

NANOLPNANOLP

Introduction to LPIntroduction to LP

LPLP : Literate Programming -
more reliable, readable, supportable

LPLP : Literate Programming -
more reliable, readable, supportable

Benefits of LPBenefits of LP

● Makes programming fine!

● Is good for children teaching

● Is good for books, articles...

● Is good for collaborative working

● Makes software supportable

● Makes code readable (and printable)

● Reduces bugs!

How to achieve this?How to achieve this?

try new free tool

NanoLPNanoLP

History. New terminologyHistory. New terminology

● introduced by Donald
Knuth near 1970s

● alternative to the
structured programming
paradigm

● tools: WEB, CWEB,
noweb...

● chunk — piece of code

● command — macros

● surrounder — strings
used as left, right
surround command
symbols

● fetcher — method of
source retrieving

Problems with old toolsProblems with old tools

● weird syntax

● only one input files format (based on TeX, LaTeX,
XML...)

● presentation facilities are limited by input format

● no publishing facility

● weak code transformation

● not extendible, not scriptable

How it looksHow it looks

To test if number is positive
(pos), use: `n >= 0`. Now
absolute function will be:

 int abs(int n) {

 if ([[=pos]])

 return n;

 else return -n;

 }

Markdown

Simple example

● easy to read

● flow of thoughts

● free structure

● doc formatting

● images, tables, diagrams,
links, etc...

How it looksHow it looks

Standard C headers guard
(hguard) is:

 #ifndef ${file}_H

 #define ${file}_H

and `#endif` at the end. So
(file.x, prn.h):

 [[=hguard.0, file:PRN]]

 #define PRN(x) printf(x)

 [[=hguard.1]

Markdown

Flex macros:

● placeholders

● multipart

● saving to file

● multiple output files

● and more options...

see result ►

#ifndef PRN_H

#define PRN_H

#define PRN(x) printf(x)

#endif

How it looksHow it looks

and result will be saved in „prn.h“

How it looksHow it looks

Standard C headers guard
(hguard) is:

 #ifndef ${file}_H

 #define ${file}_H

and #endif at the end. So
(file.x, prn.h):

 [[=hguard.0, file:PRN]]

 #define PRN(x) printf(x)

 [[=hguard.1]

OpenOffice

WYSIWYG way:

● edit result doc

● no special syntax

● rich styling

● easy for diagrams, tables,
etc...

More examplesMore examples

See test/tests folder in source archive...See test/tests folder in source archive...

NanoLP advantagesNanoLP advantages

● Clean, human (book) oriented syntax

● Standard documents formats

● Flex macros system

● Fetching sources via different protocols

● Highly customizable, extendible

● Publishing code on the Web

● Imports

and many more...!

Documents formatsDocuments formats

● OpenOffice, LibreOffice

● Markdown

● MultiMarkdown

● ReStructuredText

● Creole

● TeX/LaTeX

● HTML/XML

● AsciiDoc

● Txt2Tags

Work in WYSIWYG office suite or with Wiki tools, or even
with publishing systems!

Code sources fetchingCode sources fetching

● via FTP (authorized too)

● via HTTP (authorized too)

● from ZIP archive (crypted too)

● from shell command output

● ...and sure from local FS

User can add custom fetchers!

Publishing on the WebPublishing on the Web

1. Generated cross-references file

2. Raw documents (Creole, Markdown, etc)

3. Converted to HTML documents

4. Special published HTML documents

1: Total info, list of chunks, interactive links
4: Converted LP macroses to interactive links

Custom styling is supported

Publishing consPublishing cons

instead of corporative Wiki with out-of-dated code
documentation...

use forever actual documentation with:

● navigation

● source extracting

● source importing

● good for reading, printing, teaching

Syntax conceptSyntax concept

● …command...chunk…

– define named chunk

● …sys command…command…chunk...

– exec sys command, followed by case 1)

● ...command...chunk...chunk...

– define multipart named chunk

- sys commands are executed

- named chunks are pasted

How it is parsingHow it is parsing

extracted:

● commands

● inline chunks

● block chunks

□ commands in doc fragment are surrounded by 2
strings: [[,]] or <<,>> or any user defined

□ commands in code fragment are surrounded by 2
strings: [[,]] or <<,>> or any user defined

□ pasted commands begins with = symbol

System commandsSystem commands

● import another code sources

● flush result to files

● create variables or maps of them

● catch events...

Code transformationCode transformation

● paste

● substitute vars

● transform of vars

● transform of chunks

● custom join of chunks

● custom join of vars

Customize via:

● events

● parameters

● positional args

● keyword args

Code transformationCode transformation

It is possible to paste «mystructs»:

[[=mystructs, one, two, three]]

and to get:

struct mystruct m[] = {

 { ONE, ˝one˝},

 { TWO, ˝two˝},

 { THREE, ˝three˝} };

See events catching about it

Other customizationOther customization

● Surround symbols

● Input format detection

● Parsing options

● Custom styles (via CSS)

● Custom sys commands

● Custom fetchers

● Custom parsers

● Custom event handlers

DetailsDetails

● Supported UTF-8

● Python 2.7 - 3+ compatible

● Works on Linux, Windows

● Many tests are provided

● Free and open source

● GNU licensed

More infoMore info

Project home: http://code.google.com/p/nano-lp/

Blog: http://balkansoft.blogspot.com/

http://code.google.com/p/nano-lp/
http://balkansoft.blogspot.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

