
Copyright © 2011-2016 by SynthWorks Design Inc. All rights reserved. 1
Verbatim copies of this document may be used and distributed without restriction.

Randomization Using
RandomPkg

User Guide for Release 2016.11

By

Jim Lewis

SynthWorks VHDL Training

Jim@SynthWorks.com

http://www.SynthWorks.com

Copyright © 2011-2016 by SynthWorks Design Inc. All rights reserved. 2
Verbatim copies of this document may be used and distributed without restriction.

Table of Contents

1 RandomPkg Overview ... 3

2 Randomization Using IEEE.math_real.uniform = Yuck! .. 3

3 Simplifying Randomization .. 3

4 Manipulating the Seeds... 4

5 Basic Randomization .. 5

6 Large Vector Randomization ... 6

7 Randomizing Sets of Values .. 6

8 Weighted Randomization .. 8

9 Usage ... 8

10 Creating a Test ...10

11 Random Stability ...11

12 Other Distributions ..12

13 Sorting integer_vector ...13

14 Compiling RandomPkg and Friends ...13

15 About RandomPkg ..13

16 Future Work ...14

17 About the Author - Jim Lewis ...14

Copyright © 2011-2016 by SynthWorks Design Inc. All rights reserved. 3
Verbatim copies of this document may be used and distributed without restriction.

1 RandomPkg Overview

RandomPkg provides a set of utilities for randomizing a value in a range, a value in a
set, or a value with a weighted distribution.

OSVVM's constrained random capability uses these utilities to randomize a value,
operation, or sequence that is valid in a particular test environment. Since any
constrained random methodology creates a significant amount of redundant stimulus
(5X or more for small problems), in OSVVM, we use Intelligent Coverage randomization
as our main randomization methodology, and constrained random as a refinement
methodology in our tests.

These packages are updated from time to time and are freely available at
http://www.synthworks.com/downloads.

2 Randomization Using IEEE.math_real.uniform = Yuck!

A basic form of randomization can be accomplished by using the procedure uniform the
IEEE math_real package. However, this always results in randomization being a
multi-step process: call uniform to randomize a value, scale the value, and then use
the value.

RandomGenProc : process

 variable RandomVal : real ; -- Random value

 variable DataSent : integer ;

 variable seed1 : positive := 7 ; -- initialize seeds

 variable seed2 : positive := 1 ;

begin

 for i in 0 to 255*6 loop

 uniform(seed1, seed2, RandomVal) ; -- randomize 0.0 to 1.0

 DataSent := integer(trunc(RandomVal*256.0)) ; -- scale to 0 to 255

 do_transaction(…, DataSent, …) ;

 . . .

Optimally we would like to be able to call a function to do this so we can do this all in
one step. Unfortunately we cannot write a normal VHDL function since we need to read
and update the seed as well as return a randomized value.

3 Simplifying Randomization

RandomPkg uses a protected type, named RandomPType, to encapsulate the seed.
Within a protected type, impure functions can read and update the seed as well as
return a randomized value. To randomize values using the protected type, declare a
variable of type RandomPType, initialze the seed, and randomize values.

RandomGenProc : process

 variable RV : RandomPType ; -- protected type from RandomPkg

Copyright © 2011-2016 by SynthWorks Design Inc. All rights reserved. 4
Verbatim copies of this document may be used and distributed without restriction.

begin

 RV.InitSeed (RV'instance_name) ; -- Generate initial seeds

 for i in 0 to 255*6 loop

 do_transaction(…, RV.RandInt(0, 255), …) ; -- random value between 0 and 255

Note the calls to protected type methods (subprograms) include the protected type
variable (RV) within the call (such as RV.RandInt(0, 255)).

4 Manipulating the Seeds

With protected types internal objects are private and accessible only through methods.
The internal representation of the seed has a valid initial value, however, to ensure that
each process' randomization is independent of each other, it is important to give each
seed to a different initial value. As a result for a test that uses more than one
randomization variable, initialize each seed once - if there is only one randomization
variable, there is no need to initialize the seed.

The method InitSeed converts its argument value to RandomSeedType (the internal
representation of the seed) and stores the value within the protected type. InitSeed is
overloaded to accept either string or integer values. The preferred way to give each
seed a unique value is pass the string value, RV'instance_name.

RV.InitSeed (RV'instance_name) ;

The methods GetSeed and SetSeed are used to read and restore a seed value. The
declarations for these are shown below.

impure function GetSeed return RandomSeedType ;

procedure SetSeed (RandomSeedIn : RandomSeedType) ;

The function to_string and procedures write and read are used to write and read values
of type RandomSeedType. The declarations for these subprograms are shown below.
Note these are in RandomBasePkg.vhd and are separate from the protected type.

function to_string(A : RandomSeedType) return string ;

procedure write(L: inout line ; A : RandomSeedType) ;

procedure read (L: inout line ; A : out RandomSeedType ; good : out boolean) ;

procedure read (L: inout line ; A : out RandomSeedType) ;

For a long test, it may be advantageous to read the seed periodically and print it out. If
a failure or other interesting condition is generated, the seed may be restored to a
value that was recorded near the failure with the intent of generating the error quickly
to assist with debug.

Copyright © 2011-2016 by SynthWorks Design Inc. All rights reserved. 5
Verbatim copies of this document may be used and distributed without restriction.

5 Basic Randomization

The basic randomization generates an integer value that is either within some range or
within a set of values. The set of values and exclude values are all of type
integer_vector (defined in VHDL-2008). The examples below show the basic
randomization overloading. When a value of integer_vector is specifed, the extra set of
parentheses denote that it is an aggregate value.

RandomGenProc : process

 variable RV : RandomPType ; -- protected type from RandomPkg

 variable DataInt : integer ;

begin

 RV.InitSeed (RV'instance_name) ; -- Generate initial seeds

 -- Generate a value in range 0 to 255

 DataInt := RV.RandInt(0, 255) ;

 . . .

 -- Generate a value in range 1 to 9 except exclude values 2,4,6,8

 DataInt := RV.RandInt(1, 9, (2,4,6,8)) ;

 . . .

 -- Generate a value in set 1,3,5,7,9

 DataInt := RV.RandInt((1,3,7,9)) ; -- note two sets of parens required

 . . .

 -- Generate a value in set 1,3,5,7,9 except exclude values 3,7

 DataInt := RV.RandInt((1,3,7,9), (3,7)) ;

The overloading for the RandInt functions is as follows.

impure function RandInt (Min, Max : integer) return integer ;

impure function RandInt (Min, Max: integer; Exclude: integer_vector)

 return integer ;

impure function RandInt (A : integer_vector) return integer ;

impure function RandInt (A : integer_vector; Exclude: integer_vector)

 return integer ;

These same functions are available for types std_logic_vector(RandSlv), unsigned
(RandUnsigned) and signed (RandSigned). Note that parameter values are still
specified as integers and there is an additional value used to specify the size of the
value to generate. For example, the following call to RandSlv defines the array size to
be 8 bits.

 variable DataSlv : std_logic_vector(7 downto 0) ;

begin

 . . .

 DataSlv := RV.RandSlv(0, 255, 8) ; -- Generate a value in range 0 to 255

The overloading for RandSlv is as shown below. RandUnsigned and RandSigned have
the same overloading

impure function RandSlv (Min, Max, Size : natural) return std_logic_vector ;

impure function RandSlv (Min, Max : natural ; Exclude: integer_vector ; Size :

natural) return std_logic_vector ;

impure function RandSlv

 (A: integer_vector ; size : natural) return std_logic_vector ;

Copyright © 2011-2016 by SynthWorks Design Inc. All rights reserved. 6
Verbatim copies of this document may be used and distributed without restriction.

impure function RandSlv (A: integer_vector ; Exclude: integer_vector ; Size :

natural) return std_logic_vector ;

The function, RandReal supports randomization for type real. The function with a
range, like the procedure Uniform, never generates its end values. RandReal has the
following overloading:

impure function RandReal (Min, Max : real) return real ;

impure function RandReal (A : real_vector) return real ;

impure function RandReal (A, Exclude : real_vector) return real ;

The function, RandTime supports randomization for type time. RandTime supports the
same overloading as RandInt. These are shown below:

impure function RandTime (Min, Max : time ; Unit : time := ns) return time ;

impure function RandTime

 (Min, Max : time ; Exclude : time_vector ; Unit : time := ns) return time ;

impure function RandTime (A : time_vector) return time ;

impure function RandTime (A, Exclude : time_vector) return time ;

6 Large Vector Randomization

Integer randomization is only valid in the range of -2**31 to +2**31 - 1. Large vector
randomization uses multiple randomizations to create a value. The following
overloading is available for RandUnsigned, RandSlv, and RandSigned.

impure function RandUnsigned (Size : natural) return unsigned ;

impure function RandUnsigned (Max : unsigned) return unsigned ;

impure function RandUnsigned (Min, Max : unsigned) return unsigned ;

The size parameter specifies the number of bits in the vector. The Max parameter
allows randomization between 0 and Max. The Min and Max parameters allow
randomizing a range of values.

7 Randomizing Sets of Values

A set of values can be represented by integer_vector, real_vector, or time_vector. The
following illustrates the capability supported for integer_vector.

RandomGenProc : process

 variable RV : RandomPType ; -- protected type from RandomPkg

 variable IntV : integer_vector(1 to 15) ;

begin

 RV.InitSeed (RV'instance_name) ; -- Generate initial seeds

 -- Generate 10 integer values in the range 0 to 255

 IntV(1 to 10) := RV.RandIntV(0, 255, 10) ;

 . . .

 -- Generate 15 integer values in range 1 to 9 except exclude values 2,4,6,8

 IntV := RV.RandIntV(1, 9, (2,4,6,8), 15) ;

 . . .

 -- Generate 5 integer values value in set 1,3,5,7,9

 IntV(1 to 5) := RV.RandIntV((1,3,7,9), 5) ;

Copyright © 2011-2016 by SynthWorks Design Inc. All rights reserved. 7
Verbatim copies of this document may be used and distributed without restriction.

 . . .

 -- Generate 15 integer values in set 1,3,5,7,9 except exclude values 3,7

 IntV := RV.RandIntV((1,3,7,9), (3,7), 15) ;

 -- Generate 10 integer values in the range 0 to 255, do repeat the last value

 IntV(1 to 10) := RV.RandIntV(0, 255, 1, 10) ;

 . . .

 -- Generate 15 integer values in range 1 to 9 except exclude values 2,4,6,8

 -- Do not repeat the last 3 values

 IntV:= RV.RandIntV(1, 9, (2,4,6,8), 3, 15) ;

 . . .

 -- Generate 5 integer values in the set 1,3,5,7,9, do not repeat the last value

 IntV(1 to 5) := RV.RandIntV((1,3,7,9), 1, 5) ;

 . . .

 -- Generate 15 integer values in set 1,3,5,7,9 except exclude values 3,7

 -- Do not repeat last value

 IntV := RV.RandIntV((1,3,7,9), (3,7), 1, 15) ;

The overloading for integer_vector, real_vector, or time_vector are as follows.

-- Range and Exclude

impure function RandIntV (Min, Max : integer ; Size : natural) return

integer_vector ;

impure function RandIntV (Min, Max : integer ; Exclude : integer_vector ; Size :

natural) return integer_vector ;

-- Range, Exclude, and Unique

impure function RandIntV (Min, Max : integer ; Unique : natural ; Size : natural)

return integer_vector ;

impure function RandIntV (Min, Max : integer ; Exclude : integer_vector ; Unique :

natural ; Size : natural) return integer_vector ;

-- Set and Exclude

impure function RandIntV (A : integer_vector ; Size : natural) return

integer_vector ;

impure function RandIntV (A, Exclude : integer_vector ; Size : natural) return

integer_vector ;

-- Range, Exclude, and Unique

impure function RandIntV (A : integer_vector ; Unique : natural ; Size : natural)

return integer_vector ;

impure function RandIntV (A, Exclude : integer_vector ; Unique : natural ; Size :

natural) return integer_vector ;

Overloading for time_vector:

impure function RandTimeV (Min, Max : time; Size : natural; Unit : time := ns)

return time_vector;

impure function RandTimeV (Min, Max : time ; Exclude : time_vector ; Size :

natural) return time_vector ;

impure function RandTimeV (Min, Max : time; Unique : natural; Size : natural; Unit

: time := ns) return time_vector ;

impure function RandTimeV (Min, Max : time; Exclude : time_vector; Unique :

natural; Size : natural) return time_vector;

impure function RandTimeV (A : time_vector; Size : natural) return time_vector ;

impure function RandTimeV (A : time_vector; Unique : natural ; Size : natural)

return time_vector;

impure function RandTimeV (A, Exclude : time_vector; Size : natural) return

time_vector ;

impure function RandTimeV (A, Exclude : time_vector; Unique : natural; Size :

natural) return time_vector ;

Copyright © 2011-2016 by SynthWorks Design Inc. All rights reserved. 8
Verbatim copies of this document may be used and distributed without restriction.

Overloading real_vector

impure function RandRealV (Min, Max : real ; Size : natural) return real_vector ;

impure function RandRealV (A : real_vector ; Size : natural) return real_vector ;

impure function RandRealV

 (A : real_vector ; Unique : natural ; Size : natural) return real_vector ;

impure function RandRealV

 (A, Exclude : real_vector ; Size : natural) return real_vector ;

impure function RandRealV (A, Exclude : real_vector ; Unique : natural ; Size :

natural) return real_vector ;

8 Weighted Randomization

A weighted distribution randomly generates each of set of values a specified percentage
of the time. RandomPType provides a weighted distribution that specifies a value and
its weight (DistValInt) and one that only specifies weights (DistInt).

DistValInt is called with an array of value pairs. The first item in the pair is the value
and the second is the weight. The frequency that each value will occur is weight/(sum
of weights). As a result, in the following call to DistValInt, the likelihood of a 1 to occur
is 7/10 times or 70%. The likelihood of 3 is 20% and 5 is 10%.

variable RV : RandomPType ;

. . .

DataInt := RV.DistValInt(((1, 7), (3, 2), (5, 1))) ;

DistInt is a simplified version of DistValInt. The input to DistInt is an integer_vector of
weights. The return value is the index of the selected weight. For a literal value, it will
return a value from 0 to N-1 where N is the number of weights specified. As a result,
the following call to DistInt the likelihood of a 0 is 70%, 1 is 20% and 2 is 10%.

variable RV : RandomPType ;

. . .

DataInt := RV.DistInt(((7, 2, 1)) ;

9 Usage

Each randomization result is produced by a function and that result can be used directly
in an expression. Hence, we can randomize a delay that is between 3 and 10 clocks.

wait for RV.RandInt(3, 10) * tperiod_Clk - tpd ;

wait until Clk = '1' ;

The values can also be used directly inside a case statement. The following example
uses DistInt to generate the first case target 70% of the time, the second 20%, and the
third 10%.

variable RV : RandomPType ;

. . .

StimGen : while TestActive loop -- Repeat until done

 case RV.DistInt((7, 2, 1)) is

 when 0 => -- Normal Handling -- 70%

 . . .

Copyright © 2011-2016 by SynthWorks Design Inc. All rights reserved. 9
Verbatim copies of this document may be used and distributed without restriction.

 when 1 => -- Error Case 1 -- 20%

 . . .
 when 2 => -- Error Case 2 -- 10%

 . . .
 when others =>

 report "DistInt" severity failure ; -- Signal bug in DistInt
 end case ;

end loop ;

The following code segment generates the transactions for writing to
DMA_WORD_COUNT, DMA_ADDR_HI, and DMA_ADDR_LO in a random order that is
different every time this code segment is run. The sequence finishes with a write to
DMA_CTRL. When DistInt is called with a weight of 0, the corresponding value does
not get generated. Hence by initializing all of the weights to 1 and then setting it to 0
when it is selected, each case target only occurs once. The "for loop" loops three times
to allow each transaction to be selected.

variable RV : RandomPType ;

. . .

Wt0 := 1; Wt1 := 1; Wt2 := 1; -- Initial Weights

for i in 1 to 3 loop -- Loop 1x per transaction

 case RV.DistInt((Wt0, Wt1, Wt2)) is -- Select transaction

 when 0 => -- Transaction 0

 CpuWrite(CpuRec, DMA_WORD_COUNT, DmaWcIn);

 Wt0 := 0 ; -- remove from randomization

 when 1 => -- Transaction 1

 CpuWrite(CpuRec, DMA_ADDR_HI, DmaAddrHiIn);

 Wt1 := 0 ; -- remove from randomization

 when 2 => -- Transaction 2

 CpuWrite(CpuRec, DMA_ADDR_LO, DmaAddrLoIn);

 Wt2 := 0 ; -- remove from randomization

 when others => report "DistInt" severity failure ;

 end case ;

end loop ;

CpuWrite(CpuRec, DMA_CTRL, START_DMA or DmaCycle);

The following code segment uses an exclude list to keep from repeating the last value.
Note when passing an integer value to an integer_vector parameter, an aggregate
using named association "(0=> LastDataInt)" is used to denote a single element array.
Note that during the first execution of this process, LastDataInt has the value
integer'left (a very small number), which is outside the range 0 to 255, and as a result,
has no impact on the randomization.

RandomGenProc : process

 variable RV : RandomPType ;

 variable DataInt, LastDataInt : integer ;

begin

 . . .

 DataInt := RV.RandInt(0, 255, (0 => LastDataInt)) ;

Copyright © 2011-2016 by SynthWorks Design Inc. All rights reserved. 10
Verbatim copies of this document may be used and distributed without restriction.

 LastDataInt := DataInt;

 . . .

The following code segment uses an exclude list to keep from repeating the four
previous values.

RandProc : process

 variable RV : RandomPtype ;

 variable DataInt : integer ;

 variable Prev4DataInt : integer_vector(3 downto 0) := (others => integer'low) ;

begin

 . . .

 DataInt := RV.RandInt(0, 100, Prev4DataInt) ;

 Prev4DataInt := Prev4DataInt(2 downto 0) & DataInt ;

 . . .

10 Creating a Test

Creating tests is all about methodology. SynthWorks' methodology marries
randomization subprograms (from RandomPkg) and functional coverage subprograms
(from CoveragePkg - also freely available at http://www.synthworks.com/downloads)
with VHDL programming constructs. Each test sequence is derived by randomly
selecting either branches of code or values for operations. Randomization constraints
are created using normal sequential coding techniques (such as nesting of case, if, loop,
and assignment statements). This approach is simple yet powerful. Since all of the
code is sequential, randomized sequences are readily mixed with directed and
algorithmic sequences.

A simple demonstration of randomizing is the following test which uses heuristics
(guesses) at length of bursts of data and delays between bursts of data to
randomization traffic being sent to a FIFO.

variable RV : RandomPType ;

. . .

TxStimGen : while TestActive loop

 -- Burst between 1 and 10 values

 BurstLen := RV.RandInt(Min => 1, Max => 10);

 for i in 1 to BurstLen loop

 DataSent := DataSent + 1 ;

 WriteToFifo(DataSent) ;

 end loop ;

 -- Delay between bursts: (BurstLen <=3: 1-6, >3: 3-10)
 if BurstLen <= 3 then

 BurstDelay := RV.RandInt(1, 6) ; -- small burst, small delay

 else

 BurstDelay := RV.RandInt(3, 10) ; -- bigger burst, bugger delay

 end if ;

 wait for BurstDelay * tperiod_Clk - tpd ;

 wait until Clk = '1' ;

end loop TxStimGen ;

Copyright © 2011-2016 by SynthWorks Design Inc. All rights reserved. 11
Verbatim copies of this document may be used and distributed without restriction.

Functional coverage counts which test cases have been generated and give engineers
an indication of when testing is done. This is essential when using randomization to
create a test as otherwise there is no way to know what the test actually did.
Functional coverage can be implemented using subprogram calls (either custom or from
the CoveragePkg) or VHDL code. Functional coverage is stored in signals and can be
used to change the randomization (either directly as a constraint or indirectly as
something that contributes to changing a constraint) to generate missing coverage
items.

With a FIFO, we need to see lots of write attempts while full and read attempts while
empty. One thing we can do to improve the previous test is to increase or decrease the
burst length and delay based on the number of write attempts while full or read
attempts while empty we have seen. To explore how to generate the coverage, see the
CoveragePkg documentation.

For a design for which has numerous conditions we need to generate, we can do
coverage on the input stimulus and then randomly select one of the uncovered
conditions as the next transaction to be generated.

Solutions for the two previous coverage driven randomization problems are provided in
SynthWorks' VHDL Testbenches and Verification class.

11 Random Stability

A protected type is always used with a variable object. If the object is declared in a
process, it is a regular variable. If the object is declared in an architecture, then it is
declared as a shared variable.

All of the examples in this document show RandomPType being defined in a process as
a regular variable. This is done to ensure random stability. Random stability is the
ability to re-run a test and get exactly the same sequence. Random stability is required
for verification since if we find a failure and then fix it, if the same sequence is not
generated, we will not know the fix actually worked.

Random stability is lost when a randomization variable is declared as a shared variable
in an architecture and shared among multiple processes. When a randomization
variable is shared, the seed is shared. Each randomization reads and updates the seed.
If the processes accessing the shared variable run during the same delta cycle, then the
randomization of the test depends on the order of which RandomPType is accessed.
This order can change anytime the design is optimized - which will happen after fixing
bugs. As a result, the test is unstable.

To ensure stability, create a separate variable for randomization in each process.

Copyright © 2011-2016 by SynthWorks Design Inc. All rights reserved. 12
Verbatim copies of this document may be used and distributed without restriction.

12 Other Distributions

By default, all randomizations use a uniform distribution. In addition to uniform
distributions, RandomPType also provides distributions for FavorSmall, FavorBig,
normal, and poisson. The following is the overloading for these functions.

-- Generate values, each with an equal probability

impure function Uniform (Min, Max : in real) return real ;

impure function Uniform (Min, Max : integer) return integer ;

impure function Uniform (Min, Max : integer ; Exclude: integer_vector) return

integer ;

-- Generate more small numbers than big

impure function FavorSmall (Min, Max : real) return real ;

impure function FavorSmall (Min, Max : integer) return integer ;

impure function FavorSmall(Min, Max: integer; Exclude: integer_vector) return

integer ;

-- Generate more big numbers than small

impure function FavorBig (Min, Max : real) return real ;

impure function FavorBig (Min, Max : integer) return integer ;

impure function FavorBig (Min, Max : integer ; Exclude: integer_vector) return

integer ;

-- Generate normal = gaussian distribution

impure function Normal (Mean, StdDeviation : real) return real ;

impure function Normal (Mean, StdDeviation, Min, Max : real) return real ;

impure function Normal (

 Mean : real ;

 StdDeviation : real ;

 Min : integer ;

 Max : integer ;

 Exclude : integer_vector := NULL_INTV

) return integer ;

-- Generate poisson distribution

impure function Poisson (Mean : real) return real ;

impure function Poisson (Mean, Min, Max : real) return real ;

impure function Poisson (

 Mean : real ;

 Min : integer ;

 Max : integer ;

 Exclude : integer_vector := NULL_INTV

) return integer ;

The package also provides experimental mechanisms for changing the distributions
used with functions RandInt, RandSlv, RandUnsigned, and RandSigned.

Copyright © 2011-2016 by SynthWorks Design Inc. All rights reserved. 13
Verbatim copies of this document may be used and distributed without restriction.

13 Sorting integer_vector

The package SortListPkg_int provides a Sort and RevSort functions for sorting type
integer_vector. The following example uses RandIntV and Sort to create a random set
of 10 integer values between 0 and 255 that increase in value and do not repeat.

IntV := Sort(RV.RandIntV(0, 255, 10, 10)) ;

The overloading for Sort and RevSort are as follows.

impure function Sort (A : integer_vector) return integer_vector;

impure function RevSort (A : integer_vector) return integer_vector ;

14 Compiling RandomPkg and Friends

Turn on the VHDL-2008 compile switch. Compile the files, SortListPkg_int.vhd,
RandomBasePkg.vhd, and RandomPkg.vhd. We typically put these into a named library
such as SynthWorks or OSVVM.

To take the packages for a test run, compile the program, Demo_Rand.vhd, into the
same library as the packages and run it for 1 ns in your simulator.

Your programs need to reference RandomPkg. If your programs use IO for the seed
(to_string, write, read), then you will also need to include RandomBasePkg.

library OSVVM ;

 use OSVVM.RandomPkg.all ;

15 About RandomPkg

RandomPkg was developed and is maintained by Jim Lewis of SynthWorks VHDL
Training. It evolved from methodology and packages developed for SynthWorks' VHDL
Testbenches and verification class. It is part of the Open Source VHDL Verification
Methodology (OSVVM), which brings leading edge verification techniques to the VHDL
community.

 Please support our effort in supporting RandomPkg and OSVVM by purchasing your
VHDL training from SynthWorks.

RandomPkg is released under the Perl Artistic open source license. It is free (both to
download and use - there are no license fees). You can download it from
http://www.synthworks.com/downloads. It will be updated from time to time.
Currently there are numerous planned revisions.

If you add features to the package, please donate them back under the same license as
candidates to be added to the standard version of the package. If you need features,
be sure to contact us. I blog about the packages at http://www.synthworks.com/blog.
We also support a user community and blogs through http://www.osvvm.org.

Copyright © 2011-2016 by SynthWorks Design Inc. All rights reserved. 14
Verbatim copies of this document may be used and distributed without restriction.

If you find any innovative usage for the package, let us know - we can set you up to

16 Future Work

RandomPkg.vhd is a work in progress and will be updated from time to time.

Things not documented in this document, such as type RandomParmType and method
SetRandomParm, are experimental and may be removed in a future revision of the
package (to reduce the overhead to basic randomization). Note that the current version
of this package gives direct access to this capability via methods FavorSmall, FavorBig,
normal, and poisson.

In addition to the RandomPkg, we also are freely distributing our coverage package,
CoveragePkg. See http://www.SynthWorks.com/downloads. Over time we will also be
releasing other packages that we currently distribute with our classes (such as
scoreboards and memory modeling) and hope to convince simulation vendors to
distribute our libraries with their tools.

17 About the Author - Jim Lewis

Jim Lewis, the founder of SynthWorks, has thirty plus years of design, teaching, and
problem solving experience. In addition to working as a Principal Trainer for
SynthWorks, Mr Lewis has done ASIC and FPGA design, custom model development,
and consulting.

Mr. Lewis is chair of the IEEE 1076 VHDL Working Group (VASG) and is the primary
developer of the Open Source VHDL Verification Methodology (OSVVM.org) packages.
Neither of these activities generate revenue. Please support our volunteer efforts by
buying your VHDL training from SynthWorks.

If you find bugs these packages or would like to request enhancements, you can reach
me at jim@synthworks.com.

