
CodPy : a Python library for machine learning,
mathematical finance, and statistics

Philippe G. LeFloch1 , Jean-Marc Mercier, and Shohruh Miryusupov2

2022-01-18

1Laboratoire J.-L. Lions, Sorbonne Université and Centre National de la Recherche Scientifique, 4 Place
Jussieu, 75258 Paris, France. Email:contact@philippelefloch.org

2MPG-Partners, 136 Boulevard Haussmann, 75008 Paris, France. Email:jean-marc.mercier@mpg-
partners.com, shohruh.miryusupov@mpg-partners.com 3

2

Contents

1 Introduction 5
1.1 Main objective . 5
1.2 Outline of this monograph . 5
1.3 Further references . 6

2 Brief overview of methods of machine learning 7
2.1 A framework for machine learning . 7
2.2 Exploratory data analysis . 11
2.3 Performance indicators for machine learning . 12
2.4 General specification of tests . 16
2.5 Benchmark methodology: kernel-based predictors 17
2.6 Benchmark methodology: neural network predictors 19
2.7 Benchmark methodology: regression-tree predictors 21
2.8 Tutorial in 𝑁 dimensions . 26
2.9 Benchmark methodology for unsupervised learning 27

3 Kernel methods for machine learning 35
3.1 Aim of this chapter . 35
3.2 Fundamental notions for supervised learning . 36
3.3 Dealing with kernels . 42
3.4 Kernel engineering . 45
3.5 Discrete differential operators . 47
3.6 A kernel-based clustering algorithm . 56

4 Kernel methods for optimal transportation 63
4.1 Discrete ordering algorithms . 63
4.2 Conditional expectation algorithm . 69
4.3 Polar factorization algorithms . 69

5 Application to supervised machine learning 79
5.1 Regression problem: housing price prediction . 79
5.2 Classification problem: handwritten digits . 82
5.3 Reconstruction problems : learning from sub-sampled signals in tomography. . . . 90

6 Application for unsupervised machine learning 95
6.1 Classification problem: handwritten digits . 95
6.2 German credit risk . 99
6.3 Credit card marketing strategy . 101
6.4 Credit card fraud detection . 103
6.5 Portfolio of stock clustering . 106

3

4 CONTENTS

7 Application to optimal transport 111
7.1 Bachelier problem . 111
7.2 Time series . 120
7.3 Stress and reverse stress tests . 121

8 Application to partial differential equations 123

Chapter 1

Introduction

1.1 Main objective
This monograph presents the algorithms that are implemented in the Python library CodPy, an
acronym that stands for “Curse of dimensionality in Python”. This library provides the user with a
support vector machine (or SVM in short) which is application-oriented in the sense that it provides
a package of techniques relevant for numerous applications. The proposed algorithms apply to
systems of partial differential equations arising in mathematical finance and fluid dynamics, as
well discrete models of machine learning and statistics. We rely on a numerical strategy based on
the theory of reproducing kernel Hilbert spaces (RKHS) which the authors have developed over
the past decade, originally for applications in mathematical finance.

We proceed by presenting first, in several tutorial chapters, the basic notions of discretization, as
we formulated them in CodPy, and we include elementary examples in order to illustrate the role
of these main concepts. In a second part of this monograph, we apply our framework and include
more sophisticated discretization techniques and numerical results, while covering applications in
pattern recognition and mathematical finance. The proposed kernel engineering technique aims at
formulating support vector machines in a way that makes it easy to adapt them to any particular
problem. Our methodology encompasses the discretization of differential operators, which we
naturally associate with any support vector machine. Indeed, discrete differential operators are
building blocks in order to design discrete algorithms for partial differential equations, for instance
those arising in fluid dynamics. Importantly, our metholology leads us to error bounds or quality
tests, which are of crucial importance in many applications such as mathematical finance.

We found it convenient to write this monograph by relying on a combination of Python code, R
code, and Latex code in order to generate a Jupyter notebook. This has led us to a document in
which all numerical tests can be repeated and modified by the user1.

1.2 Outline of this monograph
1.2.1 Aim of Chapter 2: a quick tour to machine learning

• In section ??, we overview the techniques of learning machines, and introduce the general
notation that will be in order for the rest of this monograph. We point out the links between
this description and thz standard terminology used in the machine learning community, and
we review the numerous methods available in this field. We thus discuss the notions relevant
for

1CodPy will be made available for all users in the near future.

5

6 CHAPTER 1. INTRODUCTION

– the description of numerical methods for machine learning,

– the performance indicators that provide a measure to the relevance of any given learning
machines, and

– we mention the class of libraries currently available. It is not our purpose to cover
all of the techniques, but to focus on kernel-based methods for machine learning and
many other applications, and contribute here with several new aspects of the subject.
For instance, discrete projection operators (see section ??) and kernel-based clustering
methods (see 3.6) are novel algorithms. As we also advocate here, the notions of
discrepancy error (see (3.2.5)) and kernel-based norms (see Section (??)) leads us to
performance indicators that are particularly efficient in the applications.

• In Section 2.3, we list a set of criteria that can be used to evaluate the performance of an
algorithm and do not depend on the specific method in use. We can thus, with the help of
the previous step, automate the benchmark of existing methods. Indeed, due to the vast
amount of existing machine learning approaches, we encourage the reader to systematically
benchmark them:

– To a given learning problem, that is materialized as a list of input data.
– Pick a list of scenarios, a list of learning machines, and a list of performance indicators.
– Run the tests, output and compare performance indicators.

• The two previous steps allowed us to implement a framework into which we can plug-in
a quite large zoo of learning machines, to illustrate numerically with simple, one or two
dimensional, examples, our purposes. The section ?? (resp. ??) contains examples and
illustrations for supervised learning (resp. unsupervised) benchmarks.

1.2.2 Aim of Chapter 3
1.2.3 Aim of Chapter 4
1.2.4 Aim of Chapter 5
1.2.5 Aim of Chapter 6
………………

1.3 Further references
Since our primarily intention here is to provide a technical introduction to our Python library, we
only include a brief bibliography here. While a large literature is available which is devoted to
support vector machines and reproducing kernel Hilbert spaces (RKHS), it is not our purpose to
review it here. We would like refer the reader to Berlinet and Thomas-Agnan [3] and Fasshauer
[10, 11, 12] since they were the most influential in the development of the present code. The reader
will find therein a background on the subject, together with many further references.

Our original contributions concerning the class of kernel-based mesh-free algorithms presented in
this monograph can be found in the research papers by LeFloch and Mercier [23, 24, 25, 26, 27].
Moreover, [28]–[33]
contain earlier versions of the material in this monograph.

For additional results on kernel techniques, we refer to \cite{NarcowichWardWendland:2005,Niederreiter:1992,Opfer:2006,Wendland:1997,Wendland:2005,Zwicknagl:2008.
Mesh-less methods and kernel-based strategies have been found very useful in fluid dynamics and
material dynamics [2, 4, 14, 15, 18, 34, 36, 38, 41, 43, 45, 51].

Chapter 2

Brief overview of methods of
machine learning

2.1 A framework for machine learning
2.1.1 Prediction machine for supervised/unsupervised machine learning
Machine learning methods can be roughly split into two main approaches: unsupervised and su-
pervised methods. Both can be described in a general framework, referred to here as a prediction
machine. In short, a predictor, denoted by 𝒫𝑚, is an extrapolation or interpolation procedure,
described by an operator

𝑓𝑧 = 𝒫𝑚(𝑥, 𝑦 = [], 𝑧 = 𝑥, 𝑓(𝑥) = []). (2.1.1)

Python notation is used here and the brakets mean that the variables 𝑦, 𝑧, 𝑓(𝑥) are optional input
data.

• The choice of the method is indicated by the subscript 𝑚. Each method relies on a set of
external parameters. Fine tuning such parameters is sometimes very cumbersome and
provide a source of error and, in fact, some of the strategies in the literature propose to rely
on a learning machine in order to determine these external parameters. No performance
indicator is provided for this parameter tuning step, and this is an issue to take into account
in the applications before selecting up a particular method.

• The input data 𝑥, 𝑦, 𝑧, 𝑓(𝑥) are as follows.

– The only non-optional parameter is the variable 𝑥 ∈ ℝ𝑁𝑥×𝐷, called the training set.
The parameter 𝐷 is usually referred as the total number of features.

– The variable 𝑓(𝑥) ∈ ℝ𝑁𝑥×𝐷𝑓 is called the training set values, whilethe parameter 𝐷𝑓
is the number of training features.

– The variable 𝑧 ∈ ℝ𝑁𝑧×𝐷 is called the test set. If it is not specified, we tacitly assume
that 𝑧 = 𝑥.

– The variable 𝑦 ∈ ℝ𝑁𝑦×𝐷 is called the internal parameter set1 and is necessary in
order to define 𝒫𝑚.

• The output data are as follow:

– Supervised learning: this corresponds to choosing the input function values 𝑓(𝑥)
and we then write

𝑓𝑧 = 𝒫𝑚(𝑥, 𝑦 = [], 𝑧 = 𝑥, 𝑓(𝑥)),
1also called weight set in neural network theory

7

8 CHAPTER 2. BRIEF OVERVIEW OF METHODS OF MACHINE LEARNING

where the values 𝑓𝑧 ∈ ℝ𝑁𝑧×𝐷 are called a prediction. We distinguish between two
cases:
∗ If the input data 𝑦 is left empty, then the prediction machine (2.1.1) is called a

feed-backward machine. In this case, the method computes this set with an
internal method and determine 𝑓𝑧.

∗ If 𝑦 is specified as input data, then the prediction machine (2.1.1) is referred as a
feed-forward machine. In this case, the method uses the set of internal param-
eters and compute the prediction 𝑓𝑧.

– Unsupervised learning: we may also choose

𝑓𝑧 = 𝒫𝑚(𝑥, 𝑧 = 𝑥), (2.1.2)

where the output values 𝑓𝑧 ∈ ℝ𝑁𝑧×𝐷 are sometimes called clusters for the so-called
clustering methods (described later on).

Other machine learning methods can be described with the same notation. For instance, two
methods 𝑚1, 𝑚2 begin given, then the following composition describes a feed-backward machine,
which is quite close to the definition of semi-supervised learning in the literature and also
encompasses feed-backward learning machines:

𝑓𝑧 = 𝒫𝑚1
(𝑥, 𝒫𝑚2

(𝑥, 𝑓(𝑥)), 𝑧, 𝑓(𝑥)),

We summarize our main notation in Table 2.1. The sizes of the input data, that is, the integers
𝐷, 𝑁𝑥, 𝑁𝑦, 𝑁𝑧, 𝐷𝑓 , are also considered as input parameters. The distinction between supervised
and unsupervised learning is a matter of having, or not, optional input data and the correspondence
will be clarified in the rest of this chapter.

Table 2.1: Main parameters for machine learning

𝑥 𝑦 𝑧 𝑓(𝑥) 𝑓𝑧

training set parameter set test set training values predictions
size 𝑁𝑥 × 𝐷 size 𝑁𝑦 × 𝐷 size 𝑁𝑧 × 𝐷 size 𝑁𝑥 × 𝐷𝑓 size 𝑁𝑧 × 𝐷𝑓

2.1.2 Techniques of supervised learning
Supervised learning (2.1.1) corresponds to the case where the function values 𝑓(𝑥) is part of input
data.

𝑓𝑧 = 𝒫𝑚(𝑥, 𝑦 = [], 𝑧 = 𝑥, 𝑓(𝑥)). (2.1.3)

Supervised learning can be best understood as a simple extrapolation procedure: from historical
observations of a given function 𝑥, 𝑓(𝑥), one wants to predict, or extrapolate, the function on a new
set of values 𝑧. Concerning the terminology, a method is said to be multi-class or multi-output
if the function 𝑓 under consideration can be vector-valued, that is, 𝐷𝑓 ≥ 1 with our notations.
Note that one can always stack learning machines to produce multi-class methods. However, this
comes usually at a quite heavy computational cost, motivating this definition. Moreover, the input
function 𝑓 can be

• discrete, that is the set of unique values 𝑓(ℝ𝐷) is a discrete set, denoted 𝑅𝑎𝑛(𝑓). The set is
referred as labels, and this set can always be mapped to integer [1, … , #(𝑅𝑎𝑛(𝑓))], where
#(𝐸) denotes the number of elements, or cardinal, of a set.

• continuous.
• mixed (some discrete, some continuous).

A classification of existing methods for supervised learning can be found at scikit-learn

There are

2.1. A FRAMEWORK FOR MACHINE LEARNING 9

• Different family of methods: linear models, support vector machines, neural networks, …

• Different methods: neural networks, gaussian processes, etc…

• Different libraries: scikit-learn, Tensorflow, …

2.1.3 Techniques of unsupervised learning
Unsupervised learning corresponds to the case where the function values 𝑓(𝑥) is not part of input
data, see (2.1.1) :

𝒫𝑚(𝑥, 𝑦 = [], 𝑧 = 𝑥). (2.1.4)

Unsupervised learning can be best understood as a simple interpolation procedure: from historical
observations of a given distribution 𝑥, one wants to extract, or interpolate, 𝑁𝑦 features that best
represent 𝑥. The output data of a standard clustering method are the cluster set, denoted
𝑦 ∈ ℝ𝑁𝑦×𝐷.

There are natural connections between supervised and unsupervised learning.

• In the context of semi-supervised clustering methods, the clusters 𝑦 are used in a supervised
learning machine to produce a prediction 𝑓𝑧 ∈ ℝ𝑁𝑧×𝐷𝑓 , see (2.1.1).

• In the context of unsupervised clustering methods, a prediction 𝑓𝑧 ∈ ℝ𝑁𝑧 can also be made.
This prediction attaches each point 𝑧𝑖 of the test set to the cluster set 𝑦, producing 𝑓𝑧 as a
map [1, … , 𝑁𝑧] ↦ [1, … , 𝑁𝑦].

There exists several clustering methods performing this approach, see for instance the dedicated
Wikipedia page2.

• Different family of methods: linear models, support vector machines, neural networks,…

2link to cluster analysis Wikipedia page.

https://en.wikipedia.org/wiki/Cluster_analysis

10 CHAPTER 2. BRIEF OVERVIEW OF METHODS OF MACHINE LEARNING

• Different methods: neural networks, Gaussian processes, etc..

• Different libraries: Scikit-learn, …

Clustering is one family of unsupervised learning method. The library Scikit-learn proposes this
quite impressive list of clustering methods, see 3. We extracted the following figure and comment
it briefly to illustrate our notation.

Figure 2.1: list of scikit-learn clustering methods.

• Each column describes a particular clustering algorithm.
3link to scikit-learn clustering

https://scikit-learn.org/stable/modules/clustering.html

2.2. EXPLORATORY DATA ANALYSIS 11

• Each row describes a particular clustering, unsupervised problem:
– Each image scatter plots the training set 𝑥 and the test set 𝑧, that are equals.
– Each image color codes the predicted values 𝑓𝑧.

2.2 Exploratory data analysis
2.2.1 Preliminaries
Exploratory data analysis plays a central role in data engineering and allows one to understand
the structure of a given dataset, including its correlation and statistical properties. For instance,
we can study whether a data distribution is multi-modal, skew, or discontinuous, among other
features. The technique can help in many different applications and, for instance in unsupervised
learning, one can produce a first guess concerning the number of possible clusters associated with
a given dataset, or concerning the type of kernels one should choose before applying a kernel
regression method.

As an example, we illustrate the visualization tools that we are using, consider the Iris flower data
set. Iris data set introduced by the British statistician, eugenicist, and biologist Ronald Fisher in
his 1936 paper “The use of multiple measurements in taxonomic problems”. The data set consists
of 50 samples from each of three species of Iris (Iris setosa, Iris virginica and Iris versicolor). Four
features were measured from each sample: the length and the width of the sepals and petals, in
centimeters.

2.2.2 Visualization based on non-parametric estimations
The density of the input data is estimated using a kernel density estimate (KDE). Let
(𝑥1, 𝑥2, … , 𝑥𝑛) be independent and identically distributed samples, drawn from some univariate
distribution with unknown density denoted by 𝑓 at any given point 𝑥. We are interested in
estimating the shape of this function 𝑓 and the kernel density estimator is

̂𝑓ℎ(𝑥) = 1
𝑛

𝑛
∑
𝑖=1

𝐾ℎ(𝑥 − 𝑥𝑖) = 1
𝑛ℎ

𝑛
∑
𝑖=1

𝐾(𝑥 − 𝑥𝑖

ℎ),

where 𝐾 is a kernel (say any non-negative function) and ℎ > 0 is a smoothing parameter called
the bandwidth. Among the range of possible kernels that are are commonly used, we have:
uniform, triangular, biweight, triweight, Epanechnikov, normal, and many others. The ability of
the KDE to accurately represent the data depends on the choice of the smoothing bandwidth.
An over-smoothed estimate can remove meaningful features, but an under-smoothed estimate can
obscure the true shape within the random noise.

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

Co
un

t

sepal length (cm)

0
1
2

Figure 2.2: Kernel density estimator

12 CHAPTER 2. BRIEF OVERVIEW OF METHODS OF MACHINE LEARNING

2.2.3 Visualization based on scatter plots
Another way to visualize data is to rely on a scatter plot, where the data are displayed as a
collection of points, each having the value of one variable determining the position on the horizontal
axis and the value of the other variable determining the position on the vertical axis.

0 20 40 60

4.5

5.0

5.5

6.0

6.5

7.0

7.5

sepal length (cm)

0 20 40 60

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

sepal width (cm)

0 20 40 60

1

2

3

4

5

6

petal length (cm)

0 20 40 60
0.0

0.5

1.0

1.5

2.0

2.5

petal width (cm)

Figure 2.3: Scatter plot

2.2.4 Visualization based on correlation matrices
The correlation matrix of 𝑛 random variables 𝑥1, … , 𝑥𝑛 is the 𝑛 × 𝑛 matrix whose (𝑖, 𝑗) entry is
𝑐𝑜𝑟𝑟(𝑥𝑖, 𝑥𝑗). Thus the diagonal entries are all identically unity.

2.2.5 Visualization based on summary plots
The summary plot visualizes the density of each feature of the data on the diagonal. The KDE
plot on the lower diagonal and the scatter plot on the upper diagonal.

2.3 Performance indicators for machine learning
2.3.1 Indicators for supervised learning
Comparison to ground truth values. A huge family of indicators is available in order to evalu-
ate the performance of a learning machine, most of them being readily described and implemented
in scikit-learn4.

We do not discuss them all, but rather overview those that we have included in the CodPy
library. First of all, in the context of supervised clustering methods, if the function 𝑓 is known in

4link to scikit-learn metrics.

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics

2.3. PERFORMANCE INDICATORS FOR MACHINE LEARNING 13

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)

sepal length (cm)

sepal width (cm)

petal length (cm)

petal width (cm)

-0.032

0.86 -0.33

0.79 -0.25 0.95

Correlation matrix

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Figure 2.4: Correlation matrix

advance, then predictions of learning machines 𝑓𝑧 can be compared with ground truth values,
𝑓(𝑧) ∈ ℝ𝑁𝑧×𝐷𝑓 . Below we list the main metrics that are used.

• For labeled functions (i.e., discrete functions), a common indicator is the score, defined as

1
𝑁𝑧

#{𝑓𝑛
𝑧 = 𝑓(𝑧)𝑛, 𝑛 = 1 … 𝑁𝑧}

producing an indicator between 0 and 1, the higher being the better.

• For continuous functions (i.e., discrete functions), a common indicator is ℓ𝑝 norms, defined
as

1
𝑁𝑧

‖𝑓𝑧 − 𝑓(𝑧)‖ℓ𝑝 , 1 ≤ 𝑝 ≤ ∞.

the case 𝑝 = 2 is referred as the root-mean-square error (RMSE).

• As the above indicator is not normalized, the following version is preferred.

‖𝑓𝑧 − 𝑓(𝑧)‖ℓ𝑝

‖𝑓𝑧‖ℓ𝑝 + ‖𝑓(𝑧)‖ℓ𝑝
, 1 ≤ 𝑝 ≤ ∞.

producing an indicator between 0 and 1, the smaller being the better, interpreted as error-
percentages. In finance, this notion is sometimes referred to as the basis point indicator.

Cross validation scores. The cross validation score consists in randomly selecting a part of the
training set and values as test set and values, and to perform a score or RMSE type error analysis
on each run5

5see the dedicated page on scikit-learn.

https://scikit-learn.org/stable/modules/cross_validation.html

14 CHAPTER 2. BRIEF OVERVIEW OF METHODS OF MACHINE LEARNING

4.5

5.0

5.5

6.0

6.5

7.0

7.5

se
pa

l l
en

gt
h

(c
m

)

 = -0.03 = 0.86 = 0.79

2.0

2.5

3.0

3.5

4.0

4.5

se
pa

l w
id

th
 (c

m
)

 = -0.33 = -0.25

0

2

4

6

8

pe
ta

l l
en

gt
h

(c
m

)

 = 0.95

3 4 5 6 7 8 9
sepal length (cm)

0

1

2

3

pe
ta

l w
id

th
 (c

m
)

1.5 2.0 2.5 3.0 3.5 4.0 4.5
sepal width (cm)

0 2 4 6 8
petal length (cm)

1 0 1 2 3
petal width (cm)

Figure 2.5: Summary plot

2.3. PERFORMANCE INDICATORS FOR MACHINE LEARNING 15

Confusion matrix. This indicator is available for labeled, supervised learning, is a matrix
representation of the numbers of ground-truth labels in a row, while each column represents the
predicted labels in an actual class. Confusion matrix is a quite simple and efficient data error
visualization methods, a simple example is shown in Section ??. Its common form is

𝑀(𝑖, 𝑗) = #{𝑓(𝑧) = 𝑖 𝑎𝑛𝑑 𝑓𝑧 = 𝑗},

representing correct predicted numbers in the matrix diagonal, since off-diagonal elements counts
false positive predictions. Note that numerous others performance indicators can be straightfor-
wardly deduced from the confusion matrix, as Rand Index, Fowlkes-Mallows scores, etc…

Norm of output. If no ground truth values are known, the quality of the prediction 𝑓𝑧, depends
on a priori error estimates or error bounds. Such estimates exist only for kernel methods (to
the best of the knowledge of the authors), and are described in the next chapter, see (3.2.5). Such
estimates uses the norm of functions described in (??), and was proven to be a useful indicator in
the applications.

ROC curves. A receiver operating characteristic curve, or ROC curve, is a graphical plot that
illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is
varied. The method was originally developed for operators of military radar receivers starting in
1941, which led to its name.

ROC is the plot of TPR versus FPR by varying the threshold. These metrics are are summed up
in the table below:

Metric Formula Equivalent
True Positive Rate TPR 𝑇 𝑃

𝑇 𝑃+𝐹𝑁 Recall, sensitivity
False Positive Rate FPR 𝐹𝑃

𝑇 𝑁+𝐹𝑃 1-specificity

We can use precision score (𝑃𝑅𝐸) to measure the performance across all classes:

𝑃𝑅𝐸 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑃 .

In “micro averaging”, we calculate the performance, e.g., precision, from the individual true posi-
tives, true negatives, false positives, and false negatives of the the k-class model:

𝑃𝑅𝐸𝑚𝑖𝑐𝑟𝑜 = 𝑇 𝑃1 + ⋯ + 𝑇 𝑃𝑘
𝑇 𝑃1 + ⋯ + 𝑇 𝑃𝑘 + 𝐹𝑃1 + ⋯ + 𝐹𝑃𝑘

.

And in macro-averaging, we average the performances of each individual class

𝑃𝑅𝐸𝑚𝑎𝑟𝑐𝑜 = 𝑃𝑅𝐸1 + ⋯ + 𝑃𝑅𝐸𝑘
𝑘 .

2.3.2 Indicators for unsupervised learning
Discrepancy error associated to kernel. Evaluation of clustering algorithms benefits from a
lot of performance indicators, a lot of them being implemented in Scikit-learn [^206] [^206]:see
this link.

We list in this section those that we are computing. First of all, the discrepancy error is an
indicator based on a kernel and will be fully described in the next chapter, see (3.2.5). It is used
primarily to produce worst error estimates, together with the norm of functions, as described in
(??). It was also found to be useful as a performance indicator for unsupervised learning machine.

Inertia indicator. The inertia indicator is used for k-means type algorithms. We describe it
precisely, as it uses a notation that will be used in other parts. It shares some similarities with the

https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation
https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation

16 CHAPTER 2. BRIEF OVERVIEW OF METHODS OF MACHINE LEARNING

discrepancy error one but is not equivalent. To define inertia, one first pick a distance, denoted
𝑑(𝑥, 𝑦), as the squared Euclidean one, although other distance are considered, as the Manhattan
one or log-entropy, depending upon the problem under consideration. Consider now any point
𝑤 ∈ ℝ𝐷. Then 𝑤 is attached naturally to a point 𝑦𝜎𝑑(𝑤,𝑦), where the discrete function 𝜎𝑑(𝑤, 𝑦) is
computed as

𝜎𝑑(𝑤, 𝑦) ∶= {𝑗 ∶ 𝑑(𝑤, 𝑦𝑗) = inf
𝑘

𝑑(𝑤, 𝑦𝑘)}.
Then the inertia is defined as

𝐼(𝑥, 𝑦) =
𝑁𝑥

∑
𝑛=0

(|𝑥𝑛 − 𝑦𝜎𝑑(𝑥𝑛,𝑦)|2).

Observe that this functional might not be convex, even if the distance under consideration is convex,
as is the squared Euclidean distance. For k-means algorithms, the cluster centers 𝑦 are computed
minimizing this functional. The parameter set 𝑦 is called centroids for k-means algorithms.

Homogeneity score. The homogeneity score, see the dedicated scikit-learn for a definition [^492],
is a performance indicator that holds for supervised, labeled, clustering problems. This indicator
performs a conditional entropy to estimate a score 𝑠(𝑓(𝑧), 𝑓𝑧) between 0 and 1 - higher the better.
[^492]:see this link

Silhouette coefficient. If the ground truth labels are not known, evaluation must be performed
using the model itself. The Silhouette Coefficient is an example of such an evaluation, where a
higher Silhouette Coefficient score relates to a model with better defined clusters.

2.4 General specification of tests
2.4.1 Preliminaries
We now overview a benchmark methodology and apply it to a few methods of supervised learning.
For each machine, * we illustrate the prediction function 𝒫𝑚, and * we illustrate the computation
of some performance indicators. We then present benchmarks using these indicators. In this
section, we restrict attention to toy examples while more significant examples will be studied in
Chapter 5.

We begin by describing a general, multi-dimensional, first quality assurance test for supervised
learning machines. We illustrate this test framework with one and two-dimensional examples, and
the reader can toy with functions and methods. The goal of this framework is to measure accuracy
of any learning machines, while using the extrapolation operator . Hence all our unit tests are
based on the following input sizes:

a function: f , a method: m ,five integers: 𝐷, 𝑁𝑥, 𝑁𝑦, 𝑁𝑧, 𝐷𝑓

To benchmark our machine, we use a list of scenarios, that is a list of entries 𝐷, 𝑁𝑥, 𝑁𝑦, 𝑁𝑧, 𝐷𝑓 .
Table 2.3 is an example of a list of 5 scenarios.

Table 2.3: scenario list

𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧
1 100 100 100
1 200 200 200
1 300 300 300
1 400 400 400

For the function 𝑓 we choose a period and an increasing function:
𝑓(𝑥) = Π𝑑=1..𝐷 cos(4𝜋𝑥𝑑) + ∑

𝑑=1..𝐷
𝑥𝑑. (2.4.1)

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.homogeneity_score.html#sklearn.metrics.homogeneity_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html#sklearn.metrics.silhouette_score

2.5. BENCHMARK METHODOLOGY: KERNEL-BASED PREDICTORS 17

It is defined in python code of this document, and the reader can change it to any other continuous
function.

2.4.2 An example in one dimension
Initialization. For this tutorial, we used a generator, configured to select 𝑥 (resp. 𝑦, 𝑧) as 𝑁𝑥
(resp. 𝑁𝑦, 𝑁𝑧) points regularly (resp. randomly, regularly) generated on a unit cube. We chose to
select 𝑧 distributed over a larger cube, to observe extrapolation and interpolation effects.

As an illustration, in Figure 2.6 we show both graphs (𝑥, 𝑓(𝑥)) (left, training set),(𝑧, 𝑓(𝑧)) (right,
test set).

1.0 0.5 0.0 0.5 1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

Figure 2.6: training and test set.

2.5 Benchmark methodology: kernel-based predictors
2.5.1 Periodic kernel regression model from CodPy
This test illustrates a kernel-based projection operator, described in Section 3.2. The set of external
parameters for kernel-based methods consists simply in picking-up a kernel, and is discussed in the
next chapter; see Section 3. We pick-up in the corresponding python chunk a standard periodic
Gaussian kernel, with a linear regression kernel, allowing us to fit both periodic and polynomial
parts of these data. These settings are explained in Chapter 3.3.
set_per_kernel = kernel_setters.kernel_helper(kernel_setters.set_gaussianper_kernel,2,1e-8,None)

We then run all the scenarios in Section 2.3.

We plot the first two results of this test in Figure 2.7 : predictions, denoted 𝑓𝑧 of the function
𝑓(𝑧), see Figure 2.6, for the first two scenarios defined in Section 2.3.

Table 2.4 shows the computed indicators during this test.

Table 2.4: CodPy performance indicators

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖𝑑 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time scores norm function discr.error
codpy extra 1 100 100 100 1 0.02 0.0371 0.90 0.0498
codpy extra 1 200 200 200 1 0.01 0.0184 0.95 0.1155
codpy extra 1 300 300 300 1 0.03 0.0122 0.92 0.1194
codpy extra 1 400 400 400 1 0.05 0.0091 0.92 0.0928

18 CHAPTER 2. BRIEF OVERVIEW OF METHODS OF MACHINE LEARNING

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

Figure 2.7: periodical kernel : two predictions.

2.5.2 The kernel regression model from SciPy
Scipy proposes a solid and robust kernel regression predictor, see this link. We often benchmark
our kernel implementation with it. Let us first set up the external parameters for Scipy.
rbf_param = {'function': 'gaussian', 'epsilon':None, 'smooth':1e-8, 'norm':'euclidean'}

Indeed, we now proceed by copy-pasting the previous section, to highlight that benchmark method-
ologies should be method-independent. We then run our scenario list and collect results.

We plot the two first results in Figure 2.8 : these are the predictions, denoted 𝑓𝑧, of the function
𝑓(𝑧); see Figure 2.6, for the first two scenarios defined in Section 2.3.

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1

0

1

2

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1

0

1

2

Figure 2.8: scipy : two predictions.

Table 2.5 shows the computed indicators after running all scenarios indicated in the Table 2.3.

Table 2.5: scipy performance indicators

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖𝑑 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time scores norm function discr.error
scipy pred 1 100 100 100 1 0.00 0.5532 0.90 0.0498
scipy pred 1 200 200 200 1 0.19 0.5464 0.95 0.1155
scipy pred 1 300 300 300 1 0.19 0.5434 0.92 0.1194
scipy pred 1 400 400 400 1 0.18 0.5419 0.92 0.0928

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.Rbf.html

2.6. BENCHMARK METHODOLOGY: NEURAL NETWORK PREDICTORS 19

2.5.3 Support vector regression model
For this test, the interpolation machine is chosen to be a support vector classifier, taken from
scikit learn. It specified by a decision function (support vector classifier) and the kernel function
associated to it, see this dedicated page for a description of SVC. The reader can tune this set of
parameters.
svm_param = {'kernel': 'linear', 'gamma': 'auto', 'C': 1}

Figure 2.9 shows the results of the first two scenarios of this test.

1.5 1.0 0.5 0.0 0.5 1.0 1.5

0.6

0.4

0.2

0.0

0.2

0.4

0.6

1.5 1.0 0.5 0.0 0.5 1.0 1.5

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 2.9: SVM

Table 2.6 provides all computed indicators after running all scenarios indicated in the Table 2.3.

Table 2.6: SVM performance indicators

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖𝑑 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time scores norm function discr.error
SVM 1 100 100 100 1 0.03 0.5286 0.90 0.0498
SVM 1 200 200 200 1 0.00 0.5201 0.95 0.1155
SVM 1 300 300 300 1 0.00 0.5304 0.92 0.1194
SVM 1 400 400 400 1 0.00 0.5498 0.92 0.0928

2.6 Benchmark methodology: neural network predictors
2.6.1 TensorFlow neural network regression model
For this test, we use as an interpolation machine a standard neural network one, taken from
TensorFlow, commonly called deep learning method. It consists in a network of layers defined
by the following settings, see this dedicated page for a description of TensorFlow neural networks.
The reader can tune this set of parameters:
import tensorflow as tf
codpy_param['tfRegressor'] = {'epochs': 50,
'batch_size':16,
'validation_split':0.1,
'loss':tf.keras.losses.mean_squared_error,
'optimizer':tf.keras.optimizers.Adam(0.001),
'layers':[8,64,64,1],
'activation':['relu','relu','relu','linear'],
'metrics':['mse']}

https://scikit-learn.org/stable/modules/svm.html
https://www.tensorflow.org/tutorials/customization/basics

20 CHAPTER 2. BRIEF OVERVIEW OF METHODS OF MACHINE LEARNING

We then run the scenarios. We plot the two first results of this test in Figure 2.10 : these are the
predictions, denoted 𝑓𝑧, of the function 𝑓(𝑧); see figure 2.6, for the first two scenarios defined in
Table 2.3.

WARNING:tensorflow:From C:\informatique\Python37\lib\site-packages\tensorflow_core\python\ops\resource_variable_ops.py:1630: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.
Instructions for updating:
If using Keras pass *_constraint arguments to layers.

1.5 1.0 0.5 0.0 0.5 1.0 1.5

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.5 1.0 0.5 0.0 0.5 1.0 1.5
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure 2.10: TensorFlow : two predictions.

The table 2.7 shows computed indicators after running all scenarios indicated in Table 2.3.

Table 2.7: Tensorflow neural network performance indicators

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖𝑑 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time scores norm function discr.error
Tensorflow 1 100 100 100 1 0.70 0.4807 0.90 0.0498
Tensorflow 1 200 200 200 1 1.08 0.6811 0.95 0.1155
Tensorflow 1 300 300 300 1 1.46 0.9161 0.92 0.1194
Tensorflow 1 400 400 400 1 1.80 1.0506 0.92 0.0928

2.6.2 Pytorch neural network regression model
For this test, we use as interpolation machine a standard neural network one, taken from Pytorch.
It consists in a network of layers defined by the following settings, see this dedicated page for a
description of Pytorch neural networks. We constructed the same neural network as in the case
of Tensorflow.
torch_param = {'PytorchRegressor': {'epochs': 128,
'layers': [8,64,64],
'activation':['relu','linear'],
'batch_size': 16,
'loss': nn.MSELoss(),
'activation': nn.ReLU(),
'optimizer': torch.optim.Adam,
"out_layer": 1}}

Figure 2.11 shows the results of first two scenarios of this test.

We run the scenarios and output the results: Table 2.8 provides all computed indicators after
running all scenarios indicated in Table 2.3.

https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html
https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html

2.7. BENCHMARK METHODOLOGY: REGRESSION-TREE PREDICTORS 21

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Figure 2.11: Pytorch

Table 2.8: Pytorch performance indicators

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖𝑑 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time scores norm function discr.error
Pytorch 1 100 100 100 1 0.59 0.4877 0.90 0.0498
Pytorch 1 200 200 200 1 1.19 0.5156 0.95 0.1155
Pytorch 1 300 300 300 1 1.72 0.7986 0.92 0.1194
Pytorch 1 400 400 400 1 2.24 0.7964 0.92 0.0928

2.7 Benchmark methodology: regression-tree predictors
2.7.1 Decision tree regression
We use as interpolation machine a decision tree, taken from scikit learn. It allows to create a
model that predicts the value of a target variable by learning simple decision rules inferred from
the data features. A tree can be seen as a piecewise constant approximation; see this dedicated
page for a description of decision trees. (The reader can tune this set of parameters).
DT_param = {'max_depth': 10}

Figure 2.12 shows the results of the first two scenarios of this test.

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 2.12: Decision Tree

Table 2.9 provides all computed indicators after running all scenarios indicated in Table 2.3.

https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/tree.html

22 CHAPTER 2. BRIEF OVERVIEW OF METHODS OF MACHINE LEARNING

Table 2.9: Decision Tree performance indicators

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖𝑑 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time scores norm function discr.error
Decision tree 1 100 100 100 1 0.03 0.4586 0.90 0.0498
Decision tree 1 200 200 200 1 0.00 0.4621 0.95 0.1155
Decision tree 1 300 300 300 1 0.00 0.4619 0.92 0.1194
Decision tree 1 400 400 400 1 0.00 0.4616 0.92 0.0928

2.7.2 AdaBoost regression
Now, for the interpolation machine we use an AdaBoost algorithm, taken from scikit learn. The
core principle of AdaBoost is to fit a sequence of weak learners (i.e., models that are only slightly
better than random guessing, such as small decision trees) on repeatedly modified versions of
the data. The predictions from all of them are then combined through a weighted majority vote
(or sum) to produce the final prediction, see this dedicated page for a description of AdaBoost
algorithm. The reader can tune this set of parameters.
ada_param = {'tree_no': 50, 'learning_rate': 1}

Figure 2.13 shows the results of the first two scenarios of this test.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure 2.13: AdaBoost

Table 2.10 provides all computed indicators after running all scenarios indicated in Table 2.3.

Table 2.10: AdaBoost performance indicators

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖𝑑 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time scores norm function discr.error
AdaBoost 1 100 100 100 1 0.13 0.3814 0.90 0.0498
AdaBoost 1 200 200 200 1 0.01 0.4093 0.95 0.1155
AdaBoost 1 300 300 300 1 0.02 0.4154 0.92 0.1194
AdaBoost 1 400 400 400 1 0.03 0.4169 0.92 0.0928

2.7.3 Gradient boosting regression
For this test, we use as interpolation machine a gradient decision tree boosting (GBDT), taken
from scikit learn. It allows for the optimization of arbitrary differentiable loss functions. In each
stage a regression tree is fit on the negative gradient of the given loss function; see this dedicated
page for a description of Gradient Tree Boosting. (The reader can tune this set of parameters.)

https://scikit-learn.org/stable/modules/ensemble.html#adaboost
https://scikit-learn.org/stable/modules/ensemble.html#adaboost
https://scikit-learn.org/stable/modules/ensemble.html#gradient-boosting
https://scikit-learn.org/stable/modules/ensemble.html#gradient-boosting

2.7. BENCHMARK METHODOLOGY: REGRESSION-TREE PREDICTORS 23

gb_param = {'tree_no': 50, 'learning_rate': 1}

Figure 2.14 shows the results of the first two scenarios of this test.

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 2.14: Gradient Boosting

Table 2.11 provides all computed indicators after running all scenarios indicated in Table 2.3.

Table 2.11: Gradient Boosting performance indicators

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖𝑑 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time scores norm function discr.error
Gradient Boosting 1 100 100 100 1 0.01 0.4586 0.90 0.0498
Gradient Boosting 1 200 200 200 1 0.01 0.4620 0.95 0.1155
Gradient Boosting 1 300 300 300 1 0.02 0.4621 0.92 0.1194
Gradient Boosting 1 400 400 400 1 0.01 0.4611 0.92 0.0928

2.7.4 XGBoost algorithm
For this test, we use as XGBoost as an interpolation machine. It is essentially a computationally
efficient implementation of the original gradient boost algorithm, see this dedicated page for a
description of XGBoost project. (The reader can tune this set of parameters.)
xgb_param = {'max_depth': 5, 'n_estimators': 10}

Figure 2.15 shows the results of the first two scenarios of this test.

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure 2.15: XGBoost

https://xgboost.readthedocs.io/en/latest/tutorials/model.html
https://xgboost.readthedocs.io/en/latest/tutorials/model.html

24 CHAPTER 2. BRIEF OVERVIEW OF METHODS OF MACHINE LEARNING

Table 2.12 provides all computed indicators after running all scenarios indicated in Table 2.3.

Table 2.12: XGBoost performance indicators

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖𝑑 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time scores norm function discr.error
XGboost 1 100 100 100 1 0.16 0.4442 0.90 0.0498
XGboost 1 200 200 200 1 0.01 0.4473 0.95 0.1155
XGboost 1 300 300 300 1 0.01 0.4502 0.92 0.1194
XGboost 1 400 400 400 1 0.01 0.4522 0.92 0.0928

2.7.5 Random forest regression
For this test, as an interpolation machine we use a random forest regression. It operates by
constructing a large number of decision trees at training time and producing the class that is the
mode of the classes (classification) or mean/average prediction (regression) of the individual trees;
see this dedicated page for a description of forests of randomized trees. (The reader can tune this
set of parameters.)
RF_param = {'max_depth': 5, 'n_estimators': 5}

Figure 2.16 shows the results of first two scenarios of this test.

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 2.16: Random Forest

Table 2.13 provides all computed indicators after running all scenarios indicated in Table 2.3.

Table 2.13: Random Forest performance indicators

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖𝑑 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time scores norm function discr.error
RForest 1 100 100 100 1 0.08 0.4435 0.90 0.0498
RForest 1 200 200 200 1 0.09 0.4579 0.95 0.1155
RForest 1 300 300 300 1 0.10 0.4602 0.92 0.1194
RForest 1 400 400 400 1 0.11 0.4606 0.92 0.0928

2.7.6 A comparison between methods
We benchmark methods, comparing any computed indicators as follows.

Observe that function norms and discrepancy errors are not method-dependent. Clearly, for this
example, a periodical kernel-based method outperforms the two other ones. However, it is not our
goal to illustrate a particular method supremacy, but a benchmark methodology, particularly in
the context of extrapolating test set data far from the training set ones.

https://scikit-learn.org/stable/modules/ensemble.html#forest

2.7. BENCHMARK METHODOLOGY: REGRESSION-TREE PREDICTORS 25

100 150 200 250 300 350 400
Nx

0.0

0.2

0.4

0.6

0.8

1.0
sc

or
es

AdaBoost
Decision tree
Gradient Boosting
Pytorch
RForest
SVM
Tensorflow
XGboost
codpy extra
scipy pred

Benchmark methods

Figure 2.17: Benchmarking scores (RMSE)

100 150 200 250 300 350 400
Nx

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

di
sc

re
pa

nc
y_

er
ro

rs

AdaBoost
Decision tree
Gradient Boosting
Pytorch
RForest
SVM
Tensorflow
XGboost
codpy extra
scipy pred

Benchmark methods

Figure 2.18: Discrepancy error

100 150 200 250 300 350 400
Nx

0.0

0.5

1.0

1.5

2.0

ex
ec

ut
io

n_
tim

e

AdaBoost
Decision tree
Gradient Boosting
Pytorch
RForest
SVM
Tensorflow
XGboost
codpy extra
scipy pred

Benchmark methods

Figure 2.19: Computation time comparison

26 CHAPTER 2. BRIEF OVERVIEW OF METHODS OF MACHINE LEARNING

Table 2.14: scenario list

𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧
2 2500 2500 2500
2 1600 1600 1600
2 900 900 900
2 400 400 400

2.8 Tutorial in 𝑁 dimensions
2.8.1 Initialization
Now we illustrate the fact that the dimension arising in the problem under consideration does not
change benchmark methods. To illustrate this point, we simply copy/paste the previous step used
for the one-dimensional case, but setting the dimension to two, that is 𝐷 = 2, and the user can
test with this parameter. Only data visualization changes.

We first pick-up a scenario list, see Table 2.14, to be compared to the one-dimensional scenario
Table 2.3.

Then we generate data and in Figure 2.20 we show both graphs (𝑥, 𝑓(𝑥)) (left, training set),(𝑧, 𝑓(𝑧))
(right, test set) for illustration purposes, 𝑓 being defined in Section 2.4.1. Observe that, if the
dimension is greater to two, we use a two dimensional visualization, plotting ̃𝑥, 𝑓(𝑥), where ̃𝑥 is
obtained

• either setting indices ̃𝑥 ∶= 𝑥[𝑖𝑛𝑑𝑒𝑥1, 𝑖𝑛𝑑𝑒𝑥2]
• or performing a PCA over 𝑥 and setting ̃𝑥 ∶= 𝑃𝐶𝐴(𝑥)[𝑖𝑛𝑑𝑒𝑥1, 𝑖𝑛𝑑𝑒𝑥2].

1.000.750.500.250.000.250.500.751.00

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

210123
1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

3210123
4

Figure 2.20: train vs test set.

2.8.2 Periodic kernel for machine learning
This defines a standard periodic Gaussian kernel, with a linear regression kernel, allowing us to fit
both periodical and polynomial parts of our data.

Table 2.15 shows the computed indicators after running all scenarios indicated in Table 2.3.

We plot the first two results of this test: the predictions, denoted 𝑓𝑧, of the function 𝑓(𝑧); see
Figure 2.20, for the first two scenarios defined in Table 2.3.

2.8.3 Scipy library
In this section we present the result of an extrapolation using SciPy’s function RBF.

2.9. BENCHMARK METHODOLOGY FOR UNSUPERVISED LEARNING 27

Table 2.15: CodPy performance indicators

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖𝑑 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time scores norm function discr.error
codpy extra 2 2704 2500 2704 1 3.20 0 1.99 1.7783
codpy extra 2 1764 1600 1764 1 1.28 0 1.98 1.4383
codpy extra 2 1024 900 1024 1 0.39 0 2.00 0.9590
codpy extra 2 484 400 484 1 0.07 0 1.97 0.1795

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

3210123

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

32101234

Figure 2.21: Codpy via periodic kernel: train vs test set

We provide all computed indicators after running all scenarios indicated in Table 2.3.

We end this test plotting the two first results of this test, to be compared to Figure 2.20.

2.8.4 A comparison between methods
Methods are compared in the corresponding figure.

2.9 Benchmark methodology for unsupervised learning
2.9.1 Purpose
The goal of this section is to overview our own methodology (which will be fully described in the
next chapter).

• We illustrate the prediction function 𝒫𝑚 for some methods in the context of supervised
learning.

• We illustrate the computations of some performance indicators, as well as to present a toy
benchmark using these indicators.

The data is generated using a multi-modal, multi-variate, Gaussian distribution with a covariance
matrix Σ = 𝜎𝐼𝑑. The problem is to identify the modes of the distribution using clustering method.

Table 2.16: scipy performance indicators

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖𝑑 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time scores norm function discr.error
scipy pred 2 2704 2500 2704 1 0.33 0.2771 1.99 1.7783
scipy pred 2 1764 1600 1764 1 0.21 0.2831 1.98 1.4383
scipy pred 2 1024 900 1024 1 0.12 0.2946 2.00 0.9590
scipy pred 2 484 400 484 1 0.12 0.3258 1.97 0.1795

28 CHAPTER 2. BRIEF OVERVIEW OF METHODS OF MACHINE LEARNING

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

210123

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

210123

Figure 2.22: Scipy: train set vs test set

500 1000 1500 2000 2500
Nx

0.00

0.05

0.10

0.15

0.20

0.25

0.30

sc
or

es codpy extra
scipy pred

500 1000 1500 2000 2500
Nx

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

di
sc

re
pa

nc
y_

er
ro

rs

codpy extra
scipy pred

500 1000 1500 2000 2500
Nx

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ex
ec

ut
io

n_
tim

e

codpy extra
scipy pred

Figure 2.23: benchmark of various performance indicators for supervised learning

2.9. BENCHMARK METHODOLOGY FOR UNSUPERVISED LEARNING 29

Table 2.17: scikit: clusters indicators

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖𝑑 k-means k-means k-means k-means k-means
𝐷 2 2 2 2 2
𝑁𝑥 1000 1000 1000 1000 1000
𝑁𝑦 2 3 4 5 6
𝑁𝑧 1000 1000 1000 1000 1000
𝐷𝑓 1 1 1 1 1
time 0.57 0.95 1.16 1.36 2.95
scores 1 0.996 0.981 0.967 0.84
norm function 0.06 0.24 0.97 1.51 6.57
discr.error 0.04 0.0352 0.0581 0.05 0.0346
score calinsky 17799.84 9972.16 5422.82 3816.27 3633.54
score harabazs 0.85 0.72 0.63 0.57 0.46
homogeneity test 1 0.98 0.93 0.91 0.79
inertia 1974.8 1953.95 1962.53 1941.25 1693.22

In the following we will generate distribution with a predetermined number of modes, it will allow
to test validation scores on this toy example.

2.9.2 Analysis via k-means clustering
In this paragraph, we compute k-means clustering, using a scikit-learn implementation6

We first run all scenarios. We provide all computed indicators after running all scenarios indicated
in Table 2.3.

k-means blob visualization. We now plot the first two distributions as well as the corresponding
computed clusters.

C:\informatique\github\codpy\apps\common\codpy_tools.py:1235: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).
fig = plt.figure(figsize = figsize)

12 10 8 6 4 2 0 2
x

6

4

2

0

2

4

6

8

y

12 10 8 6 4 2 0 2
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

y

Figure 2.24: Scatter plot of clusters using scikit’s k-means

k-means confusion matrix. We next plot the first two confusion matrices.

C:\informatique\github\codpy\apps\common\codpy_tools.py:1235: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).
fig = plt.figure(figsize = figsize)

6the scikit-learn implementation is available using this link

https://scikit-learn.org/stable/modules/clustering.html#k-means

30 CHAPTER 2. BRIEF OVERVIEW OF METHODS OF MACHINE LEARNING

0 1

0

1

486 0

0 514

0

100

200

300

400

500

0 1 2

0

1

2

325 0 0

0 331 0

0 4 340

0

50

100

150

200

250

300

Figure 2.25: Confusion matrices of scikit’s kmeans

Table 2.18: Minibatch: clusters indicators

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖𝑑 minibatch minibatch minibatch minibatch minibatch
𝐷 2 2 2 2 2
𝑁𝑥 1000 1000 1000 1000 1000
𝑁𝑦 2 3 4 5 6
𝑁𝑧 1000 1000 1000 1000 1000
𝐷𝑓 1 1 1 1 1
time 1.87 1.35 1.12 1.78 1.54
scores 1 0.996 0.982 0.962 0.808
norm
function

0.06 0.24 0.97 1.54 4.72

discr.error 0.0389 0.0375 0.0589 0.0882 0.0715
scores
calinsky

17799.84 9972.16 5420.6 3762.12 3516.4

score
harabazs

0.85 0.72 0.63 0.56 0.46

homogeneity
test

1 0.98 0.93 0.9 0.77

inertia 1975.7 1956.49 1966.19 2087.73 1745.04

2.9.3 Analysis via mini-batch clustering
To compute minibatch clustering, we use scikit-learn implementation

We provide all computed indicators after running all scenarios indicated in Table 2.3.

Minibatch blob visualization. We next plot the first two distributions as well as the corre-
sponding computed clusters.

C:\informatique\github\codpy\apps\common\codpy_tools.py:1235: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).
fig = plt.figure(figsize = figsize)

Minibatch confusion matrix. The figure below illustrates two confusion matrices.

C:\informatique\github\codpy\apps\common\codpy_tools.py:1235: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).
fig = plt.figure(figsize = figsize)

2.9.4 Analysis via CodPy clustering
We also provide all the indicators after running all of the scenarios in Table 2.3.

https://scikit-learn.org/stable/modules/clustering.html#mini-batch-kmeans

2.9. BENCHMARK METHODOLOGY FOR UNSUPERVISED LEARNING 31

12 10 8 6 4 2 0 2
x

6

4

2

0

2

4

6

8
y

12 10 8 6 4 2 0 2
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

y

Figure 2.26: Scatter plots of scikit’s minibatch kmeans

0 1

0

1

486 0

0 514

0

100

200

300

400

500
0 1 2

0

1

2

325 0 0

0 331 0

0 4 340

0

50

100

150

200

250

300

Figure 2.27: Confusion matrices of scikit’s minibatch kmeans

Table 2.19: codpy: clusters indicators

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖𝑑 codpy codpy codpy codpy codpy
𝐷 2 2 2 2 2
𝑁𝑥 1000 1000 1000 1000 1000
𝑁𝑦 2 3 4 5 6
𝑁𝑧 1000 1000 1000 1000 1000
𝐷𝑓 1 1 1 1 1
time 0.04 0.07 0.09 0.06 0.06
scores 1 0.329 0.98 0.002 0.147
norm function 0.06 0.25 1 1.35 3.66
discr.error 0.0405 0.0375 0.0561 0.0501 0.0339
score calinsky 17799.84 9972.16 5424.4 3730.59 3473.41
score harabazs 0.85 0.72 0.63 0.56 0.47
homogeneity test 1 0.98 0.93 0.91 0.76
inertia 1974.8 1953.95 1962.53 1941.25 1693.94

32 CHAPTER 2. BRIEF OVERVIEW OF METHODS OF MACHINE LEARNING

CodPy blob visualization. We finally plot the two first distributions as well as the correspond-
ing computed clusters

12 10 8 6 4 2 0 2
x

6

4

2

0

2

4

6

8

y

12 10 8 6 4 2 0 2
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

y
Figure 2.28: Scatter plots of codpy’s clustering algorithm

CodPy confusion matrix. The figure below illustrates two confusion matrices.

0 1

0

1

486 0

0 514

0

100

200

300

400

500
0 1 2

0

1

2

325 0 0

0 0 331

0 340 4

0

50

100

150

200

250

300

Figure 2.29: Confusion matrices of codpy’s clustering algorithm

2.9.5 A comparison between methods
We compare the various methods under consideration, by comparing performance indicators, as
illustrated by Figure 2.30.

2.9. BENCHMARK METHODOLOGY FOR UNSUPERVISED LEARNING 33

2 3 4 5 6
Ny

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

es

codpy
k-means
minibatch

2 3 4 5 6
Ny

0.04

0.05

0.06

0.07

0.08

0.09

di
sc

re
pa

nc
y_

er
ro

rs

codpy
k-means
minibatch

2 3 4 5 6
Ny

1700

1750

1800

1850

1900

1950

2000

2050

2100

in
er

tia

codpy
k-means
minibatch

2 3 4 5 6
Ny

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ex
ec

ut
io

n_
tim

e

codpy
k-means
minibatch

Figure 2.30: benchmark of various performance indicators for clustering.

34 CHAPTER 2. BRIEF OVERVIEW OF METHODS OF MACHINE LEARNING

Chapter 3

Kernel methods for machine
learning

3.1 Aim of this chapter
We will present first our techniques for dealing with problems of learning machine and we cover
here two main ingredients that are central in the design of our algorithms.

• First, all methods described in this chapter depend on a choice of a kernel and use transfor-
mation maps acting on basic kernels in order to adapt them to any particular problem.

• Second, this chapter also provides discrete differentiation operators that are relevant for
machine learning as well problems involving partial differential operators.

Importantly, the presented below provides us with the key building blocks of our algorithms
and will allow us to formulate more advanced numerical algorithms in the next chapters of this
monograph.

For a precise description of our framework we need some further notation. A set of 𝑁𝑥 observable
data in 𝐷 dimensions is available, denoted by the symbol 𝑋 ∈ ℝ𝑁𝑥×𝐷, together with a 𝐷𝑓 -
dimensional vector-valued function 𝑓(𝑋) ∶ ℝ𝑁𝑥×𝐷𝑓 are the training values associated with the
training variables. The input dataset is therefore

(𝑋, 𝑓(𝑋)) ∶= {𝑥𝑛, 𝑓(𝑥𝑛)}𝑛=1,…,𝑁𝑥
, 𝑋 ∈ ℝ𝑁𝑥×𝐷, 𝑓(𝑋) ∈ ℝ𝑁𝑥×𝐷𝑓 .

We are interested in predicting test values 𝑓(𝑍) ∶ ℝ𝑁𝑧×𝐷𝑓 on a new set of variables called a test
set 𝑍 ∈ ℝ𝑁𝑧×𝐷:

(𝑍, 𝑓𝑧) ∶= {𝑧𝑛, 𝑓𝑛
𝑧 }𝑛=1,…,𝑁𝑧

, 𝑍 ∈ ℝ𝑁𝑧×𝐷, 𝑓𝑧 ∈ ℝ𝑁𝑧×𝐷𝑓 . (3.1.1)

In all examples and numerical experiments in this section we take a matrix 𝑋 ∈ ℝ𝑁𝑥×𝐷 and use
the following periodic and increasing function:

𝑓(𝑋) = ∏
𝑑=1,…,𝐷

cos(4𝜋𝑥𝑑) + ∑
𝑑=1,…,𝐷

𝑥𝑑, 𝑥 ∈ ℝ𝐷 (3.1.2)

We take 𝑋 ∈ ℝ𝑁𝑥×𝐷, 𝑍 ∈ ℝ𝑁𝑧×𝐷, 𝑓(𝑋) ∈ ℝ𝑁𝑥×𝐷𝑓 , 𝑓(𝑍) ∈ ℝ𝑁𝑧×𝐷𝑓 .

35

36 CHAPTER 3. KERNEL METHODS FOR MACHINE LEARNING

Table 3.1: Data’s dimensions

𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧
2 576 576 576

The case 𝑁𝑥 = 𝑁𝑧 corresponds to data extrapolation, as explained in 3.2.3 below. For illustration
purposes, we set another set of parameters, corresponding to data projection, as explained also
in the section 3.2.3, i.e. when 𝑁𝑦 << 𝑁𝑥.

Table 3.2: Data’s dimensions

𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧
2 576 32 576

The figure 3.1 provides us with an example of machine learning settings. We will rely on the first
one throughout the following discussion. Here, the left-hand figures is the training set (𝑋, 𝑓(𝑋)) of
variables and values and the righ-hand figure displays the test set (𝑍, 𝑓(𝑍)) of variable and values,
while the middle figure shows the parameter set (𝑌 , 𝑓(𝑌)) of variables and values. As mentioned
earlier, the latter is a choice, made by a reader, determining not only the overall accuracy, but
also computational cost.

3.2 Fundamental notions for supervised learning
3.2.1 Preliminaries
Positive definite kernels and kernel matrices. We briefly give a definition of a kernel.

Let 𝑘 ∶ ℝ𝐷 × ℝ𝐷 ↦ ℝ be a symmetric real-valued function, i.e. satisfying 𝑘(𝑥, 𝑦) = 𝑘(𝑦, 𝑥). For
any two sequences of points 𝑋 = 𝑥1, ⋯ , 𝑥𝑁𝑥 ∈ ℝ𝐷, 𝑌 = 𝑦1, ⋯ , 𝑦𝑁𝑦 ∈ ℝ𝐷 we define a kernel matrix
𝐾(𝑋, 𝑌) ∶= (𝑘(𝑥𝑛, 𝑦𝑚))𝑛,𝑚 ∈ ℝ𝑁𝑥×𝑁𝑦

𝐾(𝑋, 𝑌) = ⎛⎜
⎝

𝑘(𝑥1, 𝑦1) ⋯ 𝑘(𝑥1, 𝑦𝑁𝑦)
⋱ ⋱ ⋱

𝑘(𝑥𝑁𝑥 , 𝑦1) ⋯ 𝑘(𝑥𝑁𝑥 , 𝑦𝑁𝑦)
⎞⎟
⎠

(3.2.1)

We say that 𝑘 is a positive-definite kernel if for any sequence of distinct points 𝑋 ∈ ℝ𝑁𝑥×𝐷 and
𝑐1, ..., 𝑐𝑁𝑥 ∈ ℝ𝑁𝑥 :

∑
𝑖,𝑗≤𝑁𝑥

𝑐𝑖𝑐𝑗𝑘(𝑥𝑖, 𝑥𝑗) ≥ 0. (3.2.2)

If 𝑁𝑥 = 𝑁𝑦, the matrix 𝐾(𝑋, 𝑌) is called a Gram matrix. The dimension of a kernel matrix
𝐾(𝑋, 𝑌) is usually 𝑁𝑥×𝑁𝑦, except for some combined kernels; see the section on kernel engineering
3.4.

If 𝐾(𝑋, 𝑌) is positive-definite on a certain submanifold, we say that the kernel is conditionally
positive-definite – in the sense that it is positive-definite, conditionally to the fact that 𝑋, 𝑌
belongs to this submanifold.

As should be expected we can not use an arbitrary symmetric function and in our framework, we
always use the kernels that are in the class of positive-definite kernels. The available kernels in
our library are listed in the table 3.3:

3.2. FUNDAMENTAL NOTIONS FOR SUPERVISED LEARNING 37

1.0 0.50.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

210123

training set

1.0 0.50.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

210123

parameter set (extrapolation)

1 0 1

1

0

1

2024

test set

1.0 0.50.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

210123

training set

1.0 0.50.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

10123

parameter set (projection)

1 0 1

1

0

1

2024

test set

1.0 0.50.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

210123

training set

1 0 1

1

0

1

2024

parameter set (interpolation)

1 0 1

1

0

1

2024

test set

Figure 3.1: Examples of Training set, parameter set, and test set, for three different parameter
set y

38 CHAPTER 3. KERNEL METHODS FOR MACHINE LEARNING

Table 3.3: A list of available kernels

DotProduct maternnorm multiquadrictensor truncatednorm
RELU maternper sincardsquaretensor truncatedper
gaussian materntensor sincardtensor truncatednorm
gaussianper multiquadricnorm tensornorm truncatedper

Observe that a certain scaling of the kernel may be required in order to handle some input data,
which is exactly the purpose of the maps, discussed below.

Example 3.2.1. Gaussian kernel is used by default in CoDpy library:

𝑘(𝑥, 𝑦) = exp(−𝜋|𝑥 − 𝑦|2). (3.2.3)

Example 3.2.2. Consider the following family of symmetric functions 𝑘(𝑥, 𝑦) with 𝑥, 𝑦 ∈ ℝ𝐷:

𝑘(𝑥, 𝑦) = 𝑔(< 𝑆(𝑥), 𝑆(𝑦) >ℝ𝑃), 𝑆 ∶ ℝ𝐷 ↦ ℝ𝑃 ,
where 𝑔 is called an activation function and 𝑆 is a mapping. In particular, 𝑘(𝑥, 𝑦) =<
(1, 𝑥, 𝑥𝑇 𝑥, …), (1, 𝑦, 𝑦𝑇 𝑦, …) > defines a kernel corresponding to a linear regression over a
polynomial basis, hence is positive definite, but is not strictly positive. The RELU kernel, given
as 𝑘(𝑥, 𝑦) = max(< 𝑥, 𝑦 > +𝑐, 0) (with 𝑐 being a constant) is a conditionally positive definite.

Let us choose the kernel to be tensornorm (again discussed below) and we refer to the section 2 for
the description of external parameters in the described kernel method. Finally, we output some
values of the kernel matrix induced by Gaussian kernel in the table 3.4 computed using Codpy’s
op.Knm function.

Table 3.4: First four rows and columns of a kernel matrix 𝐾(𝑋, 𝑌)

1.00 0.96 0.92 0.88
0.96 1.00 0.96 0.92
0.92 0.96 1.00 0.96
0.88 0.92 0.96 1.00

Inverse kernel matrix. The inverse of a Kernel matrix is denoted 𝐾(𝑋, 𝑌)−1, and this inverse
is computed, if 𝑋 = 𝑌 , as follows:

𝐾(𝑋, 𝑋)−1 = (𝐾(𝑋, 𝑋) + 𝜖𝐼𝑑)−1.
In the general range 𝑋 ≠ 𝑌 , it is computed using a least-square inversion, namely

𝐾(𝑋, 𝑌)−1 = (𝐾(𝑌 , 𝑋)𝐾(𝑋, 𝑌) + 𝜖𝐼𝑑)−1𝐾(𝑌 , 𝑋)
We refer to Tikhonov regularization parameter 𝜖 as a regularization parameter, and by default
takes the value 𝜖 = 10−8.

The table 3.5 illustrates the first four rows and columns of the kernel matrix’s inverse 𝐾(𝑋, 𝑌)−1 ∈
ℝ𝑁𝑦×𝑁𝑥 , 𝑁𝑥 = 𝑁𝑦.

Table 3.5: First four rows and columns of an inverted kernel matrix 𝐾(𝑋, 𝑌)−1

168.0384415 -162.0371111 0.0000783 -0.0000705
-162.0370979 324.0742063 -162.0371706 0.0001191

0.0000542 -162.0371460 324.0741716 -162.0371230
-0.0000459 0.0000957 -162.0371274 324.0741582

3.2. FUNDAMENTAL NOTIONS FOR SUPERVISED LEARNING 39

The matrix product 𝐾(𝑋, 𝑌)𝐾(𝑋, 𝑌)−1 in the table 3.5 is just a projection operator. It might
not be the identity depending on the experimental setting, for one of the following reasons:

• If 𝑁𝑥 ≠ 𝑁𝑦.

• If the Tikhonov regularization parameter 𝜖 > 0. One can put 𝜖 = 0, this choice can be set
by the user, but take care of performance issues. If the kernel is not strictly positive, then
the library might raise an exception, and switch from a standard inversion of matrix to a
non-strictly positive-definite inversion, that can be more computationally costly.

• If the kernel under consideration is such that 𝐾(𝑋, 𝑋)𝐾(𝑋, 𝑋)−1 does not have a full rank,
for instance if a linear regression kernel is used; see the section on kernel engineering (section
3.4). In which case this matrix is a projection over 𝐾𝑒𝑟(𝐾(𝑋, 𝑋)).

Distance matrices. Distance matrix is simple and very handy tool for kernel methods.

Let 𝑘(⋅, ⋅) ∶ ℝ𝐷 × ℝ𝐷 ↦ ℝ be a positive-definite kernel. Then the distance function 𝑑𝑘(𝑥, 𝑦) for
𝑥 ∈ ℝ𝐷, 𝑦 ∈ ℝ𝐷 is defined as follows:

𝑑𝑘(𝑥, 𝑦) = 𝑘(𝑥, 𝑥) + 𝑘(𝑦, 𝑦) − 2𝑘(𝑥, 𝑦). (3.2.4)

Note that for a positive-definite kernel the latter expression is continuous, positive, and satisfies
𝑑(𝑥, 𝑥) = 0.
For any two sequences of points 𝑋 = 𝑥1, ..., 𝑥𝑁𝑥 ∈ ℝ𝐷, 𝑌 = 𝑦1, ..., 𝑦𝑁𝑦 ∈ ℝ𝐷 we define a distance
matrix 𝐷(𝑋, 𝑌) ∈ ℝ𝑁𝑥×𝑁𝑦 ∶

𝐷(𝑋, 𝑌) = ⎛⎜
⎝

𝑑𝑘(𝑥1, 𝑦1) ⋯ 𝑑𝑘(𝑥1, 𝑦𝑀)
⋱ ⋱ ⋱

𝑑𝑘(𝑥𝑁 , 𝑦1) ⋯ 𝑑𝑘(𝑥𝑁 , 𝑦𝑀)
⎞⎟
⎠

(3.2.5)

The table 3.6 outputs the first four columns of the kernel-based distance distance matrix 𝐷(𝑋, 𝑌).

Table 3.6: First four rows and columns of a kernel-based distance matrix 𝐷(𝑋, 𝑌)

0.00 0.08 0.16 0.24
0.08 0.00 0.08 0.16
0.16 0.08 0.00 0.08
0.24 0.16 0.08 0.00

CodPy’s algorithms. CodPy’s algorithms offer general functions in order to get predictions in
(3.1.1) from the choice of a kernel. More precisely, the following operator (with 𝐴−1 ∶= (𝐴𝑇 𝐴)−1𝐴𝑇

denoting the least-square inverse)

𝑓𝑧 ∶= 𝒫𝑘(𝑋, 𝑌 , 𝑍)𝑓(𝑋) ∶= 𝐾(𝑍, 𝑌)𝐾(𝑋, 𝑌)−1𝑓(𝑋), 𝐾(𝑍, 𝑌) ∈ ℝ𝑁𝑧×𝑁𝑦 , 𝐾(𝑋, 𝑌) ∈ ℝ𝑁𝑥×𝑁𝑦

(3.2.6)
defines a supervised learning machine which we call a feed-forward machine. We also consider
𝒫𝑘(𝑋, 𝑌 , 𝑍) ∈ ℝ𝑁𝑧×𝑁𝑥 as a projection operator and it is well-defined once a kernel 𝑘 has been
chosen. Observe that two factors arise in (3.2.6), namely the so-called Kernel matrix 𝐾(𝑋, 𝑌)
(discussed below) and the projection set of variables denoted by 𝑌 ∈ ℝ𝑁𝑦×𝐷. To motivate the
role of the later, let us consider two particular operators that do not depend upon 𝑌 :

Extrapolation operator: 𝒫𝑘(𝑋, 𝑌 , 𝑍) = 𝐾(𝑍, 𝑋)𝐾(𝑋, 𝑋)−1 ∈ ℝ, (3.2.7)
Interpolation operator: 𝒫𝑘(𝑋, 𝑍, 𝑍) = 𝐾(𝑍, 𝑍)𝐾(𝑋, 𝑍)−1. (3.2.8)

These operators sometimes generate computational issues, due to the fact that the Kernel matrix
𝐾(𝑋, 𝑋) ∈ ℝ𝑁𝑥×𝑁𝑥 must be inverted (3.2.6) and this is a rather costly computational step in pres-
ence of a large set of input data. This is our motivation for introducing the additional variable 𝑌

40 CHAPTER 3. KERNEL METHODS FOR MACHINE LEARNING

Table 3.7: A list of available transportation maps.

affine_map
exp
identity
log
map_to_grid
scale_std
scale_to_erf
scale_to_erfinv
scale_to_mean_distance
scale_to_min_distance
scale_to_unitcube

which has the effect to lower the computational cost. It reduces the overall algorithmic complexity
of (3.2.6) to the order of

𝐷 ((𝑁𝑦)3 + (𝑁𝑦)2𝑁𝑥 + (𝑁𝑦)2𝑁𝑧).
Most importantly, the projection operator 𝒫𝑘 is linear in term of, both, input and output data.
Hence, while keeping the set 𝑌 to a reasonable size, we can consider large set of data, as input or
output.

The reader can imagine also that choosing a relevant set 𝑌 is a major source of optimization. We
use this idea intensively in several applications. For instance, kernel clustering methods described
in the section 3.6 aims minimizing the error committed by our learning machine with respect to
the set 𝑌 = 𝒫𝑘(𝑋, 𝑍), called sharp discrepancy sequences and defined below. We often refer
to this step as learning, as this step is exactly the counterpart of the weight set for neural network
approach. This construction amounts to define a feed-backward machine, analogous to (3.2.6), as

𝑓𝑧 ∶= 𝒫𝑘(𝑋, 𝒫𝑘(𝑋, 𝑍), 𝑍)𝑓(𝑋)

Note that (3.2.6) allows us also to compute the following operation, where ∇ ∶= (𝜕1, … , 𝜕𝐷) holds
for the gradient

(∇𝑓)(𝑍) ∶= (∇𝒫𝑘)(𝑋, 𝑌 , 𝑍)𝑓(𝑋) ∶= (∇𝑧𝑘)(𝑍, 𝑌)𝐾(𝑋, 𝑌)−1𝑓(𝑋) ∈ ℝ𝐷×𝑁𝑧×𝐷𝑓

meaning that ∇𝒫𝑘 ∈ ℝ𝐷×𝑁𝑧×𝑁𝑥 is interpreted as a tensor operator. This operator is described in
the section 3.5, as well as numerous others, as for instance Laplacian, Leray, integral operators,
that are based on it. They will be used in designing computational methods for problems involving
partial differential equations(PDEs).

3.2.2 Transportation maps
Let us define an important concept of a transportation map. A transportation map 𝑆 is a
surjective map

𝑆 ∶ ℝ𝑇 ↦ ℝ𝐷.
There are several types of transportation maps such as

• rescaling maps when 𝑇 = 𝐷, in order properly the data 𝑋, 𝑌 , 𝑍 to a given kernel,
• dimension reduction maps when 𝑇 ≤ 𝐷, or
• dimension augmentation when 𝑇 ≥ 𝐷, when adding information to the training set is

required. This transformation is sometimes called a kernel trick.

The list of maps available in our framework is given in the table 3.7.

3.2. FUNDAMENTAL NOTIONS FOR SUPERVISED LEARNING 41

Using a map 𝑆 amounts to change the kernel as 𝑘(𝑥, 𝑦) ↦ 𝑘(𝑆(𝑥), 𝑆(𝑦)). For instance, for Gaussian
kernels the map scale_to_min_distance is usually a good choice: this map scales all points to the
average min distance, namely

𝑆(𝑥) = 𝑥√𝛼, 𝛼 = 1
𝑁 ∑

𝑖≤𝑁
min
𝑘≠𝑖

|𝑥𝑖 − 𝑥𝑘|2..

Let us transform our Gaussian kernel with this map. Observe that, from the signature of the
Gaussian setter function, we see that the Gaussian kernel is handled with the default map
𝑠𝑒𝑡_𝑚𝑖𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑚𝑎𝑝. We do not discuss all optional parameters now, but refer the reader to
a later section.

𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑒𝑡𝑡𝑒𝑟𝑠.𝑠𝑒𝑡_𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛_𝑘𝑒𝑟𝑛𝑒𝑙(𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙_𝑜𝑟𝑑𝑒𝑟 ∶ 𝑖𝑛𝑡 = 0,
𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ∶ 𝑓𝑙𝑜𝑎𝑡 = 1𝑒 − 8,
𝑠𝑒𝑡_𝑚𝑎𝑝 = 𝑚𝑎𝑝_𝑠𝑒𝑡𝑡𝑒𝑟𝑠.𝑠𝑒𝑡_𝑚𝑖𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑚𝑎𝑝)

3.2.3 Extrapolation, interpolation, and projection
The Python function in our framework that describes the projection operator 𝒫𝑘 is based on the
definition in (3.2.6), namely

𝑓𝑧 = op.projection(𝑋, 𝑌 , 𝑍, 𝑓(𝑋) = [], 𝑘 = 𝑁𝑜𝑛𝑒, 𝑟𝑒𝑠𝑐𝑎𝑙𝑒 = 𝐹𝑎𝑙𝑠𝑒) ∈ ℝ𝑁𝑧×𝐷𝑓 .

The optional values in this function are as follows:

• The function 𝑓(𝑋) is optional, meaning that the user can retrieve the whole matrix
𝒫𝑘(𝑋, 𝑌 , 𝑍) ∈ ℝ𝑁𝑧×𝑁𝑥 if desired.

• The kernel 𝑘 is optional, meaning that we let to the user the freedom to re-use an already
input kernel.

• The optional value rescale, defaulted to false, allow to call the map prior of performing the
projection operation (3.2.6), in order to compute its internal states for proper data scaling.
For instance, a rescaling (3.2.2) computes 𝛼 according to the set (𝑋, 𝑌 , 𝑍).

Interpolation and extrapolation Python functions are, in agreement with (3.2.8), simple decorators
toward the operator 𝒫𝑘; see (3.2.3). Obviously, the main question arising at this stage is how good
the approximation is 𝑓𝑧 compared to 𝑓(𝑍), which is the question addressed in the next section.

𝑓𝑧 = op.extrapolation(𝑋, 𝑍, 𝑓(𝑋) = [], …), 𝑓𝑧 = op.interpolation(𝑋, 𝑍, 𝑓(𝑋) = [], …)

3.2.4 Functional spaces and Kolmogorov decomposition.
Given any finite collection of points 𝑋 = [𝑥1...𝑥𝑁𝑥], 𝑥𝑖 ∈ ℝ𝐷, 𝑖 = 1, ..., 𝑁𝑥, we introduce a (finite
dimensional) vector space ℋ𝑥

𝑘 consisting of all linear combinations of the basis functions 𝑥 ↦
𝑘(𝑥, 𝑥𝑛). In other words, we set

ℋ𝑥
𝑘 = { ∑

1≤𝑚≤𝑁𝑥

𝑎𝑚𝑘(⋅, 𝑥𝑚) / 𝑎 = (𝑎1, … , 𝑎𝑁𝑥) ∈ ℝ𝑁𝑥}. (3.2.9)

The functional space ℋ𝑘 is (after suitably passing to a limit in (3.2.9))

ℋ𝑘 = Span{𝑘(⋅, 𝑥) / 𝑥 ∈ ℝ𝐷}. (3.2.10)

This space consists of all linear combinations of the functions 𝑘(𝑥, ⋅) (that is, parametrized by
𝑥 ∈ ℝ𝐷) and is endowed with the scalar product

⟨𝑘(⋅, 𝑥), 𝑘(⋅, 𝑦)⟩ℋ𝑘
= 𝑘(𝑥, 𝑦), 𝑥, 𝑦 ∈ ℝ𝐷. (3.2.11)

42 CHAPTER 3. KERNEL METHODS FOR MACHINE LEARNING

On every finite dimensional subspace ℋ𝑥
𝑘 ⊂ ℋ𝑘 we can check that, according to the expression of

the scalar product,

⟨𝑘(⋅, 𝑥𝑖), 𝑘(⋅, 𝑥𝑗)⟩ℋ𝑥
𝑘

= 𝑘(𝑥𝑖, 𝑥)𝐾(𝑋, 𝑋)−1𝑘(𝑥, 𝑥𝑗) = 𝑘(𝑥𝑖, 𝑥𝑗), 𝑖, 𝑗 = 1, ..., 𝑁𝑥. (3.2.12)

The norm of any function 𝑓 , in view of the functional space ℋ𝑘, is fully determined by the kernel
𝑘. A reasonable approximation of this norm, which is induced by the kernel matrix 𝐾 is given by

‖𝑓‖2
ℋ𝑘

∼ 𝑓(𝑥𝑖)𝑇 𝐾(𝑋, 𝑋)−1𝑓(𝑥𝑖), 𝑥𝑖 ∈ ℝ𝐷, 𝑖 = 1, ..., 𝑁𝑥

It is computed via the function in Python:

𝑜𝑝.𝑛𝑜𝑟𝑚(𝑋, 𝑌 , 𝑍, 𝑓(𝑋), 𝑠𝑒𝑡_𝑐𝑜𝑑𝑝𝑦_𝑘𝑒𝑟𝑛𝑒𝑙 = 𝑁𝑜𝑛𝑒, 𝑟𝑒𝑠𝑐𝑎𝑙𝑒 = 𝑇 𝑟𝑢𝑒).

Again we let the reader the choice to perform a rescaling of the kernel based on a transport map.

3.2.5 Error estimates based on the discrepancy error
Recall the notation for the projection operator (3.2.6). Then the following estimation error holds
for any vector-valued function 𝑓 ∶ ℝ𝐷 ↦ ℝ𝐷𝑓 :

∣ 1
𝑁𝑥

𝑁𝑥

∑
𝑛=1

𝑓(𝑥𝑛) − 1
𝑁𝑧

𝑁𝑧

∑
𝑛=1

𝑓𝑧𝑛 ∣ ≤ (𝑑𝑘(𝑋, 𝑌) + 𝑑𝑘(𝑌 , 𝑍))‖𝑓‖ℋ𝑘
.

Before describing this formula, let us precise that it is a computationally tractable one, that can
be systematically applied to check the pertinence of any kernel machine. It is also a quite general
one: this formula can be adapted to others kind of error measuring. We have also

∥𝑓(𝑍) − 𝑓𝑧∥
ℓ2(𝑁𝑧)𝐷𝑓

≤ (𝑑𝑘(𝑋, 𝑌) + 𝑑𝑘(𝑌 , 𝑍))‖𝑓‖ℋ𝑘
.

This error formula can be split into two parts.

The first part, (𝑑𝑘(𝑋, 𝑌) + 𝑑𝑘(𝑌 , 𝑍)) measures some kernel-related distance between a set of
points, that we call the discrepancy error. It is a quite natural quantity, as one expects that
the quality of an extrapolation degrades if the extrapolation set 𝑍 move away from the sampling
set 𝑋. Its definition is

𝑑𝑘(𝑋, 𝑌)2 ∶= 1
𝑁2𝑥

𝑁𝑥,𝑁𝑥

∑
𝑛=1,𝑚=1

𝑘(𝑥𝑛, 𝑥𝑚) + 1
𝑁2𝑦

𝑁𝑦,𝑁𝑦

∑
𝑛=1,𝑚=1

𝑘(𝑦𝑛, 𝑦𝑚) − 2
𝑁𝑥𝑁𝑦

𝑁𝑥,𝑁𝑦

∑
𝑛=1,𝑚=1

𝑘(𝑥𝑛, 𝑦𝑚)

and is described in the Python function

𝑜𝑝.𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦(𝑋, 𝑌 , 𝑍, 𝑠𝑒𝑡_𝑐𝑜𝑑𝑝𝑦_𝑘𝑒𝑟𝑛𝑒𝑙 = 𝑁𝑜𝑛𝑒, 𝑟𝑒𝑠𝑐𝑎𝑙𝑒 = 𝑇 𝑟𝑢𝑒)

In particular, the user should pay attention to an undesirable rescaling effect due to the variable
rescale. The section 3.6.5 contains plots and some analysis of this functional. This distance was
named Maximum Mean Discrepancy(MMD) and introduced independently in [13].

3.3 Dealing with kernels
3.3.1 Maps and kernels.
Maps can ruin your prediction. In the figure 3.2 We compare the ground truth values
(𝑍, 𝑓(𝑍)) ∈ ℝ𝑁𝑧×𝐷 × ℝ𝑁𝑧×𝐷𝑓 and the predicted values (𝑍, 𝑓𝑧) ∈ ℝ𝑁𝑧×𝐷 × ℝ𝑁𝑧×𝐷𝑓 figure 3.2.

3.3. DEALING WITH KERNELS 43

we set a different map, called set_mean_distance_map, which scales all points to the average
distance for a Gaussian kernel:

𝑆(𝑍) = 𝑍√𝛼, 𝛼 = ∑
𝑖,𝑘≤𝑁𝑧

|𝑧𝑖 − 𝑧𝑘|2
𝑁2𝑧

. (3.3.1)

This example illustrates how maps can drastically influence the computation.

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

32101234

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

051015

Figure 3.2: Ground truth value (left) and predicted values (right)

However, the very same map can be appropriate for other kernels; see Figure 3.3 with a Matern
kernel.

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

32101234

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

21012

Figure 3.3: Ground truth values (left) and predicted values (right)

Composition of maps. Maps can be composed together. For instance, consider the following
Python definition of one of our maps, which we may use as a Swiss-knife map for Gaussian kernels:

For any 𝑋 ∈ ℝ𝑁𝑥×𝐷, this composite map performs the following operations:

• First rescale all data to the unit cube:

𝑆(𝑋) =
𝑥𝑑 − min𝑛 𝑥𝑛

𝑑 + 0.5
𝑁𝑥

𝛼𝑑
, 𝛼𝑑 ∶= max

𝑛
𝑥𝑛

𝑑 − min
𝑛

𝑥𝑛
𝑑 (3.3.2)

• Then apply the map defined as

𝑆(𝑋) = 𝑒𝑟𝑓−1(2𝑋 − 1), (3.3.3)
𝑒𝑟𝑓−1 being the inverse of the standard error function 𝑒𝑟𝑓 .

44 CHAPTER 3. KERNEL METHODS FOR MACHINE LEARNING

• Finally use the average min distance map, defined as

𝑆(𝑋) = 𝑋√𝛼, 𝛼 = 1
𝑁𝑥

∑
𝑖≤𝑁𝑥

min
𝑘≠𝑖

|𝑥𝑖 − 𝑥𝑘|2. (3.3.4)

3.3.2 Illustration of different kernels prediction
As is clear from the previous sections, the external parameters of a kernel-based prediction machine
are

• The kernel. In most situations, a kernel is defined by

– A positive definite kernel, that is one element of table 3.3.
– A map, that is one element of table 3.7.

• The choice of the inner parameters set 𝑌 . We usually face three main choices here.

– 𝑌 = 𝑋, that corresponds to the extrapolation case, section 3.2.3. This is the most
efficient choice when one seeks for high accuracy results.

– 𝑌 is randomly picked among 𝑋. This choice trades accuracy for execution time and is
adapted to heavy training set.

– 𝑌 is set as a sharp discrepancy sequence of 𝑋, described in the section 3.6. This
choice optimizes accuracy versus execution time. These are the most possible accurate
machine at a given computational burden but involves a time-consuming algorithm.

To illustrate the effects of different kernels and maps on learning machines, we compare in this
section predictions for the one-dimensional test described the section 2.8.2, for different kernels.

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2
piped: linear and periodical gaussian kernel, no map

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

periodic gaussian kernel, no map

1.5 1.0 0.5 0.0 0.5 1.0 1.5

30

25

20

15

10

5

0

gaussian kernel with mean distance map

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

gaussian kernel with min map

3.4. KERNEL ENGINEERING 45

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

matern kernel, no map

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
linear regressor kernel, no map

3.4 Kernel engineering
In this section we describe some general operations on kernels, which allow us to generate new
and relevant kernels. These operations preserve a positivity property required for kernels. For
this section, two kernels denoted by 𝑘𝑖(𝑥, 𝑦) ∶ ℝ𝐷 × ℝ𝐷 ↦ ℝ, 𝑖 = 1, 2 are given with corresponding
matrices 𝐾1 and 𝐾2. In agreement with (3.2.6), we introduce the corresponding two projection
operators:

𝒫𝑘𝑖
(𝑋, 𝑌 , 𝑍) ∶= 𝐾𝑖(𝑍, 𝑌)𝐾𝑖(𝑋, 𝑌)−1 ∈ ℝ𝑁𝑧×𝑁𝑥 , 𝑖 = 1, 2 (3.4.1)

3.4.1 Manipulating kernels
In order to work with two (or more) kernels, we introduced the following Python function, which
are basic setters and getters to kernels: get_kernel_ptr() and set_kernel_ptr(kernel_ptr). The
first one allows us to recover an already input kernel of our library, while the second one allows
us to input it into our framework.

3.4.2 Adding kernels
The first operation, denoted by 𝑘1 +𝑘2 and defined from any two kernels, consists in simply adding
two kernels. If 𝐾1 and 𝐾2 are two kernel matrices associated to the kernels 𝑘1 and 𝑘2, then we
define the sum of two kernels as 𝐾(𝑋, 𝑌) ∈ ℝ𝑁𝑥×𝑁𝑦 and corresponding projection operator as
𝒫𝑘(𝑋, 𝑌 , 𝑍) ∈ ℝ𝑁𝑧×𝑁𝑦 :

𝐾(𝑋, 𝑌) ∶= 𝐾1(𝑋, 𝑌) + 𝐾2(𝑋, 𝑌), 𝒫𝑘(𝑋, 𝑌 , 𝑍) = 𝐾(𝑍, 𝑋)𝐾(𝑋, 𝑌)−1. (3.4.2)

The functional space generated by 𝑘1 + 𝑘2 is then

ℋ𝑘 = { ∑
1≤𝑚≤𝑁𝑥

𝑎𝑚(𝑘1(⋅, 𝑥𝑚) + 𝑘2(⋅, 𝑥𝑚))}. (3.4.3)

3.4.3 Multiplication kernels
A second operation, denoted by 𝑘1 ⋅𝑘2 and defined from any two kernels, consists in multiplying two
kernels together. A kernel matrix 𝐾(𝑋, 𝑌) ∈ ℝ𝑁𝑥×𝑁𝑦 and a projection operator 𝒫𝑘(𝑋, 𝑌 , 𝑍) ∈
ℝ𝑁𝑧×𝑁𝑦 corresponding to the product of two kernels are defined as

𝐾(𝑋, 𝑌) ∶= 𝐾1(𝑋, 𝑌) ∘ 𝐾2(𝑋, 𝑌), 𝒫𝑘(𝑋, 𝑌 , 𝑍) = 𝐾(𝑍, 𝑋)𝐾(𝑋, 𝑌)−1, (3.4.4)

where ∘ is the Hadamard product of two matrices. The functional space generated by 𝑘1 ⋅ 𝑘2 is

ℋ𝑘 = { ∑
1≤𝑚≤𝑁𝑥

𝑎𝑚(𝑘1(⋅, 𝑥𝑚)𝑘2(⋅, 𝑥𝑚))}. (3.4.5)

46 CHAPTER 3. KERNEL METHODS FOR MACHINE LEARNING

3.4.4 Convolution kernels
Our next operation, denoted by 𝑘1 ∗ 𝑘2 and defined from any two kernels, consists in multiplying
corresponding kernel matrices 𝐾1 and 𝐾2 as

𝐾(𝑋, 𝑌) ∶= 𝐾1(𝑋, 𝑌)𝐾2(𝑌 , 𝑌), (3.4.6)

where 𝐾1(𝑋, 𝑌)𝐾2(𝑌 , 𝑌) stands for the standard matrix multiplication. The projection operator
is given by 𝒫𝑘(𝑋, 𝑌 , 𝑍) = 𝐾(𝑍, 𝑋)𝐾(𝑋, 𝑌)−1. Suppose that 𝑘1(𝑥, 𝑦) = 𝜑1(𝑥 − 𝑦), 𝑘2(𝑥, 𝑦) =
𝜑2(𝑥 − 𝑦), then the functional space generated by 𝑘1 ∗ 𝑘2 is

ℋ𝑘 = { ∑
1≤𝑚≤𝑁𝑥

𝑎𝑚(𝑘(⋅, 𝑥𝑚))}, (3.4.7)

where 𝑘(𝑥, 𝑦) ∶= (𝜑1 ∗ 𝜑2)(𝑥 − 𝑦) is the convolution of the two kernels.

3.4.5 Piped kernels
Another important operation is referred to here as “piping kernels” and provides yet another route
for generating new kernels in a natural and explicit way. It is denoted by 𝑘1|𝑘2 and corresponds
to define the projection operator (3.2.3) as follows:

𝒫𝑘(𝑋, 𝑌 , 𝑍) = 𝒫𝑘1
(𝑋, 𝑌 , 𝑍)𝜋1(𝑋, 𝑌) + 𝒫𝑘2

(𝑋, 𝑌 , 𝑍)(𝐼𝑑 − 𝜋1(𝑋, 𝑌)), (3.4.8)

where the projection operator here reads

𝜋1(𝑋, 𝑌) ∶= 𝐾1(𝑋, 𝑌)𝐾1(𝑋, 𝑌)−1 = 𝒫𝑘1
(𝑋, 𝑌 , 𝑋).

This operation splits the projection operator 𝒫𝑘(𝑋, 𝑌 , 𝑍) into two parts. The first part is handled
by a single kernel, while the second kernel handles the remaining error. From a mathematical
standpoint point, this is equivalent to a functional Gram-Schmidt orthogonalization process of
both functional spaces ℋ𝑥

𝑘1
, ℋ𝑥

𝑘2
, and the corresponding functional space defined by (3.4.8) is,

after (3.2.10),
ℋ𝑥

𝑘 = { ∑
1≤𝑚≤𝑁𝑥

𝑎𝑚𝑘1(⋅, 𝑥𝑚) + ∑
1≤𝑚≤𝑁𝑥

𝑏𝑚𝑘2(⋅, 𝑥𝑚)}. (3.4.9)

Hence, this doubles up the coefficients (3.5.1). We define its inverse concatenating matrix

𝐾−1(𝑋, 𝑌) = (𝐾1(𝑋, 𝑌)−1, 𝐾2(𝑋, 𝑌)−1(𝐼𝑁𝑥
− 𝜋1(𝑋, 𝑌))) ∈ ℝ2𝑁𝑦×𝑁𝑥 . (3.4.10)

The kernel matrix associated to a “piped” kernel pair is then

𝐾(𝑋, 𝑌) = (𝐾1(𝑋, 𝑌), 𝐾2(𝑋, 𝑌)) ∈ ℝ𝑁𝑥×2𝑁𝑦 . (3.4.11)

3.4.6 Piping scalar product kernels: an example with a polynomial re-
gression

Let 𝑆 ∶ ℝ𝐷 ↦ ℝ𝑁 be given by a family of 𝑁 basis functions 𝜑𝑛, i.e. 𝑆(𝑥) = (𝜑1(𝑥), … , 𝜑𝑁(𝑥)) and
consider the following kernel, called dot product kernel (which is conditionally positive-definite):

𝑘1(𝑥, 𝑦) ∶=< 𝑆(𝑥), 𝑆(𝑦) > . (3.4.12)

Now, given any positive kernel 𝑘2(𝑥, 𝑦), consider a “pipe” kernel 𝑘1|𝑘2. In particular, such a
construction is very useful with a polynomial basis function 𝑆(𝑥) = (1, 𝑥1, …) : it consists of a
classical polynomial regression, allowing to perfectly match moments of distributions, since the
remaining error is handled by the second kernel.

3.5. DISCRETE DIFFERENTIAL OPERATORS 47

Table 3.8: First four rows coefficients matrix

5.5258947
8.5381751
4.5974094
-0.6819433

3.4.7 Neural networks viewed as kernel methods.
Our setup describes the strategies developed in deep learning theory, which are based on neural
networks. Namely, we consider any feed-forward neural network of depth 𝑀 , defined by

𝑧𝑚 = 𝑦𝑚𝑔𝑚−1(𝑧𝑚−1) ∈ ℝ𝑁𝑚 , 𝑦𝑚 ∈ ℝ𝑁𝑚×𝑁𝑚−1 , 𝑧0 = 𝑦0 ∈ ℝ𝑁0 ,
in which 𝑦0, … , 𝑦𝑀 are considered as weights and 𝑔𝑚 as prescribed activation functions. By
concatenation, we arrive at the function

𝑧𝑀(𝑦) = 𝑦𝑀𝑧𝑀−1(𝑦0, … , 𝑦𝑀−1) ∶ ℝ𝑁0×…×𝑁𝑀 ↦ ℝ𝑁𝑀 .

This neural network is thus entirely represented by the kernel composition

𝑘(𝑦𝑚, … , 𝑦0) = 𝑘𝑚(𝑦𝑚, 𝑘𝑚−1(… , 𝑘1(𝑦1, 𝑦0))) ∈ ℝ𝑁𝑚×…×𝑁0

where 𝑘𝑚(𝑥, 𝑦) = 𝑔𝑚−1(𝑥𝑦𝑇), indeed 𝑧𝑀(𝑦) = 𝑦𝑀𝑘(𝑦𝑀−1, … , 𝑦0).

3.5 Discrete differential operators
3.5.1 Coefficient operator
We start this section by further analyzing the projection operator (3.2.6). We can interpret this
operator in a basis function setting:

𝑓𝑧 ∶= 𝐾(𝑍, 𝑌)𝑐𝑦, 𝑐𝑦 ∶= 𝐾(𝑋, 𝑌)−1𝑓(𝑋) ∈ ℝ𝑁𝑦×𝐷𝑓 . (3.5.1)

The coefficients 𝑐𝑦 corresponds to the representation of 𝑓 in a basis of functions

𝑓𝑧 ∶=
𝑁𝑦

∑
𝑛=1

𝑐𝑛
𝑦 𝐾(𝑍, 𝑦𝑛), (3.5.2)

Coefficients are matrices also, having size 𝑁𝑦 × 𝐷𝑓 , except for some composite kernels. The table
3.8 shows the first four coefficients of the test function 𝑓𝑧.

3.5.2 Partition of unity
For any 𝑌 ∈ ℝ𝑁𝑦×𝐷, consider the projection operator (3.2.6), and the following vector-valued
function:

𝜙 ∶ 𝑌 ↦ (𝜙1(𝑌), … , 𝜙𝑁𝑥(𝑌)) = 𝐾(𝑌 , 𝑋)𝐾(𝑋, 𝑋)−1 ∈ ℝ𝑁𝑦×𝑁𝑥 . (3.5.3)

that corresponds to the projection operator 𝒫𝑘(𝑋, 𝑋, 𝑌). On every point 𝑥𝑛, one computes
(without considering regularization terms)

𝜙(𝑥𝑛) ∶= (0, … , 1, … , 0) = 𝛿𝑛,𝑚, (3.5.4)

where 𝛿𝑛,𝑚 = 1 if 𝑛 = 𝑚, 0 else. For this reason, we call 𝜙(𝑥) a partition of unity. The figure 3.4
illustrates partitions functions.

48 CHAPTER 3. KERNEL METHODS FOR MACHINE LEARNING

1.5 1.0 0.5 0.0 0.5 1.0 1.51.5
1.0
0.5

0.0
0.5
1.0
1.5

0.0

0.2

0.4

0.6

0.8

1.5 1.0 0.5 0.0 0.5 1.0 1.51.5
1.0
0.5

0.0
0.5
1.0
1.5

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Figure 3.4: Four partitions of unity functions

1.5 1.0 0.5 0.0 0.5 1.0 1.51.5
1.0
0.5

0.0
0.5
1.0
1.5

0.00
0.05
0.10
0.15

0.20

1.5 1.0 0.5 0.0 0.5 1.0 1.51.5
1.0
0.5

0.0
0.5
1.0
1.5

0.0

0.2

0.4

0.6

0.8

Figure 3.5: Four partitions of unity functions

3.5. DISCRETE DIFFERENTIAL OPERATORS 49

3.5.3 Gradient operator
For any positive-definite kernel 𝑘, and points 𝑋, 𝑌 , 𝑍, we define ∇ operator as the 3-tensor:

∇𝑘(𝑋, 𝑌 , 𝑍) = (∇𝑧𝑘)(𝑍, 𝑌)𝐾(𝑋, 𝑌)−1 ∈ ℝ𝐷×𝑁𝑥×𝑁𝑧 ,

where (∇𝑧𝑘)(𝑍, 𝑌) ∈ ℝ𝐷×𝑁𝑥×𝑁𝑦 is interpreted as a three-tensor. The gradient of any vector
valued function 𝑓 , is computed as

(∇𝑓)(𝑍) ∼ (∇𝑘)(𝑍, 𝑌 , 𝑍)𝑓(𝑋) ∈ ℝ𝐷×𝑁𝑧×𝐷𝑓 ,

where we omit the dependence ∇𝑘(𝑋, 𝑌 , 𝑍) for concision. Observe that maps, introduced in the
section 3.2.2, modify the operator ∇𝑘 as follows:

∇𝑘∘𝑆(𝑋, 𝑌 , 𝑍) ∶= (∇𝑆)(𝑍)(∇1𝑘)(𝑆(𝑍), 𝑆(𝑌))𝐾(𝑆(𝑋), 𝑆(𝑌))−1, (3.5.5)

where (∇1𝑘)(𝑍, 𝑌) ∈ ℝ𝐷×𝑁𝑧×𝑁𝑦 is interpreted as a three-tensor, as is (∇𝑆)(𝑍) ∶= (𝜕𝑑𝑆𝑗)(𝑍𝑛𝑧) ∈
ℝ𝐷×𝐷×𝑁𝑧 , representing the Jacobian of the map 𝑆, and the multiplication holds for the two first
indices.

Two-dimensional example. First we compare the original and extrapolated functions in the
figure 3.6:

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

32101234

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

21012

Figure 3.6: Comparison between original values (left) and predicted values (right)

The figures 3.7 and 3.8 illustrate a corresponding derivative and compare it to the original one for
the first and second dimensions respectively.

3.5.4 Divergence operator
We define the ∇𝑇 operator as the transpose of the 3-tensor operator ∇:

< ∇𝑘(𝑋, 𝑌 , 𝑍)𝑓(𝑋), 𝑔(𝑍) >=< 𝑓(𝑋), ∇𝑘(𝑋, 𝑌 , 𝑍)𝑇 𝑔(𝑍) > .

Hence, as the left-hand side is homogeneous with, for any smooth function 𝑓 and vector fields 𝑔,
and ∇⋅ denotes the divergence operator

∫(∇𝑓) ⋅ 𝑔𝑑𝜇 = − ∫ 𝑓∇ ⋅ (𝑔𝑑𝜇). (3.5.6)

The ∇𝑇 operator is thus consistent with the divergence operator

∇𝑘(𝑋, 𝑌 , 𝑍)𝑇 𝑓(𝑍) ∼ −∇ ⋅ (𝑓𝜇)(𝑥)

50 CHAPTER 3. KERNEL METHODS FOR MACHINE LEARNING

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

420246

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

420246

Figure 3.7: Gradient operator. First dimension. Left original, right computed.

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

420246

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

420246

Figure 3.8: Gradient operator. Second dimension. Left original, right computed.

3.5. DISCRETE DIFFERENTIAL OPERATORS 51

To compute this operator, we proceed as follows: starting from the definition of the gradient
operator (3.5.5), we define, for any 𝑓(𝑋) ∈ ℝ𝑁𝑥×𝐷𝑓 ,𝑔(𝑍) ∈ ℝ𝐷×𝑁𝑧×𝐷𝑓

< (∇𝑧𝐾)(𝑍, 𝑌)𝐾(𝑋, 𝑌)−1𝑓𝑥, 𝑔𝑧 >=< 𝑓𝑥, 𝐾(𝑋, 𝑌)−𝑇 (∇𝑧𝐾)(𝑍, 𝑌)𝑇 𝑔𝑧 >

Thus the operator ∇𝑘(𝑋, 𝑌 , 𝑍) is defined as:

∇𝑘(𝑋, 𝑌 , 𝑍)𝑇 = 𝐾(𝑋, 𝑌)−𝑇 (∇𝑧𝐾)(𝑍, 𝑌)𝑇 ∈ ℝ𝑁𝑥×𝑁𝑧𝐷,

where ∇𝑧𝐾(𝑍, 𝑌)𝑇 ∈ ℝ𝑁𝑦×(𝑁𝑧𝐷) is the transpose of the matrix ∇𝑧𝐾(𝑍, 𝑌).
A two-dimensional example.

In the figure 3.9 we illustrate the material in this section by comparing ∇𝑘(𝑋, 𝑌 , 𝑍)𝑇 ∇𝑘(𝑋, 𝑌 , 𝑍)𝑓(𝑋)
to Δ𝑘(𝑋, 𝑌)𝑓(𝑋); see the next section.

1.000.750.500.250.000.250.500.751.00

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

6040200204060

1.000.750.500.250.000.250.500.751.00

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

6040200204060

Figure 3.9: Comparison of the outer product of the gradient to Laplace operator

3.5.5 Laplace operator
We define the Laplace operator as the matrix

Δ𝑘(𝑋, 𝑌) = (∇𝑘(𝑋, 𝑌 , 𝑋)𝑇)(∇𝑘(𝑋, 𝑌 , 𝑋)) ∈ ℝ𝑁𝑥×𝑁𝑥 .

This operator is not consistent with the “true” Laplace operator, but is instead consistent with
(3.5.6)

−∇ ⋅ (∇𝑓𝜇).

Illustration for this section is done in the figure 3.9.

3.5.6 Inverse Laplace operator
This operator is simply the pseudo-inverse of the Laplacian Δ𝑘(𝑋, 𝑌) ∈ ℝ𝑁𝑥×𝑁𝑥 .

A two-dimensional example.

Figure 3.10 compares 𝑓(𝑋) with Δ𝑘(𝑋, 𝑌)−1Δ𝑘(𝑋, 𝑌)𝑓(𝑋). This latter operator is a projection
operator (hence is stable).

We also compute the operator Δ𝑘,𝑥,𝑦,𝑧Δ−1
𝑘,𝑥,𝑦,𝑧𝑓(𝑋) figure 3.11, to check that pseudo-inversion

commutes, as highlighted by the following computations:

52 CHAPTER 3. KERNEL METHODS FOR MACHINE LEARNING

1.000.750.500.250.000.250.500.751.00

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

210123

1.000.750.500.250.000.250.500.751.00

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

21012

Figure 3.10: Comparison between original function to the product of Laplace and its inverse

1.000.750.500.250.000.250.500.751.00

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

210123

1.000.750.500.250.000.250.500.751.00

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

21012

Figure 3.11: Comparison between original function and the product of the inverse of the Laplace
operator and the Laplace operator

3.5. DISCRETE DIFFERENTIAL OPERATORS 53

3.5.7 Integral operator - inverse gradient operator
The following operator ∇−1

𝑘 is an integral-type operator

∇−1
𝑘 = Δ−1

𝑘 ∇𝑇
𝑘 ∈ ℝ𝑁𝑥×𝐷𝑁𝑧 .

It can be interpreted as a matrix, computed first considering ∇𝑘(𝑋, 𝑌 , 𝑍) ∈ ℝ𝐷×𝑁𝑧×𝑁𝑥 , down
casting it to a matrix ℝ𝐷𝑁𝑧×𝑁𝑥 before performing a least-square inversion. This operator acts on
any 3-tensor 𝑣𝑧 ∈ ℝ𝐷×𝑁𝑧×𝐷𝑣𝑧 , and outputs a matrix

∇−1
𝑘 (𝑋, 𝑌 , 𝑍)𝑣𝑧 ∈ ℝ𝑁𝑥×𝐷𝑣𝑧 , 𝑣𝑧 ∈ ℝ𝐷×𝑁𝑧×𝐷𝑣𝑧

The operator ∇−1
𝑘 corresponds to the minimization procedure:

ℎ(𝑋) ∶= arg inf
ℎ∈ℝ𝑁𝑥×𝐷𝑣𝑧

‖∇𝑘(𝑋, 𝑌 , 𝑍)ℎ − 𝑣𝑧‖2
𝐷,𝑁𝑧,𝑁𝑥

.

A two-dimensional example.

In the figure 3.12 we show that (∇)(∇)−1𝑓(𝑋) coincides with 𝑓(𝑋). Observe however that this
latter operation is not equivalent to Figure 3.13, which uses 𝑍 as extrapolation set.

1.000.750.500.250.000.250.500.751.00

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

210123

1.000.750.500.250.000.250.500.751.00

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

21012

Figure 3.12: Comparison between original function to the product of the gradient operator and
its inverse

1.000.750.500.250.000.250.500.751.00

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

210123

1.000.750.500.250.000.250.500.751.00

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

21012

Figure 3.13: Comparison between original function to the product of the inverse of the gradient
operator and the gradient operator

54 CHAPTER 3. KERNEL METHODS FOR MACHINE LEARNING

3.5.8 Integral operator - inverse divergence operator
The following operator (∇𝑇

𝑘)−1 is another integral-type operator of interest. We define the (∇𝑇)−1

operator as the pseudo-inverse of the ∇𝑇 operator:

(∇𝑇
𝑘 (𝑋, 𝑌 , 𝑍))−1 = ∇𝑘(𝑋, 𝑌 , 𝑍)Δ𝑘(𝑋, 𝑌 , 𝑍)−1.

A two-dimensional example.

We compute ∇𝑘(𝑋, 𝑌 , 𝑍)𝑇 (∇𝑇
𝑘 (𝑋, 𝑌 , 𝑍))−1 = Δ𝑘(𝑋, 𝑌 , 𝑍)Δ𝑘(𝑋, 𝑌 , 𝑍)−1. Thus, the following

computations should give comparable results as those obtained in the section concerning the
inverse Laplace operator; see section 3.5.6.

1.000.750.500.250.000.250.500.751.001.000.750.500.250.000.250.500.751.00

2
1

0
1
2
3

1.000.750.500.250.000.250.500.751.001.000.750.500.250.000.250.500.751.00

2
1

0
1
2
3

Figure 3.14: Comparison betwenn the product of the divergence operator and its inverse and the
product of Laplace operator and its inverse

3.5.9 Leray-orthogonal operator
We define the Leray-orthogonal operator as

𝐿𝑘(𝑋, 𝑌)⟂ ∶= ∇𝑘(𝑋, 𝑌)Δ𝑘(𝑋, 𝑌)−1∇𝑇
𝑘,𝑥,𝑦,𝑥 = ∇𝑘(𝑋, 𝑌 , 𝑍)∇𝑘(𝑋, 𝑌 , 𝑍)−1.

This operator acts on any vector field 𝑓(𝑍) ∈ ℝ𝐷×𝑁𝑧×𝐷𝑓 , down casting it, performing a matrix
multiplication and producing a three-tensor:

𝐿𝑘(𝑋, 𝑌 , 𝑍)⟂𝑓(𝑍) ∈ ℝ𝐷×𝑁𝑧×𝐷𝑓 .

In the figure 3.15, we compare this operator to the original function (∇𝑓)(𝑍):

3.5.10 Leray operator and Helmholtz-Hodge decomposition
We define the Leray operator as

𝐿𝑘(𝑋, 𝑌 , 𝑍) ∶= 𝐼𝑑 − 𝐿𝑘(𝑋, 𝑌 , 𝑍)⟂ = 𝐼𝑑 − ∇𝑘(𝑋, 𝑌 , 𝑍)Δ𝑘(𝑋, 𝑌 , 𝑍)−1∇𝑘(𝑋, 𝑌 , 𝑍)𝑇 ,

where 𝐼𝑑 is the identity. Hence, we get the following orthogonal decomposition of any tensor fields:

𝑣𝑧 = 𝐿𝑘(𝑋, 𝑌 , 𝑍)𝑣𝑧 + 𝐿𝑘(𝑋, 𝑌 , 𝑍)⟂𝑣𝑧, < 𝐿𝑘(𝑋, 𝑌 , 𝑍)𝑣𝑧, 𝐿𝑘(𝑋, 𝑌 , 𝑍)⟂𝑣𝑧 >𝐷,𝑁𝑧,𝐷𝑣
= 0.

This agrees with the Helmholtz-Hodge decomposition, decomposing any vector field into an or-
thogonal sum of a gradient and a divergence free vector:

𝑣 = ∇ℎ + 𝜁, ∇ ⋅ 𝜁 = 0, ℎ ∶= Δ−1∇ ⋅ 𝑣

3.5. DISCRETE DIFFERENTIAL OPERATORS 55

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

420246

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

420246

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

420246

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

420246

Figure 3.15: comparing f(z) and the transpose of the Leray operator on each direction

Here we have also an orthogonal decomposition from a numerical point of view:

𝑣𝑧 = ∇𝑘(𝑋, 𝑌 , 𝑍)ℎ𝑥 + 𝜁𝑧, ℎ𝑥 ∶= ∇𝑘(𝑋, 𝑌 , 𝑍)−1𝑣𝑧, 𝜁𝑧 ∶= 𝐿𝑘(𝑋, 𝑌 , 𝑍)𝑣𝑧,

satisfying numerically

∇𝑘(𝑋, 𝑌 , 𝑍)𝑇 𝜁𝑧 = 0, ⟨𝜁𝑧, ∇𝑘(𝑋, 𝑌 , 𝑍)ℎ𝑥⟩𝐷×𝑁𝑧×𝐷𝑓
= 0.

56 CHAPTER 3. KERNEL METHODS FOR MACHINE LEARNING

In the following figure, we compare this operator to the original function (∇𝑓)(𝑍) in the figure ??.

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

420246

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

6420246

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

420246

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

6420246

3.6 A kernel-based clustering algorithm
In this section we describe a kernel-based clustering algorithm. This algorithm, already presented
with a toy example in the section 2.9, is also benchmarked in a forthcoming section devoted to
more concrete problems, see Chapter 6.

3.6.1 Distance-based unsupervised learning machines
Distance-based minimization algorithms can be thought as finding a minimum of a distance be-
tween set of points 𝑑𝑘(𝑋, 𝑌), defining equivalently a distance between discrete measures 𝜇𝑥, 𝜇𝑦.
Within this setting, minimization problem can be expressed as

𝑌 = arg inf
𝑌 ∈ℝ𝑁𝑦×𝐷

𝑑𝑘(𝑋, 𝑌)

Suppose that this last problem is well-posed, assuming that the distance functional is convex1.
Once the cluster set 𝑌 ∶= (𝑦1, … , 𝑦𝑁𝑦) is computed, then one can define the index function
𝜎𝑑(𝑤, 𝑌) ∶= {𝑗 ∶ 𝑑(𝑤, 𝑦𝑗) = inf𝑘 𝑑(𝑤, 𝑦𝑘)}, as for (2.3.2). One we can extend naturally this
function, defining a map

𝜎𝑑(𝑍, 𝑌) ∶= {𝜎𝑑(𝑧1, 𝑌), … , 𝜎𝑑(𝑧𝑁𝑧 , 𝑌)} ∈ [1, … , 𝑁𝑦]𝑁𝑧 , (3.6.1)

that acts on the indices of the test set 𝑍. This allows to compare this prediction to a given,
user-desired, partition of 𝑓(𝑍), if needed.
Note that the function 𝜎𝑑(𝑍, 𝑌) is surjective (many-to-one). Hence we can define its injective
(one-to-many) inverse, 𝜎𝑑(𝑍, 𝑌)−1(𝑛), describing those points of the test set attached to one 𝑦𝑛.

1although most of existing distance are not convex

3.6. A KERNEL-BASED CLUSTERING ALGORITHM 57

This construction defines cells, very similarly to quantization, 𝐶𝑛 ∶= 𝜎𝑑(ℝ𝐷, 𝑦𝑛)−1(𝑛), defining a
partition of unity of the space ℝ𝐷. A last remark: consider, in the context of supervised clustering
methods, the training set and its values 𝑋, 𝑓(𝑋) and the index map 𝜎𝑑(𝑋, 𝑌) ∈ [1, … , 𝑁𝑥]𝑁𝑦

defined above. One can always define a prediction on the test set 𝑍 as

𝑓𝑧 ∶= 𝑓(𝑋𝜎(𝑌 𝜎(𝑍,𝑌),𝑋)),

showing that distance minimization unsupervised algorithm naturally defines supervised ones.

3.6.2 Sharp discrepancy sequences
Our kernel-based algorithm for clustering can be described as follows:

• The unsupervised algorithm aims to solve the minimization problem (3.6.1) with the dis-
crepancy functional (3.2.5). This procedure is separated into two main steps.

– First solve a discrete version of (3.6.1), namely

𝑋𝜎 = arg inf
𝜎∈Σ

𝑑(𝑋, 𝑋𝜎),

where Σ denotes the set of all subsets from [1, … , 𝑁𝑦] ↦ [1, … , 𝑁𝑥]. This minimization
problem is described Chapter 4.1.2.2.

– Depending on kernels, this step is completed by a simple gradient descent algorithm.
The initial state for this minimization is chosen to be 𝑋𝜎.

– The resulting solution 𝑌 is named sharp discrepancy sequences.
• The supervised algorithm consists then simply to compute the projection operator (3.2.6),

that we recall here.
𝑓𝑧 ∶= 𝒫𝑘(𝑋, 𝑌 , 𝑍)𝑓(𝑋)

using the python function (3.2.3), where the weight set 𝑌 is taken as the sharp discrepancy
sequence computed above.

3.6.3 Python functions
• The unsupervised clustering algorithm is given by the Python function

𝑠ℎ𝑎𝑟𝑝_𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦(𝑋, 𝑌 = [], 𝑁𝑦 = 0, 𝑠𝑒𝑡_𝑐𝑜𝑑𝑝𝑦_𝑘𝑒𝑟𝑛𝑒𝑙 = 𝑁𝑜𝑛𝑒, 𝑟𝑒𝑠𝑐𝑎𝑙𝑒 = 𝐹𝑎𝑙𝑠𝑒, 𝑛𝑚𝑎𝑥 = 10)

• Let 𝑋 ∈ ℝ𝑁𝑥×𝐷, 𝑌 ∈ ℝ𝑁𝑦×𝐷 any two distributions of points and 𝑘(𝑥, 𝑦) a positive-definite
kernel. The following Python function

𝑐𝑜𝑑𝑝𝑦.𝑎𝑙𝑔.𝑚𝑎𝑡𝑐ℎ(𝑌 , 𝑋, 𝑛𝑚𝑎𝑥 = 10)

approximate the following problem

arg inf
𝑌 ∈ℝ𝑁𝑦×𝐷

𝑑𝑘(𝑋, 𝑌)2

via a simple descent algorithm: starting from the input distribution 𝑌 , the algorithm per-
forms 𝑛𝑚𝑎𝑥 steps of a descent algorithm and output the resulting distribution.

• The computation of index associations (3.6.1), that is the function 𝜎𝑑𝑘
(𝑋, 𝑌), is given by

𝑎𝑙𝑔.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑙𝑎𝑏𝑒𝑙𝑙𝑖𝑛𝑔(𝑋, 𝑌 , 𝑠𝑒𝑡_𝑐𝑜𝑑𝑝𝑦_𝑘𝑒𝑟𝑛𝑒𝑙 = 𝑁𝑜𝑛𝑒, 𝑟𝑒𝑠𝑐𝑎𝑙𝑒 = 𝑇 𝑟𝑢𝑒).

This function relies on the distance matrix 𝐷(𝑋, 𝑌); see 3.2.

58 CHAPTER 3. KERNEL METHODS FOR MACHINE LEARNING

3.6.4 Impact of sharp discrepancy sequences on discrepancy errors
The figure 2.9 presented a first illustration of the impact of computing discrepancy errors on
several toy “blob” examples. In this paragraph, we fix the number of “blobs” to two, and the
number of generated points 𝑁𝑥 to 100. We then follow the test methodology of the section 2.9,
re-running all tests with scenarios for 𝑁𝑦 covering [0,100]. The figure 3.16 compare the results for
discrepancy errors of the three methods. One can check visually that discrepancy errors is zero,
whatever the clustering method is, when the number of clusters 𝑁𝑦 tends to 𝑁𝑥. Note also that
our kernel clustering methods shows quite good inertia performance indicators. This is surprising,
as our method is based on discrepancy error minimization, not inertia. An interpretation could
be that the inertia functional is bounded by the discrepancy error one.

20 40 60 80
Ny

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

di
sc

re
pa

nc
y_

er
ro

rs

codpy
k-means
minibatch

20 40 60 80
Ny

200

300

400

500

600

700

800

in
er

tia

codpy
k-means
minibatch

Figure 3.16: benchmark of discrepancy errors and inertia

3.6.5 A study of the discrepancy functional
As stated in the previous section, we first compute a discrete minimizing problem and denote 𝑋𝜎 its
solution. We eventually complete this step with a simple gradient descent algorithm. This section
explains and motivate this choice. Indeed, the minimizing properties 𝑑𝑘(𝑋, 𝑌) relies heavily on
the kernel definition 𝑘(𝑥, 𝑦), and we face an alternative, depending on regularity of kernels, that
we illustrate numerically in this section:

• If the kernel is smooth, then the distance functional 𝑑𝑘(𝑋, 𝑌) also is, and a descent algorithm
based on gradients computations is an efficient option.

• If the kernel is only continuous, or piecewise derivable, then we assume that the minimum
is attained by the discrete minimum solution 𝑋𝜎.

Hence, we study in this section the effect of some classical kernel over this functional for a better
understanding. To that aim, let us produce some random distributions 𝑥 ∈ ℝ𝑁𝑥 in one dimension,
we will study then for three kernels the following functionals:

ℝ𝑁𝑦 ∋ 𝑦 ↦ 𝑑𝑘(𝑥, 𝑦),

ℝ𝑁𝑦×2 ∋ 𝑌 = (𝑦1, 𝑦2) ↦ 𝑑𝑘(𝑥, 𝑌).

We generate uniform random variables 𝑥 ∈ ℝ𝑁𝑥 , 𝑦 ∈ ℝ𝑁𝑦 and 𝑌 = (𝑦1, 𝑦2) ∈ ℝ𝑁𝑦×2.

A example of smooth kernels: Gaussian. We start our study of the discrepancy functional
with a Gaussian kernel. The Gaussian kernels is a family of kernels based upon the following
kernel, generating functional spaces of smooth functions.

𝑘(𝑥, 𝑦) = exp(−(𝑥 − 𝑦)2)

3.6. A KERNEL-BASED CLUSTERING ALGORITHM 59

1.0 0.5 0.0 0.5 1.0
x-units

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

f(x
)-u

ni
ts

Figure 3.17: Distance functional for the Gaussian kernel

The following picture plot the function 𝑦 ↦ 𝑑𝑘(𝑥, 𝑦) in blue. We also output the function 𝑑𝑘(𝑥, 𝑥𝑛),
𝑛 = 1 … 𝑁𝑥, figure 3.17 to illustrate that this functional is neither convex nor concave.

We see that the functional 𝑦 ↦ 𝑑𝑘(𝑥, 𝑦) admits a minimum close to 𝑦 = 1
2 as expected. The next

picture 3.18 plots 𝑦 ∶= (𝑦1, 𝑦2) ↦ 𝑑𝑘(𝑥, 𝑦)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.001.000.750.500.250.000.250.500.751.00

0.2
0.4
0.6
0.8
1.0
1.2

Figure 3.18: Distance functional for the Gaussian kernel

We see that this functional admits two minima. This reflects the fact that the functional 𝑦 ↦
𝑑𝑘(𝑥, 𝑦) is invariant by permutation of the indices of 𝑦.
An example of Lipschitz continuous kernels: RELU. Let us now study a kernel generating
functional spaces having less regularity. The norm kernels is a family of kernels based upon the
following kernel, generating functional spaces of bounded variation functions.

𝑘(𝑥, 𝑦) = 1 − |𝑥 − 𝑦|.

Indeed, in view of Figure 3.19 it is clear that the function 𝑦 ↦ 𝑑𝑘(𝑥, 𝑦) is piecewise differentiable.
Hence in some situations, the functional 𝑑𝑘(𝑥, 𝑦) might have an infinity of solutions (here on the
“flat” segment). The next figure 3.20 plots 𝑦 ∶= (𝑦1, 𝑦2) ↦ 𝑑𝑘(𝑥, 𝑦) for the two dimensional case.

A example of continuous kernel: Matern. The Matern kernel is based upon the following
kernel, generating usually functional spaces of continuous functions.

𝑘(𝑥, 𝑦) = exp(−|𝑥 − 𝑦|)

Indeed, in the figure 3.21 we see that the functional 𝑦 ↦ 𝑑𝑘(𝑥, 𝑦) is here almost everywhere concave,

60 CHAPTER 3. KERNEL METHODS FOR MACHINE LEARNING

1.0 0.5 0.0 0.5 1.0
x-units

0.4

0.6

0.8

1.0

f(x
)-u

ni
ts

Figure 3.19: Distance functional for the norm kernel

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.001.000.750.500.250.000.250.500.751.00

0.2

0.4

0.6

0.8

1.0

Figure 3.20: Distance functional for the norm kernel

1.0 0.5 0.0 0.5 1.0
x-units

0.4

0.5

0.6

0.7

0.8

0.9

f(x
)-u

ni
ts

Figure 3.21: Distance functional for the Matern kernel

3.6. A KERNEL-BASED CLUSTERING ALGORITHM 61

and a gradient-descent algorithm can’t give good results in this case. The next picture 3.22 plots
the two dimensional case 𝑦 ∶= (𝑦1, 𝑦2) ↦ 𝑑𝑘(𝑥, 𝑦)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.001.000.750.500.250.000.250.500.751.00

0.2
0.3
0.4
0.5
0.6
0.7
0.8

Figure 3.22: Distance functional for the Matern kernel

62 CHAPTER 3. KERNEL METHODS FOR MACHINE LEARNING

Chapter 4

Kernel methods for optimal
transportation

4.1 Discrete ordering algorithms
We describe in this section discrete ordering algorithms based on the kernel-based distance.

4.1.1 Linear Sum Assignment Problems (LSAP)
In this section, we describe a ordering algorithm, which we discovered while working in the de-
velopment of algorithms based on the theory of Reproducing Kernel Hilbert Space (RKHS). This
algorithm is motivated by the “linear assignment value’ ’ problem, and is used in a number of our
Academic and industrial applications;

The Linear Sum Assignment problem (LSAP) is a fundamental problem of combinatorial opti-
mization. It is an old and well-documented problem 1, which leads to a large number of important
industrial applications. It has been solved in the early 30’s by H.W. Kuhn and is often called the
Hungarian method in order to highlight that it derives from two older2 results by two Hungari-
ans mathematicians, Koenig (Math Ann 77:453 465, 1916) and Egervry (Mat Fiz Lapok 38:1628,
1931). In particular, the approach adopted in the present text relies on the LSAP. As our library
embeds a different algorithm than the Hungarian one for performance purposes, we describe and
exhibit our interface on this problem in the next section.

Our basic idea here is to use a ordering algorithm and order any two sets of points 𝑥 ∈ ℝ𝑁𝑥×𝐷,
𝑦 ∈ ℝ𝑁𝑦×𝐷 with respect to the discrepancy distance matrix 𝑑𝑘(𝑥, 𝑦) ∈ ℝ𝑁𝑥×𝑁𝑦 associated with
a given kernel, introduced in (??). Without loss of generality, suppose that 𝑁𝑥 > 𝑁𝑦. The
above distance allows us to compute a permutation 𝜎 with length 𝑁𝑦, with the help of the LSAP
algorithm. Then, we reorder and output the distribution 𝑥 with this permutation. Our motivation
comes from optimal transportation; see for instance [48] for a review of optimal transport. Indeed,
once computed, the map

𝑥𝑛 ↦ 𝑦𝜎𝑛

defines an optimal map, with respect to the kernel-induced discrepancy distance 𝑑𝑘(𝑥, 𝑦), described
in section ??, transporting the measure 𝜇𝑥 ∶= ∑𝑛 𝛿𝑥𝑛 into the measure 𝜇𝑦 ∶= ∑𝑛 𝛿𝑦𝜎𝑛 . This
equivalence between the LSAP and the Monge-Kantorovich problem, used since some time, has
only been recently rigorously proven in [6].

1see the wikipedia page https://en.wikipedia.org/wiki/Assignment_problem
2These algorithms might be credited to Jacobi posthumous papers [17].

63

https://en.wikipedia.org/wiki/Assignment_problem

64 CHAPTER 4. KERNEL METHODS FOR OPTIMAL TRANSPORTATION

Table 4.1: a 4x4 random matrix

0 1 2 3
0.8231103 0.0261180 0.2107706 0.6184218
0.0982845 0.6201313 0.0538902 0.9606541
0.9804294 0.5211277 0.6365533 0.7647569
0.7649553 0.4176856 0.7688053 0.4232018

4.1.1.1 Description of the problem

Linear sum assignment problems can be well described using graph theory : it consists of finding,
in a weighted bipartite graph, a matching of a given size, in which the sum of weights of the edges
is a minimum.

To make this definition clear, let us introduce some notations : consider any real-valued matrix
𝑀 ∈ ℝ𝑁𝑥×𝑁𝑦 , called a cost matrix. A linear assignment problem consist in finding a permutation
𝜎 ∶ [1 …min(𝑁𝑥, 𝑁𝑦)] ↦ [1 …min(𝑁𝑥, 𝑁𝑦)] such that

𝜎 = arg inf
𝜎∈Σ

∑
𝑛≤min(𝑁𝑥,𝑁𝑦)

𝑀(𝑛, 𝜎(𝑛)),

where Σ holds here for the set of all permutations. Another equivalent formulation is the following
one

𝜎 = arg inf
𝜎∈Σ

𝜎 ⋅ 𝑀

where 𝐴 ⋅ 𝐵 holds here for the Frobenius scalar product and Σ is the set of permutations, using a
matrix representation : 𝜎 ∈ ℝ𝑁𝑥×𝑁𝑦 ∑𝑛 𝜎(𝑛, 𝑚) = ∑𝑚 𝜎(𝑛, 𝑚) = 1, 𝜎(𝑛, 𝑚) ∈ {0, 1}.
Let us give a quick illustration for better understanding to this problem. We fill out a matrix with
random values in table 4.1, and output also its cost, that is 𝑇 𝑟(𝑀).
total cost: 2.5029967458342304

Then we compute the permutation 𝜎. The python interface to this function is simply 𝜎 = lsap(𝑀).
permutation: [1, 0, 2, 3]

We reorder 𝑀̃ = 𝜎𝑀 , and we ouput the new cost after ordering, that is 𝑇 𝑟(𝑀̃). we check in the
following that the lsap algorithm decreased the total cost.

total cost: 1.184157542154346

4.1.1.2 Description of the algorithm

Our ordering algorithm is quite straightfoward. Consider any two set of points 𝑥 ∈ ℝ𝑁𝑥×𝐷,
𝑦 ∈ ℝ𝑁𝑦×𝐷, a kernel 𝑘(𝑥, 𝑦), and the discrepancy distance 𝑑𝑘(𝑥, 𝑦) ∈ ℝ𝑁𝑥×𝑁𝑦 introduced in
@ref{distance-matrices}. Suppose wlog 𝑁𝑦 < 𝑁𝑥. We compute first the permutation

𝜎 = lsap(𝑑𝑘(𝑥, 𝑦)), 𝜎 ∈ ℝ𝑁𝑦

Then output the reordered set

𝑥𝜎 ∶= (𝑥𝜎1 , … , 𝑥𝜎𝑁𝑦), 𝑦, if 𝑁𝑥 ≥ 𝑁𝑦

4.1.1.3 Description of the python function

The ordering algorithm takes two distributions in input, and output a permutation of one of its
input data (𝑥 or 𝑦), as well as the permutation 𝜎:

4.1. DISCRETE ORDERING ALGORITHMS 65

Table 4.2: a random gaussian distribution x

0 1 2 3 4
5.216782 5.507742 5.973072 4.643358 4.211705
4.767422 4.152499 3.251747 5.808072 6.239795
5.560636 4.457183 4.515850 6.319828 6.445540
5.051817 6.628679 4.634000 4.975758 4.173435

Table 4.3: a random uniform distribution y

0 1 2 3 4
0.4343886 0.2460579 0.8616407 0.0200226 0.4508267
0.0474229 0.4977275 0.8587740 0.3348157 0.9015900
0.1228876 0.1574337 0.7873853 0.6649391 0.7202042
0.5392553 0.4719475 0.9006875 0.3745125 0.5277864

𝑥𝜎, 𝑦𝜎, 𝜎 = 𝑎𝑙𝑔.𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔(𝑥, 𝑦, 𝑠𝑒𝑡_𝑐𝑜𝑑𝑝𝑦_𝑘𝑒𝑟𝑛𝑒𝑙, 𝑟𝑒𝑠𝑐𝑎𝑙𝑒, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑁𝑜𝑛𝑒)

This algorithm takes in input the following:

• Two distributions of points having shapes

𝑥 ∶= (𝑥1, … , 𝑥𝑁𝑥) ∈ ℝ𝑁𝑥×𝐷, 𝑦 ∶= (𝑦1, … , 𝑦𝑁𝑦) ∈ ℝ𝑁𝑦×𝐷

• A positive kernel 𝑘(𝑥, 𝑦), defined through the input variable set_codpy_kernel. This defines
the cost matrix as being 𝑀 = 𝑑𝑘(𝑥, 𝑦), where the distance matrix is defined in ??.

• Alternatively an optional parameter 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 taking values among

– “norm1”, in which case the sorting is done accordingly to the Manhattan distance
𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|1

– “norm2”, in which case the sorting is done accordingly to the Euclidean distance
𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|2

– “normifty”, in which case the sorting is done accordingly to the sup-distance 𝑑(𝑥, 𝑦) =
|𝑥 − 𝑦|∞

This function outputs :

• Two distributions 𝑥𝜎, 𝑦𝜎 having length 𝑁𝑦. If 𝑁𝑥 > 𝑁𝑦, then 𝑦𝜎 = 𝑦. The case 𝑁𝑦 > 𝑁𝑥 is
symetrical, letting the original distribution 𝑥 unchanged.

• A permutation 𝜎, represented as a vector 𝑖 ↦ 𝜎𝑖, 0 ≤ 𝑖 ≤ min(𝑁𝑥, 𝑁𝑦).

4.1.1.4 Illustration for the square matrix case

4.1.1.4.1 A quantitative illustration We show first the results given by our ordering algo-
rithm on a simple example. We generate two distributions of 4 points in ℝ5. The first is generated
by multivariate Gaussian distribution centered in (5, .., 5), the second one by a uniform distribution
supported into the unit cube.

We output x in table 4.2 and y in table 4.3

Let us first pick up a kernel 𝑘, here a Matern kernel.

Then we compute the distance matrix, and output the transportation cost ∑𝑁
𝑛=0 𝑑𝑘(𝑛, 𝑛)

cost: 11.072754623017211

66 CHAPTER 4. KERNEL METHODS FOR OPTIMAL TRANSPORTATION

Table 4.4: Matrix after ordering (samples)

0 1 2 3
2.785269 2.730067 2.751811 2.701832
2.707658 2.630662 2.641554 2.619985
3.003731 2.930162 2.939942 2.913812
2.805791 2.742673 2.767694 2.716881

Table 4.5: permutation

0 1 2 3

We output the distance matrix in table ??.

0 1 2 3
2.785269 2.730067 2.751811 2.701832
2.707658 2.630662 2.641554 2.619985
3.003731 2.930162 2.939942 2.913812
2.805791 2.742673 2.767694 2.716881

We then invoke the ordering algorithm and output the cost after ordering.

cost: 11.072754623017211

Finally, we output the distance matrix again after ordering in table 4.4, as well as the permutation
𝜎 in table 4.5

One can check that the sum of the diagonal elements has decreased.

4.1.1.4.2 A qualitative illustration This algorithm can be best illustrated in the two-
dimensional case.

We first consider the Euclidean distance function 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|, in which case this algorithm
corresponds to a classical rearrangement, i.e. the one corresponding to the Wasserstein distance.
To illustrate this behavior, let us generate a bi-modal type distribution 𝑥 ∈ ℝ𝑁×𝐷 and a random
uniform one 𝑦 ∈ [0, 1]𝑁×𝐷.

For a convex distance, this algorithm is characterized by a ordering where characteristic lines do
not cross each others, as plot in the picture 4.1, plotting both edges 𝑥𝑖 ↦ 𝑦𝑖, before and after the
ordering algorithm.

Note however that kernels based distance might lead to different permutations. This is due to
the fact that kernels defines distance that might not be euclidean. Indeed, kernel distance might
not respect the triangular inequality. For instance, the kernel selected above defines a distance
equivalent to 𝑑(𝑥, 𝑦) = Π𝑑|𝑥𝑑 − 𝑦𝑑|, and leads to a ordering for which some characteristics should
cross

4.1. DISCRETE ORDERING ALGORITHMS 67

4 2 0 2 4
4

3

2

1

0

1

2

3

Before reordering

4 2 0 2 4
4

3

2

1

0

1

2

3

After reordering

Figure 4.1: LSAP with different input sizes

4 2 0 2 4
4

3

2

1

0

1

2

3

Before reordering

4 2 0 2 4
4

3

2

1

0

1

2

3

After reordering

68 CHAPTER 4. KERNEL METHODS FOR OPTIMAL TRANSPORTATION

4.1.2 LSAP extensions
In this section we describe some extensions of the LSAP algorithms that we use in our library.

4.1.2.1 Different input sizes

A first quite straightforward extension of LSAP problem can be found for inputs set of different
sizes, wlog 𝑁𝑦 ≤ 𝑁𝑥. The figure 4.2 illustrates the behavior of our LSAP algorithm in this setting

4 2 0 2 4

4

2

0

2

4
Before reordering

4 2 0 2 4

4

2

0

2

4
After reordering

Figure 4.2: LSAP with different input sizes

4.1.2.2 General cost functions and motivations

Consider any real-valued matrix 𝑀 ∈ ℝ𝑁×𝑁 . In situations of interests, we consider cost functional
𝑐(𝑀) that generalizes the classical cost functional for LSAP problem 𝑐(𝑀) = ∑𝑛 𝑀(𝑛, 𝑛). Our
algorithm generalizes to these cases, finding a permutation 𝜎 ∶ [1 … 𝑁] ↦ [1 … 𝑁] such that

𝜎̄ = arg inf
𝜎∈Σ

𝑐(𝑀𝜎), 𝑀𝜎 = 𝑚(𝑛, 𝜎(𝑛))

An example of such a LSAP problem extension arised with kernel methods in section 3.6.2. It
corresponds to compute the minimum of the discrepancy functional @ref{eq:dk}, for the particular
choice where 𝑥𝜎 ⊂ 𝑥 is a subset of 𝑥 having length 𝑁𝑦 < 𝑁𝑥. We used the notations 𝑥𝜎 =
(𝑥𝜎1 , … , 𝑥𝜎𝑁𝑦), with 𝜎 ∶ [1 … 𝑁𝑦] ↦ [1 … 𝑁𝑥]. In this context, the matrix is defined as 𝑀(𝑛, 𝑚) =
𝑘(𝑥𝑛, 𝑥𝑚), and the cost function is

𝑑𝑘(𝑥, 𝑥𝜎)2 = 𝑐(𝑀) = 1
𝑁2𝑥

𝑁𝑥,𝑁𝑥

∑
𝑛=1,𝑚=1

𝑀(𝑛, 𝑚)+ 1
𝑁2𝑦

𝑁𝑦,𝑁𝑦

∑
𝑛=1,𝑚=1

𝑀(𝜎(𝑛), 𝜎(𝑚))− 2
𝑁𝑥𝑁𝑦

𝑁𝑥,𝑁𝑦

∑
𝑛=1,𝑚=1

𝑘(𝑛, 𝜎(𝑚)).

4.2. CONDITIONAL EXPECTATION ALGORITHM 69

So that our target minimization problem can be described as finding a permutation 𝜎̄ such that

𝜎 = arg inf
𝜎∶[1…𝑁𝑦]↦[1…𝑁𝑥]

𝑐(𝑀𝜎), 𝑀𝜎(𝑛, 𝑚) = 𝑘(𝑥𝑛, 𝑥𝜎(𝑚))

4.2 Conditional expectation algorithm
4.2.1 Introduction
In this section, we propose a general interface to a python function computing conditional ex-
pectations problems in arbitrary dimensions, that we named Pi. We also propose a kernel-based
implementation of these problems, which algorithm is described in [24] - [26].

Kernel methods to compute conditional expectations started to be considered a decade ago, see
for instance [22]. Indeed, these algorithms are centrals, particularly for finance applications, as
they are the heart of pricing technologies. They also have numerous other applications.

Benchmarking such algorithms is a difficult task, as the literature did not provide competitor
algorithms to compute conditional expectations to kernel-based methods, for arbitrary dimensions,
to our knowledge. Indeed, these algorithms are tightly concerned with the so called curse of
dimensionality, as we are dealing with arbitrary dimensions algorithms.

However, there is a recent, but impressively fast-growing, literature, devoted to the study of
Artificial Intelligence methods (AI), particularly for Finance applications, see [?] and ref. therein
for instance. In particular, a Neural Networks (NN) approach has been proposed to compute
conditional expectation in [?] that we can use as benchmark. Hence a first benchmark is conducted
in section ??.

4.2.2 The Pi function
Consider any martingale process 𝑡 ↦ 𝑋(𝑡), and any positive definite kernel 𝑘, we define the
operator Π - using python notations -

𝑓𝑧|𝑥 = Π(𝑥, 𝑧, 𝑓(𝑧) = []) (4.2.1)

where

• 𝑥 ∈ ℝ𝑁𝑥×𝐷 is any set of points generated by a i.i.d sample of 𝑋(𝑡1) where 𝑡1 is any time.

• 𝑧 ∈ ℝ𝑁𝑧×𝐷 is any set of points, generated by a i.i.d sample of 𝑋(𝑡2) at any time 𝑡2 > 𝑡1.

• 𝑓(𝑧) ∈ ℝ𝑁𝑧×𝐷𝑓 is any, optional, function, representing payoff values.

The output is

• if 𝑓(𝑧) is let empty, the output 𝑓𝑧|𝑥 ∈ ℝ𝑁𝑧×𝑁𝑥 is a matrix, representing a convergent approx-
imation of the stochastic matrix 𝔼𝑋(𝑧|𝑥).

• if 𝑓(𝑧) ∈ ℝ𝑁𝑧×𝐷𝑓 is not empty, 𝑓𝑧|𝑥 ∈ ℝ𝑁𝑧×𝐷𝑓 is a matrix, representing the conditional
expectation 𝑓(𝑧|𝑥) ∶= 𝔼𝑋(𝑓(𝑧)|𝑥).

4.3 Polar factorization algorithms
Consider any mapping 𝑆 ∶ ℝ𝐷 ↦ ℝ𝐷, and a distance function, that is positive, scalar valued, 𝒞1

function 𝑑(⋅, ⋅).

70 CHAPTER 4. KERNEL METHODS FOR OPTIMAL TRANSPORTATION

The polar factorization algorithm amounts to find a scalar, convex function 𝑓 , and a volume
preserving map 𝑇 ∶ ℝ𝐷 ↦ ℝ𝐷, satisfying

𝑆 = (∇𝑓) ∘ 𝑇 (𝑦), 𝑓 convex, 𝑇#𝑚 = 𝑚

A volume preserving map is a mapping satisfying ∫ 𝜑𝑑𝑥 = ∫ 𝜑 ∘ 𝑇 𝑑𝑥 for any continuous function
𝜑, 𝑑𝑥 being the Lebesgue measure. Existence and unicity of this decomposition is discussed in
Brenier seminal’s paper [?].

4.3.1 Discrete Polar factorization and linear sum assignment problem
Let us start from any distributions 𝑥 ∈ ℝ𝑁𝑥×𝐷, 𝑧 ∈ ℝ𝑁𝑦×𝐷, and consider a distance function, that
is positive, scalar valued, 𝒞1 function 𝑑(⋅, ⋅), and we naturally extend this function to a matrix
valued one 𝑑(𝑥, 𝑧) ∈ ℝ𝑁𝑥×𝑁𝑧 . Let us first make some reminder about optimal transportation type
problems.

4.3.2 The Monge-Kantorovitch problem
Polar factorization are linked to the Monge-Kantorovitch problem, that is an optimal transporta-
tion one. Consider any two measures 𝜇𝑥, 𝜇𝑧, and consider a distance function, that is positive,
symmetrical, convex, scalar valued, 𝒞1 function 𝑑(⋅, ⋅).
The following discrete problem is called the Monge problem

̄𝛾 = inf
𝛾∈Γ

𝑑(𝑥, 𝑧) ⋅ 𝛾

where

• 𝐴 ⋅ 𝐵 denotes the Frobenius scalar matrix product
• Γ denotes the set of all bi-stochastic matrix 𝛾 ∈ ℝ𝑁×𝑁 , that is satisfying,

∑
𝑛=1…𝑁

𝛾𝑚,𝑛 = ∑
𝑛=1…𝑁

𝛾𝑛,𝑚 = 1, 𝛾𝑛,𝑚 ≥ 0, for all 𝑛, 𝑚 = 1, … , 𝑁.

This minimization problem owns a dual expression, called the Kantorovitch problem

sup
𝜑,𝜓

𝑁
∑

𝑛
𝜑(𝑥𝑛) − 𝜓(𝑧𝑛), 𝜑(𝑥𝑛) − 𝜓(𝑧𝑛) ≤ 𝑑(𝑥𝑛, 𝑧𝑛)

where 𝜑, 𝜓 are the unknown functions.

Note that any permutation 𝜎 ∶ [1 … 𝑁] ↦ [1 … 𝑁] is a stochastic matrix. In particular, the following
discrete problem, that is a Linear assignment problem, described in section 4.1.1, consists in a
first approach to (4.3.2):

̄𝛾 = inf
𝛾∈Σ

𝑑(𝑥, 𝑧) ⋅ 𝛾

Indeed, all problems (4.3.2)-(4.3.2)-(4.3.2) are equivalent, see [6].

4.3.3 Motivation: the sampler function
In many applications we would like to fit the scattered data to a given model that best represents
them. To be specific, consider any distributions of points 𝑥 ∈ ℝ𝑁×𝐷, representing i.i.d. samples of
a random variable 𝑋, 𝑧 ∈ ℝ[0,1]𝑁×𝐷 , any i.i.d. of the uniform distribution into the unit cube, and
suppose that we solved (4.3) in the following, discrete, sense

4.3. POLAR FACTORIZATION ALGORITHMS 71

Table 4.6: one-dimensional bi-modal distribution

samples bimodal distribution
-4.443787
-5.892410
-6.278320
-3.363557
-5.366850
-5.984819

𝑥 = (∇𝑓)(𝑧), 𝑓 convex, 𝑥 ∈ ℝ𝑁×𝐷, 𝑧 ∈ [0, 1]𝑁×𝐷.

Then the function
𝑦 ↦ (∇𝑓)(𝑦),

where 𝑦 ∈ ℝ[0,1]𝑁𝑦×𝐷 provides us with a natural candidate for others i.i.d. realization of the random
variable 𝑋.

Hence this section illustrates the following python function

𝑦 = 𝑠𝑎𝑚𝑝𝑙𝑒𝑟(𝑥, 𝑀, 𝑠𝑒𝑒𝑑)

that outputs 𝑀 values 𝑦 ∈ ℝ𝑁×𝐷 of a distribution sharing close statistical properties with the
discrete distribution 𝑥, that we discuss in the next paragraph.

4.3.3.1 Statistical tests

We exhibit three statistical indicators to support our claims, measuring each some kind of distance
between the two distributions 𝑥 and 𝑦. The two first tests are one-dimensional based tests. We
check it on every axes. The third one is based on the discrepancy error.

• Kolmogorov-Smirnov based tests. These are one-dimensional tests, based on the cumulative
distribution function. The test is

‖𝑐𝑑𝑓𝑥 − 𝑐𝑑𝑓𝑧‖∞
ℓ (ℝ𝑁) ≥ 𝑐𝑁√

𝑁
where 𝑐𝑁 is a confidence level.

• Hellinger distance tests. To measure the closedness of 𝑝𝑑𝑓𝑥 to 𝑝𝑑𝑓𝑧 which are the PDFs of
𝑥 and 𝑦 repectively. The Hellinger distance is defined as

ℋ(𝑥, 𝑧) = 1√
2

||√𝑝𝑑𝑓𝑥 − √𝑝𝑑𝑓𝑧||2

• Discrepancy errors, defined in section ??.

4.3.4 One dimensional Examples
4.3.4.1 Bimodal Gaussian distribution

In this section we study a bi-modal gaussian distribution.

We output some values of 𝑥 in the following lines

Let us call the sampling function, filling up 𝑦 ∈ ℝ𝑀×1.

We output some values of 𝑦 in the following lines

72 CHAPTER 4. KERNEL METHODS FOR OPTIMAL TRANSPORTATION

Table 4.7: sampled distribution

generated samples
-2.142562
-2.556046
-2.872753
-3.005417
-3.088909
-3.163469

Table 4.8: distributions characteristics

skew0 kurtosis0
0.0038324 -1.846861
0.0036805 -1.850400

To check our results, let us compare both cdf of 𝑥 and 𝑦 in the following figure –>

−5 0 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

original versus generated CDFs (Gaussian bi−modal)

x, y

F
(x

),
 F

(y
)

Original (x)
Generated (y)

To check numerically some first properties of the generated distribution, We output in the following
table the skewness and kurtosis of both 𝑥 and 𝑦

Table 4.9: KS Test

statistic pvalue
0.005 1

4.3. POLAR FACTORIZATION ALGORITHMS 73

Table 4.10: one-dimensional bi-modal distribution

samples bimodal distribution
-4.309976
-3.643491
-4.368566
-4.844745
-6.134673
-4.140688

Table 4.11: sampled distribution

generated samples
-0.3026662
-0.5739486
-0.7570987
-1.0403230
-1.3104252
-1.6400824

4.3.4.2 Bimodal t-distribution

In this section we study a bi-modal t - distribution.

We output some values of 𝑥 in the following lines

Let us call the sampling function, filling up 𝑦 ∈ ℝ𝑀×1.

We output some values of 𝑦 in the following lines

To check our results, let us compare both cdf of 𝑥 and 𝑦 in the following figure –>

74 CHAPTER 4. KERNEL METHODS FOR OPTIMAL TRANSPORTATION

Table 4.12: distributions characteristics

skew0 kurtosis0
0.1595258 -0.6986219
0.0952795 -1.3211845

Table 4.13: KS Test

statistic pvalue
0.015 0.9999863

−20 −10 0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

original versus generated CDFs (bi−modal t distribution)

x, y

F
(x

),
 F

(y
)

Original (x)
Generated (y)

To check numerically some first properties of the generated distribution, We output in the following
table the skewness and kurtosis of both 𝑥 and 𝑦

4.3.5 N dimensional Examples

Let us call the sampling function, filling up 𝑦 ∈ ℝ𝑀×1.

To check our results, let us compare both cdf of 𝑥 and 𝑦 in the following figure

–>

4.3. POLAR FACTORIZATION ALGORITHMS 75

Table 4.14: distributions characteristics

skew0 kurtosis0 skew1 kurtosis1
-0.0722898 0.0196230 0.1187547 -0.2172157
0.2644525 -0.3137455 0.3225859 -0.0308898

Table 4.15: KS Test

statistic pvalue
0.065 0.0292253
0.055 0.0971035

−4 −3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

4

original distribution (black) versus generated distribution (red)

x

y

To check numerically some first properties of the generated distribution, We output in the following
table the skewness and kurtosis of both 𝑥 and 𝑦

4.3.5.1 ND t - distribution

Let us call the sampling function, filling up 𝑦 ∈ ℝ𝑀×1.

To check our results, let us compare both cdf of 𝑥 and 𝑦 in the following figure –>

Table 4.16: (#tab:dicrepancy error)Hell. dist. / discrepancy err.

Hellingers discrepancy
0.6457827 0.1343717

76 CHAPTER 4. KERNEL METHODS FOR OPTIMAL TRANSPORTATION

Table 4.17: distributions characteristics

skew0 kurtosis0 skew1 kurtosis1
-0.3370146 8.717153 -0.0291514 8.457726
0.1155473 2.018977 0.0256401 1.543392

Table 4.18: KS Test

statistic pvalue
0.049 0.1811645
0.045 0.2634717

−10 −5 0 5 10

−
6

−
4

−
2

0
2

4
6

original distribution (black) versus generated distribution (red)

x

y

To check numerically some first properties of the generated distribution, We output in the following
table the skewness and kurtosis of both 𝑥 and 𝑦

4.3.5.2 Nd-Bimodal Gaussian distribution

In this section we study a bi-modal gaussian distribution.

Let us call the sampling function, filling up 𝑦 ∈ ℝ𝑀×1, and let us plot both original and generated

Table 4.19: (#tab:dicrepancy error)Hell. dist. / discrepancy err.

Hellingers discrepancy
0.3571977 0.102778

4.3. POLAR FACTORIZATION ALGORITHMS 77

samples.

10 5 0 5 10
fx-axis:

10

5

0

5

10

fz
-a

xi
s:

original distribution (blue) versus generated distribution (yellow)

To check our results, let us compare both cdf of 𝑥 and 𝑦 in the following figure

78 CHAPTER 4. KERNEL METHODS FOR OPTIMAL TRANSPORTATION

Table 4.20: distributions characteristics

skew0 kurtosis0 skew1 kurtosis1
0.0003263 -1.851935 0.0039503 -1.844948
-0.0593544 -1.523340 -0.0211978 -1.543494

Table 4.21: KS Test

statistic pvalue
0.109 1.36e-05
0.096 1.97e-04

−5 0 5

−
10

−
5

0
5

10

original distribution (black) versus generated distribution (red)

x

y

To check numerically some first properties of the generated distribution, We output in the following
table the skewness and kurtosis of both 𝑥 and 𝑦

Table 4.22: (#tab:dicrepancy error)Hell. dist. / discrepancy err.

Hellingers discrepancy
1.151721 0.1693971

Chapter 5

Application to supervised machine
learning

In this chapter and the following ones, we present some examples of more concrete learning ma-
chines problems. Some of these tests are taken from kaggle, see this url.

Supervised learning problems can be split into Regression and Classification problems. Both
problems have as goal the construction of a model that can predict the value of the output from
the input variables. In the case of regression the output is a real valued variable, whereas in the
case of classification the output is category (e.g. “disease” or “no disease”). Codpy’s extrapolate
and projection function can be used to treat each of above mentioned problems.

We present two cases corresponding two each typical problems in supervised learning: Boston
housing prices prediction and MNIST classification.

5.1 Regression problem: housing price prediction

This dataset contains information collected by the U.S Census Service concerning housing in the
area of Boston Mass. There are 506 cases and 13 attributes (features) with a target column (price).
More details can be found in the article published by Harrison, D. and Rubinfeld, D.L. “Hedonic
prices and the demand for clean air”, J. Environ. Economics & Management, vol.5, 81-102, 1978.

5.1.1 Codpy’s extrapolation

Starting from the training set 𝑥 ∈ ℝ𝑁𝑥×𝐷, we extrapolate the labels 𝑓𝑧, and compare to test set
labels 𝑓(𝑧), using the extrapolation operator defined in (3.2.8)-left.

We output at table 5.1 the list of performance indicators for this test.

79

https://www.kaggle.com/

80 CHAPTER 5. APPLICATION TO SUPERVISED MACHINE LEARNING

Table 5.1: Codpy: indicators for Boston housing prices

0 1 2 3 4 5 6 7 8 9
predictor_id housing codpy housing codpy housing codpy housing codpy housing codpy housing codpy housing codpy housing codpy housing codpy housing codpy
D 13 13 13 13 13 13 13 13 13 13
Nx 505 456 408 359 311 262 214 165 117 68
Ny 505 456 408 359 311 262 214 165 117 68
Nz 506 506 506 506 506 506 506 506 506 506
Df 1 1 1 1 1 1 1 1 1 1
execution_time 1.31 1.09 0.88 0.69 0.53 0.41 0.3 0.22 0.14 0.1
scores 0.0017 0.0311 0.0358 0.0412 0.0502 0.0557 0.0699 0.0897 0.1097 0.1506
discrepancy_errors 0 1.2415 0.947 2.287 3.0667 6.3171 4.9851 5.052 14.5699 20.1727

5.1.2 Tensorflow
The benchmark method is described chapter ??. The following lines defines a standard neural
network for a regression model.
tf_param = {'tfRegressor': {'epochs': 50,
'batch_size':16,
'validation_split':0.1,
'loss':tf.keras.losses.mean_squared_error,
'optimizer':tf.keras.optimizers.Adam(0.001),
'layers':[8,64,64,1],
'activation':['relu','relu','relu','linear'],
'metrics':['mse']}
}
scenarios.run_scenarios(scenarios_list,data_generator_, tfRegressor(set_kernel = set_kernel), data_accumulator(), **codpy_param,**tf_param)
results = scenarios.accumulator.get_output_datas().dropna(axis=1).T
df_results = results

We output at table 5.2 the list of performance indicators for this test.

Table 5.2: Tensorflow Neural Network: indicators for Boston housing prices

0 1 2 3 4 5 6 7 8 9
predictor_id Tensorflow Tensorflow Tensorflow Tensorflow Tensorflow Tensorflow Tensorflow Tensorflow Tensorflow Tensorflow
D 13 13 13 13 13 13 13 13 13 13
Nx 505 456 408 359 311 262 214 165 117 68
Ny 505 456 408 359 311 262 214 165 117 68
Nz 506 506 506 506 506 506 506 506 506 506
Df 1 1 1 1 1 1 1 1 1 1
execution_time 2.39 2.14 2.01 1.98 1.86 1.71 1.5 1.42 1.4 1.08
scores 0.1328 0.1349 0.1377 0.1299 0.1341 0.1584 0.1726 0.2032 0.2034 0.2408
discrepancy_errors 0 1.2415 0.947 2.287 3.0667 6.3171 4.9851 5.052 14.5699 20.1727

5.1.3 Pytorch
The Pytorch neural network model is described chapter ??. We use this parameters set to define
this Pytorch regression model, defined below
torch_param = {'PytorchRegressor': {'epochs': 50,
'layers': [8,64,64],
'loss': nn.MSELoss(),

5.1. REGRESSION PROBLEM: HOUSING PRICE PREDICTION 81

'batch_size': 16,
'loss': nn.MSELoss(),
'activation': nn.ReLU(),
'optimizer': torch.optim.Adam,
'out_layer': 1}}
scenarios.run_scenarios(scenarios_list,data_generator_, PytorchRegressor(set_kernel = set_kernel), data_accumulator(), **codpy_param,**torch_param)
results = scenarios.accumulator.get_output_datas().dropna(axis=1).T
df_results = pd.concat([df_results,results.T],axis=0)

We output at table 5.3 the list of performance indicators for this test.

Table 5.3: Pytorch Neural Network: indicators for Boston housing prices

0 1 2 3 4 5 6 7 8 9
predictor_id Pytorch Pytorch Pytorch Pytorch Pytorch Pytorch Pytorch Pytorch Pytorch Pytorch
D 13 13 13 13 13 13 13 13 13 13
Nx 505 456 408 359 311 262 214 165 117 68
Ny 505 456 408 359 311 262 214 165 117 68
Nz 506 506 506 506 506 506 506 506 506 506
Df 1 1 1 1 1 1 1 1 1 1
execution_time 1.1 0.98 0.89 0.78 0.67 0.58 0.47 0.37 0.26 0.17
scores 0.1488 0.1461 0.1697 0.2125 0.1997 0.1981 0.1706 0.2049 0.2161 0.2283
discrepancy_errors 0 1.2415 0.947 2.287 3.0667 6.3171 4.9851 5.052 14.5699 20.1727

5.1.4 Decision tree
The decision tree model is described chapter ??.

We output at table 5.4 the list of performance indicators for this test.

Table 5.4: Decision tree: indicators for Boston housing prices

0 1 2 3 4 5 6 7 8 9
predictor_id Decision tree Decision tree Decision tree Decision tree Decision tree Decision tree Decision tree Decision tree Decision tree Decision tree
D 13 13 13 13 13 13 13 13 13 13
Nx 505 456 408 359 311 262 214 165 117 68
Ny 505 456 408 359 311 262 214 165 117 68
Nz 506 506 506 506 506 506 506 506 506 506
Df 1 1 1 1 1 1 1 1 1 1
execution_time 0.01 0.01 0 0 0 0 0 0 0 0
scores 0.0279 0.0476 0.0538 0.0671 0.0738 0.1005 0.1314 0.1313 0.1129 0.1469

5.1.5 Methods comparison
The following picture compares methods in term of scores Figure 5.5, discrepancy errors Figure
5.6, and execution time Figure 5.7. We give an interpretation of these results.

• First notice that the kernel method codpy lab extra, that is the extrapolation method, obtains
both best scores and worst execution time.

• Notice also that one, minus the discrepancy error, matches the scores of the method codpy
lab extra. This indicates that the discrepancy error is a pertinent indicator.

82 CHAPTER 5. APPLICATION TO SUPERVISED MACHINE LEARNING

• Another kernel method, codpy lab proj, that is the projection method above, is a more
balanced method 1.

• Both kernel methods are shipped with a very standard kernel, that is the Gaussian one, that
is the only parameter for kernel methods. We emphasize that Kernel engineering can easily
improves these results. We do not present these improved kernel methods, as our purposes
is to benchmark standard methods.

100 200 300 400 500
Nx

0.00

0.05

0.10

0.15

0.20

0.25

sc
or

es

Decision tree
Pytorch
Tensorflow
housing codpy

Figure 5.1: Benchmark scores

100 200 300 400 500
Nx

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

di
sc

re
pa

nc
y_

er
ro

rs

Decision tree
Pytorch
Tensorflow
housing codpy

Figure 5.2: Discrepancy errors

5.2 Classification problem: handwritten digits
This section contains an example of classification for images, which is a typical academic example
referred to as the MNIST problem, and allows us to benchmark our results against more popular
methods.

MNIST (“Modified National Institute of Standards and Technology”) contains 60,000 training
images and 10,000 testing images. Half of the training set and half of the test set were taken
from NIST’s training dataset, while the other half of the training set and the other half of the
test set were taken from NIST’s testing dataset. Since its release in 1999, this classic dataset of
handwritten images has served as the basis for benchmarking classification algorithms.

In this section, we propose a benchmark of several machine learning methods, including kernel ones.
Our goals, above benchmarking our methods against popular alternatives, are to demonstrate that

1except Gradient boosting method, for which we did not succeed retrieving a competitive set of parameters for
this test.

5.2. CLASSIFICATION PROBLEM: HANDWRITTEN DIGITS 83

100 200 300 400 500
Nx

0.0

0.5

1.0

1.5

2.0

2.5

ex
ec

ut
io

n_
tim

e
Decision tree
Pytorch
Tensorflow
housing codpy

Figure 5.3: Benchmarks execution time

all these tests are problem dependent, not method dependents. To illustrate this fact, we purposely
almost copy paste each test, to test another method. The motivation here is also to provide to our
users a bank of code, where they can just copy paste one section of this document to test their
own learning machines.

5.2.1 Short introduction to MNIST
The MNIST dataset is composed of 60, 000 images defining a training set of handwritten digits.
Each image is a vector having dimensions 784 (a 28 × 28 grayscale image flattened in row-order).
There are 10 digits 0–9. The test set is composed of 10, 000 images with their labels.

We formalize the problem as follows. Given the test set represented by a matrix 𝑥 ∈ ℝ𝑁𝑥×𝐷,
𝐷 = 784, the labels 𝑓(𝑥) ∈ ℝ𝑁𝑥×𝐷𝑓 , 𝐷𝑓 = 10, and the test set 𝑧 ∈ ℝ𝑁𝑧×𝐷, 𝑁𝑧 = 10000, predict
the label function 𝑓(𝑧) ∈ ℝ𝑁𝑧×𝐷𝑓 . Data are retrieved from Y. LeCun MNIST home page [?], and
we will test different values for 𝑁𝑥.

The following picture shows an image of hand-written number, that is the first image 𝑥1, as well
as numerous others

The following line defines our scenario list

The table ?? output this scenario list

D Nx Ny Nz
784 32 8 10000
784 64 16 10000
784 128 32 10000
784 256 64 10000

Scores are computed using the formula (2.3.1), a scalar in the interval between 0 and 1, which
counts the number of correctly predicted images.

84 CHAPTER 5. APPLICATION TO SUPERVISED MACHINE LEARNING

Our kernel setup for this MNIST test is the following
set_mnist_kernel = kernel_setters.kernel_helper(kernel_setters.set_gaussian_kernel, 0,1e-8 ,map_setters.set_mean_distance_map)

5.2.1.1 Keras Tensorflow scores

The benchmark method is described chapter ??. The following lines defines a standard neural
network for studying the MNIST problem.
import tensorflow as tf
tf_param = {'tfClassifier' : {'epochs': 10,
'batch_size':16,
'validation_split':0.1,
'loss': tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
'optimizer':tf.keras.optimizers.Adam(0.001),
'activation':['relu',''],
'layers':[128,10],
'metrics':[tf.keras.metrics.SparseCategoricalAccuracy()]} }

We then run the benchmarks

We output at table 5.5 the list of performance indicators for this test.

Table 5.5: tensorflow: indicators for MNIST

0 1 2 3
predictor_id Tensorflow Tensorflow Tensorflow Tensorflow
D 784 784 784 784
Nx 32 64 128 256
Ny 8 16 32 64
Nz 10000 10000 10000 10000
Df 1 1 1 1
execution_time 0.62 0.55 0.66 0.64
scores 0.37 0.4488 0.6122 0.7576
discrepancy_errors 0.3524 0.2627 0.2192 0.1731

Finally, we output as well the confusion matrix for the last scenario in figure 5.4.

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

895 0 12 1 8 34 19 1 7 3
0 1065 4 1 0 1 3 0 58 3
19 47 848 12 31 0 9 16 49 1
19 14 55 820 3 18 1 16 38 26
1 7 3 1 776 0 18 6 6 164
57 11 18 262 58 335 17 19 64 51
27 20 96 0 51 30 731 0 3 0
3 46 16 6 12 2 1 827 26 89
46 45 12 97 26 28 18 32 604 66
15 10 11 20 187 1 1 72 17 675

0

200

400

600

800

1000

Figure 5.4: confusion matrix for tensorflow

5.2. CLASSIFICATION PROBLEM: HANDWRITTEN DIGITS 85

5.2.1.2 CodPy scores extrapolation

Starting from the training set 𝑥 ∈ ℝ𝑁𝑥×784, we extrapolate the labels 𝑓𝑧, and compare to test set
labels 𝑓(𝑧), using the extrapolation operator defined in (3.2.8)-left.

We output at table 5.6 the list of performance indicators for this test.

Table 5.6: codpy extrapolation: indicators for MNIST

0 1 2 3
predictor_id codpy lab extra codpy lab extra codpy lab extra codpy lab extra
D 784 784 784 784
Nx 32 64 128 256
Ny 8 16 32 64
Nz 10000 10000 10000 10000
Df 1 1 1 1
execution_time 0.51 0.55 0.63 0.75
scores 0.5671 0.685 0.7361 0.8213
discrepancy_errors 0.3524 0.2627 0.2192 0.1731

Finally, we output as well the confusion matrix for the last scenario in figure 7.1.

5.2.1.3 CodPy scores projection

In this section we apply straightfowardly the projection operator (3.2.6), where the training set
is 𝑥 ∈ ℝ𝑁𝑥×784, and 𝑦 ∈ ℝ𝑁𝑦×784 ⊂ 𝑥 is randomly chosen. Then we use the projection operator
defined in (3.2.6).

We output at table 5.7 the list of performance indicators for this test.

Table 5.7: codpy extrapolation: indicators for MNIST

0 1 2 3
predictor_id codpy lab pred codpy lab pred codpy lab pred codpy lab pred
D 784 784 784 784
Nx 32 64 128 256
Ny 8 16 32 64
Nz 10000 10000 10000 10000
Df 1 1 1 1
execution_time 0.45 0.51 0.58 0.56
scores 0.4129 0.5573 0.6614 0.7467
discrepancy_errors 0.3524 0.2627 0.2192 0.1731

Finally, we output as well the confusion matrix for the last scenario in figure ??.

5.2.1.4 Pytorch

The Pytorch neural network model is described chapter ??. We use this parameters set to define
this Pytorch machine.
torch_param = {'PytorchClassifier': {'epochs': 10,
'layers': [128],
'batch_size': 16,
'loss': nn.CrossEntropyLoss(),

86 CHAPTER 5. APPLICATION TO SUPERVISED MACHINE LEARNING

'activation': nn.ReLU(),
'optimizer': torch.optim.Adam,
"datatype": "long",
"prediction": "labeled",
"out_layer": 10}}

We output at table 5.8 the list of performance indicators for this test.

Table 5.8: Pytorch Neural Network: indicators for MNIST

0 1 2 3
predictor_id Pytorch Pytorch Pytorch Pytorch
D 784 784 784 784
Nx 32 64 128 256
Ny 8 16 32 64
Nz 10000 10000 10000 10000
Df 1 1 1 1
execution_time 0.45 0.42 0.54 0.54
scores 0.4785 0.6326 0.6979 0.7941
discrepancy_errors 0.3524 0.2627 0.2192 0.1731

5.2.1.5 Decision Tree

The decision tree model is described chapter ??.

We output at table 5.9 the list of performance indicators for this test.

Table 5.9: Decision tree classifier: indicators for MNIST

0 1 2 3
predictor_id Decision tree Decision tree Decision tree Decision tree
D 784 784 784 784
Nx 32 64 128 256
Ny 8 16 32 64
Nz 10000 10000 10000 10000
Df 1 1 1 1
execution_time 0.02 0.02 0.02 0.02
scores 0.303 0.3942 0.4359 0.5058
discrepancy_errors 0.3524 0.2627 0.2192 0.1731

5.2.1.6 AdaBoost

The Adaboost model is described chapter ??.

We output at table 5.10 the list of performance indicators for this test.

5.2. CLASSIFICATION PROBLEM: HANDWRITTEN DIGITS 87

Table 5.10: AdaBoost classifier: indicators for MNIST

0 1 2 3
predictor_id AdaBoost AdaBoost AdaBoost AdaBoost
D 784 784 784 784
Nx 32 64 128 256
Ny 8 16 32 64
Nz 10000 10000 10000 10000
Df 1 1 1 1
execution_time 0.77 0.83 0.88 0.93
scores 0.2878 0.4581 0.4819 0.5289
discrepancy_errors 0.3524 0.2627 0.2192 0.1731

5.2.1.7 Gradient Boosting

The gradient boosting model is described chapter ??.

We output at table 5.11 the list of performance indicators for this test.

Table 5.11: Gradient Boosting classifier: indicators for MNIST

0 1 2 3 4
predictor_id Gradient Boosting Gradient Boosting Gradient Boosting Gradient Boosting Gradient Boosting
D 784 784 784 784 784
Nx 32 64 128 256 512
Ny 8 16 32 64 128
Nz 10000 10000 10000 10000 10000
Df 1 1 1 1 1
execution_time 0.61 0.91 1.69 3.1 6.31
scores 0.2554 0.4089 0.5304 0.656 0.7595
discrepancy_errors 0.3524 0.2627 0.2192 0.1731 0.1497

5.2.1.8 XGBoost

The XGBoost model is described chapter ??. We set its parameters as follows.
xgb_param = {'epochs': 5,
'max_depth': 3,
'eta' : 0.3,
'objective': 'multi:softmax',
'num_class': 10}

5.2.1.9 Random Forest

The random forest model and its parameter set are described chapter ??.

We output at table 5.12 the list of performance indicators for this test.

88 CHAPTER 5. APPLICATION TO SUPERVISED MACHINE LEARNING

Table 5.12: Random Forest classifier: indicators for MNIST

0 1 2 3
predictor_id RForest RForest RForest RForest
D 784 784 784 784
Nx 32 64 128 256
Ny 8 16 32 64
Nz 10000 10000 10000 10000
Df 1 1 1 1
execution_time 0.7 0.79 0.76 0.83
scores 0.4578 0.6212 0.7118 0.7698
discrepancy_errors 0.3524 0.2627 0.2192 0.1731

5.2.1.10 Support vector classifier

The SVC model and its parameter set are described chapter ??.

We output at table 5.13 the list of performance indicators for this test.

Table 5.13: SVC classifier: indicators for MNIST

0 1 2 3
predictor_id SVC SVC SVC SVC
D 784 784 784 784
Nx 32 64 128 256
Ny 8 16 32 64
Nz 10000 10000 10000 10000
Df 1 1 1 1
execution_time 0.18 0.33 0.63 1.17
scores 0.5446 0.6634 0.7288 0.8105
discrepancy_errors 0.3524 0.2627 0.2192 0.1731

5.2. CLASSIFICATION PROBLEM: HANDWRITTEN DIGITS 89

Table 5.14: SVC classifier: indicators for MNIST

0 1 2 3 4 5 6 7 8 9 D Df Nx Ny Nz discrepancy_errors execution_time predictor_id scores
Tensorflow Tensorflow Tensorflow Tensorflow Tensorflow Tensorflow Tensorflow Tensorflow Tensorflow Tensorflow NaN NaN NaN NaN NaN NaN NaN NaN NaN
13 13 13 13 13 13 13 13 13 13 NaN NaN NaN NaN NaN NaN NaN NaN NaN
505 456 408 359 311 262 214 165 117 68 NaN NaN NaN NaN NaN NaN NaN NaN NaN
505 456 408 359 311 262 214 165 117 68 NaN NaN NaN NaN NaN NaN NaN NaN NaN
506 506 506 506 506 506 506 506 506 506 NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 1 1 1 1 1 1 1 1 1 NaN NaN NaN NaN NaN NaN NaN NaN NaN
2.39 2.14 2.01 1.98 1.86 1.71 1.5 1.42 1.4 1.08 NaN NaN NaN NaN NaN NaN NaN NaN NaN
0.1328 0.1349 0.1377 0.1299 0.1341 0.1584 0.1726 0.2032 0.2034 0.2408 NaN NaN NaN NaN NaN NaN NaN NaN NaN
0 1.2415 0.947 2.287 3.0667 6.3171 4.9851 5.052 14.5699 20.1727 NaN NaN NaN NaN NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 13 1 505 505 506 0 1.1 Pytorch 0.1488
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 13 1 456 456 506 1.2415 0.98 Pytorch 0.1461
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 13 1 408 408 506 0.947 0.89 Pytorch 0.1697
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 13 1 359 359 506 2.287 0.78 Pytorch 0.2125
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 13 1 311 311 506 3.0667 0.67 Pytorch 0.1997
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 13 1 262 262 506 6.3171 0.58 Pytorch 0.1981
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 13 1 214 214 506 4.9851 0.47 Pytorch 0.1706
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 13 1 165 165 506 5.052 0.37 Pytorch 0.2049
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 13 1 117 117 506 14.5699 0.26 Pytorch 0.2161
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 13 1 68 68 506 20.1727 0.17 Pytorch 0.2283
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 13 1 505 505 506 NaN 0.01 Decision tree 0.0279
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 13 1 456 456 506 NaN 0.01 Decision tree 0.0476
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 13 1 408 408 506 NaN 0 Decision tree 0.0538
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 13 1 359 359 506 NaN 0 Decision tree 0.0671
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 13 1 311 311 506 NaN 0 Decision tree 0.0738
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 13 1 262 262 506 NaN 0 Decision tree 0.1005
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 13 1 214 214 506 NaN 0 Decision tree 0.1314
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 13 1 165 165 506 NaN 0 Decision tree 0.1313
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 13 1 117 117 506 NaN 0 Decision tree 0.1129
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 13 1 68 68 506 NaN 0 Decision tree 0.1469
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 32 8 10000 0.3524 0.62 Tensorflow 0.37
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 64 16 10000 0.2627 0.55 Tensorflow 0.4488
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 128 32 10000 0.2192 0.66 Tensorflow 0.6122
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 256 64 10000 0.1731 0.64 Tensorflow 0.7576
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 32 8 10000 0.3524 0.51 codpy lab extra 0.5671
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 64 16 10000 0.2627 0.55 codpy lab extra 0.685
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 128 32 10000 0.2192 0.63 codpy lab extra 0.7361
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 256 64 10000 0.1731 0.75 codpy lab extra 0.8213
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 32 8 10000 0.3524 0.45 codpy lab pred 0.4129
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 64 16 10000 0.2627 0.51 codpy lab pred 0.5573
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 128 32 10000 0.2192 0.58 codpy lab pred 0.6614
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 256 64 10000 0.1731 0.56 codpy lab pred 0.7467
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 32 8 10000 0.3524 0.45 Pytorch 0.4785
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 64 16 10000 0.2627 0.42 Pytorch 0.6326
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 128 32 10000 0.2192 0.54 Pytorch 0.6979
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 256 64 10000 0.1731 0.54 Pytorch 0.7941
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 32 8 10000 0.3524 0.02 Decision tree 0.303
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 64 16 10000 0.2627 0.02 Decision tree 0.3942
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 128 32 10000 0.2192 0.02 Decision tree 0.4359
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 256 64 10000 0.1731 0.02 Decision tree 0.5058
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 32 8 10000 0.3524 0.77 AdaBoost 0.2878
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 64 16 10000 0.2627 0.83 AdaBoost 0.4581
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 128 32 10000 0.2192 0.88 AdaBoost 0.4819
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 256 64 10000 0.1731 0.93 AdaBoost 0.5289
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 32 8 10000 0.3524 0.61 Gradient Boosting 0.2554
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 64 16 10000 0.2627 0.91 Gradient Boosting 0.4089
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 128 32 10000 0.2192 1.69 Gradient Boosting 0.5304
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 256 64 10000 0.1731 3.1 Gradient Boosting 0.656
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 512 128 10000 0.1497 6.31 Gradient Boosting 0.7595
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 32 8 10000 0.3524 0.7 RForest 0.4578
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 64 16 10000 0.2627 0.79 RForest 0.6212
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 128 32 10000 0.2192 0.76 RForest 0.7118
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 256 64 10000 0.1731 0.83 RForest 0.7698
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 32 8 10000 0.3524 0.18 SVC 0.5446
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 64 16 10000 0.2627 0.33 SVC 0.6634
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 128 32 10000 0.2192 0.63 SVC 0.7288
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 784 1 256 64 10000 0.1731 1.17 SVC 0.8105

90 CHAPTER 5. APPLICATION TO SUPERVISED MACHINE LEARNING

5.2.2 Comparing methods
The following picture compares methods in term of scores Figure 5.5, discrepancy errors Figure
5.6, and execution time Figure 5.7. We give an interpretation of these results.

• First notice that the kernel method codpy lab extra, that is the extrapolation method, obtains
both best scores and worst execution time.

• Notice also that one, minus the dicrepancy error, matches the scores of the method codpy
lab extra. This indicates that the discrepancy error is a pertinent indicator.

• Another kernel method, codpy lab proj, that is the projection method above, is a more
balanced method 2.

• Both kernel methods are shipped with a very standard kernel, that is the gaussian one, that
is the only parameter for kernel methods. We emphasize that Kernel engineering can easily
improves these results. We do not present these improved kernel methods, as our purposes
is to benchmark standard methods.

100 200 300 400 500
Nx

0.3

0.4

0.5

0.6

0.7

0.8

sc
or

es

AdaBoost
Decision tree
Gradient Boosting
Pytorch
RForest
SVC
Tensorflow
codpy lab extra
codpy lab pred

Figure 5.5: Benchmark scores

100 200 300 400 500
Nx

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

di
sc

re
pa

nc
y_

er
ro

rs

AdaBoost
Decision tree
Gradient Boosting
Pytorch
RForest
SVC
Tensorflow
codpy lab extra
codpy lab pred

Figure 5.6: Discrepancy errors

5.3 Reconstruction problems : learning from sub-sampled
signals in tomography.

This numerical experience illustrates an interesting capability of learning machines to reconstruc-
tion problems from sub-sampled signals. Indeed, in this test, we will be learning from a well-

2except Gradient boosting method, for which we did not succeed retrieving a competitive set of parameters for
this test.

5.3. RECONSTRUCTION PROBLEMS : LEARNING FROM SUB-SAMPLED SIGNALS IN TOMOGRAPHY.91

100 200 300 400 500
Nx

0

1

2

3

4

5

6
ex

ec
ut

io
n_

tim
e AdaBoost

Decision tree
Gradient Boosting
Pytorch
RForest
SVC
Tensorflow
codpy lab extra
codpy lab pred

Figure 5.7: Benchmarks execution time

established algorithm, that is the SART one, to fasten the reconstruction.

There are many applications of such problems. We illustrate this section with a problem coming
from a medical image reconstruction, that can be used also as a medical helping diagnosis decision
tool. However, such problems occur in a wide variety of other situations: biology, oceanography,
astrophysics, …

Poor input signal quality can sometimes be a choice. For instance, in nuclear medicine, it is
better to work with lower radioisotopes concentration for obvious health reasons. Another inter-
esting motivation for sub-sampling signals can be also accelerating data acquisition processes from
expensive machines.

We illustrate this section with an example of such a reconstruction coming from reconstructing a
signal from a sub-sampled SPEC (tomography) problem that we describe now.

5.3.1 A problem coming from SPECT tomography
The purpose of this test is to illustrate a sub-sampling reconstruction in the context of medical
imagery, more precisely from sub-sampled SPECT images. To that aim, we start from collecting
a set of high resolution images3. The set itself is not really important for our illustration sake in
this section. However it should be chosen carefully for real, production problem.

This database image consists in high resolution (512x512) images, consisting in approximately 30
images of 82 patients. The training set is built on the first 81 patient. The 82-th patient is used
for the test set. We first transform the training set database to produce our data. For each image
in the training set (2470 images):

• We perform a “high” resolution (256x256) radon transform 4, called a sinogram 5. A
sinogram is quite close to a Fourier transform of the original image, generating sinusoids.

• We perform a “low” resolution (8x256) radon transform.
• We reconstruct the original image from the high resolution sinogram to simulate high reso-

lution SPECT images from these data. The reconstruction algorithm consists in computing
an inverse radon transform 6.

An example of training set construction is presented Figure 5.8. Left is the reconstructed image
from the “high resolution” sinogram (middle). The low resolution sinogram is plot at right.

3the image set is available publicly at this kaggle link.
4An introduction to radon transform can be found at this wikipedia page.
5We used the standard radon transform from scikit, available at this url.
6We used a SART algorithm, 3 iterations, for reconstruction, available at this url.

https://www.kaggle.com/vbookshelf/computed-tomography-ct-images/
https://en.wikipedia.org/wiki/Radon_transform
https://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.radon
https://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.iradon_sart

92 CHAPTER 5. APPLICATION TO SUPERVISED MACHINE LEARNING

Figure 5.8: high resolution sinogram (middle), low resolution (right), reconstructed image (left)

The test consists then in reconstructing all images of the 82-th patient using low-resolution sino-
grams.

5.3.2 Performing the test
We present here the test resulting from a benchmark of a kernel-based method and the SART
algorithm7

Following our notations, section ??, we introduce

• The training set 𝑥 ∈ ℝ2473×2304, consisting in 2473 sinograms having resolution 8 × 256,
consisting in all low-resolution sinograms of the 81 first patients, plus the first one of the
82-th patient. This last figure is added to check an important feature in these problems :
the learning machine must be able to retrieve an already input example.

• The test set 𝑧 ∈ ℝ29×2304, consisting in 29 sinograms of the 82-th patient, having resolution
8 × 256.

• The training values set 𝑓𝑥 ∈ ℝ2473×65536, consisting in the 2473 images in “high-resolution”.
• The ground truth values 𝑓(𝑧) ∈ ℝ29×65536, consists in 29 images in “high-resolution”.

We perform the tests and output the results in Table ??. The columns are the predictor identifiant,
𝐷, 𝑁𝑥, 𝑁𝑦, 𝑁𝑧, 𝐷𝑓 , the execution time, and the score, computed with the RMSE % error indicator,
see (2.3.1).

• The first line, named exact, simply output the original figures, leading to zero error.
• The second one, named SART, reconstruct the figures from the SART algorithm with sub-

sampled data.
• The third one, named codpy, reconstruct the figures from the sub-sampled data with the

kernel extrapolation method (3.2.8).

The figure 5.9 plots the first 8 images, presenting the original one at left, the reconstruction from
SART algorithm, middle, and our algorithm, right. One can check visually that this kernel method
better reconstruct the original image. It would be erroneous to conclude that this reconstruction
process performs better than the SART algorithm, and it is not at all our speech here. We
simply illustrate here the capacity of our algorithm to recognize existing patterns: indeed, note
that the first image is perfectly reconstructed, as it is part of the training set. This property

7We did not succeed finding competitive parameters for other methods.

5.3. RECONSTRUCTION PROBLEMS : LEARNING FROM SUB-SAMPLED SIGNALS IN TOMOGRAPHY.93

emphasizes that such methods suit well to pattern recognition problems, as automated tools to
support professionals diagnosis.

Figure 5.9: Example of reconstruction original (left), sub-sampled SART (middle), kernel extrap-
olation (right)

94 CHAPTER 5. APPLICATION TO SUPERVISED MACHINE LEARNING

Chapter 6

Application for unsupervised
machine learning

In this section we apply some clustering methods for a number of use cases.

We benchmarked our kernel-based algorithms, see section 3.6 against the popular k-means
algorithms. Both are distance-based minimization algorithms, aiming to solve the problem
@ref{eq:dist}, that we recall here

𝑦 = arg inf
𝑦∈ℝ𝑁𝑦×𝐷

𝑑(𝑥, 𝑦)

The clusters 𝑦 ∈ ℝ𝑁𝑦×𝐷 are the results of this minimization algorithm, where :

• For k-means based algorithms, the distance is called the inertia, see section ??.

• For kernel-based algorithms, the distance is called the discrepancy error, see section ??.

Importantly, if the distance functional 𝑑(𝑥, 𝑦) is not convex, then a solution to (3.6.1) might not
be unique. For instance, a k-mean based algorithm usually output different clusters output at
different runs.

6.1 Classification problem: handwritten digits
The MNIST test is also studied in the section ??. Here we consider it as a semi-supervised learning:
we use the train set 𝑥 ∈ ℝ𝑁𝑥×𝐷 to compute the cluster’s centroids 𝑦 ∈ ℝ𝑁𝑦×𝐷. Then we use these
clusters to predict the test labels 𝑓𝑧 ∈ ℝ𝑁𝑧×𝐷𝑓 , corresponding to the test set 𝑧 ∈ ℝ𝑁𝑧×𝐷.

The following lines define our setting for this test.

6.1.1 Scikit k-means
First we use Scikit’s k-means algorithm implementation, which is simply partitioning the input
data 𝑥 ∈ ℝ𝑁𝑥×𝐷 into 𝑁𝑦 sets so as to minimize the within-cluster sum of squares, which is defined
as “inertia”, see ??. The inertia represents the sum of distances of all points to the centroid
𝑦 ∈ ℝ𝑁𝑦×𝐷 in a cluster. K-means algorithm starts with a group of randomly initialized centroids
and then performs iterative calculations to optimize the position of centroids until the centroids
stabilizes, or the defined number of iterations is reached.

The result of k-means algorithm is 𝑁𝑦 clusters in 𝐷 = 784 dimensions, i.e. 𝑦 ∈ ℝ𝑁𝑦×𝐷. Note that
the cluster centroids themselves are 784-dimensional points, and can themselves be interpreted as

95

96 CHAPTER 6. APPLICATION FOR UNSUPERVISED MACHINE LEARNING

the “typical” digit within the cluster. The figure 6.1 plots some examples of computed clusters,
interpreted as images. As can be seen, they are perfectly recognizable.

0 50 100 150 200 250

0

20

0 50 100 150 200 250

0

20

Figure 6.1: k-means scikit clusters interpreted as images

The table 6.1 displays the dimension of the problem 𝐷, the size of training set 𝑁𝑥, the number of
clusters 𝑁𝑦, the size of the test set 𝑁𝑧, the execution time, inertia and discrepancy errors, scores.
The higher the scores and the lower are the inertia and discrepancy errors the better.

Table 6.1: Scikit: Ny clusters

predictor_id D Nx Ny Nz Df execution_time scores discrepancy_errors inertia
k-means 784 1000 128 1000 1 4.27 0.784 0.2232 20135.37
k-means 784 1000 256 1000 1 4.69 0.793 0.1600 14233.02

6.1.2 Scikit minibatch k-mean
We replicate our previous tests for a different scikit algorithm, that is mini batch. Minibatch is a
k-mean algorithm that is optimized for computational time.

The figure 6.2 plots some examples of computed clusters, interpreted as images.

The table 6.2 displays the performance indicator for this test.

Table 6.2: Scikit: Ny clusters

predictor_id D Nx Ny Nz Df execution_time scores discrepancy_errors inertia
minibatch 784 1000 128 1000 1 2.64 0.765 0.1894 21824.12
minibatch 784 1000 256 1000 1 2.33 0.747 0.1505 17149.84

6.1. CLASSIFICATION PROBLEM: HANDWRITTEN DIGITS 97

0 50 100 150 200 250

0

20

0 50 100 150 200 250

0

20

Figure 6.2: k-means scikit clusters interpreted as images

6.1.3 Codpy
In this section we apply codpy’s algorithm described in 3.6 using the distance 𝑑𝑘(𝑥, 𝑦) induced by
a Gaussian kernel:

𝑘(𝑥, 𝑦) = exp(−(𝑥 − 𝑦)2)

We repeat the same test as in the previous section. We first run all scenarios.

Then we dispay figure 6.3 some computed clusters as images, and as for k-means, notice that these
are recognizable numbers.

The table 6.3 displays computed performance indicators for all scenarios.

Table 6.3: codpy: Ny clusters

predictor_id D Nx Ny Nz Df execution_time scores discrepancy_errors inertia
codpy 784 1000 128 1000 1 3.57 0.836 0.1325 20137.13
codpy 784 1000 256 1000 1 4.35 0.856 0.1292 14238.05

6.1.4 Benchmarks results
Finally, we illustrate a benchmark plot, displaying the computed performance indicator of Scikit’s
k-means and codpy’s sharp discrepancy algorithms in terms of discrepancy errors, inertia, accuracy
scores (when applicable) and execution time.

98 CHAPTER 6. APPLICATION FOR UNSUPERVISED MACHINE LEARNING

0 50 100 150 200 250

0

20

0 50 100 150 200 250

0

20

Figure 6.3: codpy clusters interpreted as images

125 150 175 200 225 250
Ny

0.76

0.78

0.80

0.82

0.84

0.86

sc
or

es codpy
k-means
minibatch

125 150 175 200 225 250
Ny

0.14

0.16

0.18

0.20

0.22

di
sc

re
pa

nc
y_

er
ro

rs

codpy
k-means
minibatch

125 150 175 200 225 250
Ny

14000

15000

16000

17000

18000

19000

20000

21000

22000

in
er

tia

codpy
k-means
minibatch

125 150 175 200 225 250
Ny

2.5

3.0

3.5

4.0

4.5

ex
ec

ut
io

n_
tim

e

codpy
k-means
minibatch

Notice that the score are quite high, when compared to supervised methods for similar size of

6.2. GERMAN CREDIT RISK 99

Table 6.4: performance indicator for scikit

predictor_id D Nx Ny Nz Df execution_timediscrepancy_errorsinertia
k-means. 24 272 10 272 0 2.58 0.2580 3773.76
k-means. 24 272 20 272 0 1.73 0.1726 2502.04

training set, see results section ??. Notice also that codpy, which algorithm relies on a discrep-
ancy distance minimization, displays an inertia indicator that is lower than minibatch, and quite
comparable to k-means. This is surprizing as k-means algorithms are based on inertia minimiza-
tion. Moreover, scores seems to indicate than the disrepancy distance is a more reliable criteria
than inertia on this pattern recognition problem.

6.2 German credit risk
The original dataset contains 1000 entries with 20 categorial/symbolic attributes. In this dataset,
each entry represents a person who takes a credit by a bank. The goal is to categorize each person
as good or bad credit risks according to the set of attributes. The dataset is described on kaggle
page link.

The following lines define our setting for this test.

6.2.1 Scikit
The tests follows the very same method as in the previous section. We first run our scenarios in
the following line.

The result of k-means algorithm is 𝑁𝑦 clusters in 𝐷 dimensions. Notice that the cluster centroids
themselves are 𝐷-dimensional points.

Next we visualize the clusters and corresponding centroids of scikit, where we vary the number of
clusters 𝑁𝑦 from 1 to 8. Obviously in this example we see that the high number of clusters leads
to overfitting and one is unable to interpret the resulting clusters when 𝑁𝑦 = 8.

3 2 1 0 1 2 3 4
pca1

3

2

1

0

1

2

3

4

5

pc
a2

3 2 1 0 1 2 3 4
pca1

3

2

1

0

1

2

3

4

5

pc
a2

The table 6.4 displays inertia, discrepancy errors and execution time performance indicators.

6.2.2 Codpy
In this section we apply the same methodology as in the previous sections.

The result of codpy’s sharp discrepancy algorithm is 𝑁𝑦 clusters in 𝐷 dimensions. Notice that
the cluster centroids themselves are 𝐷-dimensional points.

Next we visualize the clusters and corresponding centroids computed using codpy’s sharp discrep-
ancy algorithm, where we vary the number of clusters 𝑁𝑦 from 1 to 8. Obviously in this example we

https://www.kaggle.com/uciml/german-credit
https://www.kaggle.com/uciml/german-credit

100 CHAPTER 6. APPLICATION FOR UNSUPERVISED MACHINE LEARNING

Table 6.5: performance indicator for codpy

predictor_id D Nx Ny Nz Df execution_timediscrepancy_errorsinertia
codpy 24 272 10 272 0 0.04 0.1557 3742.88
codpy 24 272 20 272 0 0.05 0.0823 2474.09

see that the high number of clusters leads to an overfitting and one is unable to interpret the result-

ing clusters when 𝑁𝑦 = 8.
3 2 1 0 1 2 3 4

pca1

4

2

0

2

4
pc

a2

3 2 1 0 1 2 3 4
pca1

2

0

2

4

pc
a2

The table 6.5 displays inertia, discrepancy errors and execution time performance indicators.

6.2.3 Benchmarks results
Finally, we illustrate a benchmark plot, displaying the computed performance indicator of Scikit’s
k-means and codpy’s sharp discrepancy algorithms in terms of discrepancy errors, inertia, accuracy
scores (when applicable) and execution time.

10 12 14 16 18 20
Ny

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

di
sc

re
pa

nc
y_

er
ro

rs

codpy
k-means.

10 12 14 16 18 20
Ny

2600

2800

3000

3200

3400

3600

3800

in
er

tia

codpy
k-means.

10 12 14 16 18 20
Ny

0.0

0.5

1.0

1.5

2.0

2.5

ex
ec

ut
io

n_
tim

e

codpy
k-means.

6.3. CREDIT CARD MARKETING STRATEGY 101

6.3 Credit card marketing strategy
The problem can be formalized as follows. Develop a customer segmentation to define marketing
strategy. The sample dataset summarizes the usage behavior of 8,950 active credit card holders
during the last 6 months. The dataset contains 17 features and 8,950 records. The data describes
customer’s purchase and payment habits, such as how often a customer installment purchases,
or how often they make cash advances, how much payments are made, etc. By inspecting each
customer, we can find which type of purchase he/she is keen on, or if he/she prefers cash advance
over purchases. The dataset is detailed on this dedicated kaggle page.

The following lines define our setting for this test.

6.3.1 Scikit
First we use Scikit’s k-means algorithm implementation, which is simply partitioning the input
data 𝑥 ∈ ℝ𝑁𝑥×𝐷 into 𝑁𝑦 sets so as to minimize the within-cluster sum of squares, which is defined
as “inertia”. The inertia represents the sum of distances of all points to the centroid 𝑦 ∈ ℝ𝑁𝑦×𝐷

in a cluster. K-means algorithm starts with a group of randomly initialized centroids and then
performs iterative calculations to optimize the position of centroids until the centroids stabilize,
or the defined number of iterations is reached.

The result of k-means algorithm is 𝑁𝑦 clusters in 𝐷 dimensions. Notice that the cluster centroids
𝑦 ∈ ℝ𝑁𝑦×𝐷 themselves are 𝐷-dimensional points.

Next we visualize the clusters and corresponding centroids of scikit’s k-means implementation,
where we vary the number of clusters 𝑁𝑦 from 2 to 4.

0 5 10 15 20 25 30
pca1

0

5

10

15

20

25

pc
a2

0 5 10 15 20 25 30
pca1

0

5

10

15

20

25

pc
a2

0 5 10 15 20 25 30
pca1

0

5

10

15

20

25

pc
a2

0 5 10 15 20 25 30
pca1

0

5

10

15

20

25

pc
a2

The table below demonstrates the performance of Scikit’s k-means algorithm in terms of inertia,
discrepancy errors and time.

https://www.kaggle.com/arjunbhasin2013/ccdata

102 CHAPTER 6. APPLICATION FOR UNSUPERVISED MACHINE LEARNING

Table 6.6: Scikit:2,4 clusters

predictor_id D Nx Ny Nz Df execution_time discrepancy_errors inertia
k-means. 17 8950 2 8950 0 4.89 0.4929 127785.29
k-means. 17 8950 5 8950 0 5.02 0.3085 91502.98
k-means. 17 8950 8 8950 0 5.80 0.2427 74492.63
k-means. 17 8950 11 8950 0 9.59 0.2760 63633.03
k-means. 17 8950 14 8950 0 11.27 0.2670 57500.31
k-means. 17 8950 17 8950 0 10.75 0.2514 53305.03
k-means. 17 8950 20 8950 0 7.61 0.2350 49690.91

6.3.2 Codpy

In this section we apply the same methodology as in the previous sections.

The result of codpy’s sharp discrepancy algorithm is 𝑁𝑦 clusters in 𝐷 dimensions. Notice that
the cluster centroids themselves are 𝐷-dimensional points.

Next we visualize the clusters and corresponding centroids of codpy’s sharp discrepancy algorithm,
where we vary the number of clusters 𝑁𝑦 from 2 to 4 clusters.

0 5 10 15 20 25 30
pca1

0

5

10

15

20

25

pc
a2

0 5 10 15 20 25 30
pca1

0

5

10

15

20

25

pc
a2

0 5 10 15 20 25 30
pca1

0

5

10

15

20

25

pc
a2

0 5 10 15 20 25 30
pca1

0

5

10

15

20

25

pc
a2

The table below demonstrates the performance of codpy’s sharp discrepancy algorithm in terms
of inertia, discrepancy errors and time.

6.4. CREDIT CARD FRAUD DETECTION 103

Table 6.7: Codpy:2,4 clusters

predictor_id D Nx Ny Nz Df execution_time discrepancy_errors inertia
k-means. 17 8950 2 8950 0 5.43 0.4928 127785.42
k-means. 17 8950 5 8950 0 6.24 0.3087 91502.96
k-means. 17 8950 8 8950 0 8.10 0.2371 74625.00
k-means. 17 8950 11 8950 0 10.33 0.2761 63633.12
k-means. 17 8950 14 8950 0 8.29 0.2809 57460.63
k-means. 17 8950 17 8950 0 8.62 0.2867 52877.36
k-means. 17 8950 20 8950 0 11.39 0.2664 49685.45

6.3.3 Benchmarks results
Finally, we illustrate a benchmark plot, displaying the computed performance indicator of Scikit’s
k-means and codpy’s sharp discrepancy algorithms in terms of discrepancy errors, inertia, accuracy
scores (when applicable) and execution time.

5 10 15 20
Ny

0.25

0.30

0.35

0.40

0.45

0.50

di
sc

re
pa

nc
y_

er
ro

rs

k-means.

5 10 15 20
Ny

50000

60000

70000

80000

90000

100000

110000

120000

130000

in
er

tia

k-means.

5 10 15 20
Ny

5

6

7

8

9

10

11

ex
ec

ut
io

n_
tim

e

k-means.

6.4 Credit card fraud detection
The dataset contains transactions made by credit cards in September 2013 by European cardhold-
ers. It presents transactions that occurred in two days, where we have 492 frauds out of 284, 807
transactions. The dataset is highly unbalanced, the positive class (frauds) account for 0.172% of
all transactions.

The study addresses the fraud detection system to analyze the customer transactions in order to
identify the patterns that lead to frauds. In order to facilitate this pattern recognition work, the
k-means clustering algorithm is used which is an unsupervised learning algorithm and applied to
find out the normal usage patterns of credit card users based on their past activity [?].

104 CHAPTER 6. APPLICATION FOR UNSUPERVISED MACHINE LEARNING

It contains only numerical input variables which are the result of a PCA transformation. The only
features which have not been transformed with PCA are ‘Time’ and ‘Amount’. Feature ‘Time’
contains the seconds elapsed between each transaction and the first transaction in the dataset.
The feature ‘Amount’ is the transaction Amount, this feature can be used for example-dependant
cost-sensitive learning.

Feature ‘Class’ is the response variable and it takes value 1 in case of fraud and 0 otherwise. You
can find more details on this Credit Card Fraud use case following this kaggle page link.

6.4.1 Scikit

We run our tests in the following line.

The table 6.8 displays inertia, discrepancy errors and execution time performance indicators.

Table 6.8: Scikit: Ny clusters

predictor_id D Nx Ny Nz Df execution_time scores discrepancy_errors inertia
k-means 30 499 15 284308 1 2.30 0.9496 0.6953 21363.21
k-means 30 499 30 284308 1 2.46 0.9296 0.6598 13892.58
k-means 30 499 45 284308 1 2.84 0.9407 0.6145 10898.61
k-means 30 499 60 284308 1 2.73 0.9794 0.5669 9082.48
k-means 30 499 75 284308 1 2.47 0.9326 0.5966 7609.51
k-means 30 499 90 284308 1 2.48 0.9801 0.5515 6446.03

Finally, we output as well the confusion matrix for the last scenario in figure 6.4.

0 1

0

1

278435 5627

33 213
50000

100000

150000

200000

250000

Figure 6.4: confusion matrix for k-means

6.4.2 Codpy

We repeat the same benchmark methodology as in the previous sections. We first run all scenarios.

The table 6.9 displays computed performance indicators for all scenarios.

https://www.kaggle.com/mlg-ulb/creditcardfraud

6.4. CREDIT CARD FRAUD DETECTION 105

Table 6.9: codpy: Ny clusters

predictor_id D Nx Ny Nz Df execution_time scores discrepancy_errors inertia
codpy 30 499 15 284308 1 0.74 0.9678 0.3248 21499.18
codpy 30 499 30 284308 1 0.78 0.9753 0.3145 13930.79
codpy 30 499 45 284308 1 0.86 0.9720 0.3132 11054.61
codpy 30 499 60 284308 1 0.96 0.9658 0.3136 9084.62
codpy 30 499 75 284308 1 0.98 0.9714 0.3115 7657.18
codpy 30 499 90 284308 1 1.08 0.9658 0.3087 6520.76

Finally, we output as well the confusion matrix for the last scenario in figure 6.5.

0 1

0

1

274369 9693

21 225
50000

100000

150000

200000

250000

Figure 6.5: confusion matrix for codpy

6.4.3 Benchmarks results

Finally, we illustrate a benchmark plot, that shows the performance of Scikit’s k-means and
codpy’s sharp discrepancy algorithms in terms of discrepancy errors, inertia, accuracy scores (when
applicable) and execution time.

106 CHAPTER 6. APPLICATION FOR UNSUPERVISED MACHINE LEARNING

20 40 60 80
Ny

0.93

0.94

0.95

0.96

0.97

0.98
sc

or
es codpy

k-means

20 40 60 80
Ny

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

di
sc

re
pa

nc
y_

er
ro

rs

codpy
k-means

20 40 60 80
Ny

6000

8000

10000

12000

14000

16000

18000

20000

22000

in
er

tia

codpy
k-means

20 40 60 80
Ny

1.0

1.5

2.0

2.5
ex

ec
ut

io
n_

tim
e

codpy
k-means

6.5 Portfolio of stock clustering

This case represents daily stock price movements 𝑥 ∈ ℝ𝑁𝑥×𝐷 (i.e. the dollar difference between
the closing and opening prices for each trading day) from 2010 to 2015.

6.5.1 Scikit

The tests follows the very same method as in the previous section. We first run our scenarios in
the following line.

The table 6.10 displays inertia, discrepancy errors and execution time performance indicators.

6.5. PORTFOLIO OF STOCK CLUSTERING 107

Table 6.10: Scikit: Ny clusters

x
0 Pfizer , Sanofi-Aventis
1 Cisco , Microsoft
2 Canon , Ford , Honda , Mitsubishi, Sony , Toyota
3 Boeing , Lookheed Martin , Northrop Grumman
4 British American Tobacco, ConocoPhillips , Chevron , GlaxoSmithKline , Novartis , Royal Dutch Shell , SAP , Schlumberger , Total , Unilever , Exxon
5 American express , Caterpillar , DuPont de Nemours, General Electrics, Home Depot , IBM , Johnson & Johnson, McDonalds , 3M , Symantec
6 Walgreen
7 AIG , Bank of America, Goldman Sachs , JPMorgan Chase , Wells Fargo
8 Colgate-Palmolive, Kimberly-Clark , Procter Gamble , Wal-Mart
9 Navistar
10 Philip Morris
11 Yahoo
12 Dell, HP
13 Valero Energy
14 Apple
15 Amazon , Google/Alphabet
16 Intel , Taiwan Semiconductor Manufacturing, Texas instruments
17 MasterCard
18 Coca Cola, Pepsi
19 Xerox

k-means clusters displays stocks into coherent groups. The performance indicators for this step
are the following.

Table 6.11: Ny clusters

predictor_id D Nx Ny Nz Df execution_time discrepancy_errors inertia
k-means. 963 60 10 60 0 0.69 0.3807 25.58
k-means. 963 60 20 60 0 0.62 0.2067 18.47

6.5.2 Codpy
The tests follows the very same method as in the previous section. We first run our scenarios in
the following line.

The table 6.12 displays inertia, discrepancy errors and execution time performance indicators.

Table 6.12: Scikit: Ny clusters

predictor_id D Nx Ny Nz Df execution_time discrepancy_errors inertia
k-means. 963 60 10 60 0 0.73 0.4004 25.19
k-means. 963 60 20 60 0 0.61 0.2126 18.03

k-means clusters displays stocks into coherent groups. The performance indicators for this step
are the following.

108 CHAPTER 6. APPLICATION FOR UNSUPERVISED MACHINE LEARNING

Table 6.13: Codpy: Stocks’ clusters

Stocks
0 American express , Bank of America , Ford , General Electrics, Goldman Sachs , JPMorgan Chase , Wells Fargo , Xerox
1 British American Tobacco, GlaxoSmithKline , Novartis , Royal Dutch Shell , SAP , Sanofi-Aventis , Total , Unilever
2 Philip Morris
3 Colgate-Palmolive, Kimberly-Clark , Procter Gamble
4 Mitsubishi
5 Caterpillar , ConocoPhillips , Chevron , DuPont de Nemours, IBM , 3M , Schlumberger , Valero Energy , Exxon
6 Coca Cola, Pepsi
7 Canon , Honda , Sony , Toyota
8 Navistar
9 Intel , Taiwan Semiconductor Manufacturing, Texas instruments
10 McDonalds
11 Johnson & Johnson, Pfizer , Walgreen , Wal-Mart
12 Boeing , Lookheed Martin , Northrop Grumman
13 Apple , Amazon , Google/Alphabet
14 Yahoo
15 Dell, HP
16 Cisco , Microsoft, Symantec
17 AIG
18 MasterCard
19 Home Depot

6.5.3 Benchmarks results

Finally, we illustrate a benchmark plot, that shows the performance of Scikit’s k-means and
codpy’s sharp discrepancy algorithms in terms of discrepancy errors, inertia, accuracy scores (when
applicable) and execution time.

6.5. PORTFOLIO OF STOCK CLUSTERING 109

10 12 14 16 18 20
Ny

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

di
sc

re
pa

nc
y_

er
ro

rs

k-means.

10 12 14 16 18 20
Ny

18

19

20

21

22

23

24

25

in
er

tia

k-means.

10 12 14 16 18 20
Ny

0.62

0.64

0.66

0.68

0.70

0.72

ex
ec

ut
io

n_
tim

e

k-means.

time_series loaded

110 CHAPTER 6. APPLICATION FOR UNSUPERVISED MACHINE LEARNING

Chapter 7

Application to optimal transport

7.1 Bachelier problem
7.1.1 Introduction
The purpose of this test is to benchmark the Pi-function, see section ?? with the Bachelier problem,
that is described in the next section.

It is known since a decade that deep learning methods can be described by kernel methods, see for
instance [?]. We illustrate this fact with a kernel method, designed with a quite comparable spirit
to the Neural network approach. Indeed, this method gives quite comparable results to the NN
one : both methods are not convergent, and we do not advise their use for critical applications.

7.1.2 Problem description
• Consider a martingale process 𝑡 ↦ 𝑋(𝑡) ∈ ℝ𝐷, given by the Brownian motion 𝑑𝑋 = 𝜎𝑑𝑊𝑡,

where the matrix 𝜎 ∈ ℝ𝐷×𝐷 is randomly generated. The initial condition is 𝑋(0) = (1, ⋯ , 1),
w.l.o.g.

• Consider two times 1 = 𝑡1 < 𝑡2 = 2, 𝑡2 being the maturity of an option, that is a function
denoted 𝑃(𝑥) = max(𝑏(𝑥)−𝐾, 0), where 𝐾 = 1.1, 𝑏(𝑥) ∶= 𝑥 ⋅𝑎 with random weights 𝑎 ∈ ℝ𝐷.
It is straightforward to verify that 𝑏(𝑥) follows a Brownian motion 𝑑𝑏 = 𝜃𝑑𝑊𝑡. To get a
fixed value for 𝜃 (fixed to 0.2 in our tests), we normalize the diffusion matrix 𝜎 above.

• The goal of this test is to benchmark numerical methods aiming to compute the following
conditional expectation

𝑓(𝑧) ∶= 𝔼𝑋(𝑡2)(𝑃(⋅)|𝑋(𝑡1) = 𝑧).

For the Bachelier problem, this last quantity can be determined using a closed formula : the
reference value is computed as

𝑓(𝑧) = 𝜃
√

𝑡2 − 𝑡1𝑝𝑑𝑓(𝑑) + (𝑏(𝑥) − 𝐾)𝑐𝑑𝑓(𝑑), 𝑑(𝑥, 𝐾) ∶= 𝑏(𝑥) − 𝐾
𝜃
√

𝑡2 − 𝑡1 (7.1.1)

pdf (resp. cdf) holding for the probability density function (resp. cumulative) of the normal
law.

7.1.3 Methodology, Notations, input and output data
For our tests, we use the following notations, and precise their signification for this report, and
more generally for Finance applications:

111

112 CHAPTER 7. APPLICATION TO OPTIMAL TRANSPORT

• 𝑥 ∈ ℝ𝑁𝑥×𝐷 denotes the training set of variables. For our test, this set is given by iid samples
of the brownian motion 𝑋(𝑡) at time 𝑡1 = 1.

– For quantitative Finance applications, this set typically consists in 𝑁𝑥 iid samples of
a stochastic process 𝑡 ↦ 𝑋(𝑡) ∈ ℝ𝐷 at a time 𝑡. Such samples might be generated by
discretization of stochastic processes using Euler methods for instance.

• 𝑓(𝑥) ∈ ℝ𝑁𝑥×𝐷𝑓 denotes the training set of values. It is generated as 𝑃(𝑋(𝑡2)|𝑥), 𝑃 being
the payoff of the option described in the previous section, 𝑥 being the training set.

– For Finance applications, 𝑓 ∈ 𝒞1(ℝ𝐷)𝑀 is usually a derivable function, having vector
valued values corresponding to payoffs, or investment strategies, of portfolios.

• 𝑧 ∈ ℝ𝑁𝑧×𝐷 denotes the test set of variables. It consists for our test as another iid realization
of the brownian motion 𝑋(𝑡) at time 𝑡1 = 1.

– This set represent usually a set of user defined samples of underlying risks, chosen
accordingly to its needs.

• 𝑓(𝑧) ∈ ℝ𝑁𝑧×𝐷𝑓 is the set of reference values, computed using (7.1.1) (𝐷𝑓 = 1 in this experi-
ment)

– This set consists in reference - ground truth - values, approximating 𝑃(𝑧) ∶=
𝔼(𝑓(𝑥𝑡2 |𝑧)).

To these set we added another one, used for internal computations

• 𝑦 ∈ ℝ𝑁𝑦×𝐷, with 𝑁𝑦 << 𝑁𝑥.
– This set corresponds to the weight set for neural networks methods.
– This set corresponds to what we call a “projection set” for kernel methods (see [?] for

a definition).

Output data are

• 𝑓𝑧 ∈ ℝ𝑁𝑧×𝐷𝑓 the set of predicted values. These are the values that are benchmarked against
𝑓(𝑧) in our experiments.

For each numerical experiments, we output a table summarizing the values of 𝑁𝑥, 𝑁𝑦, 𝑁𝑧, 𝐷.

7.1.4 Four methods to tackle the Bachelier problem
In this technical report, we compare four methods for tackling the computation of conditional
expectations for the Bachelier problem :

1. The first is a Neural Network one, using Tensorflow to retrieve results. Code can be down-
loaded at [?], the method itself is described in [?].

2. The second one is a standard kernel method, quite comparable to the previous approach,
using codpy implementation of kernel methods, that is the textit {projection} function

𝑃 𝑘(𝑥, 𝑦, 𝑧, 𝑓(𝑧) = []) = 𝑘(𝑧, 𝑦)𝑘(𝑥, 𝑦)−1𝑓(𝑧) (7.1.2)

where 𝑦 is a 𝑁𝑦-size random shuffling of the initial set 𝑥, and 𝑘(𝑥, 𝑦) is a Gram matrix, see [?] for
a more detailed description.

3. The third one uses the Pi function above, where 𝑥 (resp. 𝑧) are iid sequences of 𝑋(𝑡1) (resp.
𝑋(𝑡2)), as presented in the above section.

4. The fourth one uses also the Pi function above, but choosing 𝑥 (resp. 𝑧) as sharp discrepancy
sequences of 𝑋(𝑡1), (resp. 𝑋(𝑡2)) see [?] - [?].

7.1.5 Test specification
A single test relies on 8 parameters, that we list below. We will be running several scenario to
benchmark our results.

7.1. BACHELIER PROBLEM 113

Table 7.1: A test specification

Nx Ny Nz D s1 s2 s3
xs # ys # zs Dimension Generator x Generator z | x Generator z

Hence this numerical experiment uses 𝑠1, 𝑠2, 𝑠3, three seeds for random generators:

• 𝑠1 is used to generate iid samples of 𝑋(𝑡1) for the training set of variables 𝑥.

• 𝑠2 is used to generate iid samples of the conditional sampling 𝑋(𝑡2)|𝑋(𝑡1) = 𝑥 for the
training set of variables.

• 𝑠3 is used to generate iid samples of 𝑋(𝑡1) for the test set of variables 𝑧.

For instance, if 𝑠1 = 𝑠3, and 𝑁𝑧 < 𝑁𝑥, then the test set is a subset of the training set 𝑧 ⊂ 𝑥.

To summarize the methodology, for each scenario of a given 8-uple 𝑁𝑥, 𝑁𝑦, 𝑁𝑧, 𝐷, 𝐷𝑓 , 𝑠1, 𝑠2, 𝑠3,
each of our three methods output a prediction 𝑓𝑧, that is benchmarked against the ground-truth
value 𝑓(𝑧).

To measure errors, we use the percentage RMSE error, expressed as a real number between 0 and
1, called basis point error, as follows:

𝑅𝑀𝑆𝐸%(𝑓𝑧, 𝑓(𝑧)) = ‖𝑓𝑧 − 𝑓(𝑧)‖ℓ2

‖𝑓𝑧‖ℓ2 + ‖𝑓(𝑧)‖ℓ2

We presents three tests. Two of them are two-dimensional (𝐷 = 2), allowing graphical represen-
tation of input data and output errors to best illustrate our three methods. The third one is
concerned with higher dimensional case.

7.1.5.1 Input data settings

We generate our data set for the test, accordingly to the description given in the previous para-
graph.

7.1.5.1.1 Training set for different times We plot 𝑥 = 𝑋(𝑡1) (training set), generated at
time 𝑡1 = 1 with 𝑋(𝑡2)|𝑋(𝑡1), that are the trajectories generated at time 𝑡2 = 2. We plot a line
between each 𝑥 and 𝑧|𝑥

<matplotlib.collections.PathCollection object at 0x0000000358F3A948>

<matplotlib.collections.PathCollection object at 0x000000035934F948>

[<matplotlib.lines.Line2D object at 0x0000000357DEBEC8>, <matplotlib.lines.Line2D object at 0x0000000358FB2A88>, <matplotlib.lines.Line2D object at 0x0000000153AB3208>, <matplotlib.lines.Line2D object at 0x0000000153AB3E08>, <matplotlib.lines.Line2D object at 0x0000000153AB3888>, <matplotlib.lines.Line2D object at 0x0000000164216048>, <matplotlib.lines.Line2D object at 0x0000000164216088>, <matplotlib.lines.Line2D object at 0x00000001641F5088>, <matplotlib.lines.Line2D object at 0x00000001641F5E48>, <matplotlib.lines.Line2D object at 0x0000000164216B08>, <matplotlib.lines.Line2D object at 0x00000001641F5808>, <matplotlib.lines.Line2D object at 0x00000001641FAB08>, <matplotlib.lines.Line2D object at 0x00000001641FA308>, <matplotlib.lines.Line2D object at 0x0000000153AB5948>, <matplotlib.lines.Line2D object at 0x0000000153AB50C8>, <matplotlib.lines.Line2D object at 0x0000000153AB5E88>, <matplotlib.lines.Line2D object at 0x0000000153155188>, <matplotlib.lines.Line2D object at 0x0000000354F16A08>, <matplotlib.lines.Line2D object at 0x000000000B936D88>, <matplotlib.lines.Line2D object at 0x000000000B7C3648>, <matplotlib.lines.Line2D object at 0x000000000B7C3F88>, <matplotlib.lines.Line2D object at 0x000000000A705588>, <matplotlib.lines.Line2D object at 0x000000000CE532C8>, <matplotlib.lines.Line2D object at 0x000000000CCD5088>, <matplotlib.lines.Line2D object at 0x0000000357DE8C48>, <matplotlib.lines.Line2D object at 0x00000003DB73B108>, <matplotlib.lines.Line2D object at 0x000000000A69EF48>, <matplotlib.lines.Line2D object at 0x00000003E28067C8>, <matplotlib.lines.Line2D object at 0x000000000B8EFE88>, <matplotlib.lines.Line2D object at 0x000000000CE59188>, <matplotlib.lines.Line2D object at 0x000000000D0DB488>, <matplotlib.lines.Line2D object at 0x000000000B92A448>, <matplotlib.lines.Line2D object at 0x000000000B92AE48>, <matplotlib.lines.Line2D object at 0x000000000B92A608>, <matplotlib.lines.Line2D object at 0x000000000B92A048>, <matplotlib.lines.Line2D object at 0x000000000B92AEC8>, <matplotlib.lines.Line2D object at 0x00000003594D23C8>, <matplotlib.lines.Line2D object at 0x000000035939DB88>, <matplotlib.lines.Line2D object at 0x00000003591532C8>, <matplotlib.lines.Line2D object at 0x0000000358FE1B48>, <matplotlib.lines.Line2D object at 0x0000000153AB2888>, <matplotlib.lines.Line2D object at 0x0000000153AB2A08>, <matplotlib.lines.Line2D object at 0x0000000153AB29C8>, <matplotlib.lines.Line2D object at 0x00000001641F3448>, <matplotlib.lines.Line2D object at 0x00000001641F3788>, <matplotlib.lines.Line2D object at 0x000000035944E908>, <matplotlib.lines.Line2D object at 0x000000035944E108>, <matplotlib.lines.Line2D object at 0x000000035947CC48>, <matplotlib.lines.Line2D object at 0x0000000359339D88>, <matplotlib.lines.Line2D object at 0x00000003593396C8>, <matplotlib.lines.Line2D object at 0x0000000358F86B08>, <matplotlib.lines.Line2D object at 0x000000035933C988>, <matplotlib.lines.Line2D object at 0x0000000359341D08>, <matplotlib.lines.Line2D object at 0x00000003593CCBC8>, <matplotlib.lines.Line2D object at 0x00000003593B8448>, <matplotlib.lines.Line2D object at 0x000000035938DCC8>, <matplotlib.lines.Line2D object at 0x00000003594B0148>, <matplotlib.lines.Line2D object at 0x0000000359551048>, <matplotlib.lines.Line2D object at 0x0000000359551508>, <matplotlib.lines.Line2D object at 0x0000000359551088>, <matplotlib.lines.Line2D object at 0x000000035956C608>, <matplotlib.lines.Line2D object at 0x000000035956CD08>, <matplotlib.lines.Line2D object at 0x000000035956C448>, <matplotlib.lines.Line2D object at 0x000000035956CF08>, <matplotlib.lines.Line2D object at 0x000000035954BA08>, <matplotlib.lines.Line2D object at 0x000000035954BD08>, <matplotlib.lines.Line2D object at 0x00000003595664C8>, <matplotlib.lines.Line2D object at 0x0000000359566088>, <matplotlib.lines.Line2D object at 0x0000000359566448>, <matplotlib.lines.Line2D object at 0x000000035957CE08>, <matplotlib.lines.Line2D object at 0x000000035957CBC8>, <matplotlib.lines.Line2D object at 0x000000035957CDC8>, <matplotlib.lines.Line2D object at 0x000000035957C048>, <matplotlib.lines.Line2D object at 0x000000035959DD08>, <matplotlib.lines.Line2D object at 0x000000035959DE88>, <matplotlib.lines.Line2D object at 0x0000000359573A88>, <matplotlib.lines.Line2D object at 0x000000035957BB08>, <matplotlib.lines.Line2D object at 0x0000000359586D08>, <matplotlib.lines.Line2D object at 0x0000000359586408>, <matplotlib.lines.Line2D object at 0x0000000359586248>, <matplotlib.lines.Line2D object at 0x0000000359586888>, <matplotlib.lines.Line2D object at 0x0000000359586F88>, <matplotlib.lines.Line2D object at 0x000000035958CBC8>, <matplotlib.lines.Line2D object at 0x000000035958C648>, <matplotlib.lines.Line2D object at 0x000000035958CF08>, <matplotlib.lines.Line2D object at 0x000000035958C948>, <matplotlib.lines.Line2D object at 0x000000035958CC88>, <matplotlib.lines.Line2D object at 0x0000000359592508>, <matplotlib.lines.Line2D object at 0x0000000359592F08>, <matplotlib.lines.Line2D object at 0x00000003595AA948>, <matplotlib.lines.Line2D object at 0x00000003595A2448>, <matplotlib.lines.Line2D object at 0x00000003595A2388>, <matplotlib.lines.Line2D object at 0x000000035B6FAC48>, <matplotlib.lines.Line2D object at 0x000000035B6FA6C8>, <matplotlib.lines.Line2D object at 0x000000035B6FA488>, <matplotlib.lines.Line2D object at 0x000000035B703A88>, <matplotlib.lines.Line2D object at 0x000000035B703F48>, <matplotlib.lines.Line2D object at 0x000000035B7036C8>, <matplotlib.lines.Line2D object at 0x000000035B703188>, <matplotlib.lines.Line2D object at 0x000000035B703348>, <matplotlib.lines.Line2D object at 0x000000035B6F3308>, <matplotlib.lines.Line2D object at 0x00000003595AD888>, <matplotlib.lines.Line2D object at 0x000000035955CD48>, <matplotlib.lines.Line2D object at 0x000000035955CF08>, <matplotlib.lines.Line2D object at 0x000000035955C148>, <matplotlib.lines.Line2D object at 0x000000035955C048>, <matplotlib.lines.Line2D object at 0x000000035955A748>, <matplotlib.lines.Line2D object at 0x0000000359557608>, <matplotlib.lines.Line2D object at 0x0000000359557208>, <matplotlib.lines.Line2D object at 0x0000000358F3D348>, <matplotlib.lines.Line2D object at 0x000000035926F488>, <matplotlib.lines.Line2D object at 0x000000035926F988>, <matplotlib.lines.Line2D object at 0x000000035926F708>, <matplotlib.lines.Line2D object at 0x000000035926FC08>, <matplotlib.lines.Line2D object at 0x000000035926F088>, <matplotlib.lines.Line2D object at 0x000000035926F588>, <matplotlib.lines.Line2D object at 0x000000035926F048>, <matplotlib.lines.Line2D object at 0x000000035923B788>, <matplotlib.lines.Line2D object at 0x000000035921FBC8>, <matplotlib.lines.Line2D object at 0x000000035929C9C8>, <matplotlib.lines.Line2D object at 0x000000035929C588>, <matplotlib.lines.Line2D object at 0x000000035929CA88>, <matplotlib.lines.Line2D object at 0x000000035926AF08>, <matplotlib.lines.Line2D object at 0x00000003592586C8>, <matplotlib.lines.Line2D object at 0x00000003592CE088>, <matplotlib.lines.Line2D object at 0x00000003592CE688>, <matplotlib.lines.Line2D object at 0x000000035922BD48>, <matplotlib.lines.Line2D object at 0x00000003592AC9C8>, <matplotlib.lines.Line2D object at 0x00000003592AC0C8>, <matplotlib.lines.Line2D object at 0x00000003592AC088>, <matplotlib.lines.Line2D object at 0x00000003592ACD08>, <matplotlib.lines.Line2D object at 0x00000003592AC408>, <matplotlib.lines.Line2D object at 0x00000003592463C8>, <matplotlib.lines.Line2D object at 0x0000000359246648>, <matplotlib.lines.Line2D object at 0x00000003592884C8>, <matplotlib.lines.Line2D object at 0x0000000359293548>, <matplotlib.lines.Line2D object at 0x0000000359293D88>, <matplotlib.lines.Line2D object at 0x00000003592A4808>, <matplotlib.lines.Line2D object at 0x00000003592AAF48>, <matplotlib.lines.Line2D object at 0x00000003592AA7C8>, <matplotlib.lines.Line2D object at 0x00000003592AA108>, <matplotlib.lines.Line2D object at 0x000000035914E2C8>, <matplotlib.lines.Line2D object at 0x000000035914ED08>, <matplotlib.lines.Line2D object at 0x000000035914E848>, <matplotlib.lines.Line2D object at 0x000000035914EBC8>, <matplotlib.lines.Line2D object at 0x00000003591808C8>, <matplotlib.lines.Line2D object at 0x0000000359180F48>, <matplotlib.lines.Line2D object at 0x0000000358FB8FC8>, <matplotlib.lines.Line2D object at 0x0000000358FB8E08>, <matplotlib.lines.Line2D object at 0x0000000358FB8F88>, <matplotlib.lines.Line2D object at 0x0000000358FB81C8>, <matplotlib.lines.Line2D object at 0x0000000359160D88>, <matplotlib.lines.Line2D object at 0x0000000359184708>, <matplotlib.lines.Line2D object at 0x0000000359184BC8>, <matplotlib.lines.Line2D object at 0x0000000359184C48>, <matplotlib.lines.Line2D object at 0x0000000359184948>, <matplotlib.lines.Line2D object at 0x0000000359192C88>, <matplotlib.lines.Line2D object at 0x0000000359192908>, <matplotlib.lines.Line2D object at 0x00000003591923C8>, <matplotlib.lines.Line2D object at 0x0000000359192F08>, <matplotlib.lines.Line2D object at 0x0000000359198108>, <matplotlib.lines.Line2D object at 0x0000000359198548>, <matplotlib.lines.Line2D object at 0x0000000359198508>, <matplotlib.lines.Line2D object at 0x000000035918E208>, <matplotlib.lines.Line2D object at 0x000000035918E088>, <matplotlib.lines.Line2D object at 0x000000035918E908>, <matplotlib.lines.Line2D object at 0x000000035918E8C8>, <matplotlib.lines.Line2D object at 0x000000035918EC08>, <matplotlib.lines.Line2D object at 0x000000035915CD48>, <matplotlib.lines.Line2D object at 0x000000035915C988>, <matplotlib.lines.Line2D object at 0x000000035915C8C8>, <matplotlib.lines.Line2D object at 0x000000035916ED88>, <matplotlib.lines.Line2D object at 0x000000035916E1C8>, <matplotlib.lines.Line2D object at 0x000000035916EA48>, <matplotlib.lines.Line2D object at 0x000000035919CF48>, <matplotlib.lines.Line2D object at 0x000000035919C208>, <matplotlib.lines.Line2D object at 0x000000035919C508>, <matplotlib.lines.Line2D object at 0x000000035915E8C8>, <matplotlib.lines.Line2D object at 0x0000000359157908>, <matplotlib.lines.Line2D object at 0x0000000358F8AC08>, <matplotlib.lines.Line2D object at 0x000000035902EF08>, <matplotlib.lines.Line2D object at 0x0000000153AEBBC8>, <matplotlib.lines.Line2D object at 0x0000000358FAD3C8>, <matplotlib.lines.Line2D object at 0x0000000359015C48>, <matplotlib.lines.Line2D object at 0x000000035900D988>, <matplotlib.lines.Line2D object at 0x0000000358F84A08>, <matplotlib.lines.Line2D object at 0x0000000358F90208>, <matplotlib.lines.Line2D object at 0x0000000358FFA888>, <matplotlib.lines.Line2D object at 0x0000000358FFAC88>, <matplotlib.lines.Line2D object at 0x00000003590279C8>, <matplotlib.lines.Line2D object at 0x0000000359027448>, <matplotlib.lines.Line2D object at 0x000000035901E8C8>, <matplotlib.lines.Line2D object at 0x000000035901E1C8>, <matplotlib.lines.Line2D object at 0x0000000359050308>, <matplotlib.lines.Line2D object at 0x00000003590505C8>, <matplotlib.lines.Line2D object at 0x0000000359050148>, <matplotlib.lines.Line2D object at 0x0000000359050DC8>, <matplotlib.lines.Line2D object at 0x000000035903B948>, <matplotlib.lines.Line2D object at 0x0000000359035848>, <matplotlib.lines.Line2D object at 0x000000035900A0C8>, <matplotlib.lines.Line2D object at 0x000000035900A4C8>, <matplotlib.lines.Line2D object at 0x000000035900AC08>, <matplotlib.lines.Line2D object at 0x00000001641F8BC8>, <matplotlib.lines.Line2D object at 0x00000001641F8448>, <matplotlib.lines.Line2D object at 0x00000001641F8C08>, <matplotlib.lines.Line2D object at 0x0000000153AE5BC8>, <matplotlib.lines.Line2D object at 0x0000000153AE5C88>, <matplotlib.lines.Line2D object at 0x0000000153ACD888>, <matplotlib.lines.Line2D object at 0x0000000153ACDB88>, <matplotlib.lines.Line2D object at 0x0000000153ACDF88>, <matplotlib.lines.Line2D object at 0x0000000153A2F808>, <matplotlib.lines.Line2D object at 0x0000000153A2FFC8>, <matplotlib.lines.Line2D object at 0x0000000358F97A08>, <matplotlib.lines.Line2D object at 0x0000000359055F88>, <matplotlib.lines.Line2D object at 0x0000000359055148>, <matplotlib.lines.Line2D object at 0x0000000359055248>, <matplotlib.lines.Line2D object at 0x0000000359055A08>, <matplotlib.lines.Line2D object at 0x0000000359042AC8>, <matplotlib.lines.Line2D object at 0x0000000359042E08>, <matplotlib.lines.Line2D object at 0x0000000359049C48>, <matplotlib.lines.Line2D object at 0x0000000359049588>, <matplotlib.lines.Line2D object at 0x0000000359049148>, <matplotlib.lines.Line2D object at 0x0000000359049FC8>, <matplotlib.lines.Line2D object at 0x0000000358FC3788>, <matplotlib.lines.Line2D object at 0x0000000358FC3E48>, <matplotlib.lines.Line2D object at 0x0000000358FC1148>, <matplotlib.lines.Line2D object at 0x0000000358FC1B08>, <matplotlib.lines.Line2D object at 0x0000000357DCD388>, <matplotlib.lines.Line2D object at 0x0000000358FABEC8>, <matplotlib.lines.Line2D object at 0x0000000357D8BC88>, <matplotlib.lines.Line2D object at 0x0000000357D8B588>, <matplotlib.lines.Line2D object at 0x0000000357D8BD08>, <matplotlib.lines.Line2D object at 0x0000000357D8BE88>, <matplotlib.lines.Line2D object at 0x0000000357D8B7C8>, <matplotlib.lines.Line2D object at 0x0000000153ADC1C8>, <matplotlib.lines.Line2D object at 0x0000000153ADCF08>, <matplotlib.lines.Line2D object at 0x0000000153ADCF88>, <matplotlib.lines.Line2D object at 0x0000000153ADC648>, <matplotlib.lines.Line2D object at 0x0000000153ADCD88>, <matplotlib.lines.Line2D object at 0x0000000153ADC588>, <matplotlib.lines.Line2D object at 0x0000000357D82988>, <matplotlib.lines.Line2D object at 0x0000000357D82508>, <matplotlib.lines.Line2D object at 0x0000000357D82448>, <matplotlib.lines.Line2D object at 0x0000000357D82248>, <matplotlib.lines.Line2D object at 0x0000000357D82748>, <matplotlib.lines.Line2D object at 0x0000000357D827C8>, <matplotlib.lines.Line2D object at 0x0000000153AD9348>, <matplotlib.lines.Line2D object at 0x0000000153AD9D48>, <matplotlib.lines.Line2D object at 0x0000000153AD91C8>, <matplotlib.lines.Line2D object at 0x0000000153AD98C8>, <matplotlib.lines.Line2D object at 0x0000000153AD9C48>, <matplotlib.lines.Line2D object at 0x0000000358F93D88>, <matplotlib.lines.Line2D object at 0x0000000357D844C8>, <matplotlib.lines.Line2D object at 0x0000000357D84508>, <matplotlib.lines.Line2D object at 0x0000000357D84608>, <matplotlib.lines.Line2D object at 0x0000000357D84808>, <matplotlib.lines.Line2D object at 0x0000000358FB5208>, <matplotlib.lines.Line2D object at 0x00000003592A21C8>, <matplotlib.lines.Line2D object at 0x0000000358F28288>, <matplotlib.lines.Line2D object at 0x0000000358F28A08>, <matplotlib.lines.Line2D object at 0x0000000153AAD6C8>, <matplotlib.lines.Line2D object at 0x0000000153AADD08>, <matplotlib.lines.Line2D object at 0x0000000153AADF88>, <matplotlib.lines.Line2D object at 0x0000000153AC1188>, <matplotlib.lines.Line2D object at 0x0000000153AC1B48>, <matplotlib.lines.Line2D object at 0x0000000153AC1FC8>, <matplotlib.lines.Line2D object at 0x0000000153AC1688>, <matplotlib.lines.Line2D object at 0x0000000153AC1A88>, <matplotlib.lines.Line2D object at 0x0000000153AC1708>, <matplotlib.lines.Line2D object at 0x0000000153AC6908>, <matplotlib.lines.Line2D object at 0x0000000153AC6CC8>, <matplotlib.lines.Line2D object at 0x0000000153AC6648>, <matplotlib.lines.Line2D object at 0x0000000153AC6508>, <matplotlib.lines.Line2D object at 0x0000000153AE7A88>, <matplotlib.lines.Line2D object at 0x0000000153AE7608>, <matplotlib.lines.Line2D object at 0x0000000153AF9248>, <matplotlib.lines.Line2D object at 0x0000000153AF9408>, <matplotlib.lines.Line2D object at 0x0000000153AF97C8>, <matplotlib.lines.Line2D object at 0x0000000153AF9908>, <matplotlib.lines.Line2D object at 0x0000000153AF9C88>, <matplotlib.lines.Line2D object at 0x0000000164203188>, <matplotlib.lines.Line2D object at 0x0000000164203A08>, <matplotlib.lines.Line2D object at 0x00000001642034C8>, <matplotlib.lines.Line2D object at 0x0000000164203588>, <matplotlib.lines.Line2D object at 0x0000000164203388>, <matplotlib.lines.Line2D object at 0x0000000164203108>, <matplotlib.lines.Line2D object at 0x000000016420A808>, <matplotlib.lines.Line2D object at 0x000000016420AA08>, <matplotlib.lines.Line2D object at 0x000000016420AC88>, <matplotlib.lines.Line2D object at 0x000000016420AC08>, <matplotlib.lines.Line2D object at 0x000000016420AFC8>, <matplotlib.lines.Line2D object at 0x0000000153AC9948>, <matplotlib.lines.Line2D object at 0x0000000153AC9208>, <matplotlib.lines.Line2D object at 0x0000000153AC9548>, <matplotlib.lines.Line2D object at 0x0000000153AC9488>, <matplotlib.lines.Line2D object at 0x0000000153AC9D08>, <matplotlib.lines.Line2D object at 0x0000000153AC91C8>, <matplotlib.lines.Line2D object at 0x0000000357D7B548>, <matplotlib.lines.Line2D object at 0x0000000357D7B508>, <matplotlib.lines.Line2D object at 0x0000000357D7BD08>]

114 CHAPTER 7. APPLICATION TO OPTIMAL TRANSPORT

0.5 1.0 1.5 2.0

0.6

0.8

1.0

1.2

1.4

7.1.5.1.2 Training values and ground test values distributions We plot the generated
learning and test set in the following picture, comparing the variable 𝑓(𝑥) and the exact to predict
𝑓(𝑧), taking as x-axis the corresponding values of 𝑏(𝑥), 𝑏(𝑧).

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.0

0.1

0.2

0.3

0.4

7.1.6 Running the tests
7.1.6.1 Standard Neural Network

This test uses part of the code available at [?]. Our chosen scenarios are listed in Table 7.2

The Table 7.3 output the values of this test

HBox(children=(IntProgress(value=0, description='standard training', style=ProgressStyle(description_width='initial')), HTML(value='')))
##
HBox(children=(IntProgress(value=0, description='standard training', style=ProgressStyle(description_width='initial')), HTML(value='')))
##
HBox(children=(IntProgress(value=0, description='standard training', style=ProgressStyle(description_width='initial')), HTML(value='')))

7.1. BACHELIER PROBLEM 115

Table 7.2: scenario list

D Nx Ny Nz
2 32 80 512
2 64 80 512
2 128 80 512
2 256 80 512
2 512 80 512
2 1024 80 512
2 2048 80 512
2 4096 80 512
2 8192 80 512
2 16384 80 512
2 32768 80 512

Table 7.3: tensorflow indicators

0 1 2 3 4 5 6 7 8 9 10
predictor_idANN ANN ANN ANN ANN ANN ANN ANN ANN ANN ANN
D 2 2 2 2 2 2 2 2 2 2 2
Nx 32 64 128 256 512 1024 2048 4096 8192 16384 32768
Ny 32 64 80 80 80 80 80 80 80 80 80
Nz 512 512 512 512 512 512 512 512 512 512 512
Df 1 1 1 1 1 1 1 1 1 1 1
execution_time0.2 0.22 0.22 0.24 0.27 0.55 0.54 0.95 1.35 1.51 2.1
scores 0.2039 0.5269 0.1735 0.1751 0.0801 0.0971 0.0787 0.104 0.0868 0.0777 0.0682
norm_function0.34 0.21 0.23 0.25 0.24 0.28 0.29 0.23 0.34 0.32 0.26
discrepancy_errors0.1272 0.0725 0.0956 0.1067 0.1166 0.211 0.2112 0.2314 0.1915 0.2375 0.2127

##
HBox(children=(IntProgress(value=0, description='standard training', style=ProgressStyle(description_width='initial')), HTML(value='')))
##
HBox(children=(IntProgress(value=0, description='standard training', style=ProgressStyle(description_width='initial')), HTML(value='')))
##
HBox(children=(IntProgress(value=0, description='standard training', style=ProgressStyle(description_width='initial')), HTML(value='')))
##
HBox(children=(IntProgress(value=0, description='standard training', style=ProgressStyle(description_width='initial')), HTML(value='')))
##
HBox(children=(IntProgress(value=0, description='standard training', style=ProgressStyle(description_width='initial')), HTML(value='')))
##
HBox(children=(IntProgress(value=0, description='standard training', style=ProgressStyle(description_width='initial')), HTML(value='')))
##
HBox(children=(IntProgress(value=0, description='standard training', style=ProgressStyle(description_width='initial')), HTML(value='')))
##
HBox(children=(IntProgress(value=0, description='standard training', style=ProgressStyle(description_width='initial')), HTML(value='')))

We output the predicted values 𝑓𝑧 against the exact ones 𝑓(𝑧), as functions of the basket values
𝑏(𝑧) in Figure 7.1

7.1.6.2 Standard codpy kernel

We provide the same approach with the kernel projection operator. The list of scenario for this
test is Table 7.4

The Table 7.5 output the values of this test

We output the predicted values 𝑓𝑧 against the exact ones 𝑓(𝑧), as functions of the basket values
𝑏(𝑧) in Figure 7.2

7.1.6.3 Pi function

We provide the same approach with the Pi function. The list of scenario for this test is Table 7.6

116 CHAPTER 7. APPLICATION TO OPTIMAL TRANSPORT

0.51.01.5
Basket values

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

AN
N

0.51.01.5
Basket values

0.0

0.2

0.4

0.6

0.8
AN

N

0.51.01.5
Basket values

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

AN
N

0.51.01.5
Basket values

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

AN
N

0.51.01.5
Basket values

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

AN
N

0.51.01.5
Basket values

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

AN
N

0.51.01.5
Basket values

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

AN
N

0.51.01.5
Basket values

0.0

0.2

0.4

0.6

0.8

AN
N

0.51.01.5
Basket values

0.0

0.2

0.4

0.6

0.8

AN
N

0.51.01.5
Basket values

0.0

0.2

0.4

0.6

0.8

AN
N

0.51.01.5
Basket values

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AN
N

predicted (red) vs test (green) variables and values

Figure 7.1: exact and predicted values for Tensoflow

Table 7.4: scenario list

D Nx Ny Nz
2 32 80 512
2 64 80 512
2 128 80 512
2 256 80 512
2 512 80 512
2 1024 80 512
2 2048 80 512
2 4096 80 512
2 8192 80 512
2 16384 80 512
2 32768 80 512

Table 7.5: codpy predictor indicators

0 1 2 3 4 5 6 7 8 9 10
predictor_idcodpy

pred
codpy
pred

codpy
pred

codpy
pred

codpy
pred

codpy
pred

codpy
pred

codpy
pred

codpy
pred

codpy
pred

codpy
pred

D 2 2 2 2 2 2 2 2 2 2 2
Nx 32 64 128 256 512 1024 2048 4096 8192 16384 32768
Ny 32 64 80 80 80 80 80 80 80 80 80
Nz 512 512 512 512 512 512 512 512 512 512 512
Df 1 1 1 1 1 1 1 1 1 1 1
execution_time0 0 0 0 0.01 0.01 0.01 0.02 0.03 0.05 0.09
scores 0.4813 0.5978 0.339 0.3737 0.2984 0.2273 0.1422 0.1332 0.1003 0.0779 0.0859
norm_function0.34 0.21 0.23 0.25 0.24 0.28 0.29 0.23 0.34 0.32 0.26
discrepancy_errors0.1272 0.0725 0.0956 0.1067 0.1166 0.211 0.2112 0.2314 0.1915 0.2375 0.2127

7.1. BACHELIER PROBLEM 117

0.51.01.5
Basket values

0.0

0.2

0.4

0.6

co
dp

y
pr

ed

0.51.01.5
Basket values

0.0

0.2

0.4

0.6

co
dp

y
pr

ed

0.51.01.5
Basket values

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

co
dp

y
pr

ed

0.51.01.5
Basket values

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

co
dp

y
pr

ed

0.51.01.5
Basket values

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

co
dp

y
pr

ed

0.51.01.5
Basket values

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

co
dp

y
pr

ed

0.51.01.5
Basket values

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

co
dp

y
pr

ed

0.51.01.5
Basket values

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

co
dp

y
pr

ed

0.51.01.5
Basket values

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

co
dp

y
pr

ed
0.51.01.5

Basket values

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

co
dp

y
pr

ed

0.51.01.5
Basket values

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

co
dp

y
pr

ed

predicted (red) vs test (green) variables and values

Figure 7.2: exact and predicted values for projection

Table 7.7: Pi indicators

0 1 2 3 4
predictor_id Pi:i.i.d. Pi:i.i.d. Pi:i.i.d. Pi:i.i.d. Pi:i.i.d.
D 2 2 2 2 2
Nx 32 64 128 256 512
Ny 32 64 128 256 512
Nz 32 64 128 256 512
Df 1 1 1 1 1
execution_time 0.15 0.33 1.52 6.19 29.02
scores 0.3319 0.2163 0.1653 0.0972 0.0689
norm_function 0.01 0.01 0.01 0.02 0.01
discrepancy_errors 0.1466 0.1287 0.1034 0.0422 0.0404

Table 7.6: scenario list

D Nx Ny Nz
2 32 32 32
2 64 64 64
2 128 128 128
2 256 256 256
2 512 512 512

The Table 7.7 output the values of the tests

We output the predicted values 𝑓𝑧 against the exact ones 𝑓(𝑧), as functions of the basket values
𝑏(𝑧) in Figure 7.3

118 CHAPTER 7. APPLICATION TO OPTIMAL TRANSPORT

0.5 1.0
Basket values

0.1

0.0

0.1

0.2

0.3

Pi
:i.

i.d
.

0.5 1.0
Basket values

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pi
:i.

i.d
.

0.5 1.0 1.5
Basket values

0.0

0.1

0.2

0.3

0.4

Pi
:i.

i.d
.

0.5 1.0 1.5
Basket values

0.0

0.1

0.2

0.3

0.4

Pi
:i.

i.d
.

0.5 1.0 1.5
Basket values

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pi
:i.

i.d
.

predicted (red) vs test (green) variables and values

Figure 7.3: exact and predicted values for Pi

Table 7.8: scenario list

D Nx Ny Nz
2 32 32 32
2 64 64 64
2 128 128 128
2 256 256 256
2 512 512 512

7.1.6.4 Pi function - discrepancy sequences

We provide the same approach with the Pi function, with sharp discrepancy sequences. The list
of scenario for this test is Table 7.8

The Table 7.9 output the values of the tests

We output the predicted values 𝑓𝑧 against the exact ones 𝑓(𝑧), as functions of the basket values
𝑏(𝑧) in Figure 7.4

7.1.7 Comparing methods
The Figure 7.5 presents a benchmark for scores, computed accordingly to (7.1.5). Axis are in
log-scale of the size of the training 𝑁𝑥.

The Figure 7.6 presents a benchmark regarding execution times in seconds. Axis are in log-scale
of the size of the training 𝑁𝑥.

7.1. BACHELIER PROBLEM 119

Table 7.9: Pi-sharp indicators

0 1 2 3 4
predictor_id Pi:sharp Pi:sharp Pi:sharp Pi:sharp Pi:sharp
D 2 2 2 2 2
Nx 32 64 128 256 512
Ny 32 64 128 256 512
Nz 32 64 128 256 512
Df 1 1 1 1 1
execution_time 0.07 0.26 1.71 6.02 30.16
scores 0.0922 0.1034 0.0762 0.0834 0.0477
norm_function 0.28 0.28 0.35 0.41 0.46
discrepancy_errors 0 0 0 0 0

0.5 1.0 1.5
Basket values

0.0

0.1

0.2

0.3

0.4

Pi
:s

ha
rp

1.0 1.5
Basket values

0.0

0.1

0.2

0.3

0.4

Pi
:s

ha
rp

0.5 1.0 1.5
Basket values

0.0

0.1

0.2

0.3

0.4

Pi
:s

ha
rp

0.5 1.0 1.5
Basket values

0.0

0.1

0.2

0.3

0.4

0.5

Pi
:s

ha
rp

0.5 1.0 1.5
Basket values

0.0

0.1

0.2

0.3

0.4

0.5

Pi
:s

ha
rp

predicted (red) vs test (green) variables and values

Figure 7.4: exact and predicted values for Pi-sharp

102 103 104

log2(Nx)

0.1

0.2

0.3

0.4

0.5

0.6

sc
or

es

ANN
Pi:i.i.d.
Pi:sharp
codpy pred

Figure 7.5: Benchmark of scores

120 CHAPTER 7. APPLICATION TO OPTIMAL TRANSPORT

102 103 104

log2(Nx)

10 2

10 1

100

101
sc

or
es

ANN
Pi:i.i.d.
Pi:sharp
codpy pred

Figure 7.6: Benchmark of execution times

7.2 Time series
This section remains to write properly.

7.2.1 Recurrent kernels
The implemented method is defined using two integer values : H and P. H is called the historical
depth, P the prediction depth. This setting defines a sliding window of size H+P over the dataset,
used to define the training set. If the dataset contains N vectors, then the training set can be of
size N-H-P. We can iterate the procedure, producing at each step P new predicted values. This
allows, theoretically, to produce predicted values of the temporal series at any future times.

This method allows to draw one trajectory, that can be considered as a iid realization of the
temporal series, based on the knowledge of its history. On the following example, H and P are set
to 360 days. Here the separation date is the 23/11/2020.

Figure 7.7: The generated BTC-USD curve is the yellow one.

Figure 7.8: The generated hash-rate curve is the yellow one.

This method has a lot of forecasting applications, and we do use it for professional purposes.
However, in the context of temporal series forecasting, such a method faces a number of questions.
For instance :

7.3. STRESS AND REVERSE STRESS TESTS 121

• It is not clear how to generate other realizations of the studied temporal series.
• As a consequence, it is not clear neither how to generate a pertinent mean estimator using

this construction.

Even if long-short term memory, or recurrent networks can produce credible generated samples,
beware to unstability issues. We have no theoretical references to support these methods.

7.2.2 Optimal transport methods for time series
Kernel methods can link easily with optimal transport theory. Using the polar factorization of
maps, we can also compute explicitly the quantile of the original distribution, and extrapolate it
on any random trajectory set, and we can draw “equi-probable” trajectories (i.e. iid realizations
of the underlying process).

We have also a quite clear interpretation of a mean estimator and the method is quite performing.

Figure 7.9: Generated sample and mean estimator for the BTC hash-rate curve.

7.3 Stress and reverse stress tests

122 CHAPTER 7. APPLICATION TO OPTIMAL TRANSPORT

Chapter 8

Application to partial differential
equations

123

124 CHAPTER 8. APPLICATION TO PARTIAL DIFFERENTIAL EQUATIONS

Bibliography

[1] A. Antonov and M. Konikov and M. Spector, The free boundary SABR:
natural extension to negative rates, unpublished report, January 2015, available at
https://ssrn.com/abstract=2557046.

[2] I. Babuska, U. Banerjee, and J.E. Osborn, Survey of mesh-less and generalized finite
element methods: a unified approach, Acta Numer. 12 (2003), 1–125.

[3] A. Berlinet and C. Thomas-Agnan, Reproducing kernel Hilbert spaces in probability and
statistics, Springer US, Kluwer Academic Publishers, 2004.

[4] M.A. Bessa, and J.T. Foster, T. Belytschko, and W.K. Liu, A mesh-free unification:
reproducing kernel peridynamics, Comput. Mech. 53 (2014), 1251–1264.

[5] A. Brace, and D. Gatarek and M. Musiela, The market model of interest rate dynamics,
Math. Finance 7 (1997), 127–154.

[6] H. Brezis, Remarques sur le problème de Monge–Kantorovich dans le cas discret, Comptes
Rendus Mathematique 356 (2018), 207–213.

[7] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions,
Comm. Pure Applied Math. XLIV (1991), 375–417.

[8] H. Buehler, Volatility and dividends: volatility modeling with cash dividends and simple
credit risk, February 2010, available at: https://ssrn.com/abstract=1141877.

[9] Financial Service Authority CP 08/24, PS 09/20 and GL32

[10] G.E. Fasshauer, Mesh-free methods, in “Handbook of Theoretical and Computational Nan-
otechnology”, Vol. 2, 2006.

[11] G.E. Fasshauer, Mesh-free approximation methods with Matlab, Interdisciplinary Math.
Sciences, Vol. 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007.

[12] G.E. Fasshauer, Positive definite kernels: past, present and future, unpublished report,
available at http://www.math.iit.edu/ fass/PDKernels.pdf.

[13] A. Gretton, K. Borgwardt, M. J. Rasch, B. Scholkopf, A. J. Smola, A Kernel
Method for the Two-Sample Problem, arXiv:0805.2368

[14] F.C. Günther and W.K. Liu, Implementation of boundary conditions for mesh-less meth-
ods, Comput. Methods Appl. Mech. Engrg. 163 (1998), 205–230.

[15] E. Haghighat, M. Raissib, A. Moure, H. Gomez, and R. Juanes, A physics-informed
deep learning framework for inversion and surrogate modeling in solid mechanics, Comput.
Methods Appl. Mech. Engrg. 379 (2021), 113741

[16] B.N. Huge and A. Savine, Differential machine learning, unpublished report, January 2020,
available at https://ssrn.com/abstract=3591734

125

126 BIBLIOGRAPHY

[17] Charles Gustave Jacob Jacobi, «De investigando ordine systematis aequationum dif-
ferentialum vulgarium cujuscunque», herausgegeben von K. Weierstrass, Berlin, Bruck und
Verlag von Georg Reimer, 1890, p.193-216

[18] T.F. Korzeniowski and K. Weinberg, Amulti-level method for data-driven finite element
computations, Comput. Methods Appl. Mech. Engrg. 379 (2021), 113740.

[19] J.J. Koester and J.-S. Chen, Conforming window functions for mesh-free methods, Comm.
Numer. Methods Engrg. 347 (2019), 588–621.

[20] Y. LeCun, C. Cortes, and C.J.C. Burges, The MNIST database of handwritten digits,
http://yann.lecun.com/exdb/mnist/

[21] J.-M. Mercier, Optimally Transported schemes. Applications to Mathematical Finance,
unpublished, https://www.researchgate.net/publication/228689632_Optimally_Transported
_schemes_Applications_to_Mathematical_Finance

[22] J.-M. Mercier, A High-Dimensional Pricing Framework for Financial Instruments Valua-
tion, DOI:10.2139/ssrn.2432019

[23] P.G. LeFloch and J.-M. Mercier, Revisiting the method of characteristics via a convex
hull algorithm, J. Comput. Phys. 298 (2015), 95–112.

[24] P.G. LeFloch and J.-M. Mercier, A new method for solving Kolmogorov equations in
mathematical finance, C. R. Math. Acad. Sci. Paris 355 (2017), 680–686.

[25] P.G. LeFloch and J.-M. Mercier, The Transport-based Mesh-free Method (TMM). A
short review, The Wilmott journal 109 (2020), 52–57. Available at ArXiv:1911.00992.

[26] P.G. LeFloch and J.-M. Mercier, Mesh-free error integration in arbitrary dimensions: a
numerical study of discrepancy functions, Comput. Methods Appl. Mech. Engrg. 369 (2020),
113245.

[27] P.G. LeFloch and J.-M. Mercier, A class of mesh-free algorithms for mathemati-
cal finance, machine learning, and fluid dynamics, Preprint February 2021. Available at
ssrn.com/abstract=3790066.

[28] P.G. LeFloch, J.-M. Mercier, and S. Miryusupov, CodPy: a tutorial, January 2021,
available at ssrn.com/abstract=3769804.

[29] P.G. LeFloch, J.-M. Mercier, and S. Miryusupov, CodPy: an advanced tutorial,
January 2021, available at ssrn.com/abstract=3769804.

[30] P.G. LeFloch, J.-M. Mercier, and S. Miryusupov, CodPy: a kernel-based reordering
algorithm, January 2021, available at ssrn.com/abstract=3770557.

[31] P.G. LeFloch, J.-M. Mercier, and S. Miryusupov, CodPy: RKHS-based polar factor-
ization and sampling algorithm, in preparation.

[32] P.G. LeFloch, J.M. Mercier, and Sh. Miryusupov, CodPy: RKHS-based algorithms
and conditional expectations, in preparation.

[33] P.G. LeFloch, J.-M. Mercier, and S. Miryusupov, CodPy: Support Vector Machines
(SVM) for (reverse) stress tests in finance, in preparation.

[34] S.F. Li and W.K. Liu, Mesh-free particle methods, Springer Verlag, Berlin, 2004.

[35] G.R. Liu, Mesh-free methods: moving beyond the finite element method, CRC Press, Boca
Raton, FL, 2003.

[36] G.R. Liu, An overview on mesh-free methods for computational solid mechanics, Int. J.
Comp. Methods 13 (2016), 1630001.

https://www.researchgate.net/publication/228689632_Optimally_Transported_schemes_Applications_to_Mathematical_Finance
https://www.researchgate.net/publication/228689632_Optimally_Transported_schemes_Applications_to_Mathematical_Finance

BIBLIOGRAPHY 127

[37] J.-M. Mercier and Sh. Miryusupov, Hedging strategies for net interest income
and economic values of equity, unpublished report, September 2019, available at:
https://ssrn.com/abstract=3454813.

[38] Y. Nakano, Convergence of mesh-free collocation methods for fully nonlinear parabolic
equations, Numer. Math. 136 (2017), 703–723.

[39] F. Narcowich, J. Ward, and H. Wendland, Sobolev bounds on functions with scattered
zeros, with applications to radial basis function surface fitting, Math. of Comput. 74 (2005),
743–763.

[40] H. Niederreiter, Random number generation and quasi-Monte Carlo methods, CBMS-NSF
Regional Conf. Series in Applied Math., Soc. Industr. Applied Math., 1992.

[41] H.S. Oh, C. Davis, and J.W. Jeong, Mesh-free particle methods for thin plates, Comput.
Methods Appl. Mech. Engrg. 209/212 (2012), 156–171.

[42] R. Opfer, Multiscale kernels, Adv. Comput. Math. 25 (2006), 357–380.

[43] R. Salehi and M. Dehghan, A moving least square reproducing polynomial mesh-less
method, Appl. Numer. Math. 69 (2013), 34–58.

[44] M. Sathyapriya, Dr. V. Thiagarasu, A cluster-based approach for credit card fraud
detection system using Hmm with the implementation of big data technology, Report 2019.

[45] J. Sirignano and K. Spiliopoulos, DGM: a deep learning algorithm for solving partial
differential equations, J. Comput. Phys. 375 (2018), 1339–1364.

[46] P. Traccucci, L. Dumontier, G. Garchery, B. Jacot, A Triptych Approach for Re-
verse Stress Testing of Complex Portfolios. arXiv:1906.11186

[47] R.S. Varga, Matrix iterative analysis, Springer Verlag, 2000.

[48] C. Villani, Optimal transport, old and new, Springer Verlag, 2009.

[49] H. Wendland, Sobolev-type error estimates for interpolation by radial basis functions, in
“Surface fitting and multiresolution methods” (Chamonix-Mont-Blanc, 1996), Vanderbilt Univ.
Press, Nashville, TN, 1997, pp. 337–344.

[50] H. Wendland, Scattered data approximation, Cambridge Monograph, Applied Comput.
Math., Cambridge University, 2005.

[51] J.X. Zhou and M.E. Li, Solving phase field equations using a mesh-less method, Comm.
Numer. Methods Engrg. 22 (2006), 1109–1115.

[52] B. Zwicknagl, Power series kernels, Constructive Approx. 29 (2008), 61–84.

	1 Introduction
	1.1 Main objective
	1.2 Outline of this monograph
	1.3 Further references

	2 Brief overview of methods of machine learning
	2.1 A framework for machine learning
	2.2 Exploratory data analysis
	2.3 Performance indicators for machine learning
	2.4 General specification of tests
	2.5 Benchmark methodology: kernel-based predictors
	2.6 Benchmark methodology: neural network predictors
	2.7 Benchmark methodology: regression-tree predictors
	2.8 Tutorial in N dimensions
	2.9 Benchmark methodology for unsupervised learning

	3 Kernel methods for machine learning
	3.1 Aim of this chapter
	3.2 Fundamental notions for supervised learning
	3.3 Dealing with kernels
	3.4 Kernel engineering
	3.5 Discrete differential operators
	3.6 A kernel-based clustering algorithm

	4 Kernel methods for optimal transportation
	4.1 Discrete ordering algorithms
	4.2 Conditional expectation algorithm
	4.3 Polar factorization algorithms

	5 Application to supervised machine learning
	5.1 Regression problem: housing price prediction
	5.2 Classification problem: handwritten digits
	5.3 Reconstruction problems : learning from sub-sampled signals in tomography.

	6 Application for unsupervised machine learning
	6.1 Classification problem: handwritten digits
	6.2 German credit risk
	6.3 Credit card marketing strategy
	6.4 Credit card fraud detection
	6.5 Portfolio of stock clustering

	7 Application to optimal transport
	7.1 Bachelier problem
	7.2 Time series
	7.3 Stress and reverse stress tests

	8 Application to partial differential equations

