
SANDIA REPORT
SAND2021-9473
Printed August, 2021

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

AEVmod – Atomic Environment Vector
Module Documentation
Habib N. Najm, Yoona Yang

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

ABSTRACT

This report outlines the mathematical formulation for the atomic environment vector (AEV) con-
struction used in the aevmod software package. The AEV provides a summary of the geometry
of a molecule or atomic configuration. We also present the formulation for the analytical Jacobian
of the AEV with respect to the atomic Cartesian coordinates. The software provides functionality
for both the AEV and AEV-Jacobian, as well as the AEV-Hessian which is available via reliance
on the third party library Sacado.

3

ACKNOWLEDGMENT

This work is supported as part of the Computational Chemical Sciences Program funded by the
U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geo-
sciences and Biosciences Division. Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA0003525.

4

CONTENTS

1. Introduction 6

2. Mathematical Formulation 7
2.1. Atomic Environment Vector . 7
2.2. Analytical Jacobian . 10
2.3. A simple AEV example . 14

3. Code Use Example 16

References 19

5

1. INTRODUCTION

The aevmod package provides functionality for the representation of geometrical structure of a
molecule, or an atomic configuration, using the atomic environment vector (AEV) construction
of Smith et al. [6]. It also provides functionality for computation of the AEV Jacobian and Hes-
sian with respect to Cartesian atomic coordinates. This report outlines the AEV construction, with
detailed formulation of the AEV representation as well as its analytical Jacobian. The analytical
Hessian formulation is beyond the scope of this report, and is substituted here with reliance on au-
tomatic differentiation of the underlying C++ AEV code using Sacado [1] to arrive at the Hessian.
The AEV formulation, following [6], is based on the Behler and Parinello [2–5] symmetry func-
tions (SFs), which ensure automatic satisfaction of translational and rotational invariances in the
AEV construction. This formulation, including both the AEV and its Jacobian, are detailed in § 2,
while highlights of the code structure and an illustrative example implementation are discussed in
§ 3.

6

https://trilinos.github.io/sacado.html

2. MATHEMATICAL FORMULATION

We begin with a description of the formulation of the AEV, followed by that of the analytical
Jacobian, and end with a simple example.

2.1. Atomic Environment Vector

Consider a configuration of N atoms C = (A1, . . . ,AN) in some geometrical arrangement. This is
an ordered vector, where e.g. for C = (H,H,O), we have A1 = A2 = H, and A3 = O. It can be
a molecule, e.g. H2O, or a combination of a molecule and an atom, e.g. OH and H, or H2 and
O; or simply three unbound atoms H, H, and O. In general, let the location of atom Ai be the
vector xi ∈ R3. The system is fully defined by (C ,xxx) where xxx = (x1, . . . ,xN) ∈ R3N , is the vector
of coordinates of all N atoms in C . Further, we define the set of atom types in the system as
T = {T1, . . . ,Tn}, and the number of atoms of each type τ ∈ T as Nτ . For present purposes, we
define the type of any atom Ai as

Ti := T (Ai)≡ Ai, (2.1.1)

thus, again, for the above configuration (H,H,O), we have the set of atom types T := {O,H}.
Next, let the index set of atoms of type τ in the configuration C be Sτ . Thus for, C = (A1, . . . ,AN),
and T = {T1, . . . ,Tn},

Sτ := {i | Ti = τ}, τ = T1, . . . ,Tn; i = 1, . . . ,N (2.1.2)

Similarly, we define the index set of pair-wise atom indices, with τ = T1, . . . ,Tn; κ = τ, . . . ,Tn; as
follows

Sτ,κ := {(j,k) | T j = τ, Tk = κ, j = 1, . . . ,N−1; k = j+1, . . . ,N} (2.1.3)

For example, for a system with T = {C,H,O}, and the two configurations (H,H,O) and (C,O,O),
we have the following index sets:

C SC SH SO SC,C SC,H SC,O SH,H SH,O SO,O

(H,H,O) {} {1,2} {3} {} {} {} {(1,2)} {(1,3),(2,3)} {}
(C,O,O) {1} {} {2,3} {} {} {(1,2),(1,3)} {} {} {(2,3)}

Similarly, for T = {C,H,O,N}, and C = (H,C,O,O,H), e.g. this can be the molecule formic acid, we have

C SC SH SO SN

(H,C,O,O,H) {2} {1,5} {3,4} {}

7

C SC,C SC,H SC,O SC,N SH,H

(H,C,O,O,H) {} {(1,2),(2,5)} {(2,3),(2,4)} {} {(1,5)}

C SH,O SH,N SO,O SO,N SN,N

(H,C,O,O,H) {(1,3),(1,4),(3,5),(4,5)} {} {(3,4)} {} {}

Note that, with n atom types, there are n index sets Sτ , and m = n(n+1)/2 index sets Sτ,κ .

We define the AEV of atom Ai in a configuration as yi(C ,xxx) ∈ RM. The AEV has both radial
and angular components, and is constructed as follows. Consider any atom Ai. Let us write the
radial components of yi for pairings with each available atom type separately, according to the Sτ

index sets. Similarly, we write angular components of yi, for groupings with pairs of atom types
separately according to the index sets Sτ,κ . In each case this is done by summing contributions of
the pairings/groupings within each set.

First, define the cutoff function

fc(Ri j,Rc) =

0.5cos
(

πRi j
Rc

)
+0.5 for Ri j ≤ Rc

0.0 for Ri j > Rc

(2.1.4)

where Ri j = |xi− x j| is the Eucledian distance between the two atoms (Ai,A j), xi ∈ R3 is the
location of atom Ai, similarly for x j of A j, and Rc is a cutoff radius.

Then with the parameter vector µ = (ηR,ρR) ∈R2, to be defined below, define radial components
of yi for pairings with atoms of type τ ∈ T as

yR,τ,µ
i = ∑

j∈Sτ , j 6=i
e−ηR(Ri j−ρR)2

fc(Ri j,RR
c) (2.1.5)

with µ ∈ {µ1, . . . ,µMR} in general, and where RR
c is a radial-SF specific cutoff radius. Further, with

a second parameter vector ν = (ηA,ρA,ζ ,α) ∈ R4, we define angular components of yi as

yA,τ,κ,ν
i = ∑

(j,k)∈Sτ,κ
j 6=i,k 6=i

(0.5+0.5cos(θi jk−α))ζ e−ηA(0.5(Ri j+Rik)−ρA)2
fc(Ri j,RA

c) fc(Rik,RA
c) (2.1.6)

with ν ∈ {ν1, . . . ,νMA}, and RA
c is an angular-SF specific cutoff radius. Note that θi jk is the angle,

centered on Ai, between the two vectors xi j := x j− xi and xik := xk− xi, thus

θi jk := arccos
xi j · xik

|xi j||xik|
, such that θi jk ∈ [0,π]. (2.1.7)

Note that this angular SF formulation differs from that in Smith et al. [6] in two ways that ultimately
do not matter. First, we have dispensed with the extra factor of 2 in front of the summation. In their
formulation, the factor in front of the sum is 21−ζ , which is 2/2ζ . The denominator is absorbed
in the formulation of the summand in the above angular SF expression, which leaves a constant
factor of 2 in front of the sum. A scaling factor like that among all the angular SF components is

8

not particularly useful, as, when this feature vector is used as input to a neural network (NN), the
NN training would make up for it anyway with appropriate scaling if absent. The other difference
is that their summation includes terms like (j,k) and (k, j), which are excluded above by the
definition of Sτ,κ , where we have k = j+1, . . . ,N by construction, thus enforcing that the second
index is always greater than the first in any element of Sτ,κ . This does not imply any meaningful
change, however, since the symmetry of the summand with respect to commutation of the indices is
clear, so that the summand is identical for any two pairs (j,k) and (k, j). Effectively this translates
to another doubling relative to the above expression, which is again inconsequential. Thus, the
above expression is simpler, dispensing with the factor in front of the sum, and with the logic for
avoidance of repeated computation of identical terms.

The full length of the AEV is
M = MR n+MA m (2.1.8)

and, with

yR,τ
i := (yR,τ,µ1

i , . . . ,y
R,τ,µMR
i) ∈ RMR (2.1.9)

yA,τ,κ
i := (yA,τ,κ,ν1

i , . . . ,y
A,τ,κ,νMA
i) ∈ RMA (2.1.10)

we can then write the full AEV as

yi = (yR,τ1
i , . . . ,yR,τn

i ,yA,(τ,κ)1
i , . . . ,yA,(τ,κ)m

i) ∈ RM. (2.1.11)

Thus, for example, for T = {C,H,O,N}, hence n = 4, if we use, as in the supplementary materials
in [6], MR = 8 (in their notation: a fixed η and 8 different Rs values) and MA = 8, (in their nota-
tion: fixed ζ ,η ,Rs and 8 different θs values), we have M = 112, for any molecule/configuration
comprised of the elements of T . Similarly, as used in the main text in [6], p. 3200, with MR = 32
(their notation: fixed η and 32 Rs), and MA = 64 (their notation: fixed η ,ζ ; 8 Rs values, and 8 θs
values, giving 8×8 = 64) we have M = 768.

Note that, with h being the spacing of the symmetry functions, choosing δ/h ≈ 1 defines the
degree of overlap among them. We find δ/h = 2/3 reasonable, being also close to the choice
in [6]. Similarly, ζ provides a strength of decay of the cosine function. Increasing ζ gives a
steeper drop in the function, and thus less overlap between neighboring angular SFs. Reasonable
nominal values of the AEV parameters are

• RR
c = 4.6, RA

c = 3.1

• ζ = 8

• nρR = 32, h = RR
c /nρR , ηR = 1.0/δ 2, δ = 2h/3, ρR

i = (i− 1
2)h, i = 1, . . . ,nρR

• nρA = 8, h = RA
c /nρA , ηA = 1.0/δ 2, δ = 2h/3, ρA

i = (i− 1
2)h, i = 1, . . . ,nρA

• nα = 8, h = π/(nα −1), αi = (i−1)h, i = 1, . . . ,nα

9

2.2. Analytical Jacobian

Let us next write down the analytical Jacobian for the above AEV construction. We have so far
expressed the 3D coordinates of an atom ` as x`. Here will expressly derive the formulation in
terms of the 3 spatial coordinates, where we define x := (u,v,w). Considering a configuration with
N atoms, our key requirement is to write-out the gradients

gir` :=
(

∂yir

∂u`
,
∂yir

∂v`
,
∂yir

∂w`

)T
, i, `= 1, . . . ,N; r = 1, . . . ,M (2.2.1)

where with µ = (ηR,ρR) and ν = (ηA,ρA,ζ ,α), and for AEV designed values given by µ ∈
{µ1, · · · ,µMR} and ν ∈ {ν1, · · · ,νMA}, and with σ` ∈ {u`,v`,w`} we have

∂yir

∂σ`
=


∂

∂σ`
yR,τp,µq

i p = 1, . . . ,n;q = 1, . . . ,MR;r = (p−1)MR +q = 1, . . . ,MRn

∂

∂σ`
yA,(τ,κ)pνq

i p = 1, . . . ,m;q = 1, . . . ,MA;r = MRn+(p−1)MA +q = MRn+1, . . . ,M

Further, with
χ

R
i jq := e−ηR

q (Ri j−ρR
q)

2
fc(Ri j,RR

c) (2.2.2)

we have

∂

∂σ`
yR,τp,µq

i = ∑
j∈Sτp , j 6=i

∂

∂σ`
χ

R
i jq (2.2.3)

and, with

χ
A
i jkq := (0.5+0.5cos(θi jk−αq))

ζqe−ηA
q (0.5(Ri j+Rik)−ρA

q)
2

fc(Ri j,RA
c) fc(Rik,RA

c) (2.2.4)

we have

∂

∂σ`
yA,(τ,κ)pνq

i = ∑
(j,k)∈S(τ,κ)p

j 6=i,k 6=i

∂

∂σ`
χ

A
i jkq. (2.2.5)

Moreover, we have

∂

∂σ`
χ

R
i jq =


∂

∂σi
χR

i jq for `= i
∂

∂σ j
χR

i jq for `= j

0 otherwise

(2.2.6)

and

∂

∂σ`
χ

A
i jkq =



∂

∂σi
χA

i jkq for `= i
∂

∂σ j
χA

i jkq for `= j

∂

∂σk
χA

i jkq for `= k

0 otherwise.

(2.2.7)

10

Thus, we need to derive ∇xi χ
R
i jq, ∇x j χ

R
i jq, ∇xi χ

A
i jkq, ∇x j χ

A
i jkq, and ∇xk χA

i jkq.

We have, to begin with,

∂

∂σi
χ

R
i jq =

∂

∂σi

(
e−ηR

q (Ri j−ρR
q)

2
fc(Ri j,RR

c)
)

=
∂

∂σi

(
e−ηR

q (Ri j−ρR
q)

2
)

fc(Ri j,RR
c)+ e−ηR

q (Ri j−ρR
q)

2 ∂

∂σi

(
fc(Ri j,RR

c)
)

= −2η
R
q (Ri j−ρ

R
q)

∂Ri j

∂σi
e−ηR

q (Ri j−ρR
q)

2
fc(Ri j,RR

c)+ e−ηR
q (Ri j−ρR

q)
2 ∂

∂σi

(
fc(Ri j,RR

c)
)

and

∂

∂σi
Ri j =

∂

∂σi
|xi− x j|=

∂

∂σi

(
(ui−u j)

2 +(vi− v j)
2 +(wi−w j)

2
)1/2

(2.2.8)

=
1

2Ri j

(
∂

∂σi
(ui−u j)

2 +
∂

∂σi
(vi− v j)

2 +
∂

∂σi
(wi−w j)

2
)

(2.2.9)

or

∂

∂ui
Ri j =

1
2Ri j

(
∂

∂ui
(ui−u j)

2
)
=

ui−u j

Ri j
(2.2.10)

∂

∂vi
Ri j =

1
2Ri j

(
∂

∂vi
(vi− v j)

2
)
=

vi− v j

Ri j
(2.2.11)

∂

∂wi
Ri j =

1
2Ri j

(
∂

∂wi
(wi−w j)

2
)
=

wi−w j

Ri j
(2.2.12)

Further, for notational convenience, define the (modified) Heaviside function, for x ∈ R

H(x) :=

{
1 for x≥ 0
0 for x < 0

(2.2.13)

such that
fc(Ri j,Rc) =

[
0.5cos

(
πRi j

Rc

)
+0.5

]
H(Rc−Ri j) (2.2.14)

and
∂

∂σi

(
fc(Ri j,RR

c)
)
=−0.5

π

RR
c

∂Ri j

∂σi
sin
(

πRi j

RR
c

)
H(RR

c −Ri j) (2.2.15)

so that

∂

∂ui

(
fc(Ri j,RR

c)
)

= −0.5
π

RR
c

ui−u j

Ri j
sin
(

πRi j

RR
c

)
H(RR

c −Ri j) (2.2.16)

∂

∂vi

(
fc(Ri j,RR

c)
)

= −0.5
π

RR
c

vi− v j

Ri j
sin
(

πRi j

RR
c

)
H(RR

c −Ri j) (2.2.17)

∂

∂wi

(
fc(Ri j,RR

c)
)

= −0.5
π

RR
c

wi−w j

Ri j
sin
(

πRi j

RR
c

)
H(RR

c −Ri j) (2.2.18)

11

Similarly,

∂

∂σ j
χ

R
i jq = −2η

R
q (Ri j−ρ

R
q)

∂Ri j

∂σ j
e−ηR

q (Ri j−ρR
q)

2
fc(Ri j,RR

c)+ e−ηR
q (Ri j−ρR

q)
2 ∂

∂σ j

(
fc(Ri j,RR

c)
)

and

∂

∂σ j
Ri j =

1
2Ri j

(
∂

∂σ j
(ui−u j)

2 +
∂

∂σ j
(vi− v j)

2 +
∂

∂σ j
(wi−w j)

2
)

(2.2.19)

or

∂

∂u j
Ri j =

1
2Ri j

(
∂

∂u j
(ui−u j)

2
)
=−

ui−u j

Ri j
(2.2.20)

∂

∂v j
Ri j =

1
2Ri j

(
∂

∂v j
(vi− v j)

2
)
=−

vi− v j

Ri j
(2.2.21)

∂

∂w j
Ri j =

1
2Ri j

(
∂

∂w j
(wi−w j)

2
)
=−

wi−w j

Ri j
(2.2.22)

and
∂

∂σ j

(
fc(Ri j,RR

c)
)
=−0.5

π

RR
c

∂Ri j

∂σ j
sin
(

πRi j

RR
c

)
H(RR

c −Ri j) (2.2.23)

so that

∂

∂u j

(
fc(Ri j,RR

c)
)

= 0.5
π

RR
c

ui−u j

Ri j
sin
(

πRi j

RR
c

)
H(RR

c −Ri j) (2.2.24)

∂

∂v j

(
fc(Ri j,RR

c)
)

= 0.5
π

RR
c

vi− v j

Ri j
sin
(

πRi j

RR
c

)
H(RR

c −Ri j) (2.2.25)

∂

∂w j

(
fc(Ri j,RR

c)
)

= 0.5
π

RR
c

wi−w j

Ri j
sin
(

πRi j

RR
c

)
H(RR

c −Ri j). (2.2.26)

Consider then

∂

∂σ`
χ

A
i jkq =

∂

∂σ`

(
(0.5+0.5cos(θi jk−αq))

ζq e−ηA
q (0.5(Ri j+Rik)−ρA

q)
2

fc(Ri j,RA
c) fc(Rik,RA

c)
)

=
∂

∂σ`

(
(0.5+0.5cos(θi jk−αq))

ζq
)

e−ηA
q (0.5(Ri j+Rik)−ρA

q)
2

fc(Ri j,RA
c) fc(Rik,RA

c)

+ (0.5+0.5cos(θi jk−αq))
ζq

∂

∂σ`

(
e−ηA

q (0.5(Ri j+Rik)−ρA
q)

2
)

fc(Ri j,RA
c) fc(Rik,RA

c)

+ (0.5+0.5cos(θi jk−αq))
ζq e−ηA

q (0.5(Ri j+Rik)−ρA
q)

2 ∂

∂σ`

(
fc(Ri j,RA

c)
)

fc(Rik,RA
c)

+ (0.5+0.5cos(θi jk−αq))
ζq e−ηA

q (0.5(Ri j+Rik)−ρA
q)

2
fc(Ri j,RA

c)
∂

∂σ`

(
fc(Rik,RA

c)
)
.

With the derivatives of fc() already done above, we only need to derive, for `= i, j,k,

∂

∂σ`

(
(0.5+0.5cos(θi jk−αq))

ζq
)

= −1
2

ζq(0.5+0.5cos(θi jk−αq))
ζq−1 sin(θi jk−αq)

∂

∂σ`
θi jk

12

and, with γi jkq := 0.5(Ri j +Rik)−ρA
q ,

∂

∂σ`

(
e−ηA

q (0.5(Ri j+Rik)−ρA
q)

2
)

= e−ηA
q γ2

i jkq
∂

∂σ`

(
−η

A
q γ

2
i jkq

)
= −η

A
q e−ηA

q γ2
i jkqσ2γi jkq

∂

∂σ`
γi jkq

= −η
A
q e−ηA

q γ2
i jkqγi jkq

∂

∂σ`
(Ri j +Rik)

= −η
A
q e−ηA

q γ2
i jkqγi jkq

(
∂

∂σ`
Ri j +

∂

∂σ`
Rik

)
. (2.2.27)

Then, we have already ∂

∂σ`
Ri j for ` = i, j above, and it’s zero for ` = k. Similarly, we can write

∂

∂σ`
Rik for ` = i,k, and it’s zero for ` = j. This leaves only ∂

∂σ`
θi jk to be derived, where, with

θi jk ∈ [0,π], xi j = x j− xi, xik = xk− xi,

∂

∂σ`
θi jk =

∂

∂σ`
arccos

xi j · xik

|xi j||xik|
(2.2.28)

and, given the identity d(cos−1 u)/dx =−(du/dx)/
√

1−u2, we have

∂

∂σ`
θi jk = − ∂

∂σ`

(xi j · xik

|xi j||xik|

)[
1−
(xi j · xik

|xi j||xik|

)2]−1/2

= −
|xi j||xik| ∂

∂σ`
(xi j · xik)− (xi j · xik)

∂

∂σ`
(|xi j||xik|)

(|xi j||xik|)2

[
1−
(xi j · xik

|xi j||xik|

)2]−1/2

which, since |xi j| = |x j − xi| = |xi− x j| = Ri j, and |xik| = Rik, and xi j · xik = |xi j||xik|cosθi jk =

Ri jRik cosθi jk, and since 1− cos2 θi jk = sin2
θi jk, becomes

∂

∂σ`
θi jk = −

∂

∂σ`
(xi j · xik)− cosθi jk

∂

∂σ`
(Ri jRik)

Ri jRik

1
sinθi jk

(2.2.29)

with
∂

∂σ`
(Ri jRik) = Rik

∂

∂σ`
Ri j +Ri j

∂

∂σ`
Rik (2.2.30)

which uses derivatives of Ri j and Rik already evaluated.

This leaves only
∂

∂σ`
(xi j · xik). (2.2.31)

We write
xi j · xik = (ui j,vi j,wi j) · (uik,vik,wik) (2.2.32)

where, ui j := u j−ui, and similarly for the others, so that

xi j · xik = ui juik + vi jvik +wi jwik (2.2.33)

13

so that

∂

∂σ`
(xi j · xik) =

∂

∂σ`
(ui juik + vi jvik +wi jwik) (2.2.34)

=
∂

∂σ`
(ui juik)+

∂

∂σ`
(vi jvik)+

∂

∂σ`
(wi jwik) (2.2.35)

= uik
∂ui j

∂σ`
+ui j

∂uik

∂σ`
+ vik

∂vi j

∂σ`
+ vi j

∂vik

∂σ`
+wik

∂wi j

∂σ`
+wi j

∂wik

∂σ`
(2.2.36)

all of which are trivially known. Thus

∂

∂ui
(xi j · xik) = −uik−ui j (2.2.37)

∂

∂vi
(xi j · xik) = −vik− vi j (2.2.38)

∂

∂wi
(xi j · xik) = −wik−wi j (2.2.39)

∂

∂u j
(xi j · xik) = uik (2.2.40)

∂

∂v j
(xi j · xik) = vik (2.2.41)

∂

∂w j
(xi j · xik) = wik (2.2.42)

∂

∂uk
(xi j · xik) = ui j (2.2.43)

∂

∂vk
(xi j · xik) = vi j (2.2.44)

∂

∂wk
(xi j · xik) = wi j (2.2.45)

With all this, then for any given molecular configuration in a stated geometry, we can compute
both the AEV and its spatial derivatives.

2.3. A simple AEV example

Consider a case with T = {H,O}, and C = (O,H,H), and let’s work it out in detail. We begin by
writing down the radial and angular index sets as follows:

C SH SO SH,H SH,O SO,O
(O,H,H) {2,3} {1} {(2,3)} {(1,2),(1,3)} {}

Then, consider MR = 2, MA = 4, so that the full set of SF parameters is:

14

Rc RR
c = 4.6 RA

c = 3.1
µ = (ηR,ρR) µ1 = (0.42533081−2,1.15) µ2 = (0.42533081−2,3.45)
ν = (ηA,ρA,ζ ,α) ν1 = (0.93652445−2,0.775 ,8,0rad) ν2 = (0.93652445−2,0.775 ,8,π rad)

ν3 = (0.93652445−2,2.325 ,8,0rad) ν4 = (0.93652445−2,2.325 ,8,π rad)

and that the AEV, for each atom i in C is given by:

yi = (yR,H
i ,yR,O

i ,yA,H,H
i ,yA,H,O

i ,yA,O,O
i) (2.3.1)

or, fully expanded with MR = 2 radial SFs and MA = 4 angular SFs,

yi = (yR,H,µ1
i ,yR,H,µ2

i ,yR,O,µ1
i ,yR,O,µ2

i ,yA,H,H,ν1
i ,yA,H,H,ν2

i ,yA,H,H,ν3
i ,yA,H,H,ν4

i ,

yA,H,O,ν1
i ,yA,H,O,ν2

i ,yA,H,O,ν3
i ,yA,H,O,ν4

i ,yA,O,O,ν1
i ,yA,O,O,ν2

i ,yA,O,O,ν3
i ,yA,O,O,ν4

i) (2.3.2)

15

3. CODE USE EXAMPLE

The aevmod package provides C++ computations of the AEV, its Jacobian, and its Hessian, ac-
cessible from Python using pybind11. The code provides two classes, both accessible from
Python,

• aev : contains functionality to define an AEV construction, and evaluate all its associated
quantities of interest, including the AEV itself, its Jacobian, and its Hessian.

• config : contains functionality to define an atomic configuration, and build its various
index sets.

Here’s the example code taev.py that uses the package. It defines atom types, specifies parame-
ters that define the AEV structure, specifies a CH2 molecule/configuration, defines two geometries
of the CH2 configuration, then computes the AEVs, Jacobians, and Hessians for each which are
written to output text files.

1 # A simple test code for computing the AEV and its Jacobian & Hessian
2 import numpy as np
3 import aevmod
4

5 # define types of atom in system
6 types = [’C’,’H’]
7

8 # define AEV structure object
9 nrho_rad = 32 # number of radial aev radial shells

10 nrho_ang = 8 # number of angular aev radial shells
11 nalpha = 8 # number of angular aev angular sectors dividing [0,pi]
12 R_c_rad = 4.6 # radial aev cutoff radius (Angstroms)
13 R_c_ang = 3.1 # angular aev cutoff radius (Angstroms)
14 myaev = aevmod.aev(types, nrho_rad, nrho_ang, nalpha, [R_c_rad,R_c_ang])
15 print("built aev object, AEV size:",myaev.dout)
16

17 # define CH2 molecule symbol list
18 symb = [’C’,’H’,’H’]
19 print("configuration:",symb)
20

21 # define CH2 molecule object
22 cnf = aevmod.config(symb)
23

24 # build index sets
25 myaev.build_index_sets(cnf)
26 print("radial index sets:",cnf.get_radial_index_set())
27 print("angular index sets:",cnf.get_angular_index_set())
28

29 # define numpy array composed of two CH2 xyz structures
30 vxyz = np.array([[0., 0., 0., 0., 0., 1.10771, 1.08378, 0., -0.22899],
31 [0., 0., 0., 0., 0., 1.07672, 0.77665, 0., -0.74575]
32])
33 print("structures:")
34 with np.printoptions(precision=4, suppress=True):
35 for v in vxyz:
36 print(v)

16

37

38 # add vxyz structures to cnf
39 npt = cnf.add_structures(vxyz)
40 print("number of structures:",npt)
41

42 # evaluate AEVs for the array of structures
43 # got_aev[j] is the AEV for structure j
44 # got_aev[j][k] is the AEV for atom k in structure j
45 got_aev = myaev.eval(cnf)
46

47 # write out AEVs
48 fname = "aev.out"
49 print("printing AEVs to",fname)
50 np.savetxt(fname,["# AEV:"],fmt=’%s’)
51 with open(fname, "a") as f:
52 for j in range(npt):
53 for k in range(len(symb)):
54 tag="# structure:"+str(j)+", atom:"+symb[k]+"\n"
55 f.write(tag)
56 np.savetxt(f,got_aev[j][k])
57

58 # evaluate Jacobians of AEVs
59 got_jac = myaev.eval_Jac(cnf)
60

61 # write out Jacobians
62 fname = "jac.out"
63 print("printing Jacobians to",fname)
64 np.savetxt(fname,["# Jac:"],fmt=’%s’)
65 with open(fname, "a") as f:
66 for j in range(npt):
67 for k in range(len(symb)):
68 tag="# structure:"+str(j)+", atom:"+symb[k]+"\n"
69 f.write(tag)
70 np.savetxt(f,got_jac[j][k])
71

72 # evaluate Hessians of AEVs
73 got_hes = myaev.eval_Hess_sac(cnf)
74

75 # write out Hessians
76 fname = "hes.out"
77 print("printing Hessians to",fname)
78 np.savetxt(fname,["# Hes:"],fmt=’%s’)
79 with open(fname, "a") as f:
80 for j in range(npt):
81 for k in range(len(symb)):
82 for l in range(myaev.dout):
83 tag="# structure:"+str(j)+", atom:"+symb[k]+", AEV element:"+str(l)+"\n"
84 f.write(tag)
85 np.savetxt(f,got_hes[j][k][l])

Here is some explanation of this example code,

• line 3: Here is where aevmod is imported.

• line 6: The AEV structure depends on the atom types in the problem, types is a list of
atom types. This example includes molecules and/or atomic configurations that contain only
C and H atoms.

• lines 9-14: Here we define various parameters that determine the AEV structure, as indicated
in the code comments, and then we instantiate an AEV object myaev with the structure
defined by types and the various shown parameters. Note that this object is usable as an
AEV for any molecule/configuration comprised of only C and H atoms. The specific case of

17

one (C,H) molecule or another does not alter the AEV structure, but rather affects the index
sets, as explained in subsequent bullets.

• line 18: Here we define a specific configuration comprised of one C atom and two H atoms.
The list symb simply includes the types of each atom in the configuration, listed in the same
order that their Cartesian coordinates are defined below.

• line 22: Here we instantiate a configuration object cnf for the configuaration symb.

• line 25: Here we build index-sets for the configuration cnf.

• line 21: The numpy array vxyz is a 2-dimensional array with each row containing the Carte-
sian spatial coordinates defining one structure/geometry of the configuration cnf. Thus, if
the molecule/configuration has N atoms, then vxyz needs to have 3N entries in each row.
Further, vxyz can include an arbitrary number of geometries of this configuration, each be-
ing a data point. Thus, with npt structures (here npt=2), vxyz is an array with npt rows
and 3N columns.

• line 39: Here we add the structures specified in vxyz to the data space of cnf, returning
npt for confirmation.

• line 45: This evaluates the AEV, according to Eq. (2.1.11) above, for each of the atoms in
each of the structures defined in vxyz and contained in cnf. It relies on the eval method
in the aev class.

• line 59: This evaluates the analytical Jacobians, following Eqs. (2.2.1,2.2.3,2.2.5) above, for
each of the AEVs for the structures in cnf.

• line 73: Here we evaluate the Hessians for each of the AEVs for the structures in cnf. We
rely on automatic differentiation using Sacado [1]. The Sacado header files are included the
aevmod distribution under the include folder.

18

https://trilinos.github.io/sacado.html

REFERENCES

[1] https://trilinos.github.io/sacado.html.
[2] J. Behler. Atom-centered symmetry functions for constructing high-dimensional neural net-

work potentials. J. Chem. Phys., 134:074106, 2011.
[3] J. Behler. Constructing High-Dimensional Neural Network Potentials: A Tutorial Review. Int.

J. Quant. Chem., 115:1032–1050, 2015.
[4] J. Behler. Neural network potential-energy surfaces for atomistic simulations. Chem. Modell.,

7:1–41, 2017.
[5] J. Behler and M. Parrinello. Generalized Neural-Network Representation of High-Dimensional

Potential-Energy Surfaces. Physical Review Letters, 98:146401, 2007.
[6] J. S. Smith, O. Isayev, and A. E. Roitberg. ANI-1: an extensible neural network potential with

DFT accuracy at force field computational cost. Chem. Sci., 8:3192–3203, 2017.

19

DISTRIBUTION

Hardcopy—External

Number of
Copies Name(s) Company Name and

Company Mailing Address

Hardcopy—Internal

Number of
Copies Name Org. Mailstop

Email—Internal (encrypt for OUO)

Name Org. Sandia Email Address

Technical Library 01177 libref@sandia.gov

20

21

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

	Introduction
	Mathematical Formulation
	Atomic Environment Vector
	Analytical Jacobian
	A simple AEV example

	Code Use Example
	References

