
GenPackageDoc

v. 0.39.3

Holger Queckenstedt

05.05.2023

CONTENTS CONTENTS

Contents

1 Introduction 1

2 Description 2

2.1 Repository content . 2

2.2 Documentation build process . 3

2.3 PDF document structure . 5

2.4 Examples . 6

2.4.1 Example 1: RST file . 6

2.4.2 Example 2: Python module . 6

2.5 Interface and module descriptions . 7

2.6 Runtime variables . 8

2.7 Syntax aspects . 9

2.7.1 Common rules . 9

2.7.2 Syntax extensions . 9

3 CDocBuilder.py 10

3.1 Class: CDocBuilder . 10

3.1.1 Method: Build . 10

4 CInterface.py 11

4.1 Class: CInterface . 11

4.1.1 Method: GetLaTeXStyles . 11

5 CPackageDocConfig.py 12

5.1 Function: printerror . 12

5.2 Class: CPackageDocConfig . 12

5.2.1 Method: PrintConfig . 12

5.2.2 Method: PrintConfigKeys . 12

5.2.3 Method: Get . 12

5.2.4 Method: GetConfig . 12

6 CPatterns.py 13

6.1 Class: CPatterns . 13

6.1.1 Method: GetHeader . 13

6.1.2 Method: GetChapter . 14

6.1.3 Method: GetFooter . 14

6.1.4 Method: GetAutodefinedHeader . 14

7 CSourceParser.py 15

A

CONTENTS CONTENTS

7.1 Class: CSourceParser . 15

7.1.1 Method: ParseSourceFile . 15

8 Appendix 16

9 History 17

B

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The Python package GenPackageDoc generates the documentation of Python modules. The content of this docu-
mentation is taken out of the docstrings of functions, classes and their methods. All docstrings have to be written in
reStructuredText (RST) format, that is a certain markdown dialect.

It is possible to extend the documentation by the content of additional files either in reStructuredText format or in
LaTeX format.

The documentation is generated in four steps:

1. Files in LaTeX format are taken over immediately.

2. Files in reStructuredText format are converted to LaTeX files.

3. All docstrings of all Python modules in the package are converted to LaTeX files.

4. All LaTeX files together are converted to a single PDF document. This requires a separately installed LaTeX
distribution (recommended: TeX Live). A LaTeX distribution is not part of GenPackageDoc and has to be
installed separately!

The sources of GenPackageDoc are available in the following GitHub repository:

python-genpackagedoc

The repository python-genpackagedoc uses it’s own functionality to document itself and the contained Python
package GenPackageDoc.

Therefore the complete repository can be used as an example about writing a package documentation.

It has to be considered, that the main goal of GenPackageDoc is to provide a toolchain to generate documentation
out of Python sources that are stored within a repository, and therefore we have dependencies to the structure of the
repository. For example: Configuration files with values that are specific for a repository, should not be installed.
Such a specific configuration value is e.g. the name of the package or the name of the PDF document.

The impact is: There is a deep relationship between the repository containing the sources to be documented, and the
sources and the configuration of GenPackageDoc itself. Therefore some manual preparations are necessary to use
GenPackageDoc also in other repositories.

How to do this is explained in detail in the next chapters.

The outcome of all preparations of GenPackageDoc in your own repository is a PDF document like the one you
are currently reading.

1

https://github.com/test-fullautomation/python-genpackagedoc

CHAPTER 2. DESCRIPTION

Chapter 2

Description

2.1 Repository content

What is the content of the repository python-genpackagedoc?

� Folder GenPackageDoc

Contains the package code.

This folder is specific for the package.

� Folder config

Contains the repository configuration (e.g. the name of the package, the name of the repository, the author,
and more ...).

This folder is specific for the repository.

� Folder additions

Contains additionally needed sources like setup related class definitions and sources, that are imported from
other repositories - to make this repository stand alone

� Folder packagedoc

Contains all package documentation related files, e.g. the GenPackageDoc configuration, additional input
files and the generated documentation itself.

This folder is specific for the documentation.

� Repository root folder

– genpackagedoc.py

Python script to start the documentation build

– setup.py

Python script to install the package sources. This includes the execution of genpackagedoc.py. There-
fore building the documentation is part of the installation process.

– dump repository config.py

Little helper to dump the repository configuration to console

– readme.rst2md.py

Little helper to convert the RST version of the README file to MD format separately (setup.py also
does this).

2

CHAPTER 2. DESCRIPTION 2.2. DOCUMENTATION BUILD PROCESS

2.2 Documentation build process

How do the files and folders listed above, belong together? What is the way, the information flows when the documen-
tation is generated?

� The process starts with the execution of genpackagedoc.py within the repository root folder.

genpackagedoc.py can be used stand alone - but this script is also called by setup.py. The impact is that
every installation includes an update of the documentation.

� genpackagedoc.py creates a repository configuration object

config/CRepositoryConfig.py

� The repository configuration object reads the static repository configuration values out of a separate json file

config/repository config.json

� The repository configuration object adds dynamic values (like operating system specific settings and paths)
to the repository configuration. Not all of them are required for the documentation build process, but the
repository configuration also supports the setup process (setup.py).

There is one certain setting in the repository configuration file

config/repository config.json,

that is essential for the documentation build process:

"PACKAGEDOC" : "./packagedoc"

This is the path to a folder, in which all further documentation related files are placed. In case of the path
is relative, the reference is the position of genpackagedoc.py. It is required that within this folder the
configuration file for the documentation build process

packagedoc config.json

can be found. The name of this json file is fix!

� The configuration file packagedoc config.json contains settings like

– Paths to Python packages to be documented

– Paths and names of additional RST files

– Path and name of output folder (LaTeX files and output PDF file)

– User defined parameter (that can be defined here as global runtime variables and can be used in any RST
code)

– Basic settings related to the output PDF file (like document name, name of author, ...)

– Path to LaTeX compiler
(a LaTeX distribution is not part of GenPackageDoc)

Be aware of that the within packagedoc config.json specified output folder

"OUTPUT" : "./build"

will be deleted at the beginning of the documentation build process! Make sure that you do not have any files
inside this folder opened when you start the process. In case of the path is relative, the reference is the position
of genpackagedoc.py. The complete path is created recursively.

Further details are explained within the json file itself.

� genpackagedoc.py also creates an own configuration object

GenPackageDoc/CPackageDocConfig.py

CPackageDocConfig.py takes over all repository configuration values, reads in the static GenPackageDoc
configuration (packagedoc config.json) and adds dynamically computed values like the full absolute paths
belonging to the documentation build process. Also all command line parameters are resolved and checked.

The reference for all relative paths is the position of genpackagedoc.py (that is the repository root folder).

3

CHAPTER 2. DESCRIPTION 2.2. DOCUMENTATION BUILD PROCESS

After the execution of genpackagedoc.py the resulting PDF document can be found under the specified name
within the specified output folder ("OUTPUT"). This folder also contains all temporary files generated during the
documentation build process.

Because the output folder is a temporary one, the PDF document is copied to the folder containing the package
sources and therefore is included in the package installation. This is defined in the GenPackageDoc configuration,
section "PDFDEST".

Command line

Some configuration parameter predefined within packagedoc config.json, can be overwritten in command line.

--output

Path and name of folder containing all output files.

--pdfdest

Path and name of folder in which the generated PDF file will be copied to (after this file has been created
within the output folder).

Caution: The generated PDF file will per default be copied to the package folder within the repository.
This is defined in packagedoc config.json. The version of the PDF file within the package folder
will be part of the installation (when using setup.py). When you change the PDF destination, then
you get this file at another location - but this file will not be part of the installation any more. Installed
will be the version, that is still present within the package folder of the repository. Please try to get the
bottom of your motivation when you change this setting.

--configdest

Path and name of folder in which a dump of the current configuration will be copied to.

The configuration dump is part of the build output (section ’OUTPUT’) and available in txt and in
json format. It might be useful for further processes to have access to all details regarding the current
documentation build.

--strict

If True, a missing LaTeX compiler aborts the process, otherwise the process continues.

--simulateonly

If True, the LaTeX compiler is switched off. No new PDF output will be generated. Already existing
PDF output will not be updated. This is not handled as error and also not handled as warning. Only the
source files will be parsed. This switch is useful to do a pre check for possible syntax issues within the
source files without spending time for rendering PDF files.

Example

genpackagedoc.py --output="../any/other/location" --pdfdest="../any/other/location"
--configdest="../any/other/location" --strict=True↪→

All listed parameters are optional. GenPackageDoc creates the complete output path (--output) recursively.
Other destination folder (--pdfdest and --configdest) have to exist already.

4

CHAPTER 2. DESCRIPTION 2.3. PDF DOCUMENT STRUCTURE

2.3 PDF document structure

How is the resulting PDF document structured? What causes an entry within the table of content of the PDF docu-
ment?

In the following we use terms taken over from the LaTeX world: chapter, section and subsection.

A chapter is the top level within the PDF document; a section is the level below chapter, a subsection is the level
below section.

The following assignments happen during the generation of a PDF document:

� The content of every additionally included separate RST file is a chapter.

– In case of you want to add another chapter to your documentation, you have to include another RST file.

– The headline of the chapter is the name of the RST file (automatically).
Therefore the heading within an RST file has to start at section level!

� The content of every included Python module is also a chapter.

– The headline of the chapter is the name of the Python module (automatically).
This means also that within the PDF document structure every Python module is at the same level as
additionally included RST files.

� Within additionally included separate RST files sections and subsections can be defined by the following RST
syntax elements for headings:

– A line underlined with ”=” characters is a section

– A line underlined with ”-” characters is a subsection

� Within the docstrings of Python modules the headings are added automatically (for functions, classes and
methods)

– Classes and functions are listed at section level (both classes and functions are assumed to be at the same
level).

– Class methods are listed at subesction level.

Further nestings of headings are not supported (because we do not want to overload the table of content).

5

CHAPTER 2. DESCRIPTION 2.4. EXAMPLES

2.4 Examples

2.4.1 Example 1: RST file

The text of this chapter is taken over from an RST file named Description.rst.

This RST file contains the following headlines:

Repository content
==================

Documentation build process
===========================

PDF document structure
======================

Examples
========

Example 1: RST file

Example 2: Python module

Because Description.rst is the second imported RST file, the chapter number is 2. The chapter headline is
”Description” (the name of the RST file). The top level headlines within the RST file are at section level. The fourth
section (Examples) contains two subsections.

The outcome is the following part of the table of content:

2.4.2 Example 2: Python module

Part of this documentation is a Python module with name CDocBuilder.py (listed in table of content at chapter
level). This module contains a class with name CDocBuilder (listed in table of content at section level). The class
CDocBuilder contains a method with name Build (listed in table of content at subsection level).

This causes the following entry within the table of contents:

6

CHAPTER 2. DESCRIPTION 2.5. INTERFACE AND MODULE DESCRIPTIONS

2.5 Interface and module descriptions

How to describe an interface of a function or a method? How to describe a Python module?

To have a unique look and feel of all interface descriptions, the following style is recommended:

Example

Some of the special characters used within the interface description, are part of the RST syntax. They will be
explained in one of the next sections.

The docstrings containing the description, have to be placed directly in the next line after the def or class statement.

It is also possible to place a docstring at the top of a Python module. The exact position doesn’t matter - but it has
to be the first constant expression within the code. Within the documentation the content of this docstring is placed
before the interface description and should contain general information belonging to the entire module.

The usage of such a docstring is an option.

7

CHAPTER 2. DESCRIPTION 2.6. RUNTIME VARIABLES

2.6 Runtime variables

What are ”runtime variables” and how to use them in RST text?

All configuration parameters of GenPackageDoc are taken out of four sources:

1. the static repository configuration

config/repository config.json

2. the dynamic repository configuration

config/CRepositoryConfig.py

3. the static GenPackageDoc configuration

packagedoc/packagedoc config.json

4. the dynamic GenPackageDoc configuration

GenPackageDoc/CPackageDocConfig.py

Some of them are runtime variables and can be accessed within RST text (within docstrings of Python modules and
also within separate RST files).

This means it is possible to add configuration values automatically to the documentation.

This happens by encapsulating the runtime variable name in triple hashes. This ”triple hash” syntax is introduced to
make it easier to distinguish between the json syntax (mostly based on curly brackets) and additional syntax elements
used within values of json keys.

The name of the repository e.g. can be added to the documentation with the following RST text:

This document contains a chapter ”Appendix” at the end. This chapter is used to make the repository configuration
a part of this documentation and can be used as example.

Additionally to the predefined runtime variables a user can add own ones.
See "PARAMS" within packagedoc config.json.

All predefined runtime variables are written in capital letters. To make it easier for a developer to distinguish between
predefined and user defined runtime variables, all user defined runtime variables have to be written in small letters
completely.

Also the "DOCUMENT" keys within packagedoc config.json are runtime variables.

Also within packagedoc config.json the triple hash syntax can be used to access repository configuration values.

With this mechanism it is e.g. possible to give the output PDF document automatically the name of the package:

Within parts of the documentation that are written in LaTeX directly, two auto generated LaTeX commands can be
used to insert the name of the repository and the name of the package. Both values are taken out of the repository
configuration.

1. \repo : name of the repository

2. \pkg : name of the package

Example:

The repository \repo\ contains the package \pkg.

Consider the trailing backslash at the end of the command (that together with the following blank indicates a masked
blank). This is necessary when you use the command in the middle of a text.

8

CHAPTER 2. DESCRIPTION 2.7. SYNTAX ASPECTS

2.7 Syntax aspects

2.7.1 Common rules

Important to know about the syntax of Python and RST is:

� In both Python and RST the indentation of text is part of the syntax!

� The indentation of the triple quotes indicating the beginning and the end of a docstring has to follow the Python
syntax rules.

� The indentation of the content of the docstring (= the interface description in RST format) has to follow the
RST syntax rules. To avoid a needless indentation of the text within the resulting PDF document and to avoid
further unwanted side effects caused by improper indentations, it is strongly required to start at least the first
line of a docstring text within the first column! And this first line is the reference for the indentation of further
lines of the current docstring. The indentation of these further lines depends on the RST syntax element that
is used here.

� In RST also blank lines are part of the syntax!

Why is a proper indentation of the docstrings so much important?

The contents of all doctrings of a Python module will be merged to one single RST document (internally by Gen-
PackageDoc). In this single RST document we do not have separated docstring lines any more. We have one text!
And we have a relationship between previous lines and following lines in this text. The indentation of these previous
and following lines must fit together – accordingly to the RST syntax rules. Otherwise we either get syntax issues
during computation or we get text with a layout that does not fit to our expectation.

Please be attentive while typing your documentation in RST format!

2.7.2 Syntax extensions

GenPackageDoc extends the RST syntax by the following topics:

� newline

A newline (line break) is realized by a slash (’/’) at the end of a line containing any other RST text (this means:
the slash must not be the only character in line).
Internally this slash is mapped to the LaTeX command \newline.

� vspace

An additional vertical space (size: the height of the ’x’ character - depending on the current type and size of
font) is realized by a single slash (’/’). This slash must be the only character in line!
Internally this slash is mapped to the LaTeX command \vspace{1ex}.

� newpage

A newpage (page break) is realized by a double slash (’//’). These two slashes must be the only characters in
line!
Internally this double slash is mapped to the LaTeX command \newpage.

These syntax extensions can currently be used in separate RST files only and are not available within docstrings of
Python modules.

9

CHAPTER 3. CDOCBUILDER.PY

Chapter 3

CDocBuilder.py

Python module containing all methods to generate tex sources.

3.1 Class: CDocBuilder

Imported by :

from GenPackageDoc.CDocBuilder import CDocBuilder

Main class to build tex sources out of docstrings of Python modules and separate text files in rst format.

Depends on a json configuration file, provided by a oPackageDocConfig object (this includes the Repository
configuration).

Method to execute: Build()

3.1.1 Method: Build

Arguments:

(no arguments)

Returns:

� bSuccess

/ Type: bool /

Indicates if the computation of the method sMethod was successful or not.

� sResult

/ Type: str /

The result of the computation of the method sMethod.

10

CHAPTER 4. CINTERFACE.PY

Chapter 4

CInterface.py

Python module containing an interface for GenPackageDoc. This interface can be used to get access to the LaTeX
stylesheets that are part of the GenPackageDoc installation.

4.1 Class: CInterface

Imported by :

from GenPackageDoc.CInterface import CInterface

4.1.1 Method: GetLaTeXStyles

The LaTeX stylesheets are part of the installation of GenPackageDoc. In case of anyone else thanGenPackageDoc
needs these stylesheets, this method can be used to copy them to any other folder.

Arguments:

� sDestination

/ Condition: required / Type: str /

Path and name of a folder in which the styles folder from GenPackageDoc will be copied.

Returns:

� bSuccess

/ Type: bool /

Indicates if the computation of the method sMethod was successful or not.

� sResult

/ Type: str /

The result of the computation of the method sMethod.

11

CHAPTER 5. CPACKAGEDOCCONFIG.PY

Chapter 5

CPackageDocConfig.py

Python module containing the configuration for GenPackageDoc. This includes the repository configurantion and
command line values.

5.1 Function: printerror

5.2 Class: CPackageDocConfig

Imported by :

from GenPackageDoc.CPackageDocConfig import CPackageDocConfig

5.2.1 Method: PrintConfig

Prints all cofiguration values to console.

5.2.2 Method: PrintConfigKeys

Prints all cofiguration key names to console.

5.2.3 Method: Get

Returns the configuration value belonging to a key name.

5.2.4 Method: GetConfig

Returns the complete configuration dictionary.

12

CHAPTER 6. CPATTERNS.PY

Chapter 6

CPatterns.py

Python module containing source patterns used to generate the tex file output.

6.1 Class: CPatterns

Imported by :

from GenPackageDoc.CPatterns import CPatterns

The CPatterns class provides a set of LaTeX source patterns used to generate the tex file output.

All source patterns are accessible by corresponding Get methods. Some source patterns contain placeholder that will
be replaced by input parameter of the Get method.

6.1.1 Method: GetHeader

Defines the header of the main tex file.

Arguments:

� sTitle

/ Condition: required / Type: str /

The title of the output document (name of the described package)

� sVersion

/ Condition: required / Type: str /

The version of the output document (version of the described package)

� sAuthor

/ Condition: required / Type: str /

The author of the output document (author of the described package)

� sDate

/ Condition: required / Type: str /

The date of the output document (date of the described package)

Returns:

� sHeader

/ Type: str /

LaTeX code containing the header of main tex file.

13

CHAPTER 6. CPATTERNS.PY 6.1. CLASS: CPATTERNS

6.1.2 Method: GetChapter

Defines single chapter of the main tex file.

A single chapter is equivalent to an additionally imported text file in rst format or equivalent to a single Python
module within a Python package.

Arguments:

� sHeadline

/ Condition: required / Type: str /

The chapter headline (that is either the name of an additional rst file or the name of a Python module).

� sLabel

/ Condition: required / Type: str /

The chapter label (to enable linking to this chapter)

� sDocumentName

/ Condition: required / Type: str /

The name of a single tex file containing the chapter content. This file is imported in the main text file after the
chapter headline that is set by sHeadline.

Returns:

� sHeader

/ Type: str /

LaTeX code containing the headline and the input of a single tex file.

6.1.3 Method: GetFooter

Defines the footer of the main tex file.

Arguments:

(no arguments)

Returns:

� sFooter

/ Type: str /

LaTeX code containing the footer of the main tex file.

6.1.4 Method: GetAutodefinedHeader

Defines the header of the autodefined LaTeX sty file.

Arguments:

(no arguments)

Returns:

� sAutodefinedHeader

/ Type: str /

LaTeX code containing the header of the autodefined LaTeX sty file.

14

CHAPTER 7. CSOURCEPARSER.PY

Chapter 7

CSourceParser.py

Python module containing all methods to parse the documentation content of Python source files.

7.1 Class: CSourceParser

Imported by :

from GenPackageDoc.CSourceParser import CSourceParser

The CSourceParser class provides a method to parse the functions, classes and their methods together with the
corresponding docstrings out of Python modules. The docstrings have to be written in rst syntax.

7.1.1 Method: ParseSourceFile

The method ParseSourceFile parses the content of a Python module.

Arguments:

� sFile

/ Condition: required / Type: str /

Path and name of a single Python module.

� bIncludePrivate (currently not active, is False)

/ Condition: optional / Type: bool / Default : False /

If False: private methods are skipped, otherwise they are included in documentation.

� bIncludeUndocumented

/ Condition: optional / Type: bool / Default : True /

If True: also classes and methods without docstring are listed in the documentation (together with a hint that
information is not available), otherwise they are skipped.

Returns:

� dictContent

/ Type: dict /

A dictionary containing all the information parsed out of sFile.

� bSuccess

/ Type: bool /

Indicates if the computation of the method sMethod was successful or not.

� sResult

/ Type: str /

The result of the computation of the method sMethod.

15

CHAPTER 8. APPENDIX

Chapter 8

Appendix

About this package:

Table 8.1: Package setup

Setup parameter Value

Name GenPackageDoc

Version 0.39.3

Date 05.05.2023

Description Documentation builder for Python packages

Package URL python-genpackagedoc

Author Holger Queckenstedt

Email Holger.Queckenstedt@de.bosch.com

Language Programming Language :: Python :: 3

License License :: OSI Approved :: Apache Software License

OS Operating System :: OS Independent

Python required >=3.0

Development status Development Status :: 3 - Alpha

Intended audience Intended Audience :: Developers

Topic Topic :: Software Development

16

https://github.com/test-fullautomation/python-genpackagedoc
mailto:Holger.Queckenstedt@de.bosch.com

CHAPTER 9. HISTORY

Chapter 9

History

History of GenPackageDoc (hosted in repository python-genpackagedoc).

0.1.0 04/2022

Initial version

0.2.0 05.05.2022

Python syntax highlighting within code blocks added

0.3.0 06.05.2022

Automated headings for functions, classes and methods

0.4.0 06.05.2022

Possibility to describe complete Python modules added

0.5.0 09.05.2022

Parameter INCLUDEPRIVATE added

0.6.0 09.05.2022

Parameter INCLUDEUNDOCUMENTED added

0.7.0 10.05.2022

Setup process introduced and README.rst added; code maintenance

0.8.0 10.05.2022

Bugfixes and code maintenance; history added

0.9.0 10.05.2022

Layout maintenance and syntax extensions for newline, newpage and
vspace reworked

0.9.1 11.05.2022

Documentation maintenance

0.9.2 16.05.2022

Fix: automated line breaks within code blocks

0.10.0 17.05.2022

Postprocessing for rst and tex sources added; ’multiply-defined labels’ fix

0.11.0 18.05.2022

Import of tex files enabled

0.12.0 19.05.2022

- Admonitions added, based on LaTeX environment tcolorbox
- Layout adaptions in titlepage
- Page numbering fix in TOC

0.13.0 24.05.2022

17

CHAPTER 9. HISTORY

LaTeX style definitions moved to separate folder

0.14.0 27.05.2022

- LaTeX compiler check added
- Control parameter STRICT added to packagedoc config

0.15.0 31.05.2022

- Command line added
- Separate GenPackageDoc configuration class added

0.16.0 01.06.2022

Path computation reworked

0.17.0 17.06.2022

- Configuration dump added
- Code maintenance
- Error handling extended

0.18.0 20.06.2022

Added parameter to define an output folder for a dump of final configuration

0.19.0 28.06.2022

- Method GetLaTeXStyles added
- PythonExtensionsCollection updated to version 0.8.0

0.20.0 29.06.2022

Document title bugfix: Added missing masking of underlines (required for La-
TeX)

0.21.0 12.07.2022

Separated file preamble.tex

0.22.0 13.07.2022

- Maintenance of preamble.tex and styles folder
- setup.py fix (install tex files also)

0.23.0 13.07.2022

Maintenance of preamble.tex

0.24.0 25.07.2022

Maintenance of robotframeworkaio.sty (line breaks in listings)

0.25.0 27.07.2022

Layout maintenance of RobotFramework AIO syntax highlighting (.sty files)

0.26.0 27.07.2022

History reworked; common.sty introduced

0.27.0 17.08.2022

Added LaTeX style definition for Python syntax highlighting

0.28.0 23.08.2022

- Introduced new LaTeX environment variable GENDOC LATEXPATH
- robotframeworkaio.sty aligned to version in GenMainDoc

0.29.0 24.08.2022

Changed the way the import path of a module is printed out to PDF file

0.30.0 31.08.2022

Introduced simulateonly mode (command line switch to skip the PDF gen-
eration)

0.31.0 12.09.2022

Fix of import path of a module in PDF file

0.32.0 16.09.2022

18

CHAPTER 9. HISTORY

- Added labels at chapter level
- partial rework of label mechanisms

0.33.0 19.09.2022

Rework of label mechanism (to enable unique links to functions, classes and
methods with names that are not unique over all Python modules within a
package)

0.34.0 07.11.2022

Introduced auto defined LaTeX style file containing mnemotechnical commands
to type the repository name and the package name

0.35.0 16.11.2022

Layout settings of some LaTeX commands adapted:
- Repository name and package name in bold
- Inline code and inline listings in clearer colors

0.36.0 17.11.2022

Brightness of all listings colors reduced to 45% (both text boxes and inline)

0.37.0 21.11.2022

- LaTeX style adaptions and bugfixes
- Introduced LaTeX commands Python log and pylog
- Added keyword decorator detection
- Feature ’INCLUDEPRIVATE’ temporarily switched off (requires bugfixes)

0.38.0 30.11.2022

Removed harming ligatures that were added by Pandoc automatically to LaTeX
code in case of multiple minus characters in names

0.39.0 06.01.2023

Added masking of underlines in case of the content of \repo or \pkg contain
underlines (masking required by LaTeX).

GenPackageDoc.pdf

Created at 05.05.2023 - 14:02:38

by GenPackageDoc v. 0.39.3

19

	1 Introduction
	2 Description
	2.1 Repository content
	2.2 Documentation build process
	2.3 PDF document structure
	2.4 Examples
	2.4.1 Example 1: RST file
	2.4.2 Example 2: Python module

	2.5 Interface and module descriptions
	2.6 Runtime variables
	2.7 Syntax aspects
	2.7.1 Common rules
	2.7.2 Syntax extensions

	3 CDocBuilder.py
	3.1 Class: CDocBuilder
	3.1.1 Method: Build

	4 CInterface.py
	4.1 Class: CInterface
	4.1.1 Method: GetLaTeXStyles

	5 CPackageDocConfig.py
	5.1 Function: printerror
	5.2 Class: CPackageDocConfig
	5.2.1 Method: PrintConfig
	5.2.2 Method: PrintConfigKeys
	5.2.3 Method: Get
	5.2.4 Method: GetConfig

	6 CPatterns.py
	6.1 Class: CPatterns
	6.1.1 Method: GetHeader
	6.1.2 Method: GetChapter
	6.1.3 Method: GetFooter
	6.1.4 Method: GetAutodefinedHeader

	7 CSourceParser.py
	7.1 Class: CSourceParser
	7.1.1 Method: ParseSourceFile

	8 Appendix
	9 History

