
Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 1
Verbatim copies of this document may be used and distributed without restriction.

TbUtilPkg Package

User Guide

User Guide for Release 2016.11

By

Jim Lewis

SynthWorks VHDL Training

Jim@SynthWorks.com

http://www.SynthWorks.com

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 2
Verbatim copies of this document may be used and distributed without restriction.

Table of Contents

1 TbUtilPkg Overview .. 3

2 Testing for Mutual Exclusion ... 3

2.1 OneHot ... 3

2.2 ZeroOneHot ... 3

3 Transaction Initiation .. 3

3.1 RequestTransaction .. 3

3.2 WaitForTransaction .. 3

4 Toggle Handshaking ... 4

4.1 WaitForToggle ... 4

4.2 Toggle .. 5

4.3 Usage of WaitForToggle and Toggle .. 5

5 Barrier Synchronization ... 5

5.1 WaitForBarrier ... 5

5.2 Types, Resolution Functions, and initializations ... 5

5.3 Usage ... 6

6 Waiting for Clock .. 6

7 Waiting For Level ... 7

8 Creating a Clock ... 7

9 Creating Reset ... 7

10 Compiling TbUtilPkg and Friends ... 7

11 About TbUtilPkg ... 7

12 Future Work .. 8

13 About the Author - Jim Lewis .. 8

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 3
Verbatim copies of this document may be used and distributed without restriction.

1 TbUtilPkg Overview

TbUtilPkg provides testbench utilities including synchronization utilities, tests for mutual
exclusion, clock creation and reset creation.

2 Testing for Mutual Exclusion

2.1 OneHot

Function OneHot returns true when exactly one of its input is a one.

function OneHot (constant A : in std_logic_vector) return boolean ;

. . .

AffirmIf(OneHot((Sel1 & Sel2 & Sel3 & Sel4), . . .) ;

. . .

2.2 ZeroOneHot

Function ZeroOneHot returns true when either exactly one of its input is a one or they
are all zero.

function ZerOneHot (constant A : in std_logic_vector) return boolean ;

. . .

AffirmIf(ZeroOneHot((Sel1 & Sel2 & Sel3 & Sel4), . . .) ;

. . .

3 Transaction Initiation

3.1 RequestTransaction

Requests a transaction from the test initiation (client) to the model (TLM or VVC).

procedure RequestTransaction (

 signal Rdy : Out std_logic ;

 signal Ack : In std_logic

) ;

. . .

procedure DoTransaction(TransRec : inout TransRecType ; Parm1 : . . .) is

begin

 TransRec.InField1 <= Parm1 ;

 . . .

 RequestTransaction(Rdy => TransRec.Rdy, Ack => TransRec.Ack) ;

 Result1 <= TransRec.OutField1 ;

 . . .

3.2 WaitForTransaction

Suspends a model until a transaction is requested via RequestTransaction.

 procedure WaitForTransaction (

 signal Clk : In std_logic ;

 signal Rdy : In std_logic ;

 signal Ack : Out std_logic

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 4
Verbatim copies of this document may be used and distributed without restriction.

) ;

. . .

entity Model is

 Port (

 -- Transaction connection

 TransRec : inout TransRecType ;

 -- DUT signaling interface

 . . .

) ;

end entity model ;

architecture behavior of Model is

begin

 ModelBehavior : process

 begin

 WaitForTransaction (

 Clk => ModelClk,

 Rdy => TransRec.Rdy,

 Ack => TransRec.Ack

) ;

 case ModelRec.Operation is

 when CPU_WRITE =>

 -- do CPU Write signaling

 . . .

 when CPU_READ =>

 -- do CPU Read signaling

 . . .

 . . .

 when others =>

 Alert(ModelAlertLogID, "Unrecognized operation", FAILURE) ;

 Wait for 0 ns ;

 end case ;

 end process ModelBehavior ;

Note that time must pass between consecutive calls to WaitForTransaction. Generally
all transactions consume at least a a cycle of ModelCycle. However, for directive type
actions which are used only for testbench to model exchange of information (such ase
setup or error counts) at least a delta cycle (via a "wait for 0 ns;") must pass.

4 Toggle Handshaking

Toggle type handshaking is used to allow one process to block until another process has
signaled it to continue.

4.1 WaitForToggle

WaitForToggle causes a process to block until another process signals it to wake up.
The call to WaitForToggle must occur before input changes or the change will not be
seen.

procedure WaitForToggle (signal Sig : In std_logic) ;

procedure WaitForToggle (signal Sig : In bit) ;

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 5
Verbatim copies of this document may be used and distributed without restriction.

4.2 Toggle

Toggle causes a signal to change either after a delta cycle or a specified amount of
time.

procedure Toggle (signal Sig : InOut std_logic ; constant DelayVal : time) ;

procedure Toggle (signal Sig : InOut std_logic) ;

procedure Toggle (signal Sig : InOut bit ; constant DelayVal : time) ;

procedure Toggle (signal Sig : InOut bit) ;;

4.3 Usage of WaitForToggle and Toggle

In the example below, Proc2 suspends until Proc1 has executed the procedure
InitializeInterface and called Toggle on the signal InterfaceReady. The "wait until
rising_edge(Clk);" ensures that each process starts on the same delta cycle.

Proc1 : process

begin

 InitializeInterface(Init1, Init2, . . .) ;

 Toggle(InterfaceReady) ;

 wait until rising_edge(Clk) ;

 . . .

Proc2 : process

begin

 WaitForToggle(InterfaceReady) ;

 wait until rising_edge(Clk) ;

 . . .

5 Barrier Synchronization

Barrier synchronization allows two or more processes to stop until all have arrived at a
designated synchronization point.

5.1 WaitForBarrier

WaitForBarrier causes a process to stop until all processes that call WaitForBarrier with
that signal have reached the same point.

procedure WaitForBarrier (signal Sig : InOut integer) ;

procedure WaitForBarrier (signal Sig : InOut integer; constant TimeOut : time) ;

procedure WaitForBarrier (signal Sig : InOut std_logic) ;

procedure WaitForBarrier (signal Sig : InOut std_logic; constant TimeOut : time);

5.2 Types, Resolution Functions, and initializations

Barrier synchronization requires the usage of resolution functions and either std_logic or
integer_barrier (defined in TbUtilPkg as shown below).

function resolved_barrier (s : integer_vector) return integer ;

subtype integer_barrier is resolved_barrier integer ;

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 6
Verbatim copies of this document may be used and distributed without restriction.

Going further, it is recommended that std_logic signals are initialized to '0' and
integer_barrier signals are initialized to 1.

signal TestDone : integer_barrier := 1 ;

signal TestDone_sl : std_logic := '0' ;

When an integer_barrier signal is initialized to 1, its value will indicate the number of
processes that have not reached the barrier synchronization point. When a std_logic
signal is initialized to '0', it will have the value '0' while the processes are waiting and it
will transition to 'H' for the duration of the delta cycle in which all processes have
reached the barrier synchronization point.

5.3 Usage
ControlProc : process

begin

 -- initialize test

 SetAlertLogName("Uart1_Rx") ;

 . . .

 WaitForBarrier(TestDone, 5 ms) ; -- control process uses timeout

 AlertIf(now >= 5 ms, "Test finished due to Time Out") ;

 ReportAlerts ;

 Std.env.stop ;

End process ControlProc ;

CpuProc : process

begin

 InitDut(. . .)_;

 Toggle(CpuReady) ;

 -- run numerous Cpu test transactions

 . . .

 WaitForBarrier(TestDone) ;

 wait ;

end process CpuProc ;

UartTxProc : process

Begin

 WaitForToggle(CpuReady) ;

 -- run numerous Uart Transmit test transactions

 . . .

 WaitForBarrier(TestDone) ;

 wait ;

end process UartTxProc ;

 . . .

6 Waiting for Clock

Wait for a number of clocks specified in either time or an integer number of clock
cycles. Currently the constant CLK_ACTIVE defines the active edge of clock and the
STANDARD version sets it to '1' (rising edge).

procedure WaitForClock (signal Clk : in std_logic ; constant Delay : in time) ;

procedure WaitForClock (signal Clk : in std_logic ;

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 7
Verbatim copies of this document may be used and distributed without restriction.

 constant NumberOfClocks : in integer := 1) ;

7 Waiting For Level

Wait for a signal to become a level.

procedure WaitForLevel (signal A : boolean) ;

procedure WaitForLevel (signal A : std_logic ; Polarity : std_logic := '1') ;

8 Creating a Clock

Create a clock with a specified period and specified duty cycle. Designed so that after
the first clock transition that it always transitions on delta cycle 0. Designed so that
the resulting clock period will match the Period parameter and that any rounding due to
DutyCycle and simulator resolution will only impact the effective DutyCycle.

procedure CreateClock (

 signal Clk : inout std_logic ;

 constant Period : time ;

 constant DutyCycle : real := 0.5

) ;

9 Creating Reset

Create reset that is asserted tpd after the first active edge of clock and deasserts tpd
after the clock edge that is Period in time from the first active edge of clock. Currently
the constant CLK_ACTIVE defines the active edge of clock and the STANDARD version
sets it to '1' (rising edge).

 procedure CreateReset (

 signal Reset : out std_logic ;

 constant ResetActive : in std_logic ;

 signal Clk : in std_logic ;

 constant Period : time ;

 constant tpd : time

) is . . .

10 Compiling TbUtilPkg and Friends

TbUtilPkg is part of OSVVM and requires other packages to be successfully compiled.
See the osvvm_release_notes.pdf for other packages and their required compile order.

11 About TbUtilPkg

TbUtilPkg was developed and is maintained by Jim Lewis of SynthWorks VHDL Training.
Prior to its release to OSVVM it was used in SynthWorks' VHDL classes.

Please support our effort in supporting the OSVVM library of packages by purchasing
your VHDL training from SynthWorks.

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 8
Verbatim copies of this document may be used and distributed without restriction.

TbUtilPkg is released under the Perl Artistic open source license. It is free (both to
download and use - there are no license fees). You can download it from osvvm.org or
from our development area on GitHub.

If you add features to the package, please donate them back under the same license as
candidates to be added to the standard version of the package. If you need features,
be sure to contact us. I blog about the packages at http://www.synthworks.com/blog.
We also support the OSVVM user community and blogs through http://www.osvvm.org.

Find any innovative usage for the package? Let us know, you can blog about it at
osvvm.org.

12 Future Work

TbUtilPkg.vhd is a work in progress and will be updated from time to time.

Caution, undocumented items are experimental and may be removed in a future
version.

13 About the Author - Jim Lewis

Jim Lewis, the founder of SynthWorks, has thirty plus years of design, teaching, and
problem solving experience. In addition to working as a Principal Trainer for
SynthWorks, Mr Lewis has done ASIC and FPGA design, custom model development,
and consulting.

Mr. Lewis is chair of the IEEE 1076 VHDL Working Group (VASG) and is the primary
developer of the Open Source VHDL Verification Methodology (OSVVM.org) packages.
Neither of these activities generate revenue. Please support our volunteer efforts by
buying your VHDL training from SynthWorks.

If you find bugs these packages or would like to request enhancements, you can reach
me at jim@synthworks.com.

