
Memo: SkyH5 file format

Bryna Hazelton, and the pyradiosky team

October 5, 2023

Contents

1 Introduction

This memo introduces a new HDF51 based file format of a SkyModel object in pyradiosky2,
a python package that provides objects and interfaces for representing diffuse, extended
and compact astrophysical radio sources. Here, we describe the required and optional
elements and the structure of this file format, called SkyH5.

We assume that the user has a working knowledge of HDF5 and the associated python
bindings in the package h5py3, as well as SkyModel objects in pyradiosky. For more in-
formation about HDF5, pleasevisit https://portal.hdfgroup.org/display/HDF5/HDF5.
For more information about the parameters present in a SkyModel object, please visit
https://pyradiosky.readthedocs.io/en/latest/skymodel.html. Examples of how to
interact with SkyModel objects in pyradiosky are available at http://pyradiosky.readthedocs.
io/en/latest/tutorial.html.

Note that throughout the documentation, we assume a row-major convention (i.e., C-
ordering) for the dimension specification of multi-dimensional arrays. For example, for
a two-dimensional array with shape (N , M), the M -dimension is varying fastest, and is
contiguous in memory. This convention is the same as Python and the underlying C-
based HDF5 library. Users of languages with the opposite column-major convention (i.e.,
Fortran-ordering, seen also in MATLAB and Julia) must transpose these axes.

2 Overview

A SkyH5 object contains data representing catalogs and maps of astrophysical radio sources,
including the associated metadata necessary to interpret them. A SkyH5 file contains two

1https://www.hdfgroup.org/
2https://github.com/RadioAstronomySoftwareGroup/pyradiosky
3https://www.h5py.org/

1

https://portal.hdfgroup.org/display/HDF5/HDF5
https://pyradiosky.readthedocs.io/en/latest/skymodel.html
http://pyradiosky.readthedocs.io/en/latest/tutorial.html
http://pyradiosky.readthedocs.io/en/latest/tutorial.html
https://www.hdfgroup.org/
https://github.com/RadioAstronomySoftwareGroup/pyradiosky
https://www.h5py.org/


primary HDF5 groups: the Header group, which contains the metadata, and the Data

group, which contains the Stokes parameters representing the flux densities or brightness
temperatures of the sources (as well as some optional arrays the same size as the stokes
parameters data). Datasets in the Data group are can be passed through HDF5’s compres-
sion pipeline, to reduce the amount of on-disk space required to store the data. However,
because HDF5 is aware of any compression applied to a dataset, there is little that the user
has to explicitly do when reading data. For users interested in creating new files, the use
of compression is optional in the SkyH5 format, because the HDF5 file is self-documenting
in this regard.

Many of the datasets in SkyH5 files have units associated with them (represented as
astropy Quantity objects on the SkyModel object). The units are stored as attributes
on the datasets with the name “unit”. Datasets that derive from other astropy objects (e.g.
astropy Time, astropy EarthLocation, astropy Latitude, astropy Longitude) also
have an “object type” attribute indicating the object type.

In the discussion below, we discuss required and optional datasets in the various groups.
We note in parenthesis the corresponding attribute of a SkyModel object. Note that in
nearly all cases, the names are coincident, to make things as transparent as possible to the
user.

3 Header

The Header group of the file contains the metadata necessary to interpret the data. We
begin with the required parameters, then continue to optional ones. Unless otherwise noted,
all datasets are scalars (i.e., not arrays). The precision of the data type is also not specified
as part of the format, because in general the user is free to set it according to the desired use
case (and HDF5 records the precision and endianness when generating datasets). When
using the standard h5py-based implementation in pyradiosky, this typically results in 32-
bit integers and double precision floating point numbers. Each entry in the list contains
(1) the exact name of the dataset in the HDF5 file, in boldface, (2) the expected datatype
of the dataset, in italics, (3) a brief description of the data, and (4) the name of the
corresponding attribute on a SkyModel object, italicized and in parentheses at the end of
the entry.

Note that string datatypes should be handled with care. See the Appendix in the UVH5
memo (https://github.com/RadioAstronomySoftwareGroup/pyuvdata/blob/main/docs/
references/uvh5_memo.pdf) for appropriately defining them for interoperability between
different HDF5 implementations.

3.1 Required Parameters

• component type: string The type of components in the sky model. The options are:
“healpix” and “point”. If component type is “healpix”, the components are the pixels

2

https://github.com/RadioAstronomySoftwareGroup/pyuvdata/blob/main/docs/references/uvh5_memo.pdf
https://github.com/RadioAstronomySoftwareGroup/pyuvdata/blob/main/docs/references/uvh5_memo.pdf


in a HEALPix map in units compatible with K or Jy/sr. If the component type is
“point”, the components are point-like sources, or point like components of extended
sources, in units compatible with Jy or K sr. Some additional parameters are required
depending on the component type. (component type)

• Ncomponents: int The number of components in the sky model. This can be the
number of individual compact sources, or it can include components of extended
sources, or the number of pixels in a map. (Ncomponents)

• spectral type: string This describes the type of spectral model for the components.
The options are:

1. spectral index The convention for the spectral index is I = I0
f
f0

α
, where I0

is the stokes parameter at the reference frequency parameter f0 and α is the
spectral index parameter. Note that the spectral index is assumed to apply
in the units of the stokes parameter (i.e. there is no additive factor of 2 ap-
plied to convert between brightness temperature and flux density units). If the
spectral model uses a spectral index, the reference frequency and spectral index
parameters are required.

2. subband The subband spectral model is used for catalogs with multiple flux
measurements at different frequencies (i.e. GLEAM https://www.mwatelescope.

org/science/galactic-science/gleam/). For subband spectral models, the
freq array and freq edge array parameters are required to give the nominal (usu-
ally the central) frequency and the top and bottom of each subband respectively.

3. flat The flat spectral model assumes no spectral flux dependence, which can be
useful for testing. Since the flux is assumed to be the same at all frequencies it
does not require any extra parameters to be defined.

4. full The full spectral model is used for catalogs with flux values at multiple
frequencies that are not expected to have flux correlations as a function of fre-
quency, so cannot not be interpolated to frequencies not included in the catalog.
This is a good representation for e.g. Epoch of Reionization signal cubes. For
full spectral models, the freq array parameter is required to give the frequencies.

(spectral type)

• Nfreqs: int Number of frequencies if spectral type is “full” or “subband”, 1 other-
wise. (Nfreqs)

• history: string The history of the catalog. (history)

3

https://www.mwatelescope.org/science/galactic-science/gleam/
https://www.mwatelescope.org/science/galactic-science/gleam/


3.2 Optional Parameters

• name: string The name for each component. This is a one-dimensional array of size
(Ncomponents). Note this is required if the component type is “point”. (name)

• skycoord: A nested dataset that contains the information to create an astropy

SkyCoord object representing the component positions. Note this is required if the
component type is “point”. The keys must include:

– frame: string The name of the coordinate frame (e.g. “icrs”, “fk5”, “galactic”).
Must be a frame supported by astropy. Note that only one frame is allowed,
which applies to all the components.

– representation type: string The representation type, one of “spherical”, “carte-
sian” or “cylindrical”. This sets what the coordinate names can be. It is most
common to set this to “spherical” and specify latitudinal and longitudinal co-
ordinates (e.g. ra, dec) and optionally distance coordinates. It is also possible
to use other representations such as cartesian or cylindrical, e.g. for “cartesian”
the coordinates would be specified in x, y, and z. See the astropy SkyCoord

docs for more details.

– Coordinate names (e.g. ra, dec, alt, az): float Two or three such components
must be present, which ones are required depend on the frame and representa-
tion type. These are one-dimensional arrays of size (Ncomponents).

And may include any other attributes accepted as input parameters for an astropy

SkyCoord object (e.g. obstime, equinox, location). Each of these datasets may have
“unit” and “object type” attributes and may be either a scalar or a one-dimensional
array of size (Ncomponents) as appropriate. (skycoord)

• nside: int The HEALPix nside parameter. Note this is required if the compo-
nent type is “healpix” and should not be defined otherwise. (nside)

• hpx order: string The HEALPix pixel ordering convention, either “ring” or “nested”.
Note this is required if the component type is “healpix” and should not be defined
otherwise. (hpx order)

• hpx frame: A nested dataset that contains the information to describe an astropy

coordinate frame giving the HEALPix coordinate frame. This is similar to the sky-
coord dataset described above but it does not contain the representation type or the
coordinate names. Note this is required if the component type is “healpix” and
should not be defined otherwise. The keys must include:

– frame: string The name of the coordinate frame (e.g. “icrs”, “fk5”, “galactic”).
Must be a frame supported by astropy.

4



And may include any other scalar attributes accepted as input parameters for an
astropy SkyCoord object (e.g. obstime, equinox, location). Each of these datasets
may have “unit” and “object type” attributes as appropriate. (hpx frame)

• hpx inds: int The HEALPix indices for the included components. Does not need
to include all the HEALPix pixels in the map. This is a one-dimensional array of
size (Ncomponents). Note this is required if the component type is “healpix” and
should not be defined otherwise. (hpx inds)

• freq array: float Frequency array giving the nominal (or central) frequency in a
unit that can be converted to Hz. Note this is required if the spectral type is “full”
or “subband” and should not be defined otherwise. (freq array)

• freq edge array: float Array giving the frequency band edges in a unit that can be
converted to Hz. This is a two dimensional array with shape (2, Nfreqs). The zeroth
index in the first dimension holds the lower band edge and the first index holds the
upper band edge. Note this is required if the spectral type is “subband” and should
not be defined otherwise. (freq edge array)

• reference frequency: float Reference frequency giving the frequency at which the
flux in the stokes parameter was measured in a unit that can be converted to Hz.
This is a one-dimensional array of size (Ncomponents). Note this is required if the
spectral type is “spectral index” and should not be defined if the spectral type is
“full” or “subband”. (reference frequency)

• spectral index: float The spectral index describing the flux evolution with fre-
quency, see details in the spectral type description above. This is a one-dimensional
array of size (Ncomponents). Note this is required if the spectral type is “spec-
tral index” and should not be defined otherwise. (spectral index )

• extended model group: string Identifier that groups components of an extended
source model. This is a one-dimensional array of size (Ncomponents), with empty
strings for point sources that are not components of an extended source. (ex-
tended model group)

3.3 Extra Columns

SkyModel objects support “extra columns”, which are additional arbitrary per-component
arrays of metadata that are useful to carryaround with the data but which are not formally
supported as a reserved keyword in the Header. In a SkyH5 file, extra columns are handled
by creating a datagroup called extra columns inside the Data datagroup. When possible,
these quantities should be HDF5 datatypes, to support interoperability between SkyH5
readers. Inside of the extra columns datagroup, each extra columns is saved as a key-value

5



pair using a dataset, where the name of the extra columns is the name of the dataset
and its corresponding array is saved in the dataset. The “unit” and “object type” HDF5
attributes are used in the same way as for the other header items (see ??), but it is not
recommended to use other attribute names due to the lack of support inside of pyradiosky
for ensuring the attributes are properly saved when reading and writing SkyH5 files.

4 Data

In addition to the Data datagroup in the root namespace, there must be one called Data.
This datagroup saves the Stokes parameters representing the flux densities or brightness
temperatures of the sources and some optional arrays that are the same size. They are also
all expected to be the same shape: (4, Nfreqs, Ncomponents) where the first dimension
indexes the polarization direction, ordered (I, Q, U, V). The stokes dataset must be
present in this datagroup and it must have a “unit” attribute that is equivalent to Jy or
K str if the component type is “point” or equivalent to Jy/str or K if the component type
is “healpix”. In addition, this datagroup may also contain a stokes error dataset that
gives the standard error on the stokes values and should have the same “unit” attribute as
the stokes dataset and a beam amp dataset that gives the beam amplitude at the source
position for the instrument that made the measurement.

6


