Creating Excel files with Python and
XisxWriter
Release 0.2.0

John McNamara

March 24, 2013

Introduction

Getting Started with XlsxWriter

2.1 Installing XlsxWriter oL,
2.2 Running asampleprogram
2.3 Documentation.

Tutorial 1: Create a simple XLSX file
Tutorial 2: Adding formatting to the XLSX File

Tutorial 3: Writing different types of data to the XLSX File

The Workbook Class

6.1 Constructor.
6.2 workbook.add_worksheet()
6.3 workbook.add_format()
6.4 workbook.close().
6.5 workbook.set_properties()
6.6 workbook.define_ name()
6.7 workbook.worksheets()
The Worksheet Class

7.1 worksheetwrite()
7.2 worksheet.write_string() L.
7.3 worksheet.write_number()
7.4 worksheet.write_formula()
7.5 worksheet.write_array_formula()
7.6 worksheet.write blank()
7.7 worksheet.write_datetime()
7.8 worksheetwrite_url()
7.9 worksheet.write_rich_string()
7.10 worksheet.write_row(),
7.11 worksheet.write_column()
7.12 worksheet.set_ row(),

CONTENTS

8

9

7.13 worksheet.set_column() L 44
7.14 worksheet.insert_image() 46
7.15 worksheet.conditional_format() o Lo 48
7.16 worksheet.write_comment() 49
7.17 worksheet.show comments(). 51
7.18 worksheet.set_comments_author() 51
7.19 worksheet.get name() L e 52
7.20 worksheet.activate() L 52
7.21 worksheet.select() e 53
7.22 worksheet.hide() e 53
7.23 worksheet.set_first_sheet() L 54
7.24 worksheet.merge_range()o e 54
7.25 worksheet.autofilter() L 56
7.26 worksheet.filter_column() 57
7.27 worksheet.filter_column_list() 57
7.28 worksheet.set zoom() L e 58
7.29 worksheet.right_to_left() 58
7.30 worksheet.hide_zero(). e 58
7.31 worksheet.set_tab_color() 58
7.32 worksheet.protect() e 59
The Worksheet Class (Page Setup) 61
8.1 worksheet.set_landscape() 61
8.2 worksheet.set_portrait() 61
8.3 worksheet.set_page view() 61
8.4 worksheet.set_paper() e 62
8.5 worksheet.center_horizontally() 63
8.6 worksheet.center_vertically() 63
8.7 worksheet.worksheet.set margins() 64
8.8 worksheet.set_ header() L 64
8.9 worksheet.set footer() e 67
8.10 worksheet.repeat rows() L 67
8.11 worksheet.repeat_columns() 68
8.12 worksheet.hide_gridlines() 68
8.13 worksheet.print_row_col_headers() 69
8.14 worksheet.print_area() 69
8.15 worksheet.print_across() e 69
8.16 worksheet.fit to pages() e 70
8.17 worksheet.set_start_page() 71
8.18 worksheet.set print_scale() e 71
8.19 worksheet.set_h_pagebreaks() L Lo 71
8.20 worksheet.set v _pagebreaks() 72
The Format Class 73
9.1 format.set font_ name() e 74
9.2 format.set_font_size() e 74
9.3 format.set font_color() e 74
9.4 format.set_ bold(). e 75

9.5

9.6

9.7

9.8

9.9

9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23
9.24
9.25
9.26
9.27
9.28
9.29
9.30
9.31

format.set_italic()
format.set_underline()
format.set_font_strikeout()
format.set_font_script()
format.set_num_format()
format.set_locked()
format.set_hidden()
format.set_align()
format.set_center_across()
format.set_text_wrap()
format.set_rotation()
format.set_indent()
format.set_shrink()
format.set_text_justlast()
format.set_pattern()
format.set_bg_color()
format.set_fg_color()
format.set_border()
format.set_bottom()
format.set_top()
format.set_left()
format.set_right()
format.set_border_color()
format.set_bottom_color()
format.set_top_color()
format.set_left_color()
format.set_right_color()

10 Working with Cell Notation

11 Working with Formats
11.1 Creating and using a Format object
11.2 Format methods and Format properties

11.3 Format Colors
11.4 Format Defaults
11.5 Modifying Formats

12 Working with Dates and Time

13 Working with Autofilters
13.1 Applying an autofilter
13.2 Filter data in an autofilter
13.3 Setting a filter criteria for a column
13.4 Setting a column list filter
13.5 Example

14 Working with Conditional Formatting
14.1 The conditional_format() method .

100
101

103
106

14.2 Conditional FormatOptions 107

14.3 Conditional Formatting Examples oo 117
15 Working with Cell Comments 119
15.1 Setting Comment Properties 120
16 Examples 123
16.1 Example: HelloWorld 123
16.2 Example: Simple Feature Demonstration 124
16.3 Example: Dates and TimesinExcel 125
16.4 Example: Adding hyperlinks 127
16.5 Example: Array formulas L 129
16.6 Example: Applying Autofilters 131
16.7 Example: Conditional Formatting. o 136
16.8 Example: Merging Cells e 141
16.9 Example: Writing “Rich” strings with multiple formats 143
16.10Example: Inserting images into aworksheet 145
16.11 Example: Adding Headers and Footers to Worksheets 146
16.12Example: Adding Cell Comments to Worksheets (Simple) 149
16.13Example: Adding Cell Comments to Worksheets (Advanced) 151
16.14Example: Setting Document Properties 156
16.15Example: Unicode - Polishin UTF-8 158
16.16 Example: Unicode - ShiftJIS 160
16.17 Example: Setting Worksheet Tab Colours 162
16.18 Example: Enabling Cell protection in Worksheets 163
17 Comparison with Excel::Writer::XLSX 167
17.1 Compatibility with Excel:Writer:XLSX o o oo 168
18 Alternative modules for handling Excel files 173
18.1 XLWT L . 173
18.2 XLRD . . . 173
18.3 Openpyxl e e e e 173
19 Known Issues and Bugs 175
19.1 ‘unknown encoding: utf-8 Error L 175
19.2 Formularesults not displayinginExcel 175
19.3 Formula results displaying as zero in non-Excelapps 175
20 Reporting Bugs 177
20.1 Upgrade to the latest version of themodule 177
20.2 Readthe documentation 177
20.3 Look atthe example programs L 177
20.4 Use the official XIsxWriter Issue trackeron GitHub 177
20.5 Pointers for submittingabugreport 177
21 Frequently Asked Questions 179
21.1 Q. Can XlsxWriter use an existing Excel file asatemplate? 179
21.2 Q. Why do my formulas show a zero result in some, non-Excel applications? 179

22 Changes in XisxWriter
22.1 Release 0.2.0-March 242013 e
22.2 Release 0.1.9-March 192013
22.3 Release 0.1.8-March 182013 i i
224 Release 0.1.7-March 182013
225 Release 0.1.6-March 172013 i e
226 Release 0.1.5-March 102013
22.7 Release 0.1.4-March82013 i
22.8 Release 0.1.3-March 72013
229 Release 0.1.2-March62013 e
22.10Release 0.1.1 -March 32013 e e e
22.11Release 0.1.0 - February 282013
22.12Release 0.0.9 - February 27 2013 e
22.13Release 0.0.8 - February 26 2013
22.14Release 0.0.7 - February 252013
22.15Release 0.0.6 - February 222013
22.16Release 0.0.5-February 212013
22.17Release 0.0.4 - February 202013
22.18Release 0.0.3 - February 192013
22.19Release 0.0.2 - February 182013 L Lo
22.20Release 0.0.1 - February 172013

23 Author
24 License

Index

Vi

Creating Excel files with Python and XlsxWriter, Release 0.2.0

XlsxWriter is a Python module for creating Excel XLSX files.
XlsxWriter supports the following features in version 0.2.0:
* 100% compatible Excel XLSX files.
+ Write text, numbers, formulas, dates to cells.
» Write hyperlinks to cells.
+ Full cell formatting.
* Multiple worksheets.
» Page setup methods for printing.
* Merged cells.
* Defined names.
* Autofilters.
+ Conditional formatting.
» Worksheet PNG/JPEG images.
* Rich multi-format strings.
+ Cell comments.
* Document properties.
* Worksheet cell protection.
+ Standard libraries only.
* Python 2.6, 2.7, 3.1, 3.2 and 3.3 support.
Here is a small example

from xlsxwriter.workbook import Workbook

Create an new Excel file and add a worksheet.
workbook = Workbook('demo.xlsx"')

worksheet = workbook.add worksheet()

Widen the first column to make the text clearer.
worksheet.set column('A:A', 20)

Add a bold format to highlight cell text.
bold = workbook.add format({'bold': 1})

Write some simple text.
worksheet.write('Al', 'Hello')

Text with formatting.
worksheet.write('A2', 'World', bold)

Write some numbers, with row/column notation.

CONTENTS 1

Creating Excel files with Python and XisxWriter, Release 0.2.0

worksheet.write(2, 0, 123)
worksheet.write(3, 0, 123.456)

workbook.close()

Which generates a worksheet like this:

= T

Mormal View

This document explains how to install and use the XlsxWriter module.

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

XlsxWriter is a Python module for writing files in the Excel 2007+ XLSX file format.

Multiple worksheets can be added to a workbook and formatting can be applied to cells. Text,
numbers, and formulas can be written to the cells.

This module cannot be used to modify or write to an existing Excel XLSX file. There are some
Alternative modules for handling Excel files Python modules that do that.

The XlsxWriter module is a port of the Perl Excel: :Writer: :XLSX module. It is a work in
progress. See the Comparison with Excel::Writer::XLSX section for a list of currently ported fea-
tures.

XlsxWriter is written by John McNamara who also wrote the perl modules Excel::Writer::XLSX and
Spreadsheet::WriteExcel and who is the maintainer of Spreadsheet::ParseExcel.

XlsxWriter is intended to have a high degree of compatibility with files produced by Excel. In most
cases the files produced are 100% equivalent to files produced by Excel. In fact the test suite
contains a range of test cases that verify the output of XlsxWriter against actual files created in
Excel.

XlsxWriter is licensed under a BSD License and is available as a git repository on GitHub.

http://search.cpan.org/~jmcnamara/Excel-Writer-XLSX/
http://search.cpan.org/~jmcnamara/Spreadsheet-WriteExcel/
http://search.cpan.org/~jmcnamara/Spreadsheet-ParseExcel/
https://github.com/jmcnamara/XlsxWriter/tree/master/xlsxwriter/test/comparison
http://github.com/jmcnamara/XlsxWriter

Creating Excel files with Python and XisxWriter, Release 0.2.0

4 Chapter 1. Introduction

CHAPTER
TWO

GETTING STARTED WITH
XLSXWRITER

Here are some easy instructions to get you up and running with the XlsxWriter module.

2.1 Installing XlsxWriter

The first step is to install the XIsxWriter module. There are several ways to do this.

2.1.1 Using PIP

The pip installer is the preferred method for installing Python modules from PyPI, the Python
Package Index:

$ sudo pip install XlsxWriter

Note: Windows users can omit sudo at the start of the command.

2.1.2 Using Easy_Install

If pip doesn’t work you can try easy _install:

$ sudo easy install install XlsxWriter

2.1.3 Installing from a tarball

If you download a tarball of the latest version of XlsxWriter you can install it as follows (change the
version number to suit):

http://www.pip-installer.org/en/latest/index.html
http://pypi.python.org/pypi
http://peak.telecommunity.com/DevCenter/EasyInstall

Creating Excel files with Python and XisxWriter, Release 0.2.0

$ tar -zxvf XlsxWriter-1.2.3.tar.gz

$ cd XlsxWriter-1.2.3
$ sudo python setup.py install

A tarball of the latest code can be downloaded from GitHub as follows:
$ curl -0 -L http://github.com/jmcnamara/XlsxWriter/archive/master.tar.gz
$ tar zxvf master.tar.gz

$ cd XlsxWriter-master/
$ sudo python setup.py install

2.1.4 Cloning from GitHub

The XlsxWriter source code and bug tracker is in the XlsxWriter repository on GitHub. You can
clone the repository and install from it as follows:

$ git clone https://github.com/jmcnamara/XlsxWriter.git

$ cd XlsxWriter
$ sudo python setup.py install

2.2 Running a sample program

If the installation went correctly you can create a small sample program like the following to verify
that the module works correctly:

from xlsxwriter.workbook import Workbook

workbook = Workbook('hello.xlsx")
worksheet = workbook.add worksheet()

worksheet.write('Al', 'Hello world"')
workbook. close()

Save this to a file called hello. py and run it as follows:

$ python hello.py

This will output a file called hello.x1sx which should look something like the following:

6 Chapter 2. Getting Started with XisxWriter

http://github.com/jmcnamara/XlsxWriter

Creating Excel files with Python and XlsxWriter, Release 0.2.0

L SN 2 TR R .| |5 . S a—

Home | Layout | Tables | Charts | SmartArt | b5 I -

Al 1 @ © ([fx| Helloworld E

_| WP SRSV o N N N N =

Hello world

2
3
4
5
6
7
B
9
10
11
12
iz

FRFE— ihzﬂl_ Il
— i (+] | |

Mormal View Rieady w

If you downloaded a tarball or cloned the repo, as shown above, you should also have a directory
called examples with some sample applications that demonstrate different features of XlsxWriter.

2.3 Documentation

The latest version of this document is hosted on Read The Docs. It is also available as a PDF.

Once you are happy that the module is installed and operational you can have a look at the rest of
the XlsxWriter documentation. Tutorial 1: Create a simple XLSX file is a good place to start.

2.3. Documentation 7

https://github.com/jmcnamara/XlsxWriter/tree/master/examples
https://xlsxwriter.readthedocs.org/en/latest/
https://github.com/jmcnamara/XlsxWriter/raw/master/docs/XlsxWriter.pdf

Creating Excel files with Python and XisxWriter, Release 0.2.0

8 Chapter 2. Getting Started with XisxWriter

CHAPTER
THREE

TUTORIAL 1: CREATE A SIMPLE XLSX
FILE

Let’s start by creating a simple spreadsheet using Python and the XlsxWriter module.

Say that we have some data on monthly outgoings that we want to convert into an Excel XLSX
file:

expenses = (
['Rent', 10001,

['Gas', 100],
['Food', 3007,
['Gym', 5017,

)
To do that we can start with a small program like the following:

from xlsxwriter.workbook import Workbook

Create a workbook and add a worksheet.
workbook = Workbook('Expenses0l.xlsx")
worksheet = workbook.add worksheet()

Some data we want to write to the worksheet.
expenses = (
['Rent', 10001,

['Gas"', 1007,
['Food', 300],
['Gym", 507,

)

Start from the first cell. Rows and columns are zero indexed.

row 0
col 0

Iterate over the data and write it out row by row.
for item, cost in (expenses):

worksheet.write(row, col, item)
worksheet.write(row, col + 1, cost)
row += 1

Creating Excel files with Python and XisxWriter, Release 0.2.0

Write a total using a formula.
worksheet.write(row, 0, 'Total')
worksheet.write(row, 1, '=SUM(B1:B4)"')
workbook.close()

If we run this program we should get a spreadsheet that looks like this:

@00 | tutorial0 1.xlsx
Home | Layout | Tables | Charts | SmartArt | 3| v Lt~
BS i@ @ (- fx| =SUM(B1:B4) -
WU W VO NI S_——— -
1 |Rent 1000
2 |Gas 100
3 |Food 300
4 Gym 50
05 L T
6
7
B
9
10
11
12
— << Psheen [+ T [
Mormal View Ready 4

This is a simple example but the steps involved are representative of all programs that use XI-
sxWriter, so let’s break it down into separate parts.

The first step is to import the module and the main method that we will call:

from xlsxwriter.workbook import Workbook
The next step is to create a new workbook object using the Workbook () constructor.
Workbook () takes one, non-optional, argument which is the filename that we want to create:

workbook = Workbook('Expenses0l.xlsx")

Note: XlsxWriter can only create new files. It cannot read or modify existing files.

10 Chapter 3. Tutorial 1: Create a simple XLSX file

Creating Excel files with Python and XlsxWriter, Release 0.2.0

The workbook object is then used to add a new worksheet via the add worksheet () method:

worksheet = workbook.add worksheet()

By default worksheet names in the spreadsheet will be Sheet1, Sheet2 etc., but we can also
specify a name:

worksheetl = workbook.add worksheet()
worksheet2 = workbook.add worksheet('Data"')
worksheet3 = workbook.add worksheet()

We can then use the worksheet object to write data via the write () method:

worksheet.write(row, col, some data)

Note: Throughout XlsxWriter, rows and columns are zero indexed. The first cell in a worksheet,
Al,is (0, 0).

So in our example we iterate over our data and write it out as follows:

for item, cost in (expenses):

worksheet.write(row, col, item)
worksheet.write(row, col + 1, cost)
row += 1

We then add a formula to calculate the total of the items in the second column:

worksheet.write(row, 1, '=SUM(B1:B4)"')

Finally, we close the Excel file via the close () method:

workbook.close()

Like most file objects in Python an XlsxWriter file is closed implicitly when it goes out of scope or
is no longer referenced in the program. As such this line is generally optional unless you need to
close the file explicitly.

And that’s it. We now have a file that can be read by Excel and other spreadsheet applications.

In the next sections we will see how we can use the XlsxWriter module to add formatting and other
Excel features.

11

Creating Excel files with Python and XisxWriter, Release 0.2.0

12 Chapter 3. Tutorial 1: Create a simple XLSX file

CHAPTER
FOUR

TUTORIAL 2: ADDING FORMATTING
TO THE XLSX FILE

In the previous section we created a simple spreadsheet using Python and the XisxWriter module.

This converted the required data into an Excel file but it looked a little bare. In order to make the
information clearer we would like to add some simple formatting, like this:

® 00 tutorial02.xlsx
Home | Layout | Tables | Charts | Smartart | M v
B L0 ® S| =SUM(B2:B5) v
2 s I T s C e D cnun e F mvnen i oot = |
Item Cost
Rent 51,000
Gas 5100
Food 5300
Gym 550

Tota

10
11
12
— 4 4 & B Ifh!!ll_‘[*‘) |||
.
| Normal View | Ready A

The differences here are that we have added Item and Cost column headers in a bold font, we
have formatted the currency in the second column and we have made the Total string bold.

13

Creating Excel files with Python and XisxWriter, Release 0.2.0

To do this we can extend our program as follows:

from xUlsxwriter.workbook import Workbook

Create a workbook and add a worksheet.
workbook = Workbook('Expenses02.xlsx")
worksheet = workbook.add worksheet()

Add a bold format to use to highlight cells.
bold = workbook.add format({'bold': True})

Add a number format for cells with money.
money = workbook.add format({'num format': '$#,##0'})

Write some data header.
worksheet.write('Al', 'Item', bold)
worksheet.write('B1', 'Cost', bold)

Some data we want to write to the worksheet.
expenses = (
['Rent', 10001,

['Gas"', 1007,
['Food', 300],
['Gym", 507,

)

Start from the first cell below the headers.
row 1
col 0

Iterate over the data and write it out row by row.
for item, cost in (expenses):

worksheet.write(row, col, item)
worksheet.write(row, col + 1, cost, money)
row += 1

Write a total using a formula.
worksheet.write(row, 0, 'Total', bold)
worksheet.write(row, 1, '=SUM(B2:B5)', money)

workbook. close()

The main difference between this and the previous program is that we have added two Format
objects that we can use to format cells in the spreadsheet.

Format objects represent all of the formatting properties that can be applied to a cell in Excel such
as fonts, number formatting, colors and borders. This is explained in more detail in The Format
Class and Working with Formats.

For now we will avoid the getting into the details and just use a limited amount of the format
functionality to add some simple formatting:

Add a bold format to use to highlight cells.
bold = workbook.add format({'bold': True})

14 Chapter 4. Tutorial 2: Adding formatting to the XLSX File

Creating Excel files with Python and XlsxWriter, Release 0.2.0

money = workbook.add format({'num format': '$#,##0'})

We can then pass these formats as an optional third parameter to the worksheetwrite () method
to format the data in the cell:

write(row, column, token, [format])

Like this:

worksheet.write(row, 0, 'Total', bold)

Which leads us to another new feature in this program. To add the headers in the first row of the
worksheet we used write() like this:

worksheet.write('Al', 'Item', bold)
worksheet.write('B1', 'Cost', bold)

So, instead of (row, col) we used the Excel "Al’ style notation. See Working with Cell Nota-
tion for more details but don’t be too concerned about it for now. It is just a little syntactic sugar to
help with laying out worksheets.

In the next section we will look at handling more data types.

15

Creating Excel files with Python and XisxWriter, Release 0.2.0

16 Chapter 4. Tutorial 2: Adding formatting to the XLSX File

CHAPTER
FIVE

TUTORIAL 3: WRITING DIFFERENT
TYPES OF DATA TO THE XLSX FILE

In the previous section we created a simple spreadsheet with formatting using Python and the
XlsxWriter module.

This time let’'s extend the data we want to write to include some dates:

expenses = (
['Rent', '2013-01-13', 1000],
['Gas', '2013-01-14', 100],
['Food', '2013-01-16', 3001,
['Gym', '2013-01-20', 507,
)

The corresponding spreadsheet will look like this:

17

Creating Excel files with Python and XisxWriter, Release 0.2.0

NSNS E— O tutorial03.xdsx .
Home | Layout | Tables | Charts | SmartArt | b5 I -
L2 1| B @ (= fx| 13/01/2013 |
AWNNENN B W N YRR U —
1 |Item Date Cost
Rent | January132013| 51,000
3 |Gas January 14 2013 $100
4 |Food January 16 2013 5300
5 |Gym January 20 2013 550
6 |Total $1,450
i
8
9
10
11
12
13

FRFE— ihzﬂl_ Il
— i (+] | |

Mormal View Rieady w

The differences here are that we have added a Date column, formatted the dates and made
column ‘B’ a little wider to accommodate the dates.

To do this we can extend our program as follows:

from datetime import datetime
from xUsxwriter.workbook import Workbook

Create a workbook and add a worksheet.
workbook = Workbook('Expenses03.xlsx")
worksheet = workbook.add worksheet()

Add a bold format to use to highlight cells.
bold = workbook.add format({'bold': 1})

Add a number format for cells with money.
money format = workbook.add format({'num format': 'S$#,##0'})

Add an Excel date format.
date format = workbook.add format({'num format': 'mmmm d yyyy'})

Adjust the column width.
worksheet.set column(1l, 1, 15)

Write some data headers.

18 Chapter 5. Tutorial 3: Writing different types of data to the XLSX File

Creating Excel files with Python and XlsxWriter, Release 0.2.0

worksheet.write('Al', 'Item', bold)
worksheet.write('B1', 'Date', bold)
worksheet.write('C1l', 'Cost', bold)

Some data we want to write to the worksheet.
expenses = (
['Rent', '2013-01-13', 100017,

['Gas', '2013-01-14', 100],
['Food', '2013-01-16', 300],
['Gym', '2013-01-20', 5017,

)

Start from the first cell below the headers.
row 1
col 0

for item, date str, cost in (expenses):
Convert the date string into a datetime object.
date = datetime.strptime(date str, "SY-%m-%d")

worksheet.write string (row, col, item)
worksheet.write datetime(row, col + 1, date, date format)
worksheet.write number (row, col + 2, cost, money format)
row += 1

Write a total using a formula.
worksheet.write(row, 0, 'Total', bold)
worksheet.write(row, 2, '=SUM(C2:C5)', money format)

workbook. close()

The main difference between this and the previous program is that we have added a new Format
object for dates and we have additional handling for data types.

Excel treats different types of input data differently, although it generally does it transparently to
the user. To illustrate this, open up a new Excel spreadsheet, make the first column wider and
enter the following data:

123

123.456

1234567890123456

Hello

World

2013/01/01

2013/01/01 (But change the format from Date to General)
01234

You should see something like the following:

19

Creating Excel files with Python and XisxWriter, Release 0.2.0

@00 Data Types.xlsx
Home | Layout _ Tahles | Charts | SmartArt | | v 3
A3 = fx| 1234567890123450 -
_ : | B C D
1 123
2 123.456
3 | 1.23457E+15],
4 |Hello
5 |[World
B 01,/01/2013
i 41275
8 12345
9
10
11
12
13
14
15
[i<< » »i JJ sheer1 [+
|
Mormal View Ready A

There are a few things to notice here. The first is that the numbers in the first three rows are stored
as numbers and are aligned to the right of the cell. The second is that the strings in the following
rows are stored as strings and are aligned to the left. The third is that the date string format has
changed and that it is aligned to the right. The final thing to notice is that Excel has stripped the
leading 0 from 012345.

Let’s look at each of these in more detail.

Numbers are stored as numbers: In general Excel stores data as either strings or numbers. So
it shouldn’t be surprising that it stores numbers as numbers. Within a cell a number is right aligned
by default. Internally Excel handles numbers as IEEE-754 64-bit double-precision floating point.
This means that, in most cases, the maximum number of digits that can be stored in Excel without
losing precision is 15. This can be seen in cell A3’ where the 16 digit number has lost precision
in the last digit.

Strings are stored as strings: Again not so surprising. Within a cell a string is left aligned by
default. Excel 2007+ stores strings internally as UTF-8.

Dates are stored as numbers: The first clue to this is that the dates are right aligned like numbers.
More explicitly, the data in cell A7’ shows that if you remove the date format the underlying data
is a number. When you enter a string that looks like a date Excel converts it to a number and
applies the default date format to it so that it is displayed as a date. This is explained in more detalil
in Working with Dates and Time.

20 Chapter 5. Tutorial 3: Writing different types of data to the XLSX File

Creating Excel files with Python and XlsxWriter, Release 0.2.0

Things that look like numbers are stored as numbers: In cell A8’ we entered 012345 but
Excel converted it to the number 12345. This is something to be aware of if you are writing 1D
numbers or Zip codes. In order to preserve the leading zero(es) you need to store the data as
either a string or a number with a format.

XIsxWriter tries to mimic the way Excel works via the worksheetwrite () method and separates
Python data into types that Excel recognises. The write() method acts as a general alias for
several more specific methods:

* write string()
* write number()
» write datetime()
» write blank()
« write formula()
So, let’s see how all of this affects our program.

The main change in our example program is the addition of date handling. As we saw above
Excel stores dates as numbers. XlsxWriter makes the required conversion if the date and
time are Python datetime.datetime objects. To convert the date strings in our example to
datetime.datetime objects we use the datetime.strptime function. We then use the
write datetime() function to write it to a file. However, since the date is converted to a num-
ber we also need to add a number format to ensure that Excel displays it as as date:

from datetime import datetime
date format = workbook.add format({'num format': 'mmmm d yyyy'})

for item, date str, cost in (expenses):
date = datetime.strptime(date str, "%Y-%m-%d")

worksheet.write datetime(row, col + 1, date, date format)

The other thing to notice in our program is that we have used explicit write methods for different
types of data:

worksheet.write string (row, col, item)
worksheet.write datetime(row, col + 1, date, date format)
worksheet.write number (row, col + 2, cost, money format)

This is mainly to show that if you need more control over the type of data you write to a worksheet
you can use the appropriate method. In this simplified example the write () method would have
worked just as well but it is important to note that in cases where write() doesn’t do the right
thing, such as the number with leading zeroes discussed above, you will need to be explicit.

Finally, the last addition to our program is the set column () method to adjust the width of column
‘B’ so that the dates are more clearly visible:

21

http://docs.python.org/2/library/datetime.html#datetime.datetime
http://docs.python.org/2/library/datetime.html#datetime.datetime.strptime

Creating Excel files with Python and XisxWriter, Release 0.2.0

worksheet.set column('B:B', 15)

The set column() and corresponding set row() methods are explained in more detail in The
Worksheet Class.

Next, let’s look at The Workbook Class in more detail.

22 Chapter 5. Tutorial 3: Writing different types of data to the XLSX File

CHAPTER
SIX

THE WORKBOOK CLASS

The Workbook class is the main class exposed by the XlsxWriter module and it is the only class
that you will need to instantiate direcitly.

The Workbook class represents the entire spreadsheet as you see it in Excel and internally it
represents the Excel file as it is written on disk.

6.1 Constructor

Workbook (filename)
Create a new XlsxWriter Workbook object.

Parameters filename (siring) — The name of the new Excel file to create.
Return type A Workbook object.

The Workbook () constructor is used to create a new Excel workbook with a given filename:

from xlsxwriter import Workbook

workbook = Workbook('filename.xlsx")
worksheet = workbook.add worksheet()

worksheet.write(0, 0, 'Hello Excel')

23

http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XisxWriter, Release 0.2.0

8 00 ™ filename.xlsx
Home | Layout | Tables | Charts | SmartArt | M| v ft-
Al @ @ [fx| Hello Excel v

N EoTi e ————— |
1 IHello Excel|

2

3

4

3

6

i

B

9

FRFE— l Sh!!tl_ |||

Mormal View Rieady e

It is recommended that you always use an . x1sx extension in the filename or Excel will generate
a warning when the file is opened.

Note: A later version of the module will support writing to filehandles like Excel::Writer::XLSX.

6.2 workbook.add worksheet()

add_worksheet ([sheetname])
Add a new worksheet to a workbook.

Parameters sheetname (siring) — Optional worksheet name, defaults to Sheet1,
etc.

Return type A worksheet object.
The add _worksheet () method adds a new worksheet to a workbook.

At least one worksheet should be added to a new workbook. The Worksheet object is used to
write data and configure a worksheet in the workbook.

The sheetname parameter is optional. If it is not specified the default Excel convention will be
followed, i.e. Sheet1, Sheet2, etc.:

24 Chapter 6. The Workbook Class

http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XlsxWriter, Release 0.2.0

worksheetl = workbook.add worksheet() # Sheetl
worksheet2 = workbook.add worksheet('Foglio2') # FoglioZ2
worksheet3 = workbook.add worksheet('Data') # Data
worksheet4 = workbook.add worksheet() # Sheet4
8 00 || worksheets.xlsx
Home | Layout I Tahles | Charts | SmartArt | ¥ W fEv
A3 110 & (- f& |~
A A N N U I Y " —" """
1 |Mote the worksheet names
2
— << =+ 7] Sheet1 | Foglio2 | Data | Sheetd | +] I
— Mormal View Ready o

The worksheet name must be a valid Excel worksheet name, i.e. it cannot contain any of the
characters '[]1:*?/\' and it must be less than 32 characters. In addition, you cannot use the
same, case insensitive, sheetname for more than one worksheet.

6.3 workbook.add_format()

add_format ([properties])
Create a new Format object to formats cells in worksheets.

Parameters properties (dictionary) — An optional dictionary of format properties.
Return type A format object.

The add_format () method can be used to create new Format objects which are used to apply
formatting to a cell. You can either define the properties at creation time via a dictionary of property
values or later via method calls:

formatl = workbook.add format(props); # Set properties at creation.
format2 = workbook.add format(); # Set properties later.

See the The Format Class and Working with Formats sections for more details about Format
properties and how to set them.

6.4 workbook.close()

close()
Close the Workbook object and write the XLSX file.

6.3. workbook.add_format() 25

Creating Excel files with Python and XisxWriter, Release 0.2.0

In general your Excel file will be closed automatically when your program ends or when the Work-
book object goes out of scope, however the close() method can be used to explicitly close an
Excel file:

workbook. close()

An explicit close () is required if the file must be closed prior to performing some external action
on it such as copying it, reading its size or attaching it to an email.

In addition, close() may be occasionally required to prevent Python’s garbage collector from
disposing of the Workbook, Worksheet and Format objects in the wrong order.

In general, if an XlsxWriter file is created with a size of 0 bytes or fails to be created for some
unknown silent reason you should add close() to your program.

6.5 workbook.set_properties()

set_properties()
Set the document properties such as Title, Author etc.

Parameters properties (dict) — Dictionary of document properties.

The set properties method can be used to set the document properties of the Excel file
created by XlsxWriter. These properties are visible when you use the Office Button ->
Prepare -> Properties option in Excel and are also available to external applications that
read or index windows files.

The properties that can be set are:
- title
* subject
« author
« manager
« company
» category
» keywords
« comments
* status
The properties should be passed in dictionary format as follows:

workbook.set properties({

'title': 'This is an example spreadsheet',
'subject': 'With document properties',
‘author': 'John McNamara',

'manager': 'Dr. Heinz Doofenshmirtz',
‘company': ‘'of Wolves',

26 Chapter 6. The Workbook Class

http://docs.python.org/2/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 0.2.0

'category': 'Example spreadsheets',
'keywords': 'Sample, Example, Properties',
'comments': 'Created with Python and XlsxWriter'})

properties.xlsx Properties

0 Statistics Contents Custom]—-.

Title: Ill'his is an example spreadsheet

Subject: |'H"|'Tth document properties

Author: |juhr‘| McMamara

Manager: | Dr. Heinz Doofenshmirtz

Company: |of Wolves

Category: |Example spreadsheets

Keywords: |S-amp|e, Example, Properties

Comments: Created with Python and XlsxWriter

Hyperlink base:

Template:

[| Save preview picture with this document

See also Example: Setting Document Properties.

6.6 workbook.define_name()

define_name()
Create a defined name in the workbook to use as a variable.

Parameters

6.6. workbook.define_name() 27

Creating Excel files with Python and XisxWriter, Release 0.2.0

* name (siring) — The defined name.
« formula (siring) — The cell or range that the defined name refers to.

This method is used to defined a name that can be used to represent a value, a single cell or a
range of cells in a workbook.

For example to set a global/workbook name:

Global/workbook names.
workbook.define name('Exchange rate', '=0.96")
workbook.define name('Sales’, '=Sheetl!G1:H10")

It is also possible to define a local/worksheet name by prefixing it with the sheet name using the
syntax 'sheetname!definedname’:

Local/worksheet name.
workbook.define name('Sheet2!Sales', '=Sheet2!G1:G10")

If the sheet name contains spaces or special characters you must enclose it in single quotes like
in Excel:

workbook.define name("'New Data'!Sales", '=Sheet2!G1:G10")

See also the defined name. py program in the examples directory.

6.7 workbook.worksheets()

worksheets ()
Return a list of the worksheet objects in the workbook.

Return type A list of worksheet objects.

The worksheets () method returns a list of the worksheets in a workbook. This is useful if you
want to repeat an operation on each worksheet in a workbook:

for worksheet in workbook.worksheets():
worksheet.write('Al', 'Hello')

28 Chapter 6. The Workbook Class

http://docs.python.org/2/library/string.html#string
http://docs.python.org/2/library/string.html#string

CHAPTER
SEVEN

THE WORKSHEET CLASS

The worksheet class represents an Excel worksheet. It handles operations such as writing data
to cells or formatting worksheet layout.

A worksheet object isn’t instantiated directly. Instead a new worksheet is created by calling the
add worksheet () method from a Workbook () object:

workbook = Workbook('filename.xlsx"')
worksheetl = workbook.add worksheet()
worksheet2 = workbook.add worksheet()

worksheetl.write('Al', 123)

e oo ™ filename.xlsx
Home | Layout | Tables | Charts | Smartart | ¥ v I
All 110 & (= fx Ad
4 A N N < N W — N — -
1 123
2
o 44 .h- l Shutl‘[Sheet?ﬁ. [
Mormal View Ready o

7.1 worksheet.write()

write (row, col, data[, cell_format])
Write generic data to a worksheet cell.

Parameters

29

Creating Excel files with Python and XisxWriter, Release 0.2.0

* row (/int) — The cell row (zero indexed).

+ col (int) — The cell column (zero indexed).

+ data — Cell data to write. Variable types.

« cell_format (Format) — Optional Format object.

Excel makes a distinction between data types such as strings, numbers, blanks, formulas and
hyperlinks. To simplify the process of writing data to an XlsxWriter file the write () method acts
as a general alias for several more specific methods:

* write string()
* write number()
» write blank()

« write formula()
s write url()

The general rule is that if the data looks like a something then a something is written. Here are
some examples:

worksheet.write
worksheet.write
worksheet.write

worksheet.write (0, 'Hello'") write string()
worksheet.write(1, "World") write string()
worksheet.write(2, 2) write number()
)
(

'=SIN(PI()/4)")
‘)
None)

write formula()
write blank(

write blank(

[cNoNoNoNoNoONO)
HHHHHHH

(0) (
(1 , (
(2, 0, (
worksheet.write(3 , 3.00001) write number(
(4 , a
(5, 0,)
(6))

This creates a worksheet like the following:

30 Chapter 7. The Worksheet Class

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 0.2.0

@00 - write.xlsx
Home | Layout | Tahles | Charts | SmartArt | M v
AS 0 @ [fx| =SIN(PIO/4) |»
4 A VTN U N W — U ———, _— -
1 |Hello
2 |World
3 2
4 3.00001
6
7
8
9
10
11
TR l Sh!!tl_ |||
Mormal View Rieady w

The write() method supports two forms of notation to designate the position of cells: Row-
column notation and A1 notation:

These are equivalent.
worksheet.write(0, 0, 'Hello')
worksheet.write('Al', 'Hello')

See Working with Cell Notation for more details.

The cell format parameter is used to apply formatting to the cell. This parameter is optional
but when present is should be a valid Format object:

cell format = workbook.add format({'bold': True, 'italic': True})

worksheet.write(0, 0, 'Hello', cell format) # Cell is bold and italic.

The write () method will ignore empty strings or None unless a format is also supplied. As such
you needn’t worry about special handling for empty or None values in your data. See also the
write blank() method.

One problem with the write () method is that occasionally data looks like a number but you don’t
want it treated as a number. For example, Zip codes or ID numbers or often start with a leading
zero. If you write this data as a number then the leading zero(s) will be stripped. In this case you
shouldn’t use the write () method and should use write string() instead.

7.1. worksheet.write() 31

Creating Excel files with Python and XisxWriter, Release 0.2.0

7.2 worksheet.write_string()

write string(row, col, string[, cell format])
Write a string to a worksheet cell.

Parameters
* row (/int) — The cell row (zero indexed).
« col (int) — The cell column (zero indexed).
* string (siring) — String to write to cell.
« cell_format (Format) — Optional Format object.
The write string() method writes a string to the cell specified by row and column:

worksheet.write string(0, 0, 'Your text here')
worksheet.write string('A2', 'or here')

Both row-column and A1 style notation are support. See Working with Cell Notation for more
details.

The cell format parameter is used to apply formatting to the cell. This parameter is optional
but when present is should be a valid Format object.

Unicode strings are supported in UTF-8 encoding. This generally requires that your source file in
also UTF-8 encoded:

* coding: utf-8

worksheet.write('Al', u'Some UTF-8 text')

® 00 | 7] utf8_01.xlsx
Home | Layout | Tables | Charts | SmartArt | ¥ W fFv
AL7 1 0 ® (- fxl E
A VU U U N Y N—-——| =
1 | 3to ¢pasa Ha pycckom!
2
44 FF Sheetl ;| + :
[Hormal wew—l _Read:[- - ! 4

Alternatively, you can read data from an encoded file, convert it to UTF-8 during reading and then
write the data to an Excel file. There are several sample unicode *.py programs like this in the
examples directory of the XIlsxWriter source tree.

32 Chapter 7. The Worksheet Class

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XlsxWriter, Release 0.2.0

The maximum string size supported by Excel is 32,767 characters. Strings longer than this will be
truncated by write string().

Note: Even though Excel allows strings of 32,767 characters in a cell, Excel can only display
1000. All 32,767 characters are displayed in the formula bar.

In general it is sufficient to use the write() method when dealing with string data. However, you
may sometimes need to use write string() to write data that looks like a number but that you
don’t want treated as a number. For example, Zip codes or phone numbers:

worksheet.write string('Al', '01209")

However, if the user edits this string Excel may convert it back to a number. To get around this you
can use the Excel text format '@":

str format = workbook.add format({'num format', '@'})
worksheet.write string('Al', '01209', str format)

This behaviour, while slightly tedious, is unfortunately consistent with the way Excel handles string
data that looks like numbers. See Tutorial 3: Writing different types of data to the XLSX File.

7.3 worksheet.write_number()

write_number (row, col, number|, cell_format])
Write a number to a worksheet cell.

Parameters
» row (int) — The cell row (zero indexed).
« col (int) — The cell column (zero indexed).
* humber (int or float) — Number to write to cell.
» cell_format (Format) — Optional Format object.

The write number() method writes an integer or a float to the cell specified by row and col-
umn:

worksheet.write number(0, 0, 123456)
worksheet.write number('A2', 2.3451)

Both row-column and A1 style notation are support. See Working with Cell Notation for more
details.

The cell format parameter is used to apply formatting to the cell. This parameter is optional
but when present is should be a valid Format object.

7.3. worksheet.write_number() 33

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 0.2.0

Excel handles numbers as IEEE-754 64-bit double-precision floating point. This means that, in
most cases, the maximum number of digits that can be stored in Excel without losing precision is
15.

7.4 worksheet.write_formula()

write_formula (row, col, formula[, cell_format, value]])
Write a formula to a worksheet cell.

Parameters
* row (int) — The cell row (zero indexed).
» col (int) — The cell column (zero indexed).
» formula (siring) — Formula to write to cell.
» cell_format (Format) — Optional Format object.

The write formula() method writes a formula or function to the cell specified by row and
column:

worksheet.write formula(0, 0, '=B3 + B4')

worksheet.write formula(l, 0, '=SIN(PI()/4)")
worksheet.write formula(2, 0, '=SUM(B1:B5)"')
worksheet.write formula('A4', '=IF(A3>1,"Yes", "No")")
worksheet.write formula('A5', '=AVERAGE(1l, 2, 3, 4)')
worksheet.write formula('A6', '=DATEVALUE("1-Jan-2013")")

Array formulas are also supported:

worksheet.write formula('A7', '{=SUM(A1:B1*A2:B2)}"')

See also the write array formula() method below.

Both row-column and A1 style notation are support. See Working with Cell Notation for more
details.

The cell format parameter is used to apply formatting to the cell. This parameter is optional
but when present is should be a valid Format object.

XlsxWriter doesn’t calculate the value of a formula and instead stores the value 0 as the formula
result. It then sets a global flag in the XLSX file to say that all formulas and functions should be
recalculated when the file is opened. This is the method recommended in the Excel documentation
and in general it works fine with spreadsheet applications. However, applications that don’t have
a facility to calculate formulas, such as Excel Viewer, or some mobile applications will only display
the O results.

If required, it is also possible to specify the calculated result of the formula using the options
value parameter. This is occasionally necessary when working with non-Excel applications that
don’t calculate the value of the formula. The calculated value is added at the end of the argument
list:

34 Chapter 7. The Worksheet Class

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XlsxWriter, Release 0.2.0

worksheet.write('Al', '=2+2', num format, 4)

Note: Some early versions of Excel 2007 do not display the calculated values of formulas written
by XIsxWriter. Applying all available Office Service Packs should fix this.

7.5 worksheet.write_array_formula()

write _array_ formula(first row, first col, last row, last col, formula[, cell format[,

value]])
Write an array formula to a worksheet cell.

Parameters
« first_row (int) — The first row of the range. (All zero indexed.)
« first_col (int) — The first column of the range.
* last_row (/int) — The last row of the range.
« last_col (int) — The last col of the range.
» formula (siring) — Array formula to write to cell.
« cell_format (Format) — Optional Format object.

Thewrite array formula() method write an array formula to a cell range. In Excel an array
formula is a formula that performs a calculation on a set of values. It can return a single value or
a range of values.

An array formula is indicated by a pair of braces around the formula: {=SUM(A1:B1*A2:B2)}.
If the array formula returns a single value then the first and last parameters should be the
same:

worksheet.write array formula('Al:Al', '{=SUM(B1:C1*B2:C2)}")

It this case however it is easier to just use the write formula() orwrite() methods:

Same as above but more concise.
worksheet.write('Al', '{=SUM(B1:C1*B2:C2)}")
worksheet.write formula('Al', '{=SUM(B1:C1*B2:C2)}")

For array formulas that return a range of values you must specify the range that the return values
will be written to:

worksheet.write array formula('Al:A3', "{=TREND(C1:C3,B1:B3)}")
worksheet.write array formula(0, 0, 2, 0, '{=TREND(C1:C3,B1:B3)}")

As shown above, both row-column and A1 style notation are support. See Working with Cell
Notation for more details.

7.5. worksheet.write_array_formula() 35

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XisxWriter, Release 0.2.0

The cell format parameter is used to apply formatting to the cell. This parameter is optional
but when present is should be a valid Format object.

If required, it is also possible to specify the calculated value of the formula. This is occasionally
necessary when working with non-Excel applications that don’t calculate the value of the formula.
The calculated value is added at the end of the argument list:

worksheet.write array formula('Al:A3', '{=TREND(C1:C3,B1:B3)}', format, 105)
In addition, some early versions of Excel 2007 don'’t calculate the values of array formulas when
they aren’t supplied. Installing the latest Office Service Pack should fix this issue.

See also Example: Array formulas.

7.6 worksheet.write_blank()

write_blank (row, col, blank], cell_format])
Write a blank worksheet cell.

Parameters
* row (int) — The cell row (zero indexed).
» col (int) — The cell column (zero indexed).
» blank — None or empty string. The value is ignored.
» cell_format (Format) — Optional Format object.
Write a blank cell specified by row and column:

worksheet.write blank(0, 0, None, format)

This method is used to add formatting to a cell which doesn’t contain a string or number value.

Excel differentiates between an “Empty” cell and a “Blank” cell. An “Empty” cell is a cell which
doesn’t contain data whilst a “Blank” cell is a cell which doesn’t contain data but does contain
formatting. Excel stores “Blank” cells but ignores “Empty” cells.

As such, if you write an empty cell without formatting it is ignored:

worksheet.write('Al', None, format)
worksheet.write('A2', None)

This seemingly uninteresting fact means that you can write arrays of data without special treatment
for None or empty string values.

As shown above, both row-column and A1 style notation are support. See Working with Cell
Notation for more details.

36 Chapter 7. The Worksheet Class

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 0.2.0

7.7 worksheet.write_datetime()

write_datetime (row, col, datetimel, cell_format])
Write a date or time to a worksheet cell.

Parameters
* row (int) — The cell row (zero indexed).
« col (int) — The cell column (zero indexed).
 datetime (datetime.datetime) — A datetime.datetime object.
« cell_format (Format) — Optional Format object.

The write datetime() method can be used to write a date or time to the cell specified by row
and column:

worksheet.write datetime(0, 0, datetime, date format)

The datetime.datetime class is part of the standard Python datetime library.

There are many way to create a datetime object but the most common is to use the date-
time.strptime method:

date time = datetime.strptime('2013-01-23", 'SY-%m-%d"')
A date should always have a cell format of type Format, otherwise it will appear as a number:
date format = workbook.add format({'num format': 'd mmmm yyyy'})

worksheet.write datetime('Al', date time, date format)

See Working with Dates and Time for more details.

7.8 worksheet.write_url()

write_url(row, col, url[, cell_format], string[, tio]]])
Write a hyperlink to a worksheet cell.

Parameters

* row (/int) — The cell row (zero indexed).

col (int) — The cell column (zero indexed).

« url (string) — Hyperlink url.

cell_format (Format) — Optional Format object.

string (string) — An optional display string for the hyperlink.
« tip (string) — An optional tooltip.

7.7. worksheet.write_datetime() 37

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/datetime.html#datetime.datetime
http://docs.python.org/2/library/datetime.html#datetime.datetime
http://docs.python.org/2/library/datetime.html#datetime
http://docs.python.org/2/library/datetime.html#datetime.datetime.strptime
http://docs.python.org/2/library/datetime.html#datetime.datetime.strptime
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/string.html#string
http://docs.python.org/2/library/string.html#string
http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XisxWriter, Release 0.2.0

The write url() method is used to write a hyperlink in a worksheet cell. The url is comprised
of two elements: the displayed string and the non-displayed link. The displayed string is the same
as the link unless an alternative string is specified.

Both row-column and A1 style notation are support. See Working with Cell Notation for more
details.

The cell format parameter is used to apply formatting to the cell. This parameter is optional,
however, without a format the link won’t look like a link. The suggested Format is:

link format = workbook.add format({'color': 'blue', 'underline': 1})

There are four web style URI’s supported: http://, https://, ftp:// and mailto::

worksheet.write url('Al', 'ftp://www.python.org/"', link format)
worksheet.write url('A2', 'http://www.python.org/"', link format)
worksheet.write url('A3', 'https://www.python.org/', 1link format)
worksheet.write url('A4', 'mailto:jmcnamaracpan.org', link format)

All of the these URI types are recognised by the write () method, so the following are equivalent:

worksheet.write url('A2', 'http://www.python.org/', link format)
worksheet.write ('A2', 'http://www.python.org/', link format) # Same.

You can display an alternative string using the string parameter:

worksheet.write url('Al', ‘'http://www.python.org', link format, 'Python")

If you wish to have some other cell data such as a number or a formula you can overwrite the cell
using another call towrite *():

worksheet.write url('Al', 'http://www.python.org/', link format)

Overwrite the URL string with a formula. The cell is still a link.
worksheet.write formula('Al', '=1+1', link format)

There are two local URIs supported: internal: and external:. These are used for hyperlinks
to internal worksheet references or external workbook and worksheet references:

worksheet.write url('Al', ‘'internal:Sheet2!Al"', link format)
worksheet.write url('A2', ‘'internal:Sheet2!Al', link format)
worksheet.write url('A3', ‘'internal:Sheet2!Al:B2"', link format)
worksheet.write url('A4', "internal:'Sales Data'!Al", link format)
worksheet.write url('A5', r'external:c:\temp\foo.xlsx", link format)
worksheet.write url('A6', r'external:c:\foo.xlsx#Sheet2!Al', link format)
worksheet.write url('A7', r'external:..\foo.xlsx", link format)
worksheet.write url('A8', r'external:..\foo.xlsx#Sheet2!Al', link format)
worksheet.write url('A9', r'external:\\NET\share\foo.xlsx', 1link format)

Worksheet references are typically of the form Sheet1!Al. You can also link to a worksheet
range using the standard Excel notation: Sheet1!Al:B2.

In external links the workbook and worksheet name must be separated by the # character: ex-
ternal:Workbook.xlsx#Sheetl!Al’.

38 Chapter 7. The Worksheet Class

Creating Excel files with Python and XlsxWriter, Release 0.2.0

You can also link to a named range in the target worksheet. For example say you have a named
range called my name in the workbook c:\temp\foo.xlsx you could link to it as follows:

worksheet.write url('Al4', r'external:c:\temp\foo.xlsx#my name')
Excel requires that worksheet names containing spaces or non alphanumeric characters are single
quoted as follows 'Sales Data’!Al.

Links to network files are also supported. Network files normally begin with two back slashes as
follows \\NETWORK\ etc. In order to generate this in a single or double quoted string you will have
to escape the backslashes, '\\\\NETWORK\\etc’ or use a raw string r’\\NETWORK\etc"’.

Alternatively, you can avoid most of these quoting problems by using forward slashes. These are
translated internally to backslashes:

worksheet.write url('Al4', "external:c:/temp/foo.xLlsx")
worksheet.write url('Al5', 'external://NETWORK/share/foo.xlsx")

See also Example: Adding hyperlinks.

Note: XlsxWriter will escape the following characters in URLs as required by Excel: \'s < >\
[T ° 7~ { }unlessthe URL already contains %xx style escapes. In which case it is assumed
that the URL was escaped correctly by the user and will by passed directly to Excel.

7.9 worksheet.write_rich_string()

write_rich_string(row, col, *string_parts|, cell_format])
Write a “rich” string with multiple formats to a worksheet cell.

Parameters
* row (/int) — The cell row (zero indexed).
« col (int) — The cell column (zero indexed).
» string_parts — String and format pairs.
« cell_format (Format) — Optional Format object.

Thewrite rich string() method is used to write strings with multiple formats. For example
to write the string “This is bold and this is italic’ you would use the following:

bold
italic

workbook.add format({'bold': True})
workbook.add format({'italic': True})

worksheet.write rich string('Al"',
'This is ',
bold, 'bold',
' and this is ',
italic, 'italic')

7.9. worksheet.write_rich_string() 39

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 0.2.0

NS D X 1 T 11112 0. 115 SO—— .
Home | Layout | Tables | Charts | SmartArt | b5 I -
Al @ @ (- fx| Thisis bold and this is italic |»
_I A B | Cl=
This is bold and this is italic
- R sheeu S A=
i Mormal 'l."iewl Rudv [|”

The basic rule is to break the string into fragments and put a Format object before the fragment
that you want to format. For example:

Unformatted string.
'This is an example string'

Break it into fragments.
'This is an ', 'example', ' string'

Add formatting before the fragments you want formatted.
'This is an ', format, 'example', ' string'

In XlsxWriter.
worksheet.write rich string('Al"',

'This is an ', format, ‘'example', ' string')

String fragments that don’t have a format are given a default format. So for example when writing

the string “Some bold text” you would use the first example below but it would be equivalent to the
second:

Some bold format and a default format.
bold = workbook.add format({'bold': True})
default = workbook.add format()

With default formatting:
worksheet.write rich string('Al"’,

'Some ',
bold, 'bold',
' text')

Or more explicitly:
worksheet.write rich string('Al"',
default, 'Some '
bold, "bold',
default, ' text')

’

40 Chapter 7. The Worksheet Class

http://docs.python.org/2/library/functions.html#format

Creating Excel files with Python and XlsxWriter, Release 0.2.0

In Excel only the font properties of the format such as font name, style, size, underline, color
and effects are applied to the string fragments in a rich string. Other features such as border,
background, text wrap and alignment must be applied to the cell.

The write rich string() method allows you to do this by using the last argument as a cell
format (if it is a format object). The following example centers a rich string in the cell:

workbook.add format({'bold': True})

bold
workbook.add format({'align': 'center'})

center

worksheet.write rich string('A5"',
'Some ',
bold, 'bold text',
' centered',
center)

See also Example: Writing “Rich” strings with multiple formats.

7.10 worksheet.write_row()

write_row(row, col, data[, cell_format])
Write a row of data starting from (row, col).

Parameters
* row (/nt) — The cell row (zero indexed).
» col (int) — The cell column (zero indexed).
+ data — Cell data to write. Variable types.
« cell_format (Format) — Optional Format object.

Thewrite row() method can be used to write a list of data in one go. This is useful for convert-
ing the results of a database query into an Excel worksheet. The write() method is called for

each element of the data. For example:
data = ('Foo', 'Bar', 'Baz')
worksheet.write row('Al', data)

worksheet.write('Al', data[0])
worksheet.write('B1l', datall])
worksheet.write('C1l', data[2])

7.10. worksheet.write_row() 41

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 0.2.0

7.11 worksheet.write_column()

write_column (row, col, data|, cell_format])
Write a column of data starting from (row, col).

Parameters
* row (int) — The cell row (zero indexed).
+ col (int) — The cell column (zero indexed).
« data — Cell data to write. Variable types.
« cell_format (Format) — Optional Format object.

The write column() method can be used to write a list of data in one go. This is useful for
converting the results of a database query into an Excel worksheet. The write() method is
called for each element of the data. For example:

data = ('Foo', 'Bar', 'Baz')
worksheet.write row('Al', data)

worksheet.write('Al', data[0])
worksheet.write('A2', data[l])
worksheet.write('A3', datal2])

7.12 worksheet.set_row()

set_row(row, height, cell_format, options)
Set properties for a row of cells.

Parameters
* row (/nt) — The worksheet row (zero indexed).
* height (inf) — The row height.
« cell_format (Format) — Optional Format object.
 options (dict) — Optional row parameters: hidden, level, collapsed.

The set row() method is used to change the default properties of a row. The most common use
for this method is to change the height of a row:

worksheet.set row(0, 20)

The other common use for set row() is to set the Format for all cells in the row:

42 Chapter 7. The Worksheet Class

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 0.2.0

cell format = workbook.add format({'bold': True})

worksheet.set row(0, 20, cell format)
If you wish to set the format of a row without changing the height you can pass None as the height
parameter or use the default row height of 15:

worksheet.set row(1l, None, cell format)
worksheet.set row(1l, 15, cell format)

The cell format parameter will be applied to any cells in the row that don’t have a format. As
with Excel it is overidden by an explicit cell format. For example:

worksheet.set row(0, None, formatl)

worksheet.write('Al', 'Hello')
worksheet.write('B1', 'Hello', format2)

The options parameter is a dictionary with the following possible keys:
« "hidden’
« "level’
« 'collapsed’

Options can be set as follows:

worksheet.set row(0, 20, cell format, {'hidden': 1})

worksheet.set row(0, None, None, {'hidden': 1})
The "hidden’ option is used to hide a row. This can be used, for example, to hide intermediary
steps in a complicated calculation:

worksheet.set row(0, 20, cell format, {'hidden': 1})
The 'level’ parameter is used to set the outline level of the row. Outlines are described in

“Working with Outlines and Grouping”. Adjacent rows with the same outline level are grouped
together into a single outline. (Note: This feature is not implemented yet).

The following example sets an outline level of 1 for some rows:

worksheet.set row(0, None, None, {'level': 1})
worksheet.set row(1l, None, None, {'level': 1})
worksheet.set row(2, None, None, {'level': 1})

Note: Excel allows up to 7 outline levels. The ’'level’ parameter should be in the range 0 <=
level <= 7.

The "hidden’ parameter can also be used to hide collapsed outlined rows when used in con-
junction with the ’ Llevel’ parameter:

7.12. worksheet.set_row() 43

Creating Excel files with Python and XisxWriter, Release 0.2.0

worksheet.set row(1l, None, None, {'hidden': 1, 'level': 1})
worksheet.set row(2, None, None, {'hidden': 1, 'level': 1})

The 'collapsed’ parameteris used in collapsed outlines to indicate which row has the collapsed
"+’ symbol:

worksheet.set row(3, None, None, {'collapsed': 1})

7.13 worksheet.set_column()

set_column (first_col, last _col, width, cell_format, hidden, level, collapsed)
Set properties for one or more columns of cells.

Parameters

« first_col (int) — First column (zero-indexed).

last_col (int) — Last column (zero-indexed). Can be same as firstcol.

 width (int) — The width of the column(s).

cell_format (Format) — Optional Format object.

options (dict) — Optional parameters: hidden, level, collapsed.

The set column() method can be used to change the default properties of a single column or
a range of columns:

worksheet.set column(1l, 3, 30)

If set column() is applied to a single column the value of first col and last col should
be the same:

worksheet.set column(1l, 1, 30)

It is also possible, and generally clearer, to specify a column range using the form of A1 notation
used for columns. See Working with Cell Notation for more details.

Examples:
worksheet.set column(0, 0, 20)
worksheet.set column(1l, 3, 30)
worksheet.set column('E:E', 20)
worksheet.set column('F:H', 30)

The width corresponds to the column width value that is specified in Excel. It is approximately
equal to the length of a string in the default font of Calibri 11. Unfortunately, there is no way to
specify “AutoFit” for a column in the Excel file format. This feature is only available at runtime from
within Excel. It is possible to simulate “AutoFit” by tracking the width of the data in the column as
your write it.

As usual the cell format Format parameter is optional. If you wish to set the format without
changing the width you can pass None as the width parameter:

44 Chapter 7. The Worksheet Class

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 0.2.0

cell format = workbook.add format({'bold': True})

worksheet.set column(0, 0, None, cell format)

The cell format parameter will be applied to any cells in the column that don’t have a format.
For example:

worksheet.set column('A:A', None, formatl) # Col 1 has formatl.

worksheet.write('Al', 'Hello') # Cell Al defaults to formatl.
worksheet.write('A2', 'Hello', format2) # Cell A2 keeps format2.

A row format takes precedence over a default column format:

worksheet.set row(0, None, formatl) # Set format for row 1.
worksheet.set column('A:A', None, format2) # Set format for col 1.

worksheet.write('Al', 'Hello') # Defaults to formatl
worksheet.write('A2', 'Hello') # Defaults to format2

The options parameter is a dictionary with the following possible keys:
« "hidden’
« "level’
« 'collapsed’

Options can be set as follows:

worksheet.set column('D:D', 20, cell format, {'hidden': 1})

Or use defaults for other properties and set the options only.
worksheet.set column('E:E', None, None, {'hidden': 1})

The "hidden’ option is used to hide a column. This can be used, for example, to hide interme-
diary steps in a complicated calculation:

worksheet.set column('D:D', 20, cell format, {'hidden': 1})

The ’"level’ parameter is used to set the outline level of the column. Outlines are described in
“Working with Outlines and Grouping”. Adjacent columns with the same outline level are grouped
together into a single outline. (Note: This feature is not implemented yet).

The following example sets an outline level of 1 for columns B to G:

worksheet.set column('B:G', None, None, {'level': 1})

Note: Excel allows up to 7 outline levels. The ’'level’ parameter should be in the range 0 <=
level <= 7.

The "hidden’ parameter can also be used to hide collapsed outlined columns when used in
conjunction with the ' level’ parameter:

7.13. worksheet.set_column() 45

Creating Excel files with Python and XisxWriter, Release 0.2.0

worksheet.set column('B:G', None, None, {'hidden': 1, 'level': 1})
The 'collapsed’ parameter is used in collapsed outlines to indicate which column has the
collapsed '+’ symbol:

worksheet.set column('H:H', None, None, {'collapsed': 1})

7.14 worksheet.insert_image()

insert_image (row, col, imagel, options])
Write a string to a worksheet cell.

Parameters
* row (/nt) — The cell row (zero indexed).
+ col (int) — The cell column (zero indexed).
» image (siring) — Image filename (with path if required).
+ options (dict) — Optional parameters to position and scale the image.

This method can be used to insert a image into a worksheet. The image can be in PNG, JPEG or
BMP format:

worksheet.insert image('B2', 'python.png')

46 Chapter 7. The Worksheet Class

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/string.html#string
http://docs.python.org/2/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 0.2.0

800 ™ insert_image.xlsx
Home | Layout | Tables | Charts | SmartArt | b5 I -
A22 (0O (~ fx |~
_—lh{li B | c | D | E | F | G | H |=
1
.
3 thon
= PY
- |
6
7
8
9
El powered
11
12
13
13
15
16

E | |

Mormal View Rieady e

A file path can be specified with the image name:

worksheetl.insert image('B10', '../images/python.png")
worksheet2.insert image('B20', r'c:\images\python.png")

The insert image () method takes optional parameters in a dictionary to position and scale the
image. The avavilable parameters with their default values are:

{
'x offset': 0,
'y offset': 0,
'X scale': 1,
'y scale': 1,
}

The offset values are in pixels:

worksheetl.insert image('B2', 'python.png', {'x offset': 15, 'y offset': 10})
The offsets can be greater than the width or height of the underlying cell. This can be occasionally
useful if you wish to align two or more images relative to the same cell.

The x_scale and y_scale parameters can be used to scale the image horizontally and verti-
cally:

7.14. worksheet.insert_image() 47

Creating Excel files with Python and XisxWriter, Release 0.2.0

worksheet.insert image('B3', 'python.png', {'x scale': 0.5, 'y scale': 0.5})

Currently only 96 dpi images are supported without modification. If you need to insert images with
other dpi values you can use the scale parameters.

Note: You must call set _row() or set _column() before insert image() if you wish to
change the default dimensions of any of the rows or columns that the image occupies. The height
of a row can also change if you use a font that is larger than the default or have text wrapping
turned on. This in turn will affect the scaling of your image. To avoid this you should explicitly set
the height of the row using set row() if it contains a font size that will change the row height.

Inserting images into headers or a footers isn’t supported.

BMP images are only supported for backward compatibility. In general it is best to avoid BMP
images since they aren’t compressed. If used, BMP images must be 24 bit, true colour, bitmaps.

See also Example: Inserting images into a worksheet.

7.15 worksheet.conditional format()

conditional format (first _row, first _col, last _row, last col, options)
Write a conditional format to range of cells.

Parameters

« first_row (int) — The first row of the range. (All zero indexed.)

first_col (/nt) — The first column of the range.
+ last_row (int) — The last row of the range.

* last_col (inf) — The last col of the range.

options (dict) — Conditional formatting options.

The conditional format() method is used to add formatting to a cell or range of cells based
on user defined criteria:

worksheet.conditional format('B3:K12', {'type': 'cell',
'criteria': '>=',
'value': 50,
"format': formatl})

48 Chapter 7. The Worksheet Class

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 0.2.0

800 | conditional_format.xlsx
Home | Layout | Tahles | Charts | SmartArt | M v
A20 1 0 @ (~ fx| A
_ Y B | G mns Do hnessF | [F——E
1 |Cells with values >= 50 are in light red. Values < 50 are in light green.
2
3 34 12 38 30 75
4 B 24 1 84 54
3 28 79 a7 13 85
b 27 71 40 17 18
i B8 25 33 23 67
B 24 100 20 B8 25
9 6 57 88 28 10
52 78 1 96 26
60 54 81 b6 81
70 5 46 14 71
< < » »l 7] Sheetl | Sheetz | Sheet3 | Sheetd | i—m
Mormal View Ready A

The conditional format can be applied to a single cell or a range of cells. As usual you can use A1
or Row/Column notation, see Working with Cell Notation.

With Row/Column notation you must specify all four cells in the range: (first row,
first col, last row, last col). If you need to refer to a single cell set the /ast_val-
ues equal to the first_ values. With A1 notation you can refer to a single cell or a range of cells:

worksheet.conditional format(0, 0, 4, 1, {...})
worksheet.conditional format('Bl"', {...})
worksheet.conditional format('Cl:E5"', {...})

The options parameter in conditional format () must be a dictionary containing the param-
eters that describe the type and style of the conditional format. There are a lot of available options
which are described in detail in a separate section: Working with Conditional Formatting. See also
Example: Conditional Formatting.

7.16 worksheet.write_comment()

write_comment (row, col, comment|, options])
Write a comment to a worksheet cell.

Parameters

7.16. worksheet.write_comment() 49

Creating Excel files with Python and XisxWriter, Release 0.2.0

* row (int) — The cell row (zero indexed).

+ col (int) — The cell column (zero indexed).

« comment (siring) — String to write to cell.

» options (dict) — Comment formatting options..

The write comment () method is used to add a comment to a cell. A comment is indicated in
Excel by a small red triangle in the upper right-hand corner of the cell. Moving the cursor over the
red triangle will reveal the comment.

The following example shows how to add a comment to a cell:

worksheet.write('Al', 'Hello')

worksheet.write comment('Al', 'This is a comment')
e 00 | comments1.xlsx
Home | Layout | Tables | Charts | SmartArt | M v
Al 1 @0 @ (- fx| Hello v

B e (e D e e E L =

This is @ commest

le-*-lmm-h-WNH‘,
T
1
HI-
1

TR l Sh!!tl_ |||

Mormal View Cell Al commented by A

As usual you can replace the row and col parameters with an Al cell reference. See Working
with Cell Notation for more details.

The properties of the cell comment can be modified by passing an optional dictionary of key/value
pairs to control the format of the comment. For example:

worksheet.write comment('C3', 'Hello', {'x scale': 1.2, 'y scale': 0.8})

Most of these options are quite specific and in general the default comment behaviour will be all

50 Chapter 7. The Worksheet Class

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/string.html#string
http://docs.python.org/2/library/stdtypes.html#dict

Creating Excel files with Python and XlsxWriter, Release 0.2.0

that you need. However, should you need greater control over the format of the cell comment the
following options are available:

author
visible
X_scale
width

y scale
height
color
start_cell
start row
start _col
x _offset
y offset

For more details see Working with Cell Comments and Example: Adding Cell Comments to Work-
Sheets (Advanced) .

7.17 worksheet.show comments()

show_comments ()
Make any comments in the worksheet visible.

This method is used to make all cell comments visible when a worksheet is opened:

worksheet.show comments()

Individual comments can be made visible using the visible parameter of the write comment
method (see above):

worksheet.write comment('C3', 'Hello', {'visible': True})

If all of the cell comments have been made visible you can hide individual comments as follows:

worksheet.show comments()
worksheet.write comment('C3', 'Hello', {'visible': False})

For more details see Working with Cell Comments and Example: Adding Cell Comments to Work-
sheets (Advanced) .

7.18 worksheet.set_comments_author()

set_comments_author (author)
Set the default author of the cell comments.

Parameters author (siring) — Comment author.

This method is used to set the default author of all cell comments:

7.17. worksheet.show_comments() 51

http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XisxWriter, Release 0.2.0

worksheet.set comments author('John Smith")
Individual comment authors can be set using the author parameter of the write comment
method (see above).
If no author is specified the default comment author name is an empty string.

For more details see Working with Cell Comments and Example: Adding Cell Comments to Work-
sheets (Advanced) .

7.19 worksheet.get_name()

get_name()
Retrieve the worksheet name.

The get name() method is used to retrieve the name of a worksheet. This is something useful
for debugging or logging:

for worksheet in workbook.worksheets():
print worksheet.get name()

There is no set _name() method. The only safe way to set the worksheet name is via the
add _worksheet () method.

7.20 worksheet.activate()

activate()
Make a worksheet the active, i.e., visible worksheet.

The activate() method is used to specify which worksheet is initially visible in a multi-sheet
workbook:

worksheetl = workbook.add worksheet()
worksheet2 = workbook.add worksheet()
worksheet3 = workbook.add worksheet()

worksheet3.activate()

52 Chapter 7. The Worksheet Class

Creating Excel files with Python and XlsxWriter, Release 0.2.0

8 00 | activate.xlsx
Home | Layout | Tahles | Charts | SmartArt | M v
AS 10 & (- fx| |~
4 A [T R I —————— 1
1
2
— i« <« » »i I Sheetl [Sheet2 | Sheet3 [+] II
— Mormal View Ready o

More than one worksheet can be selected via the select () method, see below, however only
one worksheet can be active.

The default active worksheet is the first worksheet.

7.21 worksheet.select()

select()
Set a worksheet tab as selected.

The select () method is used to indicate that a worksheet is selected in a multi-sheet workbook:

worksheetl.activate()
worksheet2.select()
worksheet3.select()

A selected worksheet has its tab highlighted. Selecting worksheets is a way of grouping them
together so that, for example, several worksheets could be printed in one go. A worksheet that
has been activated via the activate () method will also appear as selected.

7.22 worksheet.hide()

hide()
Hide the current worksheet.

The hide () method is used to hide a worksheet:

worksheet2.hide()

You may wish to hide a worksheet in order to avoid confusing a user with intermediate data or
calculations.

7.21. worksheet.select() 53

Creating Excel files with Python and XisxWriter, Release 0.2.0

A hidden worksheet can not be activated or selected so this method is mutually exclusive with the
activate() and select() methods. In addition, since the first worksheet will default to being
the active worksheet, you cannot hide the first worksheet without activating another sheet:

worksheet2.activate()
worksheetl.hide()

7.23 worksheet.set_first_sheet()

set_first_sheet()
Set current worksheet as the first visible sheet tab.

The activate () method determines which worksheet is initially selected. However, if there are
a large number of worksheets the selected worksheet may not appear on the screen. To avoid this
you can select which is the leftmost visible worksheet tab using set first sheet():

for in range(1l, 21):
workbook.add worksheet

worksheetl19.set first sheet() # First visible worksheet tab.
worksheet20.activate() # First visible worksheet.

This method is not required very often. The default value is the first worksheet.

7.24 worksheet.merge_range()

merge_range (first_row, first_col, last_row, last col, cell_format)
Merge a range of cells.

Parameters
« first_row (inf) — The first row of the range. (All zero indexed.)
« first_col (/nt) — The first column of the range.

* last_row (int) — The last row of the range.

last_col (int) — The last col of the range.
« data — Cell data to write. Variable types.
« cell_format (Format) — Optional Format object.
The merge range() method allows cells to be merged together so that they act as a single area.

Excel generally merges and centers cells at same time. To get similar behaviour with XlsxWriter
you need to apply a Format:

merge format = workbook.add format({'align': 'center'})

worksheet.merge range('B3:D4', 'Merged Cells', merge format)

54 Chapter 7. The Worksheet Class

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 0.2.0

It is possible to apply other formatting to the merged cells as well:

merge format = workbook.add format({

'bold"': True,
'"border': 6,
'align': 'center’',
'valign': 'vcenter',

'fg_color': '#D7E4BC',
})

worksheet.merge range('B3:D4', 'Merged Cells', merge format)

8eo0o D mergel.xlsx
#A Home | Layout | Tables | Charts | SmartArt | »| v
Ald 0 @ (= fx| E
1
2
3
Merged Cells
4
5
b
7
8
9
10
- [Ve [

Mormal View Ready S

The merge range() method writes its data argument using write(). Therefore it will handle
numbers, strings and formulas as usual. If this doesn’'t handle you data correctly then you can
overwrite the first cell with a call to one of the other write * () methods using the same Format
as in the merged cells.

See Example: Merging Cells for more details.

7.24. worksheet.merge_range() 55

Creating Excel files with Python and XisxWriter, Release 0.2.0

7.25 worksheet.autofilter()

autofilter (first_row, first_col, last _row, last _col)
Set the autofilter area in the worksheet.

Parameters
« first_row (int) — The first row of the range. (All zero indexed.)
« first_col (int) — The first column of the range.
* last_row (int) — The last row of the range.
« last_col (int) — The last col of the range.

The autofilter() method allows an autofilter to be added to a worksheet. An autofilter is a
way of adding drop down lists to the headers of a 2D range of worksheet data. This allows users
to filter the data based on simple criteria so that some data is shown and some is hidden.

8 00 I autofilter.xlsx
Home | Layout | Tables | Charts | SmartArt | ¥ W fEv
Al 1 @ @ [fx| Region |
B | C | D = |
Item E Volume IE Month E
3 |East Apple 5000 July
21 |East Grape 7000 December
33 East Orange 4000 October
37 |East Grape 7000 October
44 |East Apple 5000 April
51 |East Grape 6000 February
52
53
54
55
56
P l Sheetl ‘l sheet2 ‘l Sheet3 J sheetd ‘l Sheets 4f Shell | |
Mormal View Filter Mode o

To add an autofilter to a worksheet:

worksheet.autofilter('A1:D11")
worksheet.autofilter(0, 0, 10, 3) # Same as above.

Filter conditions can be applied using the filter column() or filter column list()

56 Chapter 7. The Worksheet Class

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 0.2.0

methods.

See Working with Autofilters for more details.

7.26 worksheet.filter_column()

filter_column(col, criteria)
Set the column filter criteria.

Parameters
» col (int) — Filter column (zero-indexed).
* criteria (siring) — Filter criteria.

The filter column method can be used to filter columns in a autofilter range based on simple
conditions.

The conditions for the filter are specified using simple expressions:

worksheet.filter column('A', 'x > 2000")
worksheet.filter column('B', 'x > 2000 and x < 5000")

The col parameter can either be a zero indexed column number or a string column name.

It isn’t sufficient to just specify the filter condition. You must also hide any rows that don’t match
the filter condition. See Working with Autofilters for more details.

7.27 worksheet.filter_column_list()

filter_column_list (col, filters)
Set the column filter criteria in Excel 2007 list style.

Parameters
» col (int) — Filter column (zero-indexed).
« filters (/ist) — List of filter criteria to match.

The filter column list() method can be used to represent filters with multiple selected
criteria:

worksheet.filter column list('A', 'March', 'April', 'May"')

The col parameter can either be a zero indexed column number or a string column name.
One or more criteria can be selected:

worksheet.filter column list('A', 'March')
worksheet.filter column list('C', 100, 110, 120, 130)

It isn’t sufficient to just specify filters. You must also hide any rows that don’t match the filter
condition. See Working with Autofilters for more details.

7.26. worksheet.filter_column() 57

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/string.html#string
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#list

Creating Excel files with Python and XisxWriter, Release 0.2.0

7.28 worksheet.set_zoom()

set_zoom(zoom)
Set the worksheet zoom factor.

Parameters zoom (int) — Worksheet zoom factor.
Set the worksheet zoom factor in the range 10 <= zoom <= 400:

worksheetl.set zoom
worksheet2.set zoom
worksheet3.set zoom
worksheet4.set zoom

50)
75)
300)
400)

—_~ e~~~

The default zoom factor is 100. It isn’'t possible to set the zoom to “Selection” because it is calcu-
lated by Excel at run-time.

Note, set zoom() does not affect the scale of the printed page. For that you should use
set print scale().

7.29 worksheet.right_to_left()

right_to_left()
Display the worksheet cells from right to left for some versions of Excel.

The right to left() method is used to change the default direction of the worksheet from
left-to-right, with the A1 cell in the top left, to right-to-left, with the A1 cell in the top right.

worksheet.right_to_left()

This is useful when creating Arabic, Hebrew or other near or far eastern worksheets that use
right-to-left as the default direction.

7.30 worksheet.hide_zero()

hide_zero()
Hide zero values in worksheet cells.

The hide zero() method is used to hide any zero values that appear in cells:

worksheet.hide zero()

7.31 worksheet.set_tab_color()

set_tab_color()
Set the colour of the worksheet tab.

Parameters color (siring) — The tab color.

58 Chapter 7. The Worksheet Class

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XlsxWriter, Release 0.2.0

The set _tab color() method is used to change the colour of the worksheet tab:

worksheetl.set tab color('red')
worksheet2.set tab color('#FF9900') # Orange

The colour can be a Html style #RRGGBB string or a limited number named colours, see Format
Colors.

See Example: Setting Worksheet Tab Colours for more details.

7.32 worksheet.protect()

protect()
Set the colour of the worksheet tab.

Parameters
» password (string) — A worksheet password.
« options (dict) — A dictionary of worksheet options to protect.
The protect () method is used to protect a worksheet from modification:

worksheet.protect()

The protect () method also has the effect of enabling a cell’s Locked and hidden properties if
they have been set. A locked cell cannot be edited and this property is on by default for all cells.
A hidden cell will display the results of a formula but not the formula itself. These properties can
be set using the set locked() and set hidden() format methods.

You can optionally add a password to the worksheet protection:

worksheet.protect('abcl23")

Passing the empty string " is the same as turning on protection without a password.

You can specify which worksheet elements you wish to protect by passing a dictionary in the
options argument with any or all of the following keys:

Default values shown.

options = {
'objects':
'scenarios':
‘format cells':
‘format _columns':
‘format_rows':
‘insert columns':
‘insert rows':
‘insert hyperlinks':
‘delete _columns':
‘delete rows':
'select locked cells':
‘sort':

oS NoNoNoNoNoNoNoNoNoNO]

S S S S S S S S S S~~~

7.32. worksheet.protect() 59

http://docs.python.org/2/library/string.html#string
http://docs.python.org/2/library/stdtypes.html#dict

Creating Excel files with Python and XisxWriter, Release 0.2.0

‘autofilter': 0,
'pivot tables': 0,
'select unlocked cells': 1,

}

The default boolean values are shown above. Individual elements can be protected as follows:

worksheet.protect('acb123', { 'insert rows': 1 })

See also the set locked() and set hidden() format methods and Example: Enabling Cell
protection in Worksheets.

Note: Worksheet level passwords in Excel offer very weak protection. They not encrypt your data
and are very easy to deactivate. Full workbook encryption is not supported by XlsxWriter since
it requires a completely different file format and would take several man months to implement.

60 Chapter 7. The Worksheet Class

CHAPTER
EIGHT

THE WORKSHEET CLASS (PAGE
SETUP)

Page set-up methods affect the way that a worksheet looks when it is printed. They control features
such as paper size, orientation, page headers and margins.

These methods are really just standard worksheet methods. They are documented separately for
the sake of clarity.

8.1 worksheet.set_landscape()

set_landscape()
Set the page orientation as landscape.

This method is used to set the orientation of a worksheet’s printed page to landscape:

worksheet.set landscape()

8.2 worksheet.set_portrait()

set_portrait()
Set the page orientation as portrait.

This method is used to set the orientation of a worksheet’s printed page to portrait. The default
worksheet orientation is portrait, so you won'’t generally need to call this method:

worksheet.set portrait()
8.3 worksheet.set_page view()

set_page view()
Set the page view mode.

61

Creating Excel files with Python and XisxWriter, Release 0.2.0

This method is used to display the worksheet in “Page View/Layout” mode:

worksheet.set page view()

8.4 worksheet.set_paper()

set_paper (index)

Set the paper type.

Parameters index (int) — The Excel paper format index.

This method is used to set the paper format for the printed output of a worksheet. The following

paper styles are available:

Index | Paper format Paper size

0 Printer default

1 Letter 81/2x11in
2 Letter Small 81/2x11in
3 Tabloid 11 x17in

4 Ledger 17 x 11in

5 Legal 81/2x14in
6 Statement 51/2x81/2in
7 Executive 71/4x101/2in
8 A3 297 x 420 mm
9 Ad 210 x 297 mm
10 A4 Small 210 x 297 mm
11 A5 148 x 210 mm
12 B4 250 x 354 mm
13 B5 182 x 257 mm
14 Folio 81/2x13in
15 Quarto 215 x 275 mm
16 10x14 in

17 11x17 in

18 Note 81/2x11in
19 Envelope 9 37/8x87/8
20 Envelope 10 41/8x91/2
21 Envelope 11 41/2x10 3/8
22 Envelope 12 43/4 x 11

23 Envelope 14 5x111/2

24 C size sheet

25 D size sheet

26 E size sheet

27 Envelope DL 110 x 220 mm
28 Envelope C3 324 x 458 mm
29 Envelope C4 229 x 324 mm

Continued on next page

62

Chapter 8. The Worksheet Class (Page Setup)

http://docs.python.org/2/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 0.2.0

Table 8.1 — continued from previous page

Index | Paper format Paper size
30 Envelope C5 162 x 229 mm
31 Envelope C6 114 x 162 mm
32 Envelope C65 114 x 229 mm
33 Envelope B4 250 x 353 mm
34 Envelope B5 176 x 250 mm
35 Envelope B6 176 x 125 mm
36 Envelope 110 x 230 mm
37 Monarch 3.875x7.5in
38 Envelope 35/8x61/2in
39 Fanfold 147/8 x 11 in
40 German Std Fanfold 81/2x12in
41 German Legal Fanfold | 8 1/2 x 13 in

Note, it is likely that not all of these paper types will be available to the end user since it will depend
on the paper formats that the user’s printer supports. Therefore, it is best to stick to standard paper
types:

worksheet.set paper(1)
worksheet.set paper(9)

If you do not specify a paper type the worksheet will print using the printer’s default paper style.

8.5 worksheet.center_horizontally()

center_horizontally()
Center the printed page horizontally.

Center the worksheet data horizontally between the margins on the printed page:

worksheet.center horizontally()

8.6 worksheet.center_vertically()

center_vertically()
Center the printed page vertically.

Center the worksheet data vertically between the margins on the printed page:

worksheet.center vertically()

8.5. worksheet.center_horizontally() 63

Creating Excel files with Python and XisxWriter, Release 0.2.0

8.7 worksheet.worksheet.set_margins()

set_margins ([left=0.7,] right=0.7,] top=0.75,] bottom=0.75]]])
Set the worksheet margins for the printed page.

Parameters
* left (float) — Left margin in inches. Default 0.7.
« right (float) — Right margin in inches. Default 0.7.
* top (float) — Top margin in inches. Default 0.75.
» bottom (float) — Bottom margin in inches. Default 0.75.

The set _margins() method is used to set the margins of the worksheet when it is printed. The

units are in inches. All parameters are optional and have default values corresponding to the
default Excel values.

8.8 worksheet.set_header()

set_header (/header=",] margin=0.3]])
Set the printed page header caption and optional margin.

Parameters
» header (siring) — Header string with Excel control characters.
* margin (float) — Header margin in inches. Default 0.3.

Headers and footers are generated using a string which is a combination of plain text and control
characters.

The available control character are:

64 Chapter 8. The Worksheet Class (Page Setup)

http://docs.python.org/2/library/functions.html#float
http://docs.python.org/2/library/functions.html#float
http://docs.python.org/2/library/functions.html#float
http://docs.python.org/2/library/functions.html#float
http://docs.python.org/2/library/string.html#string
http://docs.python.org/2/library/functions.html#float

Creating Excel files with Python and XlsxWriter, Release 0.2.0

Control Category Description

&L Justification Left

&C Center

&R Right

&P Information Page number

&N Total number of pages
&D Date

&T Time

&F File name

&A Worksheet name
&Z Workbook path
&fontsize Font Font size
&”font,style” Font name and style
&U Single underline

&E Double underline
&S Strikethrough

&X Superscript

&Y Subscript

&& Miscellaneous | Literal ampersand &

Text in headers and footers can be justified (aligned) to the left, center and right by prefixing the
text with the control characters &L, &C and &R.

For example (with ASCII art representation of the results):

worksheet.set header('&LHello')

For simple text, if you do not specify any justification the text will be centred. However, you must

prefix the text with &C if you specify a font name or any other formatting:

8.8. worksheet.set_header()

65

Creating Excel files with Python and XisxWriter, Release 0.2.0

worksheet.set header('Hello')

You can have text in each of the justification regions:

worksheet.set header('&LCiao&(CBello&RCielo"')

The information control characters act as variables that Excel will update as the workbook or
worksheet changes. Times and dates are in the users default format:

worksheet.set header('&CPage &P of &N')

| Page 1 of 6 |

worksheet.set header('&CUpdated at &T')

| Updated at 12:30 PM

You can specify the font size of a section of the text by prefixing it with the control character &n
where n is the font size:

worksheetl.set header('&C&30Hello Big')
worksheet2.set header('&C&10Hello Small')

You can specify the font of a section of the text by prefixing it with the control sequence
&"font,style" where fontname is a font name such as “Courier New” or “Times New Ro-
man” and style is one of the standard Windows font descriptions: “Regular”, “Iltalic”, “Bold” or
“Bold ltalic”:

worksheetl.set header('&C&"Courier New,Italic"Hello')
worksheet2.set header('&C&"Courier New,Bold Italic"Hello')
worksheet3.set header('&C&"Times New Roman,Regular"Hello')

It is possible to combine all of these features together to create sophisticated headers and footers.
As an aid to setting up complicated headers and footers you can record a page set-up as a macro
in Excel and look at the format strings that VBA produces. Remember however that VBA uses
two double quotes "" to indicate a single double quote. For the last example above the equivalent

66 Chapter 8. The Worksheet Class (Page Setup)

Creating Excel files with Python and XlsxWriter, Release 0.2.0

VBA code looks like this:

.LeftHeader = ""
.CenterHeader = "&""Times New Roman,Regular""Hello"
.RightHeader = ""

To include a single literal ampersand & in a header or footer you should use a double ampersand
&&:

worksheetl.set header('&CCuriouser and Curiouser - Attorneys at Law')
As stated above the margin parameter is optional. As with the other margins the value should be

in inches. The default header and footer margin is 0.3 inch. The header and footer margin size
can be set as follows:

worksheet.set header('&CHello', 0.75)

The header and footer margins are independent of the top and bottom margins.

Note, the header or footer string must be less than 255 characters. Strings longer than this will not
be written and an exception will be thrown.

See also Example: Adding Headers and Footers to Worksheets.

8.9 worksheet.set_footer()

set_footer ([footer=",] margin=0.3]])
Set the printed page footer caption and optional margin.

Parameters
« footer (siring) — Footer string with Excel control characters.
» margin (float) — Footer margin in inches. Default 0.3.

The syntax of the set _footer() method is the same as set header().

8.10 worksheet.repeat_rows()

repeat_rows (first_row][, last_row])
Set the number of rows to repeat at the top of each printed page.

Parameters
« first_row (int) — First row of repeat range.
* last_row (int) — Last row of repeat range. Optional.

For large Excel documents it is often desirable to have the first row or rows of the worksheet print
out at the top of each page.

8.9. worksheet.set_footer() 67

http://docs.python.org/2/library/string.html#string
http://docs.python.org/2/library/functions.html#float
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 0.2.0

This can be achieved by using the repeat rows () method. The parameters first row and
last _row are zero based. The last row parameter is optional if you only wish to specify one
row:

worksheetl. repeat rows(0)
worksheet2.repeat rows(0, 1)

8.11 worksheet.repeat_columns()

repeat_columns (first_coll, last_col])
Set the columns to repeat at the left hand side of each printed page.

Parameters
» first_col (int) — First column of repeat range.
« last_col (int) — Last column of repeat range. Optional.

For large Excel documents it is often desirable to have the first column or columns of the worksheet
print out at the left hand side of each page.

This can be achieved by using the repeat columns() method. The parameters
first column and last column are zero based. The last column parameter is optional
if you only wish to specify one column. You can also specify the columns using A1 column nota-
tion, see Working with Cell Notation for more details.:

worksheetl. repeat columns(
worksheet2.repeat columns(
worksheet3.repeat columns(
worksheet4.repeat columns(

)

0
0
')

)

v 1)
A:A
A:B'

8.12 worksheet.hide_gridlines()

hide_gridlines ([option=1])
Set the option to hide gridlines on the screen and the printed page.

Parameters option (int) — Hide gridline options. See below.

This method is used to hide the gridlines on the screen and printed page. Gridlines are the lines
that divide the cells on a worksheet. Screen and printed gridlines are turned on by default in an
Excel worksheet.

If you have defined your own cell borders you may wish to hide the default gridlines:

worksheet.hide gridlines()

The following values of option are valid:

0. Don’t hide gridlines.

68 Chapter 8. The Worksheet Class (Page Setup)

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 0.2.0

1. Hide printed gridlines only.
2. Hide screen and printed gridlines.

If you don’t supply an argument the default option is 1, i.e. only the printed gridlines are hidden.

8.13 worksheet.print_row_col_headers()

print_row_col_headers()
Set the option to print the row and column headers on the printed page.

When you print a worksheet from Excel you get the data selected in the print area. By default
the Excel row and column headers (the row numbers on the left and the column letters at the top)
aren'’t printed.

The print _row col headers() method sets the printer option to print these headers:

worksheet.print row col headers()

8.14 worksheet.print_area()

print_area(first_row, first_col, last_row, last _col)
Set the print area in the current worksheet.

Parameters
« first_row (integer) — The first row of the range. (All zero indexed.)
« first_col (integer) — The first column of the range.
* last_row (integer) — The last row of the range.
« last_col (integer) — The last col of the range.
» formula — Array formula to write to cell.
This method is used to specify the area of the worksheet that will be printed.

All four parameters must be specified. You can also use A1 notation, see Working with Cell
Notation:

worksheetl.print area('Al1:H20")
worksheet2.print area(0, 0, 19, 7)
worksheet3.print area('A:H")

8.15 worksheet.print_across()

print_across()
Set the order in which pages are printed.

8.13. worksheet.print_row_col_headers() 69

Creating Excel files with Python and XisxWriter, Release 0.2.0

The print _across method is used to change the default print direction. This is referred to by
Excel as the sheet “page order”:

worksheet.print across()

The default page order is shown below for a worksheet that extends over 4 pages. The order is
called “down then across”:

[1] [3]
(2] [4]

However, by using the print_across method the print order will be changed to “across then
down”:

[1] [2]
[3] [4]

8.16 worksheet.fit_to_pages()

fit_to_pages (width, height)
Fit the printed area to a specific number of pages both vertically and horizontally.

Parameters
« width (inf) — Number of pages horizontally.
* height (/nt) — Number of pages vertically.

The fit to pages() method is used to fit the printed area to a specific number of pages both
vertically and horizontally. If the printed area exceeds the specified number of pages it will be
scaled down to fit. This ensures that the printed area will always appear on the specified number
of pages even if the page size or margins change:

worksheetl.fit to pages(1l, 1)
worksheet2.fit to pages(2, 1)
worksheet3.fit to pages(1l, 2)

The print area can be defined using the print_area() method as described above.

A common requirement is to fit the printed output to n pages wide but have the height be as long
as necessary. To achieve this set the height to zero:

worksheetl.fit to pages(1l, 0)

Note: Althoughitis validto use both fit to pages() andset print scale() onthe same
worksheet only one of these options can be active at a time. The last method call made will set
the active option.

Note: The fit to pages() will override any manual page breaks that are defined in the
worksheet.

70 Chapter 8. The Worksheet Class (Page Setup)

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 0.2.0

Note: When using fit to pages () it may also be required to set the printer paper size using
set paper() orelse Excel will default to “US Letter”.

8.17 worksheet.set_start_page()

set_start_page()
Set the start page number when printing.

Parameters start_page (int) — Starting page number.

The set start page() method is used to set the number of the starting page when the work-
sheet is printed out:

worksheet.set start page(2)

8.18 worksheet.set_print_scale()

set_print_scale()
Set the scale factor for the printed page.

Parameters scale (int) — Print scale of worksheet to be printed.

Set the scale factor of the printed page. Scale factors in the range 10 <= $scale <= 400 are
valid:

worksheetl.set print scale(50)
worksheet2.set print scale(75)
worksheet3.set print scale(300)
worksheet4.set print scale(400)

The default scale factor is 100. Note, set print scale() does not affect the scale of the
visible page in Excel. For that you should use set zoom().

Note also that although it is valid to use both fit to pages() and set print scale() on
the same worksheet only one of these options can be active at a time. The last method call made
will set the active option.

8.19 worksheet.set_h_pagebreaks()

set_h_pagebreaks (breaks)
Set the horizontal page breaks on a worksheet.

Parameters breaks (/ist) — List of pagebreak rows.

8.17. worksheet.set_start_page() 71

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#list

Creating Excel files with Python and XisxWriter, Release 0.2.0

The set _h pagebreaks () method adds horizontal page breaks to a worksheet. A page break
causes all the data that follows it to be printed on the next page. Horizontal page breaks act
between rows. To create a page break between rows 20 and 21 you must specify the break at row
21. However in zero index notation this is actually row 20. So you can pretend for a small while
that you are using 1 index notation:

worksheetl.set h pagebreaks([20])

The set v _pagebreaks () method takes a list of page breaks:

worksheet2.set v pagebreaks([20, 40, 60, 80, 100])

Note: Note: If you specify the “fit to page” option viathe fit to pages () method it will override
all manual page breaks.

There is a silent limitation of 1023 horizontal page breaks per worksheet in line with an Excel
internal limitation.

8.20 worksheet.set_v_pagebreaks()

set_v_pagebreaks (breaks)
Set the vertical page breaks on a worksheet.

Parameters breaks (/ist) — List of pagebreak columns.

The set v _pagebreaks () method is the same as the above set h pagebreaks() method
except it adds page breaks between columns.

72 Chapter 8. The Worksheet Class (Page Setup)

http://docs.python.org/2/library/functions.html#list

CHAPTER
NINE

THE FORMAT CLASS

This section describes the methods and properties that are available for formatting cells in Excel.

The properties of a cell that can be formatted include: fonts, colours, patterns, borders, alignment

and number formatting.

8 00

 formats.xlsx

Home | Layout | Tables | Charts | Smartirt | M| v Lt~

Al s

@ @ (- fx| Fonts

|+

-

Fonts

B | C

| D | E

FONTS
FONTS
Font color
Fills

Borders

Bold
ftalic
Bold and Italic

b [t |
N DB 0m N e n s Wi

T shes [

Mormal View

Ready

73

Creating Excel files with Python and XisxWriter, Release 0.2.0

9.1 format.set_font_name()

set_font_name (fontname)
Set the font used in the cell.

Parameters fontname (siring) — Cell font.
Specify the font used used in the cell format:
cell format.set font name('Times New Roman')
Excel can only display fonts that are installed on the system that it is running on. Therefore it is

best to use the fonts that come as standard such as ‘Calibri’, ‘Times New Roman’ and ‘Courier
New'.

The default font for an unformatted cell in Excel 2007+ is ‘Calibri’.

9.2 format.set _font_size()

set_font_size(size)
Set the size of the font used in the cell.

Parameters size (int) — The cell font size.
Set the font size of the cell format:

format = workbook.add format()
format.set font size(30)

Excel adjusts the height of a row to accommodate the largest font size in the row. You can also
explicitly specify the height of a row using the set row() worksheet method.

9.3 format.set_font_color()

set_font_color(color)
Set the color of the font used in the cell.

Parameters color (siring) — The cell font color.
Set the font colour:
format = workbook.add format()
format.set font color('red')

worksheet.write(0, 0, 'wheelbarrow', format)

The color can be a Html style #RRGGBB string or a limited number of named colors, see Format
Colors.

74 Chapter 9. The Format Class

http://docs.python.org/2/library/string.html#string
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XlsxWriter, Release 0.2.0

Note: The set _font color() method is used to set the colour of the font in a cell. To set the

colour of a cell use the set bg color() and set pattern() methods.

9.4 format.set_bold()

set_bold()
Turn on bold for the format font.

Set the bold property of the font:

format.set bold()

9.5 format.set italic()

set_italic()
Turn on italic for the format font.

Set the italic property of the font:

format.set italic()

9.6 format.set_underline()

set_underline()
Turn on underline for the format.

Parameters style (int) — Underline style.

Set the underline property of the format:

format.set underline()

The available underline styles are:
* 1 = Single underline (the default)
» 2 = Double underline
+ 33 = Single accounting underline

* 34 = Double accounting underline

9.7 format.set_font_strikeout()

set_font_strikeout()
Set the strikeout property of the font.

9.4. format.set_bold()

75

http://docs.python.org/2/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 0.2.0

9.8 format.set_font_script()

set_font_script()
Set the superscript/subscript property of the font.

The available options are:
* 1 = Superscript
+ 2 = Subscript

9.9 format.set hum_format()

set_num_format (format_string)
Set the number format for a cell.

Parameters format_string (siring) — The cell number format.

This method is used to define the numerical format of a number in Excel. It controls whether a
number is displayed as an integer, a floating point number, a date, a currency value or some other
user defined format.

The numerical format of a cell can be specified by using a format string or an index to one of
Excel’s built-in formats:

formatl
format2

workbook.add format()
workbook.add format()

formatl.set num format('d mmm yyyy') # Format string.
format2.set num format(OxOF) # Format index.

Format strings can control any aspect of number formatting allowed by Excel:

format0l.set num format('0.000")
worksheet.write(1l, 0, 3.1415926, format0O1l) # -> 3.142

format02.set num format('#,##0")
worksheet.write(2, 0, 1234.56, format02) # -> 1,235

format03.set num format('#,##0.00")
worksheet.write(3, 0, 1234.56, format03) # -> 1,234.56

format04.set num format('0.00")
worksheet.write(4, 0, 49.99, format04) # -> 49,99

format05.set num format('mm/dd/yy")

worksheet.write(5, 0, 36892.521, format05) # -> 01/01/01
format06.set num format('mmm d yyyy")
worksheet.write(6, 0, 36892.521, format06) # -> Jan 1 2001

format@7.set num format('d mmmm yyyy')

76 Chapter 9. The Format Class

http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XlsxWriter, Release 0.2.0

worksheet.write(7, 0, 36892.521, formatQ7) # -> 1 January 2001

format08.set num format('dd/mm/yyyy hh:mm AM/PM")
worksheet.write(8, 0, 36892.521, format08) # -> 01/01/2001 12:30 AM

format09.set num format('0 "dollar and" .00 "cents"")
worksheet.write(9, 0, 1.87, format09) # -> 1 dollar and .87 cents

Conditional numerical formatting.

formatl0.set num format('[Green]General;[Red]-General;General")
worksheet.write(10, 0, 123, formatl®) # > 0 Green
worksheet.write(11, 0, -45, formatl0) # 0 Red
worksheet.write(12, 0, 0, formatl0) # 0 Default colour

A

Zip code.
formatll.set num format('00000")
worksheet.write(13, 0, 1209, formatll)

VTS T TR 1111 10 1) 112 01 < SRR "
Home | Layout | Tables | Charts | SmartArt | b5 I -
ALl | 0 & (= fe| 123 |-
A B e e s Dl L Fo | —

3.142
1,235
1,234.56
49.99
01/01/01
Jan 12001
1 January 2001
01/01/2001 12:30 PM
1 dollar and .87 cents
123]
12 45/
13 V]

1A Rt TaTs

FRFE— ihzﬂl_ Il
— i (+] | |

Mormal View Rieady w

[
Qmmumm-hwml_

The number system used for dates is described in Working with Dates and Time.
The colour format should have one of the following values:

[Black] [Blue] [Cyan] [Green] [Magenta] [Red] [White] [Yellow]

For more information refer to the Microsoft documentation on cell formats.

9.9. format.set_num_format() 77

http://office.microsoft.com/en-gb/assistance/HP051995001033.aspx

Creating Excel files with Python and XisxWriter, Release 0.2.0

Excel’s built-in formats are shown in the following table:

Index | Index | Format String

0 0x00 General

1 0x01 0

2 0x02 0.00

3 0x03 #,##0

4 0x04 #,##0.00

5 0x05 ($#,##0) ; ($#,##0)

6 0x06 ($#,##0) ; [Red] ($#,##0)

7 0x07 ($#,##0.00); ($#,##0.00)

8 0x08 ($#,##0.00); [Red] ($#,##0.00)

9 0x09 0%

10 0x0a 0.00%

11 0x0b 0.00E+00

12 0x0c # 7/7?

13 0x0d # 27/77

14 0x0e m/d/yy

15 0xOf d-mmm-yy

16 0x10 d-mmm

17 Ox11 mmm-yy

18 0x12 h:mm AM/PM

19 0x13 h:mm:ss AM/PM

20 0x14 h:mm

21 0x15 h:mm:ss

22 0x16 m/d/yy h:mm

37 0x25 (#,##0) ; (#,##0)

38 0x26 (#,##0); [Red] (#,##0)

39 0x27 (#,##0.00),; (#,##0.00)

40 0x28 (#,##0.00); [Red] (#,##0.00)

41 0x29 A #HHO), (X (#,##0); (*x "-"), (@)
42 Ox2a | _($* #,##0_); ($* (#,#40); _(5* "-"_);_(@)
43 0x2b C(* #,##0.00); (* (#,##0.00); (* "-"?7); (@)
44 0x2c C($* #,##0.00); ($* (#,##0.00); ($* "-"??7); (@)
45 0x2d mm:ss

46 0x2e [h]:mm:ss

47 Ox2f mm:ss.0

48 0x30 ##0.0E+0

49 0x31 @

Note: Numeric formats 23 to 36 are not documented by Microsoft and may differ in international

versions.

78

Chapter 9. The Format Class

Creating Excel files with Python and XlsxWriter, Release 0.2.0

Note: The dollar sign appears as the defined local currency symbol.

9.10 format.set_locked()

set_locked (state)
Set the cell locked state.

Parameters state (bool) — Turn cell locking on or off. Defaults to True.

This property can be used to prevent modification of a cells contents. Following Excel’s convention,
cell locking is turned on by default. However, it only has an effect if the worksheet has been
protected using the worksheet protect () method:

locked = workbook.add format()
locked.set locked(True)

unlocked = workbook.add format()
locked.set locked(False)

Enable worksheet protection
worksheet.protect()

This cell cannot be edited.
worksheet.write('Al', '=1+2', locked)

This cell can be edited.
worksheet.write('A2', '=1+2', unlocked)

9.11 format.set_hidden()

set_hidden()
Hide formulas in a cell.

This property is used to hide a formula while still displaying its result. This is generally used to hide
complex calculations from end users who are only interested in the result. It only has an effect if
the worksheet has been protected using the worksheet protect () method:

hidden = workbook.add format()
hidden.set hidden()

Enable worksheet protection
worksheet.protect()

The formula in this cell isn't visible
worksheet.write('Al', '=1+2', hidden)

9.10. format.set_locked() 79

http://docs.python.org/2/library/functions.html#bool

Creating Excel files with Python and XisxWriter, Release 0.2.0

9.12 format.set_align()

set_align (alignment)
Set the alignment for data in the cell.

Parameters alignment (siring) — The vertical and or horizontal alignment direc-
tion.

This method is used to set the horizontal and vertical text alignment within a cell. The following
are the available horizontal alignments:

Horizontal alignment
center

right

fill

justify

center_across

The following are the available vertical alignments:

Vertical alignment
top

vcenter

bottom

vjustify

As in Excel, vertical and horizontal alignments can be combined:

format = workbook.add format()

format.set align('center"')
format.set align('vcenter')

worksheet.set row(0, 30)
worksheet.write(0, 0, 'Some Text', format)

Text can be aligned across two or more adjacent cells using the 'center _across’ property.
However, for genuine merged cells it is better to use the merge range () worksheet method.

The 'vjustify’ (vertical justify) option can be used to provide automatic text wrapping in a cell.
The height of the cell will be adjusted to accommodate the wrapped text. To specify where the text
wraps use the set text wrap() method.

9.13 format.set_center_across()

set_center_across()
Centre text across adjacent cells.

Text can be aligned across two or more adjacent cells using the set _center _across() method.
This is an alias for the set_align(’center _across’) method call.

80 Chapter 9. The Format Class

http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XlsxWriter, Release 0.2.0

Only one cell should contain the text, the other cells should be blank:

format = workbook.add format()
format.set center_across()

worksheet.write(1l, 1, 'Center across selection', format)
worksheet.write blank(1l, 2, format)

For actual merged cells it is better to use the merge range () worksheet method.

9.14 format.set_text_wrap()

set_text_wrap()
Wrap text in a cell.

Turn text wrapping on for text in a cell:

format = workbook.add format()
format.set text wrap()

worksheet.write(0, 0, "Some long text to wrap in a cell", format)

If you wish to control where the text is wrapped you can add newline characters to the string:

format = workbook.add format()
format.set text wrap()

worksheet.write(0, 0, "It's\na bum\nwrap", format)

Excel will adjust the height of the row to accommodate the wrapped text. A similar effect can be
obtained without newlines using the set _align(’vjustify’) method.

9.15 format.set_rotation()

set_rotation(angle)
Set the rotation of the text in a cell.

Parameters angle (inf) — Rotation angle in the range -90 to 90 and 270.
Set the rotation of the text in a cell. The rotation can be any angle in the range -90 to 90 degrees:

format = workbook.add format()
format.set rotation(30)

worksheet.write(0, 0, 'This text is rotated', format)

The angle 270 is also supported. This indicates text where the letters run from top to bottom.

9.14. format.set_text_wrap() 81

http://docs.python.org/2/library/functions.html#int

Creating Excel files with Python and XisxWriter, Release 0.2.0

9.16 format.set _indent()

set_indent (/evel)
Set the cell text indentation level.

Parameters level (int) — Indentation level.

This method can be used to indent text in a cell. The argument, which should be an integer, is
taken as the level of indentation:

format = workbook.add format()
format.set indent(2)

worksheet.write(0, 0, 'This text is indented', format)

Indentation is a horizontal alignment property. It will override any other horizontal properties but it
can be used in conjunction with vertical properties.

9.17 format.set_shrink()

set_shrink()
Turn on the text “shrink to fit” for a cell.

This method can be used to shrink text so that it fits in a cell:

format = workbook.add format()
format.set shrink()

worksheet.write(0, 0, 'Honey, I shrunk the text!', format)

9.18 format.set_text justlast()

set_text_justlast()
Turn on the justify last text property.

Only applies to Far Eastern versions of Excel.

9.19 format.set_pattern()

set_pattern(index)
Parameters index (int) — Pattern index. 0 - 18.
Set the background pattern of a cell.

The most common pattern is 1 which is a solid fill of the background color.

82 Chapter 9. The Format Class

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 0.2.0

9.20 format.set_bg_color()

set_bg_color(color)
Set the color of the background pattern in a cell.

Parameters color (siring) — The cell font color.

The set bg color() method can be used to set the background colour of a pattern. Patterns
are defined via the set pattern() method. If a pattern hasn’t been defined then a solid fill
pattern is used as the default.

Here is an example of how to set up a solid fill in a cell:

format = workbook.add format()

format.set pattern(l) # This is optional when using a solid fill.
format.set bg color('green')

worksheet.write('Al', 'Ray', format)
800 | set_bg_color.xlsx
Home | Layout | Tables | Charts | SmartArt | ¥ v I

B7 10 @ (= 5| |~

VTN R O SR R R - -
1
2

— Mormal View Rieady w

The color can be a Html style #RRGGBB string or a limited number of named colors, see Format
Colors.

9.21 format.set_fg_color()

set_fg_color(color)
Set the color of the foreground pattern in a cell.

Parameters color (siring) — The cell font color.
The set _fg color() method can be used to set the foreground colour of a pattern.

The color can be a Html style #RRGGBB string or a limited number of named colors, see Format
Colors.

9.20. format.set_bg_color() 83

http://docs.python.org/2/library/string.html#string
http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XisxWriter, Release 0.2.0

9.22 format.set_border()

set_border(style)
Set the cell border style.

Parameters style (int) — Border style index. Default is 1.

Individual border elements can be configured using the following methods with the same parame-
ters:

» set bottom()

set top()
set left()

« set right()

A cell border is comprised of a border on the bottom, top, left and right. These can be set to the
same value using set _border () orindividually using the relevant method calls shown above.

The following shows the border styles sorted by XisxWriter index number:

Index | Name Weight | Style
None
Continuous
Continuous
Dash

Dot
Continuous
Double
Continuous
Dash

Dash Dot

10 Dash Dot

11 Dash Dot Dot
12 Dash Dot Dot
13 SlantDash Dot

OIN OO WN—=O

©

NI =N =N OWW—=—=N—=O

- ./ -

The following shows the borders in the order shown in the Excel Dialog:

N
~

Index | Style Index | Style

0 None 12 - .. -
7 e 13 / - . /- .
410 -, - . -
11 - .. 8 - - - - - -
9 - .- - 2 e
3 - - - - - - 5 |-
L B 6 ===========

84 Chapter 9. The Format Class

http://docs.python.org/2/library/functions.html#int

Creating Excel files with Python and XlsxWriter, Release 0.2.0

9.23 format.set_bottom()

set_bottom(style)
Set the cell bottom border style.

Parameters style (int) — Border style index. Default is 1.

Set the cell bottom border style. See set border () for details on the border styles.

9.24 format.set_top()

set_top(style)
Set the cell top border style.

Parameters style (int) — Border style index. Default is 1.

Set the cell top border style. See set border() for details on the border styles.

9.25 format.set left()

set_left(style)
Set the cell left border style.

Parameters style (int) — Border style index. Default is 1.

Set the cell left border style. See set border () for details on the border styles.

9.26 format.set_right()

set_right (style)
Set the cell right border style.

Parameters style (int) — Border style index. Default is 1.

Set the cell right border style. See set border () for details on the border styles.

9.27 format.set_border_color()

set_border_color(color)
Set the color of the cell border.

Parameters color (siring) — The cell border color.

Individual border elements can be configured using the following methods with the same parame-
ters:

« set bottom color()

9.23. format.set_bottom() 85

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/string.html#string

Creating Excel files with Python and XisxWriter, Release 0.2.0

» set _top color()
» set left color()
« set right color()

Set the colour of the cell borders. A cell border is comprised of a border on the bottom, top, left
and right. These can be set to the same colour using set _border color() orindividually using
the relevant method calls shown above.

The color can be a Html style #RRGGBB string or a limited number of named colors, see Format
Colors.

9.28 format.set_bottom_color()

set_bottom_color(color)
Set the color of the bottom cell border.

Parameters color (siring) — The cell border color.

See set border color() for details on the border colors.

9.29 format.set_top_color()

set_top_color(color)
Set the color of the top cell border.

Parameters color (siring) — The cell border color.

See set border color() for details on the border colors.

9.30 format.set_left_color()

set_left_color(color)
Set the color of the left cell border.

Parameters color (siring) — The cell border color.

See set border color() for details on the border colors.

9.31 format.set_right_color()

set_right_color(color)
Set the color of the right cell border.

Parameters color (siring) — The cell border color.

See set border color() for details on the border colors.

86 Chapter 9. The Format Class

http://docs.python.org/2/library/string.html#string
http://docs.python.org/2/library/string.html#string
http://docs.python.org/2/library/string.html#string
http://docs.python.org/2/library/string.html#string

CHAPTER
TEN

WORKING WITH CELL NOTATION

XlsxWriter supports two forms of notation to designate the position of cells: Row-column notation
and A1 notation.

Row-column notation uses a zero based index for both row and column while A1 notation uses the
standard Excel alphanumeric sequence of column letter and 1-based row. For example:

(0, 0)
('A1")

Row-column notation is useful if you are referring to cells programmatically:

for row in range(0, 5):
worksheet.write(row, 0, 'Hello')

A1 notation is useful for setting up a worksheet manually and for working with formulas:

worksheet.write('H1', 200)
worksheet.write('H2', '=H1+1')

In general when using the XlsxWriter module you can use A1 notation anywhere you can use
row-column notation:

worksheet.write(0, 7, 200)
worksheet.write('H1', 200)

The XUsxWriter utility contains several helper functions for dealing with A1 notation, for
example:

from utility import x1 cell to rowcol, import x1 rowcol to cell

(row, col) , 2)

string

x1 cell to rowcol('C2")
x1 rowcol to cell(l, 2)

> (1
-> C2

#
#

Note: In Excel it is also possible to use R1C1 notation. This is not supported by XlsxWriter.

87

Creating Excel files with Python and XisxWriter, Release 0.2.0

88 Chapter 10. Working with Cell Notation

CHAPTER
ELEVEN

WORKING WITH FORMATS

The methods and properties used to add formatting to a cell are shown in The Format Class.

This section provides some additional information about working with formats.

11.1 Creating and using a Format object
Cell formatting is defined through a Format object. Format objects are created by calling the
workbook add _format () method as follows:

formatl
format2

workbook.add format()
workbook.add format(props)

Once a Format object has been constructed and its properties have been set it can be passed as
an argument to the worksheet write methods as follows:

worksheet.write (6, 0, 'Foo', format)
worksheet.write string(1l, 0, 'Bar', format)
worksheet.write number(2, 0, 3, format)
worksheet.write blank (3, 0, '', format)

Formats can also be passed to the worksheet set row() and set column () methods to define
the default property for a row or column:

worksheet.set row(0, 18, format)
worksheet.set column('A:D', 20, format)

11.2 Format methods and Format properties

The following table shows the Excel format categories, the formatting properties that can be ap-
plied and the equivalent object method:

Category | Description Property Method Name
Font Font type "font _name’ set font name()
Continued on next page

89

Creating Excel files with Python and XisxWriter, Release 0.2.0

Table 11.1 — continued from previous page

Category | Description Property Method Name
Font size "font _size’ set font size()
Font color "font_color’ set font color()
Bold "bold’ set bold()
Italic "italic’ set italic()
Underline "underline’ set _underline()
Strikeout "font _strikeout’ | set font strikeout()
Super/Subscript "font _script’ set font script()
Number Numeric format "num_format’ set num_format()
Protection | Lock cells "locked’ set locked()
Hide formulas "hidden’ set hidden()
Alignment | Horizontal align "align’ set align()
Vertical align "valign’ set align()
Rotation "rotation’ set rotation()
Text wrap "text wrap’ set text wrap()
Justify last "text justlast’ | set text justlast()
Center across "center_across’ set center across()
Indentation "indent’ set indent()
Shrink to fit "shrink’ set shrink()
Pattern Cell pattern "pattern’ set pattern()
Background color | "bg color’ set bg color()
Foreground color | 'fg_color’ set fg color()
Border Cell border "border’ set border()
Bottom border "bottom’ set bottom()
Top border "top’ set top()
Left border "left’ set left()
Right border "right’ set right()
Border color "border color’ set border color()
Bottom color "bottom color’ set bottom color()
Top color "top_color’ set top color()
Left color "left_color’ set left color()
Right color "right _color’ set right color()

There are two ways of setting Format properties: by using the object interface or by setting the
property as a dictionary of key/value pairs in the constructor. For example, a typical use of the
object interface would be as follows:

format = workbook.add format()
format.set bold()
format.set font color('red')

By comparison the properties can be set by passing a dictionary of properties to the add_format()
constructor:

format = workbook.add format({'bold': True, 'font color': 'red'})

The object method interface is mainly provided for backward compatibility with Ex-

920 Chapter 11. Working with Formats

Creating Excel files with Python and XlsxWriter, Release 0.2.0

cel::Writer::XLSX. The key/value interface has proved to be more flexible in real world programs
and is the recommended method for setting format properties.

11.3 Format Colors
Format property colors are specified using a Html sytle #RRGGBB index:
cell format.set font color('#FFO000")

For backward compatibility with Excel::Writer::XLSX a limited number of color names are sup-
ported:

cell format.set font color('red')

The color names and corresponding #RRGGBB indices are shown below:

Color name | RGB color code
black #000000
blue #0O000FF
brown #800000
cyan #OOFFFF
gray #808080
green #008000
lime #OOFFOO
magenta #FFOOFF
navy #000080
orange #FF6600
pink #FFOOFF
purple #800080
red #FFOO00
silver #COCOCO
white #FFFFFF
yellow #FFFFOO

11.4 Format Defaults

The default Excel 2007+ cell format is Calibri 11 with all other properties off.
In general a format method call without an argument will turn a property on, for example:

formatl = workbook.add format()

formatl.set bold()
formatl.set bold(1)

Since most properties are already off by default it isn’t generally required to turn them off. However,
it is possible if required:

11.3. Format Colors 91

Creating Excel files with Python and XisxWriter, Release 0.2.0

formatl.set bold(0);

11.5 Modifying Formats

Each unique cell format in an XlsxWriter spreadsheet must have a corresponding Format object. It
isn’t possible to use a Format with awrite () method and then redefine it for use at a later stage.
This is because a Format is applied to a cell not in its current state but in its final state. Consider
the following example:

format = workbook.add format({'bold': True, 'font color': 'red'})
worksheet.write('Al', 'Cell Al', format)

format.set font color('green')
worksheet.write('B1', 'Cell B1l', format)

Cell A1 is assigned a format which is initially has the font set to the colour red. However, the
colour is subsequently set to green. When Excel displays Cell A1 it will display the final state of
the Format which in this case will be the colour green.

92 Chapter 11. Working with Formats

CHAPTER
TWELVE

WORKING WITH DATES AND TIME

Dates and times in Excel are represented by real numbers, for example “Jan 1 2013 12:00 PM” is

represented by the number 41275.5.

The integer part of the number stores the number of days since the epoch and the fractional part

stores the percentage of the day.

A date or time in Excel is just like any other number. To display the number as a date you must

apply an Excel number format to it. Here are some examples:

from xUlsxwriter.workbook import Workbook

workbook = Workbook('date examples.xlsx")
worksheet = workbook.add worksheet()

Widen column A for extra visibility.
worksheet.set column('A:A', 30)

A number to convert to a date.
number = 41333.5

Write it as a number without formatting.
worksheet.write('Al', number) # 41333.5

format2 = workbook.add format({'num format': 'dd/mm/yy'})
worksheet.write('A2', number, format2) # 28/02/13

format3 = workbook.add format({'num format': 'mm/dd/yy'})
worksheet.write('A3', number, format3) # 02/28/13

format4 = workbook.add format({'num format': 'd-m-yyyy'})
worksheet.write('A4', number, format4) # 28-2-2013

format5 = workbook.add format({'num format': 'dd/mm/yy hh:mm'})
worksheet.write('A5', number, formath) # 28/02/13 12:00

formaté = workbook.add format({'num format': 'd mmm yyyy'})
worksheet.write('A6', number, format6) # 28 Feb 2013

format7 = workbook.add format({'num format': 'mmm d yyyy hh:mm AM/PM'})

93

Creating Excel files with Python and XisxWriter, Release 0.2.0

worksheet.write('A7', number, format7) # Feb 28 2008 12:00 PM

workbook.close()

800 || date_examples.xlsx
Home | Layout | Tables | Charts | Smartart | » v fE
A7 3 & (- fx| 28/02/2013 12:00:00 v
_ : e e | —
1 41333.5
2 28/02/13
3 02/28/13
4 28-2-2013
> 28/02/13 12:00
6 28 Feb 2013
Feb 28 2013 12:00 Pl"u"ll
3 &
9
10
11
12
13
= sweent/+ JEREEEEE [i
ormal View Ready &

To make working with dates and times a little easier the XlsxWriter module provides a
write datetime() method to write dates in datetime.datetime format.

The datetime.datetime class is part of the standard Python datetime library.

There are many way to create a a datetime object but the most common is to use the date-
time.strptime method:

date time = datetime.strptime('2013-01-23", 'SY-%m-%d"')

We also need to create and apply a number format to format the date:

date format = workbook.add format({'num format': 'd mmmm yyyy'})
worksheet.write datetime('Al', date time, date format)

Displays "23 January 2013"

Here is a longer example that displays the same date in a several different formats:

94 Chapter 12. Working with Dates and Time

http://docs.python.org/2/library/datetime.html#datetime.datetime
http://docs.python.org/2/library/datetime.html#datetime.datetime
http://docs.python.org/2/library/datetime.html#datetime
http://docs.python.org/2/library/datetime.html#datetime.datetime.strptime
http://docs.python.org/2/library/datetime.html#datetime.datetime.strptime

Creating Excel files with Python and XlsxWriter, Release 0.2.0

from datetime import datetime
from xlsxwriter.workbook import Workbook

Create a workbook and add a worksheet.
workbook = Workbook('datetimes.xlsx")
worksheet = workbook.add worksheet()

bold = workbook.add format({'bold': True})

Expand the first columns so that the date is visible.
worksheet.set column('A:B', 30)

Write the column headers.
worksheet.write('Al', 'Formatted date', bold)
worksheet.write('Bl1', 'Format', bold)

Create a datetime object to use in the examples.

date_time = datetime.strptime('2013-01-23 12:30:05.123",
'%Y -%Mm-%d %H:%M:%S.%f ")

Examples date and time formats.
date formats = (
'dd/mm/yy ",
"‘mm/dd/yy",
‘dd m yy',
‘d mm yy',
'd mmm yy',
'd mmmm yy',
‘d mmmm yyy',
‘d mmmm yyyy',
‘dd/mm/yy hh:mm',
‘dd/mm/yy hh:mm:ss',
‘dd/mm/yy hh:mm:ss.000",
"hh:mm",
"hh:mm:ss',
"hh:mm:ss.000',
)

Start from first row after headers.
row = 1

Write the same date and time using each of the above formats.
for date format str in date formats:

Create a format for the date or time.
date format = workbook.add format({'num format': date format str,
‘align': 'left'})

Write the same date using different formats.
worksheet.write datetime(row, 0, date time, date format)

Also write the format string for comparison.
worksheet.write string(row, 1, date format str)

Creating Excel files with Python and XisxWriter, Release 0.2.0

L. i 1

Formatted date
23/01/13
01/23/13

23113

230113

23 lan 13

23 lanuary 13

23 lanuary 2013
23 lanuary 2013
23/01/13 12:30
23/01/13 12:30:05
23/01/13 12:30:05.123

4 l-l-ll!ihu'tl

Mormal View

Format

dd/mm/yy
mm/dd/yy

dd m yy

d mm yy

d mmm yy

d mmmm yy

d mmmm yyy

d mmmm yyyy
dd/mm/yy hh:mm
dd/mm/yy hh:mm:ss
dd/mm/yy hh:mm:ss.000

96

Chapter 12. Working with Dates and Time

CHAPTER
THIRTEEN

WORKING WITH AUTOFILTERS

An autofilter in Excel is a way of filtering a 2D range of data based on some simple criteria.

@00 I autofilter.xlsx
Home | Layout | Tables | Charts | SmartArt | »| v LF-
Al | @ & (= fx| Region v
4 : B | C | D —
1 Item |~/ volume '~ Month B2
2 |East Apple 9000 July
3 |East Apple 5000 July
4 |South Orange 9000 September
5 |Morth Apple 2000 MNovember
B |West Apple 9000 Movember
7 |South Pear 7000 October
2 |MNorth Pear 9000 August
9 |West Orange 1000 December
10 |\West Grape 1000 November
11 |South Pear 10000 April
12 West Grape 6000 January
= 4. » .hl l smuu ShutEJ snmsi: I
Mormal View Ready o

13.1 Applying an autofilter

The first step is to apply an autofilter to a cell range in a worksheet using the autofilter()
method:

97

Creating Excel files with Python and XisxWriter, Release 0.2.0

worksheet.autofilter('A1:D11")

As usual you can also also use Row-Column notation:

worksheet.autofilter(0, 0, 10, 3) # Same as above.

13.2 Filter data in an autofilter

The autofilter() defines the cell range that the filter applies to and creates drop-down se-
lectors in the heading row. In order to filter out data it is necessary to apply some criteria to the
columns using either the filter column() or filter column list() methods.

The filter column method is used to filter columns in a autofilter range based on simple crite-
ria:

worksheet.filter column('A', 'x > 2000")
worksheet.filter column('B', 'x > 2000 and x < 5000")

It isn’t sufficient to just specify the filter condition. You must also hide any rows that don’t match the
filter condition. Rows are hidden using the set row() hidden parameter. XLsxWriter cannot
filter rows automatically since it isn’t part of the file format.

The following is an example of how you might filter a data range to match an autofilter criteria:

Set the autofilter.
worksheet.autofilter('A1:D51")

Add the filter criteria. The placeholder "Region" in the filter 1is
ignored and can be any string that adds clarity to the expression.
worksheet.filter column(0, 'Region == East')

Hide the rows that don't match the filter criteria.
row = 1
for row data in (data):

region = row data[0]

Check for rows that match the filter.

if region == 'East':
Row matches the filter, display the row as normal.
pass

else:

We need to hide rows that don't match the filter.
worksheet.set row(row, options={'hidden': True})

worksheet.write row(row, 0, row data)

Move on to the next worksheet row.
row += 1

98 Chapter 13. Working with Autofilters

Creating Excel files with Python and XlsxWriter, Release 0.2.0

13.3 Setting a filter criteria for a column

The filter column() method can be used to filter columns in a autofilter range based on
simple conditions:

worksheet.filter column('A', 'x > 2000")

The column parameter can either be a zero indexed column number or a string column name.

The following operators are available for setting the filter criteria:

Operator Synonyms
== eq =~ =
1= <> ne
>
<
>=
<=
and &&
or |

The operator synonyms are just syntactic sugar to make you more comfortable using the expres-
sions. It is important to remember that the expressions will be interpreted by Excel and not by
Python.

An expression can comprise a single statement or two statements separated by the and and or
operators. For example:

'X < 2000'
'x > 2000
'x == 2000
'Xx > 2000 and x < 5000
'X == 2000 or x == 5000'

Filtering of blank or non-blank data can be achieved by using a value of Blanks or NonBlanks
in the expression:

'x == Blanks'
'Xx == NonBlanks'

Excel also allows some simple string matching operations:

'X == b*' # begins with b

‘X 1= pb*' # doesn't begin with b
'X == *p' # ends with b

'X != *p' # doesn't end with b
'X == *p*' # contains b

'x = *p*' # doesn't contains b

You can also use '*' to match any character or number and ’'? ' to match any single character
or number. No other regular expression quantifier is supported by Excel’s filters. Excel’s regular
expression characters can be escaped using '~"'.

13.3. Setting a filter criteria for a column 929

Creating Excel files with Python and XisxWriter, Release 0.2.0

The placeholder variable x in the above examples can be replaced by any simple string. The
actual placeholder name is ignored internally so the following are all equivalent:

'X < 2000
"col < 2000’
'Price < 2000'

A filter condition can only be applied to a column in a range specified by the autofilter()
method.

13.4 Setting a column list filter

Prior to Excel 2007 it was only possible to have either 1 or 2 filter conditions such as the ones
shown above inthe filter column() method.

Excel 2007 introduced a new list style filter where it is possible to specify 1 or more ‘or’ style
criteria. For example if your column contained data for the months of the year you could filter the
data based on certain months:

100 Chapter 13. Working with Autofilters

Creating Excel files with Python and XlsxWriter, Release 0.2.0

Month

Sort
2.3 Ascending 24 Descending

By color:

Filver
By color:

Choose One 4

(Select All)

< April
August
December
February
January
July
June

< March

4 May
November
October
September

Clear Filter

The filter column Llist() method can be used to represent these types of filters:

worksheet.filter column_list('A', 'March', 'April', 'May')

One or more criteria can be selected:

worksheet.filter column list('A', 'March')
worksheet.filter column list('B', 100, 110, 120, 130)

13.5 Example

See Example: Applying Autofilters for a full example of all these features.

13.5. Example 101

Creating Excel files with Python and XisxWriter, Release 0.2.0

102 Chapter 13. Working with Autofilters

CHAPTER
FOURTEEN

WORKING WITH CONDITIONAL
FORMATTING

Conditional formatting is a feature of Excel which allows you to apply a format to a cell or a range
of cells based on certain criteria.

For example the following rules are used to highlight cells in the conditional format.py example:

worksheet.conditional format('B3:K12', {'type': 'cell!',
'criteria': '>=',
'value': 50,
"format': formatl})

worksheet.conditional format('B3:K12', {'type': 'cell!',
'criteria': '<',
'value': 50,
"format': format2})

Which gives criteria like this:

103

Creating Excel files with Python and XisxWriter, Release 0.2.0

Show formatting rules for: [Current Selection =] Change rule order; 1+ |E|
Rule (applied in order shown) Format Applies to Stop if true
Cell Value >= 50 AaBbCcYyZz |Sheet115B53:5K512 % O
Cell Value < 50 AaBbCcYyZz Sheet1!15BS3:5KS12 E O

+ | = |Edit Rule... Cancel] [—DK—]

And output which looks like this:

104 Chapter 14. Working with Conditional Formatting

Creating Excel files with Python and XlsxWriter, Release 0.2.0

Cells with values »= 50 are in light red. Values < 50 are in light green.

34

]
28
27
88
24

B
52

RREREEYRTLD

70

< < »»i [sheet1 | Sheet2 | Sheet3 | Sheets [€[
Mormal View

It is also possible to create color scales and data bars:

105

Creating Excel files with Python and XisxWriter, Release 0.2.0

800 | conditional_format.xlsx
Home | Layout | Tables | Charts | SmartArt | b5 I -
A22 110 & (= & A
_-Jhl'.d B | C | D | E | F | =
1 |Examples of color scales and data bars. Default colors.
2 2 Color Scale 3 Color Scale Data Bars
; .
4 I 2
5 3 I 3
6 4 I 4
7 5 5 i 5
8 6 6 i 6
9 7 7 B 7
8 8] 8
g g I g
10 10 [] 10
44 b B J Sheets J Sheetd J shut?j Sheets J_L- . [
Mormal View Rieady w

14.1 The conditional_format() method

The conditional format() worksheet method is used to apply formatting based on user de-
fined criteria to an XlsxWriter file.

The conditional format can be applied to a single cell or a range of cells. As usual you can use A1
or Row/Column notation (Working with Cell Notation).

With Row/Column notation you must specify all four cells in the range: (first row,
first col, last row, last col). If you need to refer to a single cell set the last *
values equal to the first * values. With A1 notation you can refer to a single cell or a range of
cells:

worksheet.conditional format(o, 0, 4, 1, {...})
worksheet.conditional format('Bl', {...})
worksheet.conditional format('Cl:E5"', {...})

The options parameter in conditional format () must be a dictionary containing the param-
eters that describe the type and style of the conditional format. The main parameters are:

* type
- format

106 Chapter 14. Working with Conditional Formatting

Creating Excel files with Python and XlsxWriter, Release 0.2.0

e criteria
» value
e minimum
e maximum
Other, less commonly used parameters are:
e min type
* mid type
* max_type
* min_value
+ mid value
» max_value
 min _color
+ mid color
« max_color
» bar color

« multi range

14.2 Conditional Format Options

The conditional format options that can be used with conditional format() are explained in
the following sections.

14.2.1 type

The type option is a required parameter and it has no default value. Allowable type values and
their associated parameters are:

Type Parameters
cell criteria
value
minimum
maximum
date criteria
value
minimum
maximum
time_period criteria
Continued on next page

14.2. Conditional Format Options 107

Creating Excel files with Python and XisxWriter, Release 0.2.0

Table 14.1 — continued from previous page
Type Parameters

text criteria

value

average criteria

duplicate (none)

unique (none)

top criteria

value

bottom criteria

value

blanks (none)
no_blanks (none)
errors (none)
no_errors (none)
2_color_scale | min_type
max_type
min_value
max_value
min_color
max_color
3_color_scale | min_type
mid_type
max_type
min_value
mid_value
max_value
min_color
mid_color
max_color
data_bar min_type
max_type
min_value
max_value
bar_color
formula criteria

All conditional formatting types have an associated Format parameter, see below.

14.2.2 type: cell

This is the most common conditional formatting type. It is used when a format is applied to a cell
based on a simple criterion.

For example using a single cell and the greater than criteria:

108 Chapter 14. Working with Conditional Formatting

Creating Excel files with Python and XlsxWriter, Release 0.2.0

worksheet.conditional format('Al', {'type': "cell',
‘criteria': 'greater than',
'value': 5,
"format': red format})

Or, using a range and the between criteria:

worksheet.conditional format('C1:C4', {'type': 'cell',
'criteria': 'between',
'minimum': 20,
"'maximum': 30,
"format': green format})

Other types are shown below, after the other main options.

14.2.3 criteria:

The criteria parameter is used to set the criteria by which the cell data will be evaluated. It has

no default value. The most common criteria as appliedto {"type’: 'cell’} are:
between

not between

equal to == | =

not equal to I= | <>

greater than >

less than <

greater than or equal to | >=

less than or equal to <=

You can either use Excel’s textual description strings, in the first column above, or the more com-
mon symbolic alternatives shown in the other columns.

Additional criteria which are specific to other conditional format types are shown in the relevant
sections below.

14.2.4 value:

The value is generally used along with the criteria parameter to set the rule by which the cell
data will be evaluated:

worksheet.conditional format('Al', {'type': 'cell!',
'criteria': 'greater than',
'value': 5,
"format': red format})

The value property can also be an cell reference:

worksheet.conditional format('Al', {'type': 'cell!',
'criteria': 'greater than',

14.2. Conditional Format Options 109

Creating Excel files with Python and XisxWriter, Release 0.2.0

'value': "C1',
"format': red format})

14.2.5 format:

The format parameter is used to specify the format that will be applied to the cell when the
conditional formatting criterion is met. The format is created using the add format () method in
the same way as cell formats:

formatl = workbook.add format({'bold': 1, 'italic': 1})

worksheet.conditional format('Al', {'type': 'cell',
'criteria': '>"',
‘value': 5,
'format': formatl})

Note: In Excel, a conditional format is superimposed over the existing cell format and not all cell
format properties can be modified. Properties that cannot be modified are font name, font size,
superscript and subscript and diagonal borders.

Excel specifies some default formats to be used with conditional formatting. These can be repli-
cated using the following XlsxWriter formats:

Light red fill with dark red text.
formatl = workbook.add format({'bg color': "#FFC7CE',
"font _color': '#9C0006'})

Light yellow fill with dark yellow text.
format2 = workbook.add format({'bg color': "#FFEBOC',
"font color': '#9C6500'})

Green fill with dark green text.
format3 = workbook.add format({'bg color': "#C6EFCE',
'font color': '#006100'})

See also Working with Formats.

14.2.6 minimum:

The minimum parameter is used to set the lower limiting value when the criteria is either
"between’ or 'not between’:

worksheet.conditional format('Al', {'type': 'cell!',
'criteria': 'between',
'minimum': 2,
"'maximum': 6,
'format': formatl,
})

110 Chapter 14. Working with Conditional Formatting

Creating Excel files with Python and XlsxWriter, Release 0.2.0

14.2.7 maximum:

The maximum parameter is used to set the upper limiting value when the criteria is either
"between’ or 'not between’. See the previous example.

14.2.8 type: date

The date type is similar the cell type and uses the same criteria and values. However, the
value, minimum and maximum properties are specified as a datetime object as shown in Working
with Dates and Time:

date = datetime.strptime('2011-01-01", "SY-%m-%d")

worksheet.conditional format('Al:A4', {'type': 'date’,
‘criteria': 'greater than',
'value': date,
"format': formatl})

14.2.9 type: time_period

The time period type is used to specify Excel's “Dates Occurring” style conditional format:

worksheet.conditional format('Al:A4', {'type': "time period’,
'criteria': 'yesterday',
'format': formatl})

The period is set in the criteria and can have one of the following values:

'criteria':
'criteria':
'criteria':
'criteria’:
'criteria':
'criteria':
'criteria':
'criteria':
'criteria’:

14.2.10 type: text

'yesterday',
'today’',

'last 7 days',
'last week',
'this week',
'continue week',
'last month',
'this month',
'continue month'

The text type is used to specify Excel’'s “Specific Text” style conditional format. It is used to do
simple string matching using the criteria and value parameters:

worksheet.conditional format('Al:A4', {'type': "text',
‘criteria': 'containing',
'value': 'foo',
"format': formatl})

The criteria can have one of the following values:

14.2. Conditional Format Options 111

Creating Excel files with Python and XisxWriter, Release 0.2.0

'criteria': 'containing',
‘criteria': 'not containing’,
'criteria': 'begins with',
'criteria': 'ends with',

The value parameter should be a string or single character.

14.2.11 type: average

The average type is used to specify Excel's “Average” style conditional format:

worksheet.conditional format('Al:A4', {'type': 'average',
‘criteria': 'above',
"format': formatl})

The type of average for the conditional format range is specified by the criteria

'criteria': 'above',

'criteria': 'below',

'criteria': 'equal or above',
'criteria': 'equal or below',
'criteria': 'l std dev above',
'criteria': 'l std dev below',
'criteria': '2 std dev above',
'criteria': '2 std dev below',
'criteria': '3 std dev above',
'criteria': '3 std dev below',

14.2.12 type: duplicate

The duplicate type is used to highlight duplicate cells in a range:

worksheet.conditional format('Al:A4', {'type': "duplicate’,
"format': formatl})

14.2.13 type: unique

The unique type is used to highlight unique cells in a range:

worksheet.conditional format('Al:A4', {'type': "unique’,
"format': formatl})

14.2.14 type: top

The top type is used to specify the top n values by number or percentage in a range:

112 Chapter 14. Working with Conditional Formatting

Creating Excel files with Python and XlsxWriter, Release 0.2.0

worksheet.conditional format('Al:A4', {'type': "top',
‘value': 10,
'"format': formatl})

The criteria can be used to indicate that a percentage condition is required:

worksheet.conditional format('Al:A4', {'type': "top',
'value': 10,
'criteria': '%"',
"format': formatl})

14.2.15 type: bottom

The bottom type is used to specify the bottom n values by number or percentage in a range.
It takes the same parameters as top, see above.

14.2.16 type: blanks

The blanks type is used to highlight blank cells in a range:

worksheet.conditional format('Al:A4', {'type': 'blanks"',
"format': formatl})

14.2.17 type: no_blanks

The no_blanks type is used to highlight non blank cells in a range:

worksheet.conditional format('Al:A4', {'type': 'no_blanks',
'"format': formatl})

14.2.18 type: errors

The errors type is used to highlight error cells in a range:

worksheet.conditional format('Al:A4', {'type': 'errors’',
"format': formatl})

14.2.19 type: no_errors

The no_errors type is used to highlight non error cells in a range:

worksheet.conditional format('Al:A4', {'type': ‘no_errors',
"format': formatl})

14.2. Conditional Format Options 113

Creating Excel files with Python and XisxWriter, Release 0.2.0

14.2.20 type: 2_color_scale

The 2_color scale type is used to specify Excel’s “2 Color Scale” style conditional format:

worksheet.conditional format('Al:A12', {'type': '2 color scale'})

a0o | conditional_format.xlsx
Home | Layout | Tables | Charts | SmartArt | b5 IR - R
c12 1 080 (- A& K
2 VO YU WU T [O_—_—— -
2 2 Color Scale 3 Color Scale Data Bars
; | ———
4 I 2
5 3 I 3
6 4 I 4
. e | Sheetl | Sheer2] Sheaﬁ]] i
Mormal View Ready o

This conditional type can be modified with min_type, max_type, min value, min value,
min_color and max_color, see below.

14.2.21 type: 3_color_scale

The 3 _color_scale type is used to specify Excel's “3 Color Scale” style conditional format:

worksheet.conditional format('Al:A12', {'type': '3 color scale'})

This conditional type can be modified with min_type, mid type, max type, min value,
mid value, min value, min _color,mid color and max_color, see below.

14.2.22 type: data_bar

The data_bar type is used to specify Excel’s “Data Bar” style conditional format:

worksheet.conditional format('Al:A12', {'type': 'data bar'})

This conditional type can be modified with min_type, max_type, min value, min_ value and
bar _color, see below.

114 Chapter 14. Working with Conditional Formatting

Creating Excel files with Python and XlsxWriter, Release 0.2.0

14.2.23 type: formula

The formula type is used to specify a conditional format based on a user defined formula:

worksheet.conditional format('Al:A4', {'type': "formula',
'criteria': '=A1>5'",
"format': formatl})

The formula is specified in the criteria.

14.2.24 min_type:

The min type and max type properties are available when the conditional formatting
type is 2 _color scale, 3 color scale or data bar. The mid type is available for
3 color scale. The properties are used as follows:

worksheet.conditional format('Al:A12', {'type': '2 color scale',
'min_type': 'percent’,
'max_type': 'percent'})

The available min/mid/max types are:

num
percent
percentile
formula

14.2.25 mid_type:

Used for 3_color _scale. Same as min_type, see above.

14.2.26 max_type:

Same as min_type, see above.

14.2.27 min_value:

The min_value and max_ value properties are available when the conditional formatting
type is 2 _color scale, 3 color scale or data bar. The mid value is available for
3 color_scale. The properties are used as follows:

worksheet.conditional format('Al:A12', {'type': '2 color scale',
‘'min value': 10,
'max_value': 90})

14.2. Conditional Format Options 115

Creating Excel files with Python and XisxWriter, Release 0.2.0

14.2.28 mid_value:

Used for 3 _color scale. Same as min_value, see above.

14.2.29 max_value:

Same as min_value, see above.

14.2.30 min_color:

The min _color and max color properties are available when the conditional formatting
type is 2 _color scale, 3 color_scale or data bar. The mid color is available for
3 color_scale. The properties are used as follows:

worksheet.conditional format('Al:A12', {'type': '2 color _scale',
'min color': '#C5D9F1',
'max _color': '#538ED5'})

The colour can be a Html style #RRGGBB string or a limited number named colours, see Format
Colors.

14.2.31 mid_color:

Used for 3 _color scale. Same asmin color, see above.

14.2.32 max_color:

Same as min_color, see above.

14.2.33 bar_color:

Used for data bar. Same as min_color, see above.

14.2.34 multi_range:

The multi range option is used to extend a conditional format over non-contiguous ranges.

It is possible to apply the conditional format to different cell ranges in a worksheet using multiple
calls to conditional format(). However, as a minor optimisation it is also possible in Excel
to apply the same conditional format to different non-contiguous cell ranges.

This is replicated in conditional format() using the multi range option. The range must
contain the primary range for the conditional format and any others separated by spaces.

For example to apply one conditional format to two ranges, 'B3:K6' and 'B9:K12":

116 Chapter 14. Working with Conditional Formatting

Creating Excel files with Python and XlsxWriter, Release 0.2.0

worksheet.conditional format('B3:K6', {'type': 'cell',
'criteria': '>="',
'value': 50,
"format': formatl,
'multi range': 'B3:K6 B9:K12'})

14.3 Conditional Formatting Examples

Highlight cells greater than an integer value:

worksheet.conditional format('Al:F10', {'type': ‘cell',
'criteria': 'greater than',
'value': 5,
"format': formatl})

Highlight cells greater than a value in a reference cell:

worksheet.conditional format('Al:F10', {'type': 'cell',
'criteria': 'greater than',
'value': "H1',
"format': formatl})

Highlight cells more recent (greater) than a certain date:

date = datetime.strptime('2011-01-01", "SY-%m-%d")

worksheet.conditional format('Al:F10', {'type': 'date’,
‘criteria': 'greater than',
'value': date,
"format': formatl})

Highlight cells with a date in the last seven days:

worksheet.conditional format('Al:F10', {'type': "time period’,
'criteria': 'last 7 days',
"format': formatl})

Highlight cells with strings starting with the letter b:

worksheet.conditional format('Al:F10', {'type': "text',
‘criteria': 'begins with',
'value': 'b',
"format': formatl})

Highlight cells that are 1 standard deviation above the average for the range:

worksheet.conditional format('Al:F10', {'type': 'average',
'"format': formatl})

Highlight duplicate cells in a range:

14.3. Conditional Formatting Examples 117

Creating Excel files with Python and XisxWriter, Release 0.2.0

worksheet.conditional format('Al:F10', {'type': "duplicate’,
"format': formatl})

Highlight unique cells in a range:

worksheet.conditional format('Al:F10', {'type': 'unique',
"format': formatl})

Highlight the top 10 cells:
worksheet.conditional format('Al:F10', {'type': "top',

'value': 10,
"format': formatl})

Highlight blank cells:

worksheet.conditional format('Al:F10', {'type': 'blanks"',
"format': formatl})

See also Example: Conditional Formatting.

118 Chapter 14. Working with Conditional Formatting

CHAPTER
FIFTEEN

WORKING WITH CELL COMMENTS

Cell comments are a way of adding notation to cells in Excel. For example:

worksheet.write('Al', 'Hello')

worksheet.write comment('Al', 'This is a comment')
e 00 | comments1.xlsx
Home | Layout | Tables | Charts | SmartArt | | v Lt~
Al | @ & (= fx| Helo v
_ (R N) U YU U - o =
Hello Thiis is a comment

2
3
4
5
6
7
B
9
10
11
12
12
R l 5h!!tl| |||

Mormal View Cell Al commented by o

119

Creating Excel files with Python and XisxWriter, Release 0.2.0

15.1 Setting Comment Properties

The properties of the cell comment can be modified by passing an optional dictionary of key/value
pairs to control the format of the comment. For example:

worksheet.write comment('C3', 'Hello', {'x scale': 1.2, 'y scale': 0.8})

The following options are available:

author
visible
x_scale
width

y scale
height
color
start_cell
start row
start_col
x_offset
y offset

The options are explained in detail below:

« author: This option is used to indicate who is the author of the cell comment. Excel displays

the author of the comment in the status bar at the bottom of the worksheet. This is usually of
interest in corporate environments where several people might review and provide comments
to a workbook:

worksheet.write comment('C3', 'Atonement', {'author': 'Ian McEwan'})

The default author for all cell comments in a worksheet can be set using the
set comments author() method:

worksheet.set comments author('John Smith")

visible: This option is used to make a cell comment visible when the worksheet is opened.
The default behaviour in Excel is that comments are initially hidden. However, it is also pos-
sible in Excel to make individual comments or all comments visible. In XlsxWriter individual
comments can be made visible as follows:

worksheet.write comment('C3', 'Hello', {'visible', True})

It is possible to make all comments in a worksheet visible using the show comments ()
worksheet method. Alternatively, if all of the cell comments have been made visible you can
hide individual comments:

worksheet.write comment('C3', 'Hello', {'visible', False})

« X_scale: This option is used to set the width of the cell comment box as a factor of the

default width:

120

Chapter 15. Working with Cell Comments

Creating Excel files with Python and XlsxWriter, Release 0.2.0

worksheet.write comment('C3', 'Hello', {'x scale': 2 })
worksheet.write comment('C4', 'Hello', {'x scale': 4.2})

« width: This option is used to set the width of the cell comment box explicitly in pixels:

worksheet.write comment('C3', 'Hello', {'width': 200})

« y scale: This option is used to set the height of the cell comment box as a factor of the

default height:
worksheet.write comment('C3', 'Hello', {'y scale': 2 })
worksheet.write comment('C4', 'Hello', {'y scale': 4.2})

» height: This option is used to set the height of the cell comment box explicitly in pixels:

worksheet.write comment('C3', 'Hello', {'height': 200})

« color: This option is used to set the background colour of cell comment box. You can use
one of the named colours recognised by XlsxWriter or a Html color. See Format Colors:

worksheet.write comment('C3', 'Hello', {'color': 'green' })
worksheet.write comment('C4', 'Hello', {'color': '#CCFFCC'})

« start cell: This option is used to set the cell in which the comment will appear. By
default Excel displays comments one cell to the right and one cell above the cell to which
the comment relates. However, you can change this behaviour if you wish. In the following
example the comment which would appear by default in cell D2 is moved to E2:

worksheet.write comment('C3', 'Hello', {'start cell': 'E2'})

« start row: This option is used to set the row in which the comment will appear. See the
start cell option above. The row is zero indexed:

worksheet.write comment('C3', 'Hello', {'start row': 0})

« start _col: This option is used to set the column in which the comment will appear. See
the start_cell option above. The column is zero indexed:

worksheet.write comment('C3', 'Hello', {'start col': 4})

« x_offset: This option is used to change the x offset, in pixels, of a comment within a cell:

worksheet.write comment('C3', comment, {'x offset': 30})

« y offset: This option is used to change the y offset, in pixels, of a comment within a cell:

worksheet.write comment('C3', comment, {'y offset': 30})

You can apply as many of these options as you require. For a working example of these options
in use see Example: Adding Cell Comments to Worksheets (Advanced).

15.1. Setting Comment Properties 121

Creating Excel files with Python and XisxWriter, Release 0.2.0

Note: Excel only displays offset cell comments when they are displayed as visible. Excel
does not display hidden cells as displaced when you mouse over them. Please note this when
using options that adjust the position of the cell comment such as start cell, start row,
start col, x offsetandy offset.

Note: Row height and comments. If you specify the height of a row that contains a comment
then XisxWriter will adjust the height of the comment to maintain the default or user specified
dimensions. However, the height of a row can also be adjusted automatically by Excel if the text
wrap property is set or large fonts are used in the cell. This means that the height of the row is
unknown to the module at run time and thus the comment box is stretched with the row. Use the
set row() method to specify the row height explicitly and avoid this problem. See example 8 of
Example: Adding Cell Comments to Worksheets (Advanced).

122 Chapter 15. Working with Cell Comments

CHAPTER
SIXTEEN

EXAMPLES

The following are some of the examples included in the examples directory of the XlsxWriter
distribution.

16.1 Example: Hello World

The simplest possible spreadsheet. This is a good place to start to see if the XlsxWriter module is
installed correctly.

N3 N 2 NN .- -1 . . S —————
Home | Layout | Tables | Charts | SmartArt | »| v
Al + @ @ (- fx| Helloworld E

B e e e D

Hello world |

T shees [

Mormal View

123

https://github.com/jmcnamara/XlsxWriter/tree/master/examples

Creating Excel files with Python and XisxWriter, Release 0.2.0

Code:
R S R R R S
ﬁ A hello world spreadsheet using the XlsxWriter Python module.
% Copyright 2013, John McNamara, jmcnamara@cpan.org

from xlsxwriter.workbook import Workbook

workbook = Workbook('hello world.xlsx")
worksheet = workbook.add worksheet()

worksheet.write('Al', 'Hello world')

workbook.close()

16.2 Example: Simple Feature Demonstration

This program is an example of writing some of the features of the XlsxWriter module.

800 _ | demo.xlsx

T shees [

Mormal View Ready

Code:

124 Chapter 16. Examples

Creating Excel files with Python and XlsxWriter, Release 0.2.0

HHHHH AR RR AR R R R AR AR

#

A simple example of some of the features of the XlsxWriter Python module.
#

Copyright 2013, John McNamara, jmcnamara@cpan.org

#

from xlsxwriter.workbook import Workbook

Create an new Excel file and add a worksheet.
workbook = Workbook('demo.xlsx")
worksheet = workbook.add worksheet()

Widen the first column to make the text clearer.
worksheet.set column('A:A', 20)

Add a bold format to use to highlight cells.
bold = workbook.add format({'bold': 1})

Write some simple text.
worksheet.write('Al', 'Hello')

Text with formatting.
worksheet.write('A2', 'World', bold)

Write some numbers, with row/column notation.
worksheet.write(2, 0, 123)
worksheet.write(3, 0, 123.456)

workbook.close()

Notes:
» This example includes the use of cell formatting via the The Format Class.
+ Strings and numbers can be written with the same worksheet write () method.

+ Data can be written to cells using Row-Column notation or ‘A1’ style notation, see Working
with Cell Notation.

16.3 Example: Dates and Times in Excel

This program is an example of writing some of the features of the XlsxWriter module. See the
Working with Dates and Time section for more details on this example.

16.3. Example: Dates and Times in Excel 125

Creating Excel files with Python and XisxWriter, Release 0.2.0

| datetimes.xlsx

Formatted date Format

23/01/13 dd/mm/yy

01/23/13 mm,/dd/yy

23113 dd m yy

230113 d mm yy

23 lan 13 d mmm yy

23 lanuary 13 d mmmm yy

23 lanuary 2013 d mmmm yyy

23 January 2013 d mmmm yyyy
23/01/13 12:30 dd/mm/yy hh:mm
23/01/13 12:30:05 dd/mm/yy hh:mm:ss
23/01/13 12:30:05.123 dd/mm/yy hh:mm:ss.000

g | WL sheeus /5 AN

Mormal View

Code:

S e s e e s e e e e
#

A simple program to write some dates and times to an Excel file

using the XlsxWriter Python module.

#

Copyright 2013, John McNamara, jmcnamara@cpan.org

#

from datetime import datetime

from xUsxwriter.workbook import Workbook

Create a workbook and add a worksheet.
workbook = Workbook('datetimes.xlsx")
worksheet = workbook.add worksheet()

bold = workbook.add format({'bold': True})

Expand the first columns so that the date is visible.
worksheet.set column('A:B', 30)

Write the column headers.
worksheet.write('Al', 'Formatted date', bold)
worksheet.write('B1', 'Format', bold)

Create a datetime object to use in the examples.

126 Chapter 16. Examples

Creating Excel files with Python and XlsxWriter, Release 0.2.0

date time = datetime.strptime('2013-01-23 12:30:05.123",
*%Y - %6im-%d %H:%M:%S.%f ")

Examples date and time formats. In the output file compare how changing
the format codes change the appearance of the date.
date formats = (

'dd/mm/yy ",

‘mm/dd/yy",

‘dd m yy',

‘d mm yy',

'd mmm yy',

'd mmmm yy',

'd mmmm yyy',

‘d mmmm yyyy",

'dd/mm/yy hh:mm',

‘dd/mm/yy hh:mm:ss',

‘dd/mm/yy hh:mm:ss.000",

"hh:mm",

"hh:mm:ss',

"hh:mm:ss.000"',
)

Start from first row after headers.
row = 1

Write the same date and time using each of the above formats.
for date format str in date formats:

Create a format for the date or time.
date format = workbook.add format({'num format': date format str,
'align': 'left'})

Write the same date using different formats.
worksheet.write datetime(row, 0, date time, date format)

Also write the format string for comparison.
worksheet.write string(row, 1, date format str)

row += 1

workbook.close()

16.4 Example: Adding hyperlinks

This program is an example of writing hyperlinks to a worksheet. See the write url() method
for more details.

16.4. Example: Adding hyperlinks 127

Creating Excel files with Python and XisxWriter, Release 0.2.0

http:/fwww.python.org/

44 bk l Hmrlinks|—

Mormal View

Code:
T S
i Example of how to use the XlsxWriter module to write hyperlinks
ﬁ Copyright 2013, John McNamara, jmcnamara@cpan.org
#

from xlsxwriter.workbook import Workbook

Create a new workbook and add a worksheet
workbook = Workbook('hyperlink.xlsx")
worksheet = workbook.add worksheet('Hyperlinks")

Format the first column
worksheet.set column('A:A', 30)

Add the standard url link format.

url format = workbook.add format({
'color': 'blue’,
'underline': 1

}

Add a sample alternative link format.
red format = workbook.add format({

128 Chapter 16. Examples

Creating Excel files with Python and XlsxWriter, Release 0.2.0

"color': 'red',
'bold"': 1,
'underline': 1,
'size': 12,

}

Add an alternate description string to
string = 'Python home'

Add a "tool tip" to the URL.
tip = 'Get the latest Python news here.'

Write some hyperlinks
worksheet.write('Al', 'http://www.python
worksheet.write('A3', 'http://www.python
worksheet.write('A5', 'http://www.python
worksheet.write('A7"', 'http://www.python
worksheet.write(

Write a URL that isn't a hyperlink

the URL.

.org/"',
.org/"',
.org/"',
.org/"',

"A9', 'mailto:jmcnamaracpan.org', url format,

url format)
url format, string)

url format, string, tip)

red format)

worksheet.write string('All', 'http://www.python.org/")

workbook.close()

16.5 Example: Array formulas

'Mail me')

This program is an example of writing array formulas with one or more return values. See the

write array formula() method for more details.

16.5. Example: Array formulas

129

Creating Excel files with Python and XisxWriter, Release 0.2.0

4| @ @ (- fx| [=TREND(C5:C7,B5:B7)}

o e Do e Eon

300
15

< e [

Mormal View Rieady

Code:
B L L e R A R R R 8 R 8 8 8 L

#

Example of how to use Python and the XlsxWriter module to write

simple array formulas.

#

Copyright 2013, John McNamara, jmcnamara@cpan.org
#

from xUsxwriter.workbook import Workbook

Create a new workbook and add a worksheet
workbook = Workbook('array formula.xlsx")
worksheet = workbook.add worksheet()

Write some test data.
worksheet.write('B1', 500)
worksheet.write('B2', 10)
worksheet.write('B5', 1)
worksheet.write('B6', 2)
worksheet.write('B7', 3)
worksheet.write('C1', 300)
worksheet.write('C2', 15)
worksheet.write('C5', 20234)
worksheet.write('C6', 21003)

130

Chapter 16. Examples

Creating Excel files with Python and XlsxWriter, Release 0.2.0

worksheet.write('C7', 10000)

Write an array formula that returns a single value
worksheet.write('Al', '{=SUM(B1:C1*B2:C2)}")

Same as above but more verbose.
worksheet.write array formula('A2:A2', '{=SUM(B1:C1*B2:C2)}")

Write an array formula that returns a range of values
worksheet.write array formula('A5:A7', '{=TREND(C5:C7,B5:B7)}")

workbook.close()

16.6 Example: Applying Autofilters

This program is an example of using autofilters in a worksheet. See Working with Autofilters for
more details.

W3 W - —

[autofilter.xlsx _

N ER——|

Home | Layout | Tables | Charts | SmnrtArt| »| v Lt~

Al 12| @ @ (= fx| Region R

B | C | D |
Item E Volume Month E
East Apple 5000 July
East Grape 7000 Decermber
East Orange 4000 October
East Grape 7000 October
East Apple 5000 April

6000 February

44 » »l l Sheul_i Shutz_i srmatiJr Shutau Shuti_i She”|||
Filter Mode

Mormal View

Code:

16.6. Example: Applying Autofilters 131

Creating Excel files with Python and XisxWriter, Release 0.2.0

S e R e R e R R R e R e
#

An example of how to create autofilters with XlsxWriter.

#

An autofilter is a way of adding drop down lists to the headers of a 2D
range of worksheet data. This allows users to filter the data based on
simple criteria so that some data is shown and some is hidden.

#

Copyright 2013, John McNamara, jmcnamara@cpan.org

#

from xlsxwriter.workbook import Workbook

workbook = Workbook('autofilter.xlsx")

Add a worksheet for each autofilter example.

worksheetl = workbook.add worksheet()
worksheet2 = workbook.add worksheet()
worksheet3 = workbook.add worksheet()
worksheet4 = workbook.add worksheet()
worksheet5 = workbook.add worksheet()
worksheet6 = workbook.add worksheet()

Add a bold format for the headers.
bold = workbook.add format({'bold': 1})

Open a text file with autofilter example data.
textfile = open('autofilter data.txt')

Read the headers from the first line of the input file.
headers = textfile.readline().strip("\n").split()

Read the text file and store the field data.

data = []

for line in textfile:
Split the input data based on whitespace.
row data = line.strip("\n").split()
data.append(row data)

Set up several sheets with the same data.
for worksheet in (workbook.worksheets()):
Make the columns wider.
worksheet.set column('A:D', 12)
Make the header row larger.
worksheet.set row(0, 20, bold)
Make the headers bold.
worksheet.write row('Al', headers)

B
#
Example 1. Autofilter without conditions.

132 Chapter 16. Examples

Creating Excel files with Python and XlsxWriter, Release 0.2.0

#

Set the autofilter.
worksheetl.autofilter('Al1:D51")

row = 1
for row data in (data):
worksheetl.write row(row, 0, row data)

Move on to the next worksheet row.
row += 1

e e e e e e e e e e e e e e e R e R e R e R e R s R e e e e e
#

#

Example 2. Autofilter with a filter condition in the first column.

#

Autofilter range using Row-Column notation.
worksheet2.autofilter(0, 0, 50, 3)

Add filter criteria. The placeholder "Region" in the filter is
ignored and can be any string that adds clarity to the expression.
worksheet2.filter column(0, 'Region == East')

Hide the rows that don't match the filter criteria.
row = 1
for row data in (data):

region = row data[0]

Check for rows that match the filter.

if region == 'East':
Row matches the filter, no further action required.
pass

else:

We need to hide rows that don't match the filter.
worksheet2.set row(row, options={'hidden': True})

worksheet2.write row(row, 0, row data)

Move on to the next worksheet row.
row += 1

B e e e e e e e e e e e e e
#

#

Example 3. Autofilter with a dual filter condition in one of the columns.

#

Set the autofilter.
worksheet3.autofilter('Al1:D51")

16.6. Example: Applying Autofilters 133

Creating Excel files with Python and XisxWriter, Release 0.2.0

Add filter criteria.
worksheet3.filter column('A', 'x == East or x == South")

Hide the rows that don't match the filter criteria.
row = 1
for row data in (data):

region = row data[0]

Check for rows that match the filter.

if region == 'East' or region == 'South':
Row matches the filter, no further action required.
pass

else:

We need to hide rows that don't match the filter.
worksheet3.set row(row, options={'hidden': True})

worksheet3.write row(row, 0, row data)

Move on to the next worksheet row.
row += 1

B e e e e e e e

#
#
Example 4. Autofilter with filter conditions in two columns.
#

Set the autofilter.
worksheet4.autofilter('Al1:D51")

Add filter criteria.
worksheet4.filter column('A', 'x == East')
worksheet4.filter column('C', 'x > 3000 and x < 8000")

Hide the rows that don't match the filter criteria.
row = 1
for row data in (data):

region = row data[0]

volume = int(row data[2])

Check for rows that match the filter.

if region == 'East' and volume > 3000 and volume < 8000:
Row matches the filter, no further action required.
pass

else:

We need to hide rows that don't match the filter.
worksheet4.set row(row, options={'hidden': True})

worksheet4.write row(row, 0, row data)

Move on to the next worksheet row.
row += 1

134 Chapter 16.

Examples

Creating Excel files with Python and XlsxWriter, Release 0.2.0

e e
#

#

Example 5. Autofilter with filter for blanks.

#

Create a blank cell in our test data.

Set the autofilter.
worksheet5.autofilter('A1:D51")

Add filter criteria.
worksheet5. filter column('A', 'x == Blanks"')

Simulate a blank cell in the data.
data[5][0] = "'

Hide the rows that don't match the filter criteria.
row = 1
for row data in (data):

region = row data[0]

Check for rows that match the filter.

if region == '':
Row matches the filter, no further action required.
pass

else:
We need to hide rows that don't match the filter.
worksheet5.set row(row, options={'hidden': True})

worksheet5.write row(row, 0, row data)

Move on to the next worksheet row.
row += 1

B e e e e
#

#

Example 6. Autofilter with filter for non-blanks.

#

Set the autofilter.
worksheet6.autofilter('Al1:D51")

Add filter criteria.
worksheet6.filter column('A', 'x == NonBlanks")

Hide the rows that don't match the filter criteria.
row = 1
for row data in (data):

region = row_datal0]

16.6. Example: Applying Autofilters 135

Creating Excel files with Python and XisxWriter, Release 0.2.0

Check for rows that match the filter.
if region != '':

Row matches the filter, no further action required.

pass
else:

We need to hide rows that don't match the filter.
worksheet6.set row(row, options={'hidden': True})

worksheet6.write row(row, 0, row data)
Move on to the next worksheet row.

row += 1

workbook.close()

16.7 Example: Conditional Formatting

Example of how to add conditional formatting to an XlsxWriter file. Conditional formatting allows
you to apply a format to a cell or a range of cells based on certain criteria.

®00 [conditonal formatxlsx . .
Home | Layout | Tables | Charts | SmartArt | | v Lt~
A20 10 o (- i |
I R NN < Y U OO - o =
1 |Cells with values >= 50 are in light red. Values < 50 are in light green.
2
3 34 72 38 a0 75
4 b 24 1 84 54
5 28 79 a7 13 85
6 27 71 40 17 18
i B8 25 33 23 &7
8 24 100 20 B8 29
9 & &7 28 28 10
10 52 78 1 96 26
11 B0 54 81 [=17] 81
12 70 5 46 14 7l
h:.. PR .b-l l shmu snmzi snmsi Sheu4ﬂ| I
ormal View Rieady o

Code:

136

Chapter 16.

Examples

Creating Excel files with Python and XlsxWriter, Release 0.2.0

S e R e R e R R R e R e
Example of how to add conditional formatting to an XlsxWriter file.

#
#
#
Conditional formatting allows you to apply a format to a cell or a
range of cells based on certain criteria.
#
#
#
f

Copyright 2013, John McNamara, jmcnamara@cpan.org
rom xlsxwriter.workbook import Workbook

workbook = Workbook('conditional format.xlsx')

worksheetl = workbook.add worksheet()
worksheet2 = workbook.add worksheet()
worksheet3 = workbook.add worksheet()
worksheet4 = workbook.add worksheet()
worksheet5 = workbook.add worksheet()
worksheet6 = workbook.add worksheet()
worksheet7 = workbook.add worksheet()
worksheet8 = workbook.add worksheet()

Add a format. Light red fill with dark red text.
formatl = workbook.add format({'bg color': '#FFC7CE",
"font color': '#9C0006'})

Add a format. Green fill with dark green text.
format2 = workbook.add format({'bg color': '#CGEFCE",
"font color': '#006100'})

Some sample data to run the conditional formatting against.

data = [
[34, 72, 38, 30, 75, 48, 75, 66, 84, 86],
[6, 24, 1, 84, 54, 62, 60, 3, 26, 591,
[28, 79, 97, 13, 85, 93, 93, 22, 5, 14],
[27, 71, 40, 17, 18, 79, 90, 93, 29, 471,
[88, 25, 33, 23, 67, 1, 59, 79, 47, 36],
[24, 100, 20, 88, 29, 33, 38, 54, 54, 88],
[6, 57, 88, 28, 10, 26, 37, 7, 41, 48],
[52, 78, 1, 96, 26, 45, 47, 33, 96, 36],
[60, 54, 81, 66, 81, 90, 80, 93, 12, 55],
[70, 5, 46, 14, 71, 19, 66, 36, 41, 211,

B e R i e e
#
Example 1.
#
caption = ('Cells with values >= 50 are in light red. '
'Values < 50 are in light green.')

Write the data.
worksheetl.write('Al', caption)

16.7. Example: Conditional Formatting 137

Creating Excel files with Python and XisxWriter, Release 0.2.0

for row, row data in enumerate(data):
worksheetl.write row(row + 2, 1, row data)

Write a conditional format over a range.

worksheetl.conditional format('B3:K12', {'type': 'cell"',
'criteria': '>=
'value': 50,
"format': formatl})

1
’

Write another conditional format over the same range.

worksheetl.conditional format('B3:K12', {'type': 'cell’,
'criteria': '<‘',
'value': 50,
"format': format2})

B R R e e R e e e e e e e e
#
Example 2.
#
caption = ('Values between 30 and 70 are in light red. '
'Values outside that range are in light green.')

worksheet2.write('Al', caption)

for row, row data in enumerate(data):
worksheet2.write row(row + 2, 1, row data)

worksheet2.conditional format('B3:K12', {'type': 'cell"',
'criteria': 'between',
'minimum': 30,
"'maximum': 70,
"format': formatl})

worksheet2.conditional format('B3:K12', {'type': 'cell"',
'criteria': 'not between',
'minimum': 30,
"'maximum': 70,
"format': format2})

B e R e e
#
Example 3.
#
caption = ('Duplicate values are in light red. '
'Unique values are in light green.')

worksheet3.write('Al', caption)

for row, row data in enumerate(data):
worksheet3.write row(row + 2, 1, row data)

138

Chapter 16. Examples

Creating Excel files with Python and XlsxWriter, Release 0.2.0

worksheet3.conditional format('B3:K12', {'type': 'duplicate',
"format': formatl})

worksheet3.conditional format('B3:K12', {'type': 'unique',
"format': format2})

B e e e e e e e e P e e e
#
Example 4.
#
caption = ('Above average values are in light red. '
'Below average values are in light green.')

worksheet4.write('Al', caption)

for row, row data in enumerate(data):
worksheet4.write row(row + 2, 1, row data)

worksheet4.conditional format('B3:K12', {'type': 'average',
'criteria': 'above',
"format': formatl})

worksheet4.conditional format('B3:K12', {'type': 'average',
'criteria': 'below',
"format': format2})

B e e L e e e e P e e e e
#
Example 5.
#
caption = ('Top 10 values are in light red. '
‘Bottom 10 values are in light green.')

worksheet5.write('Al', caption)

for row, row data in enumerate(data):
worksheet5.write row(row + 2, 1, row data)

worksheet5.conditional format('B3:K12', {'type': 'top',
'value': '10',
"format': formatl})

worksheet5.conditional format('B3:K12', {'type': 'bottom',
'value': '10',
'"format': format2})

B e e e e e e e e e e e e e e e e
#

Example 6.

#

16.7. Example: Conditional Formatting 139

Creating Excel files with Python and XisxWriter, Release 0.2.0

caption = ('Cells with values >= 50 are in light red. '
'Values < 50 are in light green. Non-contiguous ranges.')

Write the data.
worksheet6.write('Al', caption)

for row, row data in enumerate(data):
worksheet6.write row(row + 2, 1, row data)

Write a conditional format over a range.
worksheet6.conditional format('B3:K6', {'type': 'cell’,
'criteria': '>="',
'value': 50,
"format': formatl,
'multi range': 'B3:K6 B9:K12'})

Write another conditional format over the same range.
worksheet6.conditional format('B3:K6', {'type': 'cell"',

'criteria': '<',

'value': 50,

"format': format2,

'multi range': 'B3:K6 B9:K12'})

L e e e e s e e e e e e e R R e e e e R R R R R
#

Example 7.

#

caption = 'Examples of color scales and data bars. Default colours.'

data = range(l, 13)
worksheet7.write('Al', caption)

worksheet7.write('B2', "2 Color Scale")
worksheet7 . .write('D2', "3 Color Scale")
worksheet7.write('F2', "Data Bars")

for row, row data in enumerate(data):
worksheet7.write(row + 2, 1, row data)
worksheet7.write(row + 2, 3, row data)
worksheet7.write(row + 2, 5, row data)

worksheet7.conditional format('B3:B14', {'type': '2 color scale'})
worksheet7.conditional format('D3:D14', {'type': '3 color scale'})
worksheet7.conditional format('F3:F14', {'type': 'data bar'})

B R R e e e R e e e e e e e e e
#

Example 8.

#

caption = 'Examples of color scales and data bars. Modified colours.'

140

Chapter 16. Examples

Creating Excel files with Python and XlsxWriter, Release 0.2.0

data = range(1l, 13)

worksheet8.write('Al', caption)

worksheet8.write('B2', "2 Color Scale")
worksheet8.write('D2', "3 Color Scale")
worksheet8.write('F2', "Data Bars")

for row, row data in enumerate(data):
worksheet8.write(row + 2, 1, row data)
worksheet8.write(row + 2, 3, row data)
worksheet8.write(row + 2, 5, row data)

worksheet8.conditional format('B3:B14', {'type': '2 color scale',
‘'min _color': "#FF0O000",
'max_color': "#0OFF00"})

worksheet8.conditional format('D3:D14', {'type': '3 color scale',
'min _color': "#C5D9F1",
'mid color': "#8DB4E3",
'max_color': "#538ED5"})

worksheet8.conditional format('F3:F14', {'type': 'data bar',
'"bar color': '#63C384'})

workbook.close()

16.8 Example: Merging Cells

This program is an example of merging cells in a worksheet. See the merge range() method
for more details.

16.8. Example: Merging Cells 141

Creating Excel files with Python and XisxWriter, Release 0.2.0

| mergel.xlsx

Merged Range

Merged Range

< e+

Mormal View Rieady

Code:
HHHHH R R
z A simple example of merging cells with the XlsxWriter Python module.
ﬁ Copyright 2013, John McNamara, jmchamara@cpan.org
#

from xlsxwriter.workbook import Workbook

Create an new Excel file and add a worksheet.
workbook = Workbook('mergel.xlsx")
worksheet = workbook.add worksheet()

Increase the cell size of the merged cells to highlight the formatting.
worksheet.set column('B:D', 12)

worksheet.set row(3, 30)

worksheet.set row(6, 30)

worksheet.set row(7, 30)

Create a format to use in the merged range.
merge format = workbook.add format({
'bold': 1,

142 Chapter 16. Examples

Creating Excel files with Python and XlsxWriter, Release 0.2.0

'"border': 1,
'align': 'center',
'valign': 'vcenter',

'fg color': 'yellow'})
Merge 3 cells.
worksheet.merge range('B4:D4', 'Merged Range', merge format)
Merge 3 cells over two rows.

worksheet.merge range('B7:D8', 'Merged Range', merge format)

workbook.close()

16.9 Example: Writing “Rich” strings with multiple formats

This program is an example of writing rich stings with multiple format to a cell in a worksheet. See
thewrite rich string() method for more details.

- W5 TS T— . riiqhﬁstr_ilngs.xlisx —— n——
Home | Layout | Tables Charts | Smartart »| v Lt~
Al 4| @ @ [fx| Thisis bold and this is italic |~

A B | Cl=

This is bold and this is italic

This is red and this is blue

Some bold text centered

j= k[ﬂ-lF

T svees 5]

Mormal View Ready

Code:

16.9. Example: Writing “Rich” strings with multiple formats 143

Creating Excel files with Python and XisxWriter, Release 0.2.0

HHHHH AR RR AR R R R AR

#

An example of using Python and XlsxWriter to write some "rich strings",

i.e., strings with multiple formats.

#

Copyright 2013, John McNamara, jmcnamara@cpan.org
#

from xlsxwriter.workbook import Workbook

workbook = Workbook('rich strings.xlsx"')
worksheet = workbook.add worksheet()

worksheet.set column('A:A', 30)

Set some formats to use.

bold = workbook.add format({'bold': True})
italic = workbook.add format({'italic': True})
red = workbook.add format({'color': 'red'})
blue = workbook.add format({'color': 'blue'})
center = workbook.add format({'align': 'center'})
superscript = workbook.add format({'font script': 1})

Write some strings with multiple formats.
worksheet.write rich string('Al"',
'This is ',
bold, 'bold"',
' and this is ‘',
italic, 'italic')

worksheet.write rich string('A3"',
'This is ',
red, 'red',
' and this is ',
blue, 'blue')

worksheet.write rich string('A5",
'Some ',
bold, 'bold text',
' centered',
center)

worksheet.write rich string('A7"',
italic,
o=k,
superscript, '(n-1)"',
center)

workbook.close()

144

Chapter 16.

Examples

Creating Excel files with Python and XlsxWriter, Release 0.2.0

16.10 Example: Inserting images into a worksheet

This program is an example of inserting images into a worksheet. See the insert image()
method for more details.

e 00 — | | images.xlsx
Tables

Insert an image in a cell:

powered

Insert an image with an offset:

python

A

powered

Insert a scaled image: pqthnr‘l

A

powered

...... << > i) sheet T3 S

Mormal View

Code:

16.10. Example: Inserting images into a worksheet 145

Creating Excel files with Python and XisxWriter, Release 0.2.0

S R e e e e R R R R R
i An example of inserting images into a worksheet using the XlsxWriter

Python module.

z Copyright 2013, John McNamara, jmchnamara@cpan.org

irom xUsxwriter.workbook import Workbook

Create an new Excel file and add a worksheet.
workbook = Workbook('images.xlsx")
worksheet = workbook.add worksheet()

Widen the first column to make the text clearer.
worksheet.set column('A:A', 30)

Insert an image.
worksheet.write('A2', 'Insert an image in a cell:")
worksheet.insert image('B2', 'python.png')

Insert an image offset in the cell.

worksheet.write('Al2', 'Insert an image with an offset:"')

worksheet.insert image('B12', 'python.png', {'x offset': 15, 'y offset': 10})
Insert an image with scaling.

worksheet.write('A23', 'Insert a scaled image:')

worksheet.insert image('B23', 'python.png', {'x scale': 0.5, 'y scale': 0.5})

workbook.close()

16.11 Example: Adding Headers and Footers to Worksheets

This program is an example of adding headers and footers to worksheets. See the
set header() and set footer() methods for more details.

146 Chapter 16. Examples

Creating Excel files with Python and XlsxWriter, Release 0.2.0

[Page Margins Header/Footer [l

Header

[Here is some centred text. =]

‘ HEre is some centnes Dext,

| [Options...

[Customize Header...

Footer

[Here is some left aligned text.

Heng is same lef aligned test,

[Customize Footer...

Code:
HHHH S A

#

This program shows several examples of how to set up headers and
footers with XlsxWriter.

#

The control characters used in the header/footer strings are:
#

Control Category Description

== P ————— eSS

&L Justification Left

&C Center

&R Right

#

&P Information Page number

16.11. Example: Adding Headers and Footers to Worksheets 147

Creating Excel files with Python and XisxWriter, Release 0.2.0

&N
&D
&T
&F
&A

&fontsize Font
&"font,style"

&U

&E

&S

&X

&Y

&& Miscellaneous

= H HHHHHFHHHHHFEH R HHH B

rom xlsxwriter.workbook import Workbook

workbook = Workbook('headers footers.xlsx')

Total number of pages
Date

Time

File name

Worksheet name

Font size

Font name and style
Single underline
Double underline
Strikethrough
Superscript
Subscript

Literal ampersand &

See the main XlsxWriter documentation for more information.

Copyright 2013, John McNamara, jmchamara@cpan.org

preview = 'Select Print Preview to see the header and footer'

BRI R R R R R

#

A simple example to start

#

worksheetl = workbook.add worksheet('Simple"')
headerl = '&CHere is some centred text.'
footerl = '&LHere is some left aligned text.'

worksheetl.set header(headerl)
worksheetl.set footer(footerl)

worksheetl.set column('A:A', 50)
worksheetl.write('Al', preview)

B L e

#

This is an example of some of the header/footer variables.

#

worksheet2 = workbook.add worksheet('Variables")

header?2
footer?2

worksheet2.set header(header2)
worksheet2.set footer(footer2)

worksheet2.set column('A:A', 50)
worksheet2.write('Al', preview)
worksheet2.write('A21', 'Next sheet')

'&LPage &P of &N' + '&CFilename: &F' + '&RSheetname: &A'
'&LCurrent date: &' + '&RCurrent time: &T'

148

Chapter 16. Examples

Creating Excel files with Python and XlsxWriter, Release 0.2.0

worksheet2.set h pagebreaks([20])

B e e P T e e
#

This example shows how to use more than one font

#

worksheet3 = workbook.add worksheet('Mixed fonts')

header3 = '&C&"Courier New,Bold"Hello &"Arial,Italic"World'

footer3 = '&C&"Symbol"e&"Arial" = mc&X2'

worksheet3.set header(header3)
worksheet3.set footer(footer3)

worksheet3.set column('A:A', 50)
worksheet3.write('Al', preview)

S e R
#

Example of line wrapping

#

worksheet4 = workbook.add worksheet('Word wrap"')

header4 = "&CHeading 1\nHeading 2"

worksheet4.set header(header4)

worksheet4.set column('A:A', 50)
worksheet4.write('Al', preview)

B L e e e e e e e e e e e
#

Example of inserting a literal ampersand &

#

worksheet5 = workbook.add worksheet('Ampersand"')

header5 = '&CCuriouser && Curiouser - Attorneys at Law'

worksheet5.set header(header5)

worksheet5.set column('A:A', 50)
worksheet5.write('Al', preview)

workbook.close()

16.12 Example: Adding Cell Comments to Worksheets (Simple)

A simple example of adding cell comments to a worksheet. For more details see Working with Cell
Comments.

16.12. Example: Adding Cell Comments to Worksheets (Simple) 149

Creating Excel files with Python and XisxWriter, Release 0.2.0

| | 8 O (= A& Hellﬂ
B e
m__ This is & comment

e i v N

Mormal View Cell Al commented by

Code:

B e e e e e e e e e e e e e e
#

An example of writing cell comments to a worksheet using Python and

XlsxWriter.

#

For more advanced comment options see comments2.py.

#
Copyright 2013, John McNamara, jmcnamara@cpan.org
#
from xUlsxwriter.workbook import Workbook

workbook = Workbook('commentsl.xlsx")
worksheet = workbook.add worksheet()

worksheet.write('Al', 'Hello')
worksheet.write comment('Al', 'This is a comment')

workbook.close()

150 Chapter 16. Examples

Creating Excel files with Python and XlsxWriter, Release 0.2.0

16.13 Example: Adding Cell Comments to Worksheets (Advanced)

Another example of adding cell comments to a worksheet. This example demonstrates most of
the available comment formatting options. For more details see Working with Cell Comments.

e 00 | comments2.xlsx
Home | Layout | Tables | Charts | SmartArt | b5 IR - R
Al 10 & (= |~
4 [[N YRS S ANV RN 2 o =
2
This cell comment is visible, o
explicitly.
3
4
5
This cell comment is also visible e
because of show_comments{).
6
7
=]
4 4 > Sheetl ;| Sheet? | Sheet3 Il

Mormal View Ready o

Code:

B e e e e e e e e A e e R e

An example of writing cell comments to a worksheet using Python and
XlsxWriter.

#
#
#
#
Each of the worksheets demonstrates different features of cell comments.
#
Copyright 2013, John McNamara, jmcnamara@cpan.org

#

f

rom xlsxwriter.workbook import Workbook

workbook = Workbook('comments2.xlsx")

worksheetl = workbook.add worksheet()
worksheet2 = workbook.add worksheet()
worksheet3 = workbook.add worksheet()
worksheet4 = workbook.add worksheet()

16.13. Example: Adding Cell Comments to Worksheets (Advanced) 151

Creating Excel files with Python and XisxWriter, Release 0.2.0

worksheet5 = workbook.add worksheet()
worksheet6 = workbook.add worksheet()
worksheet7 = workbook.add worksheet()
worksheet8 = workbook.add worksheet()

text wrap = workbook.add format({'text wrap': 1, 'valign': 'top'})

S R R e e e e e e R e R R R e R R
#

Example 1. Demonstrates a simple cell comments without formatting.

comments.

#

Set up some formatting.
worksheetl.set column('C:C', 25)
worksheetl.set row(2, 50)
worksheetl.set row(5, 50)

Simple ASCII string.
cell text = 'Hold the mouse over this cell to see the comment.'

comment = 'This is a comment.'

worksheetl.write('C3"', cell text, text wrap)
worksheetl.write comment('C3', comment)

e e
#

Example 2. Demonstrates visible and hidden comments.

#

Set up some formatting.
worksheet2.set column('C:C', 25)
worksheet2.set row(2, 50)
worksheet2.set row(5, 50)

cell text = 'This cell comment is visible.'
comment = 'Hello.'

worksheet2.write('C3', cell text, text wrap)
worksheet2.write comment('C3', comment, {'visible': True})

cell text = "This cell comment isn't visible (the default)."
worksheet2.write('C6', cell text, text wrap)

worksheet2.write comment('C6', comment)

B e e e e e e e e e e
#
Example 3. Demonstrates visible and hidden comments set at the worksheet

152

Chapter 16. Examples

Creating Excel files with Python and XlsxWriter, Release 0.2.0

level.
#

Set up some formatting.
worksheet3.set column('C:C', 25)
worksheet3.set row(2, 50)
worksheet3.set row(5, 50)
worksheet3.set row(8, 50)

Make all comments on the worksheet visible.
worksheet3.show comments()

cell text = 'This cell comment is visible, explicitly.'
comment = 'Hello.'

worksheet3.write('C3', cell text, text wrap)
worksheet3.write comment('C3', comment, {'visible': 1})

cell text = 'This cell comment is also visible because of show comments().'

worksheet3.write('C6', cell text, text wrap)
worksheet3.write comment('C6', comment)

cell text = 'However, we can still override it locally.'

worksheet3.write('C9', cell text, text wrap)
worksheet3.write comment('C9', comment, {'visible': False})

B e e e e e e e P e e e e
#

Example 4. Demonstrates changes to the comment box dimensions.

#

Set up some formatting.
worksheet4.set column('C:C', 25)
worksheet4.set row(2, 50)
worksheet4.set row(5, 50)
worksheet4.set row(8, 50)
worksheet4.set row(15, 50)

worksheet4.show comments()

cell text = 'This cell comment is default size.'
comment = 'Hello.'

worksheet4.write('C3', cell text, text wrap)
worksheet4.write comment('C3', comment)

cell text = 'This cell comment is twice as wide.'

worksheet4.write('C6', cell text, text wrap)
worksheet4.write comment('C6', comment, {'x scale': 2})

16.13. Example: Adding Cell Comments to Worksheets (Advanced) 153

Creating Excel files with Python and XisxWriter, Release 0.2.0

cell text = 'This cell comment is twice as high.'

worksheet4.write('C9', cell text, text wrap)
worksheet4.write comment('C9', comment, {'y scale': 2})

cell text = 'This cell comment is scaled in both directions.'

worksheet4.write('C16', cell text, text wrap)
worksheet4.write comment('C16', comment, {'x scale': 1.2, 'y scale': 0.8})

cell text = 'This cell comment has width and height specified in pixels.'

worksheet4.write('C19', cell text, text wrap)
worksheet4.write comment('C19', comment, {'width': 200, 'height': 20})

B R R e e e e e e e e e e e
#

Example 5. Demonstrates changes to the cell comment position.

#

worksheet5.set column('C:C', 25)

worksheet5.set row(2, 50)

worksheet5.set row(5, 50)

worksheet5.set row(8, 50)

worksheet5.set row(11l, 50)

worksheet5.show comments()

cell text = 'This cell comment is in the default position.'
comment = 'Hello.'

worksheet5.write('C3', cell text, text wrap)
worksheet5.write comment('C3', comment)

cell text = 'This cell comment has been moved to another cell.’

worksheet5.write('C6', cell text, text wrap)
worksheet5.write comment('C6', comment, {'start cell': 'E4'})

cell text = 'This cell comment has been moved to another cell.'

worksheet5.write('C9', cell text, text wrap)
worksheet5.write comment('C9', comment, {'start row': 8, 'start col': 4})

cell text = 'This cell comment has been shifted within its default cell.'
worksheet5.write('C12', cell text, text wrap)

worksheet5.write comment('C12', comment, {'x offset': 30, 'y offset': 12})

B e e e e e P e e e
#
Example 6. Demonstrates changes to the comment background colour.

154

Chapter 16. Examples

Creating Excel files with Python and XlsxWriter, Release 0.2.0

#

worksheet6.set column('C:C', 25)
worksheet6.set row(2, 50)
worksheet6.set row(5, 50)
worksheet6.set row(8, 50)

worksheet6.show comments()

cell text = 'This cell comment has a different colour.'
comment = 'Hello.'

worksheet6.write('C3', cell text, text wrap)
worksheet6.write comment('C3', comment, {'color': 'green'})

cell text = 'This cell comment has the default colour.'

worksheet6.write('C6', cell text, text wrap)
worksheet6.write comment('C6', comment)

cell text = 'This cell comment has a different colour.'

worksheet6.write('C9', cell text, text wrap)
worksheet6.write comment('C9', comment, {'color': '#CCFFCC'})

e e
#

Example 7. Demonstrates how to set the cell comment author.

#

worksheet7.set column('C:C', 30)

worksheet7.set row(2, 50)

worksheet7.set row(5, 50)

worksheet7.set row(8, 50)

author = "'
cell = 'C3'

cell text = ("Move the mouse over this cell and you will see 'Cell commented "
"by (blank)' in the status bar at the bottom")

comment = 'Hello.'

worksheet7.write(cell, cell text, text wrap)
worksheet7.write comment(cell, comment)

author = 'Python'

cell = 'C6'

cell text = ("Move the mouse over this cell and you will see 'Cell commented "
"by Python' in the status bar at the bottom")

worksheet7.write(cell, cell text, text wrap)
worksheet7.write comment(cell, comment, {'author': author})

16.13. Example: Adding Cell Comments to Worksheets (Advanced) 155

Creating Excel files with Python and XisxWriter, Release 0.2.0

e R e R e e R
#

Example 8. Demonstrates the need to explicitly set the row height.

#

Set up some formatting.

worksheet8.set column('C:C', 25)

worksheet8.set row(2, 80)

worksheet8.show comments()

cell text = ('The height of this row has been adjusted explicitly using '
'set row(). The size of the comment box is adjusted '
'accordingly by XlsxWriter.')

comment = 'Hello.'

worksheet8.write('C3', cell text, text wrap)
worksheet8.write comment('C3', comment)

cell text = ('The height of this row has been adjusted by Excel due to the '
"text wrap property being set. Unfortunately this means that '
'the height of the row is unknown to XlsxWriter at run time '
"and thus the comment box is stretched as well.\n\n"
'Use set row() to specify the row height explicitly to avoid '
'this problem."')

worksheet8.write('C6', cell text, text wrap)
worksheet8.write comment('C6', comment)

workbook.close()

16.14 Example: Setting Document Properties

This program is an example setting document properties. See the set properties() workbook
method for more details.

156 Chapter 16. Examples

Creating Excel files with Python and XlsxWriter, Release 0.2.0

0= Statistics | Contents | Custom]—..

Title: Ill'his- is an example spreadsheet

Subject: |'l||"|'ith document properties

Manager: | Dr. Heinz Doofenshmirtz

Company: |nf Wolves

Category: | Example spreadsheets

)
|
Author: |juhr‘| Mchamara |
|
|
|
|

Keywords: |S.1mg:l|r|z1 Example, Properties

Comments: Created with Python and XlsxWriter

Hyperlink base:

Template:

|| Save preview picture with this document

Code:
FHHHHH R
z An example of adding document properties to a XlsxWriter file.
ﬁ Copyright 2013, John McNamara, jmcnamara@cpan.org
#

from xlsxwriter.workbook import Workbook

workbook = Workbook('doc properties.xlsx")
worksheet = workbook.add worksheet()

workbook.set properties({

16.14. Example: Setting Document Properties 157

Creating Excel files with Python and XisxWriter, Release 0.2.0

"title': 'This is an example spreadsheet',
‘subject': 'With document properties’,
"author': 'John McNamara',
'manager': 'Dr. Heinz Doofenshmirtz',
"company': ‘'of Wolves',
'category': 'Example spreadsheets',
'keywords': 'Sample, Example, Properties’,
"comments': 'Created with Python and XlsxWriter',
'status': "Quo’,

})

worksheet.set column('A:A', 70)

worksheet.write('Al', "Select 'Workbook Properties' to see properties.")

16.15 Example: Unicode - Polish in UTF-8

This program is an example of reading in data from a UTF-8 encoded text file and converting it to
a worksheet.

The main trick is to ensure that the data read in is converted to UTF-8 within the Python program.
The XlsxWriter module will then take take of writing the encoding to the Excel file.

The encoding of the input data shouldn’t matter once it can be converted to UTF-8 via the codecs
module.

158 Chapter 16. Examples

http://docs.python.org/2/library/codecs.html#codecs

Creating Excel files with Python and XlsxWriter, Release 0.2.0

WSROD NOCME) CISZY

Wsrdd nocnej ciszy glos sie rozchodazi:
Wstarcie, pasterze, Bog sie nam rodzil
Czym predzej sie wybierajcie,

Do Betlejem pospieszajcie

Przywitaé Pana.

Poszli, znaleili Dziecigtko w Ztobie
Z wszystkimi znaki danymi sobie.
Jako Bogu czesé Mu dali,

A witajac zawolali

Mormal View Rieady

Code:
B oo e B B B B et et et et et e e s

A simple example of converting some Unicode text to an Excel file using
the XlsxWriter Python module.

This example generates a spreadsheet with some Polish text from a file
with UTF8 encoded text.

Copyright 2013, John McNamara, jmchamara@cpan.org

HOoH K H R HHRH

import codecs
from xlsxwriter.workbook import Workbook

Open the input file with the correct encoding.
textfile = codecs.open('unicode polish utf8.txt', 'r', 'utf-8")

Create an new Excel file and convert the text data.
workbook = Workbook('unicode polish utf8.xlsx")
worksheet = workbook.add worksheet()

Widen the first column to make the text clearer.
worksheet.set column('A:A', 50)

16.15. Example: Unicode - Polish in UTF-8 159

Creating Excel files with Python and XisxWriter, Release 0.2.0

Start from the first cell.
row 0
col 0

Read the text file and write it to the worksheet.
for line in textfile:
Ignore the comments in the text file.
if line.startswith('#'):
continue

Write any other lines to the worksheet.
worksheet.write(row, col, line.rstrip("\n"))
row += 1

workbook.close()

16.16 Example: Unicode - Shift JIS

This program is an example of reading in data from a Shift JIS encoded text file and converting it
to a worksheet.

The main trick is to ensure that the data read in is converted to UTF-8 within the Python program.
The XlsxWriter module will then take take of writing the encoding to the Excel file.

The encoding of the input data shouldn’t matter once it can be converted to UTF-8 via the codecs
module.

160 Chapter 16. Examples

http://docs.python.org/2/library/codecs.html#codecs

Creating Excel files with Python and XlsxWriter, Release 0.2.0

unicode_snirt_jJis.xi1

-mm—lmmm

4 @ @ [fx| some uninteresting product specs |~

[B Pt

LS e

Mormal View

Code:
B oo e B B B B et et et et et e e s

A simple example of converting some Unicode text to an Excel file using
the XlsxWriter Python module.

This example generates a spreadsheet with some Japanese text from a file
with Shift-JIS encoded text.

Copyright 2013, John McNamara, jmcnamara@cpan.org

HHHFEHIFHHFHKD

import codecs
from xlsxwriter.workbook import Workbook

Open the input file with the correct encoding.
textfile = codecs.open('unicode shift jis.txt', 'r', 'shift jis')

Create an new Excel file and convert the text data.
workbook = Workbook('unicode shift jis.xlsx")
worksheet = workbook.add worksheet()

Widen the first column to make the text clearer.
worksheet.set column('A:A', 50)

16.16. Example: Unicode - Shift JIS 161

Creating Excel files with Python and XisxWriter, Release 0.2.0

Start from the first cell.
row 0
col 0

Read the text file and write it to the worksheet.
for line in textfile:
Ignore the comments in the text file.
if line.startswith('#'):
continue

Write any other lines to the worksheet.
worksheet.write(row, col, line.rstrip("\n"))
row += 1

workbook.close()

16.17 Example: Setting Worksheet Tab Colours

This program is an example of setting worksheet tab colours. See the set tab color() method
for more details.

8 00 tab_colors.xlsx
Home Layout Tables Charts SmartArt }}| w I

AL 1 8 © (= f| |~
| D

- . B c | NN RN P - —

m— R R 2 p p Sheet3 | Sheetd | + Il
Bl e
ormal View Rieady

Code:

162 Chapter 16. Examples

Creating Excel files with Python and XlsxWriter, Release 0.2.0

S R e R e e R R R R R R
i Example of how to set Excel worksheet tab colours using Python

and the XlsxWriter module..

z Copyright 2013, John McNamara, jmcnamara@cpan.org

ﬁrom xlsxwriter.workbook import Workbook

workbook = Workbook('tab colors.xlsx")

Set up some worksheets.

worksheetl = workbook.add worksheet()
worksheet2 = workbook.add worksheet()
worksheet3 = workbook.add worksheet()
worksheet4 = workbook.add worksheet()

Set tab colours
worksheetl.set tab color('red")
worksheet2.set tab color('green')
worksheet3.set tab color('#FF9900') # Orange
worksheet4 will have the default colour.

workbook.close()

16.18 Example: Enabling Cell protection in Worksheets

This program is an example cell locking and formula hiding in an Excel worksheet using the pro-
tect () worksheet method.

16.18. Example: Enabling Cell protection in Worksheets 163

Creating Excel files with Python and XisxWriter, Release 0.2.0

3] O & (= fl
A
Cell B1 is locked. It cannot be edited
Cell B2 is unlocked. It can be edited.
Cell B3 is hidden. The formula isn't visible,

] shees &/

Mormal View Rieady

Code:

e e S

#

Example of cell locking and formula hiding in an Excel worksheet

using Python and the XlsxWriter module.

#

Copyright 2013, John McNamara, jmcnamara@cpan.org
#

from xUsxwriter.workbook import Workbook

workbook = Workbook('protection.xlsx")
worksheet = workbook.add worksheet()

Create some cell formats with protection properties.
unlocked = workbook.add format({'locked': 0})
hidden = workbook.add format({'hidden': 1})

Format the columns to make the text more visible.
worksheet.set column('A:A', 40)

Turn worksheet protection on.
worksheet.protect()

Write a locked, unlocked and hidden cell.

Chapter 16.

Examples

Creating Excel files with Python and XlsxWriter, Release 0.2.0

worksheet.write('Al', 'Cell Bl is locked. It cannot be edited.')
worksheet.write('A2', 'Cell B2 is unlocked. It can be edited."')

worksheet.write('A3', "Cell B3 is hidden. The formula isn't visible.")
worksheet.write formula('Bl', '=1+2') # Locked by default.
worksheet.write formula('B2', '=1+2', unlocked)

worksheet.write formula('B3', '=1+2', hidden)

workbook.close()

16.18. Example: Enabling Cell protection in Worksheets 165

Creating Excel files with Python and XisxWriter, Release 0.2.0

166 Chapter 16. Examples

CHAPTER
SEVENTEEN

COMPARISON WITH

EXCEL::WRITER::XLSX

Excel::Writer::XLSX is a module written in Perl for creating Excel 2007+ XLSX files.

Excel::Writer::XLSX is an APl compatible rewrite of an older Perl module called Spread-

sheet::WriteExcel that creates Excel XLS file.

In terms of features Excel::Writer::XLSX is one most complete open source libraries for writing
Excel files. It supports:

Multiple worksheets
Strings and numbers
Unicode text

Cell formatting
Formulas

Images

Charts

Autofilters

Data validation
Conditional formatting
Macros

Tables

Shapes

Sparklines
Hyperlinks

Rich string formats
Defined names

Grouping/Outlines

167

http://search.cpan.org/~jmcnamara/Excel-Writer-XLSX/
http://search.cpan.org/~jmcnamara/Spreadsheet-WriteExcel/
http://search.cpan.org/~jmcnamara/Spreadsheet-WriteExcel/

Creating Excel files with Python and XisxWriter, Release 0.2.0

» Cell comments
* Panes
» Page set-up and printing options

Excel::Writer::XLSX has comprehensive documentation, a large number of example files and an
extensive test suite.

Excel::Writer::XLSX and XlsxWriter are written by John McNamara.

17.1 Compatibility with Excel::Writer::XLSX

Porting of Excel: :Writer::XLSX to XLsxWriter is a work in progress. The following table
shows the level of compatibility between the two module.

17.1.1 Workbook

Status: ongoing.

Workbook Methods | XlsxWriter | Excel::Writer::XLSX
add worksheet () Yes Yes
add format() Yes Yes
add_chart() No Yes
add_shape() No Yes
add_vba_project() No Yes
close() Yes Yes
set properties() | Yes Yes
define name() Yes Yes
set_tempdir() No Yes
set_custom_color() No (1) Yes
worksheets () Yes (2) Yes
set_1904() No Yes
set_optimization() No Yes

1. Not required in XlsxWriter. Full RGB colors are supported.
2. Called sheets () in Excel::Writer::XLSX.

17.1.2 Worksheet

Status: ongoing.

Worksheet Methods XisxWriter | Excel::Writer::XLSX
write() Yes Yes
write number() Yes Yes
write string() Yes Yes
Continued on next page

168 Chapter 17. Comparison with Excel::Writer::XLSX

http://search.cpan.org/~jmcnamara/Excel-Writer-XLSX/lib/Excel/Writer/XLSX/Examples.pm
https://github.com/jmcnamara

Creating Excel files with Python and XlsxWriter, Release 0.2.0

Table 17.1 — continued from previous page

Worksheet Methods XlsxWriter | Excel::Writer::XLSX
write rich string() Yes Yes
write blank() Yes Yes
write row() Yes Yes
write column() Yes Yes
write datetime() Yes Yes
write url() Yes Yes
write formula() Yes Yes
write array formula() | Yes Yes
keep_leading_zeros() No Yes
write comment() Yes Yes
show _comments() Yes Yes
set comments author() | Yes Yes
add_write_handler() No Yes
insert image() Yes Yes
insert_chart() No Yes
insert_shape() No Yes
insert_button() No Yes
data_validation() No Yes
conditional format() Yes (1) Yes
add_sparkline() No Yes
add_table() No Yes
get name() Yes Yes
activate() Yes Yes
select() Yes Yes
hide() Yes Yes
set first sheet() Yes Yes
protect() Yes Yes
set_selection() No Yes
set row() Yes Yes
set _column() Yes Yes
set_default_row() No Yes
outline_settings() No Yes
freeze_panes() No Yes
split_panes() No Yes
merge_range() Yes Yes
merge_range_type() No (2) Yes
set zoom() Yes Yes
right to left() Yes Yes
hide zero() Yes Yes
set tab color() Yes Yes
autofilter() Yes Yes
filter column() Yes Yes
filter column_ list() | Yes Yes

17.1. Compatibility with Excel::Writer::XLSX 169

Creating Excel files with Python and XisxWriter, Release 0.2.0

1. Called conditional formatting() in Excel::Writer::XLSX.

2. Not required in XIlsxWriter. The same functionality is available via merge range().

17.1.3 Page Setup

Status: complete.

Page Set-up Methods XlsxWriter | Excel::Writer::XLSX
set landscape() Yes Yes
set portrait() Yes Yes
set page view() Yes Yes
set paper() Yes Yes
center horizontally() Yes Yes
center vertically() Yes Yes
set margins() Yes Yes
set header() Yes Yes
set footer() Yes Yes
repeat rows() Yes Yes
repeat columns() Yes Yes
hide gridlines() Yes Yes
print row col headers() | Yes Yes
print area() Yes Yes
print across() Yes Yes
fit to pages() Yes Yes
set start page() Yes Yes
set print scale() Yes Yes
set h pagebreaks() Yes Yes
set v pagebreaks() Yes Yes

17.1.4 Format

Status: complete.

Format Methods XisxWriter | Excel::Writer::XLSX
set font name() Yes Yes
set font size() Yes Yes
set font color() Yes Yes
set bold() Yes Yes
set italic() Yes Yes
set underline() Yes Yes
set font strikeout() | Yes Yes
set font script() Yes Yes
set num format() Yes Yes
set locked() Yes Yes
Continued on next page

170 Chapter 17. Comparison with Excel::Writer::XLSX

Creating Excel files with Python and XlsxWriter, Release 0.2.0

Table 17.2 — continued from previous page

Format Methods XlsxWriter | Excel::Writer::XLSX
set hidden() Yes Yes
set align() Yes Yes
set rotation() Yes Yes
set text wrap() Yes Yes
set text justlast() | Yes Yes
set center across() | Yes Yes
set indent() Yes Yes
set shrink() Yes Yes
set pattern() Yes Yes
set bg color() Yes Yes
set fg color() Yes Yes
set border() Yes Yes
set bottom() Yes Yes
set top() Yes Yes
set left() Yes Yes
set right() Yes Yes
set border color() Yes Yes
set bottom color() Yes Yes
set top color() Yes Yes
set left color() Yes Yes
set right color() Yes Yes

17.1. Compatibility with Excel::Writer::XLSX 171

Creating Excel files with Python and XisxWriter, Release 0.2.0

172 Chapter 17. Comparison with Excel::Writer::XLSX

CHAPTER
EIGHTEEN

ALTERNATIVE MODULES FOR
HANDLING EXCEL FILES

The following are some Python alernatives to XlsxWriter.

18.1 XLWT

From the xlwt page on PyPI:

Library to create spreadsheet files compatible with MS Excel 97/2000/XP/2003 XLS
files, on any platform, with Python 2.3 to 2.7.

xlwt is a library for generating spreadsheet files that are compatible with Excel
97/2000/XP/2003, OpenOffice.org Calc, and Gnumeric. xlwt has full support for Uni-
code. Excel spreadsheets can be generated on any platform without needing Excel or
a COM server. The only requirement is Python 2.3 to 2.7.

18.2 XLRD

From the xIrd page on PyPI:

Library for developers to extract data from Microsoft Excel (tm) spreadsheet files Ex-
tract data from Excel spreadsheets (.xlIs and .xIsx, versions 2.0 onwards) on any plat-
form. Pure Python (2.6, 2.7, 3.2+). Strong support for Excel dates. Unicode-aware.

18.3 Openpyxl

From the openpyx| page on PyPI:

A Python library to read/write Excel 2007 xIsx/xlsm files. Openpyxl is a pure python
reader and writer of Excel OpenXML files. It is ported from the PHPEXxcel project.

173

http://pypi.python.org/pypi/xlwt
http://pypi.python.org/pypi/xlrd
http://pypi.python.org/pypi/openpyxl

Creating Excel files with Python and XisxWriter, Release 0.2.0

174 Chapter 18. Alternative modules for handling Excel files

CHAPTER
NINETEEN

KNOWN ISSUES AND BUGS

This section lists known issues and bugs and gives some information on how to submit bug reports.

19.1 ‘unknown encoding: utf-8’ Error

The following error can occur on Windows if the close() method isn’t used at the end of the
program:

Exception LookupError: 'unknown encoding: utf-8' in <bound method
Workbook. del of <xlsxwriter.workbook.Workbook objectat 0x022C1450>>

This appears to be an issue with the implicit destructor on Windows. It is under investigation. Use
close() as a workaround.

19.2 Formula results not displaying in Excel

Some early versions of Excel 2007 do not display the calculated values of formulas written by
XlsxWriter. Applying all available Service Packs to Excel should fix this.

19.3 Formula results displaying as zero in non-Excel apps

Due to wide range of possible formulas and interdependencies between them XisxWriter doesn'’t,
and realistically cannot, calculate the result of a formula when it is written to an XLSX file. Instead,
it stores the value 0 as the formula result. It then sets a global flag in the XLSX file to say that all
formulas and functions should be recalculated when the file is opened.

This is the method recommended in the Excel documentation and in general it works fine with
spreadsheet applications. However, applications that don’t have a facility to calculate formulas,
such as Excel Viewer, or several mobile applications, will only display the 0 results.

If required, it is also possible to specify the calculated result of the formula using the optional
value parameterinwrite formula():

175

Creating Excel files with Python and XisxWriter, Release 0.2.0

worksheet.write formula('Al', '=2+2', num format, 4)

176 Chapter 19. Known Issues and Bugs

CHAPTER
TWENTY

REPORTING BUGS

Here are some tips on reporting bugs in XlsxWriter.

20.1 Upgrade to the latest version of the module

The bug you are reporting may already be fixed in the latest version of the module. Check the
Changes in XlsxWriter section as well.

20.2 Read the documentation

The XlsxWriter documentation has been refined in response to user questions. Therefore, if you
have a question it is possible that someone else has asked it before you and that it is already
addressed in the documentation.

20.3 Look at the example programs

There are several example programs in the distribution. Many of these were created in response
to user questions. Try to identify an example program that corresponds to your query and adapt it
to your needs.

20.4 Use the official XIlsxWriter Issue tracker on GitHub

The official XlsxWriter Issue tracker is on GitHub.

20.5 Pointers for submitting a bug report

1. Describe the problem as clearly and as concisely as possible.

2. Include a sample program. This is probably the most important step. Also, it is often easier
to describe a problem in code than in written prose.

177

https://github.com/jmcnamara/XlsxWriter/issues

Creating Excel files with Python and XisxWriter, Release 0.2.0

3. The sample program should be as small as possible to demonstrate the problem. Don’t copy
and past large sections of your program. The program should also be self contained and
working.

A sample bug report is shown below. If you use this format then it will help to analyse your question
and respond to it more quickly.

XisxWriter Issue with SOMETHING

I am using XIsxWriter and | have encountered a problem. | want it to do SOMETHING
but the module appears to do SOMETHING ELSE.

| am using Python version X.Y.Z and XlsxWriter x.y.z.
Here is some code that demonstrates the problem:

from xlsxwriter.workbook import Workbook

workbook = Workbook('hello.xlsx")
worksheet = workbook.add worksheet()

worksheet.write('Al', 'Hello world"')

workbook. close()

178 Chapter 20. Reporting Bugs

CHAPTER
TWENTYONE

FREQUENTLY ASKED QUESTIONS

The section outlines some answers to frequently asked questions.

21.1 Q. Can XilsxWriter use an existing Excel file as a template?

No.

XlsxWriter is designed only as a file writer. It cannot read or modify an existing Excel file.

21.2 Q. Why do my formulas show a zero result in some, non-Excel
applications?

Due to wide range of possible formulas and interdependencies between them XisxWriter doesn't,
and realistically cannot, calculate the result of a formula when it is written to an XLSX file. Instead,
it stores the value 0 as the formula result. It then sets a global flag in the XLSX file to say that all
formulas and functions should be recalculated when the file is opened.

This is the method recommended in the Excel documentation and in general it works fine with
spreadsheet applications. However, applications that don’t have a facility to calculate formulas,
such as Excel Viewer, or several mobile applications, will only display the 0 results.

If required, it is also possible to specify the calculated result of the formula using the optional
value parameterinwrite formula():

worksheet.write formula('Al', '=2+2', num format, 4)

21.3 Q. Can | apply a format to a range of cells in one go?

Currently no. However, it is a planned features to allow cell formats and data to be written sepa-
rately.

179

Creating Excel files with Python and XisxWriter, Release 0.2.0

21.4 Q. Is feature X supported or will it be supported?

All supported features are documented.

Future features will match features that are available in Excel::Writer::XLSX. Check the feature
matrix in the Comparison with Excel::Writer::XLSX section.

21.5 Q. Is there an “AutoFit” option for columns?

Unfortunately, there is no way to specify “AutoFit” for a column in the Excel file format. This feature
is only available at runtime from within Excel. It is possible to simulate “AutoFit” by tracking the
width of the data in the column as your write it.

21.6 Q. Do people actually ask these questions frequently, or at all?

Apart from this question, yes.

180 Chapter 21. Frequently Asked Questions

CHAPTER
TWENTYTWO

CHANGES IN XLSXWRITER

This section shows changes and bug fixes in the XlsxWriter module.

22.1 Release 0.2.0 - March 24 2013

» Added conditional formatting. See the conditional format() method, Working with
Conditional Formatting and Example: Conditional Formatting.

22.2 Release 0.1.9 - March 19 2013

» Added Python 2.6 support. All tests now pass in the following versions:
Python 2.6

Python 2.7.2

Python 2.7.3

Python 3.1

Python 3.2

Python 3.3.0

22.3 Release 0.1.8 - March 18 2013

 Fixed Python 3 support.

22.4 Release 0.1.7 - March 18 2013

+ Added the option to write cell comments to a worksheet. See write comment() and
Working with Cell Comments.

181

Creating Excel files with Python and XisxWriter, Release 0.2.0

22.5 Release 0.1.6 - March 17 2013

» Added insert image() worksheet method to support inserting PNG and JPEG images
into a worksheet. See also the example program Example: Inserting images into a work-
sheet.

» There are now over 500 unit tests including more than 100 tests that compare against the
output of Excel.

22.6 Release 0.1.5 - March 10 2013

* Added the write rich string() worksheet method to allow writing of text with multiple
formats to a cell. Also added example program: Example: Writing “Rich” strings with multiple
formats.

» Added the hide () worksheet method to hide worksheets.
* Added the set first sheet() worksheet method.

22.7 Release 0.1.4 - March 8 2013

» Added the protect () worksheet method to allow protection of cells from editing. Also
added example program: Example: Enabling Cell protection in Worksheets.

22.8 Release 0.1.3 - March 7 2013

+ Added worksheet methods:
— set zoom() for setting worksheet zoom levels.
— right to left() for middle eastern versions of Excel.
— hide zero() for hiding zero values in cells.

— set tab color() for setting the worksheet tab colour.

22.9 Release 0.1.2 - March 6 2013

» Added autofilters. See Working with Autofilters for more details.

* Addedthe write row() andwrite column() worksheet methods.

182 Chapter 22. Changes in XlsxWriter

Creating Excel files with Python and XlsxWriter, Release 0.2.0

22.10 Release 0.1.1 - March 3 2013

» Added the write url() worksheet method for writing hyperlinks to a worksheet.

22.11 Release 0.1.0 - February 28 2013

» Added the set properties () workbook method for setting document properties.
» Added several new examples programs with documentation. The examples now include:
— array_formula.py
— cell_indentation.py
— datetimes.py
— defined_name.py

— demo.py

doc_properties.py

headers_footers.py

hello_world.py

mergel.py

tutorial1.py

— tutorial2.py

— tutorial3.py

— unicode_polish_utf8.py
— unicode_shift_jis.py

22.12 Release 0.0.9 - February 27 2013

» Added the define name () method to create defined names and ranges in a workbook or
worksheet.

» Added the worksheets () method as an accessor for the worksheets in a workbook.

22.13 Release 0.0.8 - February 26 2013

» Added the merge range () method to merge worksheet cells.

22.10. Release 0.1.1 - March 3 2013 183

Creating Excel files with Python and XisxWriter, Release 0.2.0

22.14 Release 0.0.7 - February 25 2013

» Added final page setup methods to complete the page setup section.

— print_area()

fit_to_pages()

set_start_page()

set_print_scale()

set_h_pagebreaks()

set_v_pagebreaks()

22.15 Release 0.0.6 - February 22 2013

» Added page setup method.

— print_row_col_headers

22.16 Release 0.0.5 - February 21 2013

» Added page setup methods.
— repeat_rows()

— repeat_columns()

22.17 Release 0.0.4 - February 20 2013

» Added Python 3 support with help from John Evans. Tested with:
— Python-2.7.2
— Python-2.7.3
— Python-3.2
— Python-3.3.0
» Added page setup methods.

— center_horizontally()

center_vertically()

set_header()

set_footer()

hide_gridlines()

184 Chapter 22. Changes in XlsxWriter

Creating Excel files with Python and XlsxWriter, Release 0.2.0

22.18 Release 0.0.3 - February 19 2013

» Added page setup method.

— set_margins()

22.19 Release 0.0.2 - February 18 2013

» Added page setup methods.

set_landscape()

set_portrait()

set_page view()

set_paper()

print_across()

22.20 Release 0.0.1 - February 17 2013

* First public release.

22.18. Release 0.0.3 - February 19 2013

185

Creating Excel files with Python and XisxWriter, Release 0.2.0

186 Chapter 22. Changes in XlsxWriter

CHAPTER
TWENTYTHREE

AUTHOR

XlsxWriter was written by John McNamara.
* GitHub repos
Perl CPAN modules

Twitter @jmcnamarai3

Coderwall
* Ohloh

You can contact me at jmcnamara@cpan.org.

187

https://github.com/jmcnamara
http://search.cpan.org/~jmcnamara/
https://twitter.com/jmcnamara13
https://coderwall.com/jmcnamara
https://www.ohloh.net/p/XlsxWriter/contributors/2717606196831029
mailto:jmcnamara@cpan.org

Creating Excel files with Python and XisxWriter, Release 0.2.0

188 Chapter 23. Author

CHAPTER
TWENTYFOUR

LICENSE

XlsxWriter is released under a BSD license.
Copyright (c) 2013, John McNamara <jmcnamara@cpan.org> All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided with
the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those of the authors
and should not be interpreted as representing official policies, either expressed or implied, of the
FreeBSD Project.

189

mailto:jmcnamara@cpan.org

Creating Excel files with Python and XisxWriter, Release 0.2.0

190 Chapter 24. License

A

activate() (built-in function), 52
add_format() (built-in function), 25
add_worksheet() (built-in function), 24
autofilter() (built-in function), 56

C

center_horizontally() (built-in function), 63
center_vertically() (built-in function), 63
close() (built-in function), 25
conditional_format() (built-in function), 48

D

define_name() (built-in function), 27

F

filter_column() (built-in function), 57
filter_column_list() (built-in function), 57
fit_to_pages() (built-in function), 70

G

get_name() (built-in function), 52

H

hide() (built-in function), 53
hide_gridlines() (built-in function), 68
hide_zero() (built-in function), 58

insert_image() (built-in function), 46

M

merge_range() (built-in function), 54

P

print_across() (built-in function), 69
print_area() (built-in function), 69

INDEX

print_row_col_headers() (built-in function), 69
protect() (built-in function), 59

R

repeat_columns() (built-in function), 68
repeat_rows() (built-in function), 67
right_to_left() (built-in function), 58

S

select() (built-in function), 53

set_align() (built-in function), 80
set_bg_color() (built-in function), 83
set_bold() (built-in function), 75
set_border() (built-in function), 84
set_border_color() (built-in function), 85
set_bottom() (built-in function), 85
set_bottom_color() (built-in function), 86
set_center_across() (built-in function), 80
set_column() (built-in function), 44
set_comments_author() (built-in function), 51
set_fg_color() (built-in function), 83
set_first_sheet() (built-in function), 54
set_font_color() (built-in function), 74
set_font_name() (built-in function), 74
set_font_script() (built-in function), 76
set_font_size() (built-in function), 74
set_font_strikeout() (built-in function), 75
set_footer() (built-in function), 67
set_h_pagebreaks() (built-in function), 71
set_header() (built-in function), 64
set_hidden() (built-in function), 79
set_indent() (built-in function), 82
set_italic() (built-in function), 75
set_landscape() (built-in function), 61
set_left() (built-in function), 85
set_left_color() (built-in function), 86
set_locked() (built-in function), 79

191

Creating Excel files with Python and XisxWriter, Release 0.2.0

set_margins() (built-in function), 64
set_num_format() (built-in function), 76
set_page_view() (built-in function), 61
set_paper() (built-in function), 62
set_pattern() (built-in function), 82
set_portrait() (built-in function), 61
set_print_scale() (built-in function), 71
set_properties() (built-in function), 26
set_right() (built-in function), 85
set_right_color() (built-in function), 86
set_rotation() (built-in function), 81
set_row() (built-in function), 42
set_shrink() (built-in function), 82
set_start_page() (built-in function), 71
set_tab_color() (built-in function), 58
set_text_justlast() (built-in function), 82
set_text_wrap() (built-in function), 81
set_top() (built-in function), 85
set_top_color() (built-in function), 86
set_underline() (built-in function), 75
set_v_pagebreaks() (built-in function), 72
set_zoom() (built-in function), 58
show_comments() (built-in function), 51

W

Workbook() (built-in function), 23
worksheets() (built-in function), 28
write() (built-in function), 29
write_array_formula() (built-in function), 35
write_blank() (built-in function), 36
write_column() (built-in function), 42
write_comment() (built-in function), 49
write_datetime() (built-in function), 37
write_formula() (built-in function), 34
write_number() (built-in function), 33
write_rich_string() (built-in function), 39
write_row() (built-in function), 41
write_string() (built-in function), 32
write_url() (built-in function), 37

192

Index

	Introduction
	Getting Started with XlsxWriter
	Installing XlsxWriter
	Running a sample program
	Documentation

	Tutorial 1: Create a simple XLSX file
	Tutorial 2: Adding formatting to the XLSX File
	Tutorial 3: Writing different types of data to the XLSX File
	The Workbook Class
	Constructor
	workbook.add_worksheet()
	workbook.add_format()
	workbook.close()
	workbook.set_properties()
	workbook.define_name()
	workbook.worksheets()

	The Worksheet Class
	worksheet.write()
	worksheet.write_string()
	worksheet.write_number()
	worksheet.write_formula()
	worksheet.write_array_formula()
	worksheet.write_blank()
	worksheet.write_datetime()
	worksheet.write_url()
	worksheet.write_rich_string()
	worksheet.write_row()
	worksheet.write_column()
	worksheet.set_row()
	worksheet.set_column()
	worksheet.insert_image()
	worksheet.conditional_format()
	worksheet.write_comment()
	worksheet.show_comments()
	worksheet.set_comments_author()
	worksheet.get_name()
	worksheet.activate()
	worksheet.select()
	worksheet.hide()
	worksheet.set_first_sheet()
	worksheet.merge_range()
	worksheet.autofilter()
	worksheet.filter_column()
	worksheet.filter_column_list()
	worksheet.set_zoom()
	worksheet.right_to_left()
	worksheet.hide_zero()
	worksheet.set_tab_color()
	worksheet.protect()

	The Worksheet Class (Page Setup)
	worksheet.set_landscape()
	worksheet.set_portrait()
	worksheet.set_page_view()
	worksheet.set_paper()
	worksheet.center_horizontally()
	worksheet.center_vertically()
	worksheet.worksheet.set_margins()
	worksheet.set_header()
	worksheet.set_footer()
	worksheet.repeat_rows()
	worksheet.repeat_columns()
	worksheet.hide_gridlines()
	worksheet.print_row_col_headers()
	worksheet.print_area()
	worksheet.print_across()
	worksheet.fit_to_pages()
	worksheet.set_start_page()
	worksheet.set_print_scale()
	worksheet.set_h_pagebreaks()
	worksheet.set_v_pagebreaks()

	The Format Class
	format.set_font_name()
	format.set_font_size()
	format.set_font_color()
	format.set_bold()
	format.set_italic()
	format.set_underline()
	format.set_font_strikeout()
	format.set_font_script()
	format.set_num_format()
	format.set_locked()
	format.set_hidden()
	format.set_align()
	format.set_center_across()
	format.set_text_wrap()
	format.set_rotation()
	format.set_indent()
	format.set_shrink()
	format.set_text_justlast()
	format.set_pattern()
	format.set_bg_color()
	format.set_fg_color()
	format.set_border()
	format.set_bottom()
	format.set_top()
	format.set_left()
	format.set_right()
	format.set_border_color()
	format.set_bottom_color()
	format.set_top_color()
	format.set_left_color()
	format.set_right_color()

	Working with Cell Notation
	Working with Formats
	Creating and using a Format object
	Format methods and Format properties
	Format Colors
	Format Defaults
	Modifying Formats

	Working with Dates and Time
	Working with Autofilters
	Applying an autofilter
	Filter data in an autofilter
	Setting a filter criteria for a column
	Setting a column list filter
	Example

	Working with Conditional Formatting
	The conditional_format() method
	Conditional Format Options
	Conditional Formatting Examples

	Working with Cell Comments
	Setting Comment Properties

	Examples
	Example: Hello World
	Example: Simple Feature Demonstration
	Example: Dates and Times in Excel
	Example: Adding hyperlinks
	Example: Array formulas
	Example: Applying Autofilters
	Example: Conditional Formatting
	Example: Merging Cells
	Example: Writing ``Rich'' strings with multiple formats
	Example: Inserting images into a worksheet
	Example: Adding Headers and Footers to Worksheets
	Example: Adding Cell Comments to Worksheets (Simple)
	Example: Adding Cell Comments to Worksheets (Advanced)
	Example: Setting Document Properties
	Example: Unicode - Polish in UTF-8
	Example: Unicode - Shift JIS
	Example: Setting Worksheet Tab Colours
	Example: Enabling Cell protection in Worksheets

	Comparison with Excel::Writer::XLSX
	Compatibility with Excel::Writer::XLSX

	Alternative modules for handling Excel files
	XLWT
	XLRD
	Openpyxl

	Known Issues and Bugs
	`unknown encoding: utf-8' Error
	Formula results not displaying in Excel
	Formula results displaying as zero in non-Excel apps

	Reporting Bugs
	Upgrade to the latest version of the module
	Read the documentation
	Look at the example programs
	Use the official XlsxWriter Issue tracker on GitHub
	Pointers for submitting a bug report

	Frequently Asked Questions
	Q. Can XlsxWriter use an existing Excel file as a template?
	Q. Why do my formulas show a zero result in some, non-Excel applications?
	Q. Can I apply a format to a range of cells in one go?
	Q. Is feature X supported or will it be supported?
	Q. Is there an ``AutoFit'' option for columns?
	Q. Do people actually ask these questions frequently, or at all?

	Changes in XlsxWriter
	Release 0.2.0 - March 24 2013
	Release 0.1.9 - March 19 2013
	Release 0.1.8 - March 18 2013
	Release 0.1.7 - March 18 2013
	Release 0.1.6 - March 17 2013
	Release 0.1.5 - March 10 2013
	Release 0.1.4 - March 8 2013
	Release 0.1.3 - March 7 2013
	Release 0.1.2 - March 6 2013
	Release 0.1.1 - March 3 2013
	Release 0.1.0 - February 28 2013
	Release 0.0.9 - February 27 2013
	Release 0.0.8 - February 26 2013
	Release 0.0.7 - February 25 2013
	Release 0.0.6 - February 22 2013
	Release 0.0.5 - February 21 2013
	Release 0.0.4 - February 20 2013
	Release 0.0.3 - February 19 2013
	Release 0.0.2 - February 18 2013
	Release 0.0.1 - February 17 2013

	Author
	License
	Index

