+y <= 1)
p.setObjective(x+2⁎y, sense=xp.maximize)
p.optimize()

Xpress license is implicitly released here
catch xp.ModelError:

print('Failed to initialize Xpress')

Further information
xpress.initmay emit a xpress.LicenseWarning if the path to the license file is not explicitly
indicated with the lic_path argument or the XPAUTH_PATH environment variable. This warning can be
suppressed by adding the following code before the call to xpress.init:

import warnings
warnings.simplefilter('ignore', xpress.LicenseWarning)

Related topics
xpress.free

Fair Isaac Corporation Proprietary Information 126

Chapter 7: Reference Manual

xpress.manual

Purpose
Returns the full path to the PDF reference manual of the Python interface.

Synopsis
xpress.manual()

Further information
Note that only the manual of the Python interface (in PDF format) is included in the PyPI and conda
package downloaded from these repositories; the PDF version of all other Xpress-related documentation
is contained in the Xpress distribution, and the on-line, HTML format documentation is available on the
FICO web pages.

Fair Isaac Corporation Proprietary Information 127

Chapter 7: Reference Manual

xpress.removecbmsghandler

Purpose
Removes a message callback function previously added by xpress.addcbmsghandler. The specified
callback function will no longer be called after it has been removed.

Synopsis
xpress.removecbmsghandler(msghandler, data)

Arguments
msghandler The callback function to remove. If None then all message callback functions added with

the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will not

be checked and all message callbacks with the function msghandler will be removed.

Related topics
xpress.addcbmsghandler.

Fair Isaac Corporation Proprietary Information 128

Chapter 7: Reference Manual

xpress.setarchconsistency

Purpose
Sets whether to force the same execution path on various CPU architecture extensions, in particular
(pre-)AVX and AVX2.

Synopsis
xpress.setarchconsistency(ifArchConsistent=False)

Argument
ifArchConsistent Whether to force the same execution path:

False Do not force the same execution path (default behavior);
True Force the same execution path.

Further information
Note that using this general environment API function is different from setting the
xpress.controls.cpuplatform control. Setting this control selects a vectorization instruction set
for the barrier method.

Related topics
xpress.getcomputeallowed.

Fair Isaac Corporation Proprietary Information 129

Chapter 7: Reference Manual

xpress.setcomputeallowed

Purpose
Set whether the current application is allowed to use the Insight Compute interface.

Synopsis
xpress.setcomputeallowed(isComputeAllowed)

Argument
isComputeAllowed Whether to allow use of Insight Compute, must be one of the following

values:
1 Always allow solves to be sent to Compute.
0 Never allow solves to be sent to Compute.
-1 Allow solves to be sent to Compute only from non-OEM

applications.

Further information
1. This function controls whether this process would be allowed to use the Insight Compute Interface if the

user tries to enable it.

2. If the user enables the Insight Compute Interface but the value specified through this function does not
allow the Insight Compute Interface to be used, any solves will terminate with an immediate error. This
function can be used to prevent solves from being sent to Insight Compute but cannot be used to force
solves to be performed locally. The purpose of this function is to allow an application to prevent the
optimization model being sent to the Insight Compute Interface.

Fair Isaac Corporation Proprietary Information 130

Chapter 7: Reference Manual

xpress.setcheckedmode

Purpose
Disable/enable some of the checking & validation of function calls & function call parameters for calls to
the Xpress Optimizer API. This checking is relatively lightweight but disabling it can improve performance
in cases where non-intensive Xpress Optimizer functions are called repeatedly in a short space of time.
Please note: after disabling checking and validation for function calls, invalid usage of Xpress Optimizer
functions may not be detected and may cause the Xpress Optimizer process to behave unexpectedly or
crash. It is not recommended to disable function call checking & validation during application
development.

Synopsis
xpress.setcheckedmode(checked_mode)

Argument
checked_mode Pass as False or 0 to disable much of the validation for all Xpress function calls

from the current process. Pass True or 1 to re-enable validation. By default,
validation is enabled.

Related topics
xpress.getcheckedmode.

Fair Isaac Corporation Proprietary Information 131

Chapter 7: Reference Manual

xpress.setdefaults

Purpose
Sets the module’s controls to their default values. This affects all problems created after calling
setdefaults, not before.

Synopsis
xpress.setdefaults()

Example
The following creates two problems, one before and one after calling setdefaults():

xpress.controls.presolve = 0
p1 = xpress.problem()
xpress.setdefaults()
p2 = xpress.problem()
print('Check p1.controls.presolve is 0: ', p1.controls.presolve)
print('Check p2.controls.presolve is its default:', p2.controls.presolve)

Related topics
xpress.setdefaultcontrol, problem.setdefaults, problem.setdefaultcontrol.

Fair Isaac Corporation Proprietary Information 132

Chapter 7: Reference Manual

xpress.setdefaultcontrol

Purpose
Sets one of the module’s controls to its default values. This affects all problems created after calling
setdefaults, not before.

Synopsis
xpress.setdefaultcontrol(ipar)

Argument
ipar Name of the control to be set to default.

Example
The following creates two problems, one before and one after calling
setdefaultcontrol(’presolve’):

xpress.controls.presolve = 0
p1 = xpress.problem()
xpress.setdefaultcontrol('presolve')
p2 = xpress.problem()
print('I bet p1.controls.presolve is 0: ', p1.controls.presolve)
print('I bet p2.controls.presolve is its default:', p2.controls.presolve)

Related topics
xpress.setdefaults, problem.setdefaults, problem.setdefaultcontrol.

Fair Isaac Corporation Proprietary Information 133

Chapter 7: Reference Manual

xpress.vars

Purpose
This subroutine is deprecated and will be removed in a future release. Use problem.addVariables to
add linked variables to the problem instead.
Creates a dictionary or NumPy array of variables. Similar to the creation of a single variable with
xpress.var, vars allows for using one or more index sets, specified as sets, lists, range objects, or
any iterable object. Specifying a number k as an argument is equivalent to range(k) but can be used to
create NumPy multiarrays of variables, and allows for more efficient creation. The result is otherwise a
Python dictionary of variables, whose keys are tuple of indices. A collection of variables x that is created
with vars can be indexed, for instance, as x[i,j] where i and j are indices in the lists provided.

Synopsis
x = xpress.vars(⁎indices, name="x", lb=0, ub=xpress.infinity, threshold=0,

vartype=xpress.continuous)

Arguments
indices One or more lists, sets, ranges, or iterable objects to be combined; in alternative, one can

specify one or more numbers k to signify the range 0..k-1. Using only numbers as
argument will yield a NumPy multiarray with the dimensions as specified by the
arguments themselves.

name Prefix to be added to the name of each variable; see notes for more information.
lb Lower bound for all variables.
ub Upper bound for all variables.
threshold Threshold for all variables; only used if the variables are partially integer.
vartype Type of all variables, similar to the definition of single variables.

Example
The following creates a dictionary containing 6 variables whose indices vary in the set
{(0,’a’),(0,’b’),(0,’c’),(1,’a’),(1,’b’),(1,’c’)}:

x = xpress.vars([0,1],['a','b','c'])

The following creates a dictionary containing 6 variables whose indices vary in the set
{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)}:

x = xpress.vars(2,3)

The code below creates a dictionary containing 5 integer variables with names ’y(a)’, ’y(b)’,
’y(c)’, ’y(d)’, ’y(e)’ and creates a constraint to bound their sum:

x = xpress.vars(['a','b','c','d','e'],
name='y', vartype=xpress.integer)
con1 = xpress.Sum(x) <= 4

The code below creates a dictionary whose keys range from 0 to 4:

x = xpress.vars(range(5),
name='y', vartype=xpress.integer)
con1 = xpress.Sum(x) <= 4

The following example creates a Numpy multiarray of dimensions 3,7,4 without assigning names to the
variables:

x = xpress.vars(3,7,4, name="", lb=-1, ub=1)

Note that specifying anything other than a number yields a dictionary rather than a Numpy multiarray.
Finally, the following creates a variable indexed by the set defined right before:

Fair Isaac Corporation Proprietary Information 134

Chapter 7: Reference Manual

S = set()
S.add('john')
S.add('cleese')
x = xpress.vars(S, name='y', vartype=xpress.integer)

Further information
1. The name of each variable is created by concatenating its indices together. If the name argument is given

as a non-empty string, this will be prepended to the name of each variable. If the name argument is given
as an empty string, no names will be assigned to the variables. This option can be used to create large
arrays of variables more quickly, since it will not be necessary to calculate a name for each variable.

2. All lists must contain non-repeated elements to avoid having variables with equal names. If a list in the
argument is, for instance, [’a’,’b’,’a’], an error is returned.

3. Unlinked variables are not tied to a problem but may exist globally in a Python program. In order for them
to be included into a problem, they have to be explicitly added to that problem using
problem.addVariable. Unlinked variables are deprecated.

Related topics
problem.addVariables, problem.addVariable, xpress.var.

Fair Isaac Corporation Proprietary Information 135

Chapter 7: Reference Manual

xpress.getOutputEnabled

Purpose
Returns True if Optimizer messages will be written to the Python output stream, False otherwise.

Synopsis
enabled = xpress.getOutputEnabled()

Related topics
xpress.setOutputEnabled, problem.getOutputEnabled, problem.setOutputEnabled.

Fair Isaac Corporation Proprietary Information 136

Chapter 7: Reference Manual

xpress.setOutputEnabled

Purpose
Enables or disables writing Optimizer messages to the Python output stream.

Synopsis
xpress.setOutputEnabled(enabled)

Argument
enabled True if Optimizer messages should be written to the Python output stream, False otherwise.

Related topics
xpress.getOutputEnabled, problem.getOutputEnabled, problem.setOutputEnabled.

Fair Isaac Corporation Proprietary Information 137

Chapter 7: Reference Manual

7.12 Xpress problem methods

Fair Isaac Corporation Proprietary Information 138

Chapter 7: Reference Manual

problem.addcbbariteration

Purpose
Declares a barrier iteration callback function, called after each iteration during the interior point algorithm,
with the ability to access the current barrier solution/slack/duals or reduced cost values, and to ask
barrier to stop. This callback function will be called in addition to any callbacks already added by
addcbbariteration.

Synopsis
problem.addcbbariteration(callback, data, priority)
barrier_action = callback(my_prob, my_object)

Arguments
callback The callback function itself. This takes two arguments, my_prob and my_object, and

returns an integer return value. This function is called at every barrier iteration.
my_prob The problem passed to the callback function, fubi.
my_object The user-defined object passed as data when setting up the callback with

addcbbariteration.
barrier_action Defines a return value controlling barrier:

<0 continue with the next iteration;
=0 let barrier decide (use default stopping criteria)
1 barrier stops with status not defined;
2 barrier stops with optimal status;
3 barrier stops with dual infeasible status;
4 barrier stops wih primal infeasible status;

data A user-defined object to be passed to the callback function, f_bariteration.
priority An integer that determines the order in which callbacks of this type will be invoked. The

callback added with a higher priority will be called before a callback with a lower priority.
Set to 0 if not required.

Example
This simple example demonstrates how the solution might be retrieved for each barrier iteration.

Barrier iteration callback
def BarrierIterCallback(my_prob, my_object):

current_iteration = my_prob.attributes.bariter

PrimalObj = my_prob.attributes.barprimalobj
DualObj = my_prob.attributes.bardualobj

Gap = DualObj - PrimalObj

PrimalInf = my_prob.attributes.barprimalinf
DualInf = my_prob.attributes.bardualinf
ComplementaryGap = my_prob.attributes.barcgap

decide if stop or continue
barrier_action = 0
if(current_iteration >= 50 or

Gap <= 0.1 ⁎ max(abs(PrimalObj), abs(DualObj))):
barrier_action = 2

return barrier_action

Fair Isaac Corporation Proprietary Information 139

Chapter 7: Reference Manual

To set callback:
prob.addcbbariteration(BarrierIterCallback, myobj, 0)

Further information
1. Only the following functions are expected to be called from the callback: problem.getlpsol and the

attribute/control value retrieving and setting routines.

2. Please note that these values refer to the scaled and presolved problem used by barrier, and may differ
from the ones calculated from the postsolved solution returned by problem.getlpsol.

Related topics
problem.removecbbariteration.

Fair Isaac Corporation Proprietary Information 140

Chapter 7: Reference Manual

problem.addcbbarlog

Purpose
Declares a barrier log callback function, called at each iteration during the interior point algorithm. This
callback function will be called in addition to any barrier log callbacks already added by addcbbarlog.

Synopsis
problem.addcbbarlog(callback, data, priority)
ret = callback(my_prob, my_object)

Arguments
callback The callback function itself. This takes two arguments, my_prob and my_object, and

has an integer return value. If the value returned by callback is nonzero, the solution
process will be interrupted. This function is called at every barrier iteration.

my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as data when setting up the callback with

addcbbarlog.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple barrier log callbacks will be invoked.

The callback added with a higher priority will be called before a callback with a lower
priority. Set to 0 if not required.

Example
This simple example prints a line to the screen for each iteration of the algorithm.

prob.addcbbarlog(barLog, None, 0)
prob.lpoptimize('b')

The callback function might resemble:

def barLog(prob, object):
print('Next barrier iteration')

Further information
If the callback function returns a nonzero value, the Optimizer run will be interrupted.

Related topics
problem.removecbbarlog, problem.addcbmiplog, problem.addcblplog,
problem.addcbmessage.

Fair Isaac Corporation Proprietary Information 141

Chapter 7: Reference Manual

problem.addcbchecktime

Purpose
Declares a callback function which is called every time the Optimizer checks if the time limit has been
reached. This callback function will be called in addition to any callbacks already added by
addcbchecktime.

Synopsis
problem.addcbchecktime(callback, data, priority)
ret = callback(my_prob, my_object)

Arguments
callback The callback function which takes two arguments, my_prob and my_data, and has an

integer return value. If the value returned by callback is nonzero, the solution process
will be interrupted. This function is called every time the Optimizer checks against the
time limit.

my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as data when setting up the callback with

addcbchecktime.
data The user-defined object passed as data when setting up the callback with

addcbchecktime.
priority An integer that determines the order in which multiple checktime callbacks will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Further information
If the callback function returns a nonzero value the solution process will be interrupted.

Related topics
problem.removecbchecktime.

Fair Isaac Corporation Proprietary Information 142

Chapter 7: Reference Manual

problem.addcbchgbranchobject

Purpose
Declares a callback function that will be called every time the Optimizer has selected a MIP entity for
branching. Allows the user to inspect and override the Optimizer’s branching choice. This callback
function will be called in addition to any callbacks already added by
problem.addcbchgbranchobject.

Synopsis
problem.addcbchgbranchobject(callback, data, priority)
newobject = callback(my_prob, my_object, obranch)

Arguments
callback The callback function, which takes three arguments: my_prob, my_object, and

obranch. This function is called every time the Optimizer has selected a candidate entity
for branching.

my_prob The problem passed to the callback function, callback.
my_object The user defined object passed as data when setting up the callback with

addcbchgbranchobject.
obranch The candidate branching object selected by the Optimizer.
newobject New branching object to replace the Optimizer’s selection. Can be None.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple callbacks of this type will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Further information
1. The branching object given by the Optimizer provides a linear description of how the Optimizer intends to

branch on the selected candidate. This will often be one of standard MIP entities of the current problem,
but can also be e.g. a split disjunction or a structural branch, if those features are turned on.

2. The functions branchobj.getbranches, branchobj.getbounds and branchobj.getrows can
be used to inspect the given branching object.

3. Refer to the branchobj class to learn how to create a new branching object to replace the Optimizer’s
selection. Note that the new branching object should be created with a priority value no higher than the
current object to guarantee it will be used for branching.

Related topics
problem.removecbchgbranchobject.

Fair Isaac Corporation Proprietary Information 143

Chapter 7: Reference Manual

problem.addcbcutlog

Purpose
Declares a cut log callback function, called each time the cut log is printed. This callback function will be
called in addition to any callbacks already added by problem.addcbcutlog.

Synopsis
problem.addcbcutlog(callback, data, priority)
ret = callback(my_prob, my_object)

Arguments
callback The callback function which takes two arguments, my_prob and my_object, and has an

integer return value.
my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as data when setting up the callback with

addcbcutlog.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple cut log callbacks will be invoked.

The callback added with a higher priority will be called before a callback with a lower
priority. Set to 0 if not required.

Further information
The callback callback should return a nonzero value to stop cutting on the current node.

Related topics
problem.removecbcutlog.

Fair Isaac Corporation Proprietary Information 144

Chapter 7: Reference Manual

problem.addcbdestroymt

Purpose
Declares a callback function that is called every time a MIP thread is destroyed by the parallel MIP code.
This callback function will be called in addition to any callbacks already added by addcbdestroymt.

Synopsis
problem.addcbdestroymt(callback, data, priority)
callback(my_prob, my_object)

Arguments
callback The callback function which takes two arguments, my_prob and my_object, and has no

return value.
my_prob The thread problem passed to the callback function.
my_object The user-defined object passed as data when setting up the callback with

addcbdestroymt.
data A user-defined object to be passed to the callback function.
priority An integer that determines the order in which multiple callbacks of this type will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Further information
This callback is useful for freeing up any user data created in the MIP thread callback.

Related topics
problem.removecbdestroymt, problem.addcbmipthread.

Fair Isaac Corporation Proprietary Information 145

Chapter 7: Reference Manual

problem.addcbgapnotify

Purpose
Declares a gap notification callback, to be called when a MIP solve reaches a predefined target, set using
the miprelgapnotify, mipabsgapnotify, mipabsgapnotifyobj, and/or
mipabsgapnotifybound controls.

Synopsis
problem.addcbgapnotify(callback, data, priority)
(RelGapNotify, AbsGapNotify, AbsGapNotifyObj, AbsGapNotifyBound) = callback(my_prob, my_object)

Arguments
callback The callback function.
data A user-defined object that will be passed into the callback callback.
priority An integer that determines the order in which multiple gap notification callbacks will be

invoked. The callback added with the higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

my_prob The current problem.
my_object The user-defined object passed as data when setting up the callback with

addcbgapnotify.
RelGapNotify The value the miprelgapnotify control will be set to after this callback. May be

modified within the callback in order to set a new notification target. Can be None.
AbsGapNotify The value the mipabsgapnotify control will be set to after this callback. May be

modified within the callback in order to set a new notification target. Can be None.
AbsGapNotifyObj The value the mipabsgapnotifyobj control will be set to after this callback.

May be modified within the callback in order to set a new notification target. Can be None.
AbsGapNotifyBound The value the mipabsgapnotifybound control will be set to after this

callback. May be modified within the callback in order to set a new notification target.
Can be None.

Example
The following example prints a message when the gap reaches 10% and 1%

def gapnotify(prob, object):

obj = prob.attributes.mipobjval
bound = prob.attributes.bestbound

If no solutions were found, just return a tuple of None's
if prob.attributes.mipsols == 0:

return None, None, None, None

if obj != 0 and bound != 0:
relgap = abs((obj - bound) / max(abs(obj), abs(bound)))

else:
relgap = 0

newRelGapNotifyTarget = -1

if relgap <= 0.1:
print('Gap reached 10%')
newRelGapNotifyTarget = 0.1

if relgap <= 0.01:

Fair Isaac Corporation Proprietary Information 146

Chapter 7: Reference Manual

print('Gap reached 1%')
newRelGapNotifyTarget = -1 # Don't call gapnotify again

return a quadruple with new values, or
None for those that should not be set
return (newRelGapNotifyTarget, None, None, None)

prob.controls.miprelgapnotify = 0.1
prob.addcbgapnotify(gapnotify, None, 0)
prob.mipoptimize('')

Further information
The target values that caused the callback to be triggered will automatically be reset to prevent the same
callback from being fired again.

Related topics
MIPRELGAPNOTIFY, MIPABSGAPNOTIFY, MIPABSGAPNOTIFYOBJ, MIPABSGAPNOTIFYBOUND,
problem.removecbgapnotify.

Fair Isaac Corporation Proprietary Information 147

Chapter 7: Reference Manual

problem.addcbmiplog

Purpose
Declares a MIP log callback function, called each time the MIP log is printed. This callback function will
be called in addition to any callbacks already added by addcbmiplog.

Synopsis
problem.addcbmiplog(callback, data, priority)
ret = callback(my_prob, my_object)

Arguments
callback The callback function which takes two arguments, my_prob and my_object, and has an

integer return value. If the value returned by callback is nonzero, the solution process
will be interrupted. This function is called whenever the MIP log is printed as determined
by the MIPLOG control.

my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as data when setting up the callback with

addcbmiplog.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple MIP log callbacks will be invoked.

The callback added with a higher priority will be called before a callback with a lower
priority. Set to 0 if not required.

Example
The following example prints at each node of the tree search the node number and its depth:

prob.controls.miplog = 3
prob.addcbmiplog(mipLog, None, 0)
prob.mipoptimize('')

The callback function may resemble:

def mipLog(prob, object):

nodedepth = prob.attributes.nodedepth
node = prob.attributes.currentnode

print('Node {0} with depth {1} has been processed'.format
(node, nodedepth))

return 0

Further information
If the callback function returns a nonzero value, the tree search will be interrupted.

Related topics
problem.removecbmiplog, problem.addcbbarlog, problem.addcblplog,
problem.addcbmessage.

Fair Isaac Corporation Proprietary Information 148

Chapter 7: Reference Manual

problem.addcbinfnode

Purpose
Declares a user infeasible node callback function, called after the current node has been found to be
infeasible during the Branch and Bound search. This callback function will be called in addition to any
callbacks already added by addcbinfnode.

Synopsis
problem.addcbinfnode(callback, data, priority)
callback(my_prob, my_object)

Arguments
callback The callback function which takes two arguments, my_prob and my_object, and has no

return value. This function is called after the current node has been found to be infeasible.
my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as data when setting up the callback with

addcbinfnode.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple user infeasible node callbacks will

be invoked. The callback added with a higher priority will be called before a callback with
a lower priority. Set to 0 if not required.

Example
The following notifies the user whenever an infeasible node is found during the tree search:

prob.addcbinfnode(nodeInfeasible, None, 0)
prob.mipoptimize("")

The callback function may resemble:

def nodeInfeasible(prob, object):
node = prob.attributes.currentnode
print("Node {0} infeasible".format(node))

Related topics
problem.removecbinfnode, problem.addcboptnode, problem.addcbintsol,
problem.addcbnodecutoff.

Fair Isaac Corporation Proprietary Information 149

Chapter 7: Reference Manual

problem.addcbintsol

Purpose
Declares a user integer solution callback function, called every time an integer solution is found by
heuristics or during the Branch and Bound search. This callback function will be called in addition to any
callbacks already added by addcbintsol.

Synopsis
problem.addcbintsol(callback, data, priority)
callback(my_prob, my_object)

Arguments
callback The callback function which takes two arguments, my_prob and my_object, and has no

return value. This function is called if the current node is found to have an integer feasible
solution, i.e. every time an integer feasible solution is found.

my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as data when setting up the callback with

addcbintsol.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple integer solution callbacks will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Example
The following example prints integer solutions as they are discovered in the tree search:

prob.addcbintsol(printsol, None, 0)
prob.mipoptimize("")

The callback function might resemble:

def printsol(my_prob, object):
objval = my_prob.attributes.lpobjval
x = my_prob.getSolution()
print("Integer solution found:", objval, "; values:")
print(x)

Further information
1. This callback is useful if the user wants to retrieve the integer solution when it is found.

2. To retrieve the integer solution, use either problem.getlpsol or problem.getpresolvesol.
problem.getmipsol always returns the last integer solution found and, if called from the intsol
callback, it will not necessarily return the solution that caused the invocation of the callback (for example,
it is possible that when solving with multiple MP threads, another thread finds a new integer solution
before the user calls problem.getmipsol).

3. This callback is called after a new integer solution was found by the Optimizer. Use a callback set by
problem.addcbpreintsol in order to be notified before a new integer solution is accepted by the
Optimizer, which allows for the new solution to be rejected.

Related topics
problem.removecbintsol, problem.addcbpreintsol.

Fair Isaac Corporation Proprietary Information 150

Chapter 7: Reference Manual

problem.addcblplog

Purpose
Declares a simplex log callback function which is called after every LPLOG iterations of the simplex
algorithm. This callback function will be called in addition to any callbacks already added by addcblplog.

Synopsis
problem.addcblplog(callback, data, priority)
ret = callback(my_prob, my_object)

Arguments
callback The callback function which takes two arguments, my_prob and my_object, and has an

integer return value. This function is called every LPLOG simplex iterations including
iteration 0 and the final iteration.

my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as data when setting up the callback with addcblplog.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple lplog callbacks will be invoked. The

callback added with a higher priority will be called before a callback with a lower priority.
Set to 0 if not required.

Example
The following code sets a callback function, lpLog, to be called every 10 iterations of the optimization:

prob.controls.lplog = 10
prob.addcblplog(lpLog, None, 0)
prob.read("problem", "")
prob.mipoptimize("")

The callback function may resemble:

def lpLog(my_prob, object):

iter = my_prob.attributes.simplexiter
obj = my_prob.attributes.lpobjval

print("At iteration {0} objval is {1}".format(iter, obj))
return 0

Further information
If the callback function returns a nonzero value, the solution process will be interrupted.

Related topics
problem.removecblplog, problem.addcbbarlog, problem.addcbmiplog,
problem.addcbmessage.

Fair Isaac Corporation Proprietary Information 151

Chapter 7: Reference Manual

problem.addcbmessage

Purpose
Declares an output callback function, called every time a text line relating to the given prob is output by
the Optimizer. This callback function will be called in addition to any callbacks already added by
addcbmessage.

Synopsis
problem.addcbmessage(callback, data, priority)
callback(my_prob, my_object, msg, msgtype)

Arguments
callback The callback function which takes four arguments: my_prob, my_object, msg, and

msgtype, and has no return value. Use a None value to cancel a callback function.
my_prob The problem passed to the callback function.
my_object The user-defined object passed as data when setting up the callback with

addcbmessage.
msg A string containing the message.
msgtype Indicates the type of output message:

1 information messages;
2 (not used)
3 warning messages;
4 error messages.
A negative value indicates that the Optimizer is about to finish and the buffers should be
flushed at this time if the output is being redirected to a file.

data A user-defined object to be passed to the callback function.
priority An integer that determines the order in which callbacks of this type will be invoked. The

callback added with a higher priority will be called before a callback with a lower priority.
Set to 0 if not required.

Example
The following example simply sends all output to the screen (stdout):

prob.addcbmessage(Message, None, 0)

The callback function might resemble:

def Message(my_prob, object, msg, msgtype):

print('{0}: {1}'.format(msgtype, msg))

Further information
1. The Xpress Python API registers a message callback that prints messages to stdout. This callback

cannot be removed explicity but can be disabled using xpress.setOutputEnabled.

2. This function offers one method of handling the messages which describe any warnings and errors that
may occur during execution. Other methods are to check the return values of functions and then get the
error code using the errorcode attribute, obtain the last error message directly using
problem.getlasterror, or send messages direct to a log file using problem.setlogfile.

Related topics
problem.removecbmessage, problem.addcbbarlog, problem.addcbmiplog,
problem.addcblplog, problem.setlogfile, xpress.setOutputEnabled.

Fair Isaac Corporation Proprietary Information 152

Chapter 7: Reference Manual

problem.addcbmipthread

Purpose
Declares a MIP thread callback function, called every time a MIP worker problem is created by the parallel
MIP code. This callback function will be called in addition to any callbacks already added by
addcbmipthread.

Synopsis
problem.addcbmipthread(callback, data, priority)
callback(my_prob, my_object, thread_prob)

Arguments
callback The callback function which takes three arguments, my_prob, my_object and

thread_prob, and has no return value.
my_prob The problem passed to the callback function.
my_object The user-defined object passed to the callback function.
thread_prob The problem for the MIP thread
data A user-defined object to be passed to the callback function.
priority An integer that determines the order in which multiple callbacks of this type will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Example
The following example clears the message callback for each of the MIP threads:

prob.addcbmipthread(mipthread, None, 0)

def mipthread(my_prob, my_object, mipthread):
my_prob.removecbmessage(mipthread, None)

Further information
This function will be called when a new MIP worker problem is created. Each worker problem receives a
unique identifier that can be obtained through the MIPTHREADID attribute. Worker problems can be
matched with different system threads at different points of a solve, so the system thread that is
responsible for executing the callback is not necessarily the same thread used for all subsequent
callbacks for the same worker problem. On the other hand, worker problems are always assigned to a
single thread at a time and the same nodes are always solved on the same worker problem in repeated
runs of a deterministic MIP solve. A worker problem therefore acts as a virtual thread through the node
solves.

Related topics
problem.removecbmipthread, problem.addcbdestroymt.

Fair Isaac Corporation Proprietary Information 153

Chapter 7: Reference Manual

problem.addcbnewnode

Purpose
Declares a callback function that will be called every time a new node is created during the branch and
bound search. This callback function will be called in addition to any callbacks already added by
addcbnewnode.

Synopsis
problem.addcbnewnode(callback, data, priority)
callback(my_prob, my_object, parentnode, newnode, branch)

Arguments
callback The callback function, which takes five arguments: myprob, my_object, parentnode,

newnode and branch. This function is called every time a new node is created through
branching.

my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as data when setting up the callback with

addcbnewnode.
parentnode Unique identifier for the parent of the new node.
newnode Unique identifier assigned to the new node.
branch The sequence number of the new node amongst the child nodes of parentnode. For

regular branches on a MIP entity this will be either 0 or 1.
data A user-defined object to be passed to the callback function.
priority An integer that determines the order in which callbacks of this type will be invoked. The

callback added with a higher priority will be called before a callback with a lower priority.
Set to 0 if not required.

Further information
1. For regular branches on a MIP entity, branch will be either zero or one, depending on whether the new

node corresponds to branching the MIP entity up or down.

2. When branching on a branchobject, branch refers to the given branch index of the object.

Related topics
problem.removecbnewnode.

Fair Isaac Corporation Proprietary Information 154

Chapter 7: Reference Manual

problem.addcbnodecutoff

Purpose
Declares a user node cutoff callback function, called every time a node is cut off as a result of an
improved integer solution being found during the branch and bound search. This callback function will be
called in addition to any callbacks already added by addcbnodecutoff.

Synopsis
problem.addcbnodecutoff(callback, data, priority)
callback(my_prob, my_object, node)

Arguments
callback The callback function, which takes three arguments, my_prob, my_object and node,

and has no return value. This function is called every time a node is cut off as the result of
an improved integer solution being found.

my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as data when setting up the callback with

addcbnodecutoff.
node The number of the node that is cut off.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple node-optimal callbacks will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Example
The following notifies the user whenever a node is cutoff during the tree search:

prob.addcbnodecutoff(Cutoff, None, 0)
mipoptimize(prob, "")

The callback function might resemble:

def Cutoff(prob, object, node):

print("Node {0} cutoff".format(node))

Further information
This function allows the user to keep track of the eligible nodes. Note that the LP solution will not be
available from this callback.

Related topics
problem.removecbnodecutoff, problem.addcboptnode, problem.addcbinfnode,
problem.addcbintsol.

Fair Isaac Corporation Proprietary Information 155

Chapter 7: Reference Manual

problem.addcbnodelpsolved

Purpose
Declares a node LP solved callback function, called during the branch and bound search, after the LP
relaxation has been solved for the current node, but before any internal cuts and heuristics have been
applied. This callback function will be called in addition to any callbacks already added by
XPRSaddcbnodelpsolved.

Synopsis
problem.addcbnodelpsolved(callback, data, priority)
callback(my_prob, my_object)

Arguments
callback The callback function, which takes two arguments, my_prob and my_object, and has

no return value.
my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as data when setting up the callback with

addcbnodecutoff.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple node-optimal callbacks will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Related topics
problem.removecbnodelpsolved, problem.addcboptnode

Fair Isaac Corporation Proprietary Information 156

Chapter 7: Reference Manual

problem.addcboptnode

Purpose
Declares an optimal node callback function, called during the branch and bound search, after the LP
relaxation has been solved for the current node, and after any internal cuts and heuristics have been
applied, but before the Optimizer checks if the current node should be branched. This callback function
will be called in addition to any callbacks already added by addcboptnode.

Synopsis
problem.addcboptnode(callback, data, priority)
infeas = callback(my_prob, my_object)

Arguments
callback The callback function which takes two arguments, my_prob and my_object, and

returns an integer. If the value returned by callback is nonzero, the solution process will
be interrupted.

my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as data when setting up the callback with

addcboptnode.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple node-optimal callbacks will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Example
The following prints the optimal objective value of the node LP relaxations:

prob.addcboptnode(nodeOptimal, None, 0)
prob.mipoptimize("")

The callback function might resemble:

def nodeOptimal(prob, object):

node = prob.attributes.currentnode
print("NodeOptimal: node number", node)
objval = prob.attributes.lpobjval
print("Objective function value =", objval)
return 0

Related topics
problem.removecboptnode, problem.addcbinfnode, problem.addcbintsol,
problem.addcbnodecutoff, CALLBACKCOUNT_OPTNODE.

Fair Isaac Corporation Proprietary Information 157

Chapter 7: Reference Manual

problem.addcbpreintsol

Purpose
Declares a user integer solution callback function, called when an integer solution is found by heuristics
or during the branch and bound search, but before it is accepted by the Optimizer. This callback function
will be called in addition to any integer solution callbacks already added by addcbpreintsol.

Synopsis
problem.addcbpreintsol(callback, data, priority)
(ifreject, newcutoff) = callback(my_prob, my_object, soltype, cutoff)

Arguments
callback The callback function which takes four arguments, my_prob, my_object,

soltype and cutoff, returns a tuple of two elements. This function is called when an
integer solution is found, but before the solution is accepted by the Optimizer, allowing the
user to reject the solution.

my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as object when setting up the callback with

addcbpreintsol.
soltype The type of MIP solution that has been found.

0 The continuous relaxation solution to the current node of the tree search, which
has been found to be integer feasible.

1 A MIP solution found by a heuristic.
2 A MIP solution provided by the user.
3 A solution resulting from refinement of primal or dual violations of a previous

MIP solution.
cutoff The current cutoff value.
ifreject If a nonzero value is returned in the first position of the tuple, the solution will be rejected.
newcutoff A new cutoff value can be returned in the second position of the tuple, to be used by the

Optimizer if the solution is accepted. The returned newcutoff value will not be updated
if the solution is rejected.

data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which callbacks of this type will be invoked. The

callback added with a higher priority will be called before a callback with a lower priority.
Set to 0 if not required.

Further information
1. If a solution is rejected, the Optimizer will drop the found solution without updating any attributes,

including the cutoff value. To change the cutoff value when rejecting a solution, the control
MIPABSCUTOFF should be set instead.

2. When a node solution is rejected (isheuristic = 0), the node itself will be dropped without further
branching.

3. To retrieve the integer solution, use either problem.getlpsol or problem.getpresolvesol.
problem.getmipsol will not return the newly found solution because it has not been saved at this
point.

Related topics
problem.removecbpreintsol, problem.addcbintsol.

Fair Isaac Corporation Proprietary Information 158

Chapter 7: Reference Manual

problem.addcbprenode

Purpose
Declares a preprocess node callback function, called before the LP relaxation of a node has been
optimized, so the solution at the node will not be available. This callback function will be called in
addition to any callbacks already added by addcbprenode.

Synopsis
problem.addcbprenode(callback, data, priority)
nodinfeas = callback(my_prob, my_object)

Arguments
callback The callback function, which takes two arguments, my_prob, my_object and and

returns an integer. This function is called before a node is reoptimized and the node may
be made infeasible by returning 1 from the callback.

my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as data when setting up the callback with

addcbprenode.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple preprocess node callbacks will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Example
The following example notifies the user before each node is processed:

prob.addcbprenode(preNode, None, 0)
prob.mipoptimize("")

The callback function might resemble:

def preNode(prob, object):

return 0 # set to 1 if node is infeasible

Related topics
problem.removecbprenode, problem.addcbinfnode, problem.addcbintsol,
problem.addcbnodecutoff, problem.addcboptnode.

Fair Isaac Corporation Proprietary Information 159

Chapter 7: Reference Manual

problem.addcbusersolnotify

Purpose
Declares a callback function to be called each time a solution added by problem.addmipsol has been
processed. This callback function will be called in addition to any callbacks already added by
addcbusersolnotify.

Synopsis
problem.addcbusersolnotify(callback, data, priority)
callback(my_prob, my_object, solname, status)

Arguments
callback The callback function which takes four arguments, my_prob, my_object, id and

status and has no return value.
my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as object when setting up the callback with

addcbusersolnotify.
solname The string name assigned to the solution when it was loaded into the Optimizer using

problem.addmipsol.
status One of the following status values:

0 An error occured while processing the solution.
1 Solution is feasible.
2 Solution is feasible after reoptimizing with fixed MIP entities.
3 A local search heuristic was applied and a feasible solution discovered.
4 A local search heuristic was applied but a feasible solution was not found.
5 Solution is infeasible and a local search could not be applied.
6 Solution is partial and a local search could not be applied.
7 Failed to reoptimize the problem with MIP entities fixed to the provided solution.

Likely because a time or iteration limit was reached.
8 Solution is dropped. This can happen if the MIP problem is changed or solved to

completion before the solution could be processed.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple callbacks will be invoked. The

callback added with a higher priority will be called before a callback with a lower priority.
Set to 0 if not required.

Further information
If presolve is turned on, any solution added with problem.addmipsol will first be presolved before it
can be checked. The value returned in status refers to the presolved solution, which might have had
values adjusted due to bound changes, fixing of variables, etc.

Related topics
problem.removecbusersolnotify, problem.addmipsol.

Fair Isaac Corporation Proprietary Information 160

Chapter 7: Reference Manual

problem.addcbbeforeobjective

Purpose
Declares a callback which will be called before each objective in a multi-objective problem is solved. This
callback function will be called in addition to any callbacks already added by addcbbeforeobjective.

Synopsis
problem.addcbbeforeobjective(callback, data, priority)
callback(my_prob, my_object)

Arguments
callback The callback function which takes two arguments, my_prob and my_object, and has no

return value. This function is called before every solve.
my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as data when setting up the callback with

addcbbeforeobjective.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple before objective callbacks will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Example
This example sets a node limit for the second multi-objective solve:

def beforeobjective(prob, object):
if prob.attributes.solvedobjs == 1:

prob.controls.maxnode = 100

prob.addcbbeforeobjective(beforeobjective, None, 0)
prob.optimize("")

Related topics
problem.removecbbeforeobjective, problem.addcbafterobjective.

Fair Isaac Corporation Proprietary Information 161

Chapter 7: Reference Manual

problem.addcbafterobjective

Purpose
Declares a callback which will be called after each objective in a multi-objective problem is solved. This
callback function will be called in addition to any callbacks already added by addcbafterobjective.

Synopsis
problem.addcbafterobjective(callback, data, priority)
callback(my_prob, my_object)

Arguments
callback The callback function which takes two arguments, my_prob and my_object, and has no

return value. This function is called after every solve.
my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as data when setting up the callback with

addcbafterobjective.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple after objective callbacks will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Example
This example logs a message after each objective is solved:

def afterobjective(prob, object):
print("Completed solve {}".format(prob.attributes.solvedobjs))

prob.addcbafterobjective(afterobjective, None, 0)
prob.optimize("")

Related topics
problem.removecbafterobjective, problem.addcbbeforeobjective.

Fair Isaac Corporation Proprietary Information 162

Chapter 7: Reference Manual

problem.addcoefs

Purpose
Add non-linear coefficients to the SLP problem

Synopsis
problem.addcoefs(rowindex, colindex, factor, fstart, parsed, type, value)

Arguments
rowindex Array holding the rows (or their indices or names) for the coefficient.
colindex Array holding the columns (or their indices or names) for the coefficient.
factor Array holding factor by which formula is scaled. If None, a value of 1.0 will be used.
fstart Integer array holding the start position in the arrays Type and Value of the formula for

the coefficients. fstart should have an extra entry containing the next position after the
end of the last formula.

parsed Boolean indicating whether the token arrays are formatted as internal unparsed
(parsed=False) or internal parsed reverse Polish (parsed=True).

type Array of token types providing the formula for each coefficient.
value Array of values corresponding to the types in Type.

Example
Assume that the rows and columns of Prob are named Row1, Row2 ..., Col1, Col2 ..., respectively. The
following example adds coefficients representing:
Col2 ⁎ Col3 + Col6 ⁎ Col2ˆ2 into Row1 and
Col2 ˆ 2 into Row3.

rowindex = [Row1,Row1,Row3]
colindex = [Col2,Col6,Col2]

formulastart = []
type = []
value = []

formulastart.append(len(type))
type.append(xp.tok_col); value.append(3)
type.append(xp.tok_eof); value.append(0)

formulastart.append(len(type))
type.append(xp.tok_col); value.append(2)
type.append(xp.tok_col); value.append(2)
type.append(xp.tok_op); value.append(xp.op_multiply)
type.append(xp.tok_eof); value.append(0)

formulastart.append(len(type))
type.append(xp.tok_col); value.append(2)
type.append(xp.tok_eof); value.append(0)

formulastart.append(len(type))

p.addcoefs(rowindex, colindex, None, formulastart, True, Type, Value)

The first coefficient in Row1 is in Col2 and has the formula Col3, so it represents Col2 ⁎ Col3.
The second coefficient in Row1 is in Col6 and has the formula Col2 ⁎ Col2 so it represents Col6 ⁎
Col2ˆ2. The formulae are described as parsed (parsed=True), so the formula is written as

Fair Isaac Corporation Proprietary Information 163

Chapter 7: Reference Manual

Col2 Col2 ⁎
rather than the unparsed form
Col2 ⁎ Col2
The last coefficient, in Row3, is in Col2 and has the formula Col2, so it represents Col2 ⁎ Col2.

Further information
The jth coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier,
which can be provided in the Factor array. If Xpress Nonlinear can identify a constant factor in
Formula, then it will use that as well, to minimize the size of the formula which has to be calculated.
Formula is made up of a list of tokens in Type and Value starting at formulastart[j]. The tokens
follow the rules for parsed or unparsed formulae as indicated by the setting of parsed. The formula
must be terminated with an xslp_op_eof token. If several coefficients share the same formula, they
can have the same value in fstart. For possible token types and values see the chapter on Formula
Parsing in the SLP reference manual.
The addcoef function loads additional items into the SLP problem. The corresponding loadcoefs
function deletes any existing items first.
The behaviour for existing coefficients is additive: the formula defined in the parameters are added to any
existing formula coefficients. However, due to performance considerations, such duplications should be
avoided when possible.

Related topics
problem.slpchgcoef, problem.slpchgcoefstr, problem.delcoefs,
problem.getcoefformula, problem.slpgetcoefstr, problem.loadcoefs

Fair Isaac Corporation Proprietary Information 164

Chapter 7: Reference Manual

problem.addcols

Purpose
Add columns to the problem after passing it to the Optimizer using the input routines.

Synopsis
problem.addcols(objcoef, start, rowind, rowcoef, lb, ub, names, types,

unlinked=False)

Arguments
objcoef Array containing the objective function coefficients of the new columns.
start Array containing the offsets in the rowind and rowcoef arrays of the start of the

elements for each column.
rowind Array containing the rows (i.e. xpress.constraint objects, indices, or names) for the

elements in each column.
rowcoef Array containing the element values.
lb Array containing the lower bounds on the added columns.
ub Array containing the upper bounds on the added columns.
names (optional) Array containing the names of the columns added.
types (optional) Array of characters containing the types of the newly added columns:

C indicates a continuous variable (default);
I indicates an integer variable;
B indicates a binary variable;
S indicates a semi-continuous variable;
R indicates a semi-continuous integer variable;
P indicates a partial integer variable.

unlinked (optional) If True, unlinked variables will be created (deprecated).

Example
In this example, we consider the two problems:

(a) maximize: 2x + y (b) maximize: 2x + y + 3z
subject to: x + 4y ≤ 24 subject to: x + 4y + 2z ≤ 24

y ≤ 5 y + z ≤ 5
3x + y ≤ 20 3x + y ≤ 20
x + y ≤ 9 x + y + 3z ≤ 9

z ≤ 12

Using addcols, the following transforms (a) into (b):

p = xpress.problem()

p.read("example.lp")

assume this problem has at least four constraints
p.addcols(obj=[3], start=[0,3], rowind=[0, 1, 3],

matval=[2,1,3], lb=[-xpress.infinity], ub=[12],
names=['john_cleese'], types=['C'])

Further information
1. The constant xpress.infinity can be used to represent infinite bounds.

2. If the columns are added to a MIP problem, then they will be continuous variables unless types is
specified. Use problem.chgcoltype to impose integrality conditions on such new columns.

Fair Isaac Corporation Proprietary Information 165

Chapter 7: Reference Manual

Related topics
problem.addrows, problem.chgcoltype.

Fair Isaac Corporation Proprietary Information 166

Chapter 7: Reference Manual

problem.addConstraint

Purpose
Adds one or more constraints to the problem.

Synopsis
problem.addConstraint(c1, c2, ...)

Argument
c1,c2... Constraints or list/tuples/array of constraints created with the xpress.constraint()

call.

Example

N = 20
p = xpress.problem()
x = [p.addVariable() for i in range(N)]
c = [x[i] <= x[i+1] for i in range(N-1)]
c2 = x[0] >= x[19]
p.addConstraint(x[2] == x[4])
p.addConstraint(c, c2)

Further information
All arguments can be single constraints or lists, tuples, or NumPy arrays of constraints created as
xpress.constraint objects. Arguments do not need to be declared prior to the call.

Fair Isaac Corporation Proprietary Information 167

Chapter 7: Reference Manual

problem.addcuts

Purpose
Adds cuts directly to the matrix at the current node. Any cuts added to the matrix at the current node and
not deleted at the current node will be automatically added to the cut pool. The cuts added to the cut pool
will be automatically restored at descendant nodes.

Synopsis
problem.addcuts(cuttype, rowtype, rhs, start, colind, cutcoef)

Arguments
cuttype Array containing the user assigned cut types. The cut types can be any integer chosen by

the user, and are used to identify the cuts in other cut manager routines using user
supplied parameters. The cut type can be interpreted as an integer or a bitmap - see
problem.delcuts.

rowtype Character array containing the row types:
L indicates a ≤ row;
G indicates ≥ row;
E indicates an = row.

rhs Array containing the right hand side elements for the cuts.
start Array containing offset into the colind and cutcoef arrays indicating the start of each

cut. This array is of length ncuts+1 with the last element, start[ncuts], being where
cut ncuts+1 would start.

colind Array containing the columns (i.e. xpress.var objects, indices, or names) in the cuts.
cutcoef Array containing the matrix values for the cuts.

Further information
1. The columns and elements of the cuts must be stored contiguously in the colind and cutcoef arrays

passed to addcuts. The starting point of each cut must be stored in the start array. To determine the
length of the final cut, the start array must be of length ncuts+1 with the last element of this array
containing the position in colind and cutcoef where the cut ncuts+1 would start. start[ncuts]
denotes the number of nonzeros in the added cuts.

2. The cuts added to the matrix are always added at the end of the matrix and the number of rows is always
set to the original number of cuts added. If ncuts have been added, then the rows 0,...,ROWS-ncuts-1
are the original rows, whilst the rows ROWS-ncuts,...,ROWS-1 are the added cuts. The number of cuts can
be found by consulting the CUTS problem attribute.

Related topics
problem.addrows, problem.delcpcuts, problem.delcuts, problem.getcpcutlist,
problem.getcutlist, problem.loadcuts, problem.storecuts, Section "Working with the cut
manager" of the Xpress Optimizer reference manual.

Fair Isaac Corporation Proprietary Information 168

Chapter 7: Reference Manual

problem.adddfs

Purpose
Add a set of distribution factors

Synopsis
problem.adddfs(colindex, rowindex, value)

Arguments
colindex Array of columns (i.e. xpress.var objects, indices, or names) whose distribution factor

is to be changed.
rowindex Array of rows (i.e. xpress.constraint objects, indices, or names) where each

distribution factor applies.
value Array holding the new values of the distribution factors.

Example
The following example adds distribution factors as follows:
column 282 in row 134 = 0.1
column 282 in row 136 = 0.15
column 285 in row 133 = 1.0.

colindex = [282, 282, 285]
rowindex = [134, 136, 133]
value = [0.1, 0.15, 1]
p.adddfs(colindex,rowindex,value)

Further information
The distribution factor of a column in a row is the matrix coefficient of the corresponding delta vector in
the row. Distribution factors are used in conventional recursion models, and are essentially normalized
first-order derivatives. Xpress SLP can accept distribution factors instead of initial values, provided that
the values of the variables involved can all be calculated after optimization using determining rows, or by
a callback.
The problem.adddfs functions load additional items into the SLP problem. The corresponding
problem.loaddfs functions delete any existing items first.

Related topics
problem.chgdf, problem.getdf, problem.loaddfs

Fair Isaac Corporation Proprietary Information 169

Chapter 7: Reference Manual

problem.addgencons

Purpose
Adds one or more general constraints to the problem. Each general constraint y = f(x1, ..., xn,
c1, ..., cn) consists of one or more (input) columns xi, zero or more constant values ci and a
resultant (output column) y. General constraints can be defined using operators such as maximum and
minimum (at least one input column of any contype and arbitrary number of input values), and and or (at
least one binary input column, no constant values, binary resultant) and absolute value (exactly one
input column of arbitrary contype, no constant values).

Synopsis
problem.addgencons (contype, resultant, colstart, colind, valstart, val)

Arguments
contype list or array containing the types of the general constraints:

xpress.gencons_max (0) indicates a maximum constraint;
xpress.gencons_min (1) indicates a minimum constraint;
xpress.gencons_and (2) indicates an and constraint;
xpress.gencons_or (3) indicates an or constraint;
xpress.gencons_abs (4) indicates an absolute value constraint.

resultant Array/list containing the output variables (or indices thereof) of the general
constraints.

colstart Array/list containing the start index of each general constraint in the colind array.
colind Array/list containing the input variables in all general constraints.
valstart Array/list containing the start index of each general constraint in the val array

(may be None).
val Array/list containing the constant values in all general constraints (may be None).

Example
This adds two new general constraints x2 = max(x0, x1, 5) and x3 = |x1|:

contype = [xpress.gencons_max, xpress.gencons_abs]
resultant = [2, 3]
colstart = [0, 2]
colind = [0, 1, 1]
valstart = [0, 1]
val = [5.0]

prob.addgencons(contype, resultant, colstart, colind, valstart, val)
prob.optimize()

Further information
General constraints must be set up before solving the problem. They are converted to additional binary
variables, indicator and linear constraints with the exact formulation and number of added entities
depending on the performed presolving.
Note that using non-binary variables in and/or constraints or adding constant values to them or
absolute value constraints will give an error at solve time.

Related topics
problem.getgencons, problem.delgencons, xpress.And, xpress.Or, xpress.max,
xpress.min, xpress.abs.

Fair Isaac Corporation Proprietary Information 170

Chapter 7: Reference Manual

problem.addIndicator

Purpose
Adds one or more indicator constraints to the problem.

Synopsis
problem.addIndicator(c1, c2, ...)

Argument
c1,c2... Tuples containing an indicator constraints, or list/tuples/array of tuples containing a

binary condition and a constraint.

Example

p = xpress.problem()
x = p.addVariable(vartype=xpress.binary)
y = p.addVariable(lb=10, ub=20)
z = p.addVariable()
ind1 = (x==1, y+z <= 40)
p.addIndicator(ind1)

Further information
All arguments can be single indicator constraints or lists, tuples, or NumPy arrays created as indicator
constraints. An indicator constraint is a tuple of two elements, the first being a condition (i.e. a binary
variable being 0 or 1) and the second being the constraint.

Fair Isaac Corporation Proprietary Information 171

Chapter 7: Reference Manual

problem.addmipsol

Purpose
Adds a new feasible, infeasible or partial MIP solution for the problem to the Optimizer.

Synopsis
problem.addmipsol(solval, colind, name)

Arguments
solval Array containing solution values.
colind Optional integer array containing the columns (i.e. xpress.var objects, indices, or

names) for the solution values provided in solval. It is optional when the length of
solval is equal to COLS, in which case it is assumed that solval provides a complete
solution vector.

name An optional name to associate with the solution.

Further information
1. The function returns immediately after passing the solution to the Optimizer. The solution is placed in a

pool until the Optimizer is able to analyze the solution during a MIP solve.

2. If the provided solution is found to be infeasible, a limited local search heuristic will be run in an attempt
to find a close feasible integer solution.

3. If a partial solution is provided, discrete columns will be fixed to any provided values and a limited local
search will be run in an attempt to find integer feasible values for the remaining unspecified columns.
Values provided for continuous column in partial solutions are currently ignored.

4. The problem.addcbusersolnotify callback function can be used to discover the outcome of a
loaded solution. The optional name provided as name will be returned in the callback function.

5. If one or more solutions are loaded during the problem.addcboptnode callback, the Optimizer will
process all loaded solutions and fire the callback again. This will be repeated as long as new solutions
are loaded during the callback.

Related topics
problem.addcbusersolnotify, problem.addcboptnode.

Fair Isaac Corporation Proprietary Information 172

Chapter 7: Reference Manual

problem.addnames

Purpose
Associates names with rows, columns, sets, piecewise linear constraints, general constraints or
objectives.

Synopsis
problem.addnames(type, names, first, last)

Arguments
names Array containing names.
type xpress.names_row for row names;

xpress.names_column for column names;
xpress.names_set for set names;
xpress.names_pwlcons for piecewise linear constraint names;
xpress.names_gencons for general constraint names;
xpress.names_objective for objective names.

first Start of the range of rows, columns, sets, piecewise linear constraints, general constraints
or objectives.

last End of the range of rows, columns, sets, piecewise linear constraints, general constraints
or objectives.

Example
Assign names to an array of constraints:

p = xp.problem()
x = p.addVariables(10)
m = np.random.rand(10, 10)
ctrs = xp.Dot(m, x) == 1
first_ctr = prob.attributes.rows
prob.addConstraint(ctrs)
last_ctr = prob.attributes.rows - 1
names = np.array(['ctr{}'.format(i) for i in range(len(ctrs))])
p.addnames(xp.names_row, names, first_ctr, last_ctr)

Related topics
problem.addcols, problem.addrows, problem.getnamelist.

Fair Isaac Corporation Proprietary Information 173

Chapter 7: Reference Manual

problem.addobj

Purpose
Appends an objective function with the given coefficients to a multi-objective problem. The weight and
priority of the objective are set to the given values.

Synopsis
problem.addobj(colind, objcoef, priority=0, weight=1)

Arguments
colind Integer array of length ncols containing the indices of the columns whose objective

coefficients will change. An index of -1 indicates that the fixed part of the objective
function on the right hand side should change.

objcoef Double array of length ncols giving the new objective function coefficients.
priority The priority for the objective function. During optimization, objectives with the same

priority are combined together in a weighted sum.
weight The weight for the objective function. If the weight is negative, the sense of this objective

is reversed.

Example
Adding a second objective function to a problem:

colind = [0, 2, 5]
objcoef = [25.0, 5.3, 0.0]
p.addobj(colind, objcoef, 1, 1)

Related topics
problem.addObjective, problem.setObjective, problem.chgobjn, problem.getobjn,
problem.delobj, problem.chgobj.

Fair Isaac Corporation Proprietary Information 174

Chapter 7: Reference Manual

problem.addObjective

Purpose
Adds one or more objective functions to the problem.

Synopsis
problem.addObjective(obj1, obj2, ..., priority=None, weight=None,

abstol=None, reltol=None)

Arguments
obj1,obj2,... Objectives to add to the problem. An error will be returned if any variable in any

objective was not already added to the problem via addVariable.
priority (optional) Priority for the new objectives (only relevant for multi-objective problems).
weight (optional) Weight for the new objectives (only relevant for multi-objective problems).
abstol (optional) Absolute tolerance for the new objectives (only relevant for multi-objective

problems).
reltol (optional) Relative tolerance for the new objectives (only relevant for multi-objective

problems).

Example
The following example adds two objective functions to the problem:

p = xpress.problem()
x1 = p.addVariable()
x2 = p.addVariable()
p.addObjective(2⁎x1⁎⁎2 + 3⁎x1⁎x2 + 5⁎x2⁎⁎2 + 4⁎x1 + 4)
p.addObjective(x1⁎⁎2)

Related topics
problem.setObjective, problem.addobj, problem.chgobjn, problem.delobj,
problem.chgobj.

Fair Isaac Corporation Proprietary Information 175

Chapter 7: Reference Manual

problem.addpwlcons

Purpose
Adds one or more piecewise linear constraints to the problem. Each piecewise linear constraint y =
f(x) consists of an (input) column x, a resultant (output column) y and a piecewise linear function f. The
piecewise linear function f is described by a number of breakpoints, which are given as combinations of x-
and y-values. Discontinuous piecewise linear functions are supported, in this case both the left and right
limit at a given point need to be entered as breakpoints. To differentiate between left and right limit, the
breakpoints need to be given as a list with non-decreasing x-values.

Synopsis
problem.addpwlcons(colind, resultant, start, xval, yval)

Arguments
colind Integer array (or list) containing the input variables x of the piecewise linear functions.
resultant Integer array containing the output variables y of the piecewise linear functions.
start Integer array containing the start index of each piecewise linear constraint in the xval

and yval arrays.
xval Array containing the x-values of the breakpoints.
yval Array containing the y-values of the breakpoints.

Example
This adds a new piecewise linear constraint y = f(x), where

f(x) = -x if x < 0
f(x) = 1 if 0 <= x <= 2
f(x) = 2x-3 if x > 2

colind = [x]
resultant = [y]
start = [0]
xval = [-1, 0, 0, 2, 3]
yval = [1, 0.5, 1, 1, 3]

prob.addpwlcons(colind, resultant, start, xval, yval)
prob.setObjective(y) # the piecewise linear function is to be minimized
prob.mipoptimize()

Further information
Piecewise linear constraints must be set up before solving the problem. They are converted to additional
linear constraints, continuous variables and SOS2 constraints, with the exact formulation and number of
added entities depending on the convexity of the piecewise linear function and some presolving steps
that are applied.

Related topics
problem.getpwlcons, problem.delpwlcons, xpress.pwl.

Fair Isaac Corporation Proprietary Information 176

Chapter 7: Reference Manual

problem.addqmatrix

Purpose
Adds a new quadratic matrix into a row defined by triplets.

Synopsis
problem.addqmatrix(row, rowqcol1, rowqcol2, rowqcoef)

Arguments
row Row (i.e. xpress.constraint object, index, or name) where the quadratic matrix is to

be added.
rowqcol1 Array with first variables (i.e. xpress.varobjects, indices, or names) in the triplets.
rowqcol2 Array with second variables (i.e. xpress.varobjects, indices, or names) index in the

triplets.
rowqcoef Array of coefficients in the triplets.

Further information
1. The triplets should define the upper triangular part of the quadratic expression. This means that to add

x2 + 4xy the rowqcoef array shall contain the coefficients 1 and 2.

2. The matrix defined by rowqcol1, rowqcol2 and rowqcoef should be positive semi-definite for ≤ and
negative semi-definite for ≥ rows.

3. The row must not be an equality or a ranged row.

Related topics
problem.loadproblem, problem.getqrowcoeff, problem.chgqrowcoeff,
problem.getqrowqmatrix, problem.getqrowqmatrixtriplets, problem.getqrows,
problem.chgqobj, problem.chgmqobj, problem.getqobj.

Fair Isaac Corporation Proprietary Information 177

Chapter 7: Reference Manual

problem.addrows

Purpose
Adds rows and their coefficient to the problem.

Synopsis
problem.addrows(rowtype, rhs, start, colind, rowcoef, range=None,

names=None, unlinked=False)

Arguments
rowtype Character array containing the row types:

L indicates a ≤ row;
G indicates ≥ row;
E indicates an = row.
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Array containing the right hand side elements.
start Array containing the offsets in the colind and rowcoef arrays of the start of the

elements for each row.
colind Array containing the (contiguous) columns (i.e. xpress.varobjects, indices, or names)

for the elements in each row.
rowcoef Array containing the (contiguous) element coefficients.
range (optional) Array containing the row range elements. The values in the range array will

only be read for ’R’ type rows. The entries for other type rows will be ignored.
names (optional) Array of names to be assigned to each new row.
unlinked (optional) If True, unlinked constraints will be created (deprecated).

Example
Suppose the current problem is:

maximize: 2x + y + 3z
subject to: x + 4y + 2z ≤ 24

y + z ≤ 5
3x + y ≤ 20

x + y + 3z ≤ 9

Then the following adds the row 8x + 9y + 10z ≤ 25 to the problem and names it NewRow:

p = xpress.problem()
p.addrows(['L'], [25], [0,3], [0,1,2],

rowcoef=[8, 9, 10], range=None, names=['NewRow'])

Further information
Range rows are automatically converted to type L, with an upper bound in the slack. This must be taken
into consideration, when retrieving row type, right–hand side values or range information for rows.

Related topics
problem.addcols, problem.addcuts.

Fair Isaac Corporation Proprietary Information 178

Chapter 7: Reference Manual

problem.addsetnames

Purpose
When a model with MIP entities is loaded, any special ordered sets may not have names associated with
them. If you wish names to appear in the ASCII solutions files, the names for a range of sets can be
added with this function.

Synopsis
problem.addsetnames(names, first=0, last=problem.attributes.sets - 1)

Arguments
names A list of strings contatining all names to be assigned.
first (Optional) first of the set range.
last (Optional) last of the set range.

Example
Add set names (set1 and set2) to a problem:

snames = ["set1", "set2"]
...
p.addsetnames(snames, 0, 1)

Further information
If first is not provided, it is considered equal to 0; if last is omitted, a value of
problem.attributes.sets - 1 is used.

Related topics
problem.loadproblem,

Fair Isaac Corporation Proprietary Information 179

Chapter 7: Reference Manual

problem.addSOS

Purpose
Creates a special ordered set (SOS) constraint within the problem.

Synopsis
s = problem.addSOS(indices, weights, type=1, name=’’)

Arguments
indices List of variables composing the SOS constraint.
weights List of weights (one per variable). These define the order for SOS2 constraints and may

be used in branching for both types.
type Type of the SOS constraint. Can be 1 (default) or 2.
name Name of the SOS constraint.

Example

N = 20
p = xpress.problem()
x = [p.addVariable() for i in range(N)]
s1 = p.addSOS(x, [i+2 for i in range(N)])
s2 = p.addSOS([x[0], x[2]], [4,6])

Further information
Weights must be sufficiently distinct (see the SOSREFTOL control in the Optimizer manual).
The addSOS function can also be used to add existing unlinked SOS constraints to a problem. This usage
is deprecated. See xpress.sos for examples of using unlinked SOS constraints.

Fair Isaac Corporation Proprietary Information 180

Chapter 7: Reference Manual

problem.addtolsets

Purpose
Add sets of standard tolerance values to an SLP problem

Synopsis
problem.addtolsets(tol)

Argument
tol Array of 9h elements containing the 9 tolerance values for each set in order.

Example
The following example creates two tolerance sets: the first has values of 0.005 for all tolerances; the
second has values of 0.001 for relative tolerances (numbers 2,4,6,8), values of 0.01 for absolute
tolerances (numbers 1,3,5,7) and zero for the closure tolerance (number 0).

tol = 9⁎[0.005]+[0]+[0.01,0.001]⁎4
p.addtolsets(tol)

Further information
A tolerance set is an array of 9 values containing the following tolerances:

Entry / Bit Tolerance XSLP constant XSLP bit constant
0 Closure tolerance (TC) xslp_TOLSET_TC xslp_TOLSETBIT_TC
1 Absolute delta tolerance (TA) xslp_TOLSET_TA xslp_TOLSETBIT_TA
2 Relative delta tolerance (RA) xslp_TOLSET_RA xslp_TOLSETBIT_RA
3 Absolute coefficient tolerance (TM) xslp_TOLSET_TM xslp_TOLSETBIT_TM
4 Relative coefficient tolerance (RM) xslp_TOLSET_RM xslp_TOLSETBIT_RM
5 Absolute impact tolerance (TI) xslp_TOLSET_TI xslp_TOLSETBIT_TI
6 Relative impact tolerance (RI) xslp_TOLSET_RI xslp_TOLSETBIT_RI
7 Absolute slack tolerance (TS) xslp_TOLSET_TS xslp_TOLSETBIT_TS
8 Relative slack tolerance (RS) xslp_TOLSET_RS xslp_TOLSETBIT_RS

The xslp_TOLSET constants can be used to access the corresponding entry in the value arrays, while the
xslp_TOLSETBIT constants are used to set or retrieve which tolerance values are used for a given SLP
variable. Once created, a tolerance set can be used to set the tolerances for any SLP variable. If a
tolerance value is zero, then the default tolerance will be used instead. To force the use of a tolerance,
use the problem.chgtolset function and set the Status variable appropriately. See the section
"Convergence criteria" of the SLP Reference Manual for a fuller description of tolerances and their uses.
The problem.addtolsets functions load additional items into the SLP problem. The corresponding
problem.loadtolsets functions delete any existing items first.

Related topics
problem.chgtolset, problem.deltolsets, problem.gettolset, problem.loadtolsets

Fair Isaac Corporation Proprietary Information 181

Chapter 7: Reference Manual

problem.addVariable

Purpose
Creates a variable within the problem.

Synopsis
v = problem.addVariable(name=None, lb=0, ub=xpress.infinity,

threshold=-xpress.infinity, vartype=xpress.continuous)

Arguments
name a Python UTF-8 string containing the name of the variable (its ASCII version will be saved

if written onto a file); a default name is assigned if the user does not specify it.
lb Lower bound (0 by default).
ub Upper bound (+infinity by default).
threshold the threshold for semi-continuous, semi-integer, and partially integer variables; it must be

between its lower and its upper bound; it has no default, so if a variable is defined as
xpress.partiallyinteger the threshold must be specified.

vartype xpress.continuous for continuous variables;
xpress.binary for binary variables;
xpress.integer for integer variables;
xpress.semicontinuous for semi-continuous variables;
xpress.semiinteger for semi-integer variables;
xpress.partiallyinteger for partially integer variables.

Example

p = xpress.problem()
x = p.addVariable(vartype=xpress.binary)
Y = [p.addVariable() for i in range(20)]

Further information
The addVariable function can also be used to add existing unlinked variables to a problem. This usage
is deprecated. See xpress.var for examples of using unlinked variables.

Related topics
problem.addVariables

Fair Isaac Corporation Proprietary Information 182

Chapter 7: Reference Manual

problem.addVariables

Purpose
Creates a dictionary or NumPy array of variables and adds them to the problem. Similar to the creation of
a single variable with problem.addVariable, addVariables allows for using one or more index
sets, specified as sets, lists, range objects, or any iterable object. Specifying a number k as an argument
is equivalent to range(k) but can be used to create NumPy multiarrays of variables, and allows for
more efficient creation. The result is otherwise a Python dictionary of variables, whose keys are tuple of
indices. A collection of variables x that is created with addVariables can be indexed, for instance, as
x[i,j] where i and j are indices in the lists provided.

Synopsis
x = problem.addVariables(⁎indices, name="x", lb=0, ub=xpress.infinity,

threshold=0, vartype=xpress.continuous)

Arguments
indices One or more lists, sets, ranges, or iterable objects to be combined; in alternative, one can

specify one or more numbers k to signify the range 0..k-1. Using only numbers as
argument will yield a NumPy multiarray with the dimensions as specified by the
arguments themselves.

name Prefix to be added to the name of each variable; see notes for more information.
lb Lower bound for all variables.
ub Upper bound for all variables.
threshold Threshold for all variables; only used if the variables are partially integer.
vartype Type of all variables, similar to the definition of single variables.

Example
The following creates a dictionary containing 6 variables whose indices vary in the set
{(0,’a’),(0,’b’),(0,’c’),(1,’a’),(1,’b’),(1,’c’)}:

x = problem.addVariables([0,1],['a','b','c'])

The following creates a dictionary containing 6 variables whose indices vary in the set
{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)}:

x = problem.addVariables(2,3)

The code below creates a dictionary containing 5 integer variables with names ’y(a)’, ’y(b)’,
’y(c)’, ’y(d)’, ’y(e)’ and creates a constraint to bound their sum:

x = problem.addVariables(['a','b','c','d','e'],
name='y', vartype=xpress.integer)
con1 = xpress.Sum(x) <= 4

The code below creates a dictionary whose keys range from 0 to 4:

x = problem.addVariables(range(5),
name='y', vartype=xpress.integer)
con1 = xpress.Sum(x) <= 4

The following example creates a Numpy multiarray of dimensions 3,7,4 without assigning names to the
variables:

x = problem.addVariables(3,7,4, name="", lb=-1, ub=1)

Note that specifying anything other than a number yields a dictionary rather than a Numpy multiarray.
Finally, the following creates a variable indexed by the set defined right before:

Fair Isaac Corporation Proprietary Information 183

Chapter 7: Reference Manual

S = set()
S.add('john')
S.add('cleese')
x = problem.addVariables(S, name='y', vartype=xpress.integer)

Further information
1. The name of each variable is created by concatenating its indices together. If the name argument is given

as a non-empty string, this will be prepended to the name of each variable. If the name argument is given
as an empty string, no names will be assigned to the variables. This option can be used to create large
arrays of variables more quickly, since it will not be necessary to calculate a name for each variable.

2. All lists must contain non-repeated elements to avoid having variables with equal names. If a list in the
argument is, for instance, [’a’,’b’,’a’], an error is returned.

Related topics
problem.addVariable

Fair Isaac Corporation Proprietary Information 184

Chapter 7: Reference Manual

problem.addvars

Purpose
Add SLP variables defined as matrix columns to an SLP problem

Synopsis
problem.addvars(colindex, vartype, detrow, seqnum, tolindex, initvalue,

stepbound)

Arguments
colindex Integer array holding the index of the matrix column corresponding to each SLP variable.
vartype Bitmap giving information about the SLP variables, compare the variable status keys in

the C interface, in particular:
Bit 2 Variable has an initial value;
May be None if not required.

detrow Integer array holding the index of the determining row for each SLP variable (a negative
value means there is no determining row)
May be None if not required.

seqnum Integer array holding the index sequence number for cascading for each SLP variable (a
zero value means there is no pre-defined order for this variable)
May be None if not required.

tolindex Integer array holding the index of the tolerance set for each SLP variable (a zero value
means the default tolerances are used)
May be None if not required.

initvalue Array holding the initial value for each SLP variable (use the VarType bit map to indicate
if a value is being provided)
May be None if not required.

stepbound Array holding the initial step bound size for each SLP variable (a zero value means that no
initial step bound size has been specified). If a value of xpress.infinity is used for a
value in stepbound, the delta will never have step bounds applied, and will almost
always be regarded as converged.
May be None if not required.

Example
The following example loads two SLP variables into the problem. They correspond to columns 23 and 25
of the underlying LP problem. Column 25 has an initial value of 1.42; column 23 has no specific initial
value

colindex = [23,25]
vartype = [0,4]
initvalue = [0,1.42]

p.addvars(colindex, vartype, None, None, None, initvalue, None)

Note that the initial value for the first variable will not actually be used, because the XSLP_HASIV flag is
not set (vartype = 0). Bit 2 of vartype is set for the second variable to indicate that the initial value
has been set. The arrays for determining rows, sequence numbers, tolerance sets and step bounds are
not used at all, and so have been passed to the function as None.

Further information
The addvars functions load additional items into the SLP problem. The corresponding loadvars
functions delete any existing items first.

Related topics
problem.chgvar, problem.delvars, problem.getvar, problem.loadvars

Fair Isaac Corporation Proprietary Information 185

Chapter 7: Reference Manual

problem.basisstability

Purpose
Returns various measures for the stability of the current basis, including the basis condition number.

Synopsis
x = problem.basisstability(type, norm, scaled)

Arguments
type 0 Condition number of the basis.

1 Stability measure for the solution relative to the current basis.
2 Stability measure for the duals relative to the current basis.
3 Stability measure for the right hand side relative to the current basis.
4 Stability measure for the basic part of the objective relative to the current basis.

norm 0 Use the infinity norm.
1 Use the 1 norm.
2 Use the Euclidian norm for vectors and the Frobenius norm for matrices.

scaled If the stability values are to be calculated in the scaled or the unscaled matrix.

Further information
1. The condition number (type = 0) of an invertible matrix is the norm of the matrix multiplied with the

norm of its inverse. This number is an indication of how accurate the solution can be calculated and how
sensitive it is to small changes in the data. The larger the condition number is, the less accurate the
solution is likely to become.

2. The stability measures (type = 1...4) are using the original matrix and the basis to recalculate the
various vectors related to the solution and the duals. The returned stability measure is the norm of the
difference of the recalculated vector to the original one.

Fair Isaac Corporation Proprietary Information 186

Chapter 7: Reference Manual

problem.bndsa

Purpose
Returns upper and lower sensitivity ranges for specified variables’ lower and upper bounds. If the bounds
are varied within these ranges the current basis remains optimal and feasible.

Synopsis
problem.bndsa(colind, lblower=None, lbupper=None, ublower=None,

ubupper=None)

Arguments
colind A list or Numpy array of the variables (or their indices or names), for which the sensitivity

range is requested.
lblower Array (to be passed as a list, possibly empty) that will contain the variable lower bound

lower ranges.
lbupper Array for the variable lower bound upper ranges.
ublower Array for the variable upper bound lower ranges.
ubupper Array for the variable upper bound upper ranges.

Example
problem.bndsa can only be called when an optimal solution to the current LP has been found. It
cannot be used when the problem is MIP presolved.

p = xp.problem()
x = p.addVariables(10)
[...]
ll, lu, ul, uu = [], [], [], []
p.bndsa(x, ll, lu, ul, uu)
print("ranges:", ll, lu, ul, uu)

Further information
If the problem is in a presolved state, btran works with the basis for the presolved problem.

Related topics
problem.rhssa, problem.objsa.

Fair Isaac Corporation Proprietary Information 187

Chapter 7: Reference Manual

problem.btran

Purpose
Post-multiplies a (row) vector provided by the user by the inverse of the current basis.

Synopsis
problem.btran(vec)

Argument
vec Array of length problem.attributes.rows containing the values by which the basis

inverse is to be multiplied. The transformed values will also be returned in this array.

Example
Get the (unscaled) tableau row z of constraint number irow, assuming that all arrays have been
dimensioned.

y = [0,1,0,0]
p.btran(y)
print("btran result:", y)

Further information
If the problem is in a presolved state, btran works with the basis for the presolved problem.

Related topics
problem.ftran.

Fair Isaac Corporation Proprietary Information 188

Chapter 7: Reference Manual

problem.calcobjn

Purpose
Returns the value of a given objective. A solution can optionally be provided, otherwise the current
solution will be used.

Synopsis
objval = problem.calcobjn(objidx, solution)

Arguments
objidx Index of the objective to calculate.
solution Array of length problem.attributes.cols that holds the solution.

Further information
The calculations are always carried out in the original problem, even if the problem is currently presolved.

Related topics
problem.setObjective

Fair Isaac Corporation Proprietary Information 189

Chapter 7: Reference Manual

problem.calcobjective

Purpose
Returns the objective value of a given solution.

Synopsis
objval = problem.calcobjective(solution)

Argument
solution Array of length problem.attributes.cols that holds the solution.

Further information
The calculations are always carried out in the original problem, even if the problem is currently presolved.

Related topics
problem.calcslacks, problem.calcreducedcosts.

Fair Isaac Corporation Proprietary Information 190

Chapter 7: Reference Manual

problem.calcreducedcosts

Purpose
Returns the reduced cost values for a given (row) dual solution.

Synopsis
problem.calcreducedcosts(duals, solution, djs)

Arguments
duals Array of length problem.attributes.rows that holds the dual solution to calculate

the reduced costs for.
solution Optional array of length problem.attributes.cols that holds the primal solution.

This is necessary for quadratic problems.
djs Array of length problem.attributes.cols in which the calculated reduced costs are

returned.

Example

p = xpress.problem()
p.read("silly_walks.lp") # assume problem has 4 constraints
dj = []
p.calcreducedcosts([0,1,1,1], None, dj)
print("red. cost:", dj)

Further information
1. The calculations are always carried out in the original problem, even if the problem is currently presolved.

2. If using the function during a solve (e.g. from a callback), use ORIGINALCOLS and ORIGINALROWS to
retrieve the non-presolved dimensions of the problem.

Related topics
problem.calcslacks, problem.calcobjective.

Fair Isaac Corporation Proprietary Information 191

Chapter 7: Reference Manual

problem.calcslacks

Purpose
Calculates the row slack values for a given solution.

Synopsis
problem.calcslacks(solution, slacks)

Arguments
solution Array of length problem.attributes.cols that holds the solution to calculate the

slacks for.
slacks Array of length problem.attributes.rows in which the calculated row slacks are

returned.

Further information
1. The calculations are always carried out in the original problem, even if the problem is currently presolved.

2. If using the function during a solve (e.g. from a callback), use ORIGINALCOLS and ORIGINALROWS to
retrieve the non-presolved dimensions of the problem.

Related topics
problem.calcreducedcosts, problem.calcobjective.

Fair Isaac Corporation Proprietary Information 192

Chapter 7: Reference Manual

problem.calcsolinfo

Purpose
Returns the required property of a solution, like maximum infeasibility of a given primal and duals
solution.

Synopsis
val = problem.calcsolinfo(solution, duals, property)

Arguments
solution Array of length problem.attributes.cols that holds the solution.
duals Array of length problem.attributes.rows that holds the duals solution.
property xpress.solinfo_absprimalinfeas absolute primal infeasibility.

xpress.solinfo_relprimalinfeas relative primal infeasibility.
xpress.solinfo_absdualinfeas absolute duals infeasibility.
xpress.solinfo_reldualinfeas relative duals infeasibility.
xpress.solinfo_maxmipfractional absolute MIP infeasibility (fractionality).

Further information
The calculations are always carried out in the original problem, even if the problem is currently presolved.

Related topics
problem.calcslacks, problem.calcobjective, problem.calcreducedcosts.

Fair Isaac Corporation Proprietary Information 193

Chapter 7: Reference Manual

problem.cascade

Purpose
Re-calculate consistent values for SLP variables. based on the current values of the remaining variables

Synopsis
problem.cascade()

Example
The following example changes the solution value for column 91, and then re-calculates the values of
those dependent on it.

colnum = 91
(a,b,c,d,e,f,value,h,i,j,k,l,m,n,o) = p.getvar(colnum)

value += 1.42

p.chgvar(col=colnum)

p.cascade()

problem.getvar and problem.chgvar are being used to get and change the current value of a
single variable. Provided no other values have been changed since the last execution of cascade, values
will be changed only for variables which depend on column 91.

Further information
See the section on cascading for an extended discussion of the types of cascading which can be
performed.
cascade is called automatically during the SLP iteration process and so it is not normally necessary to
perform an explicit cascade calculation.
The variables are re-calculated in accordance with the order generated by problem.cascadeorder.

Related topics
problem.cascadeorder

Fair Isaac Corporation Proprietary Information 194

Chapter 7: Reference Manual

problem.cascadeorder

Purpose
Establish a re-calculation sequence for SLP variables with determining rows.

Synopsis
problem.cascadeorder()

Example
Assuming that all variables are SLP variables, the following example sets default values for the variables,
creates the re-calculation order and then calls problem.cascade to calculate consistent values for the
dependent variables.

for colnum in range(1, nCol):
p.chgvar(col=colnum, value=DefaultValue[ColNum])

p.cascadeorder()
p.cascade()

Further information
cascadeorder is called automatically at the start of the SLP iteration process and so it is not normally
necessary to perform an explicit cascade ordering.

Related topics
problem.cascade

Fair Isaac Corporation Proprietary Information 195

Chapter 7: Reference Manual

problem.chgbounds

Purpose
Changes the bounds on columns in the problem.

Synopsis
problem.chgbounds(colind, bndtype, bndval)

Arguments
colind Array containing the columns (i.e. xpress.var objects, indices, or names) on which the

bounds will change.
bndtype Character array indicating the type of bound to change:

U indicates a change in the upper bound;
L indicates a change in the lower bound;
B indicates a change in both bounds, i.e. the column is fixed.

bndval Array giving the new bound values.

Example
The following changes the lower bound of variable v1 to 2, upper bound of variable v2 to 5, and fixes
variable v3 to 3:

p.chgbounds([v1,v2,v3],['L','U','B'],[2,5,3])

Further information
1. A column may appear twice in the colind array so it is possible to change both the upper and lower

bounds on a variable in one go.

2. chgboundsmay be applied to the problem in a presolved state, in which case it expects references to
the presolved problem.

3. The constant xpress.infinity can be used to represent plus and minus infinity in the bound
(bndval) array.

4. If the upper bound on a binary variable is changed to be greater than 1 or the lower bound is changed to
be less than 0 then the variable will become an integer variable.

Related topics
problem.getlb, problem.getub.

Fair Isaac Corporation Proprietary Information 196

Chapter 7: Reference Manual

problem.chgcoef

Purpose
Changes a single coefficient in the problem. If the coefficient does not already exist, a new coefficient
will be added to the problem. If many coefficients are being added to a row of the problem, it may be
more efficient to delete the old row and add a new row.

Synopsis
problem.chgcoef(row, col, coef)

Arguments
row Row (i.e. xpress.constraint object, index, or name) for the coefficient.
col Column (i.e. xpress.var object, index, or name) for the coefficient.
coef New value for the coefficient. If coef is zero, any existing coefficient will be deleted.

Example
In the following, the constraint is introduced in the problem and then its linear coefficient for x is changed
to 3:

p = xpress.problem()
x = p.addVariable()
c = x + x⁎⁎2 <= 3
p.addConstraint(c)
p.chgcoef(c,x,3)

Further information
problem.chgmcoef is more efficient than multiple calls to chgcoef and should be used in its place in
such circumstances.

Related topics
problem.addcols, problem.addrows, problem.chgmcoef, problem.chgmqobj,
problem.chgobj, problem.chgqobj, problem.chgrhs, problem.getcols,
problem.getrows.

Fair Isaac Corporation Proprietary Information 197

Chapter 7: Reference Manual

problem.chgcoltype

Purpose
Changes the type of a column in the problem.

Synopsis
problem.chgcoltype(colind, coltype)

Arguments
colind Array containing the columns (i.e. xpress.var objects, indices, or names) whose type is

to be changed.
coltype Character array giving the new column types:

C indicates a continuous column;
B indicates a binary column;
I indicates an integer column.
S indicates a semi–continuous column. The semi–continuous lower bound will be

set to 1.0.
R indicates a semi–integer column. The semi–integer lower bound will be set to

1.0.
P indicates a partial integer column. The partial integer bound will be set to 1.0.

Example
The following changes the type of variable x from binary to integer:

p = xpress.problem()
x = p.addVariable(vartype=xp.binary)
p.chgcoltype([x],['I'])

Further information
1. The column types can only be changed before the tree search is started.

2. Calling chgcoltype to change any variable into a binary variable causes the bounds previously defined
for the variable to be deleted and replaced by bounds of 0 and 1.

3. Calling chgcoltype to change a continuous variable into an integer variable cause its lower bound to be
rounded up to the nearest integer value and its upper bound to be rounded down to the nearest integer
value.

Related topics
problem.addcols, problem.chgrowtype, problem.getcoltype.

Fair Isaac Corporation Proprietary Information 198

Chapter 7: Reference Manual

problem.chgcascadenlimit

Purpose
Set a variable specific cascade iteration limit

Synopsis
problem.chgcascadenlimit(col, limit)

Arguments
col The column corresponding to the SLP variable for which the cascading limit is to be

imposed.
limit The new cascading iteration limit.

Further information
A value set by this function will overwrite the value of the control xslp_cascadenlimit for this
variable. To remove any previous value set by this function, use an iteration limit of 0.

Related topics
problem.cascadeorder

Fair Isaac Corporation Proprietary Information 199

Chapter 7: Reference Manual

problem.slpchgcoefstr

Purpose
Add or change a single matrix coefficient using a string for the formula

Synopsis
problem.slpchgcoefstr(row, col, factor, formula)

Arguments
row The row (i.e. xpress.constraint object, index, or name) for the coefficient.
col The column (i.e. xpress.var object, index, or name) for the coefficient.
factor Constant multiplier for the formula. If factor is None, a value of 1.0 will be used.
formula String holding the formula, with the tokens separated by spaces.

Example
Assuming that the columns of the matrix are named Col1, Col2, etc, the following example puts the
formula 2.5⁎sin(Col1) into the coefficient in row 1, column 3.

Formula = "sin (Col1)"
Factor = 2.5
p.slpchgcoefstr(1, 3, Factor, Formula)

Note that all the tokens in the formula (including mathematical operators and separators) are separated
by one or more spaces.

Further information
If the coefficient already exists as a constant or formula, it will be changed into the new coefficient. If it
does not exist, it will be added to the problem.
A coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier which can
be provided in the Factor variable. If Xpress Nonlinear can identify a constant factor in the Formula,
then it will use that as well, to minimize the size of the formula which has to be calculated.
This function can only be used if all the operands in the formula can be correctly identified as constants,
existing columns, character variables or functions. Therefore, if a formula refers to a new column, that
new item must be added to the Xpress Nonlinear problem first.

Related topics
problem.addcoefs, problem.delcoefs, problem.slpchgcoef, problem.getcoefformula,
problem.loadcoefs

Fair Isaac Corporation Proprietary Information 200

Chapter 7: Reference Manual

problem.chgccoef

Purpose
This subroutine is deprecated and will be removed in a future release. Use problem.slpchgcoefstr
instead.
Add or change a single matrix coefficient using a string for the formula

Synopsis
problem.chgccoef(row, col, factor, formula)

Arguments
row The row (i.e. xpress.constraint object, index, or name) for the coefficient.
col The column (i.e. xpress.var object, index, or name) for the coefficient.
factor Constant multiplier for the formula. If factor is None, a value of 1.0 will be used.
formula String holding the formula, with the tokens separated by spaces.

Example
Assuming that the columns of the matrix are named Col1, Col2, etc, the following example puts the
formula 2.5⁎sin(Col1) into the coefficient in row 1, column 3.

Formula = "sin (Col1)"
Factor = 2.5
p.chgccoef(1, 3, Factor, Formula)

Note that all the tokens in the formula (including mathematical operators and separators) are separated
by one or more spaces.

Further information
If the coefficient already exists as a constant or formula, it will be changed into the new coefficient. If it
does not exist, it will be added to the problem.
A coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier which can
be provided in the Factor variable. If Xpress Nonlinear can identify a constant factor in the Formula,
then it will use that as well, to minimize the size of the formula which has to be calculated.
This function can only be used if all the operands in the formula can be correctly identified as constants,
existing columns, character variables or functions. Therefore, if a formula refers to a new column, that
new item must be added to the Xpress Nonlinear problem first.

Related topics
problem.slpchgcoefstr, problem.addcoefs, problem.delcoefs, problem.slpchgcoef,
problem.getcoefformula, problem.loadcoefs

Fair Isaac Corporation Proprietary Information 201

Chapter 7: Reference Manual

problem.chgdeltatype

Purpose
Changes the type of the delta assigned to a nonlinear variable

Synopsis
problem.chgdeltatype(varind, deltatypes, values)

Arguments
varind Indices of the variables to change the deltas for.
deltatypes Type if the delta variable:

0 Differentiable variable, default.
1 Variable defined over the grid size given in values.
2 Variable where a minimum perturbation size given in valuesmay be

required before a significant change in the problem is achieved.
3 Variable where a meaningful step size should automatically be detected,

with an upper limit given in values.
values Grid or minimum step sizes for the variables.

Further information
Changing the delta type of a variables makes the variable nonlinear.

Related topics

Fair Isaac Corporation Proprietary Information 202

Chapter 7: Reference Manual

problem.chgdf

Purpose
Set or change a distribution factor

Synopsis
problem.chgdf(col, row, value)

Arguments
col The column (i.e. xpress.var object, index, or name) whose distribution factor is to be

set or changed.
row The row (i.e. xpress.constraint object, index, or name) where the distribution

applies.
value The new value of the distribution factor. May be None if not required.

Example
The following example retrieves the value of the distribution factor for column 282 in row 134 and
changes it to be twice as large.

value = p.getdf(282,134)
value ⁎= 2
p.chgdf(282,134,value)

Further information
The distribution factor of a column in a row is the matrix coefficient of the corresponding delta vector in
the row. Distribution factors are used in conventional recursion models, and are essentially normalized
first-order derivatives. Xpress Nonlinear can accept distribution factors instead of initial values, provided
that the values of the variables involved can all be calculated after optimization using determining rows,
or by a callback.

Related topics
problem.adddfs, problem.getdf, problem.loaddfs

Fair Isaac Corporation Proprietary Information 203

Chapter 7: Reference Manual

problem.chgglblimit

Purpose
Changes semi-continuous or semi-integer lower bounds, or upper limits on partial integers.

Synopsis
problem.chgglblimit(colind, limit)

Arguments
colind Array containing the indices of the semi-continuous, semi-integer or partial integer

columns that should have their limits changed.
limit Array giving the new limit values.

Further information
1. The new limits are not allowed to be negative.

2. Partial integer limits can be at most 228.

Related topics
problem.chgcoltype, problem.getmipentities.

Fair Isaac Corporation Proprietary Information 204

Chapter 7: Reference Manual

problem.chgmcoef

Purpose
Change multiple coefficients in the problem. The coefficients that do not exist yet will be added to the
problem. If many coefficients are being added to a row of the matrix, it may be more efficient to delete
the old row of the matrix and add a new one.

Synopsis
problem.chgmcoef(rowind, colind, rowcoef)

Arguments
rowind Array containing the rows (i.e. xpress.constraint objects, indices, or names) of the

coefficients to be changed.
colind Array containing the columns (i.e. xpress.var objects, indices, or names) of the

coefficients to be changed.
rowcoef Array containing the new coefficient values. If an element of rowcoef is zero, the

coefficient will be deleted.

Example

con1 = x + y + z <= 2
con2 = x + y >= 1
con3 = x + 3⁎y == 1
p.addVariable(x,y,z)
p.addConstraint(con1, con2, con3)
p.chgmcoef([con1,con1,con1,con2,con3], [x,y,z,x,x], [-2, -3, -3.2, 1, 3])

This changes five coefficients, three of which in the first constraint and one in each of the second and
third constraints.

Further information
chgmcoef is more efficient than repeated calls to problem.chgcoef and should be used in its place if
many coefficients are to be changed.

Related topics
problem.chgcoef, problem.chgmqobj, problem.chgobj, problem.chgqobj,
problem.chgrhs, problem.getcols, problem.getrhs.

Fair Isaac Corporation Proprietary Information 205

Chapter 7: Reference Manual

problem.chgobjn

Purpose
Modifies one or more coefficients of an objective function in a multi-objective problem. If the objective
already exists, any coefficients not present in the colind and objcoef arrays will unchanged. If the
objective does not exist, it will be added to the problem.

Synopsis
problem.chgobjn(objidx, colind, objcoef)

Arguments
objidx Index of the objective function to add or modify.
colind Integer array of length ncols containing the indices of the columns whose objective

coefficients will change. An index of -1 indicates that the fixed part of the objective
function on the right hand side should change.

objcoef Double array of length ncols giving the new objective function coefficients.

Example
Changing three coefficients of the first objective function:

colind = [0, 2, 5]
objcoef = [25.0, 5.3, 0.0]
p.chgobjn(0, colind, objcoef)

Further information
1. When objidx=0, this function is equivalent to problem.chgobj.

2. Any objectives with idx < objidx that do not already exist will be added to the problem with all zero
coefficients.

Related topics
problem.addObjective, problem.setObjective, problem.addobj, problem.getobjn,
problem.delobj, problem.chgobj.

Fair Isaac Corporation Proprietary Information 206

Chapter 7: Reference Manual

problem.chgmqobj

Purpose
Change multiple quadratic coefficients in the objective function. If any of the coefficients does not exist
already, new coefficients will be added to the objective function.

Synopsis
problem.chgmqobj(objqcol1, objqcol2, objqcoef)

Arguments
objqcol1 Array containing the column index of the first variable in each quadratic term.
objqcol2 Array containing the column index of the second variable in each quadratic term.
objqcoef New values for the coefficients. If an entry in objqcoef is 0, the corresponding entry will

be deleted. These are the coefficients of the lower triangular part of the Hessian of the
objective function.

Example
The following code results in an objective function with terms: [15x21 + 7x1x2]/2

p.chgmqobj([x1,x1], [x1,x2], [15,3.5])

Further information
1. If objqcol1[t] is not equal to objqcol2[t], then both the matrix elements (objqcol1[t],
objqcol2[t]) and (objqcol2[t], objqcol1[t]) are changed to leave the Hessian symmetric.

2. The quadratic matrix coefficients are implicitly divided by two. But since the coefficients for xixj (i not
equal to j) appear twice, only the coefficients for x2i should be multiplied by two in the objqcoef array
to account for the implicit division. See the example above.

3. chgmqobj is more efficient than repeated calls to problem.chgqobj and should be used in its place
when several coefficients are to be changed.

Related topics
problem.chgcoef, problem.chgmcoef, problem.chgobj, problem.chgqobj,
problem.getqobj.

Fair Isaac Corporation Proprietary Information 207

Chapter 7: Reference Manual

problem.chgnlcoef

Purpose
Add or change a single matrix coefficient using a parsed or unparsed formula

Synopsis
problem.chgnlcoef(row, col, factor, parsed, type, value)

Arguments
row The index of the matrix row for the coefficient.
col The index of the matrix column for the coefficient.
factor The constant multiplier for the formula. If factor is None, a value of 1.0 will be used.
parsed Boolean indicating the whether the token arrays are formatted as internal unparsed

(parsed=False) or internal parsed reverse Polish (parsed=True).
type Array of token types providing the description and formula for each item.
value Array of values corresponding to the types in type.

Example
Assuming that the columns of the matrix are named Col1, Col2, etc, the following example puts the
formula 2.5⁎sin(Col1) into the coefficient in row 1, column 3.

type = [xp.tok_ifun, xp.tok_col, xp.tok_rb, xp.tok_eof]
value = [xp.ifun_sin, 1, 0, 0]

Factor = 2.5
p.chgnlcoef(1, 3, Factor, False, type, value)

The formula is written in unparsed form (parsed=False) and so it is provided as tokens in the same
order as they would appear if the formula were written in string form.

Further information
If the coefficient already exists as a constant or formula, it will be changed into the new coefficient. If it
does not exist, it will be added to the problem.
A coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier which can
be provided in the factor variable. If Xpress Nonlinear can identify a constant factor in the Formula,
then it will use that as well, to minimize the size of the formula which has to be calculated.

Related topics
problem.slpchgcoef, problem.addcoefs, problem.slpchgcoefstr, problem.delcoefs,
problem.getcoefformula, problem.loadcoefs

Fair Isaac Corporation Proprietary Information 208

Chapter 7: Reference Manual

problem.slpchgcoef

Purpose
Add or change a single matrix coefficient using a parsed or unparsed formula

Synopsis
problem.slpchgcoef(row, col, factor, parsed, type, value)

Arguments
row The index of the matrix row for the coefficient.
col The index of the matrix column for the coefficient.
factor The constant multiplier for the formula. If factor is None, a value of 1.0 will be used.
parsed Boolean indicating the whether the token arrays are formatted as internal unparsed

(parsed=False) or internal parsed reverse Polish (parsed=True).
type Array of token types providing the description and formula for each item.
value Array of values corresponding to the types in type.

Example
Assuming that the columns of the matrix are named Col1, Col2, etc, the following example puts the
formula 2.5⁎sin(Col1) into the coefficient in row 1, column 3.

type = [xp.tok_ifun, xp.tok_col, xp.tok_rb, xp.tok_eof]
value = [xp.ifun_sin, 1, 0, 0]

Factor = 2.5
p.slpchgcoef(1, 3, Factor, 0, type, value)

The formula is written in unparsed form (parsed=False) and so it is provided as tokens in the same
order as they would appear if the formula were written in string form.

Further information
If the coefficient already exists as a constant or formula, it will be changed into the new coefficient. If it
does not exist, it will be added to the problem.
A coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier which can
be provided in the factor variable. If Xpress Nonlinear can identify a constant factor in the Formula,
then it will use that as well, to minimize the size of the formula which has to be calculated.

Related topics
problem.addcoefs, problem.slpchgcoefstr, problem.delcoefs,
problem.getcoefformula, problem.loadcoefs

Fair Isaac Corporation Proprietary Information 209

Chapter 7: Reference Manual

problem.chgobj

Purpose
Change the objective function coefficients.

Synopsis
problem.chgobj(colind, objcoef)

Arguments
colind Array containing the columns (i.e. xpress.var objects, indices, or names) on which the

range elements will change. An index of -1 indicates that the fixed part of the objective
function on the right hand side should change.

objcoef Array giving the new objective function coefficient.

Example
Changing three coefficients of the objective function with chgobj:

p.chgobj([x1,x2,x3,-1], [3.5, -2, 0, 224])

Further information
The value of the fixed part of the objective function can be obtained using the OBJRHS problem attribute.

Related topics
problem.chgcoef, problem.chgmcoef, problem.chgmqobj, problem.chgqobj,
problem.getobj.

Fair Isaac Corporation Proprietary Information 210

Chapter 7: Reference Manual

problem.chgobjsense

Purpose
Changes the problem’s objective function objsense to minimize or maximize.

Synopsis
problem.chgobjsense(objsense)

Argument
objsense xpress.minimize or xpress.maximize to change into a minimization or

maximization problem, respectively.

Example
Changing three coefficients of the objective function with chgobj:

p.chgobjsense(xpress.maximize) # optimize in this general direction

Related topics
problem.lpoptimize, problem.mipoptimize.

Fair Isaac Corporation Proprietary Information 211

Chapter 7: Reference Manual

problem.chgqobj

Purpose
Change a single quadratic coefficient in the objective function corresponding to the variable pair
(objqcol1,objqcol2) of the Hessian matrix.

Synopsis
problem.chgqobj(objqcol1, objqcol2, objqcoef)

Arguments
objqcol1 Column index for the first variable in the quadratic term.
objqcol2 Column index for the second variable in the quadratic term.
objqcoef New value for the coefficient in the quadratic Hessian matrix. If an entry in objqcoef is

0, the corresponding entry will be deleted.

Example
The following code adds the terms [15x21 + 7x1x2]/2 to the objective function:

p.chgqobj(x1, x1, 15)
p.chgqobj(x1, x2, 3.5)

Further information
1. If objqcol1 is not equal to objqcol2, then both the matrix elements (objqcol1, objqcol2) and
(objqcol2, objqcol1) are changed to leave the Hessian symmetric.

2. The quadratic matrix coefficients are implicitly divided by two. But since the coefficients for xixj (i not
equal to j) appear twice, only the coefficients for x2i should be multiplied by two in the objqcoef
argument to account for the implicit division. See the example above.

Related topics
problem.chgcoef, problem.chgmcoef, problem.chgmqobj, problem.chgobj,
problem.getqobj.

Fair Isaac Corporation Proprietary Information 212

Chapter 7: Reference Manual

problem.chgqrowcoeff

Purpose
Changes a single quadratic coefficient in a row.

Synopsis
problem.chgqrowcoeff(row, rowqcol1, rowqcol2, rowqcoef)

Arguments
row Row (i.e. xpress.constraint object, index, or name) where the quadratic matrix is to

be changed.
rowqcol1 First index of the coefficient to be changed.
rowqcol2 Second index of the coefficient to be changed.
rowqcoef The new coefficient.

Further information
1. This function may be used to add new nonzero coefficients, or even to define the whole quadratic

expression with it. Doing that, however, is significantly less efficient than adding the whole expression
with problem.addqmatrix.

2. The row must not be an equality or a ranged row.

Related topics
problem.loadproblem, problem.getqrowcoeff, problem.addqmatrix,
problem.chgqrowcoeff, problem.getqrowqmatrix, problem.getqrowqmatrixtriplets,
problem.getqrows, problem.chgqobj, problem.chgmqobj, problem.getqobj.

Fair Isaac Corporation Proprietary Information 213

Chapter 7: Reference Manual

problem.chgrhs

Purpose
Changes right–hand side values of the problem.

Synopsis
problem.chgrhs(rowind, rhs)

Arguments
rowind Array containing the rows (i.e. xpress.constraint objects, indices, or names) whose

right hand side will change.
rhs Array containing the right hand side values.

Example
Here we change the three right hand sides in rows 2, 6, and 8 to new values:

p.chgrhs([2,8,6], [5, 3.8, 5.7])

Related topics
problem.chgcoef, problem.chgmcoef, problem.chgrhsrange, problem.getrhs,
problem.getrhsrange.

Fair Isaac Corporation Proprietary Information 214

Chapter 7: Reference Manual

problem.chgrhsrange

Purpose
Change the range for one or more rows of the problem.

Synopsis
problem.chgrhsrange(rowind, rng)

Arguments
rowind Array containing the rows (i.e. xpress.constraint objects, indices, or names) on

which the range elements will change.
rng Array containing the range values.

Example
Here, the constraint cons1 x + y ≤ 10 is changed to 8 ≤ x + y ≤ 10:

p.chgrhsrange([cons1], [2])

Further information
If the range specified on the row is r, what happens depends on the row type and value of r. It is possible
to convert non-range rows using this routine.

Value of r Row type Effect
r ≥ 0 = b, ≤ b b – r ≤

∑
ajxj ≤ b

r ≥ 0 ≥ b b ≤
∑

ajxj ≤ b + r
r < 0 = b, ≤ b b ≤

∑
ajxj ≤ b – r

r < 0 ≥ b b + r ≤
∑

ajxj ≤ b

Related topics
problem.chgcoef, problem.chgmcoef, problem.chgrhs, problem.getrhsrange.

Fair Isaac Corporation Proprietary Information 215

Chapter 7: Reference Manual

problem.chgrowstatus

Purpose
Change the status setting of a constraint

Synopsis
problem.chgrowstatus(row, status)

Arguments
row The index of the matrix row to be changed.
status The bitmap with the new status settings. If the status is to be changed, always get the

current status first (use problem.getrowstatus) and then change settings as
required. The only settings likely to be changed are:
Bit 11 Set if row must not have a penalty error vector. This is the equivalent of an

enforced constraint (SLPDATA type EC).

Example
The following example changes the status of row 9 to be an enforced constraint.

status = p.getrowstatus(9)
status = status | (1<<11)
p.chgrowstatus(9, status)

Further information
If status is None the current status will remain unchanged.

Related topics
problem.getrowstatus

Fair Isaac Corporation Proprietary Information 216

Chapter 7: Reference Manual

problem.chgrowtype

Purpose
Changes the type of a row in the problem.

Synopsis
problem.chgrowtype(rowind, rowtype)

Arguments
rowind Array containing the rows (i.e. xpress.constraint objects, indices, or names).
rowtype Character array giving the new row types:

L indicates a ≤ row;
E indicates an = row;
G indicates a ≥ row;
R indicates a range row;
N indicates a free row.

Example
Here two rows are changed to an equality and a free row, respectively:

p.chgrowtype([con1, con2], ['E', 'N'])

Further information
A row can be changed to a range type row by first changing the row to an R or L type row and then
changing the range on the row using problem.chgrhsrange.

Related topics
problem.addrows, problem.chgcoltype, problem.chgrhs, problem.chgrhsrange,
problem.getrowtype.

Fair Isaac Corporation Proprietary Information 217

Chapter 7: Reference Manual

problem.chgrowwt

Purpose
Set or change the initial penalty error weight for a row

Synopsis
problem.chgrowwt(row, weight)

Arguments
row The row (i.e. xpress.constraint object, index, or name) whose weight is to be set or

changed.
weight The new value of the weight. May be None if not required.

Example
The following example sets the initial weight of row number 2 to a fixed value of 3.6 and the initial weight
of row 4 to a value twice the calculated default value.

p.chgrowwt(2, -3.6)
p.chgrowwt(4,2)

Further information
A positive value is interpreted as a multiplier of the default row weight calculated by Xpress SLP.
A negative value is interpreted as a fixed value: the absolute value is used directly as the row weight.
The initial row weight is used only when the augmented structure is created. After that, the current
weighting can be accessed and changed using problem.getrowinfo.

Related topics
problem.getrowwt, problem.getrowinfo

Fair Isaac Corporation Proprietary Information 218

Chapter 7: Reference Manual

problem.chgtolset

Purpose
Add or change a set of convergence tolerances used for SLP variables

Synopsis
problem.chgtolset(tolset, status, tols)

Arguments
tolset Tolerance set for which values are to be changed. A zero value for tolset will create a

new set.
status A bitmap describing which tolerances are active in this set. See below for the settings.
tols Array of 9 values holding the values for the corresponding tolerances.

Example
The following example creates a new tolerance set with the default values for all tolerances except the
relative delta tolerance, which is set to 0.005. It then changes the value of the absolute delta and
absolute impact tolerances in tolerance set 6 to 0.015

Tols = 9⁎[0]
Tols[2] = 0.005
Status = 1<<2

p.chgtolset(0, 1<<2, Tols)
Tols[1] = 0.015
Tols[5] = 0.015
Status = 1<<1 | 1<<5
p.chgtolset(6, Status, Tols)

Further information
The bits in status are set to indicate that the corresponding tolerance is to be changed in the tolerance
set. The meaning of the bits is as follows:

Entry / Bit Tolerance XSLP constant XSLP bit constant
0 Closure tolerance (TC) xslp_TOLSET_TC xslp_TOLSETBIT_TC
1 Absolute delta tolerance (TA) xslp_TOLSET_TA xslp_TOLSETBIT_TA
2 Relative delta tolerance (RA) xslp_TOLSET_RA xslp_TOLSETBIT_RA
3 Absolute coefficient tolerance (TM) xslp_TOLSET_TM xslp_TOLSETBIT_TM
4 Relative coefficient tolerance (RM) xslp_TOLSET_RM xslp_TOLSETBIT_RM
5 Absolute impact tolerance (TI) xslp_TOLSET_TI xslp_TOLSETBIT_TI
6 Relative impact tolerance (RI) xslp_TOLSET_RI xslp_TOLSETBIT_RI
7 Absolute slack tolerance (TS) xslp_TOLSET_TS xslp_TOLSETBIT_TS
8 Relative slack tolerance (RS) xslp_TOLSET_RS xslp_TOLSETBIT_RS

The xslp_TOLSET constants can be used to access the corresponding entry in the value arrays, while the
xslp_TOLSETBIT constants are used to set or retrieve which tolerance values are used for a given SLP
variable. The members of the Tols array corresponding to nonzero bit settings in Status will be used to
change the tolerance set. So, for example, if bit 3 is set in Status, then Tols[3] will replace the current
value of the absolute coefficient tolerance. If a bit is not set in Status, the value of the corresponding
element of Tols is unimportant.

Related topics
problem.addtolsets, problem.deltolsets, problem.gettolset, problem.loadtolsets

Fair Isaac Corporation Proprietary Information 219

Chapter 7: Reference Manual

problem.chgvar

Purpose
Define a column as an SLP variable or change the characteristics and values of an existing SLP variable

Synopsis
problem.chgvar(col=None, detrow=None, initstepbound=None, stepbound=None,

penalty=None, damp=None, initial=None, value=None, tolset=None,
history=None, converged=None, vartype=None)

Arguments
col The index of the matrix column.
detrow An integer holding the index of the determining row. Use -1 if there is no determining row.

May be None if not required.
initstepbound The initial step bound size. May be None if not required.
stepbound The current step bound size. Use zero to disable the step bounds. May be None if not

required.
penalty The weighting of the penalty cost for exceeding the step bounds. May be None if not

required.
damp The damping factor for the variable. May be None if not required.
initial The initial value for the variable. May be None if not required.
value The current value for the variable. May be None if not required.
tolset The index of the tolerance set for this variable. Use zero if there is no specific tolerance

set. May be None if not required.
history The history value for this variable. May be None if not required.
converged The convergence status for this variable. May be None if not required.
vartype A bitmap defining the existence of certain properties for this variable:

Bit 1: Variable has a delta vector
Bit 2: Variable has an initial value
Bit 14: Variable is the reserved "=" column
May be None if not required.

Example
The following example sets an initial value of 1.42 and tolerance set 2 for column 25 in the matrix.

p.chgvar(col=25, initial=1.42, tolset=2,
vartype=1<<1 | 1<<2)

Note that bits 1 and 2 of vartype are set, indicating that the variable has a delta vector and an initial
value. For columns already defined as SLP variables, use problem.getvar to obtain the current value
of vartype because other bits may already have been set by the system.

Further information
If any of the arguments is None then the corresponding information for the variable will be left unaltered.
If the information is new (i.e. the column was not previously defined as an SLP variable) then the default
values will be used.
Changing Value, History or Converged is only effective during SLP iterations.
Changing initvalue and initstepbound is only effective before problem.construct. If a value
of xpress.infinity is used in the value for stepbound or initstepbound, the delta will never
have step bounds applied, and will almost always be regarded as converged.

Related topics
problem.addvars, problem.delvars, problem.getvar, problem.loadvars

Fair Isaac Corporation Proprietary Information 220

Chapter 7: Reference Manual

problem.construct

Purpose
Create the full augmented SLP matrix and data structures, ready for optimization

Synopsis
problem.construct()

Example
The following example constructs the augmented matrix and then outputs the result in MPS format to a
file called augment.mat

creation and/or loading of data
precedes this segment of code
p.construct()
p.write("augment","l")

The "l" flag causes output of the current linear problem (which is now the augmented structure and the
current linearization) rather than the original nonlinear problem.

Further information
construct adds new rows and columns to the SLP matrix and calculates initial values for the non-linear
coefficients. Which rows and columns are added will depend on the setting of xslp_augmentation.
Names for the new rows and columns are generated automatically, based on the existing names and the
string control variables xslp_xxxformat.
Once construct has been called, no new rows, columns or non-linear coefficients can be added to the
problem. Any rows or columns which will be required must be added first. Non-linear coefficients must
not be changed; constant matrix elements can generally be changed after construct, but not after
problem.presolve if used.
construct is called automatically by the SLP optimization procedure, and so only needs to be called
explicitly if changes need to be made between the augmentation and the optimization.

Related topics
problem.presolve

Fair Isaac Corporation Proprietary Information 221

Chapter 7: Reference Manual

problem.copy

Purpose
Obtains a copy of a problem.

Synopsis
p = problem.copy()

Example

p = xpress.problem()
x = [p.addVariable() for _ in range(10)]
p.addConstraint(xpress.Sum(x) <= 10)
p2 = p.copy() # add a constraint that won't be in p
p2.addConstraint(xpress.Sum(x) >= 6) # x[0] is deleted from p2
p2.delVariable(x[0])

Further information
The objects of the copied problem (variables, constraints, SOSs) are the same as the source problem, i.e.,
the one of which a copy was created. Therefore, any object that existed in the source problem can be
addressed and used in the copy problem.

Related topics
problem.copycallbacks.

Fair Isaac Corporation Proprietary Information 222

Chapter 7: Reference Manual

problem.copycallbacks

Purpose
Copies callback functions defined for one problem to another.

Synopsis
problem.copycallbacks(src)

Argument
src The problem from which the callbacks are copied.

Example
The following sets up a message callback function callback for problem prob1 and then copies this to
the problem prob2.

prob1 = xp.problem()
prob1.addcbmessage(callback, None, 0)
prob2 = xp.problem()
prob2.copycallbacks(prob1)

Related topics
problem.copycontrols, problem.copy.

Fair Isaac Corporation Proprietary Information 223

Chapter 7: Reference Manual

problem.copycontrols

Purpose
Copies controls defined for one problem to another.

Synopsis
problem.copycontrols(src)

Argument
src The problem from which the controls are copied.

Example
The following turns off presolve for problem prob1 and then copies this and other control values to the
problem prob2:

prob1 = xpress.problem()
prob2 = xpress.problem()
prob1.controls.presolve = 0
prob2.copycontrols(prob1)

Related topics
problem.copycallbacks.

Fair Isaac Corporation Proprietary Information 224

Chapter 7: Reference Manual

problem.crossoverlpsol

Purpose
Provides a basic optimal solution for a given solution of an LP problem. This function behaves like the
crossover after the barrier algorithm.

Synopsis
status = problem.crossoverlpsol()

Argument
status One of:

0 The crossover was successful.
1 The crossover was not performed because the problem has no solution.

Example
This example loads a problem, loads a solution for the problem and then uses crossoverlpsol to find
a basic optimal solution.

p = xp.problem()
p.read('problem.mps')
status = p.loadlpsol(x, None, dual, None)
status = p.crossoverlpsol()

A solution can also be loaded from an ASCII solution file using problem.readslxsol.

Further information
1. The crossover performs two phases: a crossover phase for finding a basic solution and a clean-up phase

for finding a basic optimal solution. Setting algaftercrossover to 0 will allow the crossover to skip
the clean-up phase.

2. The given solution is expected to be feasible or nearly feasible, otherwise the crossover may take a long
time to find a basic feasible solution. More importantly, the given solution is expected to have a small
duality gap. A small duality gap indicates that the given solution is close to the optimal solution. If the
given solution is far away from the optimal solution, the clean-up phase may need many simplex
iterations to move to a basic optimal solution.

Related topics
problem.loadlpsol, problem.readslxsol

Fair Isaac Corporation Proprietary Information 225

Chapter 7: Reference Manual

problem.delcoefs

Purpose
Delete coefficients from the current problem

Synopsis
problem.delcoefs(rowind, colind)

Arguments
rowind rows (i.e. xpress.constraint objects, indices, or names) of the SLP coefficients to

delete.
colind columns (i.e. xpress.var objects, indices, or names) of the SLP coefficients to delete.

Related topics
problem.addcoefs, problem.slpchgcoef, problem.slpchgcoefstr,
problem.getcoefformula, problem.slpgetcoefstr, problem.loadcoefs

Fair Isaac Corporation Proprietary Information 226

Chapter 7: Reference Manual

problem.delConstraint

Purpose
Delete one or more constraints from the problem.

Synopsis
problem.delConstraint(constraints)

Example

N = 20
p = xpress.problem()
x = [p.addVariable() for i in range(N)]
p.addConstraint(x[i] >= x[i+1] for i in range(N-1))
p.delConstraint(2) # deletes x[2] >= x[3]

Further information
1. The argument can be a single constraint or a list, tuple or NumPy array of constraints. Instead of

constraint objects, indices can also be used (from 0 to ROWS-1). The index of a constraint can be obtained
with problem.getIndex.

2. Indicator constraints are indexed as constraints, hence they can also be deleted with this function.

Fair Isaac Corporation Proprietary Information 227

Chapter 7: Reference Manual

problem.delcpcuts

Purpose
During the branch and bound search, cuts are stored in the cut pool to be applied at descendant nodes.
These cuts may be removed from a given node using problem.delcuts, but if this is to be applied in a
large number of cases, it may be preferable to remove the cut completely from the cut pool. This is
achieved using delcpcuts.

Synopsis
problem.delcpcuts(cuttype, interp, cutind)

Arguments
cuttype User defined cut type to match against.
interp Way in which the cut cuttype is interpreted:

-1 match all cut types;
1 treat cut types as numbers;
2 treat cut types as bit maps - delete if any bit matches any bit set in cuttype;
3 treat cut types as bit maps - delete if all bits match those set in cuttype.

cutind Array containing the cuts which are to be deleted.

Related topics
problem.addcuts, problem.delcuts, problem.loadcuts, Section "Working with the cut
manager" of the Xpress Optimizer reference manual.

Fair Isaac Corporation Proprietary Information 228

Chapter 7: Reference Manual

problem.delcuts

Purpose
Deletes cuts from the matrix at the current node. Cuts from the parent node which have been
automatically restored may be deleted as well as cuts added to the current node using
problem.addcuts or problem.loadcuts. The cuts to be deleted can be specified in a number of
ways. If a cut is ruled out by any one of the criteria it will not be deleted.

Synopsis
problem.delcuts(basis, cuttype, interp, delta, cutind)

Arguments
basis Ensures the basis will be valid if set to 1. If set to 0, cuts with non-basic slacks may be

deleted.
cuttype User defined type of the cut to be deleted.
interp Way in which the cut cuttype is interpreted:

-1 match all cut types;
1 treat cut types as numbers;
2 treat cut types as bit maps - delete if any bit matches any bit set in cuttype;
3 treat cut types as bit maps - delete if all bits match those set in cuttype.

delta Only delete cuts with an absolute slack value greater than delta. To delete all the cuts,
this argument should be set to -xpress.infinity.

cutind Array containing the cuts which are to be deleted.

Further information
1. It is usually best to drop only those cuts with basic slacks, otherwise the basis will no longer be valid and

it may take many iterations to recover an optimal basis. If the basis parameter is set to 1, this will
ensure that cuts with non-basic slacks will not be deleted even if the other parameters specify that these
cuts should be deleted. It is highly recommended that the basis parameter is always set to 1.

2. The cuts to be deleted can also be specified by the size of the slack variable for the cut. Only those cuts
with a slack value greater than the delta parameter will be deleted.

3. A list of indices of the cuts to be deleted can also be provided. The list of active cuts at a node can be
obtained with the problem.getcutlist function.

Related topics
problem.addcuts, problem.delcpcuts, problem.getcutlist, problem.loadcuts, Section
"Working with the cut manager" of the Xpress Optimizer reference manual.

Fair Isaac Corporation Proprietary Information 229

Chapter 7: Reference Manual

problem.delgencons

Purpose
Delete general constraints from a problem.

Synopsis
problem.delgencons(conind)

Argument
conind An integer array containing the general constraints to delete.

Example
In this example, general constraints 0 and 2 are deleted from the problem:

conind = [0, 2]
prob.delgencons(conind)

Further information
After general constraints have been deleted from a problem, the indices of the remaining constraints are
reduced down so that the general constraints are always numbered from 0 to
prob.attributes.gencons - 1 where prob.attributes.gencons contains the number of
non-deleted general constraints in the problem.

Related topics
problem.addgencons, problem.getgencons, xpress.And, xpress.Or, xpress.max,
xpress.min, xpress.abs.

Fair Isaac Corporation Proprietary Information 230

Chapter 7: Reference Manual

problem.delindicators

Purpose
Delete indicator constraints. This turns the specified rows into normal rows (not controlled by indicator
variables).

Synopsis
problem.delindicators(first=None, last=None)

Arguments
first First row in the range.
last Last row in the range (inclusive).

Example
In this example, if any of the first two rows of the matrix is an indicator constraint, they are turned into
normal rows:

prob.delindicators(0,1)

Further information
This function has no effect on rows that are not indicator constraints.

Related topics
problem.getindicators, problem.setindicators.

Fair Isaac Corporation Proprietary Information 231

Chapter 7: Reference Manual

problem.delpwlcons

Purpose
Delete piecewise linear constraints from a problem.

Synopsis
problem.delpwlcons(pwlind)

Argument
pwlind An integer array containing the piecewise linear constraints to delete.

Example
In this example, piecewise linear constraints 0 and 2 are deleted from the problem:

pwlind = [0,2]
prob.delpwlcons(pwlind)

Further information
After piecewise linear constraints have been deleted from a problem, the indices of the remaining
constraints are reduced so that the piecewise linear constraints are always numbered from 0 to
problem.attributes.pwlcons - 1 where problem.attributes.pwlcons is the problem
attribute containing the number of non-deleted piecewise linear constraints in the problem.

Related topics
problem.addpwlcons, problem.getpwlcons, xpress.pwl.

Fair Isaac Corporation Proprietary Information 232

Chapter 7: Reference Manual

problem.delobj

Purpose
Removes an objective function from a multi-objective problem. Any objectives with index > objidx
will be shifted down. Deleting the last objective function in the problem causes all the objective
coefficients to be zeroed, but OBJECTIVES remains set to 1.

Synopsis
problem.delobj(objidx)

Argument
objidx Index of the objective to remove.

Example
Removing the second objective function from a problem:

p.delobj(1)

Related topics
problem.addObjective, problem.setObjective, problem.chgobjn, problem.addobj,
problem.getobjn.

Fair Isaac Corporation Proprietary Information 233

Chapter 7: Reference Manual

problem.delqmatrix

Purpose
Deletes the quadratic part of a row or of the objective function.

Synopsis
problem.delqmatrix(row)

Argument
row Index of row from which the quadratic part is to be deleted.

Further information
If a row index of -1 is used, the function deletes the quadratic coefficients from the objective function.

Related topics
problem.addrows.

Fair Isaac Corporation Proprietary Information 234

Chapter 7: Reference Manual

problem.delSOS

Purpose
Delete one or more SOSs from the problem.

Synopsis
problem.delSOS(sets)

Example

N = 20
p = xpress.problem()
x = [p.addVariable() for i in range(N)]
s = p.addSOS(x, i+1 for i in range(N))
p.delSOS(s)

Further information
The arguments can be a single SOS or a list, tuple or NumPy array of SOSs. Instead of SOS objects,
indices can also be used (from 0 to SETS-1). The index SOS can be obtained with problem.getIndex.

Fair Isaac Corporation Proprietary Information 235

Chapter 7: Reference Manual

problem.deltolsets

Purpose
Delete tolerance sets from the current problem

Synopsis
problem.deltolsets(tolind)

Argument
tolind Indices of tolerance sets to delete.

Related topics
problem.addtolsets, problem.chgtolset, problem.gettolset, problem.loadtolsets

Fair Isaac Corporation Proprietary Information 236

Chapter 7: Reference Manual

problem.delVariable

Purpose
Delete one or more variables from the problem.

Synopsis
problem.delVariable(variables)

Example

N = 20
p = xpress.problem()
x = [p.addVariable() for i in range(N)]
p.addConstraint(x[i] >= x[i+1] for i in range(N-1))

deletes x[2], x[3], i.e., third and fourth variable
p.delVariable(x[2:4])

Further information
The argument can be single variables or a list, tuple or NumPy array of variables. Instead of variable
objects, indices can also be used (from 0 to COLS-1). The index of a variable can be obtained with
problem.getIndex.

Fair Isaac Corporation Proprietary Information 237

Chapter 7: Reference Manual

problem.delvars

Purpose
Convert SLP variables to normal columns. Variables must not appear in SLP structures

Synopsis
problem.delvars(colind)

Argument
colind Columns to be converted to linear ones.

Further information
The SLP variables to be converted to linear, non SLP columns must not be in use by any other SLP
structure (coefficients, initial value formulae, delayed columns). Use the appropriate deletion or change
functions to remove them first.

Related topics
problem.addvars, problem.chgvar, problem.getvar, problem.loadvars

Fair Isaac Corporation Proprietary Information 238

Chapter 7: Reference Manual

problem.dumpcontrols

Purpose
Displays the list of controls and their current value for those controls that have been set to a non default
value.

Synopsis
problem.dumpcontrols()

Related topics
problem.setdefaults

Fair Isaac Corporation Proprietary Information 239

Chapter 7: Reference Manual

problem.estimaterowdualranges

Purpose
Performs a dual side range sensitivity analysis, i.e. calculates estimates for the possible ranges for dual
values.

Synopsis
problem.estimaterowdualranges(rowind, iterlim, mindual, maxdual)

Arguments
rowind rows (i.e. xpress.constraint objects, indices, or names) to analyze.
iterlim Effort limit expressed as simplex iterations per row.
mindual Estimated lower bounds on the possible dual ranges.
maxdual Estimated upper bounds on the possible dual ranges.

Further information
This function may provide better results for individual row dual ranges when called for a larger number of
rows.

Related topics
problem.lpoptimize, problem.strongbranch

Fair Isaac Corporation Proprietary Information 240

Chapter 7: Reference Manual

problem.evaluatecoef

Purpose
Evaluate a coefficient using the current values of the variables

Synopsis
value = problem.evaluatecoef(row, col)

Arguments
row Row (i.e. xpress.constraint object, index, or name).
col Column (i.e. xpress.var object, index, or name).
value The result of the calculation.

Example
The following example sets the value of column 5 to 1.42 and then calculates the coefficient in row 2,
column 3. If the coefficient depends on column 5, then a value of 1.42 will be used in the calculation.

p.chgvar(col=5, value=1.42)
value = p.evaluatecoef(2, 3)

Further information
The values of the variables are obtained from the solution, or from the Value setting of an SLP variable
(see problem.chgvar and problem.getvar).

Related topics
problem.chgvar, problem.evaluateformula, problem.getvar

Fair Isaac Corporation Proprietary Information 241

Chapter 7: Reference Manual

problem.evaluateformula

Purpose
Evaluate a formula using the current values of the variables

Synopsis
result = problem.evaluateformula(parsed, type, values)

Arguments
parsed integer indicating whether the formula of the item is in internal unparsed format

(parsed=False) or parsed (reverse Polish) format (parsed=True).
type Integer array of token types for the formula.
values Array of values corresponding to Type.
result The result of the calculation.

Example
The following example calculates the value of column 3 divided by column 6.

type = [xp.tok_col, xp.tok_col, xp.tok_op, xp.tok_eof]
values = [3, 6, xp.op_divide, 0]

result = p.evaluateformula(1, type, values)

Further information
The formula in type and valuesmust be terminated by an xslp_op_eof token.
The formula cannot include "complicated" functions, such as user functions which return more than one
value.

Related topics
problem.evaluatecoef

Fair Isaac Corporation Proprietary Information 242

Chapter 7: Reference Manual

problem.fixmipentities

Purpose
Fixes all the MIP entities to the values of the last found MIP solution. This is useful for finding the
reduced costs for the continuous variables after the MIP entities have been fixed to their optimal values.

Synopsis
problem.fixmipentities(options)

Argument
options Options for fixing the MIP entities, evaluated as a bit string whose bits have the following

meaning:
Bit Meaning
0 If all MIP entities should be rounded to the nearest discrete value in the solution before

being fixed.
1 If piecewise linear and general constraints should be kept in the problem with only the

non-convex decisions (i.e. which part of a non-convex piecewise linear function or
which variable attains a maximum) fixed. Otherwise all variables appearing in
piecewise linear or general constraints will be fixed.

Example
This example performs a tree search on problem myprob and then uses fixmipentities before
solving the remaining linear problem:

p.read("myprob", "")
p.mipoptimize()
p.fixmipentities(1)
p.lpoptimize()
p.writeprtsol()

Further information
1. Because of tolerances, it is possible for e.g. a binary variable to be slightly fractional in the MIP solution,

where it might have the value 0.999999 instead of being at exactly 1.0. With ifround = 0, such a
binary will be fixed at 0.999999, but with ifround = 1, it will be fixed at 1.0.

2. This command is useful for inspecting the reduced costs of the continuous variables in a problem after
the MIP entities have been fixed. Sensitivity analysis can also be performed on the continuous variables
in a MIP problem using problem.rhssa or problem.objsa after calling fixmipentities.

Related topics
problem.mipoptimize.

Fair Isaac Corporation Proprietary Information 243

Chapter 7: Reference Manual

problem.fixpenalties

Purpose
Fixe the values of the error vectors

Synopsis
status = problem.fixpenalties()

Argument
status Return status after fixing the penalty variables: 0 is successful, nonzero otherwise.

Further information
The function fixes the values of all error vectors on their current values. It also removes their objective
cost contribution.
The function is intended to support post optimization analysis, by removing any possible direct effect of
the error vectors from the dual and reduced cost values.
The fixpenalties function will automatically reoptimize the linearization. However, as the XSLP
convergence and infeasibility checks (regarding the original non-linear problem) will not be carried out,
this function will not update the SLP solution itself. The updated values will be accessible using
getlpsolution instead.

Fair Isaac Corporation Proprietary Information 244

Chapter 7: Reference Manual

problem.ftran

Purpose
Pre-multiplies a (column) vector provided by the user by the inverse of the current matrix.

Synopsis
problem.ftran(vec)

Argument
vec Array of length problem.attributes.rows containing the values which are to be

multiplied by the basis inverse. The transformed values appear in the array.

Example
To get the (unscaled) tableau column of structural variable number jcol, assuming that all arrays have
been dimensioned, do the following:

y = [0,1,0,0]
p.ftran(y)
print("ftran result:", y)

Further information
If the problem is in a presolved state, the function will work with the basis for the presolved problem.

Related topics
problem.btran.

Fair Isaac Corporation Proprietary Information 245

Chapter 7: Reference Manual

problem.getAttrib

Purpose
Retrieves one or more attributes of a problem.

Synopsis
a = problem.getAttrib(attr1, attr2, ...)

Example

p = xpress.problem()
p.read("example.lp")
print(p.getAttrib('cols'), "columns and ",

p.getAttrib('rows'), "rows")
prob_attrib = p.getAttrib()
attr_subset = p.getAttrib(['cols', 'rows'])

Further information
This function can be passed either a single attribute name, whose value will be returned, or a list of
attribute names, in which case the return value is a dictionary associating each key in the list with its
value. If no argument is provided, a dictionary containing all attributes of the problem will be returned.
Attributes can also be specified by id. In that case the keys for those attributes in a returned dictionary
will be their ids.

Fair Isaac Corporation Proprietary Information 246

Chapter 7: Reference Manual

problem.getattribinfo

Purpose
Accesses the id number and the type information of an attribute given its name. An attribute name may
be for example ’rows’. The function will return an id number of 0 and a type value of notdefined if
the name is not recognized as an attribute name. Note that this will occur if the name is a control name
and not an attribute name.

Synopsis
(id,type) = problem.getattribinfo(name)

Argument
name The name of the attribute to be queried. Names are case-insensitive. A full list of all

attributes may be found in the Xpress Optimizer reference manual.

Related topics
problem.getcontrolinfo.

Fair Isaac Corporation Proprietary Information 247

Chapter 7: Reference Manual

problem.getbasis

Purpose
Returns the current basis into the user’s data arrays.

Synopsis
problem.getbasis(rowstat, colstat)

Arguments
rowstat Array of length problem.attributes.rows to the basis status of the slack, surplus or

artificial variable associated with each row. The status will be one of:
0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.
3 slack or surplus is super-basic.
May be None if not required.

colstat Array of length problem.attributes.cols to hold the basis status of the columns in
the constraint matrix. The status will be one of:
0 variable is non-basic at lower bound, or superbasic at zero if the variable has no

lower bound;
1 variable is basic;
2 variable is non-basic at upper bound;
3 variable is super-basic.
May be None if not required.

Example
The following example minimizes a problem before saving the basis for later:

rstatus = []
cstatus = []
p.lpoptimize()
p.getbasis(rstatus, cstatus)

Related topics
problem.getpresolvebasis, problem.loadbasis, problem.loadpresolvebasis.

Fair Isaac Corporation Proprietary Information 248

Chapter 7: Reference Manual

problem.getbasisval

Purpose
Returns the current basis status for a specific col or row.

Synopsis
rstatus, cstatus = problem.getbasisval(row=None, col=None)

Arguments
row Row index to get the row basis status for.
col Column index to get the col basis status for.
rstatus The row basis status will be returned, or 0 if row was passed as None.
cstatus The value of the col basis status, or 0 if col==None.

Related topics
problem.getbasis, problem.getpresolvebasis, problem.loadbasis,
problem.loadpresolvebasis

Fair Isaac Corporation Proprietary Information 249

Chapter 7: Reference Manual

problem.getccoef

Purpose
This subroutine is deprecated and will be removed in a future release. Use problem.slpgetcoefstr
instead.
Retrieve a single nonlinear matrix coefficient as a formula in a string.

Synopsis
(factor, formula) = problem.getccoef(row, col, maxbytes)

Arguments
row Integer holding the row index for the coefficient.
col Integer holding the column index for the coefficient.
maxbytes Maximum length of returned formula.

Return value
factor The value of the constant factor multiplying the formula in the coefficient.
formula String containing the formula, in the same format as used for input from a file.

Example
The following example displays the formula for the coefficient in row 2, column 3:

(factor, formula) = p.getccoef(2, 3, 60)

Further information
If the requested coefficient is constant, then factor will be set to 1.0 and the value will be formatted in
formula.
If the length of the formula would exceed maxbytes - 1, the formula is truncated to the last token that
will fit.

Related topics
problem.slpgetcoefstr, problem.slpchgcoefstr, problem.slpchgcoef,
problem.getcoefformula

Fair Isaac Corporation Proprietary Information 250

Chapter 7: Reference Manual

problem.getcoef

Purpose
Returns a single coefficient in the constraint matrix.

Synopsis
coef = problem.getcoef(row, col)

Arguments
row Row of the constraint matrix.
col Column of the constraint matrix.

Further information
It is quite inefficient to get several coefficients with the getcoef function. It is better to use getcols or
getrows.

Related topics
problem.getcols, problem.getrows.

Fair Isaac Corporation Proprietary Information 251

Chapter 7: Reference Manual

problem.getcoefformula

Purpose
Retrieve a single nonlinear matrix coefficient as a formula split into tokens

Synopsis
(factor, tokencount, type, value) = problem.getcoefformula(row, col, parsed,

maxtypes)

Arguments
row The row index for the coefficient.
col The column index for the coefficient.
parsed Integer indicating whether the formula of the item is to be returned in internal unparsed

format (parsed=False) or parsed (reverse Polish) format (parsed=True).
maxtypes Maximum number of tokens to return, i.e. length of the type and value arrays.

Return value
factor The value of the constant factor multiplying the formula in the coefficient.
tokencount Number of tokens returned in type and value.
type Array holding the token types for the formula.
value Array of values corresponding to type.

Example
The following example displays the formula for the coefficient in row 2, column 3 in unparsed form:

(fac, tc, type, value) = p.getcoefformula(2, 3, 0, 10)

Further information
The type and value arrays are terminated by an xslp_op_eof token.
If the requested coefficient is constant, then factor will be set to 1.0 and the value will be returned with
token type xslp_op_con.

Related topics
problem.slpchgcoefstr, problem.slpchgcoef, problem.slpgetcoefstr

Fair Isaac Corporation Proprietary Information 252

Chapter 7: Reference Manual

problem.getcoefs

Purpose
Retrieve the list of positions of the nonlinear coefficients in the problem

Synopsis
problem.getcoefs(rowind, colind)

Arguments
rowind Row positions of the coefficients. May be None if not required.
colind Column positions of the coefficients. May be None if not required.

Related topics
problem.slpgetcoefstr, problem.getcoefformula

Fair Isaac Corporation Proprietary Information 253

Chapter 7: Reference Manual

problem.getcolinfo

Purpose
Get current column information.

Synopsis
problem.getcolinfo(infotype, colindex)

Arguments
infotype Type of information (see below).
colindex Column (i.e. xpress.var object, index, or name) whose information is to be handled.

Further information
If the data is not available, the type of the returned Info is set to None.
The following constants are provided for column information handling:

xpress.colinfo_value Get the current value of the column
xpress.colinfo_rdj Get the current reduced cost of the column
xpress.colinfo_deltaindex Get the delta variable index associated to the column
xpress.colinfo_delta Get the delta value (change since previous value) of the column
xpress.colinfo_deltadj Get the delta variables reduced cost
xpress.colinfo_updaterow Get the index of the update (or step bound) row associated to the

column
xpress.colinfo_sb Get the step bound on the variable
xpress.colinfo_sbdual Get the dual multiplier of the step bound row for the variable

Fair Isaac Corporation Proprietary Information 254

Chapter 7: Reference Manual

problem.getcols

Purpose
Returns the nonzeros in the constraint matrix for the columns in a given range.

Synopsis
problem.getcols (start, rowind, rowcoef, maxcoefs, first, last)

Arguments
start Array which will be filled with the indices indicating the starting offsets in the rowind and

rowcoef arrays for each requested column. It must be of length at least
last-first+2. Column i starts at position start[i] in the rowind and rowcoef
arrays, and has start[i+1]-start[i] elements in it. May be None if not required, but
must be specified.

rowind Array of length maxcoefs which will be filled with the rows of the nonzero coefficents for
each column. May be None if not required, but must be specified.

rowcoef Array of length maxcoefs which will be filled with the nonzero coefficient values. May be
None if not required, but must be specified.

maxcoefs The size of the rowind and rowcoef arrays. This is the maximum number of nonzero
coefficients that the Optimizer is allowed to return.

first First column in the range.
last Last column in the range.

Example
The following examples retrieves the start vector of the problem:

p = xpress.problem()
p.read("example", "l")
start = []
p.getcols(start, rowind=None, rowcoef=None, maxcoefs=100, first=0, last=p.attributes.cols - 1)

Further information
It is possible to obtain just the number of elements in the range of columns by replacing start, rowind
and rowcoef by None, as in the example. In this case, maxcoefsmust be set to 0 to indicate that the
length of arrays passed is zero. This is demonstrated in the example above.

Related topics
problem.getrows.

Fair Isaac Corporation Proprietary Information 255

Chapter 7: Reference Manual

problem.getcoltype

Purpose
Returns the column types for the columns in a given range.

Synopsis
problem.getcoltype(coltype, first, last)

Arguments
coltype Character array of length last-first+1 where the column types will be returned:

C indicates a continuous variable;
I indicates an integer variable;
B indicates a binary variable;
S indicates a semi-continuous variable;
R indicates a semi-continuous integer variable;
P indicates a partial integer variable.

first First column in the range.
last Last column in the range.

Example
This example finds the types for all columns in the matrix and prints them:

coltype = []
p.getcoltype(coltype, 0, p.attributes.cols - 1)
print("coltypes:", coltype)

Related topics
problem.chgcoltype, problem.getrowtype.

Fair Isaac Corporation Proprietary Information 256

Chapter 7: Reference Manual

problem.getConstraint

Purpose
Returns one or more constraint of a problem corresponding to one or more indices passed as arguments.
These constraints are returned as Python objects and can be used to access and manipulate the problem.

Synopsis
r = problem.getConstraint(index, first, last)

Arguments
first (optional) The first index of the constraints to be returned. It must be between 0 and ROWS

- 1.
last (optional) The last index of the constraints to be returned. It must be between 0 and ROWS

- 1.
index (optional) Either an integer or a list of integers (not necessarily sorted) with the

index/indices of all constraints to be returned, all between 0 and ROWS - 1

Further information
All arguments are optional. If neither of them is provided, the return value is a list with all constraints of
the problem. Otherwise, either first and last or just index can be passed.

Related topics
problem.getVariable, problem.getSOS.

Fair Isaac Corporation Proprietary Information 257

Chapter 7: Reference Manual

problem.getControl

Purpose
Retrieves one or more controls of a problem. Can also be used to retrieve objective controls.

Synopsis
c = problem.getControl(ctrl1, ctrl2, ..., objidx=None)

Arguments
ctrl1,ctrl2,... Names or numeric ids of the controls whose values to retrieve. If the objidx

argument is provided, the control must be one of the following objective controls:
priority the priority of the objective
weight the weight of the objective
reltol the relative tolerance of the objective
abstol the absolute tolerance of the objective
rhs the constant part of the objective

objidx (optional) Index of the objective whose control to retrieve.

Example

p = xpress.problem()
[...]
print("tolerance for feasibility and optimality: ",

p.getControl('feastol'), p.getControl('miprelstop'))
all_ctrls = p.getControl()
ctrl_subset = p.getControl(['presolve', 'miprelstop', 'feastol'])

Further information
This function can be passed either a single control name, whose value will be returned, or a list of control
names, in which case the return value is a dictionary associating each key in the list with its value. If no
argument is provided, a dictionary containing all controls of the problem will be returned. Controls can
also be specified by id. In that case the keys for those controls in a returned dictionary will be their ids.

Related topics
problem.setControl.

Fair Isaac Corporation Proprietary Information 258

Chapter 7: Reference Manual

problem.getcontrolinfo

Purpose
Accesses the id number and the type information of a control given its name. A control name may be for
example ’presolve’. The function will return an id number of 0 and a type value of notdefined if the
name is not recognized as a control name. Note that this will occur if the name is an attribute name
rather than a control name.

Synopsis
(id,type) = problem.getcontrolinfo(name)

Argument
name The name of the control to be queried. Names are case-insensitive. A full list of all control

may be found in the Xpress Optimizer reference manual.

Related topics
problem.getattribinfo.

Fair Isaac Corporation Proprietary Information 259

Chapter 7: Reference Manual

problem.getcpcutlist

Purpose
Returns a list of cut indices from the cut pool.

Synopsis
ncuts = problem.getcpcutlist(cuttype, interp, delta, maxcuts, cutind, viol)

Arguments
cuttype The user defined type of the cuts to be returned.
interp Way in which the cut type is interpreted:

-1 get all cuts;
1 treat cut types as numbers;
2 treat cut types as bit maps - get cut if any bit matches any bit set in

cuttype;
3 treat cut types as bit maps - get cut if all bits match those set in cuttype.

delta Only those cuts with a signed violation greater than delta will be returned.
maxcuts Maximum number of cuts to be returned.
cutind Array of length maxcuts where the cuts will be returned.
viol Array of length maxcuts where the values of the signed violations of the cuts will be

returned.

Further information
1. The violated cuts can be obtained by setting the delta parameter to the maxcuts of the (signed)

violation required. If unviolated cuts are required as well, deltamay be set to _MINUSINFINITY which
is defined in the library header file.

2. If the number of active cuts is greater than maxcuts, only maxcuts cuts will be returned. Otherwise only
the existing cuts will be used to fill in the positions of cutind.

3. In case of a cut of type ’L’, the violation equals the negative of the slack associated with the row of the
cut. In case of a cut of type ’G’, the violation equals the slack associated with the row of the cut. For cuts
of type ’E’, the violation equals the absolute value of the slack.

4. Please note that the violations returned are absolute violations, while feasibility is checked by the
Optimizer in the scaled problem.

Related topics
problem.delcpcuts, problem.getcpcuts, problem.getcutlist, problem.loadcuts,
problem.getcutmap, problem.getcutslack, Section "Working with the cut manager" of the Xpress
Optimizer reference manual.

Fair Isaac Corporation Proprietary Information 260

Chapter 7: Reference Manual

problem.getcpcuts

Purpose
Returns cuts from the cut pool. A list of cuts in the array mindexmust be passed to the routine. The
columns and elements of the cut will be returned in the regions pointed to by the colind and cutcoef
parameters. The columns and elements will be stored contiguously and the starting point of each cut will
be returned in the region pointed to by the start parameter.

Synopsis
problem.getcpcuts(rowind, maxcoefs, cuttype, rowtype, start, colind,

cutcoef, rhs)

Arguments
rowind List containing the cuts.
maxcoefs Maximum number of columns of the cuts to be returned.
cuttype List where the cut types will be returned.
rowtype Character list where the sense of the cuts (L, G, or E) will be returned.
start Array containing the offsets into the colind and cutcoef arrays. The last element

indicates the total number of elements.
colind Array where the columns of the cuts will be returned.
cutcoef Array where the coefficients will be returned.
rhs Array where the right hand side elements for the cuts will be returned.

Related topics
problem.getcpcutlist, problem.getcutlist, Section "Working with the cut manager" of the
Xpress Optimizer reference manual.

Fair Isaac Corporation Proprietary Information 261

Chapter 7: Reference Manual

problem.getcutlist

Purpose
Retrieves a list of cuts for the cuts active at the current node.

Synopsis
problem.getcutlist(cuttype, interp, maxcuts, cutind)

Arguments
cuttype User defined type of the cuts to be returned. A value of -1 indicates return all active cuts.
interp Way in which the cut type is interpreted:

-1 get all cuts;
1 treat cut types as numbers;
2 treat cut types as bit maps - get cut if any bit matches any bit set in

cuttype;
3 treat cut types as bit maps - get cut if all bits match those set in cuttype.

maxcuts Maximum number of cuts to be retrieved.
cutind Array of length maxcuts where the cuts will be returned.

Further information
If the number of active cuts is greater than maxcuts, then maxcuts cuts will be returned. Otherwise only
the positions corresponding to the number of active cuts will be filled in cutind.

Related topics
problem.getcpcutlist, problem.getcpcuts, Section "Working with the cut manager" of the
Xpress Optimizer reference manual.

Fair Isaac Corporation Proprietary Information 262

Chapter 7: Reference Manual

problem.getcutmap

Purpose
Returns in which rows a list of cutind are currently loaded into the Optimizer. This is useful for example to
retrieve the duals associated with active cutind.

Synopsis
problem.getcutmap(cutind, cutmap)

Arguments
cutind Array with the cutind for which the row index is requested.
cutmap Array where the rows are returned.

Further information
For cutind currently not loaded into the problem, a row index of -1 is returned.

Related topics
problem.getcpcutlist, problem.delcpcuts, problem.getcutlist, problem.loadcuts,
problem.getcutslack, problem.getcpcuts, Section "Working with the cut manager" of the Xpress
Optimizer reference manual.

Fair Isaac Corporation Proprietary Information 263

Chapter 7: Reference Manual

problem.getcutslack

Purpose
Used to calculate the slack value of a cutind with respect to the current LP relaxation solution. The slack
is calculated from the cutind itself, and might be requested for any cutind (even if it is not currently
loaded into the problem).

Synopsis
slack = problem.getcutslack(cutind)

Arguments
cutind Cut object for which the slack is to be calculated.
slack Value of the slack.

Related topics
problem.getcpcutlist, problem.delcpcuts, problem.getcutlist, problem.loadcuts,
problem.getcutmap, problem.getcpcuts, Section "Working with the cutind manager" of the
Xpress Optimizer reference manual.

Fair Isaac Corporation Proprietary Information 264

Chapter 7: Reference Manual

problem.getdirs

Purpose
Returns the directives that have been loaded into a problem. Priorities, forced branching directions and
pseudo costs can be returned. If called after presolve, getdirs will get the directives for the presolved
problem.

Synopsis
problem.getdirs(indices, prios, branchdirs, uppseudo, downpseudo)

Arguments
indices Array containing the column numbers (0, 1, 2,...) or negative values corresponding to

special ordered sets (the first set numbered -1, the second numbered -2,...). May be
None if not required.

prios Array containing the priorities for the columns and sets. May be None if not required.
branchdirs Character array with the branching direction for each column or set:

U the entity is to be forced up;
D the entity is to be forced down;
N not specified.
May be None if not required.

uppseudo Array containing the up pseudo costs for the columns and sets. May be None if not
required.

downpseudo Array containing the down pseudo costs for the columns and sets. May be None if not
required.

Further information
The size of all lists is at most MIPENTS, obtainable from problem.attributes.mipents.

Related topics
problem.loaddirs, problem.loadpresolvedirs.

Fair Isaac Corporation Proprietary Information 265

Chapter 7: Reference Manual

problem.getdf

Purpose
Get a distribution factor

Synopsis
value = problem.getdf(col, row)

Arguments
col The column (i.e. xpress.var object, index, or name) whose distribution factor is to be

retrieved.
row The row (i.e. xpress.constraint object, index, or name) from which the distribution

factor is to be taken.
value The value of the distribution factor.

Example
The following example retrieves the value of the distribution factor for column 282 in row 134 and
changes it to be twice as large.

value = p.getdf(282,134)
value ⁎= 2
p.chgdf(282,134,calue)

Further information
The distribution factor of a column in a row is the matrix coefficient of the corresponding delta vector in
the row. Distribution factors are used in conventional recursion models, and are essentially normalized
first-order derivatives. Xpress SLP can accept distribution factors instead of initial values, provided that
the values of the variables involved can all be calculated after optimization using determining rows, or by
a callback.

Related topics
problem.adddfs, problem.chgdf, problem.loaddfs

Fair Isaac Corporation Proprietary Information 266

Chapter 7: Reference Manual

problem.getDual

Purpose
Return the dual for one or more constraints of the problem w.r.t. the solution found by
problem.optimize; this only works on continuous optimization problems.

Synopsis
d = problem.getDual(⁎constraints)

Arguments
constraints (optional) constraint objects whose duals will be returned. If none is provided, a list of

duals for all constraints in the problem will be returned.
d A list of dual values if ⁎constraints contains more than one constraint object, a single

dual value otherwise.

Example

import xpress as xp
import numpy as np
p = xp.problem()
x = p.addVariables(10)
A = np.random.random((5,10))
b = np.random.random(5)
constr = xp.Dot(A,x) >= b
p.addConstraint(constr)
p.setObjective(xp.Sum(x))
p.optimize()
print("Duals of last two constraints:", p.getDual(constr[-2:]))

Related topics
problem.getlpsol, problem.getSlack, problem.getRCost.

Fair Isaac Corporation Proprietary Information 267

Chapter 7: Reference Manual

problem.getdualray

Purpose
Retrieves a dual ray (dual unbounded direction) for the current problem, if the problem is found to be
infeasible.

Synopsis
problem.getdualray(ray)

Argument
ray Array of length problem.attributes.rows to hold the ray. May be None if not

required.

Example
The following code tries to retrieve a dual ray:

if not p.hasdualray():
print("Could not retrieve a dual ray")

else:
dray = []
p.getdualray(dray)
print("dual ray:", dray)

Further information
1. It is possible to retrieve a dual ray only when, after solving an LP problem, the final status is
xpress.lp_infeas.

2. Dual rays are not post-solved. If the problem is in a presolved state, the dual ray that is returned will be for
the presolved problem. If the problem was solved with presolve on and has been restored to the original
state (the default behavior), this function will not be able to return a ray. To ensure that a dual ray can be
obtained, it is recommended to solve a problem with presolve turned off (presolve = 0).

Related topics
problem.getprimalray.

Fair Isaac Corporation Proprietary Information 268

Chapter 7: Reference Manual

problem.getgencons

Purpose
Returns the general constraints y = f(x1, ..., xn, c1, ..., cm) in a given range.

Synopsis
(ncol, nval) = problem.getgencons(contype, resultant, colstart, colind,

maxcols, valstart, val, maxvals, first, last)

Arguments
contype None if not required, otherwise a list which will be filled with the types of the

general constraints:
xpress.gencons_max (0) indicates a maximum constraint;
xpress.gencons_min (1) indicates a minimum constraint;
xpress.gencons_and (2) indicates an and constraint.
xpress.gencons_or (3) indicates an or constraint;
xpress.gencons_abs (4) indicates an absolute value constraint.

resultant List/array which will be filled with the output variables y. May be None if not
required.

colstart List/array which will be filled with the start index of each general constraint in the
colind array. May be None if not required.

colind Integer array which will be filled with the indices of the input variables xi. May be
None if not required.

maxcols Maximum number of input columns to be retrieved.
valstart Integer array of length at least last-first+1 which will be filled with the start

index of each general constraint in the val array. May be None if not required.
val Integer array which will be filled with the constant values ci. May be None if not

required.
maxvals Maximum number of constant values to be retrieved.
first First general constraint in the range.
last Last general constraint in the range.
ncol Number of values in the colind list if not None.
nval Number of values in the coef list if not None.

Example
The following example retrieves all general constraints:

contype, resultant, colstart, colind, valstart, val = [], [], [], [], [], []
prob.getgencons(contype, resultant, colstart, colind, 1e9, valstart, val, 1e9, 0, prob.attributes.gencons - 1)

Further information
It is possible to obtain just the number of input columns and/or constant values in the range of general
constraints by calling this function with maxcols and maxvals set to 0, in which case the required size
for the arrays will be returned as a tuple with ncols and nvals.

Related topics
problem.addgencons, problem.delgencons, xpress.And, xpress.Or, xpress.max,
xpress.min, xpress.abs.

Fair Isaac Corporation Proprietary Information 269

Chapter 7: Reference Manual

problem.getmipentities

Purpose
Retrieves MIP entity information about a problem. It must be called before problem.mipoptimize if
the presolve option is used.

Synopsis
problem.getmipentities(coltype, colind, limit, settype, start, setcols,

refval)

Arguments
coltype Character array where the entity types will be returned. The types will be one of:

B binary variables;
I integer variables;
P partial integer variables;
S semi-continuous variables;
R semi-continuous integer variables.

colind Array where the columns of the MIP entities will be returned.
limit Array where the limits for the partial integer variables and lower bounds for the

semi-continuous and semi-continuous integer variables will be returned (any entries in the
positions corresponding to binary and integer variables will be meaningless).

settype Character array where the set types will be returned. The set types will be one of:
1 SOS1 type sets;
2 SOS2 type sets.

start Array where the offsets into the setcols and refval arrays indicating the start of the
sets will be returned. This array must be of length SETMEMBERS+1: the final element
contains the length of the setcols and refval arrays.

setcols Array of length problem.attributes.setmembers where the columns in each set
will be returned.

refval Array of length problem.attributes.setmembers where the reference row entries
for each member of the sets will be returned.

Example
The following obtains the SOS information:

settype = []
mstart = []
setcols = []
refval = []
p.getmipentities(None, None, None, settype, mstart, setcols, refval)

Further information
All arguments may be None if not required.

Related topics
problem.loadproblem.

Fair Isaac Corporation Proprietary Information 270

Chapter 7: Reference Manual

problem.getiisdata

Purpose
Returns information for an Irreducible Infeasible Set: size, variables (row and column vectors) and
conflicting sides of the variables, duals and reduced costs.

Synopsis
problem.getiisdata(iis, rowind, colind, contype, bndtype, duals, djs,

isolationrows, isolationcols)

Arguments
iis The ordinal number of the IIS to get data for.
rowind Indices of rows in the IIS. Can be None if not required.
colind Indices of bounds (columns) in the IIS. Can be None if not required.
contype Sense of rows in the IIS:

L for less or equal row;
G for greater or equal row.
E for an equality row (for a non LP IIS);
1 for a SOS1 row;
2 for a SOS2 row;
W for a piecewise linear constraint;
X for a general constraint;
I for an indicator row.
Can be None if not required.

bndtype Sense of bound in the IIS:
U for upper bound;
L for lower bound.
F for fixed columns (for a non LP IIS);
B for a binary column;
I for an integer column;
P for a partial integer columns;
S for a semi-continuous column;
R for a semi-continuous integer column.
Can be None if not required.

duals The >dual multipliers associated with the rows. Can be None if not required.
djs The dual multipliers (reduced costs) associated with the bounds. Can be None if not

required.
isolationrows The isolation status of the rows:

-1 if isolation information is not available for row (run iis isolations);
0 if row is not in isolation;
1 if row is in isolation.
Can be None if not required.

isolationcols The isolation status of the bounds:
-1 if isolation information is not available for column (run iisisolations);
0 if column is not in isolation;
1 if column is in isolation. Can be None if not required.

Example
This example first retrieves the size of IIS 1, then gets the detailed information for the IIS.

rowind = []
colind = []
contype = []
bndtype = []

Fair Isaac Corporation Proprietary Information 271

Chapter 7: Reference Manual

duals = []
djs = []
isolationrows = []
isolationcols = []
p.getiisdata(1, rowind, colind, contype, bndtype,

duals, djs, isolationrows, isolationcols)

Further information
1. IISs are numbered from 1 to NUMIIS. Index number 0 refers to the IIS approximation.

2. If rowind and colind both are None, only the rownumber and colnumber are returned.

3. The arrays may be None if not required. However, arrays contype, duals and isolationrows are
only returned if rowind is not None. Similarly, arrays bndtype, djs and isolationcols are only
returned if colind is not None.

4. For the initial IIS approximation (iis = 0) the number of rows and columns with a nonzero Lagrange
multiplier (dual/reduced cost respectively) are returned. Please note that in such cases, it might be
necessary to call problem.iisstatus to retrieve the necessary size of the return arrays.

5. If there are Special Ordered Sets in the IIS, their number is included in the rowind array.

6. For non-LP IISs, some column indices may appear more than once in the colind array, for example an
integrality and a bound restriction for the same column.

7. Duals, reduced cost and isolation information is not available for nonlinear IIS problems, and for those
the arrays are filled with zero values in case they are provided.

Related topics
problem.iisall, problem.iisclear, problem.iisfirst, problem.iisisolations,
problem.iisnext, problem.iisstatus, problem.iiswrite.

Fair Isaac Corporation Proprietary Information 272

Chapter 7: Reference Manual

problem.getIndex

Purpose
Returns the numerical index for a specified row, column, or set of the optimizer.

Synopsis
ind = problem.getIndex(obj)

Argument
obj Python object with the column, row, or SOS

Example
The following example adds a constraint to a problem and then retrieves its index:

p = xpress.problem()
x = p.addVariable()
c = x⁎⁎2 + 2⁎x >= 5
p.addConstraint(c)
print("c has index", p.getIndex(c))

Related topics
problem.getIndexFromName, problem.getVariable, problem.getConstraint.

Fair Isaac Corporation Proprietary Information 273

Chapter 7: Reference Manual

problem.getIndexFromName

Purpose
Returns the index for a specified row or column name.

Synopsis
ind = problem.getIndexFromName(type, name)

Arguments
type 1 if a row index is required;

2 if a column index is required.
name String containing name of the item sought.

Example
The following example retrieves the index of column "xnew":

p = xpress.problem()
x = p.addVariable(name='xnew')
[...]
print("variable's index: ", p.getIndexFromName('xnew'))

Related topics
problem.getIndexFromName, problem.getVariable, problem.getConstraint.

Fair Isaac Corporation Proprietary Information 274

Chapter 7: Reference Manual

problem.getindicators

Purpose
Returns the indicator constraint condition (indicator variable and complement flag) associated to the
rows in a given range.

Synopsis
problem.getindicators(colind, complement, first, last)

Arguments
colind Array of length last-first+1 where the indicator variables are to be placed.
complement Array of length last-first+1 where the indicator complement flags will be returned:

0 not an indicator constraint (in this case the corresponding entry in the colind
array is ignored);

1 for indicator constraints with condition "bin = 1";
-1 for indicator constraints with condition "bin = 0";

first First row in the range.
last Last row in the range (inclusive).

Example
The following example retrieves information about three indicator constraints in the problem and prints a
list of their indices.

colind = []
complement = []
p.getindicators(colind, complement, 2, 4)
print("indices:", colind)
print("complement flags:", complement)

Related topics
problem.setindicators.

Fair Isaac Corporation Proprietary Information 275

Chapter 7: Reference Manual

problem.getinfeas

Purpose
Returns a list of infeasible primal and dual variables.

Synopsis
problem.getinfeas(x, slack, duals, djs)

Arguments
x Array to store the primal infeasible variables. May be None if not required.
slack Array to store the primal infeasible rows. May be None if not required.
duals Array to store the dual infeasible rows. May be None if not required.
djs Array to store the dual infeasible variables. May be None if not required.

Example

x = []
slack = []
p.getinfeas(x, slack, None, None)
print("getinfeas --> x and slack:", x, slack)

Further information
To find the infeasibilities in a previously saved solution, the solution must first be loaded into memory
with the problem.readbinsol function.

Related topics
problem.getscaledinfeas, problem.getiisdata, problem.iisall, problem.iisclear,
problem.iisfirst, problem.iisisolations, problem.iisnext, problem.iisstatus,
problem.iiswrite.

Fair Isaac Corporation Proprietary Information 276

Chapter 7: Reference Manual

problem.getlastbarsol

Purpose
Obtains the last barrier solution values following optimization that used the barrier solver.

Synopsis
barsolstatus = problem.getastbarsol(x=None, slack=None, duals=None,

djs=None)

Arguments
x Array of length problem.attributes.cols where the values of the primal variables

will be returned. May be None if not required.
slack Array of length problem.attributes.rows where the values of the slack variables

will be returned. May be None if not required.
duals Array of length problem.attributes.rows where the values of the dual variables

(cTBB
–1) will be returned. May be None if not required.

djs Array of length problem.attributes.cols where the reduced cost for each variable
(cT – cTBB

–1A) will be returned. May be None if not required.
barsolstatus Status of the last barrier solve. Value matches that of the lpstatus attribute if the

solve stopped immediately after the barrier.

Further information
1. If the barrier solver has not been used, barsolstatus will return xpress.lp_unsolved.

2. The barrier solution or the solution candidate is always available if the status is not
xpress.lp_unsolved.

3. The last barrier solution is available until the next solve, and is not invalidated by otherwise working with
the problem.

Related topics
problem.getlpsol

Fair Isaac Corporation Proprietary Information 277

Chapter 7: Reference Manual

problem.getlasterror

Purpose
Returns the error message corresponding to the last error triggered by a library function.

Synopsis
s = problem.getlasterror()

Example 1
The following shows how this function might be used in error-checking:

p.optimize()
print("Current error status:", p.getlasterror())

Further information
The problem.getlasterror() function is an API wrapper for the XPRSgetlasterror() function in the
Xpress C API. For this reason, errors that occur within the Xpress API are reported by getlasterror(). Errors
that occur at the level of the Python interface are not reported by getlasterror. Both classes of errors
can be handled with a try/except construct. In the two examples below, the first is an error that is
detected by the Xpress API and propagated to a Python error, while the second is an incorrect statement
for the Python module. They both trigger a RuntimeError exception.

Example 2

p = xpress.problem()

try:
x = p.addVariable()
y = p.addVariable()

except RuntimeError as e:
print(e)

Example 3

try:
p.addVariable('John Cleese')

except RuntimeError as e:
print(e)

Related topics
problem.addcbmessage, problem.setlogfile.

Fair Isaac Corporation Proprietary Information 278

Chapter 7: Reference Manual

problem.getlb

Purpose
Returns the lower bounds on the columns in a given range.

Synopsis
problem.getlb(lb, first, last)

Arguments
lb Array where the lower bounds are to be placed.
first (optional, default 0) First column in the range.
last (optional, default COLS - 1) Last column in the range.

Example
The following example retrieves the lower bounds for the columns of the current problem:

newlb = []
p.getlb(newlb, 0, 4)
print("lb: ", newlb)

Further information
Values greater than or equal to xpress.infinity should be interpreted as infinite; values less than or
equal to - xpress.infinity should be interpreted as negative infinite.

Related topics
problem.chgbounds, problem.getub.

Fair Isaac Corporation Proprietary Information 279

Chapter 7: Reference Manual

problem.getlpsol

Purpose
Used to obtain the LP solution values following optimization.

Synopsis
problem.getlpsol(x, slack, duals, djs)

Arguments
x Array to store the values of the primal variables. May be None if not required.
slack Array to store the values of the slack variables. May be None if not required.
duals Array to store the values of the dual variables (cTBB

–1). May be None if not required.

djs Array to store the reduced cost for each variable (cT – cTBB
–1A). May be None if not

required.

Example
The following sequence of function calls will get the LP solution (x) at the top node of a MIP and the
optimal MIP solution (y):

p.mipoptimize("l") # only solve the LP relaxation
x = []
p.getlpsol(x)
print("root LP solution:", x)
p.mipoptimize() # solve the MIP problem
p.getmipsol(x)
print("final MIP solution", x)

Further information
1. If called during a MIP callback the solution of the current node will be returned.

2. When an integer solution is found during a tree search, it is always set up as a solution to the current
node; therefore the integer solution is available as the current node solution and can be retrieved with
getlpsol and problem.getpresolvesol.

3. If the problem is modified after calling lpoptimize, then the solution will no longer be available.

4. If the problem has been presolved, then getlpsol returns the solution to the original problem. The only
way to obtain the presolved solution is to call the related function, problem.getpresolvesol.

Related topics
problem.getpresolvesol, problem.getmipsol, problem.writeprtsol,
problem.writesol.

Fair Isaac Corporation Proprietary Information 280

Chapter 7: Reference Manual

problem.getlpsolval

Purpose
Used to obtain a single LP solution value following optimization.

Synopsis
x, slack, dual, dj = problem.getlpsolval(col=None, row=None)

Arguments
col Column of the variable for which to return the solution value.
row Row of the constraint for which to return the solution value.
x The returned value of the primal variable.
slack The returned value of the slack variable.
dual The returned value of the dual variable (cTBB

–1).

dj The returned reduced cost for the variable (cT – cTBB
–1A).

Further information
1. This function is currently not supported if the problem is in a presolved state.

2. If col or row are None, the corresponding output is set to -xpress.infinity.

Related topics
problem.getlpsol, problem.getpresolvesol, problem.getmipsol,
problem.writeprtsol, problem.writesol.

Fair Isaac Corporation Proprietary Information 281

Chapter 7: Reference Manual

problem.getmessagestatus

Purpose
Returns the current suppression status of a message: nonzero if the message is not suppressed; 0
otherwise.

Synopsis
status = problem.getmessagestatus(msgcode)

Argument
msgcode The id number of the message. Refer to the Xpress Optimizer reference manual for a list

of possible message numbers.

Further information
If a message is suppressed globally then the message will always have status return zero from
getmessagestatus.

Related topics
problem.setmessagestatus.

Fair Isaac Corporation Proprietary Information 282

Chapter 7: Reference Manual

problem.getmipsol

Purpose
Used to obtain the solution values of the last MIP solution that was found.

Synopsis
problem.getmipsol(x, slack)

Arguments
x Array to store the values of the primal variables. May be None if not required.
slack Array to store the values of the slack variables. May be None if not required.

Example
The following sequence of function calls will get the solution (x) of the last MIP solution for a problem:

x = []
p.mipoptimize()
p.getmipsol(x)
print("solution:", x)

Related topics
problem.getpresolvesol, problem.writeprtsol, problem.writesol.

Fair Isaac Corporation Proprietary Information 283

Chapter 7: Reference Manual

problem.getmipsolval

Purpose
Used to obtain a single solution value of the last MIP solution that was found.

Synopsis
x, slack = problem.getmipsolval(col=None, row=None)

Arguments
col Column index of the variable for which to return the solution value. May be None.
row Row index of the constraint for which to return the solution value. May be None.
x The returned value of the primal variable, or -xpress.infinity if col is None.
slack The returned value of the slack variable, or -xpress.infinity if row is None.

Related topics
problem.getmipsol, problem.getpresolvesol, problem.writeprtsol,
problem.writesol.

Fair Isaac Corporation Proprietary Information 284

Chapter 7: Reference Manual

problem.getmqobj

Purpose
Returns the nonzeros in the quadratic objective coefficients’ matrix for the columns in a given range. To
achieve maximum efficiency, getmqobj returns the lower triangular part of this matrix only.

Synopsis
problem.getmqobj(start, colind, objqcoef, maxcoefs, first, last)

Arguments
start Array which will be filled with indices indicating the starting offsets in the colind and

objqcoef arrays for each requested column. It must be length of at least
last-first+2. Column i starts at position start[i] in the colind and objqcoef
arrays, and has start[i+1]-start[i] elements in it. May be None if maxcoefs is 0.

colind Array which will be filled with at most maxcoefs columns of the nonzero elements in the
lower triangular part of Q. May be None if maxcoefs is 0.

objqcoef Array which will be filled with at most maxcoefs nonzero element values. May be None if
maxcoefs is 0.

maxcoefs The maximum number of elements to be returned (maxcoefs of the arrays).
first First column in the range.
last Last column in the range.

Further information
The objective function is of the form cTx+0.5xTQx where Q is positive semi-definite for minimization
problems and negative semi-definite for maximization problems. If this is not the case the optimization
algorithms may converge to a local optimum or may not converge at all. Note that only the upper or lower
triangular part of the Qmatrix is returned.

Related topics
problem.chgmqobj, problem.chgqobj, problem.getqobj.

Fair Isaac Corporation Proprietary Information 285

Chapter 7: Reference Manual

problem.getobjn

Purpose
Returns the coefficients of a given objective function for the columns in a given range.

Synopsis
problem.getobjn(objidx, objcoef, first, last)

Arguments
objidx Index of the objective function whose coefficients to return.
objcoef Array of length last-first+1 where the objective function coefficients are to be placed.
first First column in the range.
last Last column in the range.

Example
The following example retrieves the coefficients of the first five variables in the second objective function:

objcoef = []
p.getobjn(1, objcoef, 0, 4)

Related topics
problem.getobj.

Fair Isaac Corporation Proprietary Information 286

Chapter 7: Reference Manual

problem.getnamelist

Purpose
Returns the names for the rows, columns or sets in a given range. The names will be returned in a list of
Python strings.

Synopsis
names = problem.getnamelist(type, first, last)

Arguments
type 1 if row names are required;

2 if column names are required.
3 if set names are required.

names A list containing all returned names.
first First row, column or set in the range. If None, it is taken as zero.
last Last row, column or set in the range. If None, it is taken as the penultimate element in the

list defined by type.

Example
The following example retrieves and outputs the row and column names for the current problem.

cols = prob.attributes.cols
rows = prob.attributes.rows

rnames = prob.getnamelist(1, 0, rows - 1)
cnames = prob.getnamelist(2, 0, cols - 1)

for k,v in enumerate(rnames):
print("Row {0:4d}: {1}", k, v)

for k,v in enumerate(cnames):
print("Column {0:4d}: {1}", k, v)

Fair Isaac Corporation Proprietary Information 287

Chapter 7: Reference Manual

problem.getobj

Purpose
Returns the objective function coefficients for the columns in a given range.

Synopsis
problem.getobj(objcoef, first, last)

Arguments
objcoef Array of length last-first+1 where the objective function coefficients are to be placed.
first First column in the range.
last Last column in the range.

Example
The following example retrieves the objective function coefficients of the first five variables of the current
problem:

objcoef = []
p.getobj(objcoef, 0, 4)

Related topics
problem.chgobj.

Fair Isaac Corporation Proprietary Information 288

Chapter 7: Reference Manual

problem.getObjVal

Purpose
Returns the objective value of the solution found by the Optimizer.

Synopsis
o = problem.getObjVal()

Example
The following prints the objective value of an optimal solution after the problem.optimize function is
called:

p.optimize()
print("optimal solution:", p.getObjVal())

Related topics
problem.optimize.

Fair Isaac Corporation Proprietary Information 289

Chapter 7: Reference Manual

problem.getpivotorder

Purpose
Returns the pivot order of the basic variables.

Synopsis
problem.getpivotorder(pivotorder)

Argument
pivotorder Array where the pivot order will be returned.

Example
The following returns the pivot order of the variables into an array pPivot :

pivotorder = []
p.getpivotorder(pivotorder)

Further information
Row indices are in the range 0 to ROWS-1, whilst columns are in the range ROWS+SPAREROWS to
ROWS+SPAREROWS+COLS-1.

Related topics
problem.getpivots.

Fair Isaac Corporation Proprietary Information 290

Chapter 7: Reference Manual

problem.getpivots

Purpose
Returns a list of potential leaving variables if a specified variable enters the basis. The return value is a
tuple containing the objective function value that would result if enter entered the basis; and an integer
where the actual number of potential leaving variables will be returned.

Synopsis
dobj, npiv = problem.getpivots(enter, outlist, x, maxpivots)

Arguments
enter Index of the specified row or column to enter basis.
outlist Array of length at least maxpivots to hold list of potential leaving variables. May be

None if not required.
x Array of length problem.attributes.rows +

problem.attributes.sparerows + problem.attributes.cols to hold the
values of all the variables that would result if enter entered the basis. May be None if
not required.

maxpivots Maximum number of potential leaving variables to return.

Example
The following retrieves a list of up to 5 potential leaving variables if variable 6 enters the basis:

outlist = []
x = []
obj, npiv = p.getpivots(2, outlist, x, 10)

Further information
1. If the variable enter enters the basis and the problem is degenerate then several basic variables are

candidates for leaving the basis, and the number of potential candidates is returned enter npiv. A list of
at most maxpivots of these candidates is returned enter outlist which must be at least maxpivots
long. If variable enter were to be pivoted enter, then because the problem is degenerate, the resulting
values of the objective function and all the variables do not depend on which of the candidates from
outlist is chosen to leave the basis. The value of the objective is returned enter dobj and the values
of the variables into x.

2. Row indices are enter the range 0 to ROWS-1, whilst columns are enter the range ROWS+SPAREROWS to
ROWS+SPAREROWS+COLS-1.

Related topics
problem.getpivotorder.

Fair Isaac Corporation Proprietary Information 291

Chapter 7: Reference Manual

problem.getpresolvebasis

Purpose
Returns the current basis from memory into the user’s data areas. If the problem is presolved, the
presolved basis will be returned. Otherwise the original basis will be returned.

Synopsis
problem.getpresolvebasis(rstatus, cstatus)

Arguments
rstatus Array of length problem.attributes.rows to the basis status of the stack, surplus or

artificial variable associated with each row. The status will be one of:
0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.
May be None if not required.

cstatus Array of length problem.attributes.cols to hold the basis status of the columns in
the constraint matrix. The status will be one of:
0 variable is non-basic at lower bound, or superbasic at zero if the variable has no

lower bound;
1 variable is basic;
2 variable is at upper bound;
3 variable is super-basic.
May be None if not required.

Example
The following obtains and outputs basis information on a presolved problem prior to the tree search:

cs = []
p = xpress.problem()
p.read("global1", "")
p.mipoptimize()
p.getpresolvebasis(cstatus=cs)

Related topics
problem.getbasis, problem.loadbasis, problem.loadpresolvebasis.

Fair Isaac Corporation Proprietary Information 292

Chapter 7: Reference Manual

problem.getpresolvemap

Purpose
Returns the mapping of the row and column numbers from the presolve problem back to the original
problem.

Synopsis
problem.getpresolvemap(rowmap, colmap)

Arguments
rowmap Array to store the row maps.
colmap Array to store the column maps.

Example
The following reads in a (Mixed) Integer Programming problem and gets the mapping for the rows and
columns back to the original problem following optimization of the linear relaxation. The elimination
operations of the presolve are turned off so that a one-to-one mapping between the presolve problem and
the original problem.

p.read("MyProb", "")
p.controls.presolveops = 255
p.mipoptimize("l")
rowmap = []
colmap = []
p.getpresolvemap(rowmap, colmap)

Further information
The presolved problem can contain rows or columns that do not map to anything in the original problem.
An example of this are cuts created during the MIP solve and temporarily added to the presolved problem.
It is also possible that the presolver will introduce new rows or columns. For any row or column that does
not have a mapping to a row or column in the original problem, the corresponding entry in the returned
rowmap and colmap arrays will be -1.

Fair Isaac Corporation Proprietary Information 293

Chapter 7: Reference Manual

problem.getpresolvesol

Purpose
Returns the solution for the presolved problem from memory.

Synopsis
problem.getpresolvesol(x, slack, duals, djs)

Arguments
x Array to store the values of the primal variables. May be None if not required.
slack Array to store the values of the slack variables. May be None if not required.
duals Array to store the values of the dual variables. May be None if not required.
djs Array to store the reduced cost for each variable. May be None if not required.

Example
The following reads in a (Mixed) Integer Programming problem and displays the solution to the presolved
problem following optimization of the linear relaxation:

p.read("MyProb", "")
p.mipoptimize("l")
sol = []
p.getpresolvesol(x=sol)
print("presolved sol", sol)

Further information
1. If the problem has not been presolved, the solution in memory will be returned.

2. The solution to the original problem should be returned using the related function problem.getlpsol.

3. If called during a MIP callback the solution of the current node will be returned.

4. When an integer solution is found during tree search, it is always set up as a solution to the current node;
therefore the integer solution is available as the current node solution and can be retrieved with
getlpsol and problem.getpresolvesol.

Fair Isaac Corporation Proprietary Information 294

Chapter 7: Reference Manual

problem.getprimalray

Purpose
Retrieves a primal ray (primal unbounded direction) for the current problem, if the problem is found to be
unbounded.

Synopsis
problem.getprimalray(ray)

Argument
ray Array of length problem.attributes.cols to hold the ray. May be None if not

required.

Example
The following code tries to retrieve a primal ray:

if not p.hasprimalray():
print("Could not retrieve a primal ray")

else:
ray = []
p.getprimalray(ray)
print("primal ray:", ray)

Further information
1. It is possible to retrieve a primal ray only when, after solving an LP problem, the final status (LPSTATUS)

is xpress.lp_unbounded.

2. Primal rays are not post-solved. If the problem is in a presolved state, the primal ray that is returned will
be for the presolved problem. If the problem was solved with presolve on and has been restored to the
original state (the default behavior), this function will not be able to return a ray. To ensure that a primal
ray can be obtained, it is recommended to solve a problem with presolve turned off (PRESOLVE = 0).

Related topics
problem.getdualray.

Fair Isaac Corporation Proprietary Information 295

Chapter 7: Reference Manual

problem.getProbStatus

Purpose
Returns the problem status before or after a call to problem.optimize. This function is deprecated.
Instead, problem.attributes.solvestatus and problem.attributes.solstatus should be
used.

Synopsis
s = problem.getProbStatus()

Example

p = xpress.problem()
p.read("example2", "")
p.optimize()
print("solution status code: ", p.getProbStatus(), " -->",

p.getProbStatusString())

Further information
The returned number corresponds to the one of the problem status attributes described in the Xpress
Optimizer reference manual: problem.attributes.lpstatus if the problem is an LP,
problem.attributes.mipstatus if the problem is a MIP, or problem.attributes.nlpstatus
if the problem is nonlinear.

Related topics
problem.optimize, problem.getSolution, problem.getDual, problem.getSlack,
problem.getRCost, problem.getProbStatusString.

Fair Isaac Corporation Proprietary Information 296

Chapter 7: Reference Manual

problem.getProbStatusString

Purpose
Returns the string corresponding to the problem status before or after a call to problem.optimize.
This function is deprecated. Instead, problem.attributes.solvestatus.name and
problem.attributes.solstatus.name should be used.

Synopsis
s = problem.getProbStatusString()

Example

p = xpress.problem()
p.read("example2", "")
p.optimize()
print("solution status code: ", p.getProbStatus(), " -->",

p.getProbStatusString())

Related topics
problem.optimize, problem.getSolution, problem.getDual, problem.getSlack,
problem.getRCost, problem.getProbStatus.

Fair Isaac Corporation Proprietary Information 297

Chapter 7: Reference Manual

problem.getpwlcons

Purpose
Returns the piecewise linear constraints y = f(x) in a given range.

Synopsis
npoints = problem.getpwlcons(colind, resultant, start, xval, yval,

maxpoints, first, last)

Arguments
colind Integer array which will be filled with the indices of the input variables x. It must be of

length at least last-first+1. May be None if not required.
resultant Integer array which will be filled with the indices of the output variables y. It must be of

length at least last-first+1. May be None if not required.
start Integer array which will be filled with the start indices of the different constraints in the

breakpoint arrays. It must be of length at least last-first+1. The x-values of the
breakpoints of piecewise linear constraint i < last will be given in xval[start[i]]
to xval[start[i+1]]. May be None if not required.

xval Array of length maxpointswhich will be filled with the x-values of the breakpoints. May
be None if not required.

yval Array of length maxpointswhich will be filled with the y-values of the breakpoints. May
be None if not required.

maxpoints Maximum number of breakpoints to be retrieved.
first First piecewise linear constraint in the range.
last Last piecewise linear constraint in the range.
npoints The returned number of breakpoints in the xval and yval arrays. If the number of

breakpoints is greater than maxpoints, then only maxpoints elements will be returned.

Example
The following example retrieves all variables and breakpoints in the first two piecewise linear constraints:

colind, resultant, start, xval, yval = [], [], [], [], []
npoints = prob.getpwlcons(prob, colind, resultant, start, xval, yval, 1e9, 0, 1)

Further information
It is possible to obtain just the number of breakpoints in the range of piecewise linear constraints by
calling this function with maxpoints set to 0, in which case the required maxpoints for the breakpoint
arrays will be returned in npoints.

Related topics
problem.addpwlcons, problem.delpwlcons, xpress.pwl.

Fair Isaac Corporation Proprietary Information 298

Chapter 7: Reference Manual

problem.getqobj

Purpose
Returns a single quadratic objective function coefficient corresponding to the variable pair (objqcol1,
objqcol2) of the Hessian matrix.

Synopsis
objqcoef = problem.getqobj(objqcol1, objqcol2)

Arguments
objqcol1 Column index for the first variable in the quadratic term.
objqcol2 Column index for the second variable in the quadratic term.

Example
The following returns the coefficient of the x02 term in the objective function, placing it in the variable
value :

print("diagonal coeff of the Hessian:",
[p.getqobj(i,i) for i in range(p.attributes.cols)])

Further information
For example, if the objective function has the term [3x1x2 + 3x2x1]/2 the value retrieved by getqobj is
3.0 and if the objective function has the term [6x12]/2 the value retrieved by getqobj is 6.0.

Related topics
problem.getmqobj, problem.chgqobj, problem.chgmqobj.

Fair Isaac Corporation Proprietary Information 299

Chapter 7: Reference Manual

problem.getqrowcoeff

Purpose
Returns a single quadratic constraint coefficient corresponding to the variable pair (rowqcol1,
rowqcol2) of the Hessian of a given constraint.

Synopsis
coeff = problem.getqrowcoeff (row, rowqcol1, rowqcol2)

Arguments
row The quadratic row where the coefficient is to be looked up.
rowqcol1 Column index for the first variable in the quadratic term.
rowqcol2 Column index for the second variable in the quadratic term.

Example
The following returns the coefficient of the dist2 term in the constraint cons1:

print("diagonal coeff of dist:", p.getqrowcoeff(cons1, dist, dist)

Further information
The coefficient returned corresponds to the Hessian of the constraint. That means the for constraint x +
[x2 + 6 xy] <= 10 getqrowcoeff would return 1 as the coefficient of x2 and 3 as the coefficient
of xy.

Related topics
problem.loadproblem, problem.addqmatrix, problem.chgqrowcoeff,
problem.getqrowqmatrix, problem.getqrowqmatrixtriplets, problem.getqrows,
problem.chgqobj, problem.chgmqobj, problem.getqobj.

Fair Isaac Corporation Proprietary Information 300

Chapter 7: Reference Manual

problem.getqrowqmatrix

Purpose
Returns the nonzeros in a quadratic constraint coefficients matrix for the columns in a given range. To
achieve maximum efficiency, getqrowqmatrix returns the lower triangular part of this matrix only.

Synopsis
problem.getqrowqmatrix(row, start, colind, rowqcoef, maxcoefs, first, last)

Arguments
row Row (i.e. xpress.constraint object, index, or name) for which the quadratic

coefficients are to be returned.
start List to be filled with indices indicating the starting offsets in the colind and dobjval

lists for each requested column. It must be length of at least last-first+2. Column i
starts at position start[i] in the colind and rowqcoef arrays, and has
start[i+1]-start[i] elements in it. May be None if maxcoefs is 0.

colind Array of length maxcoefs which will be filled with the columns of the nonzero elements
in the lower triangular part of Q. May be None if maxcoefs is 0.

rowqcoef Array of length maxcoefs which will be filled with the nonzero element values. May be
None if maxcoefs is 0.

maxcoefs Maximum number of elements to be returned in colind and rowqcoef.
first First column in the range.
last Last column in the range.

Related topics
problem.loadproblem, problem.getqrowcoeff, problem.addqmatrix,
problem.chgqrowcoeff, problem.getqrowqmatrixtriplets, problem.getqrows,
problem.chgqobj, problem.chgmqobj, problem.getqobj.

Fair Isaac Corporation Proprietary Information 301

Chapter 7: Reference Manual

problem.getqrowqmatrixtriplets

Purpose
Returns the nonzeros in a quadratic constraint coefficients matrix as triplets (index pairs with
coefficients). To achieve maximum efficiency, getqrowqmatrixtriplets returns the lower triangular
part of this matrix only.

Synopsis
problem.getqrowqmatrixtriplets(row, rowqcol1, rowqcol2, rowqcoef)

Arguments
row Row (i.e. xpress.constraint object, index, or name) for which the quadratic

coefficients are to be returned.
rowqcol1 First index in the triplets. May be None if not required.
rowqcol2 Second index in the triplets. May be None if not required.
rowqcoef Coefficients in the triplets. May be None if not required.

Further information
If a row index of -1 is used, the function returns the quadratic coefficients for the objective function.

Related topics
problem.loadproblem, problem.getqrowcoeff, problem.addqmatrix,
problem.chgqrowcoeff, problem.getqrowqmatrix, problem.getqrows, problem.chgqobj,
problem.chgmqobj, problem.getqobj.

Fair Isaac Corporation Proprietary Information 302

Chapter 7: Reference Manual

problem.getqrows

Purpose
Returns a list of row objects that have quadratic coefficients.

Synopsis
problem.getqrows(rowind)

Argument
rowind Array to contain the indices of rows with quadratic coefficients in them. May be None if

not required.

Related topics
problem.loadproblem, problem.getqrowcoeff, problem.addqmatrix,
problem.chgqrowcoeff, problem.getqrowqmatrix, problem.getqrowqmatrixtriplets,
problem.chgqobj, problem.chgmqobj, problem.getqobj.

Fair Isaac Corporation Proprietary Information 303

Chapter 7: Reference Manual

problem.getRCost

Purpose
Return the reduced cost of one or more variables of the problem w.r.t. the solution found by
problem.optimize. This function only works on continuous optimization problems.

Synopsis
r = problem.getRCost(⁎variables)

Arguments
variables (optional) variable objects whose reduced costs will be returned. If none is provided, a list

of reduced costs of all variables in the problem will be returned.
r A list of reduced cost values if ⁎variables contains more than one variable object, a

single reduced cost value otherwise.

Example

import xpress as xp
import numpy as np
p = xp.problem()
x = p.addVariables(10, name='y') # creates 10 variables named 'y(0)', 'y(1)', etc.
A = np.random.random((5,10))
b = np.random.random(5)
constr = xp.Dot(A,x) >= b
p.addConstraint(constr)
p.setObjective(xp.Sum(x))
p.optimize()
print("Reduced costs of first two variables:", p.getRCost(x[:2]))
print("Reduced costs of last two variables:", p.getRCost('y(8)', 'y(9)'))

Related topics
problem.optimize, problem.getlpsol, problem.getSolution, problem.getDual,
problem.getSlack.

Fair Isaac Corporation Proprietary Information 304

Chapter 7: Reference Manual

problem.getrhs

Purpose
Returns the right hand side elements for the rows in a given range.

Synopsis
problem.getrhs(rhs, first, last)

Arguments
rhs Array where the (last - first + 1) right hand side elements are to be placed.
first First row in the range.
last Last row in the range.

Example
The following example retrieves the right hand side values of the problem:

b = []
p.getrhs(b, 0, p.attributes.rows - 1)

Related topics
problem.chgrhs, problem.chgrhsrange, problem.getrhsrange.

Fair Isaac Corporation Proprietary Information 305

Chapter 7: Reference Manual

problem.getrhsrange

Purpose
Returns the right hand side range values for the rows in a given range.

Synopsis
problem.getrhsrange(range, first, last)

Arguments
range Array of length last-first+1 where the right hand side range values are to be placed.
first First row in the range.
last Last row in the range.

Related topics
problem.chgrhs, problem.chgrhsrange, problem.getrhs.

Fair Isaac Corporation Proprietary Information 306

Chapter 7: Reference Manual

problem.getrowinfo

Purpose
Get current row information.

Synopsis
info = problem.getrowinfo(infotype, rowindex)

Arguments
infotype Type of information (see below)
rowindex Row (i.e. xpress.constraint object, index, or name) whose information is to be

handled
info Information to be retrieved

Further information
If the data is not available, the type of the returned info is set to xpress.undefined.
The following constants are provided for row information handling:

rowinfo_slack Get the current slack value of the row
rowinfo_dual Get the current dual multiplier of the row
rowinfo_numpenaltyerrors Get the number of times the penalty error vector has been active for

the row
rowinfo_maxpenaltyerror Get the maximum size of the penalty error vector activity for the row
rowinfo_totalpenaltyerror Get the total size of the penalty error vector activity for the row
rowinfo_currentpenaltyerror Get the size of the penalty error vector activity in the current

iteration for the row
rowinfo_currentpenaltyfactor Set the size of the penalty error factor for the current iteration

for the row
rowinfo_penaltycolumnplus Get the index of the positive penalty column for the row (+)
rowinfo_penaltycolumnplusvalue Get the value of the positive penalty column for the row (+)
rowinfo_penaltycolumnplusdj Get the reduced cost of the positive penalty column for the row

(+)
rowinfo_penaltycolumnminus Get the index of the negative penalty column for the row (-)
rowinfo_penaltycolumnminusvalue Get the value of the negative penalty column for the row (-)
rowinfo_penaltycolumnminusdj Get the reduced cost of the negative penalty column for the row

(-)

Fair Isaac Corporation Proprietary Information 307

Chapter 7: Reference Manual

problem.getrows

Purpose
Returns the nonzeros in the constraint matrix for the rows in a given range.

Synopsis
problem.getrows(start, colind, colcoef, maxcoefs, first, last)

Arguments
start Array which will be filled with the indices indicating the starting offsets in the colind and

colcoef arrays for each requested row. It must be of length at least last-first+2.
Column i starts at position start[i] in the colind and colcoef arrays, and has
start[i+1]-start[i] elements in it. May be None if not required.

colind Arrays which will be filled with at most maxcoefs column of the nonzero elements for
each row. May be None if not required.

colcoef Array which will be filled with at most maxcoefs nonzero element values. May be None if
not required.

maxcoefs Maximum number of elements to be retrieved.
first First row in the range.
last Last row in the range.

Related topics
problem.getcols, problem.getrowtype.

Fair Isaac Corporation Proprietary Information 308

Chapter 7: Reference Manual

problem.getrowstatus

Purpose
Retrieve the status setting of a constraint

Synopsis
status = problem.getrowstatus(row)

Arguments
row The index of the matrix row whose data is to be obtained.
status The status settings.

Example
This recovers the status of the rows of the matrix of the current problem and reports those which are
flagged as enforced constraints.

m = p.getintattrib('rows')
for i in range(m):

status = p.getrowstatus(i)
if(Status & 0x800) print("Row {0} is enforced".format(i))

Further information
See the section on bitmap settings of the XSLP reference manual for details on the possible information
in Status.

Related topics
problem.chgrowstatus

Fair Isaac Corporation Proprietary Information 309

Chapter 7: Reference Manual

problem.getrowtype

Purpose
Returns the row types for the rows in a given range.

Synopsis
problem.getrowtype(rowtype, first, last)

Arguments
rowtype Character array of length last-first+1 characters where the row types will be returned:

N indicates a free constraint;
L indicates a ≤ constraint;
E indicates an = constraint;
G indicates a ≥ constraint;
R indicates a range constraint.

first First row in the range.
last Last row in the range.

Example
The following example retrieves the type of the first four rows of the problem into an array qrt:

qrt = []
p.getrowtype(qrt, 0, 3)

Related topics
problem.chgrowtype, problem.getrows.

Fair Isaac Corporation Proprietary Information 310

Chapter 7: Reference Manual

problem.getrowwt

Purpose
Get the initial penalty error weight for a row

Synopsis
value = problem.getrowwt(row)

Arguments
row The row (i.e. xpress.constraint object, index, or name) whose weight is to be

retrieved.
value The value of the weight.

Example
The following example gets the initial weight of row number 2.

value = p.getrowwt(2)

Further information
The initial row weight is used only when the augmented structure is created. After that, the current
weighting can be accessed using problem.getrowinfo.

Related topics
problem.chgrowwt, problem.getrowinfo

Fair Isaac Corporation Proprietary Information 311

Chapter 7: Reference Manual

problem.getscaledinfeas

Purpose
Returns a list of scaled infeasible primal and dual variables for the original problem. If the problem is
currently presolved, it is postsolved before the function returns.

Synopsis
problem.getscaledinfeas(x, slack, duals, djs)

Arguments
x Array to store the primal infeasible variables. May be None if not required.
slack Array to store the primal infeasible rows. May be None if not required.
duals Array to store the dual infeasible rows. May be None if not required.
djs Array to store the dual infeasible variables. May be None if not required.

Example

x = []
slack = []
duals = []
djs = []
p.getscaledinfeas(x, slack, duals, djs)

Related topics
problem.getinfeas, problem.getiisdata, problem.iisall, problem.iisclear,
problem.iisfirst, problem.iisisolations, problem.iisnext, problem.iisstatus,
problem.iiswrite.

Fair Isaac Corporation Proprietary Information 312

Chapter 7: Reference Manual

problem.getSlack

Purpose
Return the slack for one or more constraints of the problem w.r.t. the solution found by
problem.optimize. This function works both with continuous and mixed-integer optimization
problems.

Synopsis
s = problem.getSlack(⁎constraints)

Arguments
constraints (optional) constraint objects whose slacks will be returned. If none is provided, a list of

slacks for all constraints in the problem will be returned.
s A list of slack values if ⁎constraints contains more than one constraint object, a

single slack value otherwise.

Example

import xpress as xp
import numpy as np
p = xp.problem()
x = p.addVariables(10)
A = np.random.random((5,10))
b = np.random.random(5)
constr = xp.Dot(A,x) >= b
p.addConstraint(constr)
p.setObjective(xp.Sum(x))
p.optimize()
print("slack of 2nd and 3rd constraint:", p.getSlack(constr[1], constr[2]))
print("slack of first three constraints:", p.getSlack(constr[:3]))

Related topics
problem.optimize, problem.getlpsol, problem.getmipsol, problem.getSolution,
problem.getDual, problem.getRCost

Fair Isaac Corporation Proprietary Information 313

Chapter 7: Reference Manual

problem.getslpsol

Purpose
Obtain the solution values for the most recent SLP iteration

Synopsis
problem.getslpsol(x, slack, duals, djs)

Arguments
x Array of length problem.attributes.xslp_originalcols to hold the values of the

primal variables. May be None if not required.
slack Array of length problem.attributes.xslp_originalrows to hold the values of the

slack variables. May be None if not required.
duals Array of length problem.attributes.xslp_originalrows to hold the values of the

dual variables. May be None if not required.
djs Array of length problem.attributes.xslp_originalcols to hold the recuded

costs of the primal variables. May be None if not required.

Example
The following code fragment recovers the values and reduced costs of the primal variables from the most
recent SLP iteration:

ncol = p.getintattrib(prob,xpress.xslp_originalcols)
val = []
djs = []
p.getslpsol(val,None,None,djs)

Further information
getslpsol can be called at any time after an SLP iteration has completed, and will return the same
values even if the problem is subsequently changed. getslpsol returns values for the columns and
rows originally in the problem and not for any augmentation rows or columns. To access the values of any
augmentation columns or rows, use getlpsol; accessing the augmented solution is only recommended
if xslp_presolvelevel indicates that the problem dimensions should not be changed in presolve.

Fair Isaac Corporation Proprietary Information 314

Chapter 7: Reference Manual

problem.getSolution

Purpose
Returns the solution to an optimization problem if called after the problem.optimize function has
terminated. This function works with both continuous and mixed-integer optimization problems.

Synopsis
x = problem.getSolution(args=None, flatten=False)

Arguments
args (optional) specify indices, names, or objects whose solution value is requested. If None, it

is assumed that all indices of the problem’s variables are requested. Starting with version
8.8, args can contain expressions, both linear and nonlinear, and dictionaries thereof, in
order to allow for more flexible evaluation of functions of the problem solution

flatten (optional) allows for backward compatibility with previous versions of the Xpress Python
interface. Regardless of whether the passed object is a (nested) list, tuples, the returned
value is a flattened list containing all requested values.

Example 1
Below are a few possible uses of the function. Note that one can specify variable names, variable indices,
or variable objects, and embed them in lists, dictionaries, NumPy arrays, and tuples.

print(m.getSolution ()) # Prints a list with an optimal solution
print("v1 is", m.getSolution(v1)) # Only prints the value of v1
a = m.getSolution(x) # Gets the values of all variables in the vector x
b = m.getSolution(range(4)) # Gets the value of v1 and x[0], x[1], x[2], i.e.

the first four variables of the problem
c = m.getSolution('Var1') # Gets the value of v1 by its name
e = m.getSolution({1: x, 2: 0,

3: 'Var1'}) # Returns a dictionary containing the same keys as
in the arguments and the values of the
variables/expressions passed

d = m.getSolution(v1 + 3⁎x) # Gets the value of an expression under the
current solution

e = m.getSolution(np.array(x)) # Gets a NumPy array with the solution of x

y=m.addVariable(name='var1')
x=m.addVariable(name='var2')
[...]
p.optimize()
print("solution:", p.getSolution())
print("x is", p.getSolution(x))
print("first two var:", p.getSolution([0,1]))
print("x and y are", p.getSolution(['var1', 'var2']))

Example 2
The next examples show how to use the flatten argument, which ensures that the returned value is a
flattened list.

y=m.addVariable(name='var1')
x=m.addVariable(name='var2')
[...]
p.optimize()
print("x is", p.getSolution([[x,y],[x,y]], flatten=True)) # will return [0,1,0,1]
print("first two var:", p.getSolution(0,1, flatten=True)) # will return the list [0,1]

Fair Isaac Corporation Proprietary Information 315

Chapter 7: Reference Manual

Further information
For efficiency reasons it is preferable that one call to getSolution is made, as the whole vector is
obtained at each call and only the desired portion is returned.
The function xpress.evaluate is more flexible in that it allows more argument types. Apart from the
case where the args argument contains indices and names of the variables, getSolution is
equivalent to a call to xpress.evaluate.

Related topics
xpress.evaluate, problem.getlpsol, problem.getmipsol, problem.getDual,
problem.getSlack, problem.getRCost.

Fair Isaac Corporation Proprietary Information 316

Chapter 7: Reference Manual

problem.getSOS

Purpose
Returns one or more SOSs of a problem corresponding to one or more indices passed as arguments.
These SOSs are returned as Python objects and can be used to access and manipulate the problem.

Synopsis
x = problem.getSOS(index, first, last)

Arguments
first (optional) The first index of the SOSs to be returned.
last (optional) The last index of the SOSs to be returned.
index (optional) Either an integer or a list of integers (not necessarily sorted) with the

index/indices of all SOSs to be returned.

Further information
All arguments are optional. If neither of them is provided, the return value is a list with all SOSs of the
problem. Otherwise, either first and last or just index can be passed.

Related topics
problem.getVariable, problem.getConstraint,

Fair Isaac Corporation Proprietary Information 317

Chapter 7: Reference Manual

problem.gettolset

Purpose
Retrieve the values of a set of convergence tolerances for an SLP problem

Synopsis
status = problem.gettolset(tolset, tols)

Arguments
tolset The index of the tolerance set.
status The bit-map of status settings.
tols Array of 9 double-precision values to hold the tolerances. May be None if not required.

Example
The following example retrieves the values for tolerance set 3 and prints those which are set:

tols = []
status = p.gettolset(3, tols)
for i in range(9):

if status &(1<<i):
print("Tolerance {0} = {1}".format(i,tols[i]))

Further information
If tols is None, then the corresponding information will not be returned.
If tols is not None, then a set of 9 values will always be returned. status indicates which of these
values is active as follows. Bit n of status is set if tols[n] is active, where n is:

Entry / Bit Tolerance XSLP constant XSLP bit constant
0 Closure tolerance (TC) xslp_TOLSET_TC xslp_TOLSETBIT_TC
1 Absolute delta tolerance (TA) xslp_TOLSET_TA xslp_TOLSETBIT_TA
2 Relative delta tolerance (RA) xslp_TOLSET_RA xslp_TOLSETBIT_RA
3 Absolute coefficient tolerance (TM) xslp_TOLSET_TM xslp_TOLSETBIT_TM
4 Relative coefficient tolerance (RM) xslp_TOLSET_RM xslp_TOLSETBIT_RM
5 Absolute impact tolerance (TI) xslp_TOLSET_TI xslp_TOLSETBIT_TI
6 Relative impact tolerance (RI) xslp_TOLSET_RI xslp_TOLSETBIT_RI
7 Absolute slack tolerance (TS) xslp_TOLSET_TS xslp_TOLSETBIT_TS
8 Relative slack tolerance (RS) xslp_TOLSET_RS xslp_TOLSETBIT_RS

The xslp_TOLSET constants can be used to access the corresponding entry in the value arrays, while the
xslp_TOLSETBIT constants are used to set or retrieve which tolerance values are used for a given SLP
variable.

Related topics

Related topics
problem.addtolsets, problem.chgtolset, problem.deltolsets, problem.loadtolsets

Fair Isaac Corporation Proprietary Information 318

Chapter 7: Reference Manual

problem.getub

Purpose
Returns the upper bounds on the columns in a given range.

Synopsis
problem.getub(ub, first, last)

Arguments
ub Array where the last - first + 1 upper bounds are to be placed.
first First column in the range.
last Last column in the range.

Related topics
problem.chgbounds, problem.getlb.

Fair Isaac Corporation Proprietary Information 319

Chapter 7: Reference Manual

problem.getunbvec

Purpose
Returns the index vector which causes the primal simplex or dual simplex algorithm to determine that a
problem is primal or dual unbounded respectively.

Synopsis
junb = problem.getunbvec()

Further information
When solving using the dual simplex method, if the problem is primal infeasible then
getunbvec returns the pivot row where dual unboundedness was detected. Also note that when solving
using the dual simplex method, if the problem is primal unbounded then getunbvec returns -1 since the
problem is dual infeasible and not dual unbounded.

Related topics
problem.getinfeas, problem.lpoptimize.

Fair Isaac Corporation Proprietary Information 320

Chapter 7: Reference Manual

problem.getvar

Purpose
Retrieve information about an SLP variable

Synopsis
(detrow, initstepbound, stepbound, penalty, damp, initial, value, tolset,

history, converged, vartype, delta, penaltydelta, updaterow,
oldvalue) = problem.getvar(col)

Arguments
col The column (i.e. xpress.var object, index, or name).
detrow An integer to receive the index of the determining row. May be None if not required.
initstepbound A double precision variable to receive the value of the initial step bound of the

variable. May be None if not required.
stepbound A double precision variable to receive the value of the current step bound of the variable.

May be None if not required.
penalty A double precision variable to receive the value of the penalty delta weighting of the

variable. May be None if not required.
damp A double precision variable to receive the value of the current damping factor of the

variable. May be None if not required.
initial A double precision variable to receive the value of the initial value of the variable. May be

None if not required.
value A double precision variable to receive the current activity of the variable. May be None if

not required.
tolset An integer to receive the index of the tolerance set of the variable. May be None if not

required.
history An integer to receive the SLP history of the variable. May be None if not required.
converged An integer to receive the convergence status of the variable as defined in the

"Convergence Criteria" section (The returned value will match the numbering of the
tolerances). May be None if not required.

vartype An integer to receive the status settings (a bitmap defining the existence of certain
properties for this variable). The following bits are defined:
Bit 1: Variable has a delta vector
Bit 2: Variable has an initial value
Bit 14: Variable is the reserved "=" column
Other bits are reserved for internal use. May be None if not required.

delta An integer to receive the index of the delta vector for the variable. May be None if not
required.

penaltydelta An integer to receive the index of the first penalty delta vector for the variable. The
second penalty delta immediately follows the first. May be None if not required.

updaterow An integer to receive the index of the update row for the variable. May be None if not
required.

oldvalue A double precision variable to receive the value of the variable at the previous SLP
iteration. May be None if not required.

Example
The following example retrieves the current value, convergence history and status for column 3.

(a,b,c,d,e,value,g,history,converged,j,k,i,h,k,l) = p.getvar(3)

Further information
If col refers to a column which is not an SLP variable, then all the return values will indicate that there is

Fair Isaac Corporation Proprietary Information 321

Chapter 7: Reference Manual

no corresponding data.
detrow will be set to -1 if there is no determining row.
delta, penaltydelta and updaterow will be set to -1 if there is no corresponding item.

Related topics
problem.addvars, problem.chgvar, problem.delvars, problem.loadvars

Fair Isaac Corporation Proprietary Information 322

Chapter 7: Reference Manual

problem.getVariable

Purpose
Returns one or more variables of a problem corresponding to one or more indices passed as arguments.
These variables are returned as Python objects and can be used to access and manipulate the problem.

Synopsis
x = problem.getVariable(index, first, last)

Arguments
index (optional) Either an integer or a list of integers (not necessarily sorted) with the

index/indices of all variables to be returned, all between 0 and COLS - 1
first (optional) The first index of the variables to be returned. It must be between 0 and COLS -

1.
last (optional) The last index of the variables to be returned. It must be between 0 and COLS -

1.

Further information
All arguments are optional. If neither of them is provided, the return value is a list with all variables of the
problem. Otherwise, either first and last or just index can be passed.

Related topics
problem.getConstraint, problem.getSOS.

Fair Isaac Corporation Proprietary Information 323

Chapter 7: Reference Manual

problem.hasdualray

Purpose
Returns true if a dual ray (dual unbounded direction) exists for the current problem, if the problem is
found to be infeasible.

Synopsis
v = problem.hasdualray()

Related topics
problem.getdualray.

Fair Isaac Corporation Proprietary Information 324

Chapter 7: Reference Manual

problem.hasprimalray

Purpose
Returns true if a primal ray (primal unbounded direction) exists for the current problem, if the problem is
found to be unbounded.

Synopsis
v = problem.hasprimalray()

Related topics
problem.getprimalray.

Fair Isaac Corporation Proprietary Information 325

Chapter 7: Reference Manual

problem.iisall

Purpose
Performs an automated search for independent Irreducible Infeasible Sets (IIS) in an infeasible problem.

Synopsis
problem.iisall()

Example
This example searches for IISs and then questions the problem attribute NUMIIS to determine how many
were found:

p.iisall()
print("The problem has {0} IISs".format(p.attributes.numiis))

Further information
1. A model may have several infeasibilities. Repairing a single IIS may not make the model feasible. For this

reason the Optimizer can find an IIS for each of the infeasibilities in a model. If the control MAXIIS is set
to a positive integer value then the problem.iisall function will stop if MAXIIS IISs have been found.
By default the control MAXIIS is set to -1, in which case an IIS is found for each of the infeasibilities in
the model.

2. The problem attribute NUMIIS allows the user to recover the number of IISs found in a particular search.
Alternatively, the problem.iisstatus function may be used to retrieve the number of IISs found by the
problem.iisfirst, problem.iisnext, or problem.iisall functions.

Related topics
problem.getiisdata, problem.iisclear, problem.iisfirst, problem.iisisolations,
problem.iisnext, problem.iisstatus, problem.iiswrite.

Fair Isaac Corporation Proprietary Information 326

Chapter 7: Reference Manual

problem.iisclear

Purpose
Resets the search for Irreducible Infeasible Sets (IIS).

Synopsis
problem.iisclear()

Further information
1. The information stored internally about the IISs identified by problem.iisfirst, problem.iisnext

or problem.iisall are cleared. Functions problem.getiisdata, problem.iisstatus,
problem.iiswrite and problem.iisisolations cannot be called until the IIS identification
procedure is started again.

2. This function is automatically called by problem.iisfirst and problem.iisall.

Related topics
problem.getiisdata, problem.iisall, problem.iisfirst, problem.iisisolations,
problem.iisnext, problem.iisstatus, problem.iiswrite.

Fair Isaac Corporation Proprietary Information 327

Chapter 7: Reference Manual

problem.iisfirst

Purpose
Initiates a search for an Irreducible Infeasible Set (IIS) in an infeasible problem. The returned value can be
0 for success, 1 if the problem is feasible, or 2 in case of error.

Synopsis
status_code = problem.iisfirst(mode)

Argument
mode The IIS search mode:
0 stops after finding the initial infeasible subproblem;
1 find an IIS, emphasizing simplicity of the IIS;
2 find an IIS, emphasizing a quick result.

Example
This looks for the first IIS.

p.iisfirst(1)

Further information
1. A model may have several infeasibilities. Repairing a single IIS may not make the model feasible. For this

reason the Optimizer can find an IIS for each of the infeasibilities in a model. For the generation of
several independent IISs use functions problem.iisnext or problem.iisall.

2. IIS sensitivity filter: after an optimal but infeasible first phase primal simplex, it is possible to identify a
subproblem containing all the infeasibilities (corresponding to the given basis) to reduce the size of the
IIS working problem dramatically, i.e., rows with zero duals (thus with artificials of zero reduced cost) and
columns that have zero reduced costs may be deleted. Moreover, for rows and columns with nonzero
costs, the sign of the cost is used to relax equality rows either to less than or greater than equal rows, and
to drop either possible upper or lower bounds on columns.

3. Initial infeasible subproblem: The subproblem identified after the sensitivity filter is referred to as initial
infeasible subproblem. Its size is crucial to the running time of the deletion filter and it contains all the
infeasibilities of the first phase simplex, thus if the corresponding rows and bounds are removed the
problem becomes feasible.

4. problem.iisfirst performs the initial sensitivity analysis on rows and columns to reduce the
problem size, and sets up the initial infeasible subproblem. This subproblem significantly speeds up the
generation of IISs, however in itself it may serve as an approximation of an IIS, since its identification
typically takes only a fraction of time compared to the identification of an IIS.

5. The IIS approximation and the IISs generated so far are always available.

Related topics
problem.getiisdata, problem.iisall, problem.iisclear, problem.iisisolations,
problem.iisnext, problem.iisstatus, problem.iiswrite.

Fair Isaac Corporation Proprietary Information 328

Chapter 7: Reference Manual

problem.iisisolations

Purpose
Performs the isolation identification procedure for an Irreducible Infeasible Set (IIS).

Synopsis
problem.iisisolations(iis)

Argument
iis The number of the IIS identified by either problem.iisfirst, problem.iisnext, or

problem.iisall in which the isolations should be identified.

Example
This example finds the first IIS and searches for the isolations in that IIS.

if p.iisfirst(1) == 0:
iisisolations(1)

Further information
1. An IIS isolation is a special constraint or bound in an IIS. Removing an IIS isolation constraint or bound

will remove all infeasibilities in the IIS without increasing the infeasibilities in any row or column outside
the IIS, thus in any other IISs. The IIS isolations thus indicate the likely cause of each independent
infeasibility and give an indication of which constraint or bound to drop or modify. It is not always
possible to find IIS isolations.

2. Generally, one should first look for rows or columns in the IIS which are both in isolation, and have a high
dual multiplier relative to the others.

3. The iis parameter cannot be zero: the concept of isolations is meaningless for the initial infeasible
subproblem.

Related topics
problem.getiisdata, problem.iisall, problem.iisclear, problem.iisfirst,
problem.iisnext, problem.iisstatus, problem.iiswrite.

Fair Isaac Corporation Proprietary Information 329

Chapter 7: Reference Manual

problem.iisnext

Purpose
Continues the search for further Irreducible Infeasible Sets (IIS), or calls problem.iisfirst if no IIS
has been identified yet. The returned value is 0 in case of success; 1 if no more IIS could be found, or
problem is feasible if no problem.iisfirst call preceded; or 2 in case of an error.

Synopsis
status_code = problem.iisnext()

Example
This looks for a further IIS.

while p.iisnext() == 0:
[...] # do something with the iis

Further information
1. A model may have several infeasibilities. Repairing a single IIS may not make the model feasible. For this

reason the Optimizer attempts to find an IIS for each of the infeasibilities in a model. Call the
problem.iisnext function repeatedly, or use the problem.iisall function to retrieve all IIS at once.

2. This function is not affected by the control MAXIIS.

3. If the problem has been modified since the last call to problem.iisfirst or problem.iisnext, the
generation process has to be started from scratch.

Related topics
problem.getiisdata, problem.iisall, problem.iisclear, problem.iisfirst,
problem.iisisolations, problem.iisstatus, problem.iiswrite.

Fair Isaac Corporation Proprietary Information 330

Chapter 7: Reference Manual

problem.iisstatus

Purpose
Returns statistics on the Irreducible Infeasible Sets (IIS) found so far by problem.iisfirst,
problem.iisnext, or problem.iisall. The returned value is the number of IISs found so far.

Synopsis
iiscount = problem.iisstatus(nrows, ncols, suminfeas, numinfeas)

Arguments
nrows Number of rows in the IISs.
ncols Number of bounds in the IISs.
suminfeas The sum of infeasibilities in the IISs after the first phase simplex.
numinfeas The number of infeasible variables in the IISs after the first phase simplex.

Example
This example first retrieves the number of IISs found so far, and then retrieves their main properties. Note
that the arrays have size count+1, since the first index is reserved for the initial infeasible subset.

rs = []
cs = []
ninf = []
p.iisstatus(rs, cs, numinfeas=ninf) # suminf is not of interest

Further information
1. The arrays are 0 based, index 0 corresponding to the initial infeasible subproblem.

2. The arrays may be None if not required.

3. For the initial infeasible problem (at position 0) the subproblem size is returned (which may be different
from the number of bounds), while for the IISs the number of bounds is returned (usually much smaller
than the number of columns in the IIS).

4. Note that the values in suminfeas and numinfeas heavily depend on the actual basis where the
simplex has stopped.

5. iiscount is set to -1 if the search for IISs has not yet started.

Related topics
problem.getiisdata, problem.iisall, problem.iisclear, problem.iisfirst,
problem.iisisolations, problem.iisnext, problem.iiswrite.

Fair Isaac Corporation Proprietary Information 331

Chapter 7: Reference Manual

problem.iiswrite

Purpose
Writes an LP/MPS/CSV file containing a given Irreducible Infeasible Set (IIS). If 0 is passed as the IIS
number parameter, the initial infeasible subproblem is written.

Synopsis
problem.iiswrite(iis, filename, filetype, flags)

Arguments
iis The ordinal number of the IIS to be written.
filename The name of the file to be created.
filetype Type of file to be created:
0 creates an lp/mps file containing the IIS as a linear programming problem;
1 creates a comma separated (csv) file containing the description and supplementary

information on the given IIS.
flags Flags passed to the problem.write function.

Example
This writes the first IIS (if one exists and is already found) as an lp file.

p.iiswrite(1, "iis.lp", 0, "l")

Further information
1. Please note that there are problems on the boundary of being infeasible or not. For such problems,

feasibility or infeasibility often depends on tolerances or even on scaling. This phenomenon makes it
possible that after writing an IIS out as an LP file and reading it back, it may report feasibility. As a first
check it is advised to consider the following options:

1. save the IIS using MPS hexadecimal format to eliminate rounding errors associated with conversion
between internal and decimal representation.

2. turn presolve off since the nature of an IIS makes it necessary that during their identification the
presolve is turned off.

3. use the primal simplex method to solve the problem.

2. Note that the original sense of the original objective function plays no role in an IIS.

3. Even though an attempt is made to identify the most infeasible IISs first by the problem.iisfirst,
problem.iisnext, and problem.iisall functions, it is also possible that an IIS becomes just
infeasible in problems that are otherwise highly infeasible. In such cases, it is advised to try to deal with
the more stable IISs first, and consider to use the infeasibility breaker tool if only slight infeasibilities
remain.

4. The LP or MPS files created by problem.iiswrite corresponding to an IIS contain no objective
function, since infeasibility is independent from the objective.

Related topics
problem.getiisdata, problem.iisall, problem.iisclear, problem.iisfirst,
problem.iisisolations, problem.iisnext, problem.iisstatus.

Fair Isaac Corporation Proprietary Information 332

Chapter 7: Reference Manual

problem.interrupt

Purpose
Interrupts the Optimizer algorithms.

Synopsis
problem.interrupt(reason)

Argument
reason The reason for stopping. Possible reasons are:

xpress.stop_timelimit time limit hit;
xpress.stop_ctrlc control C hit;
xpress.stop_nodelimit node limit hit;
xpress.stop_iterlimit iteration limit hit;
xpress.stop_mipgap MIP gap is sufficiently small;
xpress.stop_sollimit solution limit hit;
xpress.stop_user user interrupt.

Further information
The interrupt function can be called from any callback.

Fair Isaac Corporation Proprietary Information 333

Chapter 7: Reference Manual

problem.loadbasis

Purpose
Loads a basis as specified by the user.

Synopsis
problem.loadbasis(rowstat, colstat)

Arguments
rowstat Array of length problem.attributes.rows containing the basis status of the slack,

surplus or artificial variable associated with each row. The status must be one of:
0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.
3 slack or surplus is super-basic.

colstat Array of length problem.attributes.cols containing the basis status of each of the
columns in the constraint matrix. The status must be one of:
0 variable is non-basic at lower bound or superbasic at zero if the variable has no

lower bound;
1 variable is basic;
2 variable is at upper bound;
3 variable is super-basic.

Example
This example loads a problem and then reloads a (previously optimized) basis from a similar problem to
speed up the optimization:

p.read("problem", "")
p.loadbasis(rstatus, cstatus)
p.lpoptimize("")

Further information
If the problem has been altered since saving an advanced basis, one can alter the basis as follows before
loading it:

■ Make new variables non-basic at their lower bound (cstatus[icol]=0), unless a variable has an
infinite lower bound and a finite upper bound, in which case make the variable non-basic at its upper
bound (cstatus[icol]=2);

■ Make new constraints basic (rstatus[jrow]=1);
■ Try not to delete basic variables, or non-basic constraints.

Related topics
problem.getbasis, problem.getpresolvebasis, problem.loadpresolvebasis.

Fair Isaac Corporation Proprietary Information 334

Chapter 7: Reference Manual

problem.loadbranchdirs

Purpose
Loads directives into the current problem to specify which MIP entities the Optimizer should continue to
branch on when a node solution is integer feasible.

Synopsis
problem.loadbranchdirs(colind, dir)

Arguments
colind Array containing the column numbers. A negative value indicates a set number (the first

set being -1, the second -2, and so on).
dir Array containing either 0 or 1 for the entities given in colind. Entities for which dir is set

to 1 will be branched on until fixed before a integer feasible solution is returned. If dir is
None, the branching directive will be set for all entities in colind.

Related topics
problem.loaddirs, problem.readdirs.

Fair Isaac Corporation Proprietary Information 335

Chapter 7: Reference Manual

problem.loadcoefs

Purpose
Load non-linear coefficients into the SLP problem

Synopsis
problem.loadcoefs(rowindex, colindex, factor, fstart, parsed, type, value)

Arguments
rowindex Integer array holding index of row for the coefficient.
colindex Integer array holding index of column for the coefficient.
factor Double array holding factor by which formula is scaled. If this is None, then a value of 1.0

will be used.
fstart Integer array holding the start position in the arrays Type and Value of the formula for

the coefficients. fstart[nSLPCoef] should be set to the next position after the end of
the last formula.

parsed Boolean indicating whether the token arrays are formatted as internal unparsed
(parsed=False) or internal parsed reverse Polish (parsed=False).

type Array of token types providing the formula for each coefficient.
value Array of values corresponding to the types in Type.

Example
Assume that the rows and columns of Prob are named Row1, Row2 ..., Col1, Col2 ... The following
example loads coefficients representing:
Col2 ⁎ Col3 + Col6 ⁎ Col2ˆ2 into Row1 and
Col2 ˆ 2 into Row3.

rowindex = [Row1,Row1,Row3]
colindex = [Col2,Col6,Col2]

formulastart = []
type = []
value = []

formulastart.append(len(type))
type.append(xp.tok_col); value.append(3)
type.append(xp.tok_eof); value.append(0)

formulastart.append(len(type))
type.append(xp.tok_col); value.append(2)
type.append(xp.tok_col); value.append(2)
type.append(xp.tok_op); value.append(xp.op_multiply)
type.append(xp.tok_eof); value.append(0)

formulastart.append(len(type))
type.append(xp.tok_col); value.append(2)
type.append(xp.tok_eof); value.append(0)

formulastart.append(len(type))

p.loadcoefs(rowindex, colindex, None, formulastart, True, type, value)

The first coefficient in Row1 is in Col2 and has the formula Col3, so it represents Col2 ⁎ Col3.
The second coefficient in Row1 is in Col6 and has the formula Col2 ⁎ Col2 so it represents Col6 ⁎
Col2ˆ2. The formulae are described as parsed (parsed=True), so the formula is written as

Fair Isaac Corporation Proprietary Information 336

Chapter 7: Reference Manual

Col2 Col2 ⁎
rather than the unparsed form
Col2 ⁎ Col2
The last coefficient, in Row3, is in Col2 and has the formula Col2, so it represents Col2 ⁎ Col2.

Further information
The jth coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier,
which can be provided in the Factor array. If Xpress Nonlinear can identify a constant factor in
Formula, then it will use that as well, to minimize the size of the formula which has to be calculated.
Formula is made up of a list of tokens in Type and Value starting at fstart[j]. The tokens follow
the rules for parsed or unparsed formulae as indicated by the setting of parsed. The formula must be
terminated with an xslp_op_eof token. If several coefficients share the same formula, they can have
the same value in fstart. For possible token types and values see the chapter on Formula Parsing in
the SLP reference manual.
The loadcoefs function loads items into the SLP problem. Any existing items of the same type are
deleted first. The corresponding addcoefs function adds or replace items leaving other items of the
same type unchanged.

Related topics
problem.addcoefs, problem.slpchgcoef, problem.slpchgcoefstr,
problem.getcoefformula, problem.slpgetcoefstr

Fair Isaac Corporation Proprietary Information 337

Chapter 7: Reference Manual

problem.loadcuts

Purpose
Loads cuts from the cut pool into the matrix. Without calling loadcuts the cuts will remain in the cut
pool but will not be active at the node. Cuts loaded at a node remain active at all descendant nodes
unless they are deleted using problem.delcuts.

Synopsis
problem.loadcuts(coltype, interp, cutind)

Arguments
cuttype Cut type.
interp The way in which the cut type is interpreted:

-1 load all cuts;
1 treat cut types as numbers;
2 treat cut types as bit maps - load cut if any bit matches any bit set in

coltype;
3 treat cut types as bit maps - 0 load cut if all bits match those set in

coltype.
cutind Array containing the cuts to be loaded into the matrix.

Related topics
problem.addcuts, problem.delcpcuts, problem.delcuts, problem.getcpcutlist, Section
"Working with the cut manager" of the Xpress Optimizer reference manual.

Fair Isaac Corporation Proprietary Information 338

Chapter 7: Reference Manual

problem.loaddelayedrows

Purpose
Specifies that a set of rows in the problem will be treated as delayed rows during a tree search. These are
rows that must be satisfied for any integer solution, but will not be loaded into the active set of
constraints until required.

Synopsis
problem.loaddelayedrows(rowind)

Argument
rowind An array of rows (i.e. xpress.constraint objects, indices, or names) to treat as

delayed rows.

Example
This sets the first six matrix rows as delayed rows in the MIP problem prob.

p.loaddelayedrows([0,1,2,3,4,5])
p.mipoptimize("")

Further information
Delayed rows must be set up before solving the problem. Any delayed rows will be removed from the
problem after presolve and added to a special pool. A delayed row will be added back into the active
matrix only when such a row is violated by an integer solution found by the Optimizer.

Related topics
problem.loadmodelcuts.

Fair Isaac Corporation Proprietary Information 339

Chapter 7: Reference Manual

problem.loaddfs

Purpose
Load a set of distribution factors

Synopsis
problem.loaddfs(colindex, rowindex, value)

Arguments
colindex Array of columns whose distribution factor is to be changed.
rowindex Array of rows where each distribution factor applies.
value Array of the new values of the distribution factors.

Example
The following example loads distribution factors as follows:
column 282 in row 134 = 0.1
column 282 in row 136 = 0.15
column 285 in row 133 = 1.0.
Any other first-order derivative placeholders are set to xslp_DELTA_Z.

colindex = [282, 282, 285]
rowindex = [134, 136, 133]
value = [0.1, 0.15, 1]
p.loaddfs(colindex, rowindex, value)

Further information
The distribution factor of a column in a row is the matrix coefficient of the corresponding delta vector in
the row. Distribution factors are used in conventional recursion models, and are essentially normalized
first-order derivatives. Xpress SLP can accept distribution factors instead of initial values, provided that
the values of the variables involved can all be calculated after optimization using determining rows, or by
a callback.
The adddfs functions load additional items into the SLP problem. The corresponding loaddfs
functions delete any existing items first.

Related topics
problem.adddfs, problem.chgdf, problem.getdf

Fair Isaac Corporation Proprietary Information 340

Chapter 7: Reference Manual

problem.loaddirs

Purpose
Loads directives into the problem.

Synopsis
problem.loaddirs(colind, priority, dir, uppseudo, downpseudo)

Arguments
colind Array containing the column numbers. A negative value indicates a set number (the first

set being -1, the second -2, and so on).
priority Array containing the priorities for the columns or sets. Priorities must be between 0 and

1000. May be None if not required.
dir Character array specifying the branching direction for each column or set:

U the entity is to be forced up;
D the entity is to be forced down;
N not specified.
May be None if not required.

uppseudo Array containing the up pseudo costs for the columns or sets. May be None if not
required.

downpseudo Array containing the down pseudo costs for the columns or sets. May be None if not
required.

Related topics
problem.getdirs, problem.loadpresolvedirs, problem.readdirs.

Fair Isaac Corporation Proprietary Information 341

Chapter 7: Reference Manual

problem.loadlpsol

Purpose
Loads an LP solution for the problem into the Optimizer. The returned status is either 0 if the solution is
loaded or 1 if the solution is not loaded because the problem is in presolved status.

Synopsis
status = problem.loadlpsol(x, slack, duals, djs)

Arguments
x Optional: Array of length problem.attributes.cols (for the original problem and not

the presolve problem) containing the values of the variables.
slack Optional: double array of length problem.attributes.rows containing the values of

slack variables.
duals Optional: double array of length problem.attributes.rows containing the values of

duals variables.
djs Optional: double array of length problem.attributes.cols containing the values of

reduced costs.

Example
This example loads a problem and loads a solution for the problem.

p.read("problem", "")
status = p.loadlpsol(x, None, duals, None)

Further information
1. At least one of variables x and duals variables dualsmust be provided.

2. When variables x is None, the variables will be set to their bounds.

3. When slack variables slack is None, it will be computed from variables x. If slacks are provided,
variables cannot be omitted.

4. When duals variables duals is None, both duals variables and reduced costs will be set to zero.

5. When reduced costs djs is None, it will be computed from duals variables duals. If reduced costs are
provided, duals variables cannot be omitted.

Related topics
problem.getlpsol.

Fair Isaac Corporation Proprietary Information 342

Chapter 7: Reference Manual

problem.loadmipsol

Purpose
Loads a MIP solution for the problem into the Optimizer. The returned status is one of the following
values:

■ -1: Solution rejected because an error occurred;
■ 0: Solution accepted. When loading a solution before a MIP solve, the solution is always accepted.

See Further Information below.
■ 1: Solution rejected because it is infeasible;
■ 2: Solution rejected because it is cut off;
■ 3: Solution rejected because the LP reoptimization was interrupted.

Synopsis
status = problem.loadmipsol(x)

Argument
x Array of length problem.attributes.cols (for the original problem and not the

presolve problem) containing the values of the variables.

Example
This example loads a problem and then loads a solution found previously for the problem to help speed
up the MIP search:

p.read("problem", "")
status = p.loadmipsol(x)
p.mipoptimize("")

Further information
1. When a solution is loaded before a MIP solve, the solution is simply placed in temporary storage until the

MIP solve is started. Only after the MIP solve has commenced and any presolve has been applied, will the
loaded solution be checked and possibly accepted as a new incumbent integer solution. There are no
checks performed on the solution before the MIP solve and the returned status in
problem.loadmipsol will always be 0 for accepted.

2. Solutions can be loaded during a MIP solve using the optnode callback function. Any solution loaded this
way is immediately checked and the returned status will be one of the values 0 through 3.

3. Loaded solution values will automatically be adjusted to fit within the current problem bounds.

Related topics
problem.getmipsol, problem.addcboptnode.

Fair Isaac Corporation Proprietary Information 343

Chapter 7: Reference Manual

problem.loadmodelcuts

Purpose
Specifies that a set of rows in the problem will be treated as model cuts.

Synopsis
problem.loadmodelcuts(rowind)

Argument
rowind An array of rows (i.e. xpress.constraint objects, indices, or names) to be treated as

cuts.

Example
This sets the first six matrix rows as model cuts in the MIP problem myprob.

p.loadmodelcuts([0,1,2,3,4,5])
p.mipoptimize("")

Further information
1. During presolve the model cuts are removed from the problem and added to an internal cut pool. During

the tree search, the Optimizer will regularly check this cut pool for any violated model cuts and add those
that cuts off a node LP solution.

2. The model cuts must be "true" model cuts, in the sense that they are redundant at the optimal MIP
solution. The Optimizer does not guarantee to add all violated model cuts, so they must not be required
to define the optimal MIP solution.

Fair Isaac Corporation Proprietary Information 344

Chapter 7: Reference Manual

problem.loadpresolvebasis

Purpose
Loads a presolved basis from the user’s areas.

Synopsis
problem.loadpresolvebasis(rowstat, colstat)

Arguments
rowstat Array containing the basis status of the slack, surplus or artificial variable associated with

each row. The status must be one of:
0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.

colstat Array containing the basis status of each of the columns in the matrix. The status must
be one of:
0 variable is non-basic at lower bound or superbasic at zero if the variable has no

lower bound;
1 variable is basic;
2 variable is at upper bound;
3 variable is super-basic.

Example
The following example saves the presolved basis for one problem, loading it into another:

p1 = xpress.problem()
p2 = xpress.problem()

p1.read("myprob", "")
p1.mipoptimize("l")
rs = []
cs = []
p1.getpresolvebasis(rs, cs)

p2.read("myprob2", "")
p2.mipoptimize("l")
p2.loadpresolvebasis(rs, cs)

Related topics
problem.getbasis, problem.getpresolvebasis, problem.loadbasis.

Fair Isaac Corporation Proprietary Information 345

Chapter 7: Reference Manual

problem.loadpresolvedirs

Purpose
Loads directives into the presolved matrix.

Synopsis
problem.loadpresolvedirs(colind, priority, dir, uppseudo, downpseudo)

Arguments
colind Array containing the column numbers. A negative value indicates a set number (-1 being

the first set, -2 the second, and so on).
priority Array containing the priorities for the columns or sets. May be None if not required.
dir Character array specifying the branching direction for each column or set:

U the entity is to be forced up;
D the entity is to be forced down;
N not specified.
May be None if not required.

uppseudo Array containing the up pseudo costs for the columns or sets. May be None if not
required.

downpseudo Array containing the down pseudo costs for the columns or sets. May be None if not
required.

Example
The following loads priority directives for column 0 in the problem:

p.mipoptimize("l")
p.loadpresolvedirs([0], [1], None, None, None)
p.mipoptimize("")

Related topics
problem.getdirs, problem.loaddirs.

Fair Isaac Corporation Proprietary Information 346

Chapter 7: Reference Manual

problem.loadproblem

Purpose
Load an optimization problem, possibly with quadratic objective and/or constraints, and integer variables.

Synopsis
problem.loadproblem(probname, rowtype, rhs, rng, objcoef, start, collen,

rowind, rowcoef, lb, ub, objqcol1, objqcol2, objqcoef, qrowind,
nrowqcoefs, rowqcol1, rowqcol2, rowqcoef, coltype, entind, limit,
settype, setstart, setind, refval, colnames, rownames,
unlinked=False)

Arguments
probname A string of up to 200 characters containing the problem name.
rowtype Character array containing the row types:

L indicates a <= constraint;
E indicates an = constraint;
G indicates a >= constraint;
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Array containing the right hand side coefficients of the rows. The right hand side value for
a range row gives the upper bound on the row.

rng Array containing the range values for range rows. Values for all other rows will be ignored.
May be None if there are no ranged constraints. The lower bound on a range row is the
right hand side value minus the range value. The sign of the range value is ignored - the
absolute value is used in all cases.

objcoef Array containing the objective function coefficients.
start Array containing the offsets in the rowind and rowcoef arrays of the start of the

elements for each column. This array is of length equal to the number ncol of added
variables or, if collen is None, ncol+1. If collen is None the extra entry of start,
start[ncol], contains the position in the rowind and rowcoef arrays at which an
extra column would start, if it were present.

collen Array containing the number of nonzero elements in each column. May be None if all
elements are contiguous and start[ncol] contains the offset where the elements for
column ncol+1 would start. This array is not required if the nonzero coefficients in the
rowind and rowcoef arrays are continuous, and the start array has ncol+1 entries
as described above. It may be None if not required.

rowind Array containing the row indices for the nonzero elements in each column. If the indices
are input contiguously, with the columns in ascending order, the length of the rowind is
start[ncol-1]+collen[ncol-1] or, if collen is None, start[ncol].

rowcoef Array containing the nonzero element values; length as for rowind.
lb Array containing the lower bounds on the columns. Use -xpress.infinity to

represent a lower bound of minus infinity.
ub Array containing the upper bounds on the columns. Use xpress.infinity to represent

an upper bound of plus infinity.
objqcol1 (optional) Array with the first variable in each quadratic term.
objqcol2 (optional) Array with the second variable in each quadratic term.
objqcoef (optional) Array with the quadratic coefficients.
qrowind (optional) Integer containing the indices of rows with quadratic matrices in them. Note

that the rows are expected to be defined in rowtype as type L.
nrowqcoefs (optional) Array containing the number of nonzeros in each quadratic constraint matrix.

Fair Isaac Corporation Proprietary Information 347

Chapter 7: Reference Manual

rowqcol1 (optional) Array with a number of elements equal to the sum of the elements in
nrowqcoefs (i.e. the total number of quadratic matrix elements in all the constraints). It
contains the first column indices of the quadratic matrices. Indices for the first matrix are
listed from 0 to nrowqcoefs[0]-1, for the second matrix from nrowqcoefs[0] to
nrowqcoefs[0]+ nrowqcoefs[1]-1, etc.

rowqcol2 (optional) Array containing the second index for the quadratic constraint matrices.
rowqcoef (optional) Array containing the coefficients for the quadratic constraint matrices.
coltype Character array containing the entity types:

B binary variables;
I integer variables;
P partial integer variables;
S semi-continuous variables;
R semi-continuous integer variables.

entind (optional) Array containing the variables of the MIP entities.
limit (optional) Array containing the integer limits for the partial integer variables and lower

bounds for semi-continuous and semi-continuous integer variables (any entries in the
positions corresponding to binary and integer variables will be ignored). May be None if
not required.

settype (optional) Character array of length equal to the number of sets specified,
problem.attributes.nsets, and specifies the set types:
1 SOS1 type sets;
2 SOS2 type sets.
May be None if not required.

setstart (optional) Array containing the offsets in the setind and refval arrays indicating the
start of the sets. This array is of length nsets+1, the last member containing the offset
where set nsets+1 would start. May be None if not required.

setind (optional) Array of length setstart[nsets]-1 containing the columns in each set.
May be None if not required.

refval (optional) Array of length setstart[nsets]-1 containing the reference row entries for
each member of the sets. May be None if not required.

colnames (optional) Array of containing the column names for all variables added.
rownames (optional) Array of containing the row names for all constraints added.
unlinked (optional) If True, unlinked variables and constraints will be created (deprecated).

Further information
1. The objective function is of the form cTx+ 1/2 xTQx where Q is positive semi-definite for minimization

problems and negative semi-definite for maximization problems. If this is not the case the optimization
algorithms may converge to a local optimum or may not converge at all. Note that only the upper or lower
triangular part of the Qmatrix is specified.

2. All Qmatrices in the constraints must be positive semi-definite. Note that only the upper or lower
triangular part of the Qmatrix is specified for constraints as well.

3. If indices are specified, both row and column indices are from 0 to rows-1 and 0 to cols-1 respectively.

4. Semi-continuous lower bounds are taken from the dlim array. If this is None then they are given a default
value of 1.0. If a semi-continuous variable has a positive lower bound then this will be used as the
semi-continuous lower bound and the lower bound on the variable will be set to zero.

Related topics
problem.read.

Fair Isaac Corporation Proprietary Information 348

Chapter 7: Reference Manual

problem.loadsecurevecs

Purpose
Allows the user to mark rows and columns in order to prevent the presolve removing these rows and
columns from the problem.

Synopsis
problem.loadsecurevecs(rowind, colind)

Arguments
rowind Array containing the rows to be marked. May be None if not required.
colind Array containing the columns to be marked. May be None if not required.

Example
This sets the first six rows and the first four columns to not be removed during presolve.

p.read("myprob", "")
p.loadsecurevecs(rowind=[0,1,2,3,4,5], colind=[0,1,2,3])
p.mipoptimize("")

Fair Isaac Corporation Proprietary Information 349

Chapter 7: Reference Manual

problem.loadtolsets

Purpose
Load sets of standard tolerance values into an SLP problem

Synopsis
problem.loadtolsets(slptol)

Argument
tol Array of 9h items containing the 9 tolerance values for each set in order.

Example
The following example creates two tolerance sets: the first has values of 0.005 for all tolerances; the
second has values of 0.001 for relative tolerances (numbers 2,4,6,8), values of 0.01 for absolute
tolerances (numbers 1,3,5,7) and zero for the closure tolerance (number 0).

tol = 9⁎[0.005]+[0]+[0.01,0.001]⁎4
p.loadtolsets(tol)

Further information
A tolerance set is an array of 9 values containing the following tolerances:

Entry / Bit Tolerance XSLP constant XSLP bit constant
0 Closure tolerance (TC) xslp_TOLSET_TC xslp_TOLSETBIT_TC
1 Absolute delta tolerance (TA) xslp_TOLSET_TA xslp_TOLSETBIT_TA
2 Relative delta tolerance (RA) xslp_TOLSET_RA xslp_TOLSETBIT_RA
3 Absolute coefficient tolerance (TM) xslp_TOLSET_TM xslp_TOLSETBIT_TM
4 Relative coefficient tolerance (RM) xslp_TOLSET_RM xslp_TOLSETBIT_RM
5 Absolute impact tolerance (TI) xslp_TOLSET_TI xslp_TOLSETBIT_TI
6 Relative impact tolerance (RI) xslp_TOLSET_RI xslp_TOLSETBIT_RI
7 Absolute slack tolerance (TS) xslp_TOLSET_TS xslp_TOLSETBIT_TS
8 Relative slack tolerance (RS) xslp_TOLSET_RS xslp_TOLSETBIT_RS

The xslp_TOLSET constants can be used to access the corresponding entry in the value arrays, while the
xslp_TOLSETBIT constants are used to set or retrieve which tolerance values are used for a given SLP
variable.
Once created, a tolerance set can be used to set the tolerances for any SLP variable. If a tolerance value
is zero, then the default tolerance will be used instead. To force the use of a tolerance, use the
problem.chgtolset function and set the Status variable appropriately.
See the section "Convergence Criteria" in the SLP reference manual for a fuller description of tolerances
and their uses. The loadtolsets functions load items into the SLP problem. Any existing items of the
same type are deleted first. The corresponding addtolsets functions add or replace items leaving
other items of the same type unchanged.

Related topics
problem.addtolsets, problem.deltolsets, problem.chgtolset, problem.gettolset

Fair Isaac Corporation Proprietary Information 350

Chapter 7: Reference Manual

problem.loadvars

Purpose
Load SLP variables defined as matrix columns into an SLP problem

Synopsis
problem.loadvars (colindex, vartype, detrow, seqnum, tolindex, initvalue,

stepbound)

Arguments
colindex Integer array holding the index of the matrix column corresponding to each SLP variable.
vartype Bitmap giving information about the SLP variable as follows (note that Bit numbering

begins at zero):
Bit 1 Variable has a delta vector;
Bit 2 Variable has an initial value;
Bit 14 Variable is the reserved "=" column;
May be None if not required.

detrow Integer array holding the index of the determining row for each SLP variable (a negative
value means there is no determining row)
May be None if not required.

seqnum Integer array holding the index sequence number for cascading for each SLP variable (a
zero value means there is no pre-defined order for this variable)
May be None if not required.

tolindex Integer array holding the index of the tolerance set for each SLP variable (a zero value
means the default tolerances are used)
May be None if not required.

initvalue Double array holding the initial value for each SLP variable (use the VarType bit map to
indicate if a value is being provided)
May be None if not required.

stepbound Double array holding the initial step bound size for each SLP variable (a zero value means
that no initial step bound size has been specified). If a value of xpress.infinity is
used for a value in StepBound, the delta will never have step bounds applied, and will
almost always be regarded as converged.
May be None if not required.

Example
The following example loads two SLP variables into the problem. They correspond to columns 23 and 25
of the underlying LP problem. Column 25 has an initial value of 1.42; column 23 has no specific initial
value

colindex = [23,25]
vartype = [0,4]
initvalue = [0,1.42]

p.loadvars(colindex, vartype, None, None, None, initvalue, None)

InitValue is not set for the first variable, because it is not used (VarType = 0). Bit 1 of VarType is set
for the second variable to indicate that the initial value has been set. The arrays for determining rows,
sequence numbers, tolerance sets and step bounds are not used at all, and so have been passed to the
function as None.

Further information
The loadvars functions load items into the SLP problem. Any existing items of the same type are
deleted first. The corresponding addvars functions add or replace items leaving other items of the
same type unchanged.

Fair Isaac Corporation Proprietary Information 351

Chapter 7: Reference Manual

Related topics
problem.addvars, problem.chgvar, problem.delvars, problem.getvar

Fair Isaac Corporation Proprietary Information 352

Chapter 7: Reference Manual

problem.lpoptimize

Purpose
This function begins a search for the optimal continuous (LP) solution. The direction of optimization is
given by OBJSENSE. The status of the problem when the function completes can be checked using
LPSTATUS. Any MIP entities in the problem will be ignored.

Synopsis
problem.lpoptimize(flags)

Argument
flags (optional) Flags to pass to lpoptimize. The default is "" or None, in which case the

algorithm used is determined by the DEFAULTALG control. If the argument includes:
b the model will be solved using the Newton barrier method;
p the model will be solved using the primal simplex algorithm;
d the model will be solved using the dual simplex algorithm;
n (lower case N), the network part of the model will be identified and solved using

the network simplex algorithm;

Further information
1. The algorithm used to optimize is determined by the DEFAULTALG control if no flags are provided. By

default, the dual simplex is used for linear problems and the barrier is used for non-linear problems.

2. The d and p flags can be used with the n flag to complete the solution of the model with either the dual or
primal algorithms once the network algorithm has solved the network part of the model.

3. The b flag cannot be used with the n flag.

Related topics
problem.mipoptimize, Chapter 4 of the Xpress Optimizer reference manual.

Fair Isaac Corporation Proprietary Information 353

Chapter 7: Reference Manual

problem.mipoptimize

Purpose
This function begins a tree search for the optimal MIP solution. The direction of optimization is given by
OBJSENSE. The status of the problem when the function completes can be checked using MIPSTATUS.

Synopsis
problem.mipoptimize(flags)

Argument
flags (optional) Flags to pass to problem.mipoptimize, which specifies how to solve the

initial continuous problem where the MIP entities are relaxed. If the argument includes:
b the initial continuous relaxation will be solved using the Newton barrier method;
p the initial continuous relaxation will be solved using the primal simplex algorithm;
d the initial continuous relaxation will be solved using the dual simplex algorithm;
n the network part of the initial continuous relaxation will be identified and solved

using the network simplex algorithm;
l stop after having solved the initial continous relaxation.

Further information
1. If the l flag is used, the Optimizer will stop immediately after solving the initial continuous relaxation. The

status of the continuous solve can be checked with LPSTATUS and standard LP results are available,
such as the objective value (LPOBJVAL) and solution (use problem.getlpsol), depending on
LPSTATUS.

2. It is possible for the Optimizer to find integer solutions before solving the initial continuous relaxation,
either through heuristics or by having the user load an initial integer solution. This can potentially result in
the tree search finishing before solving the continuous relaxation to optimality.

3. If the function returns without having completed the search for an optimal solution, the search can be
resumed from where it stopped by calling problem.mipoptimize again.

4. The algorithm used to reoptimize the continuous relaxations during the tree search is given by
DEFAULTALG. The default is to use the dual simplex algorithm.

Related topics
problem.mipoptimize.

Fair Isaac Corporation Proprietary Information 354

Chapter 7: Reference Manual

problem.msaddcustompreset

Purpose
A combined version of msaddjob and msaddpreset. The preset described is loaded, topped up with the
specific settings supplied

Synopsis
problem.msaddcustompreset(description, preset, count, ivcols, ivvalues,

control, job_object)

Arguments
description Text description of the job. Used for messaging, may be None if not required.
preset Which preset to load.
count Maximum number of jobs to be added to the multistart pool.
ivcols Indices of the variables for which to set an initial value. May be None if nIVs is zero.
ivvalues Initial values for the variables for which to set an initial value. May be None if nIVs is zero.
control Python dictionary with control strings as keys and numbers as values. Note that only

numerical controls are allowed.
job_object Job-specific user context object to be passed to the multistart callbacks.

Further information
This function allows for repeatedly calling the same multistart preset (e.g. initial values) using different
basic controls.

Related topics
problem.msaddpreset, problem.msaddjob, problem.msclear

Fair Isaac Corporation Proprietary Information 355

Chapter 7: Reference Manual

problem.msaddjob

Purpose
Adds a multistart job to the multistart pool

Synopsis
problem.msaddjob(description, ivcols, ivvalues, control, job_object)

Arguments
description Text description of the job. Used for messaging, may be None if not required.
ivcols Indices of the variables for which to set an initial value. May be None if nIVs is zero.
ivvalues Initial values for the variables for which to set an initial value. May be None if nIVs is zero.
control Python dictionary with control strings as keys and numbers as values. Note that only

numerical controls are allowed.
job_object Job-specific user context object to be passed to the multistart callbacks.

Further information
Adds a mutistart job, applying the specified initial point and option combinations on top of the base
problem, i.e. the options and initial values specified to the function is applied on top of the existing
settigns.
This function allows for loading empty template jobs, that can then be identified using the pJobObject
variable.

Related topics
problem.msaddpreset, problem.msaddcustompreset, problem.msclear

Fair Isaac Corporation Proprietary Information 356

Chapter 7: Reference Manual

problem.msaddpreset

Purpose
Loads a preset of jobs into the multistart job pool.

Synopsis
problem.msaddpreset(description, preset, maxjobs, data)

Arguments
description Text description of the preset. Used for messaging, may be None if not required.
preset Which preset to load.
maxjobs Maximum number of jobs to be added to the multistart pool.
data Job-specific user context object to be passed to the multistart callbacks.

Further information
The following presets are defined:
msset_initialvalues: generate count number of random base points.
msset_solvers: load all solvers.
msset_slp_basic: load the most typical SLP tuning settings. A maximum of count jobs are loaded.
msset_slp_extended: load a comprehensive set of SLP tuning settings. A maximum of count jobs
are loaded.
msset_knitro_basic: load the most typical Knitro tuning settings. A maximum of count jobs are
loaded.
msset_knitro_extended: load a comprehensive set of Knitro tuning settings. A maximum of count
jobs are loaded.
msset_initialfiltered: generate count number of random base points, filtered by a merit
function centred on initial feasibility.
See xslp_MSMAXBOUNDRANGE for controlling the range in which initial values are generated.

Related topics
problem.msaddjob, problem.msaddcustompreset, problem.msclear

Fair Isaac Corporation Proprietary Information 357

Chapter 7: Reference Manual

problem.msclear

Purpose
Removes all scheduled jobs from the multistart job pool

Synopsis
problem.msclear()

Related topics
problem.msaddjob, problem.msaddpreset, problem.msaddcustompreset

Fair Isaac Corporation Proprietary Information 358

Chapter 7: Reference Manual

problem.name

Purpose
Returns the name of the problem as a Python string.

Synopsis
brian = problem.name()

Related topics
problem.setprobname.

Fair Isaac Corporation Proprietary Information 359

Chapter 7: Reference Manual

problem.nlpchgformula

Purpose
Add or replace a single matrix formula using a parsed or unparsed formula

Synopsis
problem.nlpchgformula(row, parsed, type, value)

Arguments
row The row (i.e. xpress.constraint object, index, or name) for the formula.
parsed Boolean indicating whether the token arrays are formatted as internal unparsed

(parsed=False) or internal parsed reverse Polish (parsed=True).
type Array of token types providing the formula for each coefficient.
value Array of values corresponding to the types in Type.

Example
Assuming that the columns of the matrix are named Col1, Col2, etc, the following example puts the
formula sin(Col1) into the coefficient in row 1.

iCol1 = problem.getIndex(Col1)
type = [xp.tok_ifun, xp.tok_col, xp.tok_rb, xp.tok_eof]
value = [xp.ifun_sin, iCol1, 0, 0]
problem.nlpchgformula(1, False, type, value)

The formula is written in unparsed form (parsed=False) and so it is provided as tokens in the same
order as they would appear if the formula were written in character form.

Further information
If the row already has a nonlinear expression in it, it will be changed into the new formula. If it does not
exist, it will be added to the problem.

Related topics
problem.nlpgetformulastr, problem.nlpchgformulastr, problem.nlpgetformula.

Fair Isaac Corporation Proprietary Information 360

Chapter 7: Reference Manual

problem.nlpchgformulastr

Purpose
Add or replace a single matrix formula using a character string for the formula.

Synopsis
problem.nlpchgformulastr(row, formula)

Arguments
row The row (i.e. xpress.constraint object, index, or name) for the formula.
formula Character string holding the formula with the tokens separated by spaces.

Example
Assuming that the columns of the matrix are named Col1, Col2, etc, the following example puts the
formula sin(Col1) into row 1.

problem.nlpchgformulastr(prob, 1, "sin (Col1)");

Note that all the tokens in the formula (including mathematical operators and separators) are separated
by one or more spaces.

Further information
If the coefficient already exists as a constant or formula, it will be changed into the new coefficient. If it
does not exist, it will be added to the problem.
This function can only be used if all the operands in the formula can be correctly identified as constants,
existing columns, character variables or functions. Therefore, if a formula refers to a new column, that
new item must be added to the Xpress NonLinear problem first.

Related topics
problem.nlpgetformulastr, problem.nlpchgformula, problem.nlpgetformula.

Fair Isaac Corporation Proprietary Information 361

Chapter 7: Reference Manual

problem.nlpgetformula

Purpose
Retrieve a single matrix formula split into tokens

Synopsis
ntypes, type, value = problem.nlpgetformula(row, parsed, type, value)

Arguments
row The row (i.e. xpress.constraint object, index, or name) for the formula.
parsed Whether the formula of the row is to be returned in internal unparsed format (parsed=False)

or parsed (reverse Polish) format (parsed=True).
type (optional) A list to populate with the token types for the formula.
value (optional) A list to populate with the values corresponding to type.

Return value
ntypes The number of tokens available.
type The token types for the formula.
value The values corresponding to type.

Example
The following example retrieves the formula tokens for row 0 in parsed format:

_, type, value = p.nlpgetformula(0, True)

Further information
If you do not need the value of type or value, you can pass None for these arguments: no arrays will be
allocated and None will be returned in their place.

Related topics
problem.nlpgetformulastr, problem.nlpchgformulastr, problem.nlpchgformula.

Fair Isaac Corporation Proprietary Information 362

Chapter 7: Reference Manual

problem.slpgetcoefformula

Purpose
Retrieve a single matrix formula split into tokens

Synopsis
ntypes, factor, type, value = problem.slpgetcoefformula(row, col, parsed,

type, value)

Arguments
row The row (i.e. xpress.constraint object, index, or name) for the formula.
col The column (i.e. xpress.variable object, index, or name) for the formula.
parsed Whether the formula is to be returned in internal unparsed format (parsed=False) or parsed

(reverse Polish) format (parsed=True).
type (optional) A list to populate with the token types for the formula.
value (optional) A list to populate with the values corresponding to type.

Return value
factor The value of the constant factor multiplying the formula in the coefficient.
ntypes The number of tokens available.
type The token types for the formula.
value The values corresponding to type.

Example
The following example displays the formula for the coefficient of column 3 in row 2 in unparsed form:

_, _, type, value = p.slpgetcoefformula(2, 3, False)

Further information
If you do not need the value of type or value, you can pass None for these arguments: no arrays will be
allocated and None will be returned in their place.

Related topics
problem.slpchgcoef, problem.nlpgetformulastr, problem.nlpchgformulastr,
problem.nlpchgformula, problem.nlpgetformula.

Fair Isaac Corporation Proprietary Information 363

Chapter 7: Reference Manual

problem.nlpgetformulastr

Purpose
Retrieve a single matrix formula in a character string

Synopsis
formula = problem.nlpgetformulastr(row)

Argument
row The row (i.e. xpress.constraint object, index, or name) for the formula.

Example
The following example prints the formula for row 0:

print(p.nlpgetformulastr(0))

Fair Isaac Corporation Proprietary Information 364

Chapter 7: Reference Manual

problem.nlpoptimize

Purpose
Solves an SLP problem

Synopsis
problem.nlpoptimize(flags)

Argument
flags Flags affecting the solve. See the SLP reference manual for their meaning

Fair Isaac Corporation Proprietary Information 365

Chapter 7: Reference Manual

problem.nlpsetinitval

Purpose
Set the initial value of a nonlinear variable

Synopsis
problem.nlpsetinitval(colind, initial)

Arguments
colind Array containing the columns (i.e. xpress.var objects, indices, or names) for which to set

the initial value
initial Array containing the initial values to set

Example
The following example sets an initial value for the variable x:

problem.nlpsetinitval([x], [9])

Fair Isaac Corporation Proprietary Information 366

Chapter 7: Reference Manual

problem.optimize

Purpose
This function begins a search for the optimal solution of the problem. The direction of optimization is
given by OBJSENSE.

Synopsis
solvestatus, solstatus = problem.optimize(flags)

Arguments
flags Flags to pass to problem.optimize. The default is "", in which case the algorithm is

determined automatically. If the argument includes:
x the problem will be solved using the global solver;
s the problem will be solved using XSLP or Knitro;
g the branch and bound search will be performed.

solvestatus The solve status after termination. Takes the same values as SOLVESTATUS
solstatus The solution status after termination. Takes the same values as SOLSTATUS

Further information
1. If no flags are provided, the optimization will take any given constraints into account, including integrality

and nonlinearities. Nonlinear problems will be solved to global optimality if the GLOBALSOLVE control is
1.

2. Any additional flags not listed above will be treated in the same way as for problem.lpoptimize,
problem.mipoptimize and problem.nlpoptimize, depending on the type of optimization
performed. The DEFAULTALG control will also behave in the same way as for these functions.

Related topics
problem.lpoptimize, problem.mipoptimize, problem.nlpoptimize

Fair Isaac Corporation Proprietary Information 367

Chapter 7: Reference Manual

problem.objsa

Purpose
Returns upper and lower sensitivity ranges for specified objective function coefficients. If the objective
coefficients are varied within these ranges the current basis remains optimal and the reduced costs
remain valid.

Synopsis
problem.objsa(colind, lower, upper)

Arguments
colind Array containing the columns (i.e. xpress.var objects, indices, or names) whose

objective function coefficients sensitivity ranges are required.
lower Array of the same size as mindex where the objective function lower range values are to

be returned.
upper Array of the same size as mindex where the objective function upper range values are to

be returned.

Example
Here we obtain the objective function ranges for the three columns: 2, 6 and 8:

l = []
u = []
p.objsa([2,8,6], l, u)

After which l and u contain:

l = [5, 3.8, 5.7]
u = [7, 5.2, 1e+20]

Meaning that the current basis remains optimal when 5.0 ≤ C2 ≤ 7.0, 3.8 ≤ C8 ≤ 5.2 and 5.7 ≤ C6, Ci
being the objective coefficient of column i.

Further information
objsa can only be called when an optimal solution to the current LP has been found. It cannot be used
when the problem is MIP presolved.

Related topics
problem.rhssa.

Fair Isaac Corporation Proprietary Information 368

Chapter 7: Reference Manual

problem.postsolve

Purpose
Postsolve the current problem when it is in a presolved state.

Synopsis
problem.postsolve()

Further information
A problem is left in a presolved state whenever a LP or MIP optimization does not complete. In these
cases postsolve can be called to get the problem back into its original state.

Related topics
problem.lpoptimize, problem.mipoptimize.

Fair Isaac Corporation Proprietary Information 369

Chapter 7: Reference Manual

problem.presolve

Purpose
Perform a nonlinear presolve on the problem

Synopsis
problem.presolve()

Example
The following example reads a problem from file, sets the presolve control, presolves the problem and
then maximizes it.

p.readprob("Matrix", "")
p.controls.xslp_presolve = 1
p.presolve()
p.optimize("")

Further information
If bit 1 of xslp_presolve is not set, no nonlinear presolve will be performed. Otherwise, the presolve
will be performed in accordance with the bit settings. problem.presolve is called automatically by
problem.construct, so there is no need to call it explicitly unless there is a requirement to interrupt
the process between presolve and optimization. problem.presolvemust be called before
problem.construct or any of the SLP optimization procedures..

Related topics
xslp_presolve

Fair Isaac Corporation Proprietary Information 370

Chapter 7: Reference Manual

problem.presolverow

Purpose
Presolves a row formulated in terms of the original variables such that it can be added to a presolved
problem. Returns a tuple of two elements containing, respectively, the presolved right-hand side and the
status of the presolved row:

■ -3: Failed to presolve the row due to presolve dual reductions;
■ -2: Failed to presolve the row due to presolve duplicate column reductions;
■ -1: Failed to presolve the row due to an error. Check the Optimizer error code for the cause;
■ 0: The row was successfully presolved;
■ 1: The row was presolved, but may be relaxed.

Synopsis
drhsp, status = problem.presolverow(rowtype, origcolind, origrowcoef,

origrhs, maxcoefs, colind, rowcoef)

Arguments
rowtype The type of the row:

L indicates a ≤ row;
G indicates a ≥ row.

origcolind Array containing the columns (i.e. xpress.var objects, indices, or names) of the row to
presolve.

origrowcoef Array containing the nonzero coefficients of the row to presolve.
origrhs The right-hand side constant of the row to presolve.
maxcoefs Maximum number of elements to return in the colind and rowcoef arrays.
colind Array which will be filled with the columns of the presolved row.
rowcoef Array which will be filled with the coefficients of the presolved row.

Example
Adding the row 2x1 + x2 ≤ 1 to our presolved problem can be done as follows:

presind = []
prescoe = []
prhs, status = p.presolverow('L', [1,2], [2,1], 1.0,

p.attributes.cols, presind, prescoe)

Further information
There are certain presolve operations that can prevent a row from being presolved exactly. If the row
contains a coefficient for a column that was eliminated due to duplicate column reductions or singleton
column reductions, the row might have to be relaxed to remain valid for the presolved problem. The
relaxation will be done automatically by the problem.presolverow function, but a return status of +1
will be returned. If it is not possible to relax the row, a status of -2 will be returned instead. Likewise, it is
possible that certain dual reductions prevents the row from being presolved. In such a case a status of
-3 will be returned instead.
If problem.presolverow is used for presolving e.g. branching bounds or constraints, then dual
reductions and duplicate column reductions should be disabled, by clearing the corresponding bits of
PRESOLVEOPS. By clearing these bits, the default value for PRESOLVEOPS changes to 471.
If the user knows in advance which columns will have nonzero coefficients in rows that will be presolved,
it is possible to protect these individual columns through the problem.loadsecurevecs function.
This way the Optimizer is left free to apply all possible reductions to the remaining columns.

Related topics
problem.addcuts, problem.loadsecurevecs, problem.storecuts.

Fair Isaac Corporation Proprietary Information 371

Chapter 7: Reference Manual

problem.printmemory

Purpose
Print the dimensions and memory allocations for a problem

Synopsis
problem.printmemory()

Example
The following example loads a problem from file and then prints the dimensions of the arrays.

p.readprob("Matrix1", "")
p.printmemory()

The output is similar to the following:

Arrays
and dimensions: Array Item Used Max Allocated Memory Size Items Items
Memory Control MemList 28 103 129 4K String 1 8779 13107 13K
xslp_MEM_STRING Xv 16 2 1000 16K xslp_MEM_XV Xvitem 48 11 1000 47K
xslp_MEM_XVITEM

Further information
printmemory lists the current sizes and amounts used of the variable arrays in the current problem. For
each array, the size of each item, the number used and the number allocated are shown, together with the
size of memory allocated and, where appropriate, the name of the memory control variable to set the
array size. Loading and execution of some problems can be speeded up by setting the memory controls
immediately after the problem is created. If an array has to be moved to re-allocate it with a larger size,
there may be insufficient memory to hold both the old and new versions; pre-setting the memory controls
reduces the number of such re-allocations which take place and may allow larger problems to be solved.

Fair Isaac Corporation Proprietary Information 372

Chapter 7: Reference Manual

problem.printevalinfo

Purpose
Print a summary of any evaluation errors that may have occurred during solving a problem

Synopsis
problem.printevalinfo()

Related topics
problem.setcbcoefevalerror

Fair Isaac Corporation Proprietary Information 373

Chapter 7: Reference Manual

problem.read

Purpose
Read an optimization problem into a Python problem object created prior to the call. All formats allowed
by the Xpress Optimizer C API are allowed.

Synopsis
problem.read(filename, flags, unlinked=False)

Arguments
filename A string of up to 200 characters with the name of the file to be read.
flags (optional) Flags to pass to read:

l only the .lp version of the file is searched.
z read the input file in compressed .gz format.

unlinked (optional) If True, unlinked variables and constraints will be created (deprecated).

Example
Read problem problem1.lp and output an optimal solution:

p.read("problem1", "l")
p.optimize("", "")
print("solution of problem1.lp:", p.getSolution())

Related topics
problem.write.

Fair Isaac Corporation Proprietary Information 374

Chapter 7: Reference Manual

problem.readbasis

Purpose
Instructs the Optimizer to read in a previously saved basis from a file.

Synopsis
problem.readbasis(filename, flags)

Arguments
filename A string of up to 200 characters containing the file name from which the basis is to be

read. If omitted, the default problem_name is used with a .bss extension.
flags (optional) Flags to pass to readbasis:

i output the internal presolved basis.
t input a compact advanced form of the basis;

Example
If an advanced basis is available for the current problem the Optimizer input might be:

p.read("filename", "")
p.readbasis("", "")
p.mipoptimize("")

This reads in a matrix file, inputs an advanced starting basis and maximizes the MIP.

Further information
1. The only check done when reading compact basis is that the number of rows and columns in the basis

agrees with the current number of rows and columns.

2. readbasis will read the basis for the original problem even if the problem has been presolved. The
Optimizer will read the basis, checking that it is valid, and will display error messages if it detects
inconsistencies.

Related topics
problem.loadbasis, problem.writebasis.

Fair Isaac Corporation Proprietary Information 375

Chapter 7: Reference Manual

problem.readbinsol

Purpose
Reads a solution from a binary solution file.

Synopsis
problem.readbinsol(filename, flags)

Arguments
filename A string of up to 200 characters containing the file name from which the solution is to be

read. If omitted, the default problem_name is used with a .sol extension.
flags (optional) Flags to pass to readbinsol:

m load the solution as a solution for the MIP.

Example
A previously saved solution can be loaded into memory and a print file created from it with the following
function calls:

p.read("myprob", "")
p.readbinsol("", "")
p.writeprtsol("", "")

Related topics
problem.getlpsol, problem.getmipsol, problem.writebinsol, problem.writesol,
problem.writeprtsol.

Fair Isaac Corporation Proprietary Information 376

Chapter 7: Reference Manual

problem.readdirs

Purpose
Reads a directives file to help direct the tree search.

Synopsis
problem.readdirs(filename)

Argument
filename A string of up to 200 characters containing the file name from which the directives are to

be read. If omitted (or None), the default problem_name is used with a .dir extension.

Example
The following example reads in directives from the file dirfile.dir for use with the problem, prob2:

p.read("prob2","")
p.readdirs("dirfile")
p.mipoptimize("")

Further information
1. Directives cannot be read in after a model has been presolved, so unless presolve has been disabled by

setting PRESOLVE to 0, this function must be called before problem.mipoptimize.

2. Directives can be given relating to priorities, forced branching directions, pseudo costs and model cuts.
There is a priority value associated with each MIP entity. The lower the number, the more likely the entity
is to be selected for branching; the higher, the less likely. By default, all MIP entities have a priority value
of 500 which can be altered with a priority entry in the directives file. In general, it is advantageous for the
entity’s priority to reflect its relative importance in the model. Priority entries with values in excess of
1000 are illegal and are ignored. A full description of the directives file format may be found in the Xpress
Optimizer reference manual.

3. By default, problem.mipoptimize will explore the branch expected to yield the best integer solution
from each node, irrespective of whether this forces the MIP entity up or down. This can be overridden
with an UP or DN entry in the directives file, which forces mipoptimize to branch up first or down first
on the specified entity.

4. Pseudo-costs are estimates of the unit cost of forcing an entity up or down. By default mipoptimize
uses dual information to calculate estimates of the unit up and down costs and these are added to the
default pseudo costs which are set to the PSEUDOCOST control. The default pseudo costs can be
overridden by a PU or PD entry in the directives file.

5. If model cuts are used, then the specified constraints are removed from the problem and added to the
Optimizer cut pool, and only put back in the problem when they are violated by an LP solution at one of
the nodes in the tree search.

6. If creating a directives file by hand, wild cards can be used to specify several vectors at once, for example
PR x1⁎ 2 will give all MIP entities whose names start with x1 a priority of 2.

Related topics
problem.loaddirs.

Fair Isaac Corporation Proprietary Information 377

Chapter 7: Reference Manual

problem.readslxsol

Purpose
Reads an ASCII solution file (.slx) created by the problem.writeslxsol function.

Synopsis
problem.readslxsol(filename, flags)

Arguments
filename A string of up to 200 characters containing the file name to which the solution is to be

read. If omitted, the default problem_name is used with a .slx extension.
flags (optional) Flags to pass to writeslxsol:

l read the solution as an LP solution in case of a MIP problem;
m read the solution as a solution for the MIP problem;
a reads multiple MIP solutions from the .slx file and adds them to the MIP

problem.

Example

p.readslxsol("lpsolution", "")

This loads the solution to the MIP problem if the problem contains MIP entities, or otherwise loads it as
an LP (barrier in case of quadratic problems) solution into the problem.

Further information
1. When readslxsol is called before a MIP solve, the loaded solutions will not be checked before calling
problem.mipoptimize. By default, only the last MIP solution read from the .slx file will be stored.
Use the a flag to store all MIP solutions read from the file.

2. When using the a flag, read solutions will be queued similarly to the user of the problem.addmipsol
function. Each name string given by the NAME field in the .slx file will be associated with the
corresponding solution. Any registered usersolnotify callback will be fired when the solution has
been checked, and will include the read name string as one of its arguments.

3. Refer to the Appendix of the Xpress Optimizer reference manual on Log and File Formats for a
description of the ASCII Solution (.slx) file format.

Related topics
problem.readbinsol, problem.writeslxsol, problem.writebinsol,
problem.readbinsol, problem.addmipsol, problem.addcbusersolnotify.

Fair Isaac Corporation Proprietary Information 378

Chapter 7: Reference Manual

problem.refinemipsol

Purpose
Runs the MIP solution refiner.

Synopsis
refinestatus = problem.refinemipsol(options, flags, solution, refined)

Arguments
options Refinement options:

0 Reducing MIP fractionality is priority.
1 Reducing LP infeasiblity is priority

flags Flags passed to any optimization calls during refinement.
solution The MIP solution to refine. Must be a valid MIP solution.
refined The refined MIP solution in case of success
refinestatus Refinement results:

0 An error has occurred
1 The solution has been refined
2 Current solution meets target criteria
3 Solution cannot be refined

Further information
The function provides a mechanism to refine the MIP solution by attempting to round any fractional MIP
entity and by attempting to reduce LP infeasiblity.

Related topics
REFINEOPS.

Fair Isaac Corporation Proprietary Information 379

Chapter 7: Reference Manual

problem.reinitialize

Purpose
Reset the SLP problem to match a just augmented system

Synopsis
problem.reinitialize()

Further information
Can be used to rerun the SLP optimization process with updated parameters, penalties or initial values,
but unchanged augmentation.

Related topics
problem.unconstruct, problem.setcurrentiv,

Fair Isaac Corporation Proprietary Information 380

Chapter 7: Reference Manual

problem.removecbbariteration

Purpose
Removes a barrier iteration callback function previously added by addcbbariteration. The specified
callback function will no longer be called after it has been removed.

Synopsis
problem.removecbbariteration(callback, data)

Arguments
callback The callback function to remove. If None then all bariteration callback functions added

with the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will not

be checked and all barrier iteration callbacks with the function callback will be
removed.

Related topics
problem.addcbbariteration.

Fair Isaac Corporation Proprietary Information 381

Chapter 7: Reference Manual

problem.removecbbarlog

Purpose
Removes a newton barrier log callback function previously added by addcbbarlog. The specified
callback function will no longer be called after it has been removed.

Synopsis
problem.removecbbarlog(callback, data)

Arguments
callback The callback function to remove. If None then all barrier log callback functions added with

the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will not

be checked and all barrier log callbacks with the function callback will be removed.

Related topics
problem.addcbbarlog.

Fair Isaac Corporation Proprietary Information 382

Chapter 7: Reference Manual

problem.removecbchecktime

Purpose
Removes a callback function previously added by problem.addcbchecktime. The specified callback
function will no longer be called after it has been removed.

Synopsis
problem.removecbchecktime(callback, data)

Arguments
callback The callback function to remove. If None, then all checktime callback functions added

with the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will not

be checked and all checktime callbacks with the function pointer callback will be
removed.

Related topics
problem.addcbchecktime

Fair Isaac Corporation Proprietary Information 383

Chapter 7: Reference Manual

problem.removecbchgbranchobject

Purpose
Removes a callback function previously added by addcbchgbranchobject. The specified callback
function will no longer be called after it has been removed.

Synopsis
problem.removecbchgbranchobject(callback, data)

Arguments
callback The callback function to remove. If None then all branch object callback functions added

with the given user-defined object value will be removed.
data The object value that the callback was added with. If None, the object value will not be

checked and all branch object callbacks with the function callback will be removed.

Related topics
problem.addcbchgbranchobject.

Fair Isaac Corporation Proprietary Information 384

Chapter 7: Reference Manual

problem.removecbcutlog

Purpose
Removes a cut log callback function previously added by addcbcutlog. The specified callback function
will no longer be called after it has been removed.

Synopsis
problem.removecbcutlog(callback, data)

Arguments
callback The callback function to remove. If None then all cut log callback functions added with

the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will not

be checked and all cut log callbacks with the function callback will be removed.

Related topics
problem.addcbcutlog.

Fair Isaac Corporation Proprietary Information 385

Chapter 7: Reference Manual

problem.removecbdestroymt

Purpose
Removes a slave thread destruction callback function previously added by addcbdestroymt. The
specified callback function will no longer be called after it has been removed.

Synopsis
problem.removecbdestroymt(callback, data)

Arguments
callback The callback function to remove. If None then all thread destruction callback functions

added with the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will not

be checked and all thread destruction callbacks with the function callback will be
removed.

Related topics
problem.addcbdestroymt.

Fair Isaac Corporation Proprietary Information 386

Chapter 7: Reference Manual

problem.removecbgapnotify

Purpose
Removes a callback function previously added by problem.addcbgapnotify. The specified callback
function will no longer be removed after it has been returned.

Synopsis
problem.removecbgapnotify(callback, data)

Arguments
callback The callback function to remove. If None then all gapnotify callback functions added

with the given user-defined value will be removed.
data The user-defined object that the callback was added with. If None then the object will not

be checked and all the gapnotify callbacks with the function callback will be
removed.

Related topics
problem.addcbgapnotify.

Fair Isaac Corporation Proprietary Information 387

Chapter 7: Reference Manual

problem.removecbmiplog

Purpose
Removes a MIP log callback function previously added by addcbmiplog. The specified callback
function will no longer be called after it has been removed.

Synopsis
problem.removecbmiplog(callback, data)

Arguments
callback The callback function to remove. If None then all MIP log callback functions added with

the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will not

be checked and all MIP log callbacks with the function callback will be removed.

Example
The following code sets and removes a callback function:

prob.controls.miplog = 3
prob.addcbmiplog(mipLog, None, 0)
prob.mipoptimize("")
prob.removecbmiplog(mipLog, None)

Related topics
problem.addcbmiplog.

Fair Isaac Corporation Proprietary Information 388

Chapter 7: Reference Manual

problem.removecbinfnode

Purpose
Removes a user infeasible node callback function previously added by addcbinfnode. The specified
callback function will no longer be called after it has been removed.

Synopsis
problem.removecbinfnode(callback, data)

Arguments
callback The callback function to remove. If None then all user infeasible node callback functions

added with the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will not

be checked and all user infeasible node callbacks with the function callback will be
removed.

Related topics
problem.addcbinfnode.

Fair Isaac Corporation Proprietary Information 389

Chapter 7: Reference Manual

problem.removecbintsol

Purpose
Removes an integer solution callback function previously added by addcbintsol. The specified
callback function will no longer be called after it has been removed.

Synopsis
problem.removecbintsol(callback, data)

Arguments
callback The callback function to remove. If None then all integer solution callback functions

added with the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will not

be checked and all integer solution callbacks with the function callback will be
removed.

Related topics
problem.addcbintsol.

Fair Isaac Corporation Proprietary Information 390

Chapter 7: Reference Manual

problem.removecblplog

Purpose
Removes a simplex log callback function previously added by addcblplog. The specified callback
function will no longer be called after it has been removed.

Synopsis
problem.removecblplog(callback, data)

Arguments
callback The callback function to remove. If None then all lplog callback functions added with the

given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will not

be checked and all lplog callbacks with the function callback will be removed.

Example
The following code sets and removes a callback function:

prob.controls.lplog = 10
prob.addcblplog(lpLog, None, 0)
prob.readprob("problem", "")
prob.lpoptimize("")
prob.removecblplog(lpLog, None)

Related topics
problem.addcblplog.

Fair Isaac Corporation Proprietary Information 391

Chapter 7: Reference Manual

problem.removecbmessage

Purpose
Removes a message callback function previously added by addcbmessage. The specified callback
function will no longer be called after it has been removed.

Synopsis
problem.removecbmessage(callback, data)

Arguments
callback The callback function to remove. If None then all message callback functions added with

the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will not

be checked and all message callbacks with the function callback will be removed.

Further information
The Xpress Python API registers a message callback that prints messages to stdout. This callback
cannot be removed explicity but can be disabled using xpress.setOutputEnabled.

Related topics
problem.addcbmessage. xpress.setOutputEnabled.

Fair Isaac Corporation Proprietary Information 392

Chapter 7: Reference Manual

problem.removecbmipthread

Purpose
Removes a callback function previously added by addcbmipthread. The specified callback function
will no longer be called after it has been removed.

Synopsis
problem.removecbmipthread(callback, data)

Arguments
callback The callback function to remove. If None then all variable branching callback functions

added with the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will not

be checked and all variable branching callbacks with the function callback will be
removed.

Related topics
problem.addcbmipthread.

Fair Isaac Corporation Proprietary Information 393

Chapter 7: Reference Manual

problem.removecbnewnode

Purpose
Removes a new-node callback function previously added by addcbnewnode. The specified callback
function will no longer be called after it has been removed.

Synopsis
problem.removecbnewnode(callback, data)

Arguments
callback The callback function to remove. If None then all separation callback functions added

with the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will not

be checked and all separation callbacks with the function callback will be removed.

Related topics
problem.addcbnewnode.

Fair Isaac Corporation Proprietary Information 394

Chapter 7: Reference Manual

problem.removecbnodecutoff

Purpose
Removes a node-cutoff callback function previously added by addcbnodecutoff. The specified
callback function will no longer be called after it has been removed.

Synopsis
problem.removecbnodecutoff(callback, data)

Arguments
callback The callback function to remove. If None then all node-cutoff callback functions added

with the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will not

be checked and all node-cutoff callbacks with the function callback will be removed.

Related topics
problem.addcbnodecutoff.

Fair Isaac Corporation Proprietary Information 395

Chapter 7: Reference Manual

problem.removecbnodelpsolved

Purpose
Removes a node lp solved callback function previously added by addcbnodelpsolved. The specified
callback function will no longer be called after it has been removed.

Synopsis
problem.removecbnodelpsolved(callback, data)

Arguments
callback The callback function to remove. If None then all lp solved callback functions added with

the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will not

be checked and all lp solved callbacks with the function callback will be removed.

Related topics
problem.addcbnodelpsolved.

Fair Isaac Corporation Proprietary Information 396

Chapter 7: Reference Manual

problem.removecboptnode

Purpose
Removes a node-optimal callback function previously added by addcboptnode. The specified callback
function will no longer be called after it has been removed.

Synopsis
problem.removecboptnode(callback, data)

Arguments
callback The callback function to remove. If None then all node-optimal callback functions added

with the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will not

be checked and all node-optimal callbacks with the function callback will be removed.

Related topics
problem.addcboptnode.

Fair Isaac Corporation Proprietary Information 397

Chapter 7: Reference Manual

problem.removecbpreintsol

Purpose
Removes a pre-integer solution callback function previously added by addcbpreintsol. The specified
callback function will no longer be called after it has been removed.

Synopsis
problem.removecbpreintsol(callback, data)

Arguments
callback The callback function to remove. If None then all user infeasible node callback functions

added with the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will not

be checked and all user infeasible node callbacks with the function callback will be
removed.

Related topics
problem.addcbpreintsol.

Fair Isaac Corporation Proprietary Information 398

Chapter 7: Reference Manual

problem.removecbprenode

Purpose
Removes a preprocess node callback function previously added by addcbprenode. The specified
callback function will no longer be called after it has been removed.

Synopsis
problem.removecbprenode(callback, data)

Arguments
callback The callback function to remove. If None then all preprocess node callback functions

added with the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will not

be checked and all preprocess node callbacks with the function callback will be
removed.

Related topics
problem.addcbprenode.

Fair Isaac Corporation Proprietary Information 399

Chapter 7: Reference Manual

problem.removecbusersolnotify

Purpose
Removes a user solution notification callback previously added by problem.addcbusersolnotify.
The specified callback function will no longer be called after it has been removed.

Synopsis
problem.removecbusersolnotify(callback, data)

Arguments
callback The callback function to remove. If None then all user solution notification callback

functions added with the given user defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will not

be checked and all integer solution callbacks with the function callback will be
removed.

Related topics
problem.addcbusersolnotify.

Fair Isaac Corporation Proprietary Information 400

Chapter 7: Reference Manual

problem.removecbbeforeobjective

Purpose
Removes a user before objective callback function previously added by addcbbeforeobjective. The
specified callback function will no longer be called after it has been removed.

Synopsis
problem.removecbbeforeobjective(callback, data)

Arguments
callback The callback function to remove. If None then all user before objective callback functions

added with the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will not

be checked and all user before objective callbacks with the function callback will be
removed.

Related topics
problem.addcbbeforeobjective.

Fair Isaac Corporation Proprietary Information 401

Chapter 7: Reference Manual

problem.removecbafterobjective

Purpose
Removes a user after objective callback function previously added by addcbafterobjective. The
specified callback function will no longer be called after it has been removed.

Synopsis
problem.removecbafterobjective(callback, data)

Arguments
callback The callback function to remove. If None then all user after objective callback functions

added with the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will not

be checked and all user after objective callbacks with the function callback will be
removed.

Related topics
problem.addcbafterobjective.

Fair Isaac Corporation Proprietary Information 402

Chapter 7: Reference Manual

problem.repairinfeas

Purpose
Provides a simplified interface for problem.repairweightedinfeas. The returned value is as
follows:

■ 0: relaxed optimum found;
■ 1: relaxed problem is infeasible;
■ 2: relaxed problem is unbounded;
■ 3: solution of the relaxed problem regarding the original objective is nonoptimal;
■ 4: error (when return code is nonzero);
■ 5: numerical instability;
■ 6: analysis of an infeasible relaxation was performed, but the relaxation is feasible.

Synopsis
status_code = problem.repairinfeas(penalty, phase2, flags, lepref, gepref,

lbpref, ubpref, delta)

Arguments
penalty The type of penalties created from the preferences:

c each penalty is the reciprocal of the preference (default);
s the penalties are placed in the scaled problem.

phase2 Controls the second phase of optimization:
o use the objective sense of the original problem (default);
x maximize the relaxed problem using the original objective;
f skip optimization regarding the original objective;
n minimize the relaxed problem using the original objective;
i if the relaxation is infeasible, generate an irreducible infeasible subset for the

analys of the problem;
a if the relaxation is infeasible, generate all irreducible infeasible subsets for the

analys of the problem.
flags Specifies if the tree search should be done:

g do the tree search (default);
l solve as a linear model ignoring the discreteness of variables.

lepref Preference for relaxing the less or equal side of row.
gepref Preference for relaxing the greater or equal side of a row.
lbpref Preferences for relaxing lower bounds.
ubpref Preferences for relaxing upper bounds.
delta The relaxation multiplier in the second phase -1. A positive value means a relative

relaxation by multiplying the first phase objective with (delta-1), while a negative value
means an absolute relaxation, by adding abs(delta) to the first phase objective.

Fair Isaac Corporation Proprietary Information 403

Chapter 7: Reference Manual

Further information
1. A row or bound is relaxed by introducing a new nonnegative variable that will contain the infeasibility of

the row or bound. Suppose for example that row aTx = b is relaxed from below. Then a new variable
(infeasibility breaker) s>=0 is added to the row, which becomes aTx +s = b. Observe that aTx may now
take smaller values than b. To minimize such violations, the weighted sum of these new variables is
minimized.

2. A preference of 0 results in the row or bound not being relaxed.

3. A negative preference indicates that a quadratic penalty cost should be applied. This can specified on a
per constraint side or bound basis.

4. Note that the set of preferences are scaling independent.

5. If a feasible solution is identified for the relaxed problem, with a sum of violations p, then the sum of
violations is restricted to be no greater than (1+delta)p, and the problem is optimized with respect to
the original objective function. A nonzero delta increases the freedom of the original problem.

6. Note that on some problems, slight modifications of delta may affect the value of the original objective
drastically.

7. Note that because of their special associated modeling properties, binary and semi-continuous variables
are not relaxed.

8. The default algorithm for the first phase is the simplex algorithm, since the primal problem can be
efficiently warm started in case of the extended problem. These may be altered by setting the value of
control DEFAULTALG.

9. If penalty is set such that each penalty is the reciprocal of the preference, the following rules are
applied while introducing the auxiliary variables:

Preference Affects Relaxation Cost if pref.>0 Cost if pref.<0
lepref = rows aTx - aux_var = b 1/lepref⁎aux_var 1/lepref⁎aux_var2

lepref <= rows aTx - aux_var <= b 1/lepref⁎aux_var 1/lepref⁎aux_var2

gepref = rows aTx + aux_var = b 1/gepref⁎aux_var 1/gepref⁎aux_var2

gepref >= rows aTx + aux_var >= b 1/gepref⁎aux_var 1/gepref⁎aux_var2

ubpref upper bounds xi - aux_var <= u 1/ubpref⁎aux_var 1/ubpref⁎aux_var2

lbpref lower bounds xi + aux_var >= l 1/lbpref⁎aux_var 1/lbpref⁎aux_var2

10. If an irreducible infeasible set (IIS) has been identified, the generated IIS(s) are accesible through the IIS
retrieval functions, see NUMIIS and problem.getiisdata.

Related topics
problem.repairweightedinfeas.

Fair Isaac Corporation Proprietary Information 404

Chapter 7: Reference Manual

problem.repairweightedinfeas

Purpose
By relaxing a set of selected constraints and bounds of an infeasible problem, it attempts to identify a
’solution’ that violates the selected set of constraints and bounds minimally, while satisfying all other
constraints and bounds. Among such solution candidates, it selects one that is optimal regarding to the
original objective function. Similar to repairinfeas, the returned value is as follows:

■ 1: relaxed problem is infeasible;
■ 2: relaxed problem is unbounded;
■ 3: solution of the relaxed problem regarding the original objective is nonoptimal;
■ 4: error (when return code is nonzero);
■ 5: numerical instability;
■ 6: analysis of an infeasible relaxation was performed, but the relaxation is feasible.

Synopsis
status_code = problem.repairweightedinfeas(lepref, gepref, lbpref, ubpref,

phase2, delta, flags)

Arguments
lepref Array of size ROWS containing the preferences for relaxing the less or equal side of row.
gepref Array of size ROWS containing the preferences for relaxing the greater or equal side of a

row.
lbpref Array of size COLS containing the preferences for relaxing lower bounds.
ubpref Array of size COLS containing preferences for relaxing upper bounds.
phase2 Controls the second phase of optimization:

o use the objective sense of the original problem (default);
x maximize the relaxed problem using the original objective;
f skip optimization regarding the original objective;
n minimize the relaxed problem using the original objective;
i if the relaxation is infeasible, generate an irreducible infeasible subset for the

analys of the problem;
a if the relaxation is infeasible, generate all irreducible infeasible subsets for the

analys of the problem.
delta The relaxation multiplier in the second phase -1.
flags Specifies flags to be passed to the Optimizer.

Fair Isaac Corporation Proprietary Information 405

Chapter 7: Reference Manual

Further information
1. A row or bound is relaxed by introducing a new nonnegative variable that will contain the infeasibility of

the row or bound. Suppose for example that row aTx = b is relaxed from below. Then a new variable
(’infeasibility breaker’) s>=0 is added to the row, which becomes aTx +s = b. Observe that aTx may now
take smaller values than b. To minimize such violations, the weighted sum of these new variables is
minimized.

2. A preference of 0 results in the row or bound not being relaxed. The higher the preference, the more
willing the modeller is to relax a given row or bound.

3. The weight of each infeasibility breaker in the objective minimizing the violations is 1/p, where p is the
preference associated with the infeasibility breaker. Thus the higher the preference is, the lower a penalty
is associated with the infeasibility breaker while minimizing the violations.

4. If a feasible solution is identified for the relaxed problem, with a sum of violations p, then the sum of
violations is restricted to be no greater than (1+delta)p, and the problem is optimized with respect to
the original objective function. A nonzero delta increases the freedom of the original problem.

5. Note that on some problems, slight modifications of delta may affect the value of the original objective
drastically.

6. Note that because of their special associated modeling properties, binary and semi-continuous variables
are not relaxed.

7. If pflags is set such that each penalty is the reciprocal of the preference, the following rules are applied
while introducing the auxiliary variables:

Pref. array Affects Relaxation Cost if pref.>0 Cost if pref.<0
lepref = rows aTx - aux_var = b 1/lrp⁎aux_var 1/lrp⁎aux_var2

lepref <= rows aTx - aux_var <= b 1/lrp⁎aux_var 1/lrp⁎aux_var2

gepref = rows aTx + aux_var = b 1/grp⁎aux_var 1/grp⁎aux_var2

gepref >= rows aTx + aux_var >= b 1/grp⁎aux_var 1/grp⁎aux_var2

ubpref upper bounds xi - aux_var <= u 1/ubp⁎aux_var 1/ubp⁎aux_var2

lbpref lower bounds xi + aux_var >= l 1/lbp⁎aux_var 1/lbp⁎aux_var2

8. If an irreducible infeasible set (IIS) has been identified, the generated IIS(s) are accesible through the IIS
retrieval functions, see NUMIIS and problem.getiisdata.

Related topics
problem.repairinfeas, problem.repairweightedinfeasbounds.

Fair Isaac Corporation Proprietary Information 406

Chapter 7: Reference Manual

problem.repairweightedinfeasbounds

Purpose
An extended version of problem.repairweightedinfeas that allows for bounding the level of
relaxation allowed. The returned value is the same as repairweightedinfeas.

Synopsis
status = problem.repairweightedinfeasbounds(lepref, gepref, lbpref, ubpref,

lerelax, gerelax, lbrelax, ubrelax, phase2, delta, flags)

Arguments
lepref Array of size ROWS containing the preferences for relaxing the less or equal side of row.
gepref Array of size ROWS containing the preferences for relaxing the greater or equal side of a

row.
lbpref Array of size COLS containing the preferences for relaxing lower bounds.
ubpref Array of size COLS containing preferences for relaxing upper bounds.
lerelax Array of size ROWS containing the upper bounds on the amount the less or equal side of a

row can be relaxed.
gerelax Array of size ROWS containing the upper bounds on the amount the greater or equal side

of a row can be relaxed.
lbrelax Array of size COLS containing the upper bounds on the amount the lower bounds can be

relaxed.
ubrelax Array of size COLS containing the upper bounds on the amount the upper bounds can be

relaxed.
phase2 Controls the second phase of optimization:

o use the objective sense of the original problem (default);
x maximize the relaxed problem using the original objective;
f skip optimization regarding the original objective;
n minimize the relaxed problem using the original objective;
i if the relaxation is infeasible, generate an irreducible infeasible subset for the

analys of the problem;
a if the relaxation is infeasible, generate all irreducible infeasible subsets for the

analys of the problem.
delta The relaxation multiplier in the second phase -1.
flags Specifies flags to be passed to the Optimizer.

Fair Isaac Corporation Proprietary Information 407

Chapter 7: Reference Manual

Further information
1. A row or bound is relaxed by introducing a new nonnegative variable that will contain the infeasibility of

the row or bound. Suppose for example that row aTx = b is relaxed from below. Then a new variable
(’infeasibility breaker’) s>=0 is added to the row, which becomes aTx +s = b. Observe that aTx may now
take smaller values than b. To minimize such violations, the weighted sum of these new variables is
minimized.

2. A preference of 0 results in the row or bound not being relaxed. The higher the preference, the more
willing the modeller is to relax a given row or bound.

3. A negative preference indicates that a quadratic penalty cost should be applied. This can specified on a
per constraint side or bound basis.

4. If a feasible solution is identified for the relaxed problem, with a sum of violations p, then the sum of
violations is restricted to be no greater than (1+delta)p, and the problem is optimized with respect to
the original objective function. A nonzero delta increases the freedom of the original problem.

5. Note that on some problems, slight modifications of delta may affect the value of the original objective
drastically.

6. Note that because of their special associated modeling properties, binary and semi-continuous variables
are not relaxed.

7. Given any row j with preferences lrp=lepref[j] and grp=gepref[j], or variable i with bound
preferences ubp=ubpref[i] and lbp=lbpref[i], the following rules are applied while introducing
the auxiliary variables:

Preference Affects Relaxation Cost if pref.>0 Cost if pref.<0
lrp = rows aTx - aux_var = b 1/lrp⁎aux_var 1/lrp⁎aux_var2

lrp <= rows aTx - aux_var <= b 1/lrp⁎aux_var 1/lrp⁎aux_var2

grp = rows aTx + aux_var = b 1/grp⁎aux_var 1/grp⁎aux_var2

grp >= rows aTx + aux_var >= b 1/grp⁎aux_var 1/grp⁎aux_var2

ubp upper bounds xi - aux_var <= u 1/ubp⁎aux_var 1/ubp⁎aux_var2

lbp lower bounds xi + aux_var >= l 1/lbp⁎aux_var 1/lbp⁎aux_var2

8. Only positive bounds are applied; a zero or negative bound is ignored and the amount of relaxation
allowed for the corresponding row or bound is not limited. The effect of a zero bound on a row or bound
would be equivalent with not relaxing it, and can be achieved by setting its preference array value to zero
instead, or not including it in the preference arrays.

9. If an irreducible infeasible set (IIS) has been identified, the generated IIS(s) are accesible through the IIS
retrieval functions, see NUMIIS and problem.getiisdata.

Related topics
problem.repairinfeas.

Fair Isaac Corporation Proprietary Information 408

Chapter 7: Reference Manual

problem.reset

Purpose
Clears all information regarding an optimization problem and returns it to the same status as it would be
after creation (i.e. after the instruction p = xpress.problem()).

Synopsis
problem.reset()

Example

p = xpress.problem()
p.read("problem0", "l")
p.optimize()
x0 = p.getSolution()
p.reset()
p.read("problem1", "")
p.optimize()
x1 = p.getSolution()

Related topics
problem.read.

Fair Isaac Corporation Proprietary Information 409

Chapter 7: Reference Manual

problem.restore

Purpose
Restores the Optimizer’s data structures from a file created by problem.save. Optimization may then
recommence from the point at which the file was created.

Synopsis
problem.restore(probname, flags)

Arguments
probname A string of up to 200 characters containing the problem name.
flags f Force the restoring of a save file even if its from a different version.

Example

p.restore("", "")

Further information
1. This routine restores the data structures from the file probname.svf that was created by a previous

execution of save. The file probname.sol is also required and, if recommencing optimization in a tree
search, the files problem_name.glb and problem_name.ctp are required too. Note that .svf files are
particular to the release of the Optimizer used to create them. They can only be read using the same
release Optimizer as used to create them.

2. The use of the ’f’ flag is not recommended and can cause unexpected results.

Related topics
problem.save.

Fair Isaac Corporation Proprietary Information 410

Chapter 7: Reference Manual

problem.rhssa

Purpose
Returns upper and lower sensitivity ranges for specified right hand side (RHS) function coefficients. If the
RHS coefficients are varied within these ranges the current basis remains optimal and the reduced costs
remain valid.

Synopsis
problem.rhssa(rowind, lower, upper)

Arguments
rowind Array containing the rows (i.e. xpress.constraint objects, indices, or names) whose

RHS coefficients sensitivity ranges are required.
lower Array where the RHS lower range values are to be returned.
upper Array where the RHS upper range values are to be returned.

Example
Here we obtain the RHS function ranges for the three columns: 2, 6 and 8:

l = []
u = []
p.rhssa([2,8,6], l, u)

After which lower and upper contain:

l = [5, 3.8, 5.7]
u = [7, 5.2, 1e+20]

Meaning that the current basis remains optimal when 5.0 ≤ rhs2, 3.8 ≤ rhs8 ≤ 5.2 and 5.7 ≤ rhs6, rhsi
being the RHS coefficient of row i.

Further information
rhssa can only be called when an optimal solution to the current LP has been found. It cannot be used
when the problem is MIP presolved.

Related topics
problem.objsa.

Fair Isaac Corporation Proprietary Information 411

Chapter 7: Reference Manual

problem.save

Purpose
Saves the current data structures, i.e. matrices, control settings and problem attribute settings to file and
terminates the run so that optimization can be resumed later.

Synopsis
problem.save(filename=None)

Argument
filename A file name on which to write the problem.

Example

p.save()

Further information
The data structures are written to the file problem_name.svf. Optimization may recommence from the
same point when the data structures are restored by a call to problem.restore. Under such
circumstances, the file problem_name.sol and, if a branch and bound search is in progress, the files
problem_name.glb and problem_name.ctp are also required. These files will be present after
execution of save, but will be modified by subsequent optimization, so no optimization calls may be
made after the call to save. Note that the .svf files created are particular to the release of the Optimizer
used to create them. They can only be read using the same release Optimizer as used to create them.

Related topics
problem.restore.

Fair Isaac Corporation Proprietary Information 412

Chapter 7: Reference Manual

problem.scale

Purpose
Re-scales the current problem.

Synopsis
problem.scale(rowscale, colscale)

Arguments
rowscale Array of size ROWS containing the exponents of the powers of 2 with which to scale the

rows, or None if not required.
colscale Array of size COLS containing the exponents of the powers of 2 with which to scale the

columns, or None if not required.

Example

p.read("prob1", "")
p.scale([1] ⁎ p.attributes.rows, [3] ⁎ p.attributes.cols)
p.lpoptimize("")

This reads the MPS file prob1.mat, rescales the problem and seeks the minimum objective value.

Further information
1. If rowscale and colscale are both non-None then they will be used to scale the problem. Otherwise

the problem will be scaled according to the control SCALING. This routine may be useful when the current
problem has been modified by calls to routines such as problem.chgmcoef and problem.addrows.

2. scale cannot be called if the current problem is presolved.

Related topics
problem.read.

Fair Isaac Corporation Proprietary Information 413

Chapter 7: Reference Manual

problem.scaling

Purpose
Analyze the current matrix for largest/smallest coefficients and ratios

Synopsis
problem.scaling()

Example
The following example analyzes the matrix

p.scaling()

Further information
The current matrix (including augmentation if it has been carried out) is scanned for the absolute and
relative sizes of elements. The following information is reported:

■ Largest and smallest elements in the matrix;
■ Counts of the ranges of row ratios in powers of 10 (e.g. number of rows with ratio between 10 and

100);
■ List of the rows (with largest and smallest elements) which appear in the highest range;
■ Counts of the ranges of column ratios in powers of 10;
■ List of the columns (with largest and smallest elements) which appear in the highest range;
■ Element ranges in powers of 10.

Where any of the reported items (largest or smallest element in the matrix or any reported row or column
element) is in a penalty error vector, the results are repeated, excluding all penalty error vectors.

Fair Isaac Corporation Proprietary Information 414

Chapter 7: Reference Manual

problem.setcbcascadeend

Purpose
Set a user callback to be called at the end of the cascading process, after the last variable has been
cascaded

Synopsis
problem.setcbcascadeend(callback, data)
value = callback(my_prob, my_object)

Arguments
callback The function to be called at the end of the cascading process. callback returns an

integer value. The return value is noted by Xpress SLP but it has no effect on the
optimization.

my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbcascadeend.
data User-defined object, which can be used for any purpose by the function. data is passed

to callback as my_object.

Example
The following example sets up a callback to be executed at the end of the cascading process which
checks if any of the values have been changed significantly:

csol = [1,2,3,4]
p.setcbcascadeend(CBCascEnd, csol)

A suitable callback function might resemble this:

def CBCascEnd(prob, obj):
for iCol in range(prob.controls.cols):

(a,b,c,s,d,e,f,value,g,h,i,j,k,l,m,n) = prob.getvar(iCol)
if abs(value - obj[iCol]) > .01:

print("Col {0} changed from {1} to {2}".format(iCol, obj[iCol], value)
return 0

The obj argument is used here to hold the original solution values.

Further information
This callback can be used at the end of the cascading, when all the solution values have been
recalculated.

Related topics
problem.cascade, problem.setcbcascadestart, problem.setcbcascadevar,
problem.setcbcascadevarfail

Fair Isaac Corporation Proprietary Information 415

Chapter 7: Reference Manual

problem.setcbcascadestart

Purpose
Set a user callback to be called at the start of the cascading process, before any variables have been
cascaded

Synopsis
problem.setcbcascadestart(callback, data)
retval = callback(my_prob, my_object)

Arguments
callback The function to be called at the start of the cascading process. callback returns an

integer value. If the return value is nonzero, the cascading process will be omitted for the
current SLP iteration, but the optimization will continue.

my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbcascadestart.
data A user-defined object, which can be used for any purpose by the function. data is passed

to callback as my_object.

Further information
This callback can be used at the start of the cascading, before any of the solution values have been
recalculated.

Related topics
problem.cascade, problem.setcbcascadeend, problem.setcbcascadevar,
problem.setcbcascadevarfail

Fair Isaac Corporation Proprietary Information 416

Chapter 7: Reference Manual

problem.setcbcascadevar

Purpose
Set a user callback to be called after each column has been cascaded

Synopsis
problem.setcbcascadevar(callback, data)
retval = callback(my_prob, my_object, colindex)

Arguments
callback The function to be called after each column has been cascaded. callback returns an

integer value. If the return value is nonzero, the cascading process will be omitted for the
remaining variables during the current SLP iteration, but the optimization will continue.

my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to problem.setcbcascadevar.
colindex The number of the column which has been cascaded.
data User-defined object, which can be used for any purpose by the function. data is passed

to callback as my_object.

Example
The following example sets up a callback to be executed after each variable has been cascaded:

obj = []
p.setcbcascadevar(CBCascVar, obj)

The following sample callback function resets the value of the variable if the cascaded value is of the
opposite sign to the original value:

def CBCascVar(myprob, obj, iCol):
(a,b,c,d,e,f,value,g,h,i,j,k,l,m,n) = myprob.getvar(iCol)

if value ⁎ obj[iCol] < 0:
p.chgvar(col=ColNum, value=obj[iCol])

return 0

The data argument is used here to hold the array cSol which we assume has been populated with the
original solution values.

Further information
This callback can be used after each variable has been cascaded and its new value has been calculated.

Related topics
problem.cascade, problem.setcbcascadeend, problem.setcbcascadestart,
problem.setcbcascadevarfail

Fair Isaac Corporation Proprietary Information 417

Chapter 7: Reference Manual

problem.setcbcascadevarfail

Purpose
Set a user callback to be called after cascading a column was not successful

Synopsis
problem.setcbcascadevarfail(callback, data)
retval = callback(my_prob, my_object, colindex)

Arguments
callback The function to be called after cascading a column was not successful. callback

returns an integer value. If the return value is nonzero, the cascading process will be
omitted for the remaining variables during the current SLP iteration, but the optimization
will continue.

my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbcascadevarfail.
colindex The number of the column which has been cascaded.
data A user-defined object, which can be used for any purpose by the function. data is passed

to callback as my_object.

Further information
This callback can be used to provide user defined updates for SLP variables having a determining row
that were not successfully cascaded due to the determining row being close to singular around the
current values. This callback will always be called in place of the cascadevar callback in such cases, and
in no situation will both the cascadevar and the cascadevarfail callback be called in the same iteration for
the same variable.

Related topics
problem.cascade, problem.setcbcascadeend, problem.setcbcascadestart,
problem.setcbcascadevar

Fair Isaac Corporation Proprietary Information 418

Chapter 7: Reference Manual

problem.setcbcoefevalerror

Purpose
Set a user callback to be called when an evaluation of a coefficient fails during the solve

Synopsis
problem.setcbcoefevalerror(callback, data)
retval = callback(my_prob, my_object, rowindex, colindex)

Arguments
callback The function to be called when an evaluation fails.
my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbcoefevalerror.
rowindex The row position of the coefficient.
colindex The column position of the coefficient.
data A user-defined object, which can be used for any purpose by the function. data is passed

to callback as my_object.

Further information
This callback can be used to capture when an evaluation of a coefficient fails. The callback is called only
once for each coefficient.

Related topics
problem.printevalinfo

Fair Isaac Corporation Proprietary Information 419

Chapter 7: Reference Manual

problem.setcbconstruct

Purpose
Set a user callback to be called during the Xpress SLP augmentation process

Synopsis
problem.setcbconstruct(callback, data)
retval = callback(my_prob, my_object)

Arguments
callback The function to be called during problem augmentation. callback returns an integer

value. See below for an explanation of the values.
my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbconstruct.
data A user-defined object, which can be used for any purpose by the function. data is passed

to callback as my_object.

Example
The following example sets up a callback to be executed during the Xpress SLP problem augmentation:

value = []
p.setcbconstruct(CBConstruct, value)

The following sample callback function sets values for the variables the first time the function is called
and returns to problem.construct to recalculate the initial matrix. The second time it is called it frees
the allocated memory and returns to problem.construct to proceed with the rest of the
augmentation.

def CBConstruct(myprob, obj):
if obj is None:

n = myprob.attributes.cols
cValue = n ⁎ [0]
initialize with values (not shown here)
for i in range(n):
store into SLP structures
myprob.chgvar(col=i, value=cValue[i])
set Object non-None to indicate we have processed data
obj = cValue
return -1

else:
obj = None

return 0

Further information
This callback can be used during the problem augmentation, generally (although not exclusively) to
change the initial values for the variables.
The following return codes are accepted:

0 Normal return: augmentation continues
-1 Return to recalculate matrix values
-2 Return to recalculate row weights and matrix entries
other Error return: augmentation terminates, problem.construct terminates with a nonzero

error code.

Fair Isaac Corporation Proprietary Information 420

Chapter 7: Reference Manual

The return values -1 and -2 will cause the callback to be called a second time after the matrix has been
recalculated. It is the responsibility of the callback to ensure that it does ultimately exit with a return value
of zero.

Related topics
problem.construct

Fair Isaac Corporation Proprietary Information 421

Chapter 7: Reference Manual

problem.setcbdestroy

Purpose
Set a user callback to be called when an SLP problem is about to be destroyed

Synopsis
problem.setcbdestroy(callback, data)
callback(my_prob, my_object)

Arguments
callback The function to be called when the SLP problem is about to be destroyed. callback

returns an integer value. At present the return value is ignored.
my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbdestroy.
data A user-defined object, which can be used for any purpose by the function. data is passed

to callback as my_object.

Example
The following example sets up a callback to be executed before the SLP problem is destroyed:

p.setcbdestroy(CBDestroy, cSol)

The following sample callback function frees the memory associated with the user-defined object:

def CBDestroy(myprob, Obj):
if Obj is not None:

Obj.inuse = 0
return 0

The Obj argument is used here to hold the array cSol which we assume was assigned using one of the
malloc functions.

Further information
This callback can be used when the problem is about to be destroyed to free any user-defined resources
which were allocated during the life of the problem.

Fair Isaac Corporation Proprietary Information 422

Chapter 7: Reference Manual

problem.setcbdrcol

Purpose
Set a user callback used to override the update of variables with small determining column

Synopsis
problem.setcbdrcol(callback, data)
newvalue = callback(my_prob, my_object, colindex, drcolindex, drcolvalue, vlb, vub)

Arguments
callback The function to be called after each column has been cascaded. callback returns an

integer value. If the return value is positive, it will indicate that the value has been fixed,
and cascading should be omitted for the variable. A negative value indicates that a
previously fixed value has been relaxed. If no action is taken, a 0 return value should be
used.

my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbcascadevar.
ColIndex The column (i.e. xpress.var object, index, or name) for which the determining columns

is checked.
DrColIndex The index of the determining column for the column that is being updated.
DrColValue The value of the determining column in the current SLP iteration.
NewValue Used to return the new value for column ColIndex, should it need to be updated, in which

case the callback must return a positive value to indicate that this value should be used.
VLB The original lower bound of column ColIndex. The callback provides this value as a

reference, should the bound be updated or changed during the solution process.
VUB The original upper bound of column ColIndex. The callback provides this value as a

reference, should the bound be updated or changed during the solution process.
data A user-defined object, which can be used for any purpose by the function. data is passed

to callback as my_object.

Further information
If set, this callback is called as part of the cascading procedure. Please see the chapter on cascading of
the SLP Reference Manual for more information.

Related topics
xslp_DRCOLTOL, problem.cascade, problem.setcbcascadeend,
problem.setcbcascadestart

Fair Isaac Corporation Proprietary Information 423

Chapter 7: Reference Manual

problem.setcbintsol

Purpose
Set a user callback to be called during MISLP when an integer solution is obtained

Synopsis
problem.setcbintsol(callback, data)
callback(my_prob, my_object)

Arguments
callback The function to be called when an integer solution is obtained.
data A user-defined object, which can be used for any purpose. data is passed to callback

as my_object.
my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbintsol.

Example
The following example sets up a callback to be executed whenever an integer solution is found during
MISLP:

cSol = []
p.setcbintsol(CBIntSol, cSol)

The following sample callback function saves the solution values for the integer solution just found:

def CBIntSol(prob, cSol):
prob.getmipsol(x=cSol, None, None, None)}

Related topics
problem.setcboptnode, problem.setcbprenode

Fair Isaac Corporation Proprietary Information 424

Chapter 7: Reference Manual

problem.setcbiterend

Purpose
Set a user callback to be called at the end of each SLP iteration

Synopsis
problem.setcbiterend(callback, data)
retval = callback(my_prob, my_object)

Arguments
callback The function to be called at the end of each SLP iteration. callback returns an integer

value. If the return value is nonzero, the SLP iterations will stop.
my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbiterend.
data User-defined object, which can be used for any purpose by the function. data is passed

to callback as my_object.

Example
The following example sets up a callback to be executed at the end of each SLP iteration. It records the
number of LP iterations in the latest optimization and stops if there were fewer than 10:

p.setcbiterend(CBIterEnd, None)

A suitable callback function might resemble this:

def CBIterEnd(MyProb, Obj):
niter = MyProb.attributes.simplexiter
return (niter < 10)

The Obj argument is not used here, and so is passed as None.

Further information
This callback can be used at the end of each SLP iteration to carry out any further processing and/or stop
any further SLP iterations.

Related topics
problem.setcbiterstart, problem.setcbitervar

Fair Isaac Corporation Proprietary Information 425

Chapter 7: Reference Manual

problem.setcbiterstart

Purpose
Set a user callback to be called at the start of each SLP iteration

Synopsis
problem.setcbiterstart(callback, data)
retval = callback(my_prob, my_object)

Arguments
callback The function to be called at the start of each SLP iteration. callback returns an integer

value. If the return value is nonzero, the SLP iterations will stop.
my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbiterstart.
data User-defined object, which can be used for any purpose by the function. data is passed

to callback as my_object.

Example
The following example sets up a callback to be executed at the start of the optimization to save to save
the values of the variables from the previous iteration:

p.setcbiterstart(CBIterStart, cSol)

A suitable callback function might resemble this:

def CBIterStart(MyProb, Obj):
niter = MyProb.attributes.xslp_iter
if nIter == 0:

return 0 # no previous solution
Obj = []
MyProb.getlpsol(Obj, None, None, None)
return 0

The Obj argument is used here to hold the array cSol which we populate with the solution values.

Further information
This callback can be used at the start of each SLP iteration before the optimization begins.

Related topics
problem.setcbiterend, problem.setcbitervar

Fair Isaac Corporation Proprietary Information 426

Chapter 7: Reference Manual

problem.setcbitervar

Purpose
Set a user callback to be called after each column has been tested for convergence

Synopsis
problem.setcbitervar(callback, data)
retval = callback(my_prob, my_object, colindex)

Arguments
callback The function to be called after each column has been tested for convergence. callback

returns an integer value. The return value is interpreted as a convergence status. The
possible values are:
< 0 The variable has not converged;
0 The convergence status of the variable is unchanged;
1 to 10 The column has converged on a system-defined convergence criterion

(these values should not normally be returned);
> 10 The variable has converged on user criteria.

my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbitervar.
ColIndex The number of the column which has been tested for convergence.
data A user-defined object, which can be used for any purpose by the function. data is passed

to callback as my_object.

Example
The following example sets up a callback to be executed after each variable has been tested for
convergence. The user object Important is an integer array which has already been set up and holds a
flag for each variable indicating whether it is important that it converges.

Obj = None
p.setcbitervar(CBIterVar, Obj)

The following sample callback function tests if the variable is already converged. If not, then it checks if
the variable is important. If it is not important, the function returns a convergence status of 99.

def CBIterVar(MyProb, Obj, iCol):
(a,b,c,d,e,f,g,h,i,converged,j,k,l,m,n) = MyProb.getvar(iCol)
if converged:

return 0
if Obj[iCol]:

return 99
return -1

The object argument is used here to hold the array Important.

Further information
This callback can be used after each variable has been checked for convergence, and allows the
convergence status to be reset if required.

Related topics
problem.setcbiterend, problem.setcbiterstart

Fair Isaac Corporation Proprietary Information 427

Chapter 7: Reference Manual

problem.setcbmessage

Purpose
Set a user callback to be called whenever Xpress Nonlinear outputs a line of text

Synopsis
problem.setcbmessage(callback, data)
callback(my_prob, my_object, msg, msgtype)

Arguments
callback The function to be called whenever Xpress Nonlinear outputs a line of text. callback

does not return a value.
my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbmessage.
msg String to be output.
msgtype Type of message. The following are system-defined:

1 Information message
3 Warning message
4 Error message
A negative value indicates that the Optimizer is about to finish and any buffers should be
flushed at this time. User-defined values are also possible for msgtype.

data A user-defined object, which can be used for any purpose by the function. data is passed
to callback as my_object.

Example
The following example creates a log file into which all messages are placed. System messages are also
printed on standard output:

log = ''
p.setcbmessage(CBMessage, log)

A suitable callback function could resemble the following:

def CBMessage(Obj, msg, msgtype):
if msgtype < 0:

print(log)
log = ''
return

if msgtype >= 1 and msgtype <= 4:
print(msg)

else:
log += msg + ';'

Further information
If a user message callback is defined, screen output is automatically disabled.
Output can be directed into a log file by using problem.setlogfile.
Also, because of Python’s garbage collection functions, it is advised to explicitly delete a problem at the
end of its use (with the del statement) if a message callback was set for that problem using
setcbmessage. def CBMessage(Obj, msg, msgtype): pass
p = xp.problem() p.setcbmessage(CBMessage, None) [...] del p

Related topics
problem.setlogfile

Fair Isaac Corporation Proprietary Information 428

Chapter 7: Reference Manual

problem.setcbmsjobend

Purpose
Set a user callback to be called every time a new multistart job finishes. Can be used to overwrite the
default solution ranking function

Synopsis
problem.setcbmsjobend(callback, data)
status = callback(my_prob, my_object, job_object, description)

Arguments
callback The function to be called when a new multistart job is created
my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbmsjobend.
job_object Job specific user-defined object, as specified in by the multistart job creating API

functions.
description The description of the problem as specified in by the multistart job creating API

functions.
status User return status variable:

0 - use the default evaluation of the finished job
1 - disregard the result and continue
2 - stop the multistart search

Further information
The multistart pool is dynamic, and this callback can be used to load new multistart jobs using the
normal API functions.

Related topics
problem.setcbmsjobstart, problem.setcbmswinner

Fair Isaac Corporation Proprietary Information 429

Chapter 7: Reference Manual

problem.setcbmsjobstart

Purpose
Set a user callback to be called every time a new multistart job is created, and the pre-loaded settings are
applied

Synopsis
problem.setcbmsjobstart(callback, data)
status = callback(my_prob, my_object, job_object, description)

Arguments
callback The function to be called when a new multistart job is created;
my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbmsjobstart.
job_object Job specific user-defined object, as specified in by the multistart job creating API

functions.
description The description of the problem as specified in by the multistart job creating API

functions.
status User return status variable:

0 - normal return, solve the job,
1 - disregard this job and continue,
2 - Stop multistart.

Further information
All mulit-start jobs operation on an independent copy of the original problem, and any modification to the
problem is allowed, including structural changes. Please note however, that any modification will be
carried over to the base problem, should a modified problem be declared the winner prob.

Related topics
problem.setcbmsjobend, problem.setcbmswinner

Fair Isaac Corporation Proprietary Information 430

Chapter 7: Reference Manual

problem.setcbmswinner

Purpose
Set a user callback to be called every time a new multistart job is created, and the pre-loaded settings are
applied

Synopsis
problem.setcbmswinner(callback, data)
callback(my_prob, my_object, job_object, description)

Arguments
callback The function to be called when a new multistart job is created
my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbmswinner.
job_object Job specific user-defined object, as specified in by the multistart job creating API

functions.
description The description of the problem as specified in by the multistart job creating API

functions.

Further information
The multistart pool is dynamic, and this callback can be used to load new multistart jobs using the
normal API functions.

Related topics
problem.setcbmsjobstart, problem.setcbmsjobend

Fair Isaac Corporation Proprietary Information 431

Chapter 7: Reference Manual

problem.setcboptnode

Purpose
Set a user callback to be called during MISLP when an optimal SLP solution is obtained at a node

Synopsis
problem.setcboptnode(callback, data)
infeas = callback(my_prob, my_object)

Arguments
callback The function to be called when an optimal SLP solution is obtained at a node. It must

returns an integer value. If the return value is nonzero, or if the feasibility flag is set
nonzero, then further processing of the node will be terminated (it is declared infeasible).

data The user-defined object passed as my_object to setcboptnode.
my_prob The problem passed to the callback function.
my_object The user-defined object passed to setcboptnode.
infeas Integer containing the feasibility flag. If nonzero, the node is declared infeasible.

Example
The following example defines a callback function to be run at each node when an SLP optimal solution
is found. If there are significant penalty errors in the solution, the node is declared infeasible.

p.setcboptnode(CBOptNode, None)

A suitable callback function might resemble the following:

def CBOptNode(prob, data) {
total = prob.attributes.xslp_errorcosts
objval = prob.attributes.xslp_objval
if abs(total) > abs(objval) ⁎ 0.001 and abs(total) > 1:

return 1
else:

return 0

Further information
If a node is declared infeasible from the callback function, the cost of exploring the node further will be
avoided.
This callback must be used in place of setcboptnode when optimizing with MISLP.

Related topics
problem.setcbprenode, problem.setcbslpnode

Fair Isaac Corporation Proprietary Information 432

Chapter 7: Reference Manual

problem.setcbprenode

Purpose
Set a user callback to be called during MISLP after the set-up of the SLP problem to be solved at a node,
but before SLP optimization

Synopsis
problem.setcbprenode(callback, data)
feas = callback(my_prob, my_object)

Arguments
callback The function to be called after the set-up of the SLP problem to be solved at a node.

callback returns an integer value. If the return value is nonzero, then further processing
of the node will be terminated (it is declared infeasible).

my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbprenode.
feas feasibility flag. If callback return a nonzero, the node is declared infeasible.

Example
The following example sets up a callback function to be executed at each node before the SLP
optimization starts. The array IntList contains a list of integer variables, and the function prints the
bounds on these variables.

IntList = [...]
prob.setcbprenode(CBPreNode, IntList)

A suitable callback function might resemble the following:

def CBPreNode(myProb, intlist):
for i in intlist:

LO,UP = [],[]
myProb.getlb(LO,i,i)
myProb.getub(UP,i,i)
lb,ub = LO[0], UP[0]
if lb > 0 or ub < xp.infinity:

print("Col {0}: {1} <= {2}".format(i,lb,ub)
return 0

Further information
If a node can be identified as infeasible by the callback function, then the initial optimization at the
current node is avoided, as well as further exploration of the node.

Related topics
problem.setcboptnode, problem.setcbslpnode

Fair Isaac Corporation Proprietary Information 433

Chapter 7: Reference Manual

problem.setcbpreupdatelinearization

Purpose
Set a user callback to be called before the linearization is updated

Synopsis
problem.setcbpreupdatelinearization(callback, data)
ifRepeat = callback(my_prob, my_object, when)

Arguments
callback The function to be called before the linearization is updated. If callback returns True,

another call to the callback will be scheduled. If it returns False, a final call with when
== -1 will be made.

my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbpreupdatelinearization.
when Indicates the call number, starting at 1. A value of -1 indicates the end of the linearization

update.

Further information
When the linearization is updated, all user functions are evaluated and their derivatives calculated at the
current base point. In some models, it is cheaper to compute the derivatives for all user functions at the
same time, thereby avoiding repeated calculations for each function. This callback is intended to be used
in such cases.
During each SLP iteration, the callback is invoked repeatedly, with when indicating the current call number
(starting from 1), until the callback indicates that no further calls are needed, by returning False.
Between each callback invocation, the solver evaluates the user functions without requesting derivatives.
After the callback has returned False, the user functions are evaluated one more time, this time
requesting derivatives, and then finally the callback is called with when == -1, marking the end of the
linearization update. The only time derivatives will be requested outside of this sequence is during KKT
validation. This can be disabled during the solve by clearing the XSLP_CONVERGEBIT_VALIDATION_K
bit in XSLP_CONVERGENCEOPS, ensuring that derivatives can always be precomputed.
One way that this callback can be used to precompute derivatives for user functions is as follows:

1. On each SLP iteration, the callback is first called with when = 1. This is a signal that derivatives
will be needed soon. The callback sets a flag to indicate that user functions should capture their
input values, and returns True to request another call.

2. When the callback returns, the user functions are evaluated without requesting derivatives. Each
user function captures its input values somewhere, and returns the correct function value.

3. The callback is called again, with when == 2. The callback now computes derivates for all user
functions using the captured input values. The callback clears the flag so that user functions no
longer capture their input values, and returns False to indicate that no further calls are needed.

4. When the callback returns, the user functions are evaluated again. Derivatives are requested, and the
user functions return the precomputed derivative values.

5. The callback is invoked one more time for this iteration with when == -1, marking the end of the
linearization update. User functions should behave normally from this point.

Fair Isaac Corporation Proprietary Information 434

Chapter 7: Reference Manual

problem.setcbslpend

Purpose
Set a user callback to be called at the end of the SLP optimization

Synopsis
problem.setcbslpend(callback, data)
callback(my_prob, my_object)

Arguments
callback The function to be called at the end of the SLP optimization. callback returns an integer

value. If the return value is nonzero, the optimization will return an error code and the
"User Return Code" error will be set.

my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbslpend.
data A user-defined object, which can be used for any purpose by the function. data is passed

to callback as my_object.

Example
The following example sets up a callback to be executed at the end of the SLP optimization. It frees the
memory allocated to the object created when the optimization began:

ObjData = None
p.setcbslpend(CBSlpEnd, ObjData)

A suitable callback function might resemble this:

def CBSlpEnd(MyProb, Obj):
if Obj is not None:

Obj = []
return 0

Further information
This callback can be used at the end of the SLP optimization to carry out any further processing or
housekeeping before the optimization function returns.

Related topics
problem.setcbslpstart

Fair Isaac Corporation Proprietary Information 435

Chapter 7: Reference Manual

problem.setcbslpnode

Purpose
Set a user callback to be called during MISLP after the SLP optimization at each node.

Synopsis
problem.setcbslpnode(callback, data)
(retval, infeas) = callback(my_prob, my_object)

Arguments
callback The function to be called after the set-up of the SLP problem to be solved at a node.

callback returns an integer value. If the return value is nonzero, or if the feasibility flag
is set nonzero, then further processing of the node will be terminated (it is declared
infeasible).

my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbslpnode.
infeas An integer containing the feasibility flag. If callback sets the flag nonzero, the node is

declared infeasible.
data A user-defined object, which can be used for any purpose by the function. data is passed

to callback as my_object.

Example
The following example sets up a callback function to be executed at each node after the SLP optimization
finishes. If the solution value is worse than a target value (referenced through the user object), the node
is cut off (it is declared infeasible).

objtarget = []
p.setcbslpnode(CBSLPNode, objtarget)

A suitable callback function might resemble the following:

def CBSLPNode(my_prob, my_obj):
lpval = my_prob.attributes.lpobjval
return (0, (lpval < my_obj))

Further information
If a node can be cut off by the callback function, then further exploration of the node is avoided.

Fair Isaac Corporation Proprietary Information 436

Chapter 7: Reference Manual

problem.setcbslpstart

Purpose
Set a user callback to be called at the start of the SLP optimization

Synopsis
problem.setcbslpstart(callback, data)
retval = callback(my_prob, my_object)

Arguments
callback The function to be called at the start of the SLP optimization. callback returns an

integer value. If the return value is nonzero, the optimization will not be carried out.
my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbslpstart.
data User-defined object, which can be used for any purpose by the function. data is passed

to callback as my_object.

Example
The following example sets up a callback to be executed at the start of the SLP optimization:

Objdata = []
p.setcbslpstart(CBSlpStart, Objdata)

A suitable callback function might resemble this:

def CBSlpStart(object):
object.append(1)
return 0

Further information
This callback can be used at the start of the SLP optimization to carry out any housekeeping before the
optimization actually starts. Note that a nonzero return code from the callback will terminate the
optimization immediately.

Related topics
problem.setcbslpend

Fair Isaac Corporation Proprietary Information 437

Chapter 7: Reference Manual

problem.setControl

Purpose
Sets one or more controls of a problem. Can also be used to set objective controls.

Synopsis
problem.setControl(control, value, objidx=None)
problem.setControl(dict, objidx=None)

Arguments
control Name or numeric id of the control whose value to change. If the objidx argument is

provided, the control must be one of the following objective controls:
priority the priority of the objective
weight the weight of the objective
reltol the relative tolerance of the objective
abstol the absolute tolerance of the objective
rhs the constant part of the objective

value Value to which to set the control.
dict A dictionary mapping names or numeric ids of controls to values to which to set them.
objidx (optional) Index of the objective whose control to modify.

Example

p = xpress.problem()
p.setControl('miprelstop', 1e-4)
p.setControl({'feastol': 1e-4, 'presolve': 0})

Further information
1. As mentioned in the previous chapter, there is an alternative way to set and retrieve controls. It works by

querying the data structure controls of each problem or, if one wants to set a control to be used by all
problems defined subsequently, the global control object xpress.controls.

2. This function can be used in two ways depending on whether one wants to set one or more controls. In
the first case, the arguments form a pair (string, value) where the first element is the lower-case name of
a control (see the Xpress Optimizer reference manual for a complete list of controls). In the second case,
the argument is a Python dictionary whose keys are control name string and whose values are the value
of the control. Instead of control names it is also possible to use their numeric ids.

Related topics
problem.getControl.

Fair Isaac Corporation Proprietary Information 438

Chapter 7: Reference Manual

problem.setcurrentiv

Purpose
Transfer the current solution to initial values

Synopsis
problem.setcurrentiv()

Further information
Provides a way to set the current iterates solution as initial values, make changes to parameters or to the
underlying nonlinear problem and then rerun the SLP optimization process.

Related topics
problem.reinitialize, problem.unconstruct

Fair Isaac Corporation Proprietary Information 439

Chapter 7: Reference Manual

problem.setdefaultcontrol

Purpose
Sets one control to its default values. Must be called before the problem is read or loaded by
problem.read and problem.loadproblem.

Synopsis
problem.setdefaultcontrol(control)

Argument
control Name of the control to be set to default.

Example
The following turns off presolve to solve a problem, before resetting the control defaults, reading it and
solving it again:

p.controls.presolve = 0
p.mipoptimize("")
p.writeprtsol()
p.setdefaultcontrol('presolve')
p.read()
p.mipoptimize("")

Related topics
xpress.setdefaultcontrol, xpress.setdefaults, problem.setdefaultcontrol.

Fair Isaac Corporation Proprietary Information 440

Chapter 7: Reference Manual

problem.setdefaults

Purpose
Sets all controls to their default values. It must be called before the problem is read with problem.read
or loaded with problem.loadproblem.

Synopsis
problem.setdefaults()

Example
The following turns off presolve to solve a problem, before resetting the control defaults, reading it and
solving it again:

p.controls.presolve = 0
p.mipoptimize("")
p.writeprtsol()
p.setdefaults()
p.read()
p.mipoptimize("")

Related topics
xpress.setdefaultcontrol, xpress.setdefaults, problem.setdefaults.

Fair Isaac Corporation Proprietary Information 441

Chapter 7: Reference Manual

problem.setindicators

Purpose
Specifies that a set of rows in the problem will be treated as indicator constraints during a tree search. An
indicator constraint is made of a condition and a linear inequality. The condition is of the
type "bin = value", where bin is a binary variable and value is either 0 or 1. The linear
inequality is any linear row in the problem with type <= (L) or >= (G). During tree search, a row
configured as an indicator constraint is enforced only when condition holds, that is only if the indicator
variable bin has the specified value.

Synopsis
problem.setindicators(rowind, colind, complement)

Arguments
rowind Array containing the rows (i.e. xpress.constraint objects, indices, or names) that

define the linear inequality part for the indicator constraints.
colind Array containing the columns (i.e. xpress.var objects, indices, or names) of the

indicator variables.
complement Array with the complement flags:

0 not an indicator constraint (in this case the corresponding entry in the colind
array is ignored);

1 for indicator constraints with condition "bin = 1";
-1 for indicator constraints with condition "bin = 0";

Example
This sets the first two matrix rows as indicator rows in the MIP problem prob; the first row controlled by
condition x4=1 and the second row controlled by condition x5=0 (assuming x4 and x5 correspond to
columns indices 4 and 5).

p.setindicators([0,1],[4,5],[1,-1])
p.mipoptimize("")

Further information
Indicator rows must be set up before solving the problem. Any indicator row will be removed from the
problem after presolve and added to a special pool. An indicator row will be added back into the active
matrix only when its associated condition holds. An indicator variable can be used in multiple indicator
rows and can also appear in normal rows and in the objective function.

Related topics
problem.getindicators.

Fair Isaac Corporation Proprietary Information 442

Chapter 7: Reference Manual

problem.setlogfile

Purpose
This directs all Optimizer output to a log file.

Synopsis
problem.setlogfile(filename)

Argument
filename The name of the file to which all output will be directed. If set to None, redirection of the

output will stop and all screen output will be turned back on (except for DLL users where
screen output is always turned off).

Example
The following directs output to the file logfile.log:

p = xpress.problem()
p.setlogfile("logfile.log")

Further information
1. It is recommended that a log file be set up for each problem being worked on, since it provides a means

for obtaining any errors or warnings output by the Optimizer during the solution process.

2. If output is redirected with setlogfile all screen output will be turned off.

3. Alternatively, an output callback can be defined using problem.addcbmessage, which will be called
every time a line of text is output. Defining a user output callback will turn all screen output off. To
discard all output messages the OUTPUTLOG integer control can be set to 0.

Related topics
problem.addcbmessage.

Fair Isaac Corporation Proprietary Information 443

Chapter 7: Reference Manual

problem.setmessagestatus

Purpose
Manages suppression of messages.

Synopsis
problem.setmessagestatus(msgcode, status)

Arguments
msgcode The id number of the message. Refer to the Section 9 of the Xpress Optimizer reference

manual for a list of possible message numbers.
status Nonzero if the message is not suppressed; 0 otherwise.

Example
Attempting to optimize a problem that has no matrix loaded gives error 91. The following code uses
setmessagestatus to suppress the error message:

p = xpress.problem()
p.setmessagestatus(91, 0)
p.lpoptimize("")

Further information
If a message is suppressed globally then the message can only be enabled for any problem once the
global suppression is removed with a call to setmessagestatus with prob passed as None.

Related topics
problem.getmessagestatus.

Fair Isaac Corporation Proprietary Information 444

Chapter 7: Reference Manual

problem.setObjective

Purpose
Sets the objective function of the problem.

Synopsis
problem.setObjective(expr, sense=None, objidx=0, priority=None, weight=None,

abstol=None, reltol=None)

Arguments
expr An expression involving variables which have been added to the problem prior to this call.

An error will be returned if any variable in the objective was not already added to the
problem via addVariable.

sense (optional) Either xpress.minimize or xpress.maximize (by default the sense will be
left unchanged).

objidx (optional) Index of the objective to modify.
priority (optional) Priority for the new objective (only relevant for multi-objective problems).
weight (optional) Weight for the new objective (only relevant for multi-objective problems).
abstol (optional) Absolute tolerance for the new objective (only relevant for multi-objective

problems).
reltol (optional) Relative tolerance for the new objective (only relevant for multi-objective

problems).

Example
The following example sets the objective function of the problem to [2x21 + 3x1x2 + 5x22 + 4x1 + 4]:

p = xpress.problem()
x1 = p.addVariable()
x2 = p.addVariable()
p.setObjective(2⁎x1⁎⁎2 + 3⁎x1⁎x2 + 5⁎x2⁎⁎2 + 4⁎x1 + 4)

Further information
Multiple calls to setObjective are allowed, and each replaces the old objective function with a new
one.

Related topics
problem.addVariable, problem.addObjective, problem.addobj, problem.chgobjn,
problem.delobj.

Fair Isaac Corporation Proprietary Information 445

Chapter 7: Reference Manual

problem.setprobname

Purpose
Sets the current default problem name.

Synopsis
problem.setprobname(probname)

Argument
probname A string of up to MAXPROBNAMELENGTH characters containing the problem name.

Related topics
problem.read, problem.name, MAXPROBNAMELENGTH.

Fair Isaac Corporation Proprietary Information 446

Chapter 7: Reference Manual

problem.slpgetcoefstr

Purpose
Retrieve a single matrix coefficient as a formula in a character string

Synopsis
formula, factor = problem.slpgetcoefstr(row, col)

Arguments
row The row (i.e. xpress.constraint object, index, or name) for the coefficient.
col The column (i.e. xpress.var object, index, or name) for the coefficient.

Return value
formula The formula string.
factor The constant factor multiplying the formula in the coefficient.

Example
The following example retrieves the formula for the coefficient of column 3 in in row 2:

formula, _ = problem.slpgetformulastr(2, 3)
print("Formula is {}".format(formula))

Further information
If the requested coefficient is constant, then factor will be set to 1.0 and the value will be formatted in
formula.

Related topics
problem.slpchgcoefstr, problem.slpchgcoef, problem.getcoefformula

Fair Isaac Corporation Proprietary Information 447

Chapter 7: Reference Manual

problem.storecuts

Purpose
Stores cuts into the cut pool, but does not apply them to the current node. These cuts must be explicitly
loaded into the matrix using problem.loadcuts before they become active.

Synopsis
problem.storecuts(nodups, cuttype, rowtype, rhs, start, cutind, colind,

cutcoef)

Arguments
nodups 0 do not exclude duplicates from the cut pool;

1 duplicates are to be excluded from the cut pool;
2 duplicates are to be excluded from the cut pool, ignoring cut type.

cuttype Array containing the cut types. The cut types can be any integer and are used to identify
the cuts.

rowtype Character array containing the row types:
L indicates a ≤ row;
E indicates an = row;
G indicates a ≥ row.

rhs Array containing the right hand side elements for the cuts.
start Array containing offsets into the colind and cutcoef arrays indicating the start of each

cut. This array is of length ncuts+1 where ncuts is the length of rhs, with the last
element start[ncuts] being where cut ncuts+1 would start.

cutind Array where the cuts will be returned.
colind Array containing the columns in the cuts.
cutcoef Array containing the matrix values for the cuts.

Further information
1. storecuts can be used to eliminate duplicate cuts. If the nodups parameter is set to 1, the cut pool

will be checked for duplicate cuts with a cut type identical to the cuts being added. If a duplicate cut is
found the new cut will only be added if its right hand side value makes the cut stronger. If the cut in the
pool is weaker than the added cut it will be removed unless it has been applied to an active node of the
tree. If nodups is set to 2 the same test is carried out on all cuts, ignoring the cut type.

2. storecuts returns a list of the cuts added to the cut pool in the cutind array. If the cut is not added to
the cut pool because a stronger cut exits a None will be returned. The cutind array can be passed
directly to problem.loadcuts to load the most recently stored cuts into the matrix.

3. The columns and elements of the cuts must be stored contiguously in the colind and cutcoef arrays
passed to storecuts. The starting point of each cut must be stored in the start array. To determine
the length of the final cut the start array must be of length ncuts+1 with the last element of this array
containing where the cut ncuts+1 would start.

Related topics
problem.loadcuts, Section "Working with the cut manager" of the Xpress Optimizer reference manual.

Fair Isaac Corporation Proprietary Information 448

Chapter 7: Reference Manual

problem.strongbranch

Purpose
Performs strong branching iterations on all specified bound changes. For each candidate bound change,
strongbranch performs dual simplex iterations starting from the current optimal solution of the base
LP, and returns both the status and objective value reached after these iterations.

Synopsis
problem.strongbranch(colind, bndtype, bndval, iterlim, objval, status)

Arguments
colind Array containing the columns (i.e. xpress.var objects, indices, or names) on which the

bounds will change.
bndtype Character array indicating the type of bound to change:

U indicates change the upper bound;
L indicates change the lower bound;
B indicates change both bounds, i.e. fix the column.

bndval Array giving the new bound values.
iterlim Maximum number of LP iterations to perform for each bound change.
objval Objective value of each LP after performing the strong branching iterations.
status Status of each LP after performing the strong branching iterations, as detailed for the

LPSTATUS attribute.

Example
Suppose that the current LP relaxation has two integer columns (columns 0 and 1 which are fractionals
at 0.3 and 1.5, respectively, and we want to perform strong branching in order to choose which to branch
on. This could be done in the following way:

objval = []
status = []
p.strongbranch([0,0,1,0], ['','','',''], [1,0,2,1],

1000, objval, status)

Further information
Prior to calling strongbranch, the current LP problem must have been solved to optimality and an optimal
basis must be available.

Fair Isaac Corporation Proprietary Information 449

Chapter 7: Reference Manual

problem.strongbranchcb

Purpose
Performs strong branching iterations on all specified bound changes. For each candidate bound change,
strongbranchcb performs dual simplex iterations starting from the current optimal solution of the
base LP, and returns both the status and objective value reached after these iterations.

Synopsis
problem.strongbranchcb(colind, bndtype, bndval, iterlim, objval, status,

callback, data)
ret = callback(my_prob, my_object, ibnd)

Arguments
colind Array containing the columns (i.e. xpress.var objects, indices, or names) on which the

bounds will change.
bndtype Character array indicating the type of bound to change:

U indicates change the upper bound;
L indicates change the lower bound;
B indicates change both bounds, i.e. fix the column.

bndval Array giving the new bound values.
iterlim Maximum number of LP iterations to perform for each bound change.
objval Objective value of each LP after performing the strong branching iterations.
status Status of each LP after performing the strong branching iterations, as detailed for the

LPSTATUS attribute.
callback Function to be called after each strong branch has been reoptimized.
data The user-defined object passed as my_object to callback.
ibnd The index of bound for which callback is called.

Further information
Prior to calling strongbranchcb, the current LP problem must have been solved to optimality and an
optimal basis must be available.
strongbranchcb is an extension to problem.strongbranch. If identical input arguments are
provided both will return identical results, the difference being that for the case of PRSstrongbranchcb
the sbnodecb function is called at the end of each LP reoptimization. For each branch optimized, the LP
can be interrogated: the LP status of the branch is available through checking LPSTATUS, and the
objective function value is available through LPOBJVAL. It is possible to access the full current LP
solution by using problem.getlpsol.

Fair Isaac Corporation Proprietary Information 450

Chapter 7: Reference Manual

problem.tune

Purpose
Begin a tuner session for the current problem. The tuner will solve the problem multiple times while
evaluating a list of control settings and promising combinations of them. When finished, the tuner will
select and set the best control setting on the problem. Note that the direction of optimization is given by
xpress.attributes.objsense.

Synopsis
problem.tune(flags)

Argument
flags Flags to specify whether to tune the current problem as an LP or a MIP problem, and the

algorithm for solving the LP problem or the initial LP relaxation of the MIP. The flags are
optional. If the argument includes:
l will tune the problem as an LP (mutually exclusive with flag g);
g will tune the problem as a MIP (mutually exclusive with flag l);
d will use the dual simplex method;
p will use the primal simplex method;
b will use the barrier method;
n will use the network simplex method.

Example

p.tune('dp')

This tunes the current problem. The problem type is automatically determined. If it is an LP problem, it
will be solved with a concurrent run of the dual and primal simplex method. If it is a MIP problem, the
initial LP relaxation of the MIP will be solved with a concurrent run of primal and dual simplex.

Further information
Please refer to the Xpress Optimizer reference manual for a detailed guide of how to use the tuner.

Related topics
problem.tuneprobsetfile, problem.tunerreadmethod, problem.tunerwritemethod.

Fair Isaac Corporation Proprietary Information 451

Chapter 7: Reference Manual

problem.tuneprobsetfile

Purpose
This function begins a tuner session for a set of problems. The tuner will solve the problems multiple
times while evaluating a list of control settings and promising combinations of them. When finished, the
tuner will select and set the best control setting on the problems.

Synopsis
problem.tuneprobsetfile(setfile, ifmip, sense)

Arguments
setfile A plain text file which contains a list of problem files in MPS or LP format.
ifmip -1 to automatically determine whether to solve the problem set as LP or MIP (the

default);
0 to force the tuner to tune the problem set as LP;
1 to force the tuner to tune the problem set as MIP.

sense 0 to automatically determine the sense of each problem (the default);
1 to force the tuner to minimize each problem;
-1 to force the tuner to maximize each problem.

Example

problem.tuneprobsetfile("problem.set")

This tunes the problems contained in problem.set. The problem types and objective senses are
automatically determined.

Further information
Please refer to the Xpress Optimizer reference manual for a detailed guide of how to use the tuner.

Related topics
problem.tune, problem.tunerreadmethod, problem.tunerwritemethod.

Fair Isaac Corporation Proprietary Information 452

Chapter 7: Reference Manual

problem.tunerreadmethod

Purpose
Load a user defined tuner method from the given file.

Synopsis
problem.tunerreadmethod(methodfile)

Argument
methodfile The method file name, from which the tuner can load a user-defined tuner method.

Example

p.tunerreadmethod('method.xtm')

This loads the tuner method from the method.xtm file.

Further information
Please refer to the Xpress Optimizer reference manual for more information about the tuner method and
for the format of the tuner method file.

Related topics
problem.tunerwritemethod, problem.tune, problem.tuneprobsetfile.

Fair Isaac Corporation Proprietary Information 453

Chapter 7: Reference Manual

problem.tunerwritemethod

Purpose
Writes the current tuner method to a given file or prints it to the console.

Synopsis
problem.tunerwritemethod(methodfile)

Argument
methodfile The file name to which the tuner will write the current tuner method. If the input is

stdout or STDOUT, then the tuner will print the method to the console instead.

Example 1 (Library)

p.tunerwritemethod('method.xtm')

This writes the tuner method to the file method.xtm.

Example 2 (Library)

p.tunerwritemethod('stdout')

This prints the tuner method to the console.

Further information
Please refer to the Xpress Optimizer reference manual for more information about the tuner method and
for the format of the tuner method file.

Related topics
problem.tunerreadmethod, problem.tune, problem.tuneprobsetfile.

Fair Isaac Corporation Proprietary Information 454

Chapter 7: Reference Manual

problem.unconstruct

Purpose
Reset the SLP problem and removes the augmentation structures

Synopsis
problem.unconstruct()

Further information
Can be used to rerun the SLP optimization process with changed parameters or underlying lienar /
nonlienar strcutures.

Related topics
problem.reinitialize, problem.setcurrentiv,

Fair Isaac Corporation Proprietary Information 455

Chapter 7: Reference Manual

problem.updatelinearization

Purpose
Updates the current linearization

Synopsis
problem.updatelinearization()

Further information
Updates the augmented probem (the linearization) to match the current base point. The base point is the
current SLP solution. The values of the SLP variables can be changed using problem.chgvar.
The linearization must be present, and this function can only be called after the problem has been
augmented by problem.construct.

Related topics
problem.construct

Fair Isaac Corporation Proprietary Information 456

Chapter 7: Reference Manual

problem.validate

Purpose
Validate the feasibility of constraints in a converged solution

Synopsis
problem.validate()

Example
The following example sets the validation tolerance parameters, validates the converged solution and
retrieves the validation indices.

p.controls.xslp_validationtol_a = 0.001
p.controls.xslp_validationtol_r = 0.001
p.validate()
indexA = p.attributes.xslp_validationindex_a
indexR = p.attributes.xslp_validationindex_r

Further information
validate checks the feasibility of a converged solution against relative and absolute tolerances for
each constraint. The left hand side and the right hand side of the constraint are calculated using the
converged solution values. If the calculated values imply that the constraint is infeasible, then the
difference (D) is tested against the absolute and relative validation tolerances.
If D < XSLP_VALIDATIONTOL_A
then the constraint is within the absolute validation tolerance. The total positive (TPos) and negative
contributions (TNeg) to the left hand side are also calculated.
If D < MAX(ABS(TPos),ABS(TNeg)) ∗ XSLP_VALIDATIONTOL_R
then the constraint is within the relative validation tolerance. For each constraint which is outside both
the absolute and relative validation tolerances, validation factors are calculated which are the factors by
which the infeasibility exceeds the corresponding validation tolerance; the smallest factor is printed in the
validation report.
The validation index xslp_validationindex_a is the largest absolute validation factor multiplied by
the absolute validation tolerance; the validation index xslp_validationindex_r is the largest
relative validation factor multiplied by the relative validation tolerance.

Related topics
xslp_validationindex_A, xslp_validationindex_R, xslp_validationtol_A,
xslp_validationtol_R

Fair Isaac Corporation Proprietary Information 457

Chapter 7: Reference Manual

problem.validatekkt

Purpose
Validates the first order optimality conditions also known as the Karush-Kuhn-Tucker (KKT) conditions
versus the currect solution

Synopsis
problem.validatekkt(mode, respectbasis, updatemult, violtarget)

Arguments
mode The calculation mode can be:

0 recalculate the reduced costs at the current solution using the current dual
solution.

1 minimize the sum of KKT violations by adjusting the dual solution.
2 perform both.

respectbasis The following ways are defined to assess if a constraint is active:
0 evaluate the recalculated slack activity versus xslp_ECFTOL_R.
1 use the basis status of the slack in the linearized problem if available.
2 use both.

updatemult The calculated values can be:
0 only used to calculate the xslp_validationindex_kmeasure.
1 used to update the current dual solution and reduced costs.

violtarget When calculating the best KKT multipliers, it is possible to enforce an even distribution of
reduced costs violations by enforcing a bound on them.

Further information
The bounds enforced by violtarget are automatically relaxed if the desired accuracy cannot be
achieved.

Fair Isaac Corporation Proprietary Information 458

Chapter 7: Reference Manual

problem.validaterow

Purpose
Prints an extensive analysis on a given constraint of the SLP problem

Synopsis
problem.validate(row)

Argument
row The row (i.e. xpress.constraint object, index, or name) to be analyzed.

Further information
The analysis will include the readable format of the original constraint and the augmented constraint. For
infeasible constraints, the absolute and relative infeasibility is calculated. Variables in the constraints are
listed including their value in the solution of the last linearization, the internal value (e.g. cascaded),
reduced cost, step bound and convergence status. Scaling analysis is also provided.

Fair Isaac Corporation Proprietary Information 459

Chapter 7: Reference Manual

problem.validatevector

Purpose
Validate the feasibility of constraints for a given solution

Synopsis
(suminf, sumscaledinf, obj) = problem.validate(solution)

Arguments
solution A vector of length xpress.attributes.cols containing the solution vector to be

checked.
suminf The sum of infeasibilities.
sumscaledinf The sum of scaled (relative) infeasibilities.
obj The net objective.

Further information
validatevector works the same way as problem.validate, and will update
xslp_validationindex_a and xslp_validationindex_r.

Related topics
Xslp_Validationindex_a, xslp_validationindex_r, xslp_validationtol_a,
xslp_validationtol_r

Fair Isaac Corporation Proprietary Information 460

Chapter 7: Reference Manual

problem.write

Purpose
Writes the current problem to an MPS or LP file.

Synopsis
problem.write(filename, flags)

Arguments
filename A string of up to 200 characters to contain the file name to which the problem is to be

written. If omitted, the default problem_name is used with a .mps extension, unless the l
flag is used in which case the extension is .lp.

flags (optional) Flags, which can be one or more of the following:
h single precision of numerical values;
o one element per line;
n scaled;
s scrambled vector names;
l output in LP format;
x output MPS file in hexadecimal format.
p obsolete flag (now default behavior).

Example
The following example outputs the current problem in full precision, LP format with scrambled vector
names to the file problem_name.lp.

p.write("", "lps")

Further information
1. If problem.loadproblem is used to obtain a problem then there is no association between the

objective function and the N rows in the problem and so a separate N row (called __OBJ___) is created
upon a write. Also, if after a call to read either the objective row or the N row in the problem
corresponding to the objective row are changed, the association between the two is lost and the
__OBJ___ row is created with an write. To remove the objective row from the problem when doing a
read, set keepnrows to -1 before read.

2. The hexadecimal format is useful for saving the exact internal precision of the problem.

3. Warning: If problem.read is used to input a problem, then the input file will be overwritten by write if
a new filename is not specified.

Related topics
problem.read.

Fair Isaac Corporation Proprietary Information 461

Chapter 7: Reference Manual

problem.writebasis

Purpose
Writes the current basis to a file for later input into the Optimizer.

Synopsis
problem.writebasis (filename, flags)

Arguments
filename A string of up to 200 characters containing the file name from which the basis is to be

written. If omitted, the default problem_name is used with a .bss extension.
flags (optional) Flags to pass to writebasis:

i output the internal presolved basis.
t output a compact advanced form of the basis.
n output basis file containing current solution values.
h output values in single precision.
x output values in hexadecimal format.
p obsolete flag (now default behavior).

Example
After an LP has been solved it may be desirable to save the basis for future input as an advanced starting
point for other similar problems. This may save significant amounts of time if the LP is complex. For
example:

p.read("myprob", "")
p.lpoptimize("")
p.writebasis("", "")

This reads in a problem file, maximizes the LP and saves the basis. Loading a basis for a MIP problem
can disable some MIP presolve operations which can result in a large increase in solution times so it is
generally not recommended.

Further information
1. The t flag is only useful for later input to a similar problem using the t flag with problem.readbasis.

2. If the Newton barrier algorithm has been used for optimization then crossover must have been performed
before there is a valid basis. This basis can then only be used for restarting the simplex (primal or dual)
algorithm.

3. writebasis will output the basis for the original problem even if the problem has been presolved.

Related topics
problem.getbasis, problem.readbasis.

Fair Isaac Corporation Proprietary Information 462

Chapter 7: Reference Manual

problem.writebinsol

Purpose
Writes the current MIP or LP solution to a binary solution file for later input into the Optimizer.

Synopsis
problem.writebinsol(filename, flags)

Arguments
filename A string of up to 200 characters containing the file name to which the solution is to be

written. If omitted, the default problem_name is used with a .sol extension.
flags (optional) Flags to pass to writebinsol:

x output the LP solution.

Example
After an LP has been solved or a MIP solution has been found the solution can be saved to file. If a MIP
solution exists it will be written to file unless the x flag is passed to writebinsol in which case the LP
solution will be written.

p.read("myprob", "")
p.mipoptimize("")
p.writebinsol("", "")

Related topics
problem.getlpsol, problem.getmipsol, problem.readbinsol, problem.writesol,
problem.writeprtsol.

Fair Isaac Corporation Proprietary Information 463

Chapter 7: Reference Manual

problem.writedirs

Purpose
Writes the tree search directives from the current problem to a directives file.

Synopsis
problem.writedirs(filename)

Argument
filename A string of up to 200 characters containing the file name to which the directives should be

written. If omitted (or None), the default problem_name is used with a .dir extension.

Further information
If the problem has been presolved, only the directives for columns in the presolved problem will be written
to file.

Related topics
problem.loaddirs.

Fair Isaac Corporation Proprietary Information 464

Chapter 7: Reference Manual

problem.writeprtsol

Purpose
Writes the current solution to a fixed format ASCII file, problem_name.prt.

Synopsis
problem.writeprtsol(filename, flags)

Arguments
filename A string of up to 200 characters containing the file name to which the solution is to be

written. If omitted, the default problem_name will be used. The extension .prt will be
appended.

flags (optional) Flags for writeprtsol are:
x write the LP solution instead of the current MIP solution.

Example
This example shows the standard use of this function, outputting the solution to file immediately
following optimization:

p.read("myprob", "")
p.lpoptimize("")
p.writeprtsol("", "")

Further information
1. The fixed width ASCII format created by this function is not as readily useful as that produced by
problem.writesol. The main purpose of writeprtsol is to create a file that can be sent directly to
a printer. The format of this fixed format ASCII file is described in the Xpress Optimizer reference manual.

2. To create a prt file for a previously saved solution, the solution must first be loaded with the
problem.readbinsol function.

Related topics
problem.getlpsol, problem.getmipsol, problem.readbinsol, problem.writebinsol,
problem.writesol.

Fair Isaac Corporation Proprietary Information 465

Chapter 7: Reference Manual

problem.writeslxsol

Purpose
Creates an ASCII solution file (.slx) using a similar format to MPS files. These files can be read back
into the Optimizer using the problem.readslxsol function.

Synopsis
problem.writeslxsol(filename, flags)

Arguments
filename A string of up to 200 characters containing the file name to which the solution is to be

written. If omitted, the default problem_name is used with a .slx extension.
flags (optional) Flags to pass to writeslxsol:

l write the LP solution in case of a MIP problem;
m write the MIP solution;
p use full precision for numerical values;
x use hexadecimal format to write values;
d LP solution only: including dual variables;
s LP solution only: including slack variables;
r LP solution only: including reduced cost.

Example

p.writeslxsol("lpsolution", "")

This saves the MIP solution if the problem contains MIP entities, or otherwise saves the LP(barrier in
case of quadratic problems) solution of the problem.

Related topics
problem.readslxsol, problem.writeprtsol, problem.writebinsol,
problem.readbinsol.

Fair Isaac Corporation Proprietary Information 466

Chapter 7: Reference Manual

problem.writesol

Purpose
Writes the current solution to a CSV format ASCII file, problem_name.asc(and .hdr).

Synopsis
problem.writesol(filename, flags)

Arguments
filename A string of up to 200 characters containing the file name to which the solution is to be

written. If omitted, the default problem_name will be used. The extensions .hdr and
.asc will be appended.

flags (optional) Flags to control which optional fields are output:
s sequence number;
n name;
t type;
b basis status;
a activity;
c cost (columns), slack (rows);
l lower bound;
u upper bound;
d dj (column; reduced costs), dual value (rows; shadow prices);
r right hand side (rows).
If no flags are specified, all fields are output.
Additional flags:
e outputs every MIP solution saved;
p outputs in full precision;
q only outputs vectors with nonzero optimum value;
x output the current LP solution instead of the MIP solution.

Example
In this example the basis status is output (along with the sequence number) following optimization:

p.read("prob1", "")
p.lpoptimize("")
p.writesol("", "sb")

Further information
1. The function produces two readable files: filename.hdr (the solution header file) and filename.asc

(the CSV foramt solution file). The header file contains summary information, all in one line. The ASCII
file contains one line of information for each row and column in the problem. Any fields appearing in the
.asc file will be in the order the flags are described above. The order that the flags are specified by the
user is irrelevant.

2. Additionally, the mask control OUTPUTMASKmay be used to control which names are reported to the
ASCII file. Only vectors whose names match OUTPUTMASK are output. OUTPUTMASK is set by default to
"????????", so that all vectors are output.

Related topics
problem.getlpsol, problem.getmipsol, problem.writeprtsol.

Fair Isaac Corporation Proprietary Information 467

Chapter 7: Reference Manual

problem.getOutputEnabled

Purpose
Returns True if Optimizer messages will be written to the Python output stream, False otherwise.

Synopsis
enabled = problem.getOutputEnabled()

Related topics
problem.setOutputEnabled, xpress.getOutputEnabled, xpress.setOutputEnabled.

Fair Isaac Corporation Proprietary Information 468

Chapter 7: Reference Manual

problem.setOutputEnabled

Purpose
Enables or disables writing Optimizer messages to the Python output stream.

Synopsis
problem.setOutputEnabled(enabled)

Argument
enabled True if Optimizer messages should be written to the Python output stream, False otherwise.

Related topics
problem.getOutputEnabled, xpress.getOutputEnabled, xpress.setOutputEnabled.

Fair Isaac Corporation Proprietary Information 469

Chapter 7: Reference Manual

7.13 Xpress branch object methods

Fair Isaac Corporation Proprietary Information 470

Chapter 7: Reference Manual

branchobj.addbounds

Purpose
Adds new bounds to a branch of a user branching object.

Synopsis
branchobj.addbounds(branch, bndtype, colind, bndval)

Arguments
branch The number of the branch to add the new bounds for. This branch must already have been

created using branchobj.addbranches. Branches are indexed starting from zero.
bndtype Character array indicating the type of bounds to add:

L Lower bound.
U Upper bound.

colind Array containing the columns for the new bounds.
bndval Array giving the bound values.

Fair Isaac Corporation Proprietary Information 471

Chapter 7: Reference Manual

branchobj.addbranches

Purpose
Adds new, empty branches to a user defined branching object.

Synopsis
branchobj.addbranches(nbranches)

Argument
nbranches Number of new branches to create.

Fair Isaac Corporation Proprietary Information 472

Chapter 7: Reference Manual

branchobj.addcuts

Purpose
Adds stored user cuts as new constraints to a branch of a user branching object.

Synopsis
branchobj.addcuts(branch, cutind)

Arguments
branch The number of the branch to add the cuts for. This branch must already have been

created using branchobj.addbranches. Branches are indexed starting from zero.
cutind Array containing the user cuts that should be added to the branch.

Related topics
branchobj.addrows.

Fair Isaac Corporation Proprietary Information 473

Chapter 7: Reference Manual

branchobj.addrows

Purpose
Adds new constraints to a branch of a user branching object.

Synopsis
branchobj.addrows(branch, rowtype, rhs, start, colind, rowcoef)

Arguments
branch The number of the branch to add the new constraints for. This branch must already have

been created using branchobj.addbranches. Branches are indexed starting from
zero.

rowtype Character array indicating the type of constraints to add:
L Less than type.
G Greater than type.
E Equality type.

rhs Array containing the right-hand side values.
start Array containing the offsets of the colind and dval arrays of the start of the non zero

coefficients in the new constraints.
colind Array containing the columns for the non zero coefficients.
rowcoef Array containing the nonzero coefficient values.

Example
The following function will create a branching object that branches on constraints x1 + x2 ≥ 1 or
x1 + x2 ≤ 0:

def CreateConstraintBranch(mip, icol):

Create the new object with two empty branches.
bo = xpress.branchobj(mip, isoriginal=True)
bo.addbranches(2)

Add the constraint of the branching object:
x1 + x2 >= 1
x1 + x2 <= 0
bo.addrows(0, 1, 2, ['G'], [1.0], [0], [0,1], [1.0,1.0])
bo.addrows(1, 1, 2, ['L'], [0.0], [0], [0,1], [1.0,1.0])

Set a low priority value so our branch object is picked up
before the default branch candidates.
bo.setpriority(100)

return bo

Fair Isaac Corporation Proprietary Information 474

Chapter 7: Reference Manual

branchobj.getbounds

Purpose
Returns the bounds for a branch of a user branching object. The returned value is the actual number of
bounds returned in the output arrays.

Synopsis
branchobj.getbounds(branch, maxbounds, bndtype, colind, bndval)

Arguments
branch The number of the branch to get the bounds for.
maxbounds Maximum number of bounds to return.
bndtype Character array of length maxbounds where the types of bounds will be returned:

L Lower bound.
U Upper bound.

colind Array of length maxbounds where the columns will be returned.
bndval Array of length maxbounds where the bound values will be returned.

Related topics
branchobj.addbounds.

Fair Isaac Corporation Proprietary Information 475

Chapter 7: Reference Manual

branchobj.getbranches

Purpose
Returns the number of branches of a branching object.

Synopsis
branchobj.getbranches()

Related topics
branchobj.addbranches.

Fair Isaac Corporation Proprietary Information 476

Chapter 7: Reference Manual

branchobj.getid

Purpose
Returns the unique identifier assigned to a branching object.

Synopsis
branchobj.getid()

Further information
1. Branching objects associated with existing column entities (binaries, integers, semi–continuous and

partial integers), are given an identifier from 1 to MIPENTS.

2. Branching objects associated with existing Special Ordered Sets are given an identifier from MIPENTS+1
to MIPENTS+SETS.

3. User created branching objects will always have a negative identifier.

Fair Isaac Corporation Proprietary Information 477

Chapter 7: Reference Manual

branchobj.getlasterror

Purpose
Returns the last error encountered during a call to the given branch object.

Synopsis
(id,msg) = branchobj.getlasterror()

Arguments
id Error code.
msg A string with the last error message relating to the branching object will be returned.

Example
The following shows how this function might be used in error checking:

obranch = xpress.branchobj()

try:
obranch.setpreferredbranch(3)

except:
(i,m) = obranch.getlasterror()
print("ERROR when setting preferred branch:", m)

Fair Isaac Corporation Proprietary Information 478

Chapter 7: Reference Manual

branchobj.getrows

Purpose
Returns the constraints for a branch of a user branching object.

Synopsis
branchobj.getrows(branch, maxrows, maxcoefs, rowtype, rhs, start, colind,

rowcoef)

Arguments
branch The number of the branch to get the constraints from.
maxrows Maximum number of rows to return.
maxcoefs Maximum number of non zero coefficients to return.
rowtype Character array of length maxrows where the types of the rows will be returned:

L Less than type.
G Greater than type.
E Equality type.

rhs Array of length maxrows where the right hand side values will be returned.
start Array of length maxrows which will be filled with the offsets of the colind and rowcoef

arrays of the start of the non zero coefficients in the returned constraints.
colind Array of length maxcoefs which will be filled with the column indices for the non zero

coefficients.
rowcoef Array of length maxcoefs which will be filled with the non zero coefficient values.

Related topics
branchobj.addrows.

Fair Isaac Corporation Proprietary Information 479

Chapter 7: Reference Manual

branchobj.setpreferredbranch

Purpose
Specifies which of the child nodes corresponding to the branches of the object should be explored first.

Synopsis
branchobj.setpreferredbranch(branch)

Argument
branch The number of the branch to mark as preferred.

Fair Isaac Corporation Proprietary Information 480

Chapter 7: Reference Manual

branchobj.setpriority

Purpose
Sets the priority value of a user branching object.

Synopsis
branchobj.setpriority(priority)

Argument
priority The new priority value to assign to the branching object, which must be a number from 0

to 1000. User branching objects are created with a default priority value of 500.

Further information
1. A candidate branching object with lowest priority number will always be selected for branching before an

object with a higher number.

2. Priority values must be an integer from 0 to 1000. User branching objects and MIP entities are by default
assigned a priority value of 500. Special branching objects, such as those arising from structural
branches or split disjunctions are assigned a priority value of 400.

Fair Isaac Corporation Proprietary Information 481

Chapter 7: Reference Manual

branchobj.store

Purpose
Adds a new user branching object to the Optimizer’s list of candidates for branching. This function is
available only through the callback function set by problem.addcboptnode.

Synopsis
status = branchobj.store()

Argument
status The returned status from checking the provided branching object:

0 The object was accepted successfully.
1 Failed to presolve the object due to dual reductions in presolve.
2 Failed to presolve the object due to duplicate column reductions in presolve.
3 The object contains an empty branch.
The object was not added to the candidate list if a non zero status is returned.

Further information
1. To ensure that a user branching object expressed in terms of the original matrix columns can be applied

to the presolved problem, it might be necessary to turn off certain presolve operations.

2. If any of the original matrix columns referred to in the object are unbounded, dual reductions might
prevent the corresponding bound or constraint from being presolved. To avoid this, dual reductions
should be turned off in presolve, by clearing bit 3 of the integer control PRESOLVEOPS.

3. If one or more of the original matrix columns of the object are duplicates in the original matrix, but not in
the branching object, it might not be possible to presolve the object due to duplicate column eliminations
in presolve. To avoid this, duplicate column eliminations should be turned off in presolve, by clearing bit 5
of PRESOLVEOPS.

4. As an alternative to turning off the above mentioned presolve features, it is possible to protect individual
columns of a the problem from being modified by presolve. Use the problem.loadsecurevecs
function to mark any columns that might be branched on using branching objects.

Related topics
branchobj.validate.

Fair Isaac Corporation Proprietary Information 482

Chapter 7: Reference Manual

branchobj.validate

Purpose
Verifies that a given branching object is valid for branching on the current branch-and-bound node of a
MIP solve. The function will check that all branches are non-empty, and if required, verify that the
branching object can be presolved.

Synopsis
status = branchobj.validate()

Argument
status The returned status from checking the provided branching object:

0 The object is acceptable.
1 Failed to presolve the object due to dual reductions in presolve.
2 Failed to presolve the object due to duplicate column reductions in presolve.
3 The object contains an empty branch.

Fair Isaac Corporation Proprietary Information 483

CHAPTER 8

Migrating to the linked API

Prior to Xpress 9.4, variables and constraints in the Python API were global objects that could be shared
among several different problems at the same time. As a consequence, the attributes of variable and
constraint objects could not be used to inspect or modify the optimization problem held in the solver
after being added to it:

import xpress as xp
x = xp.var(ub=1)
p1 = xp.problem(x)
x.ub = 10 # Does not modify problem p1
p2 = xp.problem(x)
Upper bound of x is 1 in p1 and 10 in p2

Xpress 9.4 introduces a new way to create variables and constraints that are associated with a single
problem. These variables and constraints are called linked objects, to distinguish them from the unlinked
objects that were used in previous releases. The attributes of linked objects are synchronized with the
optimization problem:

import xpress as xp
p = xp.problem()
x = p.addVariable(ub=1)
x.ub = 10 # Problem p is updated with the new upper bound

Unlinked variables and constraints are deprecated and will be removed in a future release.

8.1 Creating linked variables
Linked variables are created using problem.addVariable:

import xpress as xp
p = xp.problem()
x = p.addVariable(name='x', lb=0, ub=5, vartype=xp.integer)

addVariable takes exactly the same arguments as the deprecated xpress.var constructor, so
migrating code that uses unlinked variables is simple:

import xpress as xp

Before (unlinked)
p = xp.problem() # Create problem
x = xp.var(name=...) # Create unlinked variable
p.addVariable(x) # Add variable to problem

After (linked)
p = xp.problem() # Create problem
x = p.addVariable(name=...) # Create linked variable within the problem

Fair Isaac Corporation Proprietary Information 484

Chapter 8: Migrating to the linked API

Note that the addVariable function was previously used to add existing unlinked variables to a
problem. This is no longer necessary. The calls to xpress.var(var_attributes...) and
problem.addVariable(myvar) should be replaced with a single call to
problem.addVariable(var_attributes...).

Several linked variables can be created at once using problem.addVariables:

import xpress as xp
p = xp.problem(x)
x = p.addVariables(10) # Returns a NumPy array of 10 linked variables

addVariables takes exactly the same arguments as the deprecated xpress.vars function, so
migrating code that uses unlinked variables is again simple:

import xpress as xp

Before (unlinked)
p = xp.problem() # Create problem
x = xp.vars(10) # Create 10 unlinked variables
p.addVariable(x) # Add variables to problem

After (linked)
p = xp.problem() # Create problem
x = p.addVariables(10) # Create 10 linked variables within the problem

8.2 Creating linked constraints
Linked constraints are created using the same syntax as unlinked constraints: using an inequality
operator or by explicitly calling the xpress.constraint constructor. As in previous releases,
constraints must be explicitly added to the problem by calling problem.addConstraint. The
attributes of linked constraints are synchronized with the problem:

import xpress as xp
p = xp.problem()
x, y = p.addVariables(2, vartype=xp.binary)
c = (x + y <= 1)
p.addConstraint(c)
c.rhs = 2 # Problem p is updated with the new right-hand side

A constraint involving linked variables can only be added to the problem which owns those variables.

8.3 Creating linked SOS constraints
Linked special ordered set (SOS) constraints are created using problem.addSOS:

import xpress as xp
p = xp.problem()
x, y = p.addVariables(2)
s = p.addSOS([x, y], [1, 2]) # Create SOS1 constraint with given weights

addSOS takes exactly the same arguments as the deprecated xpress.sos constructor, so migrating
code that uses unlinked SOS constraints is simple:

import xpress as xp

Before (unlinked)
p = xp.problem() # Create problem
x, y = xp.vars(2) # Create unlinked variables
p.addVariable(x, y) # Add variables

Fair Isaac Corporation Proprietary Information 485

Chapter 8: Migrating to the linked API

s = xp.sos([x, y], [1, 2]) # Create unlinked SOS1 constraint
p.addSOS(s) # Add SOS to problem

After (linked)
p = xp.problem() # Create problem
x, y = p.addVariables(2) # Create linked variables
s = p.addSOS([x, y], [1, 2]) # Create linked SOS1 constraint within the problem

Note that the addSOS function was previously used to add existing unlinked SOS constraints to a
problem. This is no longer necessary. The calls to xpress.sos(sos_attributes...) and
problem.addSOS(mysos) should be replaced with a single call to
problem.addSOS(sos_attributes...).

8.4 Creating linked problems
When working with unlinked objects, the variables, constraints and objective could be provided as
problem constructor arguments:

import xpress as xp
x, y = xp.vars(2)
p = xp.problem(x, y, x + y <= 1, 2 ⁎ x)

When working with linked objects, the problem must be created first, before the variables and constraints.
Only the optional name argument may be provided in the constructor. When migrating code that uses
unlinked objects, it may be necessary to move the call to the problem constructor earlier in your code, and
to add explicit calls to problem.addConstraint and problem.setObjective.

import xpress as xp
p = xp.problem('myprob')
x, y = p.addVariables(2)
p.addConstraint(x + y <= 1)
p.setObjective(2 ⁎ x)

8.5 Other API functions
The following functions can create either linked or unlinked objects, depending on the context:
problem.addrows, problem.addcols, problem.read, problem.loadproblem. If the problem
already contains unlinked objects, these functions will continue to create unlinked objects. If not, the
default behaviour is now to create linked objects. The previous behaviour of creating unlinked objects
can be achieved by passing the argument unlinked=True:

import xpress as xp
p = xp.problem()
p.readprob('myprob.mps', unlinked=True) # Creates unlinked objects

8.6 Summary
The following usages are deprecated and will be removed in a future release:

xpress.var Replace these calls with problem.addVariable

xpress.vars Replace these calls with problem.addVariables

xpress.sos Replace these calls with problem.addSOS

problem.addVariable(var1, var2, ...) Remove these calls

Fair Isaac Corporation Proprietary Information 486

Chapter 8: Migrating to the linked API

problem.addSOS(sos1, sos2, ...) Remove these calls

xpress.problem(vars, constraints, objective) Remove constructor arguments and add
explicit calls to problem.addConstraint and problem.setObjective

Fair Isaac Corporation Proprietary Information 487

APPENDIX A

Contacting FICO

FICO provides clients with support and services for all our products.

FICO Customer Support
FICO Customer Support offers technical support and services ranging from self-help tools to direct
assistance with a FICO technical support engineer. Support is available to all clients who have an active
maintenance contract.

The FICO Customer Self-Service Portal (support.fico.com) is a secure web portal that allows users to
open, review, and update their support cases; manage their organization’s portal users; find solutions to
common problems in the FICO Knowledge Base; and view the availability of their cloud applications 24
hours a day, 7 days a week.

You can find support contact information and a link to the FICO Customer Self-Service Portal (online
support) on the Product Support home page (www.fico.com/en/product-support).

Please include ’Xpress’ in the subject line of your support queries.

Documentation
FICO continually looks for new ways to improve and enhance the value of the products and services we
provide.

If you have comments or suggestions regarding how we can improve this documentation, let us know by
sending your suggestions to techpubs@fico.com. Please include your contact information (name,
company, email address, and optionally, your phone number) so we may reach you if we have questions.

Fair Isaac Corporation Proprietary Information 488

Contacting FICO

FICO Learning
FICO Learning is the principal provider of product training for our clients and partners. FICO Learning
offers instructor-led classroom courses, web-based training, seminars, and training tools for both new
user enablement and ongoing performance support.

For additional information, visit the FICO Learning home page at www.fico.com/en/product-training or
email producteducation@fico.com.

Sales and maintenance
If you need information on other Xpress Optimization products, or you need to discuss maintenance
contracts or other sales-related items, contact FICO by:

■ Phone: +1 (408) 535-1500 or +44 207 940 8718

■ Web: www.fico.com/optimization and use the available contact forms

About FICO
FICO (NYSE:FICO) is a leading analytics software company, helping businesses in 90+ countries make
better decisions that drive higher levels of growth, profitability, and customer satisfaction. Learn more at
www.fico.com or contact us at www.fico.com/en/contact-us.

Fair Isaac Corporation Proprietary Information 489

Index

B
branchobj.addbounds, 471
branchobj.addbranches, 472
branchobj.addcuts, 473
branchobj.addrows, 474
branchobj.getbounds, 475
branchobj.getbranches, 476
branchobj.getid, 477
branchobj.getlasterror, 478
branchobj.getrows, 479
branchobj.setpreferredbranch, 480
branchobj.setpriority, 481
branchobj.store, 482
branchobj.validate, 483

O
object.extractLinear, 83
object.extractQuadratic, 84

P
problem.addcbafterobjective, 162
problem.addcbbariteration, 139
problem.addcbbarlog, 141
problem.addcbbeforeobjective, 161
problem.addcbchecktime, 142
problem.addcbchgbranchobject, 143
problem.addcbcutlog, 144
problem.addcbdestroymt, 145
problem.addcbgapnotify, 146
problem.addcbinfnode, 149
problem.addcbintsol, 150
problem.addcblplog, 151
problem.addcbmessage, 152
problem.addcbmiplog, 148
problem.addcbmipthread, 153
problem.addcbnewnode, 154
problem.addcbnodecutoff, 155
problem.addcbnodelpsolved, 156
problem.addcboptnode, 157
problem.addcbpreintsol, 158
problem.addcbprenode, 159
problem.addcbusersolnotify, 160
problem.addcoefs, 163
problem.addcols, 165
problem.addConstraint, 167
problem.addcuts, 168
problem.adddfs, 169
problem.addgencons, 170
problem.addIndicator, 171
problem.addmipsol, 172
problem.addnames, 173
problem.addobj, 174

problem.addObjective, 175
problem.addpwlcons, 176
problem.addqmatrix, 177
problem.addrows, 178
problem.addsetnames, 179
problem.addSOS, 180
problem.addtolsets, 181
problem.addVariable, 182
problem.addVariables, 183
problem.addvars, 185
problem.basisstability, 186
problem.bndsa, 187
problem.btran, 188
problem.calcobjective, 190
problem.calcobjn, 189
problem.calcreducedcosts, 191
problem.calcslacks, 192
problem.calcsolinfo, 193
problem.cascade, 194
problem.cascadeorder, 195
problem.chgbounds, 196
problem.chgcascadenlimit, 199
problem.chgccoef, 201
problem.chgcoef, 197
problem.chgcoltype, 198
problem.chgdeltatype, 202
problem.chgdf, 203
problem.chgglblimit, 204
problem.chgmcoef, 205
problem.chgmqobj, 207
problem.chgnlcoef, 208
problem.chgobj, 210
problem.chgobjn, 206
problem.chgobjsense, 211
problem.chgqobj, 212
problem.chgqrowcoeff, 213
problem.chgrhs, 214
problem.chgrhsrange, 215
problem.chgrowstatus, 216
problem.chgrowtype, 217
problem.chgrowwt, 218
problem.chgtolset, 219
problem.chgvar, 220
problem.construct, 221
problem.copy, 222
problem.copycallbacks, 223
problem.copycontrols, 224
problem.crossoverlpsol, 225
problem.delcoefs, 226
problem.delConstraint, 227
problem.delcpcuts, 228
problem.delcuts, 229

Fair Isaac Corporation Proprietary Information 490

Index

problem.delgencons, 230
problem.delindicators, 231
problem.delobj, 233
problem.delpwlcons, 232
problem.delqmatrix, 234
problem.delSOS, 235
problem.deltolsets, 236
problem.delVariable, 237
problem.delvars, 238
problem.dumpcontrols, 239
problem.estimaterowdualranges, 240
problem.evaluatecoef, 241
problem.evaluateformula, 242
problem.fixmipentities, 243
problem.fixpenalties, 244
problem.ftran, 245
problem.getAttrib, 246
problem.getattribinfo, 247
problem.getbasis, 248
problem.getbasisval, 249
problem.getccoef, 250
problem.getcoef, 251
problem.getcoefformula, 252
problem.getcoefs, 253
problem.getcolinfo, 254
problem.getcols, 255
problem.getcoltype, 256
problem.getConstraint, 257
problem.getControl, 258
problem.getcontrolinfo, 259
problem.getcpcutlist, 260
problem.getcpcuts, 261
problem.getcutlist, 262
problem.getcutmap, 263
problem.getcutslack, 264
problem.getdf, 266
problem.getdirs, 265
problem.getDual, 267
problem.getdualray, 268
problem.getgencons, 269
problem.getiisdata, 271
problem.getIndex, 273
problem.getIndexFromName, 274
problem.getindicators, 275
problem.getinfeas, 276
problem.getlastbarsol, 277
problem.getlasterror, 278
problem.getlb, 279
problem.getlpsol, 280
problem.getlpsolval, 281
problem.getmessagestatus, 282
problem.getmipentities, 270
problem.getmipsol, 283
problem.getmipsolval, 284
problem.getmqobj, 285
problem.getnamelist, 287
problem.getobj, 288
problem.getobjn, 286
problem.getObjVal, 289
problem.getOutputEnabled, 468

problem.getpivotorder, 290
problem.getpivots, 291
problem.getpresolvebasis, 292
problem.getpresolvemap, 293
problem.getpresolvesol, 294
problem.getprimalray, 295
problem.getProbStatus, 296
problem.getProbStatusString, 297
problem.getpwlcons, 298
problem.getqobj, 299
problem.getqrowcoeff, 300
problem.getqrowqmatrix, 301
problem.getqrowqmatrixtriplets, 302
problem.getqrows, 303
problem.getRCost, 304
problem.getrhs, 305
problem.getrhsrange, 306
problem.getrowinfo, 307
problem.getrows, 308
problem.getrowstatus, 309
problem.getrowtype, 310
problem.getrowwt, 311
problem.getscaledinfeas, 312
problem.getSlack, 313
problem.getslpsol, 314
problem.getSolution, 315
problem.getSOS, 317
problem.gettolset, 318
problem.getub, 319
problem.getunbvec, 320
problem.getvar, 321
problem.getVariable, 323
problem.hasdualray, 324
problem.hasprimalray, 325
problem.iisall, 326
problem.iisclear, 327
problem.iisfirst, 328
problem.iisisolations, 329
problem.iisnext, 330
problem.iisstatus, 331
problem.iiswrite, 332
problem.interrupt, 333
problem.loadbasis, 334
problem.loadbranchdirs, 335
problem.loadcoefs, 336
problem.loadcuts, 338
problem.loaddelayedrows, 339
problem.loaddfs, 340
problem.loaddirs, 341
problem.loadlpsol, 342
problem.loadmipsol, 343
problem.loadmodelcuts, 344
problem.loadpresolvebasis, 345
problem.loadpresolvedirs, 346
problem.loadproblem, 347
problem.loadsecurevecs, 349
problem.loadtolsets, 350
problem.loadvars, 351
problem.lpoptimize, 353
problem.mipoptimize, 354

Fair Isaac Corporation Proprietary Information 491

Index

problem.msaddcustompreset, 355
problem.msaddjob, 356
problem.msaddpreset, 357
problem.msclear, 358
problem.name, 359
problem.nlpchgformula, 360
problem.nlpchgformulastr, 361
problem.nlpgetformula, 362
problem.nlpgetformulastr, 364
problem.nlpoptimize, 365
problem.nlpsetinitval, 366
problem.objsa, 368
problem.optimize, 367
problem.postsolve, 369
problem.presolve, 370
problem.presolverow, 371
problem.printevalinfo, 373
problem.printmemory, 372
problem.read, 374
problem.readbasis, 375
problem.readbinsol, 376
problem.readdirs, 377
problem.readslxsol, 378
problem.refinemipsol, 379
problem.reinitialize, 380
problem.removecbafterobjective, 402
problem.removecbbariteration, 381
problem.removecbbarlog, 382
problem.removecbbeforeobjective, 401
problem.removecbchecktime, 383
problem.removecbchgbranchobject, 384
problem.removecbcutlog, 385
problem.removecbdestroymt, 386
problem.removecbgapnotify, 387
problem.removecbinfnode, 389
problem.removecbintsol, 390
problem.removecblplog, 391
problem.removecbmessage, 392
problem.removecbmiplog, 388
problem.removecbmipthread, 393
problem.removecbnewnode, 394
problem.removecbnodecutoff, 395
problem.removecbnodelpsolved, 396
problem.removecboptnode, 397
problem.removecbpreintsol, 398
problem.removecbprenode, 399
problem.removecbusersolnotify, 400
problem.repairinfeas, 403
problem.repairweightedinfeas, 405
problem.repairweightedinfeasbounds, 407
problem.reset, 409
problem.restore, 410
problem.rhssa, 411
problem.save, 412
problem.scale, 413
problem.scaling, 414
problem.setcbcascadeend, 415
problem.setcbcascadestart, 416
problem.setcbcascadevar, 417
problem.setcbcascadevarfail, 418

problem.setcbcoefevalerror, 419
problem.setcbconstruct, 420
problem.setcbdestroy, 422
problem.setcbdrcol, 423
problem.setcbintsol, 424
problem.setcbiterend, 425
problem.setcbiterstart, 426
problem.setcbitervar, 427
problem.setcbmessage, 428
problem.setcbmsjobend, 429
problem.setcbmsjobstart, 430
problem.setcbmswinner, 431
problem.setcboptnode, 432
problem.setcbprenode, 433
problem.setcbpreupdatelinearization, 434
problem.setcbslpend, 435
problem.setcbslpnode, 436
problem.setcbslpstart, 437
problem.setControl, 438
problem.setcurrentiv, 439
problem.setdefaultcontrol, 440
problem.setdefaults, 441
problem.setindicators, 442
problem.setlogfile, 443
problem.setmessagestatus, 444
problem.setObjective, 445
problem.setOutputEnabled, 469
problem.setprobname, 446
problem.slpchgcoef, 209
problem.slpchgcoefstr, 200
problem.slpgetcoefformula, 363
problem.slpgetcoefstr, 447
problem.storecuts, 448
problem.strongbranch, 449
problem.strongbranchcb, 450
problem.tune, 451
problem.tuneprobsetfile, 452
problem.tunerreadmethod, 453
problem.tunerwritemethod, 454
problem.unconstruct, 455
problem.updatelinearization, 456
problem.validate, 457
problem.validatekkt, 458
problem.validaterow, 459
problem.validatevector, 460
problem.write, 461
problem.writebasis, 462
problem.writebinsol, 463
problem.writedirs, 464
problem.writeprtsol, 465
problem.writeslxsol, 466
problem.writesol, 467

X
xpress.abs, 86
xpress.acos, 87
xpress.addcbmsghandler, 112
xpress.And, 88
xpress.asin, 89
xpress.atan, 90

Fair Isaac Corporation Proprietary Information 492

Index

xpress.attr, 65
xpress.branchobj, 66
xpress.constraint, 67
xpress.cos, 91
xpress.ctrl, 69
xpress.Dot, 92
xpress.erf, 94
xpress.erfc, 95
xpress.evaluate, 113
xpress.examples, 115
xpress.exp, 96
xpress.expression, 70
xpress.featurequery, 116
xpress.free, 117
xpress.getbanner, 118
xpress.getcheckedmode, 120
xpress.getcomputeallowed, 119
xpress.getdaysleft, 121
xpress.getlasterror, 122
xpress.getlicerrmsg, 123
xpress.getOutputEnabled, 136
xpress.getversion, 124
xpress.getversionnumbers, 125
xpress.init, 126
xpress.linterm, 71
xpress.log, 97
xpress.log10, 98
xpress.manual, 127
xpress.max, 99
xpress.min, 100
xpress.nonlin, 72
xpress.Or, 101
xpress.poolcut, 73
xpress.problem, 74
xpress.Prod, 103
xpress.pwl, 102
xpress.quadterm, 76
xpress.removecbmsghandler, 128
xpress.setarchconsistency, 129
xpress.setcheckedmode, 131
xpress.setcomputeallowed, 130
xpress.setdefaultcontrol, 133
xpress.setdefaults, 132
xpress.setOutputEnabled, 137
xpress.sign, 104
xpress.sin, 105
xpress.sos, 77
xpress.sqrt, 106
xpress.Sum, 107
xpress.tan, 108
xpress.user, 109
xpress.var, 78
xpress.vars, 134
xpress.voidstar, 80
xpress.xprsobject, 81

Fair Isaac Corporation Proprietary Information 493

	Introduction
	Outline
	Installing the Python Xpress module
	Installation from the Python Package Index (PyPI)
	Installation from Conda
	Troubleshooting the installation

	Modeling an optimization problem
	Getting started
	Creating a problem
	Variables
	Variable names and Python objects

	Constraints
	Objective function
	Compact formulation
	Special Ordered Sets (SOSs)
	Indicator constraints
	Piecewise linear functions
	General constraints
	Using loadproblem for efficiency
	Modeling and solving nonlinear problems
	Solving a problem
	Querying a problem
	Reading and writing a problem
	Hints for building models efficiently
	Exceptions
	Warnings

	Using Python numerical libraries
	Using NumPy in the Xpress Python interface
	Products of NumPy arrays

	Controls and Attributes
	Controls
	Examples
	Attributes
	Examples
	Accessing controls and attributes as object members

	Using Callbacks
	Introduction

	Examples of use
	Creating simple problems
	Generating a small Linear Programming problem
	A Mixed Integer Linear Programming problem

	Modeling examples
	A simple model
	Using IIS to investigate an infeasible problem
	Modeling a problem using Python lists and vectors
	A knapsack problem
	A Min-cost-flow problem using NumPy
	A nonlinear model
	Finding the maximum-area n-gon
	Solving the n-queens problem
	Solving Sudoku problems

	Examples using NumPy
	Using NumPy multidimensional arrays to create variables
	Using the dot product to create arrays of expressions
	Using the Dot product to create constraints and quadratic functions
	Using NumPy to create quadratic optimization problems

	Advanced examples: callbacks and problem querying, modifying, and analysis
	Visualize the branch-and-bound tree of a problem
	Query and modify a simple problem
	Change a problem after solution
	Comparing the coefficients of two equally sized problems
	Combining modeling and API functions
	A simple Traveling Salesman Problem (TSP) solver
	Solving a nonconvex MIQCQP

	Translated Mosel examples

	Reference Manual
	Using this chapter
	Format of the reference

	Classes of the Xpress module
	Global methods of the Xpress module
	Methods of the class problem
	Methods for branching objects
	Methods for adding/removing callbacks of a problem object
	Methods to be used within a callback of a problem object
	Xpress base classes
	xpress.attr
	xpress.branchobj
	xpress.constraint
	xpress.constraint

	xpress.ctrl
	xpress.expression
	xpress.linterm
	xpress.nonlin
	xpress.poolcut
	xpress.problem
	xpress.quadterm
	xpress.sos
	xpress.sos

	xpress.var
	xpress.var

	xpress.voidstar
	xpress.xprsobject

	Xpress object functions
	object.extractLinear
	object.extractQuadratic

	Xpress operators
	xpress.abs
	xpress.acos
	xpress.And
	xpress.asin
	xpress.atan
	xpress.cos
	xpress.Dot
	xpress.erf
	xpress.erfc
	xpress.exp
	xpress.log
	xpress.log10
	xpress.max
	xpress.min
	xpress.Or
	xpress.pwl
	xpress.Prod
	xpress.sign
	xpress.sin
	xpress.sqrt
	xpress.Sum
	xpress.tan
	xpress.user

	Xpress base functions
	xpress.addcbmsghandler
	xpress.evaluate
	xpress.examples
	xpress.featurequery
	xpress.free
	xpress.getbanner
	xpress.getcomputeallowed
	xpress.getcheckedmode
	xpress.getdaysleft
	xpress.getlasterror
	xpress.getlicerrmsg
	xpress.getversion
	xpress.getversionnumbers
	xpress.init
	xpress.manual
	xpress.removecbmsghandler
	xpress.setarchconsistency
	xpress.setcomputeallowed
	xpress.setcheckedmode
	xpress.setdefaults
	xpress.setdefaultcontrol
	xpress.vars
	xpress.getOutputEnabled
	xpress.setOutputEnabled

	Xpress problem methods
	problem.addcbbariteration
	problem.addcbbarlog
	problem.addcbchecktime
	problem.addcbchgbranchobject
	problem.addcbcutlog
	problem.addcbdestroymt
	problem.addcbgapnotify
	problem.addcbmiplog
	problem.addcbinfnode
	problem.addcbintsol
	problem.addcblplog
	problem.addcbmessage
	problem.addcbmipthread
	problem.addcbnewnode
	problem.addcbnodecutoff
	problem.addcbnodelpsolved
	problem.addcboptnode
	problem.addcbpreintsol
	problem.addcbprenode
	problem.addcbusersolnotify
	problem.addcbbeforeobjective
	problem.addcbafterobjective
	problem.addcoefs
	problem.addcols
	problem.addConstraint
	problem.addcuts
	problem.adddfs
	problem.addgencons
	problem.addIndicator
	problem.addmipsol
	problem.addnames
	problem.addobj
	problem.addObjective
	problem.addpwlcons
	problem.addqmatrix
	problem.addrows
	problem.addsetnames
	problem.addSOS
	problem.addtolsets
	problem.addVariable
	problem.addVariables
	problem.addvars
	problem.basisstability
	problem.bndsa
	problem.btran
	problem.calcobjn
	problem.calcobjective
	problem.calcreducedcosts
	problem.calcslacks
	problem.calcsolinfo
	problem.cascade
	problem.cascadeorder
	problem.chgbounds
	problem.chgcoef
	problem.chgcoltype
	problem.chgcascadenlimit
	problem.slpchgcoefstr
	problem.chgccoef
	problem.chgdeltatype
	problem.chgdf
	problem.chgglblimit
	problem.chgmcoef
	problem.chgobjn
	problem.chgmqobj
	problem.chgnlcoef
	problem.slpchgcoef
	problem.chgobj
	problem.chgobjsense
	problem.chgqobj
	problem.chgqrowcoeff
	problem.chgrhs
	problem.chgrhsrange
	problem.chgrowstatus
	problem.chgrowtype
	problem.chgrowwt
	problem.chgtolset
	problem.chgvar
	problem.construct
	problem.copy
	problem.copycallbacks
	problem.copycontrols
	problem.crossoverlpsol
	problem.delcoefs
	problem.delConstraint
	problem.delcpcuts
	problem.delcuts
	problem.delgencons
	problem.delindicators
	problem.delpwlcons
	problem.delobj
	problem.delqmatrix
	problem.delSOS
	problem.deltolsets
	problem.delVariable
	problem.delvars
	problem.dumpcontrols
	problem.estimaterowdualranges
	problem.evaluatecoef
	problem.evaluateformula
	problem.fixmipentities
	problem.fixpenalties
	problem.ftran
	problem.getAttrib
	problem.getattribinfo
	problem.getbasis
	problem.getbasisval
	problem.getccoef
	problem.getcoef
	problem.getcoefformula
	problem.getcoefs
	problem.getcolinfo
	problem.getcols
	problem.getcoltype
	problem.getConstraint
	problem.getControl
	problem.getcontrolinfo
	problem.getcpcutlist
	problem.getcpcuts
	problem.getcutlist
	problem.getcutmap
	problem.getcutslack
	problem.getdirs
	problem.getdf
	problem.getDual
	problem.getdualray
	problem.getgencons
	problem.getmipentities
	problem.getiisdata
	problem.getIndex
	problem.getIndexFromName
	problem.getindicators
	problem.getinfeas
	problem.getlastbarsol
	problem.getlasterror
	problem.getlb
	problem.getlpsol
	problem.getlpsolval
	problem.getmessagestatus
	problem.getmipsol
	problem.getmipsolval
	problem.getmqobj
	problem.getobjn
	problem.getnamelist
	problem.getobj
	problem.getObjVal
	problem.getpivotorder
	problem.getpivots
	problem.getpresolvebasis
	problem.getpresolvemap
	problem.getpresolvesol
	problem.getprimalray
	problem.getProbStatus
	problem.getProbStatusString
	problem.getpwlcons
	problem.getqobj
	problem.getqrowcoeff
	problem.getqrowqmatrix
	problem.getqrowqmatrixtriplets
	problem.getqrows
	problem.getRCost
	problem.getrhs
	problem.getrhsrange
	problem.getrowinfo
	problem.getrows
	problem.getrowstatus
	problem.getrowtype
	problem.getrowwt
	problem.getscaledinfeas
	problem.getSlack
	problem.getslpsol
	problem.getSolution
	problem.getSOS
	problem.gettolset
	problem.getub
	problem.getunbvec
	problem.getvar
	problem.getVariable
	problem.hasdualray
	problem.hasprimalray
	problem.iisall
	problem.iisclear
	problem.iisfirst
	problem.iisisolations
	problem.iisnext
	problem.iisstatus
	problem.iiswrite
	problem.interrupt
	problem.loadbasis
	problem.loadbranchdirs
	problem.loadcoefs
	problem.loadcuts
	problem.loaddelayedrows
	problem.loaddfs
	problem.loaddirs
	problem.loadlpsol
	problem.loadmipsol
	problem.loadmodelcuts
	problem.loadpresolvebasis
	problem.loadpresolvedirs
	problem.loadproblem
	problem.loadsecurevecs
	problem.loadtolsets
	problem.loadvars
	problem.lpoptimize
	problem.mipoptimize
	problem.msaddcustompreset
	problem.msaddjob
	problem.msaddpreset
	problem.msclear
	problem.name
	problem.nlpchgformula
	problem.nlpchgformulastr
	problem.nlpgetformula
	problem.slpgetcoefformula
	problem.nlpgetformulastr
	problem.nlpoptimize
	problem.nlpsetinitval
	problem.optimize
	problem.objsa
	problem.postsolve
	problem.presolve
	problem.presolverow
	problem.printmemory
	problem.printevalinfo
	problem.read
	problem.readbasis
	problem.readbinsol
	problem.readdirs
	problem.readslxsol
	problem.refinemipsol
	problem.reinitialize
	problem.removecbbariteration
	problem.removecbbarlog
	problem.removecbchecktime
	problem.removecbchgbranchobject
	problem.removecbcutlog
	problem.removecbdestroymt
	problem.removecbgapnotify
	problem.removecbmiplog
	problem.removecbinfnode
	problem.removecbintsol
	problem.removecblplog
	problem.removecbmessage
	problem.removecbmipthread
	problem.removecbnewnode
	problem.removecbnodecutoff
	problem.removecbnodelpsolved
	problem.removecboptnode
	problem.removecbpreintsol
	problem.removecbprenode
	problem.removecbusersolnotify
	problem.removecbbeforeobjective
	problem.removecbafterobjective
	problem.repairinfeas
	problem.repairweightedinfeas
	problem.repairweightedinfeasbounds
	problem.reset
	problem.restore
	problem.rhssa
	problem.save
	problem.scale
	problem.scaling
	problem.setcbcascadeend
	problem.setcbcascadestart
	problem.setcbcascadevar
	problem.setcbcascadevarfail
	problem.setcbcoefevalerror
	problem.setcbconstruct
	problem.setcbdestroy
	problem.setcbdrcol
	problem.setcbintsol
	problem.setcbiterend
	problem.setcbiterstart
	problem.setcbitervar
	problem.setcbmessage
	problem.setcbmsjobend
	problem.setcbmsjobstart
	problem.setcbmswinner
	problem.setcboptnode
	problem.setcbprenode
	problem.setcbpreupdatelinearization
	problem.setcbslpend
	problem.setcbslpnode
	problem.setcbslpstart
	problem.setControl
	problem.setcurrentiv
	problem.setdefaultcontrol
	problem.setdefaults
	problem.setindicators
	problem.setlogfile
	problem.setmessagestatus
	problem.setObjective
	problem.setprobname
	problem.slpgetcoefstr
	problem.storecuts
	problem.strongbranch
	problem.strongbranchcb
	problem.tune
	problem.tuneprobsetfile
	problem.tunerreadmethod
	problem.tunerwritemethod
	problem.unconstruct
	problem.updatelinearization
	problem.validate
	problem.validatekkt
	problem.validaterow
	problem.validatevector
	problem.write
	problem.writebasis
	problem.writebinsol
	problem.writedirs
	problem.writeprtsol
	problem.writeslxsol
	problem.writesol
	problem.getOutputEnabled
	problem.setOutputEnabled

	Xpress branch object methods
	branchobj.addbounds
	branchobj.addbranches
	branchobj.addcuts
	branchobj.addrows
	branchobj.getbounds
	branchobj.getbranches
	branchobj.getid
	branchobj.getlasterror
	branchobj.getrows
	branchobj.setpreferredbranch
	branchobj.setpriority
	branchobj.store
	branchobj.validate

	Migrating to the linked API
	Creating linked variables
	Creating linked constraints
	Creating linked SOS constraints
	Creating linked problems
	Other API functions
	Summary

	Appendix
	Contacting FICO
	FICO Customer Support
	Documentation
	FICO Learning
	Sales and maintenance
	About FICO

	Index

