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Exercise 1 - Acceleration voltage

With decreasing acceleration voltage the energy decreases and the wavelength increases. This results
in a broader probe at 80 kV (Figure as compared to 300 kV (Figure . The broader profile and
larger wavelength practically reduces the resolution in the (S)TEM image.

(a) 80 kV (b) 300 kV

Figure 1: Acceleration voltage

Exercise 2 - Aberrations

Aberrations are modeled by means of an aberration function x. The transfer function of the objective
lens is then Hy(k) = e~X(*). The imaging wave function ¥; is a product of the transmitted wave
function Wy (k) and Hp(k). This means that in real space, the transfer function of the objective lens
is convolved with the transmission wave function and therefore has decisive influence on the image
formation g(z).

g(x) = [i(@)]* = |FT~ [W(k)] @ FT~ [Ho(k)]|”

: (1)

where FT~1 denotes inverse Fourier transforms [Kirkland, 2010].

a) Defocus

The defocus Af is rotationally symmetric and its influence on the aberration function y (k) is shown

in equation ([2)).
(k) = TAK? (0.5CSA2k2m> , 2)
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where Cj is the spherical aberration, & is the spatial frequency in the image plane, A is the wavelength
and Af the defocus.

Generally, smaller aberrations allow for a smaller probe and therefore, a better resolution. The optimal
defocus value (Scherzer defocus) can be found using equation [3| [Kirkland, 2010]. This function is
included in MULTEM and can be called by clicking the Opt button.

Af =+/(2np — 0.5) CsA

3
np =1,2,3... )
(a) Cyp = —100 A (b) Cip = —14.031 A (c) Cio=100A

Figure 2: Spherical aberration

b) Spherical aberration

The spherical aberration Cj is also rotationally symmetric and its influence on the aberration function
x (k) is shown in equation (4]).

X (k) = TR (0.5)\2k2 ~A f) , (4)

The effect of spherical aberration can be compensated to some extent, by applying an appropriate
defocus (Scherzer defocus) as calculated by equation I

(a) C30 = 0.01mm (b) C30 = 0.10mm (c) C50 =0.10mm
Cio = —44.371 A Cio = —44.371 A Chio = —140.312 A

Figure 3: Spherical aberration



c) Two-fold astigmatism

Equation can be extended to include nonsymmetrical terms into the aberration function as shown
in equation [Kirkland, 2010]. The term describing the contribution of the two-fold astigmatism is
highlighted.

x (k) :%CSA%‘*

— TAfAE?

+7 faa AK? sin [2(¢ — ¢a2)] (5)
+ %”fa;;vk;?’ sin [3(¢ — ¢a3)]

+ %77 Fes A2k sin [ — ¢es]

Ideally - without astigmatism - both the probe module and the phase should be radially symmetric.
One can clearly see the influence of two-fold astigmatism on the probe module in Figure [4al and the
phase in Figure Figures [4d and [4d] show the same effect, but with an azimuthal angle of 45°

N\

';S
‘\

'; ((

A

Zon

-’
o

‘-?"

(a) Module (c) Module
Cra =20A Cia =20A
¢12 = 0° P12 = 45°

Figure 4: Two-fold astigmatism

d) Three-fold astigmatism

x(k) =5 0Nk
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(a) Module

Figure 5: Three-fold astigmatism, Cas = 5000 A



e) Coma

x(k) =5 CXk
— TAfAK?
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n 2?” FasA2k3 sin [3(¢ — das)]

2T .
+?f03)\2k3 sin [¢ — ¢pe3]

(a) Module

Figure 6: Coma, Cy; = 25000 A

Exercise 3 - Aperture outer radius

In principle, the largest possible outer aperture radius would be desirable, as the probe becomes
smaller and smaller. However, a larger outer aperture radius also means that higher scattering angles
contribute to the signal, which are influenced by aberrations a lot stronger. In practice, aberrations
cannot be fully omitted or corrected, which means that increasing the outer aperture is always a
trade off for an accentuation of aberration effects. Hence, the outer aperture radius cannot be chosen

arbitrarily large, but is limited by the microscopes aberrations.

(a) 7 mrad (b) 21 mrad (c) 50 mrad

Co1 =0A

Cy =20 A

Figure 7: Aperture outer radius - The top row of images shows the probe a spherical aberration of Cy =
0.001mm and axial coma of Ca; = 0 A and the bottom row of images shows the probe with Cy = 0.001mm and
Co = 20 A for each outer aperture radius.



Exercise 4 - Aperture inner radius

Blocking the central part of the electron beam by an inner aperture creates a so called Bessel beam,
which changes phase according to a Bessel function. The biggest advantage of a Bessel beam is that
it is very stable to defocussing. You could try and compare the probes for example for defocus values
of -15, 0 and +15 for a normal probe and a Bessel beam. However, a large fraction of the intensity is
lost using an inner aperture.
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(a) Normal beam (b) Bessel beam

Figure 8: Comparison of normal and Bessel beam (Line profiles along defocus)
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(a) 0 mrad (b) 18 mrad

Figure 9: Inner aperture - Insets show a magnification of the respective image centers.



Exercise 5 - Vortex beam

Module

Phase

(a) m=0 (b) m=1 (c) m=2

Figure 10: Vortex beam - Insets show a magnification of the respective image centers.

Exercise 6 - Electron specimen interaction
e Phase object approximation

Generally, the electron wave function after the interaction with the specimen (¢(z)) is the product
of the incident wave function v, (x) and a transmission function ¢(x).

Yi(z) = t(z)in(v) (6)

A pure phase object only modifies the phase of the incident wave. The incident wave function in CTEM
is approximately a plane wave (¢;;, = 1). Thus, the phase object is described by the transmission
function ¢(x).

Upo() = t(2)in(2) = €7Dy () = 0= (7)

The modulus of this wave function ‘ei‘mz(‘”)‘ = 1 Therefore, the image intensity shows nothing but
computational noise, but the structure can be seen in the phase image. The effects are illustrated in

figures and respectively.
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(a) Intensity (b) Phase

Figure 11: Phase object approximation

e Weak phase object approximation

In the weak phase object (WPQO) approximation the specimen is assumed to be very thin and composed
mainly of light atoms. The primary effect of the specimen is to produce a spatially varying phase shift
in the electron wave function as it passes through the specimen [Kirkland, 2010]. Mathematically,
the weak phase object is described by the low order terms of the power series expansion of the phase
object:

upol) ~ 67 & 1 4o, () + .. (8)

The modulus of 1y, is no longer just one. Hence, the structure now also appears in the intensity
image, as shown in Figure

(a) Intensity (b) Phase

Figure 12: Weak phase object approximation

e Multislice approximation

In the standard multislice formulation, the specimen potential is divided into many slices perpendicular
to the electron beam. Each slice has to be thin enough to be considered a weak phase object, which



modifies only the phase of the incident wave. The potential between two consecutive slices is considered
to be zero and the propagation of the electron wave within the slice is approximated by the Fresnel
propagator. The electron wave at any depth z can be calculated by repeated application of the last
process, which is mathematically described by:

Vs = P ® (7 ) 9)

where P is the Fresnel propagator |[Lobato, 2014]. This propagation of the wave function gives rise to
interference, as shown in Figure

(a) Weak phase object solution (b) Multislice solution

Figure 13: Comparison of intensities (log-scale)

Exercise 7 - Electron phonon interaction

Phonons cause small deviations of the atoms positions (vibrations). Neglecting these deviations,
results in Figure The interference is strongly pronounced because all atoms are exactly stacked
over another within the columns. Introducing a random atomic position offset causes a blurring as seen
in Figure Due to the high velocity of the probing electrons, it is save to assume that an electron
wave would ”see” one (frozen) phonon configuration. Averaging over ever more phonon configurations
creates increasingly smooth images and more realistic simulations (figures to .

O 005

C 0000

(a) Still atom (b) Frozen phonon (c) Frozen phonon (d) Frozen phonon
approximation approximation (1 Phonon) approximation (5 approximation (20
Phonons) Phonons)

Figure 14: Comparison of electron phonon interaction approximations (log-scale)



Exercise 8 - Adding vacuum

What is shown in Figure is the so-called wrap-around error. Because the calculations use Fourier
transforms, periodic boundaries are required. For an infinite crystal this condition is automatically
fulfilled. However, for nanocrystals this is not the case. An atom at the edge of the image is wrapped
around the boundary if you do not compensate by adding vacuum around the nanocrystal. In Figure
this effect is clearly visible at the lower and right hand side edges of the image. This wrap-around
effect still occurs in Figure but it only affects regions of vacuum now. Therefore, the effect does
not introduce artefacts in the simulations.

(a) Added vacuum (log-scale) (b) Recentered nanocrystal (log-scale)

Figure 15: Demonstration of wrap-around error - The insets show magnifications of the lower left corners
respectively.

Exercise 9 - Rotation

A rotation of 45° of the Pt crystal in (001) orientation around the (100) axis would intuitively result
in a change of the zone orientation to (110). However, the rotation does not result in the structure
repetition one would want. Instead, Figure is actually a simulation of a nanocrystal with varying
thickness and subject to wrap-around errors. Adding vacuum avoids the wrap-around errors as seen

in Figure

(a) Pt crystal (100), no rotation  (b) Pt crystal (100), rotated 45°  (c) Pt nanocrystal (100), rotated
(log-scale) (log-scale) 45°, vacuum added (log-scale)

Figure 16: Rotation of crystals



Exercise 10 - Simulate crystal by thickness

What can be observed in this exercise is the first half period of the channelling oscillation (increase
and decrease in intensity). Note that for running the by thickness option only makes sense if there is
periodicity along the beam direction. Furthermore, whole specimen is a bit faster than by thickness,
because extra memory is required to store the intermediate slice solutions.

(a) Thickness: 4.078 A (b) Thickness: 36.702 A (¢) Thickness: 61.170 A (d) Thickness: 101.950 A

Figure 17: Crystal simulation by thickness

Exercise 11 - Defocus

The zero reference of the defocus was changed in this exercise. Usually, the reference is set to the last
atom (Figure [18¢|), but for experimental data, this point is not exactly known.
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(a) Zero defocus at first atom (b) Zero defocus at the middle of  (c) Zero defocus at the last atom
the specimen

Figure 18: Defocus (log-scale)
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Exercise 12 - Potential slicing

The multislice approximation is only correct within the limit of a very small slice of thickness. The
relatively small difference between dz = 2 A in Figure and the slicing by planes method in Figure
is due to the program detecting the planes automatically, which is ~ 2.0375 A for Gold. For a
nanoparticle there is no periodicity in the planes. So for a nanoparticle it is better to define the slice
thickness to for example 2A. The by planes option works very well for a slab of crystal.

(a) dz =2A (b) dz=20A (c) Slicing by planes

Figure 19: Influence of potential slicing - The insets show magnifications of the lower left corners respectively.

Exercise 13 - Sampling

The sampling actually refers to the potential. It is essential to capture enough features of the potential
to get correct results.

(a) Sampling: 128 x 128  (b) Sampling: 256 x 256  (c) Sampling: 512 x 512 (d) Sampling: 1024 x 1024

Figure 20: Influence of sampling
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Exercise 14 - High resolution transmission electron microscopy

When looking at the images at different thicknesses, you notice a change in intensity, due to contrast
reversal. As the wave propagates through the sample, the phase is being shifted further in each slice.
This causes an intensity modulation along the thickness, according to the phase shift with a period of
2.

Figure 21: Contrast reversal in HRTEM

Exercise 15 - Electron diffraction

a) Diffraction spots

You see some higher order reflections appear and disappear or vary in intensity with thickness

(a) Thickness: 0.0000A  (b) Thickness: 16.2921 A (c) Thickness: 32.5842A (d) Thickness: 54.3070 A

Figure 22: Electron diffraction - diffraction spots
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b) Kikuchi lines

With this Au sample also Kikuchi lines and high order Laue zones can be seen. Try to look at the
image with jet colorscale or play with the scaling to enhance the contrast. In Figure we used a
power scaling with power 0.25.

(a) Thickness: 4.078 A (b) Thickness: 36.702A  (c) Thickness: 61.170 A (d) Thickness: 101.950 A

Figure 23: Electron diffraction - Kikuchi lines

Exercise 16 - Scanning transmission electron microscopy

By increasing the amount of sampling points per area, more details become visible (Figures
and [24D)). Detectors 1 and 2 effectively represent dark field (DF) and bright field (BF) detectors

respectively (Figures n 24c| and [24d] -

(a) 5 scan points (b) 20 scan points (c) 10 scan points, (d) 10 scan points,
detector 1 (40-100 mrad)  detector 2 (0-20 mrad)

Figure 24: Scanning transmission electron microscopy (STEM)

Exercise 17 - Energy filtered transmission electron microscopy

EFTEM allows the selective imaging of particular atoms, based on their specific inner shell ionisation
energies (inelastic scattering) as shown in Figure The donut shape of the imaged atoms makes
sense physically but is usually not observed in experiments due to practical resolution limits.
Different channelling approximations used for these simulations are summarised in Figure The
most accurate is the double channelling approximation. After the inelastic scattering event occurs,
the multislice method is applied for the rest of the specimen in the same manner. This is relatively
slow, but accurate and should be used if computation time is not a concern. In the single channel-
ling approximation, essentially the rest of the specimen is ignored after the inelastic event, saving
computation time. The mixed channelling approximation is a compromise between the other two
approximations by treating the section after the inelastic event as a single phase object. A detailed
comparison of the performances and a more detailed description of these methods can be in found in
[Lobato et al., 2016] and [Verbeeck et al., 2009].
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(a) Sr, energy edge 1940 (b) O, energy edge 532 (¢) Perovskite structure SrTi0O3

Figure 25: EFTEM images simulations
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Figure 26: Channelling approximations for EFTEM
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