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Abstract

Markov chain Monte Carlo (MCMC) methods have fouvidespread use in many fields
of study to estimate the average properties of ¢exngystems, and for posterior
inference in a Bayesian framework. Existing theamngl experiments prove convergence
of well constructed MCMC schemes to the appropriateting distribution under a
variety of different conditions. In practice, hovee\vthis convergence is often observed to
be disturbingly slow. This is frequently caused dy inappropriate selection of the
proposal distribution used to generate trial movethe Markov Chain. Here we show
that significant improvements to the efficiency MCMC simulation can be made by
using a self-adaptive Differential Evolution leargistrategy within a population-based
evolutionary framework. This scheme, entitled DOféntial Evolution Adaptive
Metropolis or DREAM, runs multiple different chainsimultaneously for global
exploration, and automatically tunes the scaleaiehtation of the proposal distribution
in randomized subspaces during the search. Ergpditithe algorithm is proved, and
various examples involving nonlinearity, high-disemality, and multimodality show
that DREAM is generally superior to other adaptMEMC sampling approaches. The
DREAM scheme significantly enhances the applicgbibf MCMC simulation to
complex, multi-modal search problems.

! Center for NonLinear Studies (CNLS), Los Alamodiblzal Laboratory, Los Alamos, NM 87545, USA;
E-mail: vrugt@lanl.gov

2 Biometris, Wageningen University and Research @e6700 AC, Wageningen, The Netherlands

% Center for Nonlinear Dynamics in Economics andaRire, University of Amsterdam, Amsterdam, The
Netherlands

4 Civilian Nuclear Program Office (SPO-CNP), Los fias National Laboratory, Los Alamos, NM 87545,
USA

®> Mathematical Modeling and Analysis group (T-7)sl&lamos National Laboratory, Los Alamos, NM
87545, USA

® Statistical Sciences (CCS-6), Los Alamos Natidrddoratory, Los Alamos, NM 87545, USA

" These authors contributed equally to this work.



Abbreviations MCMC, Markov chain Monte Carlo; RWM, random watketropolis;

DE-MC, differential evolution Markov chain; DRAM, ethyed rejection adaptive
Metropolis; DREAM, differential evolution adaptivenetropolis; SCE-UA, shuffled
complex evolution - university of Arizona

Introduction

In 1953, Metropolis et al. [1] introduced the Mavkchain Monte Carlo (MCMC)
scheme to estimatg_f (x), the expectation of a functidrwith respect to a distribution

T. The basis of this method is a Markov chain thetegates a random walk through the
search space and successively visits solutions stdhle frequencies stemming from
distributiontt. The MCMC estimator is approximated as the unweidmean of along

the lastM elements of the realized path of the chﬁHZLf(xi), that is, after a burn-

in period to allow the chain to explore the seaphce and reach its stationary regime.
This algorithm has been used extensively in siadilsipphysics, and appeared also in
spatial statistics and statistical image analysig2] the MCMC method was extended
for posterior inference in a Bayesian frameworkeiEgince, the method has found
widespread use for sampling from posterior distidns in many fields of study ranging
from physics and chemistry, to finance, economigsnetics, statistical inference,
hydrology, biology and bioinformatics [3, 4, 5,%,8, 9, 10, 11, 12].

To visit configurations with a stable frequency, RICMC algorithm generates trial
moves from the current @ld") position of the Markov chair;; to a new state. The

earliest and most general MCMC approach is the aendvalk Metropolis (RWM)

algorithm. Assume that we have already sampledtpdixy,... X1} this algorithms

proceeds in the following three steps. First, adaate pointz is sampled from a
proposal distributiorg(+|-) that depends on the present locatiepn,and is symmetric,
d(x-1,2) = d(z,X-1). Next, the candidate point is either acceptedepected using the
Metropolis acceptance probability:

| 1M(2) .
mln[ x_) ;L} if T(x,_,) >0 (1)
1 if T(x,_;)=0

o (X-y,2) =

where 11(-) denotes the probability density function (pdf) the target distribution.
Finally, if the proposal is accepted the chain nsoteez, otherwise the chain remains at
its current locatiorx:.;.

The original RWM scheme is constructed to maintitailed balance with respect to
T(-) at each step in the chain:

P(X) P(X — 2) = P(2) P(Z ~ X,) )



wherep(X+.1) (p(2)) denotes the probability of finding the systenthe state;.; (z), and
p(X1 —» Z) (p(z - X-1)) denotes the conditional probability to perforrtrial move from
Xt1 t0 Z (z t0 X¢.1). The result is a Markov chain which under songularity conditions
has a unique stationary distribution with paf). Hastings [13] extended Eq. (1) to
include non-symmetrical proposal distributions,. igx..1,Z2) # q(z,X.1) in which a
proposal jump t@ and the reverse jump do not have equal probabilitys extension is
called the Metropolis Hastings algorithm (MH), amaks become the basic building block
of many existing MCMC sampling schemes.

The simplicity of the original MH algorithm and thretically sound statistical basis of
the method has lead to widespread implementatidruaa. However, in practice the MH
algorithm requires tuning of some internal varightefore the MCMC simulator works
effectively in practice. The efficiency of the methis affected by the scale and
orientation of the proposal distribution(x:.1,-) used to generate trial moves (transitions)
in the Markov Chain. When the proposal distributiertoo wide, too many candidate
points are rejected, and therefore the chain vatl mix efficiently and only converge
slowly to the target distribution. On the other iawhen the proposal distribution is too
narrow, nearly all candidate points are accepteti{ie distance moved is so small that it
will take a prohibitively large number of updatesfdre the sampler will find solutions
that belong to the target distribution. The chaféhe proposal distribution is therefore
crucial and determines the practical applicabitylCMC simulation in many fields of
study [14].

Automatic tuning of the proposal distribution ip@werful remedy to overcome many of
the difficulties associated with the selection ofappropriate jumping distribution. This
approach uses the information from the samplintbhygo continuously adapt the shape
and size of the proposal distribution and evoheghmpler efficiently towards a limiting
distribution. Examples of such methods are the AdapProposal (AP) and Adaptive
Metropolis (AM) schemes presented in [15,16], resipely. These algorithms utilize a
single Markov chain and continuously adapt the cawnae,C; of a Gaussian proposal
distribution, gi(Xt-1,-) =Nd(X1,Ct) using the information contained in the sampléhpaft
the chainC; = syCov(Xo,... Xe1} + Si€l 4. Here,sq represents a scaling factor that depends
only on the dimensionalityl of the problem,y signifies thed-dimensional identity
matrix, ande is a constant with a small value compared to tifidhe target so that the
whole parameter space can be reached. As a basaeckhe scaling factor is chosen to
be sy = 2.4/d which is optimal for Gaussian target and propatisiributions [17]. To
improve efficiency for higher dimensional problerfs3] has extended the AM method
to componentwise updating, wherés sampled component by component.

Also relevant to the work presented here is theajped Rejection Adaptive Metropolis
(DRAM) algorithm presented in [19]. This MCMC schencombines Adaptive

Metropolis and Delayed Rejection [20] to continugualternate between larger and
smaller steps in the Markov chain. Upon rejectiostead of retaining the same position,
a second stage trial is proposed using a deflatepopal distribution. The acceptance
probability of this second candidate point is cotepuso that reversibility of the Markov
chain is preserved. Various published studies Isdesvn that DR significantly enhances



the acceptance rate of MCMC simulation. Care mestalken, however that adaptation
does not destroy the detailed balance and ovegadecity of the Markov chain.

The covariance adaptation strategy presented ingddd used in the AM, AP, DRAM
and SCAM schemes works well for relatively simpld#ference problems, but is
inefficient and unreliable when confronted with f@w®rs with very heavy tails and,
possibly, infinite first and second moments, andhwiomplex posterior surfaces that
contain multiple regions of attraction and numerdosal optima. A single chain is
unable to efficiently cope with the latter diffitigls, and traverse well in pursuit of
sampling the target distribution. This will be demstrated in this paper. Other adaptive
MCMC approaches proposed in the literature incltide work of [21], [22], and [23]
using multiple different chains to explore the sbaspace, and the regeneration and self-
regenerative algorithms of [24], [25] and [26] tlagiproximate the proposal distribution
using mixture components. Yet, these schemes havted practical applicability in
higher dimensions, either requiring significant noeynstorage or complicated fitting of
high component and dimensional mixture distribugion

Recognizing these limitations of existing MCMC sctes, ter Braak [27] recently
presented the Differential Evolution-Markov ChaidE-MC) method. In DE-MCN

different Markov Chaingx;,i =1,...,N} are run simultaneously in parallel. At the current

time they form a population, conveniently storedamsN x d matrix X, with d the
dimension ofz. Jumps in each chair 1,...N are generated by taking a fixed multiple
of the difference of two randomly chosen membehsifcs) ofX (without replacement):

Z=x, +y(xL -xZ)+e o #r, #i (3)

The Metropolis ratio is used to decide whetherdweat candidate points or not. From the
guidelines oy in RWM, the optimal choice of = 238/./(2d) . Every 1¢' generationy

= 1.0 to allow direct jumps between two modes [ZHle DE-MC approach solves two
important problems in MCMC sampling. First, DE-MQut@amatically selects an
appropriate scale and orientation of the proposstribution en route to the target
distribution. Second, heavy-tailed and multimodalget distributions are efficiently
accommodated, as DE-MC directly uses the currerdtion of the chains (stored X,
instead of Co\X) or the adaptive covariance, to generate candiaités, allowing the
possibility of direct jumps between one modeXadnd another.

In this paper, we show that the efficiency of DE-M@n be enhanced, sometimes
dramatically, using a similar evolution scheme, hvith self-adaptive randomized

subspace sampling. This novel method maintainsildéthalance and ergodicity and

provides new opportunities for solving previousiyractable sampling problems in many
fields of study.

Materials and M ethods



The MCMC algorithm developed in the present stuglgntitled, DiffeRential Evolution
Adaptive Metropolis, or DREAM, and uses DE-MC asntain building block. We drop
the subscript for generation tinteln the following, the current state of tife chain is

given by ad-dimensional vector' (i =1,...N) and itsj" element byx‘j. The DREAM
algorithm is as follows:

1. Draw an initial populatiofx',i =1,...,N} using the prior distribution.
2. Compute the densitg(x') fori = 1,...N.

FORi ~ 1,...N DO (CHAIN EVOLUTION)

3. Generate a candidate poidtin chaini.

Z'=x'+(1, +e)y(5,d'){ixr1(” —ix'z(”)}he (4)

n=1

where 0 signifies the number of pairs used to generateptioposal, and(j),
ra(n) O{1,...,N}; ra(j) #r(n) ziforj =1, ...,0andn=1, ...,d The values oé
ande are drawn fromJy(-b,b) andNy4(O,b ) with b andb small compared to the
width of the target distribution, respectively, ahé value of jump-sizg depends
on o andd’, the number of dimensions that will be updatedt|gi(see next step
and Eq. (5)).

4. Replace each element £ 1,...d) of the proposalz‘j with x‘j using a binomial
scheme with probability GR, whereCRis the crossover probability. WitiR =
1, all dimensions are updated jointly atiet d (see Eq. (5)).

5. Computern(z) anda(x',z) of the candidate point.

6. If acceptedx' =Z, otherwise remain a.

END FOR (CHAIN EVOLUTION)

7. Remove outlier chains using the Inter-Quartile-Ra(i@R) statistic. This is done
during burn-in and discussed below.

8. Compute the GeIman-Rubifij convergence diagnostic [28] for each dimengion
=1,...d using the last 50% of the samples in each chain.
9. If Iij < 1.2 for allj, stop, otherwise go to CHAIN EVOLUTION.

This algorithm contains four extensions of DE-MGrtgprove search efficiency:

1. The original DE-MC scheme uses only two memberX ¢b generate candidate
points. This might downplay variation in the proglss especially when the
number of members oK is small. To increase diversity, DREAM generates
proposalsZ in Eq. (4) with DE that also includes higher-orghairs. Similar to



DE-MC, a good choice for(d,d') = 238/+/2a with d' = d, but potentially
decreased in the next step. This is expected td gie acceptance probability of
0.44 ford' = 1, 0.28 ford' = 5 and 0.23 for largd'. To enable jumping between
different modes of the posterior [27], we pd,d') = 1.0 at every & generation.

. In higher dimensions it is often not optimal to géen all d elements
{z‘j,j:],...,d}of Z simultaneously. Therefore, DREAM implements a

randomized subspace sampling strategy that modégsh dimension with
probability CR each time a candidate point is generated and asesd (from its
initial valued’ = d) accordingly:

i
i

, x: if U<1-CR d =d -1 .
Z { ' _ j=1...d (5)
otherwise

where CR denotes the crossover probability, ddd [0,1] is a draw from a
uniform distribution. Note that this subspace sangpktrategy, activated when
CR < 1, constantly introduces new directions thatichaan take outside the
subspace spanned by their current positions. htiplie, this allows usingl < d

in DREAM, an important advantage over DE-MC thajuieesN = 2d chains to
be run in parallel [27].

. Ouitlier chains can significantly deteriorate thefpenance of MCMC samplers,
and need to be removed to facilitate convergence limiting distribution. To
detect aberrant trajectories, DREAM storeSithe mean of the logarithm of the
posterior densities of the last 50% of the samplesach chain. From these, the
Inter Quartile-Range statistitQR = Q3 - Q; is computed, in whicl®Q; and Qs
denote the lower and upper quartile of khdifferent chains. Chains wit@ < Q;-
21QR are considered outliers, and are moved to theeotuitvest member of.
This step does not maintain detailed balance amdtlcarefore only be used
during burn-in. If an outlier chain is being detgttwe apply another burn-in
period before summarizing the posterior moments.

. To speed up convergence to the target distributbREAM estimates a
distribution of crossover probabilities during bunnthat favors large jumps over
smaller ones in each of tiNechains. Normalization is required to ensure tliad a
dimensions contribute equally fo In practice, we generate a discrete number of
candidate points for each crossover valoéntgr | m = 1,...ncgr}. Herencr is a
user-defined parameter. We use the following algorifor adaptation g, the
probability of each individuaCR value:

(a) Sett=1,L,= O,pm = 1/nCR, m=1,...Ncr
FORi < 1,...N DO (IMPROVE DISTRIBUTION)
(b) Samplem from the numbers 1,.ngr using the multinomial distribution

M(l:pl,,pm)
(c) SetCR=m/ncg andLm=Lny + 1.



(d) Create a candidate poird using Egs (4) and (5) with crossover
probability CR

(e) Accept/reject the candidate point using Eq. (1).

(f) Compute the squared normalized jumping distance

d . .
D =D+ (X, =X )2 r?
j=1
wherer; denotes the current standard deviation of colyofrX.

END FOR (IMPROVE DISTRIBUTION)

(g9) Update the probability of the differe@R values

Ncr

P =tNHA, /L) /D A, m=1... n.
j=1

(h) Sett=t+1.
(i) If tin burn-in period, go to IMPROVE DISTRIBUTION, otherwistop.

This tuning strategy results in a distribution over tihcrossover values designed
to decrease autocorrelation between two subsequentiesaimpeach chain. A
similar idea using the expected squared jumped distanpeesented in [30].
Table 6 listom, M= 1,... ncr for each of the case studies considered herein.

In [19] it has been shown that delayed rejection cathdurimprove the efficiency of
MCMC simulation and provide better estimates of the varimoments of the posterior
pdf. To test the usefulness of DR within DREAM, we oaplace step (6) in the pseudo-
code of DREAM, with the following series of four stepsa;6d:

(6a). If accepteds' =Z, and go to 7, otherwise continue with 6b.
(6b). Attempt a delayed rejection steg,, = N, (x',k'C,) whereC; = s;Cov(X} +
s¢€l g andk is a scaling (deflation) factor of the second prajhos
(6c). Computer(z,,, )and calculate a modified Metropolis acceptance probgabilit
T(Zpe)A(Zor, 2 )A(Zor, 2 X)L~ 0(Zpp, 2)] 1}
T(x)a(x', z')a(x', z', Zpe)[1-a(x', 2')]
(6d). If acceptedx’ =z, otherwise remain af.

a(x',z',zhg) = min(

So, upon rejection of the first proposal in each chairecarsd trial move is proposed.
The acceptance probability of this second proposabisputed so that reversibility and
detailed balance of the Markov chain are preservede khat the delayed rejection step
only considers the current location of tNechains to compute the variance-covariance
matrix, C of the proposal distribution. In case study 1 of trapgr we compare the
results of DREAM, with and without delayed rejection shngp

We now provide a formal proof of convergence of tfRHAM algorithm, followed by
four case studies with increasing complexity.



Theorem: DREAM vyields a Markov Chain that is ergodic with urgeqstationary
distribution with pdfri(-)". Proof: The proof consists of three parts and follows [3]L,32

1. Chains are updated sequentially and conditionally on therachains. Thus
DREAM is an N-component Metropolis-within-Gibbs algorithm that defirees
single Markov chain on the state spa&&[32]. The conditional pdf of each
component is1(+).

N-1
2. The update of thé" chain uses a mixture of kernels. ¥ 1, there ar{ ) j

such kernels. This mixture kernel maintains detailedngalavith respect taoy-),
if each of its components does [31], as we show rfeov. thei™ chain, the

conditional probability to jump fronx' to z', p(x' - Z') is equal to the reverse
jump p(z' - x') for any distribution of, as the distribution of is symmetric

and the pair(x",x"?) is as likely as(x"?,x™). This also holds true fod > 1,

when more than two members are selected to genem@pasal point, and for
the binomial crossover scheme used to modify only tsledimensions ok’ .

Detailed balance is thus achieved point wise by accepliagproposal with
probability min(77(z')/ 71(x'),1) . Detailed balance also holds in terms of arbitrary

measurable sets, as the Jacobian of the transfornwdtieg. (4) is 1 in absolute
value. In case of a delayed rejection step, the &@aep probability of the second
proposal is computed so that detailed balance df'tbbain is preserved.

3. As each update maintains conditional detailed balance, jdint stationary
distribution associated with DREAM ®x%,... x") = m(x?) x ... x m(x") [31,32].
This distribution is unique and must be the limiting distiitny because the
chains are aperiodic, positive recurrent (not transiand) irreducible. The first
two conditions are satisfied, except for trivial exceptioriee inbounded support
of the distribution ofe in (3) guarantees the third condition. This conclutthes
ergodicity proof.

Case Studies

We conducted a wide range of numerical experimentgukiee known posterior target
distributions and one real-world study involving thedilaration of a flood forecasting
model. These case studies cover a diverse set of prolgletares, including high-
dimensionality, nonlinearity, non-convexity, multimodality, amgmerous local optima.

In all our calculations with DREAMN =d, b = 0.05,b" = 10°, y(3,d") = 238/./(25d")

and y(3,d') = 1.0temporarily at every'generation. To benchmark the performance of
DREAM, we include comparison against the classical RWRADI [35] and DE-MC
[27] schemes for posterior inference. In all caseistugresented herein, DRAM and
RWM use a single chailNE1) for posterior exploration whereas DE-MC uBkes 2d as
recommended in [27]. Unless stated otherwise, we genpraposals with RWM using
Nq(0,cl4) with ¢ tuned to get an acceptance probability of about @vBLh is considered



optimal [33]. The statistics listed in Tables 1-4 denaterages over 100 different
MCMC runs.

In this paper, we focus on single and parallel chagthods only. Our initial results show
that DREAM also comparables favorably well against SetjgieMonte Carlo (SMC)
based sampling methods that recently have been uteddin [34]. These findings are
particularly true for high-dimensional problems for whia relatively high number of
particles are needed with SMC to properly sample thienying target distribution. The
resampling step in SMC can therefore benefit from the wiydsented herein, as it
allows for a much smaller number of particles for pasteexploration. We will report
our findings related to this research in due course.

Case Study 1: 100-dimensional Multivariate Normal Dligttion

To test the performance of DREAM in the presence di-dignensionality, the first case
study involves a 100-dimensional multivariate normal ihistron, centered at the zero
vector. The covariance matrix was set such that thianae of thg™ variable was equal
toj, and all pairwise correlations were 0.5. The initialydapon is drawn using eithé¢

0 [9.9,10.0f or [-5.0,15.0] to test the performance of the four samplers when iziticl
with starting points from an under and mostly overdispémrior distribution. We used
N = 200 parallel chains with DE-MC ardl= 100 with DREAM, whereas DRAM was
ran with a non-adaptation period of 500 draws, rardb.

Table 1 summarizes the performance of DREAM witliedént values ohcg andd for
the underdispersed initial distribution. The notatiba {1,2} indicates that 50% of the
candidate points are generated with 1, and the other half of the proposals usig?2.
For 0= {1,2,3} the probability of use od=1,d= 2 ando= 3 are 1/3 each. The columns
list the average normalized Euclidean distarigg tp the true meany,; and standard
deviation oy of the target, the number of function evaluationsdedeto reach
convergenceHE) and the acceptance rat&R]j. These listed summary variables were
obtained using a total of 1,000,000 function evaluatmersindividual trial, with a burn-
in of 750,000 draws. The value bfis computed as:

([ - T L[ -a)T
DJ%ZH - H . ” ©

To demonstrate what effect adaptation@R has on the efficiency of DREAM, the
second and third parts of Table 1 summarize the valiBs FE and AR obtained with
fixed valuesp; = ....= p, =1/n., and single fixedCR values throughout the entire

simulation, respectively.

The results presented in Table 1 highlight several impbrbdservations. First, the
estimates of the first and second order moment opdseerior target are much closer to
their respective target values when subspace samplingedb fus: > 2). Second, the



results appear to be fairly insensitive to the choicé.dfarger values o somewhat
decrease, on average, the valuesDofThird, and as anticipated, delayed rejection
significantly increases the acceptance rate of propdsalsat the expense of requiring
many more function evaluations to converge, and degeigy the average distance to
the first and second order moments of the targetd@&fating the variance-covariance
structure of the second proposal in delayed rejectiom, atferage jumping distance
between is reduced, thereby requiring more functieeduations to explore the entire
target distribution. Fourth, adaptation of the probabildl individual CR values
significantly increases convergence speed to the tdrgteibution. About 10 — 20% less
function evaluations are required for convergence whenprobability ofCR values is
adapted by maximizing the average normalized jumping rdistaFinally, the worst
results are obtained when single fixeR values such as 1/2 and 1/3 are used throughout
the simulation instead of a distribution@Rvalues (bottom Table 1).

Based on these and later results, wenfix= 3, and = {1,2,3} in DREAM and use these
settings to create the results presented in Figure 1reBlits for the overdispersed initial
distribution were qualitatively very similar as thoseganted here for the underdispersed
prior. On average, about 2 outlier chains were dedeafith DREAM for each of the
settings considered in Table 1.

Figure 1 illustrates how the sample mearnxgpfstandard deviations of andxioo and
Cov(xy,X100) evolve in time for the two initial distributions and fosempling methods.
These posterior moments were computed using a shdimgow containing the 100,000
most recent samples created with each method; theséesatome from the last 500 and
1,000 generations with DE-M@(= 2d) and DREAM ( = d), respectively, and from the
last 100,000 iterations for RWM and DRAM using a singjaic. The true values (0, 1, 5
and 10, respectively) are separately indicated in qmotel with different symbols.
Judged by inspection of the figures DREAM has therall/dest performance. This
algorithm smoothly converges to the target valuedoua 250,000 function evaluations
for both initial distributions. The RWM scheme exhililifficulty sampling the correct
target values, and shows considerable fluctuation irstienates of the four moments of
interest along its sampling path. This is true for batitial distributions, and
demonstrates a disadvantage of using a fixed propstabution. The DRAM method
requires many more than 1 million function evaluations oth prior distributions.
Finally, the DE-MC algorithm requires about 400,000 funct®raluations for the
overdispersed initial distribution, and about 600,000 w&atans for the underdispersed
prior distribution. These results highlight the relativaceghcy and power of DREAM.
Further experimentation with different algorithmic settingsldgd very similar traces as
those depicted in Fig. 1.

Case Study 2: 10-dimensional Twisted Gaussian TargéiliRison

The second case study considers a 10-dimensional dvstassian density function first
introduced in [15] which is given by the unnormalizezhsity Ti,(X) O TH(((X)), with
@,(X) = (X, %, +bx’* =10, x,,...,%,) . Here, 11 signifies the density of a multivariate

normal distributionNgy(0,2) with < = diag(100,1,...,1), ang, is a function that is used to



transformtt to a twisted distribution. The initial sample was generé&tech a normal
distribution with variance-covariance matribg5

Table 2 lists the performance of DREAM as functiomgf andd usingb = 0.1 (highly
nonlinear target) anld = 0.01 (mildly nonlinear). First, the average nornediEuclidean
distance to the true mean and standard deviation ofatiget is higher for the more
nonlinear target and, second, the pattern of resultedoh target is very similar to that
presented for the 100-dimensional normal distributiomable 1. Based on these results
we fix N=d, ncr = 3, ando = {1,2,3} in DREAM and use these settings in the follogv
case studies. We have now given recommendationslif@algmrithmic parameters in
DREAM.

Table 3 compares the performance of DREAM againsRW#M, DRAM and DE-MC
sampling methods. Note that the RWM scheme employéxkd proposal distribution,
whereas DRAM and DE-MC continuously updated the es@aid orientation of the
proposal distribution during sampling. The DRAM schamed a non-adaptation period
of 50 draws and value a&f = 10 for the scaling factor of the second proposal. R&vid
DRAM with N=1 do not allow the convergence to assessed by GeRuoain statistics

Iij [28] as in the DE-MC and DREAM algorithms. Therefose, actually ran RWM and

DRAM with 10 independent chains and determined thebmunof generations so that
Iij< 1.2 for all dimensions [27] using the last 50% of thengles in each chain. To

mimic nevertheless thBl = 1 case, the number of generations is then the eumib
function evaluations (iterations) used in a single claaid thus the appropriate value of
FE; correspondingly the samples of the first chain onlyusex to calculat® andAR
This approach is advantageous for RWM and DRAM asg@lesichain run cannot give a
reliable assessment of convergence.

The DRAM and DREAM sampling schemes have a verylairperformance, requiring
about 50,000 function evaluations to converge to fhy@apriate limiting distribution.
The results for DREAM with and witho@R adaptation show again the advantag€Rf
adaptation; with CR adaptation, about 15% less fanotvaluations are required. The
performance of RWM and DE-MC is rather poor. TheseMMCschemes require many
more function evaluations to converge to the targetibligion, and the RWM estimates
of the posterior mean and standard deviation arayverage, much further removed from
their actual values.

Case Study 3:10-dimensional Bimodal Target Distribution

The third case study considers a 10-dimensional bimadfaivigh two well-separated
modes. This example is taken from [27] and is givermtx) = 1/ANqy(-5,1q) + 2/Ng(5,14)
where-5 and5 are d-dimensional vectors. This probability distribution is notosily
difficult to approximate with MCMC simulation, because thdividual modes of the
normal distributions are so far separated that a jump neenmode to the other has very
low probability, complicating convergence to the target.



Figure 2a depicts the transitions xafin a selected set of Markov chains in DREAM
during their evolution to the posterior target distributiBach individual chain is coded
with a different color. The 1-D scatter plots of the samplameter space demonstrate
that DREAM exhibits no difficulty jumping from one mode te thther, resulting in an
excellent mixing of the individual paths, and thereforeelatively quick convergence.
Although DREAM employs adaptive proposal updating tam@er is not inclined to
converge to a single mode, provided the initial poputais wide enough. The marginal
posterior pdf of; is shown in Fig. 2b. The sampled histogram shows eellext match
with the known target distribution indicated with the blacieliTwo outlier chains were
reported with DREAM during burn-in.

Table 4 compares the performance of DREAM with RWMNE-MC and DRAM for the
10-dimensional bimodal target distribution. The listed dtesisdemonstrate that
DREAM has superior performance. It not only requirdoud 50% less function
evaluations than DE-MC to converge to the target, butlsameously also provides the
most accurate estimates of the first and second order mienoé the target. This
increased efficiency of DREAM over DE-MC is explained ttwe smaller number of
chains it uses for posterior exploration (N &=220 for DE-MC againsN =d = 10 for
DREAM), and becausg= 1.0 at every I0generation in DE-MC, buy(d,d') =10 at
every §' generation in DREAM, increasing the chance of jumpiegween the two
modes, and speeding up convergence. The RWM and DBzZkidmes exhibit particular
poor performance on this test problem, as they asblanto jump between the two
(disconnected) modes sufficiently frequently to aately assess their underlying
probability mass.

Case Study 4: Flood Forecasting with the Sacramenildviasture Accounting Model

The final case study considers application of MCMC &ation to parameter inference in
the Sacramento Soil Moisture Accounting (SAC-SMA) modiee SAC-SMA model is
a lumped conceptual watershed model that describes tisdatmaation from rainfall into
basin runoff using six state variable reservoirs. A agdrograph is commonly used to
rout channel inflow downstream and compute streamflovh@ gauging point. This
model is extensively used by the National Weather Serviceflbod forecasting
throughout the United States, and has 13 user-specifeidie3( fixed) parameters, which
are listed in Table 5. Inputs to the model include meaal grecipitation (MAP) and
potential evapotranspiration (PET) while the outputs are astoirevapotranspiration and
channel inflow. Various studies have demonstrated thdiragon of the SAC-SMA
model is very difficult due to the presence of numermgsl optima in the parameter
space with both small and large domains of attractisepdtinuous first derivatives, and
curving multidimensional ridges [35]. This real-world studherefore poses an
interesting challenge for MCMC samplers.

We estimate the posterior pdf of the SAC-SMA parameterg usigears of historical
daily streamflow data from the Leaf River watershed. Fhisid basin of approximately
1,950 knf is located north of Collins, Mississippi, USA. We ussqaared deviation
likelihood function [36, 37]
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where T denotes the number of streamflow observations, &wjl and S are the
simulated and observed data, respectively. A umifprior for each parameter is used
with ranges specified in Table 5. Consistent withr ;ecommendations and previous
settings, we usell = 26 parallel chains with DE-MC, ad = 13 parallel chains with
DREAM, whereadN = 5 independent chains where generated with RWWCGRAM. As
proposal distribution in RWM, we used a multipletioé covariance matrix of the target
derived with DREAM.

Figure 3 illustrates the evolution of the sampladues in millimeter of the upper zone
tension water maximum storage (UZTWM) parametduastion of the number of SAC-
SMA model evolutions using the a) RWM, b) DRAM (BDE-MC, (d) DREAM, and (e)
Shuffled Complex Evolution (SCE-UA) global optimima algorithm. The SCE-UA
method was developed by [35] in the early 19908nib the global optimum for highly
nonlinear, non-convex, and non-continualidimensional parameter spaces of typical
watershed models. The bottom panel (Fig. 3e) depinet evolution of the mean RMSE
value derived with the RWM (purple), DRAM (cyan)EEMC (blue), DREAM (red) and
SCE-UA (green) methods. The results presentedismfigure highlight two important
observations.

First, DREAM exhibits superior performance. TRe= 13 chains have converged to a
limiting distribution within 40,000 SAC-SMA modelealuations with a good mixing of
the individual trajectories. The DE-MC exhibits @&cdnt performance as well, but
suggests bimodality of the target with a numbepaths that maintain their presence at
the upper bound of UZTWM. Long-run performance hegre shows that these
respective Markov chains are stuck in an area matyligible probability mass [38]. This
prohibits convergence of DE-MC [32]. The performarmd the RWM sampler is rather
disappointing. AlIN = 5 independent chains have converged to the wipniiing
distribution, even though the proposal distributioes been chosen optimal. A similar
problem is observed with DRAM, where the differaitains have been captured in
different basins of attraction with RMSE valuesgiag between 14.0 and 14.5 ¥s).
These chains are unable to traverse the targeseTiesults clearly demonstrate the need
for explicit handling of aberrant trajectories.

Second, it is interesting to observe that DREAMn& only superior to the RWM,
DRAM and DE-MC sampling schemes, but also outperfothe widely used SCE-UA
global optimization algorithm. The bottom panelatlg shows that DREAM not only
exhibits the fastest decline of the objective fiorgtbut also finds the minimum overall
RMSE value of about 13.25 #fs). This value is significantly lower than its caerpart

of approximately 13.70 (fs) separately derived with SCE-UA. This shows B&E-
UA has converged prematurely to a sub-optimal megio the parameter space,
contradicting many published studies in the literatthat have shown that SCE-UA is a



reliable and efficient optimizer of nonlinear wateed models. Using different settings
for the algorithmic parameters in the various mdthgielded very similar traces as those
depicted in Fig. 3. We conclude that DREAM enhanttes efficiency of MCMC
simulation, and simultaneously estimates valuagh®iSAC-SMA model parameters that
improve the reliability of flood forecasts.

Conclusions

In this paper we have shown that significant improents to the efficiency of MCMC
simulation can be made by running multiple intarartchains simultaneously using
differential evolution. This method entitled, DREA&tomatically tunes the scale and
orientation of the proposal distribution during thearch, adapts subspace sampling to
maximize the average normalized jumping distancegich chain, and explicitly handles
outlier chains to avoid convergence problems orficdit response surfaces with
numerous local optimal solutions. Detailed balased ergodicity of the algorithm have
been proved, and various case studies coveringda veinge of problem features have
shown that DREAM is generally superior to existiMCMC schemes, and can
efficiently handle problems involving high-dimensality, multimodality, nonlinearity,
and local optimas.
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Table 1: Performance of DREAM using different combinatiaris\.cg and o for the 100-dimensional multivariate normal distrtion
with an underdispersed initial distribution Theiabte ncg determines how many different crossover val@= {1/ncg,2/ncr,...,1}

are being used to generate candidate points, wheére@termines the number of pairs of chains to geegreoposals. We ran
DREAM without (left-side) and with (right-side) dsled rejection, and with (top part) and withoutt{@m part) adaptation c€R

The column headingd, FE andAR denote the average normalized Euclidean distant®ettrue mean and standard deviation of the

target distribution (-16), the number of function evaluations (JlBeeded to reach convergené&;( 1.2 for all dimensions [27]) and
the acceptance rate (%). Listed values represemnages over 100 independent trials.




Without Delayed Rejection With Delayed Rejection

Ncr o={1} 0={1,2} 0={1,2,3} o={1} o0={1,2} 0={1,2,3}

D FE AR D FE AR D FE AR D FE AR D FE AR D FE AR
1 743 231 240 69.5 236 24.0 .672.34 24.0 90.5 3.84 38.6 92.6 3®l6 90.1 3.92 38.6
2 357 3.89 17.7 3.77 3.80 17.8 803.3.94 17.7 486 6.62 34.5 493 63W5 494 6.45 345
3 371 426 17.0 3.75 424 17.0 7334.23 17.1 473 7.19 33.9 4.72 73%9 483 7.17 33.9
5 402 471 16.5 423 4.68 16.5 8334.75 16.5 485 7.99 334 5.17 73%4 474 790 334
10 4.11 5.12 16.2 424 515 16.2 .9335.10 16.2 548 8.46 32.9 5.1908®.9 5.23 8.42 329
Ncr Without CR adaptation Without CR adaptation
2 4.06 4.07 17.3 390 4.06 17.3 03812 17.3 5.04 7.15 34.0 5.25 7350 5.09 7.22 34.0
3 410 457 16.6 400 451 16.6 863.4.51 16.7 5.10 8.20 33.3 5.60 8.388.3 548 8.00 33.1
5 4.08 5.09 16.1 407 498 16.0 3666 16.1 545 8.90 32.8 544 89283 5.34 8.86 32.8
10 4.13 5.38 15.8 4.07 5.61 15.8 .1545.51 15.9 5.34 9.47 32.6 5.51 9.3836 543 951 325
CR Single fixedCRvalue Single fixe@Rvalue
1/2 429 7.44 15.1 498 7.38 15.0 .2847.35 15.1 7.69N/C 31.9 8.26 N/C 31.9 7.54N/C 31.9
1/3 6.31 N/C" 145 547N/C 14.4 5.28N/C 14.6 16.9 N/C 31.7 17.5N/C 31.7 15.7N/C 31.7

" More than 50% of the runs did not converge withia total number of 1,000,000 function evaluations.



Table 2: Performance of DREAM using different combinatianfsncg and J for the 10-dimensional nonlinear twisted Gaussian

distribution with (a)b = 0.1, and (b} = 0.01. The content of this Table is similar tdlEal, and variables have been defined there.
Listed values represent averages over 100 indepetriss.

(a)b = 0.1; highly nonlinear-10?; FE-1¢f) (b)b = 0.01; mildly nonlinear®-10? ; FE-10)

R 0={1} 5={1,2) 5=1{1,2,3} 5={1} 5=1{1,2) 5=1{1,2,3}

D FE AR D FE AR D FE AR D FE AR D FE AR D FE AR
1 233 269 167 214 290 144 2BF5 13.4 17.7 7.26 281 17.1 7.6682 17.2 7.12 27.8
2 994 309 913 9.19 445 853 88B0 8.23 511 6.28 19.9 541 6.08.71 6.09 585 19.7
3 975 331 11.1 979 447 105 8354 10.1 5.04 553 205 6.13 6.2642 579 591 20.4
5 101 462 12.9 871 3.96 12.4 88303 12.2 502 6.35 21.4 548 5B82 522 578 21.1
10 9.35 3.75 14.1 8.63 4.07 13.7.0094.96 13.6 5.63 6.54 22.2 4.88 5279 4.82 6.33 218




Table 3: Comparison of DREAMcr = 3; 0 = {1,2,3}) against the Random Walk
Metropolis (RWM), Delayed Rejection Adaptive Metatis (DRAM) and
DiffeRential Evolution-Markov Chain (DE-MC) MCMC kemes for the 10-
dimensional twisted Gaussian distribution witk- 0.1.N denotes the number
of parallel chainsfFE = N- (humber of generations) = number of function
evaluations in arN chain sampler needed to reach convergenceA&hthe
acceptance rate (%). The reported values represeetages over 100

independent trials.
N D FE(-10) AR (%)
RWM 1 0.12 6.71 24.3
DRAM 1 0.08 4.82 51.6
DE-MC 20 0.09 9.45 6.33
DREAM" 10 0.09 4.01 9.50
DREAM 10 0.08 3.54 10.1

" ncr = 3 without adaptatiomp; = p; = ps = 1/3.



Table 4. Comparison of DREAM against the RWM, DRAM and IME schemes for
posterior exploration of the 10-dimensional bimodaikture function. The
values represent averages over 100 independdst @ symbols see Table 3.

N D FE(-109) AR (%)
RWM 1 0.99 N/CT 24.6
DRAM 1 0.96 N/CT 57.4
DE-MC 20 0.05 4.95 12.5
DREAM 10 0.04 2.56 11.7

" None of the runs have converged withifi génerations.



Table 5: Description of the SAC-SMA model parameters, udahg their prior and 95% posterior uncertaintyemgls derived with

DREAM.

Parameter Description Units Prior Paste
Capacity thresholds

UZTWM upper zone tension water maximum storage mm] 1.0-150.0 19.4 - 45.7

UZFWM upper zone free water maximum storage [mm] 1.0-150.0 16.2 - 33.8

LZTWM lower zone tension water maximum storage mm{ 1.0 -500.0 2249 -275.3

LZFPM lower zone free water primary maximum storage [mm] 1.0 -1000.0 80.7 - 127.4

LZFSM lower zone free water supplemental maximuonagie [mm] 1.0 -1000.0 27.7—-88.4

ADIMP additional impervious area [-] 0.0 40. 0.23-0.36
Recession parameters

UzK upper zone free water lateral depletion rate [day] 0.1-05 0.28 -0.49

LZPK lower zone primary free water depletion rate [day’] 0.0001 - 0.025 0.015-0.025

LZSK lower zone supplemental free water depletaie [day] 0.01-0.25 0.22-0.25
Percolation and other

ZPERC maximum percolation rate [-] 1.0 - 250. 144.7 — 248.9

REXP exponent of the percolation equation [-] 0.0-5.0 291-484

PCTIM impervious fraction of the watershed area [] 0.0-0.1 7.70° - 0.011

PFREE fraction percolating from upper to lower zénee water storage  [-] 0.0-0.1 0.11-0.22

Not optimized

RIVA riparian vegetation area [-] 0.0

SIDE ratio of deep recharge to channel base flow [-] 0.0

RSERV fraction of lower zone free water not trareide to tension water [-] 0.3




Table6: Number of parallel chain$y, and obtained probability distributiofsfor the
crossover probabilitCR in the various case studie®={ pm | pn = ProbCR =
1/m), m=1,...ncg} with ncg = 3 so thaCR={1/3, 2/3, 1}).

Case Study 1: 100-d normal distribution with undspérsed initial distribution
N=100- P ={0.28, 0.28, 0.44}
Case Study 1: 100-d normal distribution with ovepdirsed initial distribution
N =100- P ={0.40, 0.42, 0.18}
Case Study 2a: 10-d twisted Gaussian with b = 0.1
N=10- P={0.45, 0.32, 0.23}
Case Study 2b: 10-d twisted Gaussian with b = 0.01
N=10- P={0.36,0.37,0.27}
Case Study 3: 10-d bimodal mixture distribution
N=10- P={0.16, 0.18, 0.66}
Case Study 4: 13-d SAC-SMA watershed model

N=13- P=1{0.37, 0.28, 0.35}




Figure Captions

Figure 1: Simulated traces for the 100 dimensional Gaustaaget distribution with

Figure2:

Figure3:

correlated dimensions using the (a,b) RWM, (c,d)ADR (e,f) DE-MC and
(g,n) DREAM sampling schemes initialized with anemlispersed (left
column) and underdispersed (right column) priotritigtion. The blue and
green line depict the evolution of the sampled daaah deviations o%i00 and

X1, respectively, whereas the red and black line tetize evolution of the
Cov(x1,x100 and mean of sampled values, respectively. The true values of
these four entities are separately indicated wilerént symbols at the right
hand side in each panel.

Results of DREAM for the 10-dimensional bimodaixture model. This
target function is notoriously difficult to sampgi®m using standard MCMC

schemes with fod = 10 a distance af0y10 between the modes; (a) Sampled
x; values with DREAM in théN = d = 10 different chains. Each of the chains
is coded with a different color, and (b) estimatawhrginal posterior
probability distribution ofx;. The black line depicts the true bimodal target
distribution.

Evolution of sampled values of the upper zonesiten water maximum
storage (UZTWM) parameter (in mm) with the (a) RWidy DRAM, (c) DE-

MC, (d) DREAM Markov chain Monte Carlo sampling sahes, and (e)
SCE-UA global optimization algorithm. Each trajagton panels (a)-(d) is
coded with a different color and symbol. The lineshe bottom panel (f)
depict the evolution of the mean Root Mean SquamerHRMSE) value
derived with the RWM (purple), DRAM (cyan), DE-MMlIge), DREAM

(red), and SCE-UA (green) algorithms.
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