R. V. Southwell, “On the general theory of elastic stability,” Philosophical Transactions of the Royal Society A, London, vol. 213, pp. 187-244, January 1914. R. C. Tennyson, “Buckling of laminated composite cylinders: a review,” Composites, vol. 6, p. 17, 1975. G. J. Simitses, D. Shaw, I. Sheinman and J. Giri, “Imperfection sensitivity of fiber-reinforced, composite, thin cylinders,” Composite Science and Technology, vol. 22, pp. 259-276, 1985. G. J. Simitses, I. Sheinman and D. Shaw, “The accuracy of the Donnell’s equations for axially-loaded, imperfect orthotropic cylinders,” Computers & Strutures, vol. 20, no. 6, pp. 939-945, 1985. L. H. Donnell, “A new theory for the buckling of thin cylinders under axial compression and bending,” ASME Transactions, vol. 56, pp. 795-806, 1934. J. L. Sanders, “Nonlinear theories of thin shells,” Quarterly of Applied Mathematics, vol. 21, pp. 21-36, 1936. Y. Goldfeld, I. Sheinman and M. Baruch, “Imperfection sensitivity of conical shells,” AIAA Journal, vol. 4, no. 3, pp. 517-524, 2003. S. P. Timoshenko and J. M. Gere, Theory of elastic stability. Second edition, New York: McGraw-Hill, 1985. W. T. Koiter, “A translation of the stability of elastic equilibrium,” Technische Hooge School at Delft, Department of Mechanics, Shipbuilding and Airplane Building. 14th November., 1945. B. Geier and G. Singh, “Some simple solutions for buckling loads of thin and moredate thick cylindrical shells and panels made of laminated composite material,” Aerospace Science and Technology, vol. 1, pp. 47-63, 1997. Y. Goldfeld, “Imperfection sensitivity of laminated conical shells,” International Journal of Solids and Structures, vol. 44, pp. 1221-1241, 2007. J. M. Rotter, “Elephant’s foot buckling in pressurized cylindrical shells,” Stahlbau, vol. 75, no. 9, pp. 742-747, 2006. S. G. P. Castro, M. A. Arbelo, R. Zimmermann and R. Degenhardt, “Exploring the constancy of the global buckling load after a critical geometric imperfection level in thin-walled cylindrical shells for less conservative knock-down factors,” Thin-Walled Structures, vol. 72, pp. 76-87, 2013. S. G. P. Castro, R. Zimmermann, M. A. Arbelo, R. Khakimova, M. W. Hilburger and R. Degenhardt, “Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells,” Thin-Walled Structures, vol. 74, pp. 118-132, 2014. C. Hühne, Robuster Entwurf beulgefährdeter, unversteifter Kreiszylinderschalen aus Faserverbundwerkstoff, Braunschweig: PhD vom Fachbereich Maschinenbau der Technischen Universität Carolo-Wilhelmina, 2005. C. Hühne, R. Rolfes and J. Tessmer, “A new approach for robust design of composite cylindrical shells under axial compression,” In: Proceedings of the international ESA conference, Nordwijk, 2005. C. Hühne, R. Rolfes, E. Breitbach and J. Teßmer, “Robust design of composite cylindrical shells under axial compression - simulation and validation,” Thin-Walled Structures, vol. 46, pp. 947-962, 2008. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Volume 2: Solid Mechanics, Fifth Edition, Oxford: Butterworth-Heinemann, 2000. D. S. ABAQUS User’s Manual, Abaqus Analysis User’s Manual, 2011. J. N. Reddy, Energy Principles and Variational Methods in Applied Mechanics, Second Edition, New Jersey: John Wiley & Sons, 2002. R. M. Jones, Mechanics of composite materials, United States of America: Taylor & Francis, 1999. R. D. Cook, Finite Element Modeling for Stress Analysis, University of Wisconsin, Madison: John Wiley & Sons, 1995. R. M. Jones, Buckling of bars, plates and shells, Blacksburg, Virginia, USA: Bull Ridge Publishing, 2006. W. C. Young and R. G. Budynas, Roark’s formulas for stress and strain. Seventh Edition, New York: McGraw-Hill, 2002. K.-J. Bathe, Finite element procedures, New Jersey: Prentice Hall, 1996. P. Buermann, R. Rolfes, J. Tessmer and M. Schagerl, “A semi-analytical model for local post-buckling analysis of stringer- and frame-stiffened cylindrical panels,” Thin-Walled Structures, vol. 44, pp. 102-114, 2006.