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1  | INTRODUC TION

Great advances have been achieved in representing photosynthesis 
in terrestrial biosphere models (TBMs; Fisher, Huntzinger, Schwalm, 
& Sitch,  2014; Ryu, Berry, & Baldocchi,  2019), yet substantial un-
certainties still exist in terms of total amount, spatial distribution, 

seasonal cycle, and interannual variation of carbon uptake by plants 
(Anav et  al.,  2015; Baldocchi, Ryu, & Keenan, 2016). One source 
of uncertainty in TBMs lies in the assumption of constant plant 
leaf traits for different plant functional types (PFTs; Wullschleger 
et al., 2014; Yang, Zhu, Peng, Wang, & Chen, 2015). This assump-
tion accounts for first-order variation but overlooks spatial variation 
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Abstract
The maximum rate of carboxylation (Vcmax) is an essential leaf trait determining 
the photosynthetic capacity of plants. Existing approaches for estimating Vcmax at 
large scale mainly rely on empirical relationships with proxies such as leaf nitrogen/
chlorophyll content or hyperspectral reflectance, or on complicated inverse models 
from gross primary production or solar-induced fluorescence. A novel mechanistic 
approach based on the assumption that plants optimize resource investment coordi-
nating with environment and growth has been shown to accurately predict C3 plant 
Vcmax based on mean growing season environmental conditions. However, the ability 
of optimality theory to explain seasonal variation in Vcmax has not been fully inves-
tigated. Here, we adapt an optimality-based model to simulate daily Vcmax,25C (Vcmax 
at a standardized temperature of 25°C) by incorporating the effects of antecedent 
environment, which affects current plant functioning, and dynamic light absorption, 
which coordinates with plant functioning. We then use seasonal Vcmax,25C field meas-
urements from 10 sites across diverse ecosystems to evaluate model performance. 
Overall, the model explains about 83% of the seasonal variation in C3 plant Vcmax,25C 
across the 10 sites, with a medium root mean square error of 12.3 μmol m−2 s−1, which 
suggests that seasonal changes in Vcmax,25C are consistent with optimal plant func-
tion. We show that failing to account for acclimation to antecedent environment or 
coordination with dynamic light absorption dramatically decreases estimation ac-
curacy. Our results show that optimality-based approach can accurately reproduce 
seasonal variation in canopy photosynthetic potential, and suggest that incorporat-
ing such theory into next-generation trait-based terrestrial biosphere models would 
improve predictions of global photosynthesis.
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within PFTs (Kattge et al., 2011; Wright et al., 2005) and temporal 
variation due to acclimation and adaptation (Evans & Poorter, 2001; 
Lavergne, Mouquet, Thuiller, & Ronce, 2010).

The maximum rate of carboxylation (Vcmax), a key leaf trait deter-
mining photosynthetic capacity of plants (von Caemmerer, Farquhar, 
& Berry,  2009; Farquhar, Caemmerer, & Berry,  1980), is widely 
treated as a prescribed PFT-dependent parameter in TBMs (Bonan 
et  al.,  2011; Harper et  al.,  2016). Yet plant CO2 uptake quantified 
by PFT-based TBMs is theoretically inadequate to represent rea-
sonable impacts and feedback between vegetation and the environ-
ment (Rogers et al., 2016; Scheiter, Langan, & Higgins, 2013). In this 
context, next-generation trait-based TBMs have emerged in recent 
years (Pavlick, Drewry, Bohn, Reu, & Kleidon, 2013; Van Bodegom, 
Douma, & Verheijen, 2014). It is highly desirable to develop sound 
methods of modeling, mapping, and monitoring Vcmax to improve 
TBMs in a spatiotemporally explicit manner.

Attempts to estimate Vcmax at large scale fall into three general 
categories. The first is statistical approaches. Efforts have been made 
to empirically link Vcmax field measurements with various proxies, in-
cluding climate data (Ali et al., 2015; Verheijen et al., 2013), hyper-
spectral leaf/canopy reflectance (Dechant, Cuntz, Vohland, Schulz, 
& Doktor, 2017; Serbin et al., 2015), vegetation indices (Alton, 2017; 
Zhou et al., 2014), leaf chlorophyll content (LCC; Houborg, McCabe, 
Cescatti, Gao, et al., 2015; Luo, Croft, Chen, He, & Keenan, 2019), and 
leaf nitrogen content (LNC; Kattge, Knorr, Raddatz, & Wirth, 2009; 
Walker et  al.,  2014). Given the limited number and distribution of 
measured Vcmax-proxy pairs globally, the robustness of statistical 
models at large scales is unclear. In particular, many of them rely on 
PFT-dependent relationship, which implies an inability to explain the 
spatiotemporal variation in Vcmax.

The second category is inversion approaches. TBMs are cali-
brated or assimilated using tower-measured gross primary produc-
tivity (GPP; Dutta, Schimel, Sun, Van Der Tol, & Frankenberg, 2019; 
Zheng et  al.,  2017) or satellite-observed sun-induced chlorophyll 
fluorescence (SIF) data (He et al., 2019; Zhang, Guanter, et al., 2014; 
Zhang, Guanter, Joiner, Song, & Guan, 2018). Optimized Vcmax values 
yielding best model-data agreements are considered as retrievals. 
However, GPP observations are unavailable at large scale, and sat-
ellite-based GPP estimations are characterized by large uncertainty 
(Stocker, Zscheischler, et al., 2019; Xiao et al., 2019). By contrast, SIF 
observations are usually limited by temporal coverage, spatial reso-
lution, signal-to-noise ratio, cloud and aerosol contamination, atmo-
spheric and angular effects, or sensor degradation (Joiner, Yoshida, 
Guanter, & Middleton, 2016; Zhang, Joiner, Gentine, & Zhou, 2018). 
Furthermore, SIF is involved in the light reaction of photosynthesis 
(Gu, Han, Wood, Chang, & Sun, 2019), whereas Vcmax is involved in 
the dark reaction. As a result, the sensitivity of SIF to Vcmax is likely 
low (Frankenberg & Berry, 2018), which is revealed by both model 
simulation (van der Tol et  al.,  2016) and field observation (Yang 
et al., 2018).

The third category is mechanistic approaches. These approaches 
use optimality hypothesis to balance resource investments and car-
bon gains of plants. A typical theoretical framework uses an optimal 

nitrogen use hypothesis, assuming that plants optimize their nitro-
gen partitioning to maximize the photosynthetic carbon assimilation 
under specific environmental conditions and LNC (Ali et al., 2016). 
Another typical theoretical framework is based on coordination and 
co-optimization of Rubisco, light, and water costs for photosynthesis 
(Wang, Prentice, Keenan, et al., 2017). It hypothesizes that plants adjust 
nitrogen optimally in such a way that Rubisco- and electron trans-
port-limited CO2 assimilation rates are balanced (Chen, Reynolds, 
Harley, & Tenhunen, 1993) and operate stomata optimally in such a 
way that the summed unit costs of transpiration and carboxylation 
are minimized (Prentice, Dong, Gleason, Maire, & Wright, 2014). The 
combination of these two hypotheses yields a light use efficiency 
model from which Vcmax can be estimated (Bloomfield et al., 2018; 
Smith et al., 2019; Wang et al., 2020; Wang, Prentice, Davis, et al., 
2017). The optimality theory suggests that environmental demand 
is the main driver of leaf nitrogen, whereas soil nitrogen supply is 
the main influence on aboveground canopy allocation. Therefore, 
unlike the nitrogen-partitioning model, the optimality-based model 
does not require information on LNC (which is unavailable at large 
scale) as an input and therefore is more suitable for diagnostic stud-
ies. Compared to statistical approaches, mechanistic approaches 
are less limited by the representativeness of calibration data and 
therefore are more robust for large-scale applications. Compared 
to inversion approaches, mechanistic approaches are not limited by 
GPP/SIF observations and therefore more general. Such mechanistic 
approaches have proven adept at predicting spatial variation in Vcmax 
(Smith et  al.,  2019), though their efficacy for predicting temporal 
changes remains largely untested.

Vcmax at a standardized temperature, for example, 25°C (Vcmax,25C), 
has considerable seasonal variation, similar to LNC and LCC (Wilson, 
Baldocchi, & Hanson,  2000, 2001). Ignoring the seasonality of 
Vcmax,25C can lead to substantial errors in the estimation of carbon 
and water fluxes using TBMs (Kosugi, Shibata, & Kobashi,  2003; 
Luo et al., 2018). However, existing optimality-based models focus 
only on capturing global spatial and interannual variation of Vcmax 
and Vcmax,25C under mean growing season environmental condi-
tions (Bloomfield et al., 2018; Maire et al., 2012; Smith et al., 2019; 
Walker et al., 2017). To enable the prediction of seasonal variation in 
Vcmax,25C, further parameterization is needed.

The fundamental assumption of optimality-based models is that 
plants acclimate to the environment. In recent years, plant acclima-
tion has been characterized by a legacy effect or ecological memory 
(i.e., the effect of the past on current and future plant and ecosys-
tem functioning; Anderegg et  al.,  2015; Hughes et  al.,  2019; Ogle 
& Barber,  2016; Ogle et  al.,  2015). Ecological memory theory im-
plies that antecedent environmental conditions have the potential 
to affect plant physiology, potentially including Vcmax,25C (Fürstenau 
Togashi et  al.,  2018). Meanwhile, plants tend to co-vary canopy 
structure (particularly leaf area index, LAI, which determines the 
light absorption by plants) and functioning to acclimate to varying 
environmental conditions (i.e., canopy structure and functioning 
converge; Field, 1991). This functional convergence theory implies 
that canopy structure, which determines light absorption, carries 
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information on plant functioning and therefore has the potential to 
infer Vcmax,25C.

In this study, we proposed a pragmatic parameterization to en-
able an optimality-based model to capture the seasonality of C3 
plant Vcmax,25C benchmarked against field observations. We hy-
pothesized that the consideration of the antecedent environment 
and dynamic light absorption will improve Vcmax,25C estimation with 
regard to seasonal variation. To test this hypothesis and evaluate 
the model performance, we compiled an observational dataset of 
seasonal Vcmax,25C from published data collected at 10 sites across 
diverse ecosystems.

2  | MODELING

2.1 | The optimality photosynthesis model

According to the mechanistic photosynthesis model proposed by 
Farquhar (Farquhar et al., 1980), the gross rate of CO2 assimilation 
(A) is the lower of the Rubisco- or electron transport-limited rates. 
The optimality hypothesis posits that a leaf acclimates to prevailing 
environment, so that at a large timescale (e.g., a week, a month, or a 
growing season), A (g C m−2 day−1) is close to the point where Rubisco-
limited CO2 assimilation rate (Ac) and electron transport-limited CO2 
assimilation rate (Aj) are equal (Haxeltine & Prentice, 1996; Keenan 
et al., 2016; Wang, Prentice, Keenan, et al., 2017):

where Ci (Pa) is the intercellular CO2 concentration, Γ* (Pa) is the 
CO2 compensation point in the absence of dark respiration, K (Pa) is 
the Michaelis–Menten coefficient of Rubisco, α (g  C/mol) is the in-
trinsic quantum yield of photosynthesis on an incident light basis, 
I (mol  m−2  day−1) is the incident photosynthetically active radiation 
(PAR), and Jmax (μmol m−2 s−1) is the maximum electron transport rate. 
Both K and Γ* are functions of temperature (T; K), and their expression 
is provided in Table S1 (Bernacchi, Singsaas, Pimentel, Portis, & Long, 
2001). Please note in some papers the intrinsic quantum yield and PAR 
are defined on an absorbed light basis, whereas here they are on an in-
cident light basis. In addition, other forms of Aj exist, but the sensitivity 
of different forms is out of scope of this study.

The intrinsic quantum yield of photosynthesis α was initially con-
sidered constant at 1.02  g  C/mol (Wang, Prentice, Keenan, et al., 
2017) and was calculated by:

where aL = 0.8 is the leaf absorptance, bL = 0.5 is the ratio of light 
captured by photosystem II to light absorbed by leaf, k = 4 is the num-
ber of electron equivalents required to reduce one molecule of CO2, 

ΦPSII,max,dark = 0.85 is the maximum quantum yield of photosystem II 
for a typical dark-adapted leaf, and M = 12 is the weight in grams of 
1 mol carbon. Under natural conditions, however, ΦPSII,max,dark is only 
relevant when leaves begin photosynthesizing at dawn. Therefore, we 
replaced ΦPSII,max,dark by the maximum quantum yield of photosystem 
II for a typical light-adapted leaf ΦPSII,max,light, which is a function of 
temperature (T; °C; Bernacchi, Pimentel, & Long, 2003; Stocker, Wang, 
et al., 2019; Wang et al., 2020):

The optimality hypothesis also posits that plants adjust stomata 
to minimize the unit costs of transpiration (E) and carboxylation 
(Vcmax) relative to carbon assimilation (A; Prentice et al., 2014):

where χ (unitless) is the ratio of intercellular CO2 (Ci) to ambient CO2 
(Ca; Pa), a and b are dimensionless cost factors for E and Vcmax, respec-
tively. By applying Fick's law for diffusive transport to both transpira-
tion and assimilation, χ can be solved from (4) as (Prentice et al., 2014):

where D (Pa) is the vapor pressure deficit (VPD), η* is the viscosity of 
water relative to its value at 25°C, representing the effect of changing 
viscosity on the value of a at 25°C (Table S1). The ratio of cost fac-
tors for carboxylation and transpiration at 25°C β = 240 is fit from an 
isotope-derived χ database (Cornwell, 2017; Wang, Prentice, Keenan, 
et al., 2017).

The optimality hypothesis further assumes the existence of an 
optimal Jmax that maximizes the differences between benefit (Aj) and 
cost (c × Jmax, where c = 0.103 is a dimensionless cost factor esti-
mated according to the typical value of Jmax/Vcmax = 1.88; Kattge & 
Knorr, 2007). Vcmax can therefore be solved from (1) as follows:

Detailed deduction of this model can be found elsewhere (Smith 
et al., 2019; Wang et al., 2020; Wang, Prentice, Davis, et al., 2017; 
Wang, Prentice, Keenan, et al., 2017).

2.2 | Model parameterization for Vcmax,25C 
seasonality

A total of five variables are involved in Equation (6): I, T, D, Ca, and 
surface pressure Ps to convert Ca, K, and Γ* from concentration unit 
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(e.g., μmol/mol) to pressure unit (Pa). All of them refer to growing 
season or monthly mean values in existing optimality-based mod-
els (Bernotas et al., 2019; Bloomfield et al., 2018; Wang, Prentice, 
Keenan, et al., 2017).

As described in Section 2.1, leaf absorptance aL is considered 
as a constant in existing optimality-based models; for example, 0.8 
(Wang, Prentice, Keenan, et al., 2017), 0.5 (Bloomfield et al., 2018), 
and 0.79 (Smith et al., 2019) implied by a φ = 0.257 mol electrons 
mol photon−1 given an intrinsic quantum efficiency of 0.081 mol 
CO2 mol photon−1 (Singsaas, Ort, & DeLucia,  2001) and 4  mol 
electrons are needed to produce 1  mol of CO2. In reality, how-
ever, leaf absorptance varies over both space and time with vary-
ing pigments, water and dry matter contents, and leaf structure 
(Feret et al., 2008; Jacquemoud & Baret, 1990). Furthermore, the 
total interceptable light of a leaf is typically more than incident 
light due to multiple scattering effects within the canopy (Huang 
et al., 2007; Smolander & Stenberg, 2005; Zeng et al., 2019), and 
such effects vary with the dynamic canopy structure; this dynamic 
light absorption is not considered in existing optimality-based 
models.

To improve this incomplete assumption, we propose a four-step 
approach based on radiative transfer theory. First, we estimate the 
leaf area index (LAI) at the plant level (LAIplant) from landscape-level 
(LAIlandscape) data (by either field measurements or satellite estima-
tions) by accounting for the fraction of vegetation cover fplant (by ei-
ther field measurements or satellite estimations):

Second, we estimate the plant-level FPAR from LAIplant by apply-
ing Beer's law:

where ρPAR is the PAR albedo, Ω is the clumping index, and kd is the ex-
tinction coefficient under diffuse sky radiation (Goudriaan, 1977; Ryu, 
Lee, Jeon, Song, & Kimm, 2014):

where θ is the view zenith angle. Here, the diffuse extinction coeffi-
cient instead of direct one is used because the model calculates daily 
FPAR instead of instantaneous FPAR. ρPAR and Ω in Equation  (8) are 
ideally plant-level values but practically landscape-level values given 
the availability of satellite estimations. The integration in Equation (9) 
can be solved using an exponential integral (Table S1). As the absorp-
tion of PAR is considered at the canopy level, leaf absorptance aL in 
Equation (2) can be set to 1.

Third, we compute Vcmax (Equation 6) by replacing the constant 
value of aL in Equation (2) with the spatiotemporally explicit FPAR cal-
culated from Equation (8). At this point, the derived Vcmax represents 
the plant-level averaged value (Vcmax,plant).

Finally, we convert the plant-averaged Vcmax (Equation 6) to top-
leaf Vcmax (Vcmax,top-leaf; De Pury & Farquhar, 1997):

where kn is a nitrogen distribution coefficient accounting for vertical 
variation in LNC within the plant canopy, and a larger kn indicates a 
larger vertical variation in LNC and Vcmax. A mechanistic solution for 
kn is unavailable, but meta-analysis studies have shown a negative re-
lationship between kn and LAI, and a positive relationship between kn 
and clumping index (Hikosaka et al., 2016; Zhang, Hu, Hu, Fan, Zhou, 
& Tang, 2014). In this study, kn is treated as a calibration parameter 
and we intend to seek for an empirical parameterization using LAI or 
clumping index. For simplicity, we use Vcmax to refer to Vcmax,top-leaf 
hereafter to be consistent with existing optimality-based models.

In addition to the canopy structure, the antecedent environment 
is accounted for in this study. Specifically, values of I, T, D, Ca, Ps, 
and FPAR averaged over the past npast days are used as model inputs 
as analogs of the growing season mean or monthly mean values 
used in existing optimality-based models. Similar to kn, a mechanis-
tic solution for npast is unavailable. Therefore, npast is also treated 
as a calibration parameter in this study. Since studies have found 
that the length of lag varied region by region and such variation is 
likely to link with prevalent climate conditions (Ryan et al., 2015; Wu 
et al., 2015; Yang, Yang, & Merchant, 1997), we intend to seek for 
an empirical parameterization using PFT, mean annual temperature 
(MAT), or mean annual precipitation.

We further convert Vcmax to Vcmax,25C. This is necessary for two 
reasons. First, although Vcmax is considerably sensitive to tempera-
ture, Vcmax at a standardized temperature, usually at 25°C, cor-
relates better to Rubisco content, LNC, and LCC (Houborg, McCabe, 
Cescatti, & Gitelson,  2015; Kattge et  al.,  2009). Second, using a 
standardized temperature allows for comparisons between different 
studies. A peaked Arrhenius equation f(T) with temperature acclima-
tion is used (Kattge & Knorr, 2007; Medlyn et al., 2002):

where Tk is the temperature in Kelvin, Ha = 72 kJ/mol is the activation 
energy of Vcmax, Hd = 200 kJ/mol is the deactivation energy of Vcmax, ΔS 
(kJ mol−1 K−1) is the entropy factor of Vcmax, tgrowth is the average tem-
perature from the preceding month (°C), and R = 0.008314 kJ mol−1 K−1 
is the gas constant. Because f(Tk) can be small at low temperatures 
and subsequently yields an unrealistically high Vcmax,25C even with a 
very small Vcmax, we set a constraint of f(Tk) ≥ f(273.15) = 0.08. Finally, 
a Savitzky–Golay filter is applied to the seasonal trajectory of the 
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estimated Vcmax,25C to smooth the unrealistically large day-to-day vari-
ation caused by the temperature correction.

3  | MATERIAL S AND METHODS

3.1 | Study sites and Vcmax,25C measurements

To evaluate our model, we built an observational dataset of Vcmax,25C 
by compiling independent data collected at 10 sites across diverse 
ecosystems covering six PFTs and seven climate zones (Table  1). 
These 10 sites were selected from the literature because (a) they 
were in flux tower stations, so meteorological observations were 
available; (b) field campaigns were conducted at least three times 
per growing season after 2001, so MODIS satellite observations 
were available; (c) leaf samples were collected from a sunlit canopy, 
so data approximately represented the TOC condition; (d) Vcmax val-
ues were fit from A–Ci curves obtained from gas exchange measure-
ments; and (e) temperature corrections were applied and Vcmax,25C 
values provided. For the SoyFACE site, only data collected from the 
reference site under natural conditions were used. Detailed descrip-
tions of the 10 sites and data collection can be found in Method S1.

3.2 | Model inputs for Vcmax,25C estimation

We prepared model inputs from both ground and satellite datasets 
at the 10 sites (Table 2). Because all 10 sites are located at flux tower 
stations, we acquired meteorological data, including incident PAR 

(I), air temperature (Ta), vapor pressure deficit (D), and surface pres-
sure (Ps) from the FLUXNET2015 database (Pastorello et al., 2017), 
LaThuile2007 database (Agarwal et al., 2010), AmeriFlux database 
(Agarwal et  al.,  2010), EropeanFlux database (Sulkava, Luyssaert, 
Zaehle, & Papale, 2011), and KoFlux database (Kim, 2007). For sites 
which do not provide PAR directly, we converted incident shortwave 
radiation (SW) to PAR using the ratio of PAR to SW derived from 
Breathing Earth System Simulator (BESS) radiation products (Ryu, 
Jiang, Kobayashi, & Detto, 2018), which have provided daily 0.05° 
PAR/SW over the globe since 2000 using MODIS satellite data. We 
acquired the ambient CO2 concentration (Ca) from either site ob-
servations or the ESA Climate Change Initiative Greenhouse Gas 
(GHG-CCI) product (Dils et  al.,  2014). GHG-CCI provides monthly 
5° Ca over the globe from 2003 to 2015 using SCIAMACHY and 
GOSAT satellite data. We used outgoing PAR along with incident 
PAR from the flux tower datasets to calculate ρPAR when data are 
available, otherwise we used the “white-sky albedo for vis broad-
band” dataset from the MCD43A3 daily 500  m albedo product 
(Schaaf et al., 2002). We used field-measured LAI acquired by either 
LAI-2000 (LI-COR) or the destructive method if available; other-
wise, we used the “Lai_500m” and “FparLai_QC” datasets from the 
MCD15A3H (since 2003) and MOD15A2H (before 2003) 4-day/8-
day 500  m LAI/FPAR product (Myneni et  al.,  2002). We assumed 
that LAI-2000 data producers used the LI-COR software to process 
field measurements so that the reported LAI values were “quasi” 
actual LAI (Ryu et  al.,  2010), consistent with MODIS LAI. Woody 
LAI and background grass LAI were deducted when necessary. We 
treated the fplant of woody plants and herbaceous plants in differ-
ent manners. We assumed that woody plants have static tree cover 

TA B L E  1   Site information

Site Year Latitude Longitude
Land 
cover

Climate 
zone

MAT 
(°C)

MAP 
(mm) Reference

AU-Cum 2008
2009

−33.6152 150.7236 EBF Cfa 17.3 850 Lin, Medlyn, De Kauwe, and 
Ellsworth (2013)

BR-Sa1 2012
2013
2014

−2.8567 −54.9589 EBF Am 26.1 2,075 Albert et al. (2018)

CA-Cbo 2014 44.3167 −79.9333 DBF Dfb 6.7 876 Croft et al. (2017)

FI-Hyy 2011 61.8474 24.2948 ENF Dfc 3.8 709 Kolari et al. (2014)

IT-Non 2003 44.6898 11.0887 MF Cfa 14.5 1,000 Grassi, Vicinelli, Ponti, Cantoni, and 
Magnani (2005)

JP-TKY 2004 36.1461 137.4231 DBF Dfb 6.5 2,275 Muraoka et al. (2010)

KR-CRK 2016 37.1597 127.6536 CRO Dwa 10.2 1,394 Hwang et al. (2020)

SoyFACE 2001 40.0340 −88.2333 CRO Dfa 11.0 991 Bernacchi, Morgan, Ort, and Long 
(2005)

US-Ha1 2010 42.5378 −72.1715 DBF Dfb 6.6 1,071 Dillen, de Beeck, Hufkens, 
Buonanduci, and Phillips (2012)

US-Ton 2001 38.4316 −120.9660 WSA Csa 15.8 559 Xu and Baldocchi (2003)

Abbreviations: Am, tropical monsoon climate; Cfa, humid subtropical climate; CRO, cropland; Csa, hot summer Mediterranean climate; DBF, 
deciduous broadleaf forest; Dfa, hot summer humid continental climate; Dfb, warm summer humid continental climate; Dfc, subarctic climate; Dwa, 
monsoon-influenced hot summer humid continental climate; EBF, evergreen broadleaf forest; ENF, evergreen needleleaf forest; MAP, mean annual 
precipitation; MAT, mean annual temperature; MF, mixed forest; WSA, woody savanna.
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6498  |     JIANG et al.

in a specific year. We used tree cover derived from tower camera, 
terrestrial LiDAR, or the “Percent_Tree_Cover” datasets from the 
MOD44B yearly 250  m Vegetation Continuous Fields product 
(Hansen et al., 2003). In the case of herbaceous plants, we assumed 
that they develop their canopy cover dynamically. We calculated 
fplant using Beer's law in the nadir direction:

where LAIlandscape was acquired from field measurements or sat-
ellite estimations, and Ω was from a global 500  m clumping index 
product derived from the MODIS dataset (Wei, Fang, Schaaf, He, & 
Chen, 2019). The data are provided in 8 day intervals from 2001 to 

2017. Considering data noise and data gaps, we only used annual mean 
values of Ω. Detailed descriptions of the data processing at the 10 sites 
can be found in Method S2.

3.3 | Experiments and evaluation

To test our hypothesis that considering the antecedent environ-
ment and dynamic light absorption will improve Vcmax,25C estima-
tion with regard to seasonal variation, we conducted experiments 
using seven configurations (Table  3). First, we calibrated the two 
model parameters, kn and npast, for each site by minimizing the root 
mean square error (RMSE) between the measured and estimated 

(14)fplant=1−e−0.5ΩLAIlandscape ,

TA B L E  2   Data sources of model inputs. Site observations were used when available, but all can be replaced by global datasets provided 
by gridded climate or satellite products. Please refer to Method S2 for details

Site
Meteorology  
(I, Ta, D, Ps) PAR/SW Ca ρPAR LAIlandscape fplant Ω

AU-Cum FLUXNET BESS FLUXNET MCD43A3 MCD15A3H (max: 2.1) MOD44B 
(0.33)

MODIS (0.81)

BR-Sa1 FLUXNET FLUXNET FLUXNET FLUXNET LAI-2000 (max: 4.9) Camera 
(max: 0.98)

MODIS (0.51)

CA-Cbo AmeriFlux AmeriFlux AmeriFlux AmeriFlux LAI-2000 (max: 4.4) MOD44B 
(0.87)

MODIS (0.71)

FI-Hyy FLUXNET FLUXNET FLUXNET FLUXNET LAI-2000 (max: 2.2) MOD44B 
(0.53)

MODIS (0.55)

IT-Non EropeanFlux BESS GHG-CCI MCD43A3 MCD15A3H (max: 2.7) MOD44B 
(0.77)

MODIS (0.77)

JP-TKY LaThuile LaThuile LaThuile LaThuile Destructive (max: 4.9) MOD44B 
(0.72)

MODIS (0.51)

KR-CRK AsiaFlux AsiaFlux GHG-CCI MCD43A3 Destructive (max: 5.9) From LAI 
(max: 0.95)

MODIS (0.78)

SoyFACE AmeriFlux BESS GHG-CCI MCD43A3 MOD15A2H (max: 6.2) From LAI 
(max: 0.95)

MODIS (0.77)

US-Ha1 FLUXNET FLUXNET FLUXNET MCD43A3 LAI-2000 (max: 3.0) MOD44B 
(0.61)

MODIS (0.66)

US-Ton FLUXNET FLUXNET FLUXNET FLUXNET MOD15A2H and 
destructive LAI of  
grass (max: 1.6)

LiDAR (0.45) MODIS (0.80)

Configuration
Dynamic light 
absorption

Antecedent 
environment Purpose

#1 Site-specific kn Site-specific npast The best model 
performance

#2 Estimated kn Estimated npast The scalable solution

#3 Constant kn Estimated npast Importance of varying kn

#4 Estimated kn Constant Importance of varying npast

#5 Not considered but use 
aL = 0.8

Estimated npast Importance of canopy 
structure

#6 Estimated kn Not considered but 
use monthly mean

Importance of antecedent 
environment

#7 Not considered but use 
aL = 0.8

Not considered but 
use monthly mean

The original optimality-
based model

TA B L E  3   A list of experiment 
configurations
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     |  6499JIANG et al.

Vcmax,25C. This configuration refers to the best model performance. 
Second, we compared calibrated kn with growing season mean LAI 
and clumping index to build an empirical parameterization for kn, 
and compared calibrated npast with MAT and MAP to build an em-
pirical parameterization for npast. The empirically estimated kn and 
npast were subsequently used to estimate Vcmax,25C. Compared to 
the first configuration, we expected this to have the potential to 
be scaled up for global Vcmax,25C estimation because it avoids site-
specific parameter values. For the third configuration, we calculated 
the median value of site-specific kn as a global constant, but kept 
the empirically estimated npast in configuration #2. For the fourth 
configuration, we calculated the median value of site-specific npast 
as a global constant, but kept the empirically estimated kn in con-
figuration #2. Compared to #2, configurations #3 and #4 were to 
investigate the importance of using the empirically estimated kn and 
npast, respectively. For the fifth configuration, we used a fixed leaf 
absorptance aL = 0.8 to calculate the intrinsic quantum yield of pho-
tosynthesis (Equation 2) instead of canopy absorptance FPAR consid-
ering the canopy structure, but kept the empirically estimated npast 
in configuration #2. Correspondingly, for the sixth configuration, we 
used monthly mean environmental data as model forcing without 
considering the antecedent environment, but kept the empirically 
estimated kn in configuration #2. Compared to #2, configurations #6 
and #7 were to investigate the importance of considering the dy-
namic light absorption and antecedent environment, respectively, in 
accounting for the Vcmax,25C seasonality. Finally, we used the original 

optimality-based model (using a fixed leaf absorptance aL = 0.8 and 
monthly mean environmental data) as a baseline to investigate the 
overall improvement of the proposed model parameterization (con-
figuration #2). For each configuration, we calculated coefficient of 
determination (R2), RMSE, and mean bias error (bias) at each site for 
quantitative performance assessment.

4  | RESULTS

4.1 | Seasonal variation in Vcmax,25C and model 
calibration

The field measurements of maximum carboxylation rate of top leaf at 
25°C leaf temperature (Vcmax,25C) show significant seasonal variation 
across the 10 study sites (Figure 1). Seasonal variation differs among 
the individual sites. Four of the 10 sites (IT-Non, KR-CRK, SoyFACE, 
and US-Ha1) display peak Vcmax,25C values in early summer (June). 
Two sites (AU-Cum and US-Ton) display peak Vcmax,25C values in late 
spring (November for AU-Cum and May for US-Ton). The other four 
sites display peak Vcmax values in high summer (July for FI-Fyy), late 
summer (August for JP-TKY), early autumn (September for CA-Cbo), 
and the late dry season (October–December for BR-Sa1). The highest 
Vcmax,25C value (120 μmol m−2 s−1) is found at the crop site KR-CRK, 
followed by the other crop site SoyFACE and the woody savanna site 
US-Ton. Temperate forest sites generally show medium peak Vcmax 

F I G U R E  1   Monthly mean measured 
Vcmax,25C, incident shortwave radiation 
(SW), air temperature (Ta), vapor pressure 
deficit (D), and leaf area index at the  
plant level (LAIplant) at the 10 study sites 
(a–j; Table 1) [Colour figure can be viewed 
at wileyonlinelibrary.com]
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6500  |     JIANG et al.

values (60–100 μmol m−2 s−1), whereas the lowest peak Vcmax,25C value 
(~40 μmol m−2 s−1) is found at the tropical forest site BR-Sa1.

By fitting the newly parameterized optimality-based model 
(Section 2.2) with field-measured Vcmax,25C site by site, the two model 
parameters, kn and npast, were obtained for each site (Figure  2). 
Across all the 10 sites, the median values of kn and npast are 0.35 and 
40, respectively. Clear PFT dependence can be observed for both 
parameters. The median values of kn follow the order evergreen 
(0.10) < deciduous (0.44) < crops (1.16), whereas the median values 
of npast follow the order evergreen (134) > deciduous (39) > crops 
(15). Furthermore, both parameters have proxies. Overall, kn nega-
tively correlates with the growing season mean LAI at the plant level 
(LGS; Figure 2a) and positively correlates with the clumping index (Ω; 
Figure S8a). Excluding two crop sites, a logarithmic function can be 
fit from the kn ~ LGS relationship (R2 = .75) by:

A non-monotonic relationship is shown between npast and MAT 
(Figure 2b), that npast first decreases as MAT increases, and then in-
creases with MAT. The inflection point appears around MAT = 12°C. 
The npast  ~  MAT relationship can be fit by a quadratic function 
(R2 = .77):

No correlation between npast and MAP is shown (Figure  S8b). 
Consequently, we used Equation (15) to empirically estimate kn for 
non-crop sites in configurations #2, #4, and #6, and used the mean 
value of kn = 1.16 for the crop sites. We used Equation (16) to empir-
ically estimate npast for all sites in configurations #2, #3, and #5. We 
used the global constant kn = 0.35 and npast = 40 in configurations 
#3 and #4, respectively.

4.2 | Performance of the optimality-based model in 
estimating Vcmax,25C

In general, Vcmax,25C estimations by the newly parameterized optimality- 
based model with kn and npast calibrated site by site (configuration 

#1) agree fairly well with the field measurements (Figures 3 and 4; 
Figure  S1). The median R2 and RMSE values between field meas-
urements and model estimations across the 10 sites are 0.83 and 
11.2 μmol m−2 s−1, respectively. Relatively high R2 values (>.60) are 
found at eight of the 10 sites, whereas the other two sites, BR-Sa1 
and SoyFACE, are characterized by small seasonal variations of 
Vcmax,25C (coefficient of variation < 30%). None of the 10 sites has 
an RMSE value larger than 20 μmol m−2 s−1, which suggests robust 
model performance.

The scalable solution (configuration #2), using empirically es-
timated kn (Equation 15) and npast (Equation 16), provides almost 
identical results with the site-specific model (configuration #2) at 
most sites (Figures 3 and 4; Figure  S2). The median R2 and RMSE 
values between field measurements and model estimations across 
the 10 sites are 0.81 (0.83 for configuration #1) and 11.7 (11.2 for 
configuration #1) μmol m−2 s−1, respectively. Except for the two sites 
with small seasonal variations of Vcmax,25C (BR-Sa1 and SoyFACE), all 
other sites achieve R2 >  .70. Same with configuration #1, none of 
the 10 sites has an RMSE value larger than 20 μmol m−2 s−1, which 
suggests robust model performance. When all of the 10 sites data 
are combined together for the evaluation, the scalable solution ex-
plains 78% seasonal and spatial variations in field-measured Vcmax,25C 
(Figure 5a).

In contrast, the original optimality-based model without the con-
sideration of canopy structure and antecedent environment effects 
(configuration #7) disagrees with the field measurements (Figures 3 
and 4; Figure S7). The median R2 and RMSE values between field mea-
surements and model estimations across the 10 sites are 0.15 (0.68 
smaller than #1) and 21.2 μmol m−2 s−1 (10.0 μmol m−2 s−1 larger than 
#1), respectively. None of the 10 sites has an R2 value larger than .6. 
High RMSE values (>20 μmol m−2 s−1) are found at six of the 10 sites. 
When all data are combined together for the evaluation, the original 
optimality-based model only explains 35% seasonal and spatial vari-
ations in field-measured Vcmax,25C (Figure 5b). In particular, most sim-
ulation are within a narrow range (30–80 μmol m−2 s−1), leading to a 
pattern of overestimation in the low value part and underestimation 
in the high value part.

The difference between configurations #2 and #3 (Figure S3) is 
that the former one employs empirically estimated kn (Figure 2a), 
while the later one uses a global constant kn (0.35). Therefore, the 

(15)kn=−0.62log(LGS)+0.98.

(16)npast=0.82MAT2−19.52MAT+146.14.

F I G U R E  2   Parameterization of the two model parameters, kn and npast. (a) kn as a logarithmic function of the growing season mean LAI 
at the plant level (LGS), excluding crop. (b) npast as a quadratic function of the MAT. kn and npast are obtained by site-by-site calibration of the 
optimality-based model. The solid curves are empirical functions fit from dots. The dash lines are the median kn and npast of the 10 sites 
[Colour figure can be viewed at wileyonlinelibrary.com]

 13652486, 2020, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.15276 by N

asa Jet Propulsion L
ab, W

iley O
nline L

ibrary on [27/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

www.wileyonlinelibrary.com


     |  6501JIANG et al.

comparison between these two configurations indicates the im-
portance of using the empirically estimated kn. It is observed that 
the R2 values are the same between configurations #2 and #3 for 
each site (Figure 4), which indicates that the value of kn does not 
influence the seasonal pattern of the estimated Vcmax,25C. This is 
because kn plays a role in converting plant-averaged Vcmax into top-
leaf Vcmax (Equation 10), and it only influences the magnitude of 
the estimated Vcmax,25C. As a result, configuration #3 without an 
accurate quantification of kn cannot provide accurate estimation of 
Vcmax,25C with regard to the magnitude, which is revealed by higher 
RMSE values compared to configuration #2 (Figure 4). In addition, 
the magnitude is related to the spatial variation. When spatial and 
seasonal variations are evaluated together (“all sites” in Figure 5), 
configuration #3 (0.62) yields much lower R2 than configuration 
#2 (0.78).

The difference between configurations #2 and #4 (Figure  6) 
is that the former one employs the empirically estimated npast 
(Figure  2b), while the later one uses a global constant npast (40). 
Therefore, the comparison between these two configurations 

indicates the importance of using the empirically estimated npast. 
Although the R2 values differ for individual sites, which indi-
cate that npast influences the seasonal pattern of the estimated 
Vcmax,25C, the median R2 of configuration #4 (0.83) is even slightly 
higher than configuration #2 (0.81). Similarly, the differences in 
RMSE are also small, generally less than 2.0 μmol m−2  s−1 except 
for FI-Hyy (3.6 μmol m−2 s−1). This is because npast values of most 
sites are generally located around the median value (Figure  2b). 
BR-Sa1, AU-Cum, and SoyFACE deviate from the median npast, but 
these sites are characterized by small seasonality of the field-mea-
sured Vcmax,25C, and therefore, even large differences in npast do not 
lead to large differences in RMSE of the estimated Vcmax,25C. When 
spatial and seasonal variations are evaluated together (“all sites” in 
Figure 4), configuration #4 (0.77 and 13.5 μmol m−2 s−1) only yields 
slightly lower R2 and higher RMSE than configuration #2 (0.78 and 
13.1 μmol m−2 s−1).

The difference between configurations #2 and #5 (Figure S5) is 
that the former accurately accounts for the canopy structure effects 
on light absorption, while the latter uses a constant leaf absorptance 

F I G U R E  3   Comparison of daily 
Vcmax,25C between field measurements 
and model estimations at the 10 study 
sites (a–j). Configuration #1 refers to the 
best model performance with site-specific 
kn and npast. Configuration #2 refers to 
the scalable solution with empirically 
estimated kn and npast. Configuration #7 
refers to the original optimality-based 
model without the consideration of 
dynamic light absorption and antecedent 
environment. R2, root mean square error, 
and bias values are for configuration 
#2 [Colour figure can be viewed at 
wileyonlinelibrary.com]
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aL = 0.8. Therefore, the comparison between these two configura-
tions indicates the importance of considering the dynamic light ab-
sorption. Figure 4 reveals the substantial difference in both R2 and 
RMSE. Configuration #5 can only explain 36% seasonal variation 
and 38% seasonal and spatial variations in Vcmax,25C, and yields about 
11 μmol m−2 s−1 larger RMSE than configuration #2.

The difference between configurations #2 and #6 (Figure S6) is 
that the former uses antecedent environment, while the latter uses 
monthly mean environment. Therefore, the comparison between 
these two configurations indicates the importance of considering 
the antecedent environment. Figure  4 reveals the substantial dif-
ference in both R2 and RMSE. Configuration #6 can only explain 
40% seasonal variation and 66% seasonal and spatial variations in 
Vcmax,25C, and yields about 5 μmol m−2 s−1 larger RMSE than config-
uration #2.

5  | DISCUSSION

5.1 | Efficacy of the model parameterization

Using the new parameterization in this study, the optimality-based 
model can produce reasonable estimates of daily Vcmax,25C against 
field measurements across the 10 sites (Figure  3). A comparison 
between seven experiment configurations (Figure  4) supports our 
hypothesis: considering the antecedent environment and dynamic 
light absorption improves Vcmax,25C estimation with regard to sea-
sonal variation. Benchmarked with configuration #2 (using empiri-
cally estimated kn and npast), when the antecedent environment (#6) 
or dynamic light absorption (#5) is not considered, the median RMSE 
between field measurements and model estimations across the 10 
sites increases by 45% and 91%, respectively. While the importance 

F I G U R E  4   Performance of the 
optimality-based model at different sites 
(y-axis) with different configurations 
(x-axis). The simulation R2 and root mean 
square error (RMSE) values are shown in 
the left and right panels, respectively. See 
Table 1 for the information of the 10 sites. 
The item “median” means median values 
of the 10 sites, which indicates the overall 
model performance of capturing the 
seasonal variation in Vcmax,25C. The item 
“all sites” means all data from the 10 sites 
combined, which indicates the overall 
model performance of capturing both 
seasonal and spatial variations in Vcmax,25C. 
See Table 3 for the information of the 
seven configurations [Colour figure can be 
viewed at wileyonlinelibrary.com]

F I G U R E  5   Scatterplot of daily 
Vcmax,25C between field measurements and 
model estimations with (a) the scalable 
parameterization solution (configuration 
#2) and (b) the original optimality-based 
model (configuration #7) [Colour figure 
can be viewed at wileyonlinelibrary.com]
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of incorporating the antecedent environment into Vcmax,25C modeling 
corroborates that plants dynamically acclimate to the past environ-
ment with ecological memory, the importance of incorporating the 
dynamic light absorption is in accordance with the functional con-
vergence theory, which suggests that plants change canopy struc-
ture and leaf pigments by the availability of resources as a result of 
evolutionary processes to optimize carbon fixation (Goetz, Prince, 
Goward, Thawley, & Small, 1999). This actually forms the basis of the 
light use efficiency concept widely used by the remote-sensing com-
munity (Hilker, Coops, Wulder, Black, & Guy, 2008; Medlyn, 1998; 
Monteith, 1972, 1977; Running et al., 2004).

Site-by-site calibration yields a PFT dependence for the param-
eter kn (Figure 2a). The order of evergreen < deciduous < crops is 
in line with a meta-analysis study (Zhang, Guanter, et al., 2014). 
Relatively small kn values for evergreen forest have also been 
reported by other studies. For example, kn measurements in the 
Amazon forest show an exponential relationship with top-leaf 
Vcmax,25C (Lloyd et  al.,  2010): kn  =  exp(0.00963  ×  Vcmax,25C  − 2.43).  
When Vcmax,25C  =  40  μmol  m−2  s−1, kn  =  0.13, similar to our cal-
ibrated kn for evergreen forests (0.10). By contrast, relatively 

large kn values for crops have also been reported, for example, 
0.713 (De Pury & Farquhar,  1997), 1.01 (Bertheloot, Martre, & 
Andrieu,  2008), and 1.05 (Lemaire, Onillon, Gosse, Chartier, & 
Allirand, 1991), in line with our result (kn = 1.18). By comparison, 
moderate kn values have been reported for other PFTs, for exam-
ple, 0.3 (Kitao et al., 2018), 0.41 (Jongschaap & Booij, 2004), 0.5 
(Walker et al., 2018), and 0.2–0.5 (Anten, Werger, & Medina, 1998), 
which justify our kn (0.48) for deciduous forest, mixed forest, and 
savanna. The median kn of the 10 sites is 0.35, which agrees well 
with a meta-analysis reporting a kn = 0.41 ± 0.35 over a wide range 
of literature (Hikosaka et  al.,  2016). Such PFT-dependent kn can 
be partly attributed to canopy structure. Our findings that kn neg-
atively correlates with plant-level LAI (Figure  2a) and positively 
correlates with clumping index (Figure  S8a) are consistent with 
two meta-analysis studies (Hikosaka et al., 2016; Zhang, Guanter, 
et al., 2014). There are two potential reasons. On the one hand, 
the negative kn ~ LAI relationship is likely related to the nitrogen 
availability. A higher kn means most nitrogen are concentrated in 
the upper canopy, then LAI should be low as there is no reason 
to hold so many leaves without nitrogen in the lower canopy. On 

F I G U R E  6   Comparison of daily 
Vcmax,25C between field measurements 
and model estimations (configuration #4) 
at the 10 study sites (a–j). Configuration 
#4 refers to a scalable solution with 
empirically estimated kn (Equation 15) and 
globally constant npast (40)
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the other hand, a clumped canopy (small Ω) allows more light to 
penetrate into the lower part of the canopy, inducing less vertical 
variation in light and thus nitrogen (small kn).

Compared to kn, the other calibrated parameter, npast, might be 
more empirical. Site-by-site calibration indicates that evergreen 
forests had the largest npast (~4  months), followed by deciduous 
ecosystems (~1.5  months) and crops (~0.5  months). This may in-
dicate that forests respond more to long-term variation in the 
environment, whereas crops are more responsive to short-term 
changes. One relevant study (Bunting, Munson, & Villarreal, 2017) 
also reveals that woodland communities have stronger relationships 
with the climate at long lags (e.g., 6 months) than herbaceous com-
munities. Nevertheless, other studies have reported considerably 
divergent legacy effects varying with plant traits and environmen-
tal drivers (Guo & Ogle,  2019; Kropp et  al.,  2017; Liu, Schwalm, 
Samuels-Crow, & Ogle, 2019). It is possible that the npast difference 
in PFT is due to artificial factors. For example, we use the same npast 
for all six inputs (I, T, D, Ca, Ps, and FPAR), which may be parsimonious 
and difficult to interpret. In addition, evergreen forests in our study 
have longer seasonal data records than crops (Figure 4), which likely 
influence calculation of the antecedent environment. The quadratic 
npast ~ MAT relationship suggests plants living in hot and cold cli-
mates need longer time to acclimate or have better memory than 
those living in warm climates. However, more evidence are war-
ranted to support this pattern. Consequently, it might be more solid 
to use a global constant npast (40 days; median of the 10 sites) in the 
model instead of empirically estimated npast. This configuration (#4) 
yields reasonable seasonal variation in Vcmax,25C (Figure 6) without 
much accuracy loss compared to configuration #2 (Figure 5). The 
npast  =  40 as a constant is comparable with other studies of leg-
acy effects of gross primary production (3 months; Coops, Jassal, 
Leuning, Black, & Morgenstern,  2007; Leuning, Cleugh, Zegelin, 
& Hughes,  2005) and light use efficiency (1–2  months; Zhang 
et al., 2015). The success of this parameterization strategy further 
indicates plants gradually change their functions to optimize re-
source exploration and highlights the need to develop a mechanistic 
model of legacy effects or ecological memory. We therefore con-
sider configuration #4 (an empirically estimated kn and a constant 
npast) as the final SVOM.

5.2 | Limitations

The optimality-based model does not explicitly include soil mois-
ture effects. Water stress is kn own as a major factor that reduces 
Vcmax,25C (Wilson, Baldocchi, & Hanson, 2000; Xu & Baldocchi, 2003). 
Our model is able to partially capture seasonal variation at the dry 
ecosystem site US-Ton and a mesic site IT-Non experiencing drought 
(Figure 4). There are possibly two reasons, first severe water stress is 
reflected in LAI and albedo data, which in turn propagate to Vcmax,25C 
because plants reallocate nitrogen resource to match reduced APAR 
(Xu & Baldocchi,  2003). Second, severe drought is usually associ-
ated with a heat wave, which has a substantial negative impact on 

Vcmax,25C estimations via the temperature correction (Fürstenau 
Togashi et  al.,  2018). However, it is also observed that our model 
yields less decline in Vcmax,25C during the dry-down period at these 
two sites. To date, how soil moisture influences Vcmax,25C remains 
unclear (Flexas et al., 2006). In particular, whether light to moder-
ate water stress, which may not be severe enough to dramatically 
reduce LAI, can reduce Vcmax,25C warrants further investigation. 
Although efforts have been made to develop water stress functions 
for Vcmax,25C (Keenan, Sabate, & Gracia,  2010), most are empirical 
and thus are not incorporated into our mechanistic model to avoid 
over-tuning. Recent studies have indicated that parameterizing the 
cost ratio β (Equation 5), which varies over time as a result of vary-
ing water potential between soil and leaves, is a potential pathway 
to incorporate the soil moisture effect into the optimality model 
(Lavergne et al., 2020; Stocker, Wang, et al., 2019).

Another limitation is that the leaf age effect is not parameter-
ized in the model for evergreen forests. Field measurements in the 
Amazon forest have shown that mature leaves tend to have higher 
Vcmax values than young and old leaves (Wu et al., 2016). Field mea-
surements in a montane temperate forest have also displayed differ-
ent seasonal trajectories of Rubisco content for leaves of different 
ages (Katahata, Naramoto, Kakubari, & Mukai,  2007). However, 
studies on these mechanisms are still ongoing, and little data are 
available for a general parameterization.

5.3 | Global implications

Recently, two global Vcmax,25C datasets have been derived using 
remote sensing data. One is based on the statistical approach 
(Alton,  2018). Empirical relationships are built between MERIS 
Terrestrial Chlorophyll Index (MTCI) and LCC, between LCC and 
maximum electron transport rate at 25°C (Jmax,25C), and between 
Jmax,25C and Vcmax,25C. The other is based on the inversion approach 
(He et al., 2019). Empirical relationships are built between SIF and 
GPP for different PFTs, and the SIF-derived GPP is used to assimilate 
a TBM to retrieve Vcmax,25C. Both datasets provide seasonally varying 
Vcmax,25C, yet they have not been evaluated against field measure-
ments of seasonal Vcmax,25C.

The optimality-based model has a great potential to provide a 
satellite-derived Vcmax,25C through another pathway, the mechanistic 
approach. Model inputs related to canopy structure, including LAI, 
clumping index, fraction of vegetation cover, and PAR albedo, are 
all available at fine spatial resolution (e.g., 500 m) globally. Two key 
environmental forcing, PAR and CO2 concentration, are also globally 
available from satellite data (Jiang & Ryu,  2016). Intercomparison 
of Vcmax,25C estimations between these three distinct approaches 
may better constrain the spatial and temporal variations of global 
Vcmax,25C, and further improve global GPP estimation. It could also 
provide insight to the theory by examining when and where plants 
diverge from optimality.

The TBM community has focused on the relationship between 
LNC and Vcmax,25C. Those models consider LNC a key variable 
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because Rubisco is composed of a large amount of nitrogen (Walker 
et  al.,  2014). However, it is difficult to estimate LNC mechanically 
and the proportion of LNC used for Vcmax,25C spatially and temporally 
(Ali et  al.,  2016). As a result, nitrogen-based TBMs do not predict 
reasonable spatial patterns at global scales (Walker et al., 2017), and 
their performance for seasonal variation in Vcmax,25C has not been 
evaluated to date.

Our study provides a pathway for improving Vcmax,25C modeling 
in TBMs. Although we consider LNC–Vcmax,25C relationship a bot-
tom-up approach, the optimality-based model based on plant evo-
lutionary strategy can be considered a top-down approach. Such 
a model is independent of the nitrogen cycle but produces overall 
reliable estimates of Vcmax,25C at a daily scale. A possible explanation 
for this is that photosynthetic demand drives LNC, rather than the 
other way around (Dong et al., 2017; Evans, 1989; Smith et al., 2019). 
Although we used canopy structure data from field measurements 
and satellite observations in this study, we suggest that the optimal-
ity-based model can be integrated into TBMs without any satellite 
data, so long as the host TBM can simulate vegetation dynamics.

To summarize, we have developed a new parameterization scheme 
to enable the optimality-based model to simulate seasonal variation 
in C3 plant photosynthetic capacity. The new parameterization con-
siders the antecedent environment and dynamic light absorption, and 
it is independent from PFT. The agreement between field measured 
seasonal Vcmax,25C data and optimality-based model-estimated daily 
Vcmax,25C at 10 sites suggests the ability of plants to acclimate to en-
vironmental conditions. Such efficient resource utilization may help 
plants survive and evolve in the context of global climate change. 
This study also supports the notion of the existence of a universal 
model with a solid theoretical basis that can predict photosynthetic  
behavior at global scale (Wang, Prentice, Keenan, et al., 2017).
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