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A B S T R A C T   

Recent remote-sensing-based global carbon, water and energy budgets over land still include considerable un
certainties. Most existing flux products of terrestrial carbon, water and energy components were developed 
individually, despite the inherently coupled processes among them. In this study, we present a new set of global 
daily surface downwelling shortwave radiation (SW), net radiation (Rnet), evapotranspiration (ET), gross primary 
productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) datasets at 0.05◦

resolutions from 1982 to 2019, by improving a satellite-based and coupled-process model—the Breathing Earth 
System Simulator (BESS). The new version of BESS (v2.0) integrated a newly developed ecosystem respiration 
module, an optimality-based maximum carboxylation rate (Vcmax) model, and extended the temporal coverage of 
flux datasets from 1982 to 2019. We evaluated BESS products against the FLUXNET2015 dataset at the site scale, 
and against several remote sensing and/or machine learning products on a global scale. At the site scale, BESS 
products agreed well with FLUXNET measurements, capturing 84%, 53%, 65%, 51% and 31% of daily variation 
in Rnet, ET, GPP, TER and NEE, respectively. Interannual variation in BESS NEE showed relatively low consis
tency with the FLUXNET measurements, while the rest fluxes explained approximately half of the interannual 
variation. On a global scale, we found marked discrepancies in spatio-temporal patterns between BESS and 
several benchmark products. Over the period 1982–2019, BESSv2.0 estimated the mean annual global Rnet, ET, 
GPP, TER and NEE to be 340.97 ± 5.22 ZJ yr− 1 (mean ± 1 SD), 67.67 ± 0.71 103 km3 yr− 1, 125.74 ± 5.95 Pg C 
yr− 1, 109.30 ± 3.16 Pg C yr− 1, and − 16.28 ± 2.95 Pg C yr− 1, respectively, with significant annual linear trends 
(P < 0.01) by − 0.05 103 km3 yr− 2 for ET, by 0.52 Pg C yr− 2 for GPP, by 0.28 Pg C yr− 2 for TER, and by − 0.25 Pg 
C yr− 2 for NEE. We further evaluated various coupled processes derived by BESS in terms of functional properties 
(i.e., Budyko relation, carbon-use efficiency, water-use efficiency, and light-use efficiency), which agreed well 
with FLUXNET observations, unlike the benchmark products. Overall, BESSv2.0 can serve as a set of reliable and 
independent products from other global satellite products, facilitating studies related to global carbon, water and 
energy budgets in a coupled and comprehensive manner.   

1. Introduction 

Improving our knowledge of the exchange of carbon, water, and 
energy fluxes in and out of terrestrial ecosystems is crucial for moni
toring the state of the Earth’s climate system (Chapin et al., 2006; Piao 
et al., 2020; Ryu et al., 2011). Accumulated observational evidence 

implies that these terrestrial ecosystem cycles are inherently tightly 
coupled, and are modulated by a suite of ecosystem functional proper
ties such as the Budyko relation and carbon-(CUE), water-(WUE) and 
light-(LUE) use efficiency (Baldocchi and Meyers, 1998; Leuning et al., 
1995a; Ryu et al., 2011). For example, the Budyko relation (Budyko, 
1974; Sposito, 2017) quantifies annual evapotranspiration (ET) based 

* Corresponding author at: Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, South Korea. 
E-mail address: yryu@snu.ac.kr (Y. Ryu).  

Contents lists available at ScienceDirect 

Remote Sensing of Environment 

journal homepage: www.elsevier.com/locate/rse 

https://doi.org/10.1016/j.rse.2023.113696 
Received 9 January 2023; Received in revised form 10 May 2023; Accepted 21 June 2023   



Remote Sensing of Environment 295 (2023) 113696

2

on limits imposed by either water or energy availability. The tight 
coupling between ecosystem carbon assimilation and water consump
tion implies that hydrologic factors limit the amount of carbon that can 
be fixed by ecosystems (Gentine et al., 2019; Law et al., 2002), and 
photosynthesis and transpiration are coupled via plant stomata (Bal
docchi and Meyers, 1998; Leuning et al., 1995b). Terrestrial ecosystem 
respiration (TER) is a large, relatively conserved fraction (~0.8) of gross 
primary productivity (GPP), also referred to as CUE, in an undisturbed 
ecosystem (Baldocchi, 2008; Janssens et al., 2001). Under unstressed 
conditions, peak LUE (the ratio of canopy photosynthesis to absorbed 
light) is on the order of ~2% at an annual scale (Baldocchi, 2020). 
However, there has been little effort to monitor these fluxes concur
rently in remote sensing community. 

A comprehensive view of the carbon–water–energy nexus will 
improve our understanding of the complex interactions in terrestrial 
ecosystems, as well as the accuracy of land–atmosphere flux estimates. 
With the recent advances in remote sensing, emerging efforts have been 
meanwhile devoted to estimate carbon-water-energy fluxes in a coupled 
manner. Yuan et al. (2010) revised the Penman–Monteith equation to 
estimate ET independently, and then used ET-based water stress to 
quantify GPP using an LUE model. Zhang et al. (2016) developed a 
coupled carbon-centric model that first calculated GPP using LUE theory 
and then derived ET based on WUE (the ratio of canopy GPP to ET). 
Direct concurrent estimation of global transpiration and GPP has 
become feasible with the availability of satellite SIF data (Maes et al., 
2020; Shan et al., 2021). Migliavacca et al. (2011) proposed a 
photosynthesis-dependent TER model by including GPP in the parame
terization of the reference respiration rate. Keenan et al. (2016) later 
estimated global TER in a diagnostic model via the photosynthesis- 
dependent TER module. Other than that, process-based diagnostic 
models mechanistically represent underlying interactions between the 
biosphere and atmosphere, allowing simultaneous carbon
–water–energy flux modeling (Chen et al., 1999; Ryu et al., 2011). To 
date, these coupled models have shown some improvements over other 
individual models. 

Although such integrated flux models represent a significant step in 
simultaneous monitoring of terrestrial carbon–water–energy dynamics, 
they only partly incorporate coupled land–atmosphere fluxes. Even 
more single-flux products have been developed individually (Jung et al., 
2020; Mu et al., 2011; Running et al., 2004). Thus, it remains difficult to 
obtain a complete picture of the behavior of terrestrial carbon, water, 
and energy cycles simultaneously, as well as their underlying processes. 
Uncoupled schemes may overlook key dynamics of essential land bio
physical processes (Maxwell and Miller, 2005), and using different 
forcing data for individual flux models may lead to internal in
consistencies between carbon, water, and energy flux estimates, 
potentially causing substantial biases in global annual flux budgets 
(Yang et al., 2020). More importantly, the use of individual flux products 
can result in significant biases in estimating ecosystem functional 
properties; moreover, most remote-sensing-based land-surface flux 
products have been assessed only through direct evaluation against eddy 
covariance (EC) flux tower observations (Jiang and Ryu, 2016; Tra
montana et al., 2016), and few attempts have been made towards more 
elaborate evaluations of the underlying functional properties. 

At present, satellite records exceed 40 years of data and diverse EC 
studies have been conducted for longer than a decade. Long-term EC 
measurements (i.e., FLUXNET network data) have served as a backbone 
for ecosystem model development, calibration and validation (Chu 
et al., 2017; Jung et al., 2020; Migliavacca et al., 2011; Yuan et al., 
2011). These measurements produce information on the functional 
properties of ecosystems, such as the Budyko relation and upper bounds 
on resource-use efficiency variables (Baldocchi and Penuelas, 2019). In 
turn, long-term remote-sensing observations have dramatically resha
ped research approaches to the study of terrestrial ecosystem cycles 
worldwide through the integration of flux-tower and multi-source sat
ellite data (Baldocchi et al., 2016; Ryu et al., 2019). However, long-term, 

remote-sensing-based, intra-consistent coupled flux maps remain rare 
on global scales. 

The Breathing Earth System Simulator (BESS) is a remote-sensing- 
driven, process-based model that integrates key physical and biochem
ical processes related to land–atmosphere flux exchange (Jiang and Ryu, 
2016; Ryu et al., 2011; Ryu et al., 2018). BESS has shown robust per
formance across temporal and spatial scales for the period 2000–2015. 
In this study, building on the previous framework of BESSv1.0 (Jiang 
and Ryu, 2016), we present a significantly improved version of the BESS 
model (BESSv2.0) that coherently integrates atmosphere and canopy 
radiative transfer, photosynthesis, ecosystem respiration and ET pro
cesses. New features in the new version of the BESS model include a new 
ecosystem respiration module that incorporates both photosynthesis and 
water availability, and a new maximum carboxylation rate (Vcmax) 
module based on an optimality principle (Jiang et al., 2020; Smith et al., 
2019). The primary objectives of this study were to quantify long-term 
(1982–2019) daily global energy (i.e., surface downwelling shortwave 
radiation (SW) and net radiation (Rnet)), carbon (i.e., GPP, TER, and net 
ecosystem exchange (NEE)), and water (ET) fluxes concurrently, and to 
comprehensively evaluate BESS energy, carbon, and water flux products 
against in-situ FLUXNET network measurements across multiple tem
poral scales, independent state-of-the-art remote sensing estimates, and 
functional properties and their upper bounds on the basis of FLUXNET 
observations. Finally, we used BESS and a suite of flux products to 
determine whether coupled land–atmosphere flux modeling can 
improve ecosystem functional property estimates. 

2. Materials and methods 

2.1. BESSv2.0 overview 

The BESS framework was developed to quantify global land–atmo
sphere fluxes by coupling essential physical and biochemical processes 
over the global land surface. In this section, we briefly present the 
overall framework of BESS(v2.0) (Fig. 1). The initial step in the BESS 
framework is to compute the components of solar shortwave radiation. 
A two-leaf, two-stream canopy radiative transfer model (De Pury and 
Farquhar, 1997; Ryu et al., 2011) was used to calculate absorbed 
photosynthetically active radiation (PAR) and near-infrared (NIR) ra
diation in sunlit and shaded canopies. An optimality-based model was 
used to quantify the C3 plant maximum canopy carboxylation rate at a 
standardized temperature of 25 ◦C (V25C

cmax) (Jiang et al., 2020; Wang 
et al., 2017a), and a plant functional type (PFT)-dependent look-up table 
(LUT) method was applied to determine the C4 plant V25C

cmax (Jiang and 
Ryu, 2016). Next, a carbon–water–energy module integrated with a two- 
leaf longwave radiative transfer model (Kowalczyk et al., 2006), Far
quhar–von Caemmerer–Berry (FvCB) photosynthesis model (Collatz 
et al., 1992; Farquhar et al., 1980), Ball–Berry stomatal conductance 
equation (Ball, 1988), and the quadratic Penman–Monteith and energy 
balance equations (Kyaw, 1987; Paw and Gao, 1988), was adopted to 
compute Rnet, ET, and GPP for sunlit and shaded C3 and C4 plant can
opies separately in an iterative manner. In each land grid cell, the sum of 
the relative proportions of C3 and C4 plants was computed to determine 
the desired flux quantity. Then, the derived instantaneous estimates of 
Rnet, GPP, and ET during satellite overpass were temporally upscaled to 
daily sums using a sinusoidal function (Bisht et al., 2005) for Rnet and a 
cosine function (Ryu et al., 2012) for GPP and ET. Finally, daily TER and 
NEE were simulated based on topsoil organic carbon (SOC) stocks, air 
temperature (Ta), ET, potential ET (PET), and GPP. Compared to the 
previous version of BESS (Jiang and Ryu, 2016), the updated framework 
1) included a new TER module and NEE module as the difference be
tween GPP and TER, 2) revised the LUT-based V25C

cmax module into an 
optimality-based one, to more accurately determine the seasonality of 
C3 plant V25C

cmax by combining coordination theory and least-cost hy
pothesis, and 3) extends datasets back to 1982 through comprehensive 
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calibration of Advanced Very High Resolution Radiometer (AVHRR) 
datasets using the MODerate Resolution Imaging Spectroradiometer 
(MODIS). 

2.2. New schemes in BESS 

2.2.1. TER module 
To enable TER simulation in BESS, with the aim of constructing a 

fully-coupled model, we started from a widely used photosynthesis- 
dependent respiration model proposed by Migliavacca et al. (2011), 
which simulates TER in daily time steps using daily Ta and precipitation 
(P) as abiotic drivers, as follows: 

TER = Rref × f (Ta)× f (P) (1)  

where Rref (g C m− 2 d− 1) is ecosystem respiration at the reference 
temperature (Tref, K) without water limitations, and f(Ta) and f(P) are 
the response functions of TER to Ta and P, respectively. 

The carbon substrate availability in soil directly influences CO2 
emissions from microbial decomposition (Feng et al., 2018). Numerous 
studies have reported a strong linear relationship between SOC stocks 
and annual soil respiration (Bae and Ryu, 2017; Chen et al., 2010; Tao 
et al., 2016). To take the effect of the carbon substrate on TER into ac
count, we included SOC stock as an additional biotic driver of Rref, as 
follows: 

Rref = a0 + a1SOC + a2GPP (2) 

A growing body of evidence has indicated the necessity of using 
mean annual temperature as Tref for soil or ecosystem respiration esti
mation (Jian et al., 2020; Yuan et al., 2011). Therefore, instead of using 
a global constant Tref for the Arrhenius-type f(Ta) (Lloyd and Taylor, 
1994), we calculated PFT-dependent Tref based on the mean annual Ta 
from the FLUXNET2015 dataset (Table S1), as follows: 

f (Ta) = e
E0

(

1
Tref − T0

− 1
Ta − T0

)

(3)  

where E0(K) is the activation energy parameter and represents the 
ecosystem respiration sensitivity to temperature and T0 is fixed at 
227.13 K (− 46.02 ◦C). 

Although soil water content is widely regarded as an ideal descriptor 
of soil water availability, Migliavacca et al. (2011) adopted a 
precipitation-based soil water stress function− f(P) because global soil 
water maps usually cover top soils at coarse spatial resolution. However, 
precipitation and soil water content are not tightly coupled, especially in 
forest sites (Migliavacca et al., 2015). Additionally, the monotonic 
increasing function [(Eq. 3 in Migliavacca et al. (2011)] ignored the 
negative effect on TER when soils are too wet (Baldocchi et al., 2018; 
Moyano et al., 2013). Given these findings, we replaced P with the ratio 
of ET to PET (fET), which is more directly related to soil water avail
ability (Stocker et al., 2018). Then, we reformulated the soil water stress 
function as an exponential function with a quadratic expression that 
approaches 1 at the optimal fET (fETopt) for TER release, as follows: 

f (fET) = β(fETopt − fET)
2

(4)  

where β is a free parameter (ranging from 0 to 1) that modifies the shape 
of the quadratic fit. The final formulation of the BESS-TER model is as 
follows: 

TER = (a0 + a1SOC + a2GPP)× e
E0

(

1
Tref − T0

− 1
Ta − T0

)

× β(fETopt − fET)
2

(5) 

Based on the FLUXNET database (see Section 2.4.2), the TER model 
parameters were estimated using an adaptive Markov Chain Monte 
Carlo (MCMC) method (Haario et al., 2006; Haario et al., 2001). In this 
study, we used the ‘MCMCSTAT’ package (https://mjlaine.github.io/ 

Fig. 1. Algorithm flowchart of the revised Breathing Earth System Simulator model (BESSv2.0). Gray ovals refer to the input/output variables. Green rectangles refer 
to the main modules. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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mcmcstat/) to implement the MCMC simulation. We defined the cost 
function as the residual sum of squares in the TER model. Following the 
model calibration steps provided in Migliavacca et al. (2011), the three 
free Rref parameters (a0, a1, a2) were first estimated for each PFT and the 
accuracy of the linear model was evaluated. These parameters were then 
introduced as fixed parameters to obtain the remaining PFT-specific 
model parameters (E0, β, and fETopt) of the BESS-TER model. To 
generalize the model parameterization, we used all available data for 
each PFT in parameters fitting at the same time. 

We adopted a 10-fold cross-validation scheme to evaluate the per
formance of the BESS-TER model (Schaffer, 1993). For each PFT, the 
whole dataset was stratified into 10 randomly selected subsets. In each 
cycle, 90% of the available sites were used to fit the model and the 
remaining 10% were used for validation. Each site was used only once 
for validation and the parameters were never evaluated against sites 
used for parameter calibration. For each PFT, we averaged the 10 sets of 
cross-validated statistics as a final single estimation of model accuracy. 
A detailed description of the TER model development is provided in the 
Supplementary Material. 

2.2.2. Vcmax module 
In the previous BESS version (Jiang and Ryu, 2016), the peak V25C

cmax 
values of a pixel in each year were set as constants using an LUT based on 
PFTs and climatic zones, and their seasonal patterns were assumed to be 
empirical linear functions of seasonal leaf area index (LAI) trajectories. 
This parameterization ignored spatial variation within PFTs and inter
annual variations that could result in inaccurate carbon flux estimates. 
Therefore, we adopted a coordination theory and a least-cost hypothesis 
to estimate V25C

cmax instead of the LUT approach (Jiang et al., 2020). The 
coordination theory states that plants adjust Vcmax to coordinate two key 
processes, the Calvin–Benson–Bassham cycle and light-dependent elec
tron transport(Walker et al., 2017). Within the framework of the steady- 
state FvCB model, the carboxylation-limited photosynthesis rate (Ac) is 
equal to the electron transport-limited photosynthesis rate (Aj) under 
typical daytime environmental conditions during the past month (Wang 
et al., 2017a), as follows: 

Ac = Vcmax
Ci − Γ*

Ci + K
= Aj =

φ0I

4
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
(

αI
Jmax

)2
√

Ci − Γ*

(Ci + 2Γ*)
(6)  

where Ci (Pa) is the intercellular CO2 partial pressure, Γ* (Pa) is the CO2 
compensation point in the absence of dark respiration, K (Pa) is the 
Michaelis–Menten coefficient for Rubisco-limited photosynthesis, φ0 (g 
C/mol) is the intrinsic quantum yield of photosynthesis based on inci
dent light, I (mol m− 2 day− 1) is the incident PAR, and Jmax (μmol m− 2 

s− 1) is the maximum electron transport rate. The optimality algorithm 
further assumes an optimal Jmax that maximizes differences between the 
benefit (Aj) and cost (c × Jmax). Thus, the plant-averaged Vcmax can be 
obtained as follows (Jiang et al., 2020): 

Vcmax = φ0I
Ci − Γ*

Ci + 2Γ*

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

[
4c(Ci + 2Γ*)

Ci − Γ*

]
2
3

√

(7) 

We calculated Γ* according to Bernacchi et al. (2001), and adopted 
the unit cost c = 0.103 by taking the typical value of Jmax/Vmax = 1.88 
(Kattge and Knorr, 2007). The retrieval of φ0 and Ci required several key 
variables including Ta, the vapor pressure deficit (VPD), ambient CO2 
partial pressure (Ca), the surface pressure (Ps) and the plant-level frac
tion of absorbed PAR (fPAR), which was estimated following Jiang et al. 
(2020). To account for the antecedent environment, we used 40-day 
backward running averaged values of I, Ta, VPD, Ca, Ps and fPAR as 
optimality-based model inputs (Jiang et al., 2020). 

Next, we converted the plant-averaged Vcmax to top-leaf Vcmax (Vcmax, 

top-leaf) by accounting for vertical variation in leaf nitrogen content 
within the plant canopy (De Pury and Farquhar, 1997). We further 

converted Vcmax,top-leaf to V25C
cmax using an Arrhenius temperature function 

(Kattge and Knorr, 2007). Finally, we upscaled the leaf-level V25C
cmax to 

sunlit/shaded canopy-level V25C
cmax according to the method of Ryu et al. 

(2011). A detailed description of this optimality algorithm can be found 
elsewhere Jiang et al. (2020). 

2.2.3. Stomatal conductance (gs) 
In the previous BESS model, plant carbon flux and water flux were 

coupled via the Ball–Berry stomatal conductance model. The slope (m) 
and intercept (b) parameter of the Ball-Berry model impact transpiration 
and photosynthesis estimates. The previous BESS version set constant 
Ball–Berry m and b parameters for C3 and C4 plants, respectively (Jiang 
and Ryu, 2016; Ryu et al., 2011), ignoring spatial and temporal varia
tions. In BESSv2.0, we adopted an LUT method based on the literature 
(Table S3). We also developed a water stress scheme to downregulate 
minimum stomatal conductance (b0), which becomes an important 
factor under very dry conditions. 

We defined water stress (fw) as a multiplicative factor (Fisher et al., 
2008) for the initial Ball–Berry intercept b0, then gs was computed as 
follows: 

gs = m ×
An × RH

Ca
+ b (8)  

b = b0 × fw (9)  

fw = RHVPD/1000 (10)  

where An is the net CO2 assimilation, b is the adjusted Ball–Berry 
intercept, and RH is the relative humidity of the air (ranging from 0 to 
1). 

2.3. Forcing datasets and preprocessing 

The global-scale input datasets used for BESS are listed in Table 1. In 
total, BESS used seven MODIS atmosphere and land products (after 
2001), two AVHRR land products (before 2000), four other satellite 
datasets, four reanalysis datasets, and four ancillary datasets as input 
data. All datasets were resampled to a 0.05◦ spatial resolution with 
geographic coordinates for global simulations. To minimize temporal 
inconsistencies between MODIS-derived (as a reference) and other 
gridded datasets such as AVHRR and reanalysis data, we conducted 
simple inter-calibrations based on ratios in terms of climatology (mean 
monthly values) for all datasets pixel by pixel over an overlapping 
period (2002–2017), except for land-cover and climate-classification 
maps. Fused long-term forcing datasets (1982–2019) were then gener
ated for BESS. 

2.3.1. Land surface datasets 
LAI is the most important variable for BESS flux estimations (Huang 

et al., 2018; Ryu et al., 2011). We used MODIS and GLOBMAP LAI 
products to generate a long-term consistent LAI dataset. The MODIS 
MCD15A2H LAI product was used as input from January 2001 to June 
2002 (Myneni et al., 2015a), whereas MCD15A3H LAI was used as input 
for the period after July 2002 (Myneni et al., 2015b) and GLOBMAP LAI 
was used as input for the period before January 2001 (Liu et al., 2012). 
Data from July 2002 to December 2017 were used to calibrate GLOB
MAP LAI against MODIS LAI, and the resulting pixel-wise, 8-day interval 
parameters were applied to GLOBEMAP LAI. We applied a moving- 
window, threshold-based filtering algorithm to minimize cloud 
contamination effects on LAI estimates (Jiang and Ryu, 2016). Subse
quently, data gaps in the filtered LAI were filled with monthly mean 
data, and further interpolated into daily data using a Gaussian function 
between contiguous data points. 

Fractional vegetation cover (FVC) was mainly used to calculate 
Vcmax,top-leaf. We derived annual FVC for woody areas from the MOD44B 
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yearly 250-m Vegetation Continuous Fields (VCF) product after 2001 
(Dimiceli et al., 2015), and the inter-calibrated MEaSUREs yearly 0.05◦

VCF product (VCF5KYR) for the period before 2000 (Hansen and Song, 
2018), by assuming that woody plants have static canopy cover within a 
given year. For grasslands and croplands, we calculated dynamic FVC 
data using Beer’s law in the nadir direction, as follows: 

FVC = 1 − e− 0.5ΩLAI (11) 

We used MEaSUREs Vegetation Index and Phenology (VIP) global 
phenology data (VIPPHEN_EVI2) to determine the starting date and 
length of the growing season. Next, we converted the plant-averaged 
Vcmax to Vcmax,top-leaf, as follows: 

Vcmax,top− leaf = Vcmax
kn

1 − e− kn
(12)  

kn = − 0.53ln(LAIGS) + 0.92 (13)  

where kn is the nitrogen distribution coefficient, and LAIGS is mean 
plant-level LAI (LAIp) during the growing season, and LAIp.can be given 
by: 

LAIp = LAI
/

FVC (14) 

Land-cover-type data from the MCD12C1 yearly product with the 
International Geosphere–Biosphere Programme (IGBP) scheme for the 
period 2001–2019 (Friedl and Sulla-Menashe, 2015), alongside the 
European Space Agency Climate Change Initiative (ESA-CCI) product 
(further converted into IGBP classes) for the period before 2001 
(Defourny et al., 2012), were used to perform PFT-based parameteri
zations of the C4 fraction, canopy height, ball–berry m and b, and TER 
model parameters. 

Canopy-height data were used to compute the aerodynamic resis
tance in the energy balance module. We used global canopy-height data 
derived from the Geoscience Laser Altimeter System (GLAS) LiDAR in
strument onboard the NASA Ice, Cloud, and land Elevation (ICESat) 
satellite (Simard et al., 2011), which provides global forest-canopy- 
height estimates at 30-s spatial resolution. Although the dataset repre
sents only a single year (2005), we used it for the entire BESS time period 
(1982–2019) due to a lack of dynamic data. Non-forest and C4 plant 
land-cover areas were set to 1- and 2-m height, respectively, based on 
annual land-cover maps. 

Visible and NIR albedo products were used to simulate canopy 
shortwave radiative transfer in BESS v2.0, following Jiang and Ryu 
(2016). Shortwave albedo products were used to compute incoming 
solar radiation and surface net radiation in BESS. For the period after 
2001, we used MODIS MCD43D59, MCD43D60, and MCD43D61 black- 

Table 1 
Input data list for BESSv2.0 model. All the data were resampled to 0.05◦ for the flux simulations.  

ID Dataset Temporal 
resolution 

Spatial 
resolution 

Satellite Module 

1 GMTED2010 global terrain elevation One-off 1/120 ◦ Y Vcmax; Energy balance; 

2 
Köppen-Geiger global climate 
classification One-off 1/10 ◦ N Canopy conductance 

3 Global maize distribution One-off 1/4 ◦ Y Vcmax; Carbon assimilation; 
4 Global C4 grass distribution One-off 1/4 ◦ N Carbon assimilation 
5 Global forest canopy height One-off 1/120 ◦ Y Energy balance 

6 Harmonized World Soil Database 
(HWSD) 

One-off 1/120 ◦ N 
TERTER 

7 Soil organic carbon stock One-off 250 m Y 
8 Global canopy clumping index Climatology 500 m Y Energy balance; Canopy shortwave radiative transfer; Vcmax; 
9 WorldClim wind speed data Climatology 1/120 ◦ N Thermodynamics 
10 CCI global land cover classification Annual 1/360 ◦ Y 

TER; Canopy conductance; Carbon assimilation; 
11 

MCD12Q1 C6 land cover 
classification 

Annual 500 m Y 

12 VIPPHEN_EVI2 global phenology Annual 5 km Y Vcmax 13 VPN22C2 global phenology Annual 5 km Y 

14 
MEaSUREs vegetation continuous 
fields Annual 5 km Y Energy balance 

15 MOD44B vegetation continuous fields Annual 250 m Y 

16 
OCO-2 Global carbon dioxide 
distribution Monthly 1 ◦ Y 

Canopy conductance 17 GHG-CCI global carbon dioxide 
distribution 

Monthly 5 ◦ Y 

18 NOAA sites carbon dioxide 
measurements 

Monthly – N 

19 GLOBMAP leaf area index Half-monthly 1/13.75 ◦ Y 
Vcmax; Canopy shortwave radiative transfer; Canopy longwave radiative 
transfer; Carbon assimilation; Energy balance; 

20 MOD15A2H C6 leaf area index 8-day 500 m Y 
21 MCD15A3H C6 leaf area index 4-day 500 m Y 

22 
GLASS black/white-sky shortwave 
albedo 8-day 1/20 ◦ Y 

Canopy shortwave radiative transfer 

23 MCD43D59 C6 black/white-sky 
visible albedo 

Daily 1/120 ◦ Y 

24 
MCD43D60 C6 black/white-sky near- 
infrared albedo Daily 1/120 ◦ Y 

25 
MCD43D61 C6 black/white-sky 
shortwave albedo Daily 1/120 ◦ Y 

26 MOD04_L2 C6 aerosol Daily 10 km Y 

BESS radiation 27 MYD04_L2 C6 aerosol Daily 10 km Y 
28 MOD06_L2 C6 cloud Daily 1 km Y 
29 MYD06_L2 C6 cloud Daily 1 km Y 
30 MOD07_L2 C6 atmospheric profiles Daily 5 km Y 

BESS radiation; Thermodynamics; TER; 31 MYD07_L2 C6 atmospheric profiles Daily 5 km Y 
32 ERA5 solar radiation Hourly 1/4 ◦ N BESS radiation; Canopy shortwave radiative transfer; 
33 ERA5 air temperature Hourly 1/4 ◦ N Thermodynamics; TER; 
34 ERA5 dewpoint temperature Hourly 1/4 ◦ N Thermodynamics;  
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and white-sky albedo products for visible, NIR, and shortwave broad
band wavelengths, respectively. For the period before 2000, we used 
Global Land Surface Satellite (GLASS) black- and white-sky albedo 
products. 

MODIS albedo products apply a rolling-weight strategy to derive 
daily albedo using 16-day surface-reflectance data acquired by the Terra 
and Aqua satellites, with a spatial resolution of 30 s. We excluded pixels 
as outliers if their daily albedo values were beyond the monthly mean ±
2 monthly standard deviations (SD). Subsequently, data gaps in daily 
albedo were filled with monthly data. The GLASS albedo product pro
vides 0.05◦ albedo at 8-day intervals. We applied the same procedure for 
pixel-wise inter-calibration with MODIS data. The resulting 8-day data 
were linearly interpolated into daily intervals. 

2.3.2. Climate datasets 
Daily 2-m air temperature (Ta) and dew point temperature (Td) data 

were derived from ERA5 products (Hersbach et al., 2018). Standard 
ERA5 data were provided at 0.25◦ × 0.25◦ resolution and 1-h intervals. 
To match the BESS spatial resolution (0.05◦), we performed spatial 
downscaling on original ERA5 air-temperature data using WorldClim 
climatology data (1-km resolution, aggregated to 0.05◦; http://wor 
ldclim.org/version2) and MODIS monthly mean Ta and Td derived 
from the MOD07/MYD07_L2 product (5-km resolution) as proxies for 
the periods before 2000 and after 2001, respectively. Pixel-wise ratios of 
coarse-scale ERA-derived temperatures to 0.05◦ temperature were used 
as a downscaling factor to compute fine-scale ERA-derived temperature 
datasets. The downscaling formula is given as: 

Xfine = Rfine ×Cfine (15)  

Ccoarse = Xcoarse/Rcoarse (16)  

where X and R are the target and reference datasets, respectively; C is the 
downscaling coefficient; the fine and coarse subscripts indicate the 
resolution level, Xfine, Xcoarse, and Rfine are the downscaled ERA5, orig
inal ERA5, and MODIS-derived data, respectively; and Rfine was aggre
gated into Rcoarse by averaging fine-resolution data within each coarse- 
resolution grid. To avoid boundary effects, we linearly interpolated 
Ccoarse into Cfine, rather than direct substitution. 

For the MODIS period after 2001, we adopted solar-radiation data 
from BESS (BESS-Rad). BESS-Rad computes solar radiation components, 
including surface downwelling shortwave radiation (SW), ultraviolet 
radiation, direct PAR, diffuse PAR, direct NIR radiation, and diffuse NIR 
radiation through synergistic application of the Forest Light Environ
mental Simulator (FLiES) and an artificial neural network (Ryu et al., 
2018). We used ERA5 SW data (Hersbach et al., 2018) to obtain radia
tion components before 2000 using an empirical method (Weiss and 
Norman, 1985) and computed ultraviolet radiation by assuming a 5% 
proportional relationship with SW (IARC Working Group on the Eval
uation of Carcinogenic Risks to Humans. Radiation. Lyon FR; Interna
tional Agency for Research on Cancer, 2012). We applied the same 
procedures to further downscale and inter-calibrate these variables and 
fill data gaps within the MODIS period using ERA5-derived data. 

The Orbiting Carbon Observatory-2 (OCO-2) Lite Version-7 XCO2 
product for 2015 (oco2.gesdisc.eosdis.nasa.gov) and National Oceanic 
and Atmospheric Administration (NOAA) Annual Mean Global Carbon 
Dioxide Growth Rates data (www.esrl.noaa.gov/gmd/ccgg/trends/) 
were harmonized to generate spatiotemporally varying ambient CO2 
concentration maps at 0.05◦ resolution from 1982 to 2019. 

National Centers for Environmental Prediction (NCEP)/ National 
Center for Atmospheric Research (NCAR) Reanalysis wind speed data 
(www.esrl.noaa.gov/psd/data/gridded/) (Kalnay et al., 1996) were 
used in the aerodynamic module. 

The Tropical Rainfall Measuring Mission (TRMM) 3B43 v7 precipi
tation data were used in the Budyko relation evaluation at the global 
scale (Huffman et al., 2007). We used the Global Land Data Assimilation 

System (GLDAS-Noah) v2.1 precipitation data (Rodell et al., 2004) to fill 
gaps in daily TRMM data, and then resampled the gap-filled precipita
tion data to 0.05◦ resolution using the nearest neighborhood method. 

2.3.3. Ancillary datasets 
SOC stock data were downloaded from the SoilGrids system (https: 

//www.soilgrids.org) generated at the International Soil Reference 
and Information Centre (Hengl et al., 2017). SoilGrids v2.0 (Batjes et al., 
2020), with a resolution of 250m, is currently the most detailed global 
soil dataset, acquired with high accuracy (Dai et al., 2019). We used 
topsoil SOC stock (0–15 cm) as the input data for TER model 
development. 

To account for the spatial distribution of foliage in acquiring the 
sunlit fraction of canopy and FVC, we used a global 500-m, 8-day 
clumping index (CI) product derived from MODIS data (Wei et al., 
2019). To reduce data noise and gaps, we computed mean monthly CI 
maps for 2001–2017 on a global scale, and used these for BESS simu
lations of the entire time period. 

We used the five main climate groups (tropical, dry, temperate, 
continental, and polar) of the Köppen-Geiger climate classification map 
(Peel et al., 2007) in data-gap-filling procedures and Ball–Berry m 
parameterization. 

Using the MsTMIP maize-fraction map (Monfreda et al., 2008) and 
C4 grass-relative-fraction (FC4,r) map (Still et al., 2003), BESS computes 
GPP, ET, and Rnet for C3 and C4 plants separately in a grid cell. The 
MsTMIP datasets provide estimates of the percentage of each grid cell 
covered by maize and the relative percentage covered by C4 grass over 
the globe. Although these datasets represent only a single year (ca. 
2000), we used them for the entire BESS time period (1982–2019) due to 
a lack of dynamic data. Annual tree cover (FTree) was also obtained from 
MOD44B yearly VCF product. Due to the significant discrepancy be
tween VCF5KYR and MOD44B tree cover data, we used MOD44B FTree of 
2000 as a static model input for the period before 2000. We further 
generated an annual C4 grass fraction (FC4) map by combining annual 
land-cover, tree-cover and C4 relative-fraction maps: 

FC4 =

{
(1 − FTree) × FC4,r , for savannas and woody savannas

FC4,r , for grasslands (17) 

The Shuttle Radar Topography Mission (SRTM) global 30-arcsec 
elevation product (Jarvis et al., 2008) was used to consider the effect 
of elevation on incoming radiation. 

2.4. Datasets for model evaluation and calibration 

2.4.1. Global-scale land–atmosphere datasets 
At global level, we performed a comprehensive intercomparison 

between BESS and 18 other long-term gridded land–atmosphere flux 
products (using three machine-learning methods, three LUE models, 10 
dynamic global vegetation models (DGVMs), and one reanalysis prod
uct), in terms of global total values and/or mean annual sum patterns. 

FLUXCOM datasets are commonly used as benchmark or reference 
data in global carbon- and water-cycle studies (Bastos et al., 2020; Ryu 
et al., 2019; Tagesson et al., 2021). FLUXCOM products have provided 
ensemble Rnet, LE, GPP, TER, and NEE values derived using three 
machine-learning methods, at 0.5◦ spatial resolution since 1979 (RS +
METEO setup; i.e., remote-sensing and meteorology) and at 0.0833◦

spatial resolution since 2001 (RS setup) (Jung et al., 2020). We used the 
RS + METEO dataset to intercompare long-term global total flux esti
mates, and the RS dataset for site-level evaluation and intercomparison 
of spatial patterns, due to its higher spatial resolution. LUE-based global 
GPP estimates were obtained using P (Stocker et al., 2020), light 
response function (LRF) (Tagesson et al., 2021), and photo
synthesis–respiration (PR) models (Keenan et al., 2016). Among these, 
the PR model couples a semi-empirical TER model based on Migliavacca 
et al. (2011) and EC data. We also used an ensemble of global 
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simulations of 10 DGVMs from the Trends in Net Land-Atmosphere 
Exchange (TRENDY-v1) project (Sitch et al., 2015) to benchmark GPP, 
TER, and NEE estimates concurrently. For ET data comparison, we 
included products derived from two process-based models, 
Process-based Land Surface evapotranspiration/Heat flux (P-LSH) 
(Zhang et al., 2010; Zhang et al., 2015) and the Global Land Evaporation 
Amsterdam Model (GLEAM) (Martens et al., 2017; Miralles et al., 2011). 
All map-to-map intercomparisons were made at an annual step and 0.5◦

resolution for the overlapped time span of each flux product. 

2.4.2. FLUXNET datasets 
We used the entire recently released FLUXNET2015 Tier 1 dataset, 

covering a total of 206 flux sites and 1496 site-years (Pastorello et al., 
2020), for model calibration and validation. We used daily GPP and TER 
reference data obtained using the daytime partitioning method (i.e., 
GPP_DT_CUT_REF and RECO_DT_CUT_REF), and consolidated Ta (i.e., 
TA_F) from gap-filled Ta, gap-filled LE (i.e., LE_F_MDS) and Rnet (i.e., 
NETRAD). All data were further filtered using data-quality flags at a 
threshold of >0.8, based on a fraction from 0 to 1 indicating the pro
portion of measured and good-quality gap-filled data. We further 
calculated PET according to Priestley and Taylor (1972). 

The research sites included in the FLUXNET2015 Tier 1 dataset cover 
11 major PFTs defined by the IGBP from tropical to arctic climate zones, 
including 15 evergreen broadleaf forests (EBF), 26 deciduous broadleaf 
forests (DBF), 10 mixed forests (MF), 49 evergreen needleleaf forests 
(ENF), six woody savannas (WSA), eight savannas (SAV), two closed 
shrublands (CSH), 12 open shrublands (OSH), 37 grasslands (GRA), 20 
croplands (CRO), and 20 wetlands (WET). Due to the limited numbers of 
sites and the similarities among them, we combined both open (OSH) 
and closed (CSH) shrublands sites into one shrublands class (SHB). 

Site-level evaluation of BESS flux products was performed based on 
five error metrics, the coefficient of determination (R2), root mean 
square error (RMSE), normalized root mean square error (NRMSE, 
RMSE normalized (divided) by the magnitude of observed variability 
(standard deviation)) (Keenan et al., 2012), mean bias error (Bias), and 
relative mean bias error (Rbias, the difference between estimated and 
observed values divided by the observed mean). We further evaluated 
BESS performance according to ecosystem functional properties that 
learned from FLUXNET measurements, including the Budyko relation, 
CUE, WUE and LUE. 

2.5. Evaluations of ecosystem functional properties 

2.5.1. The Budyko equation 
The Budyko relation implies a functional property between long- 

term-average ET and water and energy balance in large watersheds 
(Williams et al., 2012). We solved for the best-fit curve using mean 
annual values from both FLUXNET and satellite datasets, to demonstrate 
the physical principles of water and energy availability governing water 
balance through the Budyko space (evaporative index (= ET/P) vs. 
dryness index (= PET/P)), as follows: 

ET
P

=
1

(1 + (P/PET)n
)

1/n (18)  

where n is the curvature parameter of the best-fit curve. 

2.5.2. CUE 
CUE can be defined as either the ratio between mean annual TER and 

GPP (definition 1), or the slope of the regression between TER and GPP 
(definition 2). Recent investigations suggest a CUE of ~0.8 using both 
approaches based on global observational datasets (Baldocchi, 2020). 
Hence, we comprehensively used definition 1 for global-level CUE 
evaluations (see Section 3.1 and 3.3), and used both definitions for site- 
level CUE evaluations (see Section 3.4). 

3. Results 

3.1. Global annual carbon and energy budgets 

BESS estimates for global mean annual total carbon, water, and en
ergy fluxes over land surfaces from 1982 to 2019, along with corre
sponding functional properties, are summarized in Fig. 2. As the 
ultimate energy input, SW exceeded all other energy components by at 
least two times of magnitude. On an annual scale, multiple environ
mental and physiological constraints lowered the SW energy committed 
towards GPP by 858.97 ZJ yr− 1 (zetta = 1021), leading to a final LUE (i. 
e., GPP/absorbed PAR (APAR), with an energy–quanta conversion factor 
of 4.56) of 1.50%. Approximately 87% of the GPP was subsequently 
respired back into the atmosphere through heterotrophs and autotrophs. 
A total of 67.67 × 103 km3 yr− 1 of water was consumed to fix 125.74 Pg 
C yr− 1, indicating a WUE of 1.86 g C kg− 1-H2O. 

3.2. Site-level evaluation of BESS against FLUXNET observations 

3.2.1. Overall accuracy 
Site-level BESS evaluation results are provided in Table 2. Overall, 

both daily and monthly 1-km BESS fluxes agreed well with FLUXNET 
measurements. Average R2 values ranged from 0.31 (NEE) to 0.84 (Rnet), 
and the relative bias varied from − 1% (Rnet) to 80% (NEE) at the daily 
scale. BESS flux estimate performance was generally better at the 
monthly scale, explaining 40% (NEE) to 92% (Rnet) of variation. Except 
for NEE, the BESS model explained more than half of all interannual 
variation in FLUXNET measurements over all sites, with a relative bias of 
− 19% (GPP) to − 1% (Rnet). However, the model captured only 13% of 
the interannual variation in NEE, and exhibited systematic over
estimation of NEE (Rbias = 69%). 

3.2.2. Comparison with benchmark products 
We further evaluated the performance of BESS in comparison with 

two benchmark products, FLUXCOM and GLASS, at a monthly step 
against FLUXNET tower pixels (Fig. 3). All three products were resam
pled to a 0.05◦ spatial resolution. Overall, all three products agreed well 
with FLUXNET observations. For energy flux estimates, FLUXCOM had a 
higher R2 and lower RMSE and Bias than the other two products. For LE 
estimates, BESS showed a small underestimation (Rbias = − 4%), 
whereas GLASS tended to overestimate LE to some extent (Rbias =
38%). By contrast, the carbon flux estimates of all three products had 
similar R2 values. For GPP estimates, BESS and GLASS performed better 
in terms of RMSE and Bias than FLUXCOM, which consistently under
estimated GPP in months with high values. 

3.3. Global intercomparison with benchmark datasets 

3.3.1. Global total coupled flux budgets 
At the global scale, there were distinct differences in the magnitudes 

or trends of total flux estimates from various models (Fig. 4). A com
parison of diverse land-surface flux products showed that global BESS 
annual flux estimates were generally within or close to the most plau
sible ranges (Table S4). FLUXCOM estimated all fluxes with smaller 
interannual variability. Most of the other annual global GPP and TER 
estimates yielded similar upward trends, but with large variations in 
magnitude between estimates. An ensemble of 10 dynamic global 
vegetation models for the TRENDY datasets showed large uncertainties, 
exceeding 10 Pg C yr− 1 in both global GPP and TER estimates. By 
contrast, larger divergences were found among the functional properties 
of fluxes. Specifically, BESS WUE showed a clear increasing trend 
(0.009 g C kg− 1 yr− 2), whereas FLUXCOM and GLASS WUE were more 
conservative, showing lower magnitudes. For CUE, BESS, PR, and 
TRENDY showed slight decreasing trends, unlike FLUXCOM. GLASS 
exhibited no substantial trend in LUE, whereas BESS showed a strong 
increasing trend (0.005% yr− 2), with lower magnitudes since 1982. 
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3.3.2. Spatial patterns of mean annual sum values 
The global spatial distributions of BESS mean annual fluxes and 

functional properties from 1982 to 2019 are shown in Fig. 5. Overall, the 
patterns of mean annual GPP, TER, and ET were similar, with hotspots 
occurring in densely vegetated tropical regions (Fig. 5), where evergreen 
broadleaf forests dominate between 20◦N and 20◦S. The southeast side 
of Asia, North America, and Oceania generally had higher GPP, TER, and 
ET, corresponding to humid subtropical climates. Small GPP, TER, and 
ET fluxes were mainly observed in cold and dry regions (e.g., central 
Eurasia and the Arctic). Mean annual Rnet exhibited a dominant gradient 
between high values in the tropics and low values at high latitudes. By 
contrast, BESS mean annual NEE values indicated sizable carbon sinks 
across most croplands and forests, except for tropical forests in Amazon 
and Africa, and small carbon sources in drylands globally. The spatial 
distribution of CUE was comparable to that of NEE, and WUE and LUE 
showed similar overall patterns. Croplands and tropical forests had 
higher WUE and LUE than other PFTs. 

There were considerable regional disparities among FLUXNET, BESS, 
and GLASS datasets across land–atmosphere fluxes and functional 
properties (Fig. S2 and S3). In particular, BESS showed consistently 
lower Rnet and ET values than FLUXCOM across all tropical regions, 
whereas the opposite was the case for most dry and cold regions. Over 

most croplands worldwide, BESS yielded higher GPP and TER values 
than FLUXCOM, with slightly lower values in south central Asia, 
northern North America, and southern South America. BESS showed 
higher TER estimates in the Amazonian and African rain forests. 
FLUXCOM NEE differed notably from BESS NEE, which showed a more 
heterogeneous pattern (Fig. S2). For example, in tropical evergreen 
broadleaf forests, BESS NEE demonstrated carbon neutrality (Fig. 5), 
whereas FLUXCOM tended to show a strong carbon sink. The distribu
tion pattern of CUE differences between BESS and FLUXCOM was 
comparable to that of NEE differences. For WUE, BESS generally showed 
larger values over regions dominated by C4 plants (especially crop
lands), whereas BESS agreed better with FLUXCOM in regions domi
nated by C3 plants. Similarly, GLASS showed lower GPP values than 
BESS over most croplands worldwide except in India, but higher GPP 
values over tropical evergreen forests (Fig. S3). GLASS consistently 
showed larger ET values than BESS in tropical evergreen forests, sub
tropical forests, and croplands, in patterns similar to those of FLUXCOM 
values, whereas opposite patterns were observed over the Tibetan 
Plateau; little difference in ET was observed in other locations. Overall, 
the spatial mismatch between BESS and GLASS ET was greater than that 
between BESS and FLUXCOM. Correspondingly, GLASS generated much 
larger WUE over most croplands compared to BESS. BESS exhibited 

Fig. 2. BESS estimates of mean annual total carbon, water and energy balance components over land from 1982 to 2019. Some background graphics were 
downloaded from https://www.vecteezy.com/. 

Table 2 
Evaluation of BESS performance compared with FLUXNET observations. Error metrics were calculated based on 1-km-resolution forcing data. NRMSE and Rbias values 
are given in brackets.  

Flux Daily Monthly Annual 

R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias 

GPPa 0.65 2.56(62%) − 0.69(− 19%) 0.73 2.12(55%) − 0.68(− 18%) 0.67 477.23(72%) − 255.60(− 19%) 
TERa 0.51 2.02(72%) − 0.05(− 2%) 0.65 1.53(61%) − 0.07(− 2%) 0.61 358.14(63%) − 40.68(− 4%) 
NEEa 0.31 2.22(87%) 0.59(80%) 0.40 1.78(83%) 0.59(78%) 0.13 306.41(122%) 147.85(69%) 
LEb 0.53 2.31(71%) − 0.12(− 3%) 0.65 1.75(61%) − 0.13(− 4%) 0.51 427.79(72%) − 49.70(− 4%) 
Rnet

b 0.84 2.46(42%) − 0.07(− 1%) 0.92 1.69(33%) − 0.09(− 1%) 0.73 423.51(54%) − 35.36(− 1%)  

a The units of RMSE and Bias are g C m− 2 d− 1, g C m− 2 d− 1, and g C m− 2 yr− 1 at daily, monthly and annual time scales, respectively. 
b The units of RMSE and Bias are MJ m− 2 d− 1, MJ m− 2 d− 1, and MJ m− 2 yr− 1 at daily, monthly and annual time scales, respectively. 
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Fig. 3. Density scatterplots evaluating BESS (first column), FLUXCOM (second column), and Global Land Surface Satellite (GLASS) (third column) performance 
against EC observations at a monthly scale and 0.05◦ spatial resolution. NRMSE and Rbias values are given in brackets. 
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higher LUE values than GLASS over extratropical croplands and forests, 
as well as shrublands around the Arctic region. Despite these regional 
mismatches, the mean annual sums of BESS fluxes showed moderate 
consistency with both FLUXCOM (R2 ≥ 0.77 for all fluxes except for R2 

= 0.32 in NEE) and GLASS (R2 = 0.80 and 0.85 for ET and GPP, 
respectively). 

3.4. Evaluation of functional properties 

3.4.1. Budyko relation 
We evaluated the Budyko relation (evaporative index vs. dryness 

index) according to various remote-sensing products against direct 
measurements from the FLUXNET database. The Budyko relation relies 
on two fundamental physical limits (Fig. 6); first, that the demand limit 
implies that actual ET cannot surpass PET, and follows a 1:1 line (ET =
PET), and second that the supply limit implies that actual ET cannot 
surpass water supply (ET/P ≤ 1) in the absence of a substantial contri
bution by run-on or phreatic water sources. The best-fit curve of BESS 
estimates had a curvature parameter of n = 1.58, which was slightly 
lower than the measured FLUXNET value (1.80), whereas the FLUXCOM 
value was markedly higher (4.61). Most BESS estimates were below the 
demand and supply limits. By contrast, FLUXCOM estimates somewhat 
violated the functional constraints, with much more exceptions above 
the demand line (ET = PET) in the observed Budyko space (Fig. 6c). We 
also used whole global land pixels to fit the curvature parameter 
(Fig. 6d, e). There are more values above the supply line (ET = P) for 
both remote-sensing products and FLUXNET observations (ET > P, as 
shown in Fig. 6), especially among temperate and continental climate 
zone sites. More specifically, the fraction of values above the supply line 
in global FLUXCOM estimates (14.89%) was nearly twice that of BESS 
(7.62%). The largest deviations in BESS estimates were mainly located 

in arid climate regions, where ET is typically small. 

3.4.2. CUE comparisons 
The annual sums of GPP and TER appeared to be strongly coupled 

(Fig. 7). On average, 0.80, 0.71, and 0.77 of CUE (defined as the slope of 
the regression between TER and GPP) was obtained, and 86%, 95%, and 
80% of the variance in TER was explained by variation in GPP based on 
the BESS, FLUXCOM and FLUXNET data, respectively. Similar results 
were observed from both BESS and FLUXCOM based on whole global 
land pixels (Fig. 7d, e). Notably, FLUXCOM showed very high linear 
relationships between GPP and TER (R2 = 0.95 for FLUXNET sites, R2 =

0.99 for global land pixels). 

3.4.3. WUE comparisons 
At the site scale, PFT-specific WUE (GPP vs. ET) estimates from BESS 

agreed better with FLUXNET measurements than those of GLASS and 
FLUXCOM (Figs. 8 and S4). Linear regression analysis showed that the 
fitted slopes of annual sum GPP and ET values obtained using BESS 
(slope = 0.27) were similar to those of FLUXNET WUE (slope = 0.23). By 
contrast, GLASS and FLUXCOM data showed larger slopes (~0.41), 
indicating that more water was used to fix carbon. On average, FLUX
NET WUE observations for SHB (1.46 ± 0.83 g C kg− 1-H2O) were found 
to be smaller than those of other PFTs, but were high for MF (3.59 ±
1.61 g C kg− 1-H2O). By contrast, fitted intercepts were relatively con
servative across site-level BESS, GLASS and FLUXCOM estimates and 
FLUXNET measurements. 

Overall, global-level WUE derived from whole land pixels showed 
similar distributions to site-level values (Fig. 8a–c). There was tight 
coupling between GPP and ET across different satellite datasets and 
different spatial scales (from site to global level), despite all global-level 
plots presenting lower WUE than site-level plots. However, a clear 

Fig. 4. Comparison of annual global total flux estimates from various models. The shaded pink area represents the interval of 1 standard deviation from 10 TRENDY 
models. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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saturation effect was also detected in FLUXCOM global estimates 
(Fig. 8g). On an annual basis, terrestrial ecosystems that assimilated 
>3000 g C m− 2 yr− 1 evaporated >1000 mm of water. 

3.4.4. LUE comparisons 
Site-level LUE (GPP vs. APAR) comparisons indicated similar pat

terns among the FLUXNET, BESS, and GLASS datasets, whereas global 
LUE from BESS was generally higher than that from GLASS (Figs. 9 and 
S5). Noted that the FLUXNET APAR was derived by multiplying 
measured PAR and MODIS fPAR, and the corresponding LUE pattern 

was slightly more scattered than those of the other two products. At both 
the site and global levels, scatterplots of APAR and GPP revealed that 
maximum LUE on the annual scale was approximately 2%, and actual 
LUE sometimes diverged from the maximum LUE under biotic and 
abiotic stress. EBF and CRO generally had higher LUE values than the 
other PFTs (Fig. 5). 

Fig. 5. BESS global mean annual fluxes and functional properties from 1982 to 2019. WUE = GPP/ET; LUE = GPP/APAR; CUE = TER/GPP.  
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Fig. 6. Evaporative index (= ET/P) vs. dryness index (= PET/P) based on annual sums from EC observations (a), and BESS (b, d) and FLUXCOM (c, e) simulations. 
Demand and supply limits are indicated by dashed lines, and best-fit Budyko curves are indicated by solid lines. P data were derived from EC observations (left) and 
gap-filled Tropical Rainfall Measuring Mission (TRMM) data (right). (d, e) are density plots of the global estimates from BESS and FLUXCOM, respectively. Data in 
global estimates are mean annual sums for 2001–2014. Standard errors are given in brackets. 
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4. Discussions 

4.1. Are BESSv2.0 results consistent with other global datasets? 

The coupled model, BESS, enabled us to quantify global annual 
budgets of radiation, energy, and carbon fluxes concurrently (Fig. 2). 
This is very important benefit by developing a coupled model as all flux 

variables were computed with the same forcing and each flux variable is 
constrained by the other flux variables, which were not available in the 
previous remote-sensing-based land surface flux products. Globally, SW 
at land surface was 861.30 ZJ yr− 1. PAR accounted for 46% of the SW 
energy (395.43 ZJ yr− 1), and only 39% of PAR was further absorbed by 
plants (i.e., fPAR = 0.39). Moreover, BESS quantified mean annual 
global total Rnet, LE, GPP, TER, and NEE values (1982–2019) of 340.97 

Fig. 7. Comparison of the relationship between annual sums of GPP and TER from various flux datasets over FLUXNET2015 sites (left) and all land pixels (right). (d, 
e) are density plots of the global estimates from BESS and FLUXCOM, respectively. Data in global estimates are mean annual sum values for 2001–2014. 
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Fig. 8. Comparison of the relationships between annual sums of GPP and ET obtained from various flux datasets over FLUXNET2015 sites (left) and all land pixels 
(right). (e–g) are density plots of the global estimates from BESS, GLASS, and FLUXCOM, respectively. Data in global estimates are mean annual sums for 2001–2014. 
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± 5.22 ZJ yr− 1 (mean ± 1 SD), 166.04 ± 1.78 ZJ yr− 1, 125.74 ± 5.95 Pg 
C yr− 1, 109.30 ± 3.16 Pg C yr− 1, and − 16.28 ± 2.95 Pg C yr− 1, 
respectively (Fig. 2). Furthermore, BESS radiation and energy flux 
values were similar to the global estimates derived from the constrained 
CMIP5 products based on field observations (i.e., 859.46 ± 7.47 ZJ yr− 1 

for SW, 177.50 ZJ yr− 1 for LE, 326.97 ZJ yr− 1 for Rnet (Wild et al., 
2015)). Overall, BESS flux estimates were close to or within the range of 
other model estimates (Table S4). 

Together, these BESS coupled fluxes enabled us to further corrobo
rate the following ecosystem functional properties constrained by 

physical and ecological principles. First, globally, annual LUE was only 
1.5%. Recent research has reported comparable LUE values derived 
from the ensemble of either DGVMs (1.33 ± 0.40%) or data-driven 
models (1.64 ± 0.46%) at global scale (Tang et al., 2020). This small 
number of LUE further decreased to 0.27% once we consider the fraction 
of global GPP to global land surface SW. Why only the tiny portion of 
solar energy is used for photosynthesis on annual timescales? Possible 
explanations may include that most solar energy occurs at wavelengths 
ineffective for photosynthesis (Kruse et al., 2005); photosynthesis is 
inactive for more than half of the year in many ecosystems due to 

Fig. 9. Comparison of the relationships between annual sums of GPP and APAR obtained from various flux datasets over FLUXNET2015 sites (left) and all land pixels 
(right). (d, e) are density plots of the global estimates from BESS and GLASS, respectively. Data in global estimates are mean annual sums for 2001–2014. Dashed 
lines indicate 2% in LUE. 
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thermal limitation (Ganguly et al., 2010); ecosystems can hardly form 
closed canopies and absorb most of the incident light under nutrient 
and/or water limitations (Baldocchi and Penuelas, 2019). 

Second, 87% of the assimilated carbon was respired back into the 
atmosphere (i.e., CUE = 0.87), which was consistent with data-driven 
estimates (Jung et al., 2011; Jung et al., 2020; Zeng et al., 2020) yet 
slightly higher than FLUXNET measurements on an annual basis (~0.82; 
Baldocchi and Penuelas, 2019; Fig. 7a). The bias might stem from a 
potential overestimation of TER in dry and cold regions (Fig. 5), where 
the FLUXNET sites were less represented in the model calibration pro
cess. By contrast, DGVMs and top-down estimates via atmospheric 
inversion models tended to yield even higher CUE (> 0.95; Table S4; 
Huang et al., 2016; Sitch et al., 2015). This discrepancy has been dis
cussed with potential reasons such as non-respiratory CO2 release (e.g., 
fire), riverine carbon export, and harvest in global ecosystems (Ballan
tyne et al., 2021; Zscheischler et al., 2017). Nevertheless, these results 
confirmed that TER consumes a significant portion of GPP (Baldocchi 
et al., 2001), and thus the magnitude of the global net carbon sink is 
minor compared to GPP. On the one hand, this is partly because sup
porting infrastructure (i.e., physical structures, such as roots, stems, and 
leaves, and processes that support carbon uptake) for carbon uptake 
requires significant respiratory costs (Waring et al., 1998); on the other 
hand, active photosynthetic period in many ecosystems is less than half 
of the year, whereas respiration may occur year-round. 

Third, terrestrial ecosystems evaporated 67.67 × 103 km3 of water 
while fixing 125.74 Pg C per year (i.e., WUE = 1.86 g C kg− 1-H2O). This 
estimate is consistent with the individual DGVM WUE estimations 
(ranging from 1.81 to 2.09 g C kg− 1-H2O) (Huang et al., 2015; Huang 
et al., 2016). Collectively, recent global evidence of convergence in WUE 
among many ecosystems (i.e., GRA, WET, SAV, DBF, and deciduous 
needleleaf forests) spanning diverse climates, with a similar average 
value of ~1.70 g C kg− 1-H2O, reflects the trade-off that CO2 uptake by 
vegetation is coupled to water loss by transpiration (Cooley et al., 2022; 
Xue et al., 2015). 

4.2. BESSv2.0 performance 

The BESS model exhibited comparable performance to other remote- 
sensing-driven benchmark models against FLUXNET observations across 
206 sites (Fig. 3). There were no significant differences between eval
uation results of BESS at 1-km and at 0.05◦ spatial resolutions (Table 2). 
The error metrics were comparable to those of FLUXCOM and GLASS, as 
well as estimates from the previous BESS version (R2: 0.86 and 0.84 and 
NRMSE: 45% and 51% for ET and GPP, respectively, at 113 sites; see 
Jiang and Ryu (2016) for details). Although BESS accurately estimated 
coupled fluxes at daily and seasonal time scales overall, it performed less 
well on interannual predictions, especially for NEE. Similar findings 
showing lower model performance in explaining interannual flux vari
ation have been reported in earlier studies that used either process-based 
(Jiang and Ryu, 2016; Keenan et al., 2012) or empirical models (Tra
montana et al., 2016; Zeng et al., 2020). Given that process models 
typically calculate NEE as the difference between GPP and TER, the 
reduced NEE prediction accuracy was likely owing to the propagation of 
uncertainties from the two flux terms. 

It was notable how estimates of energy and carbon fluxes showed 
strong differences in spatial patterns among models. In the tropics, BESS 
Rnet was significantly (~30%) lower than FLUXCOM Rnet, which partly 
explains the lower BESS ET within the same region. Similar to BESS, 
recent research showed an ensemble mean annual Rnet of ~4100 MJ 
m− 2 yr− 1 for tropical forests, derived from four independent global Rnet 
products (one remote-sensing product and three reanalysis products) 
(Jia et al., 2018). By contrast, FLUXCOM yielded ~20% and ~ 30% 
lower estimates than BESS for GPP and TER, respectively, resulting in 
FLUXCOM being a stronger carbon sink than BESS in the tropics 
(Fig. S2). The weaker tropical carbon sink obtained by BESS appeared to 
be consistent with the findings of recent observational studies (Gatti 

et al., 2021; Hubau et al., 2020; Restrepo-Coupe et al., 2017). GLASS 
showed larger ET values than BESS over most EBF regions (Fig. S3). 
There are several possible sources for these inconsistencies. First, the 
reliability of remote-sensing products usually fall prey to low quality of 
forcing data in the tropics caused by the long-duration cloud contami
nation. Second, the seasonal pattern of land–atmosphere fluxes (in 
particular, carbon fluxes) may not closely follow that of the vegetation 
indices but be more sensitive to the meteorological factors (e.g., Ta) 
(Tramontana et al., 2016). Third, less prominent seasonal variation 
obtained by satellite-derived key forcing data (e.g., vegetation indices) 
and insufficient spatial coverage of tropical forest sites likely contrib
uted to the comparably low performance in data-driven modeling (Yao 
et al., 2014). Due to the absence of calibration process (except for TER), 
BESS fluxes were not expected to be influenced by non-representative 
sampling data. Notwithstanding the above findings, it remains chal
lenging to determine the accuracy of divergent tropical flux estimations 
based on limited EC measurement data. At least 50% of crop regions 
were characterized by both BESS ~ FLUXCOM and BESS ~ GLASS GPP 
deviations >500 g C m− 2 yr− 1. The limitations of CRO GPP patterns 
could be attributed to two main factors: (1) incomplete capturing of 
environmental stresses or agricultural management activities by coarse- 
resolution forcing data; and (2) low quality of remote-sensing forcing 
data over CRO. For example, as a key input variable of all three models, 
several studies have reported either MODIS or GLASS LAI was generally 
underestimated in CRO (Claverie et al., 2013; Fang et al., 2019), 
potentially lowering the corresponding annual GPP estimates. This was 
also reflected in site-level GPP evaluations that all three products 
consistently showed underestimation over CRO sites (Table S5). Addi
tionally, FLUXCOM showed the largest negative bias over CRO, partly 
due to the absence of distinguishing between C3 and C4 crops in the 
machine-learning algorithms (Tramontana et al., 2016). 

In this study, we observed large uncertainties in global terrestrial 
energy and carbon budget estimates. The range of the magnitudes in 
annual flux budgets among various global products remained to be wide 
(Table S4), despite substantial advances in observation, modeling, and 
satellite remote sensing of land–atmosphere fluxes. Both theory and 
evidence have pointed to CO2 fertilization as a primary cause of 
enhanced global carbon uptake (Chen et al., 2022); however, most 
remote-sensing-based models have not explicitly incorporated CO2 
fertilization effects (Chen et al., 2012; Tagesson et al., 2021; Zhang et al., 
2016; Zhang et al., 2017). Only FLUXCOM demonstrated no discernible 
trend in carbon flux products, probably due to the absence of CO2 
fertilization in the model algorithms (Jung et al., 2020). BESS NEE 
showed a downward trend (increased carbon sink) which is the opposite 
to both GPP and TER trends. It appeared as GPP trend was stronger than 
TER trend. There was a stronger oscillation, with lower magnitudes, in 
BESS global Rnet values before 2000, in contrast to the period after 2001. 
MODIS-derived BESS SW, PAR and diffuse PAR were evaluated 
comprehensively, which agreed at tower, regional to global scales from 
snapshot to annual sum estimates (Ryu et al., 2018). However, during 
pre-MODIS era, BESS SW relied on ERA5 that was calibrated with BESS 
SW during MODIS period, and we found the ERA5 SW in pre-MODIS era 
showed larger year-to-year variations and lower estimates than MODIS 
era (Fig. 4). As SW forms the key components in Rnet, we assume that 
ERA5 SW data partly explains the lower values in BESS Rnet during pre- 
MODIS period than MODIS period. Moreover, albedo also plays an 
important role in BESS Rnet estimation (Jiang and Ryu, 2016). We 
observed a decline circa 2000–2001 in time series of visible, NIR, and 
SW albedo datasets, which is likely to increase Rnet value accordingly 
(Fig. S4). 

4.3. Implications of functional evaluations 

The derived ecosystem functional properties provided deeper insight 
into the sources of uncertainty in global land–atmosphere flux simula
tions. First, BESS ET was well-constrained by the two fundamental upper 
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bounds in Budyko space. The curvature parameters in the Budyko 
relation obtained from both BESS and FLUXNET data were consistent 
with those derived from the global syntheses (Choudhury, 1999; Pike, 
1964). Nevertheless, a few data above the demand and supply limits 
may indicate contributions from water sources other than precipitation 
(i.e. groundwater), or the influence of site-specific climate types, which 
is a major determinant of the evaporative index (ET/P) (Fig. 6) (Wil
liams et al., 2012). Furthermore, the overall lower evaporative index 
obtained by BESS in arid regions (Fig. 6b) compared to FLUXNET 
measurements indicated overestimated losses to runoff or deep drainage 
(Greve et al., 2016). Theoretically, the evaporative index in dry regions 
must approach 1 as most precipitation will return to the atmosphere via 
ET. In Ball-Berry model, we applied a water stress factor to the Ball- 
Berry intercept (Eq. 8–10). It was necessary to constrain seasonal pat
terns of ET in dry regions (Fig. S5), but the low evaporative index in dry 
sites within the Budyko framework suggest our water stress factor 
overcorrected water stress effects on annual sum scale. It indicates that 
BESSv2.0 misses some mechanism about water stress effects that link 
seasonal to annual scales, which will be our future study. For FLUXCOM 
(Fig. 6c, e), it was evident that substantial data appeared that exceeded 1 
in evaporative index in both flux tower pixels and global pixels, indi
cating annual ET exceeded annual precipitation. On the other hand, 
FLUXCOM evaporative index in dry sites approached to 1 (Fig. 6c), 
which is consistent with FLUXNET datasets (Fig. 6a). Overall, the 
Budyko relation revealed the missing mechanisms in BESS and 
FLUXCOM. 

Second, BESS produced an overall CUE of approximately 0.8, as well 
as a significant positive correlation between annual GPP and TER at both 
the site and global scales. These results corroborated evidence from the 
FLUXNET observations (Fig. 7), as well as the findings of many previous 
studies (Baldocchi, 2020). However, FLUXCOM displayed a lower CUE 
than BESS at both the site and global scales, largely driven by differences 
over Arctic and tropical regions (Fig. S2). Furthermore, a very strong 
linear relationship (R2 ≥ 0.95) between FLUXCOM TER and GPP is likely 
unrealistic, due to the small variation in CUE across PFTs associated 
with environmental stresses, in contrast to both FLUXNET and BESS 
data. FLUXCOM (RS setup) estimations relied exclusively on remote- 
sensing-based land-surface properties (e.g., vegetation indices and 
land-surface temperatures), which insufficiently captured environ
mental stress effects on carbon fluxes without additional meteorological 
forcing (e.g., Ta and VPD). According to published eddy covariance 
observations, CUE can either be <0.6 in ENF and DBF sites (without 
stresses), or approach 1 in mature EBF sites (Baldocchi and Penuelas, 
2019; Luyssaert et al., 2007), whereas TER can exceed GPP over her
baceous (e.g., grasslands) or disturbed sites (Baldocchi, 2008). Overall, 
BESS CUE was consistent with those published datasets. Globally, BESS 
annual CUE displayed a slightly negative trend (− 0.001 yr− 2), indi
cating a growing land carbon sink over recent decades (Fig. 4). Such 
trend was more apparent in annual NEE estimates, which was largely 
triggered by that CO2 fertilization enhanced GPP more than TER, 
alongside the effects of land cover and climate change, forest regrowth 
(Fernández-Martínez et al., 2019; Fernández-Martínez et al., 2017). 

Third, BESS WUE was more consistent to FLUXNET while GLASS and 
FLUXCOM presented lower WUE values than FLUXNET. In particular, a 
large portion of GLASS (58.1% for DBF and 56.6% for CRO) and 
FLUXCOM (57.4% for DBF and 38.7% for CRO) WUE estimates over DBF 
and CRO sites was <2.0 and < 1.5 g C kg− 1-H2O, respectively (Fig. S6). 
These outcomes were lower than those observed in previous studies that 
suggested at least ~2.7 and ~ 1.8 g C kg− 1-H2O of WUE for DBF and 
CRO sites, respectively (Law et al., 2002; Tang et al., 2014). Moreover, 
consistent with a recent study (Knauer et al., 2017), BESS captured a ~ 
0.01 g C kg− 1-H2O increase per year in WUE worldwide over the past 
four decades (Fig. 4). This finding supports the assumption that WUE 
would be enhanced in elevated CO2 environments because of partial 
stomatal closure and conservative maintenance of the internal-to- 
atmospheric CO2 concentration ratio (Keenan et al., 2013; Wong 

et al., 1979). In addition, the convergence of fitted intercepts in linear 
regression analysis across different datasets indicated that, for 
ecosystem photosynthesis to exceed zero, rainfall must exceed ~150 
mm yr− 1 to compensate water evaporation from soil by assuming 
negligible contributions from other water sources (Fig. 8). 

Finally, BESS LUE on annual scales was well constrained by 2% while 
it revealed discrepancy at PFT levels compared to FLUXNET. Previous 
studies reported that annual LUE at flux towers were at most 2% and 
were downregulated by environmental stresses (Baldocchi and Penue
las, 2019; Ryu et al., 2019). BESS annual LUE also revealed that upper 
limit was around 2% (Fig. 9b, d). When investigating at individual PFT 
level (Fig. S7), several lessons were found. First, BESS showed highest 
LUE in EBF where clouds pervade so diffuse light is dominant. Higher 
diffuse fraction leads more photons to penetrate canopies deeper, which 
can enhance photosynthesis in shaded leaves that are light-limited 
(Alton et al., 2007; Knohl and Baldocchi, 2008). Therefore, LUE tends 
to increase with higher diffuse fraction. Second, LUE showed large 
variations in each PFT (Figs. 9 and S4), supporting the conclusion that 
the PFT categories were generally not good indicators of spatial LUE 
variability (He et al., 2022; Schwalm et al., 2006). Third, FLUXNET 
showed highest LUE in CRO where BESS LUE was around half of 
FLUXNET. As we used MODIS fPAR to compute APAR in FLUXNET LUE, 
we assume that the tendency of underestimated MODIS fPAR in crop 
regions might lead higher LUE in FLUXNET data (Wang et al., 2017b; 
Zhang et al., 2008). We believe that scale match between flux tower 
footprints and satellite pixel is very important in crop landscapes which 
often include C3 and C4 rotation in space and time and include other 
land covers. Using higher spatial resolution satellite data such as 
CubeSats could help to estimate LUE precisely in crop sites (Kong et al., 
2022; Li et al., 2008). The static, coarse-resolution C3/C4 fraction map 
used in BESS could be another source of uncertainty. On top of these, 
more datasets and studies are required to examine if the reported long- 
term trend of global LUE by BESS is robust. 

5. Conclusions 

In this study, we generated a set of global daily Rnet, ET, GPP, TER, 
and NEE products at 0.05◦ resolution from 1982 to 2019, using BESS 
(v2.0), a remote-sensing-based, coupled process model. These products 
were comprehensively assessed via both direct and functional evalua
tions against FLUXNET observations across temporal scales, as well as 
comparisons against the benchmark products at site and global scales. 
BESS provided individual flux products with accuracy comparable to the 
benchmark global products; more importantly, BESS performed much 
better in retrieving functional properties such as the Budyko relation, 
CUE, WUE, and LUE, showing upward trends in global WUE (0.009 g C 
kg− 1-H2O yr− 2) and LUE (0.005% yr− 2), but a downward trend in global 
CUE (− 0.001 yr− 2). BESS showed the advantages of a fully coupled 
model structure, and the robust model performance in concurrently 
investigating ecosystem functional properties at the global scale, which 
was not the case for most other remote-sensing-driven models. Overall, 
BESS produces a set of reliable and independent products from other 
global data-driven products, and is expected to facilitate studies diag
nosing the state of terrestrial ecosystems in a coupled and comprehen
sive manner. BESS flux products are publicly available at https://www. 
environment.snu.ac.kr/data/ and will be updated periodically. 
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He, M., Chen, S., Lian, X., Wang, X., Peñuelas, J., Piao, S., 2022. Global spectrum of 
vegetation light-use efficiency. Geophys. Res. Lett. 49 e2022GL099550.  

Hengl, T., Mendes de Jesus, J., Heuvelink, G.B.M., Ruiperez Gonzalez, M., Kilibarda, M., 
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Sullivan, M.J.P., Sunderland, T.C.H., Taedoumg, H., Thomas, S.C., White, L.J.T., 
Abernethy, K.A., Adu-Bredu, S., Amani, C.A., Baker, T.R., Banin, L.F., Baya, F., 
Begne, S.K., Bennett, A.C., Benedet, F., Bitariho, R., Bocko, Y.E., Boeckx, P., 
Boundja, P., Brienen, R.J.W., Brncic, T., Chezeaux, E., Chuyong, G.B., Clark, C.J., 
Collins, M., Comiskey, J.A., Coomes, D.A., Dargie, G.C., de Haulleville, T., 
Kamdem, M.N.D., Doucet, J.-L., Esquivel-Muelbert, A., Feldpausch, T.R., 
Fofanah, A., Foli, E.G., Gilpin, M., Gloor, E., Gonmadje, C., Gourlet-Fleury, S., 
Hall, J.S., Hamilton, A.C., Harris, D.J., Hart, T.B., Hockemba, M.B.N., Hladik, A., 
Ifo, S.A., Jeffery, K.J., Jucker, T., Yakusu, E.K., Kearsley, E., Kenfack, D., Koch, A., 
Leal, M.E., Levesley, A., Lindsell, J.A., Lisingo, J., Lopez-Gonzalez, G., Lovett, J.C., 
Makana, J.-R., Malhi, Y., Marshall, A.R., Martin, J., Martin, E.H., Mbayu, F.M., 
Medjibe, V.P., Mihindou, V., Mitchard, E.T.A., Moore, S., Munishi, P.K.T., 
Bengone, N.N., Ojo, L., Ondo, F.E., Peh, K.S.H., Pickavance, G.C., Poulsen, A.D., 
Poulsen, J.R., Qie, L., Reitsma, J., Rovero, F., Swaine, M.D., Talbot, J., Taplin, J., 
Taylor, D.M., Thomas, D.W., Toirambe, B., Mukendi, J.T., Tuagben, D., Umunay, P. 
M., van der Heijden, G.M.F., Verbeeck, H., Vleminckx, J., Willcock, S., Wöll, H., 
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