
Accelerating Markov Chain Monte Carlo Simulation by Differential 
Evolution with Self-Adaptive Randomized Subspace Sampling 

 
 

Jasper A. Vrugt1*, C.J.F. ter Braak2*, C.G.H. Diks3, Bruce A. Robinson4, 
James M. Hyman5 and Dave Higdon6 

 
International Journal of Nonlinear Sciences and Numerical Simulation  (in press 2009) 
http://www.ijnsns.com/content.html 
 
 
 
Abstract 
 
Markov chain Monte Carlo (MCMC) methods have found widespread use in many fields 
of study to estimate the average properties of complex systems, and for posterior 
inference in a Bayesian framework. Existing theory and experiments prove convergence 
of well constructed MCMC schemes to the appropriate limiting distribution under a 
variety of different conditions. In practice, however this convergence is often observed to 
be disturbingly slow. This is frequently caused by an inappropriate selection of the 
proposal distribution used to generate trial moves in the Markov Chain. Here we show 
that significant improvements to the efficiency of MCMC simulation can be made by 
using a self-adaptive Differential Evolution learning strategy within a population-based 
evolutionary framework. This scheme, entitled DiffeRential Evolution Adaptive 
Metropolis or DREAM, runs multiple different chains simultaneously for global 
exploration, and automatically tunes the scale and orientation of the proposal distribution 
in randomized subspaces during the search. Ergodicity of the algorithm is proved, and 
various examples involving nonlinearity, high-dimensionality, and multimodality show 
that DREAM is generally superior to other adaptive MCMC sampling approaches. The 
DREAM scheme significantly enhances the applicability of MCMC simulation to 
complex, multi-modal search problems. 
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Introduction 
 
In 1953, Metropolis et al. [1] introduced the Markov chain Monte Carlo (MCMC) 
scheme to estimate )(xfEπ , the expectation of a function f with respect to a distribution 

π. The basis of this method is a Markov chain that generates a random walk through the 
search space and successively visits solutions with stable frequencies stemming from 
distribution π. The MCMC estimator is approximated as the unweighted mean of f along 

the last M elements of the realized path of the chain, ∑ =
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in period to allow the chain to explore the search space and reach its stationary regime. 
This algorithm has been used extensively in statistical physics, and appeared also in 
spatial statistics and statistical image analysis. In [2] the MCMC method was extended 
for posterior inference in a Bayesian framework. Ever since, the method has found 
widespread use for sampling from posterior distributions in many fields of study ranging 
from physics and chemistry, to finance, economics, genetics, statistical inference, 
hydrology, biology and bioinformatics [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. 
 

To visit configurations with a stable frequency, an MCMC algorithm generates trial 
moves from the current ("old") position of the Markov chain xt-1 to a new state z. The 
earliest and most general MCMC approach is the random walk Metropolis (RWM) 
algorithm. Assume that we have already sampled points {x0,…,xt-1} this algorithms 
proceeds in the following three steps. First, a candidate point z is sampled from a 
proposal distribution q(·|·) that depends on the present location, xt-1 and is symmetric, 
q(xt-1,z) = q(z,xt-1). Next, the candidate point is either accepted or rejected using the 
Metropolis acceptance probability: 
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where π(·) denotes the probability density function (pdf) of the target distribution. 
Finally, if the proposal is accepted the chain moves to z, otherwise the chain remains at 
its current location xt-1. 
 
The original RWM scheme is constructed to maintain detailed balance with respect to 
π(·) at each step in the chain: 
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where p(xt-1) (p(z)) denotes the probability of finding the system in the state xt-1 (z),  and 
p(xt-1 → z) (p(z → xt-1)) denotes the conditional probability to perform a trial move from 
xt-1 to z (z to xt-1). The result is a Markov chain which under some regularity conditions 
has a unique stationary distribution with pdf π(·). Hastings [13] extended Eq. (1) to 
include non-symmetrical proposal distributions, i.e. q(xt-1,z) ≠ q(z,xt-1) in which a 
proposal jump to z and the reverse jump do not have equal probability. This extension is 
called the Metropolis Hastings algorithm (MH), and has become the basic building block 
of many existing MCMC sampling schemes. 
 
The simplicity of the original MH algorithm and theoretically sound statistical basis of 
the method has lead to widespread implementation and use. However, in practice the MH 
algorithm requires tuning of some internal variables before the MCMC simulator works 
effectively in practice. The efficiency of the method is affected by the scale and 
orientation of the proposal distribution, q(xt-1,·) used to generate trial moves (transitions) 
in the Markov Chain. When the proposal distribution is too wide, too many candidate 
points are rejected, and therefore the chain will not mix efficiently and only converge 
slowly to the target distribution. On the other hand, when the proposal distribution is too 
narrow, nearly all candidate points are accepted, but the distance moved is so small that it 
will take a prohibitively large number of updates before the sampler will find solutions 
that belong to the target distribution. The choice of the proposal distribution is therefore 
crucial and determines the practical applicability of MCMC simulation in many fields of 
study [14]. 
 
Automatic tuning of the proposal distribution is a powerful remedy to overcome many of 
the difficulties associated with the selection of an appropriate jumping distribution. This 
approach uses the information from the sampling history to continuously adapt the shape 
and size of the proposal distribution and evolve the sampler efficiently towards a limiting 
distribution. Examples of such methods are the Adaptive Proposal (AP) and Adaptive 
Metropolis (AM) schemes presented in [15,16], respectively. These algorithms utilize a 
single Markov chain and continuously adapt the covariance, Ct of a Gaussian proposal 
distribution, qt(xt-1,·) = Nd(xt-1,Ct) using the information contained in the sample path of 
the chain, Ct = sdCov(x0,…,xt-1} + sdεId. Here, sd represents a scaling factor that depends 
only on the dimensionality d of the problem, Id signifies the d-dimensional identity 
matrix, and ε is a constant with a small value compared to that of the target so that the 
whole parameter space can be reached. As a basic choice, the scaling factor is chosen to 
be sd = 2.42/d which is optimal for Gaussian target and proposal distributions [17]. To 
improve efficiency for higher dimensional problems, [18] has extended the AM method 
to componentwise updating, where x is sampled component by component. 
 
Also relevant to the work presented here is the Delayed Rejection Adaptive Metropolis 
(DRAM) algorithm presented in [19]. This MCMC scheme combines Adaptive 
Metropolis and Delayed Rejection [20] to continuously alternate between larger and 
smaller steps in the Markov chain. Upon rejection, instead of retaining the same position, 
a second stage trial is proposed using a deflated proposal distribution. The acceptance 
probability of this second candidate point is computed so that reversibility of the Markov 
chain is preserved. Various published studies have shown that DR significantly enhances 



the acceptance rate of MCMC simulation. Care must be taken, however that adaptation 
does not destroy the detailed balance and overall ergodicity of the Markov chain. 
 
The covariance adaptation strategy presented in [15] and used in the AM, AP, DRAM 
and SCAM schemes works well for relatively simple inference problems, but is 
inefficient and unreliable when confronted with posteriors with very heavy tails and, 
possibly, infinite first and second moments, and with complex posterior surfaces that 
contain multiple regions of attraction and numerous local optima. A single chain is 
unable to efficiently cope with the latter difficulties, and traverse well in pursuit of 
sampling the target distribution. This will be demonstrated in this paper. Other adaptive 
MCMC approaches proposed in the literature include the work of [21], [22], and [23] 
using multiple different chains to explore the search space, and the regeneration and self-
regenerative algorithms of [24], [25] and [26] that approximate the proposal distribution 
using mixture components. Yet, these schemes have limited practical applicability in 
higher dimensions, either requiring significant memory storage or complicated fitting of 
high component and dimensional mixture distributions. 
 
Recognizing these limitations of existing MCMC schemes, ter Braak [27] recently 
presented the Differential Evolution-Markov Chain (DE-MC) method. In DE-MC, N 
different Markov Chains },...,1,{ Nii

t =x are run simultaneously in parallel. At the current 

time they form a population, conveniently stored as an N × d matrix X, with d the 
dimension of π. Jumps in each chain i = 1,…,N are generated by taking a fixed multiple 
of the difference of two randomly chosen members (chains) of X (without replacement): 
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The Metropolis ratio is used to decide whether to accept candidate points or not. From the 

guidelines of sd in RWM, the optimal choice of )2(/38.2 d=γ . Every 10th generation, γ 
= 1.0 to allow direct jumps between two modes [27]. The DE-MC approach solves two 
important problems in MCMC sampling. First, DE-MC automatically selects an 
appropriate scale and orientation of the proposal distribution en route to the target 
distribution. Second, heavy-tailed and multimodal target distributions are efficiently 
accommodated, as DE-MC directly uses the current location of the chains (stored in X), 
instead of Cov(X) or the adaptive covariance, to generate candidate points, allowing the 
possibility of direct jumps between one mode of X and another.  
 
In this paper, we show that the efficiency of DE-MC can be enhanced, sometimes 
dramatically, using a similar evolution scheme, but with self-adaptive randomized 
subspace sampling. This novel method maintains detailed balance and ergodicity and 
provides new opportunities for solving previously intractable sampling problems in many 
fields of study. 
 
Materials and Methods 
 



The MCMC algorithm developed in the present study is entitled, DiffeRential Evolution 
Adaptive Metropolis, or DREAM, and uses DE-MC as its main building block. We drop 
the subscript for generation time t. In the following, the current state of the i th chain is 
given by a d-dimensional vector xi (i =1,…,N) and its j th element by i

jx .  The DREAM 

algorithm is as follows: 
 

1. Draw an initial population },...,1,{ Nii =x  using the prior distribution. 

2. Compute the density π(xi) for i = 1,…,N. 
 

FOR i ← 1,…,N DO (CHAIN EVOLUTION) 
 

3. Generate a candidate point, zi in chain i. 
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where δ signifies the number of pairs used to generate the proposal, and r1(j), 
r2(n)  ∈ {1,…,N}; r1(j) ≠ r2(n) ≠ i for j = 1, …, δ and n = 1, …, δ. The values of e 
and ε are drawn from Ud(-b,b) and Nd(0,b*) with b and b* small compared to the 
width of the target distribution, respectively, and the value of jump-size γ depends 
on δ and d’, the number of dimensions that will be updated jointly (see next step 
and Eq. (5)).  

4. Replace each element (j = 1,…,d) of the proposal i
jz with i

jx using a binomial 

scheme with probability 1-CR, where CR is the crossover probability. With CR = 
1, all dimensions are updated jointly and d’= d (see Eq. (5)).  

5. Compute π(zi) and α(xi,zi) of the candidate point. 
6. If accepted, xi = zi, otherwise remain at xi. 
 

END FOR (CHAIN EVOLUTION) 
 

7. Remove outlier chains using the Inter-Quartile-Range (IQR) statistic. This is done 
during burn-in and discussed below. 

8. Compute the Gelman-Rubin jR̂  convergence diagnostic [28] for each dimension j 

= 1,…,d using the last 50% of the samples in each chain. 
9. If jR̂  < 1.2 for all j, stop, otherwise go to CHAIN EVOLUTION. 

 
This algorithm contains four extensions of DE-MC to improve search efficiency: 
 

1. The original DE-MC scheme uses only two members of X to generate candidate 
points. This might downplay variation in the proposals, especially when the 
number of members of X is small. To increase diversity, DREAM generates 
proposals, zi in Eq. (4) with DE that also includes higher-order pairs. Similar to 



DE-MC, a good choice for 'dd δδγ 2/38.2)',( = with d' = d, but potentially 
decreased in the next step. This is expected to yield an acceptance probability of 
0.44 for d' = 1, 0.28 for d' = 5 and 0.23 for large d'. To enable jumping between 
different modes of the posterior [27], we set 0.1)',( =dδγ  at every 5th generation. 

2. In higher dimensions it is often not optimal to sample all d elements 
},...,1,{ djzi

j = of zi simultaneously. Therefore, DREAM implements a 

randomized subspace sampling strategy that modifies each dimension with 
probability CR each time a candidate point is generated and decreases d’ (from its 
initial value d’ = d) accordingly: 
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where CR denotes the crossover probability, and U ∈ [0,1] is a draw from a 
uniform distribution. Note that this subspace sampling strategy, activated when 
CR < 1, constantly introduces new directions that chains can take outside the 
subspace spanned by their current positions. In principle, this allows using N < d 
in DREAM, an important advantage over DE-MC that requires N = 2d chains to 
be run in parallel [27].  

3. Outlier chains can significantly deteriorate the performance of MCMC samplers, 
and need to be removed to facilitate convergence to a limiting distribution. To 
detect aberrant trajectories, DREAM stores in Ω the mean of the logarithm of the 
posterior densities of the last 50% of the samples in each chain. From these, the 
Inter Quartile-Range statistic, IQR = Q3 - Q1 is computed, in which Q1 and Q3 
denote the lower and upper quartile of the N different chains. Chains with Ω < Q1- 
2·IQR are considered outliers, and are moved to the current best member of X. 
This step does not maintain detailed balance and can therefore only be used 
during burn-in. If an outlier chain is being detected we apply another burn-in 
period before summarizing the posterior moments. 

4. To speed up convergence to the target distribution, DREAM estimates a 
distribution of crossover probabilities during burn-in that favors large jumps over 
smaller ones in each of the N chains. Normalization is required to ensure that all d 
dimensions contribute equally to ∆. In practice, we generate a discrete number of 
candidate points for each crossover value {m/nCR | m = 1,…,nCR}. Here nCR is a 
user-defined parameter. We use the following algorithm for adaptation of pm, the 
probability of each individual CR value: 

 
(a) Set t = 1, Lm = 0, pm = 1/nCR, m = 1,…,nCR. 

 
FOR i ← 1,…,N DO (IMPROVE DISTRIBUTION) 
 

(b) Sample m from the numbers 1,…,nCR using the multinomial distribution 
M(⋅,p1,…,pm). 

(c) Set CR = m/nCR  and Lm = Lm + 1. 



(d) Create a candidate point zi using Eqs (4) and (5) with crossover 
probability CR. 

(e) Accept/reject the candidate point using Eq. (1). 
(f) Compute the squared normalized jumping distance 
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where r j denotes the current standard deviation of column j of X.  
 
END FOR (IMPROVE DISTRIBUTION) 
 

(g) Update the probability of the different CR values 

CR
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(h) Set  t = t + 1.  
(i) If t in burn-in period, go to IMPROVE DISTRIBUTION, otherwise stop.  

 
This tuning strategy results in a distribution over the m crossover values designed 
to decrease autocorrelation between two subsequent samples in each chain. A 
similar idea using the expected squared jumped distance is presented in [30]. 
Table 6 lists pm, m = 1,…,nCR for each of the case studies considered herein.  

 
In [19] it has been shown that delayed rejection can further improve the efficiency of 
MCMC simulation and provide better estimates of the various moments of the posterior 
pdf. To test the usefulness of DR within DREAM, we can replace step (6) in the pseudo-
code of DREAM, with the following series of four steps, 6a-6d: 
 

(6a). If accepted, xi = zi, and go to 7, otherwise continue with 6b. 
(6b). Attempt a delayed rejection step, ),( 1

t
i

d
i
DR N Cxz −κ=  where Ct = sdCov(Xt} + 

sdεId and κ is a scaling (deflation) factor of the second proposal. 
(6c). Compute )( i

DRzπ  and calculate a modified Metropolis acceptance probability 
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(6d). If accepted, i
DR

i zx = , otherwise remain at xi. 
 
So, upon rejection of the first proposal in each chain, a second trial move is proposed. 
The acceptance probability of this second proposal is computed so that reversibility and 
detailed balance of the Markov chain are preserved. Note that the delayed rejection step 
only considers the current location of the N chains to compute the variance-covariance 
matrix, C of the proposal distribution. In case study 1 of this paper we compare the 
results of DREAM, with and without delayed rejection sampling.  
 
We now provide a formal proof of convergence of the DREAM algorithm, followed by 
four case studies with increasing complexity. 
 



Theorem: DREAM yields a Markov Chain that is ergodic with unique stationary 
distribution with pdf π(·)N. Proof: The proof consists of three parts and follows [31,32]. 
 

1. Chains are updated sequentially and conditionally on the other chains. Thus 
DREAM is an N-component Metropolis-within-Gibbs algorithm that defines a 
single Markov chain on the state space SN [32]. The conditional pdf of each 
component is π(·). 

2. The update of the i th chain uses a mixture of kernels. For δ = 1, there are 



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such kernels. This mixture kernel maintains detailed balance with respect to π(·), 
if each of its components does [31], as we show now. For the i th chain, the 
conditional probability to jump from ix  to iz , )( iip zx →  is equal to the reverse 

jump )( iip xz →  for any distribution of e, as the distribution of ε is symmetric 

and the pair ),( 21 rr xx  is as likely as ),( 12 rr xx . This also holds true for δ > 1, 

when more than two members are selected to generate a proposal point, and for 
the binomial crossover scheme used to modify only selected dimensions of ix . 

Detailed balance is thus achieved point wise by accepting the proposal with 
probability )1),(/)(min( ii xz ππ . Detailed balance also holds in terms of arbitrary 
measurable sets, as the Jacobian of the transformation of Eq. (4) is 1 in absolute 
value. In case of a delayed rejection step, the acceptance probability of the second 
proposal is computed so that detailed balance of the i th chain is preserved. 

3. As each update maintains conditional detailed balance, the joint stationary 
distribution associated with DREAM is π(x1,…,xN) = π(x1) × … × π(xN) [31,32]. 
This distribution is unique and must be the limiting distribution, because the 
chains are aperiodic, positive recurrent (not transient) and irreducible. The first 
two conditions are satisfied, except for trivial exceptions. The unbounded support 
of the distribution of ε in (3) guarantees the third condition. This concludes the 
ergodicity proof. 

 
Case Studies 
 
We conducted a wide range of numerical experiments using three known posterior target 
distributions and one real-world study involving the calibration of a flood forecasting 
model. These case studies cover a diverse set of problem features, including high-
dimensionality, nonlinearity, non-convexity, multimodality, and numerous local optima. 
In all our calculations with DREAM, N = d, b = 0.05, b* = 10-6, )'2(/38.2)',( dd δ=δγ  

and 0.1)',( =δγ d  temporarily at every 5th generation. To benchmark the performance of 
DREAM, we include comparison against the classical RWM, DRAM [35] and DE-MC 
[27] schemes for posterior inference. In all case studies presented herein, DRAM and 
RWM use a single chain (N=1) for posterior exploration whereas DE-MC uses N = 2d as 
recommended in [27]. Unless stated otherwise, we generate proposals with RWM using 
Nd(0,cId) with c tuned to get an acceptance probability of about 0.24, which is considered 



optimal [33]. The statistics listed in Tables 1-4 denote averages over 100 different 
MCMC runs. 
 
In this paper, we focus on single and parallel chain methods only. Our initial results show 
that DREAM also comparables favorably well against Sequential Monte Carlo (SMC) 
based sampling methods that recently have been introduced in [34]. These findings are 
particularly true for high-dimensional problems for which a relatively high number of 
particles are needed with SMC to properly sample the underlying target distribution. The 
resampling step in SMC can therefore benefit from the work presented herein, as it 
allows for a much smaller number of particles for posterior exploration. We will report 
our findings related to this research in due course.  
 
Case Study 1: 100-dimensional Multivariate Normal Distribution  
 
To test the performance of DREAM in the presence of high-dimensionality, the first case 
study involves a 100-dimensional multivariate normal distribution, centered at the zero 
vector. The covariance matrix was set such that the variance of the j th variable was equal 
to j, and all pairwise correlations were 0.5. The initial population is drawn using either X 
∈ [9.9,10.0]d or [-5.0,15.0]d to test the performance of the four samplers when initialized 
with starting points from an under and mostly overdispersed prior distribution. We used 
N = 200 parallel chains with DE-MC and N = 100 with DREAM, whereas DRAM was 
ran with a non-adaptation period of 500 draws, and κ = 5. 
 
Table 1 summarizes the performance of DREAM with different values of nCR and δ for 
the underdispersed initial distribution. The notation δ = {1,2} indicates that 50% of the 
candidate points are generated with δ = 1, and the other half of the proposals using δ = 2. 
For δ = {1,2,3} the probability of use of δ = 1, δ = 2 and δ = 3 are 1/3 each. The columns 
list the average normalized Euclidean distance (D) to the true mean, µπ and standard 
deviation σπ of the target, the number of function evaluations needed to reach 
convergence (FE) and the acceptance rate (AR). These listed summary variables were 
obtained using a total of 1,000,000 function evaluations per individual trial, with a burn-
in of 750,000 draws. The value of D is computed as: 
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To demonstrate what effect adaptation of CR has on the efficiency of DREAM, the 
second and third parts of Table 1 summarize the values of D, FE and AR obtained with 
fixed values p1 = ….= CRn np

CR
/1=  and single fixed CR values throughout the entire 

simulation, respectively. 
 
The results presented in Table 1 highlight several important observations. First, the 
estimates of the first and second order moment of the posterior target are much closer to 
their respective target values when subspace sampling is used (nCR ≥ 2). Second, the 



results appear to be fairly insensitive to the choice of δ. Larger values of δ somewhat 
decrease, on average, the values of D. Third, and as anticipated, delayed rejection 
significantly increases the acceptance rate of proposals, but at the expense of requiring 
many more function evaluations to converge, and deteriorating the average distance to 
the first and second order moments of the target. By deflating the variance-covariance 
structure of the second proposal in delayed rejection, the average jumping distance 
between is reduced, thereby requiring more function evaluations to explore the entire 
target distribution. Fourth, adaptation of the probability of individual CR values 
significantly increases convergence speed to the target distribution. About 10 – 20% less 
function evaluations are required for convergence when the probability of CR values is 
adapted by maximizing the average normalized jumping distance. Finally, the worst 
results are obtained when single fixed CR values such as 1/2 and 1/3 are used throughout 
the simulation instead of a distribution of CR values (bottom Table 1).  
 
Based on these and later results, we fix nCR = 3, and δ = {1,2,3} in DREAM and use these 
settings to create the results presented in Figure 1. The results for the overdispersed initial 
distribution were qualitatively very similar as those presented here for the underdispersed 
prior. On average, about 2 outlier chains were detected with DREAM for each of the 
settings considered in Table 1.  
 
Figure 1 illustrates how the sample mean of x1, standard deviations of x1 and x100 and 
Cov(x1,x100) evolve in time for the two initial distributions and four sampling methods. 
These posterior moments were computed using a sliding window containing the 100,000 
most recent samples created with each method; these samples come from the last 500 and 
1,000 generations with DE-MC (N = 2d) and DREAM (N = d), respectively, and from the 
last 100,000 iterations for RWM and DRAM using a single chain. The true values (0, 1, 5 
and 10, respectively) are separately indicated in each panel with different symbols. 
Judged by inspection of the figures DREAM has the overall best performance. This 
algorithm smoothly converges to the target values in about 250,000 function evaluations 
for both initial distributions. The RWM scheme exhibits difficulty sampling the correct 
target values, and shows considerable fluctuation in the estimates of the four moments of 
interest along its sampling path. This is true for both initial distributions, and 
demonstrates a disadvantage of using a fixed proposal distribution. The DRAM method 
requires many more than 1 million function evaluations for both prior distributions. 
Finally, the DE-MC algorithm requires about 400,000 function evaluations for the 
overdispersed initial distribution, and about 600,000 evaluations for the underdispersed 
prior distribution. These results highlight the relative efficiency and power of DREAM. 
Further experimentation with different algorithmic settings, yielded very similar traces as 
those depicted in Fig. 1.  
 
Case Study 2: 10-dimensional Twisted Gaussian Target Distribution 
 
The second case study considers a 10-dimensional twisted Gaussian density function first 
introduced in [15] which is given by the unnormalized density πb(x) ∝ π(φb(x)), with 

),...,,100,()( 103
2
121 xxbbxxxb −+=φ x . Here, π signifies the density of a multivariate 

normal distribution, Nd(0,Σ) with Σ = diag(100,1,…,1), and φb is a function that is used to 



transform π to a twisted distribution. The initial sample was generated from a normal 
distribution with variance-covariance matrix 5Id.  
 
Table 2 lists the performance of DREAM as function of nCR and δ using b = 0.1 (highly 
nonlinear target) and b = 0.01 (mildly nonlinear). First, the average normalized Euclidean 
distance to the true mean and standard deviation of the target is higher for the more 
nonlinear target and, second, the pattern of results for each target is very similar to that 
presented for the 100-dimensional normal distribution in Table 1. Based on these results 
we fix N = d, nCR = 3, and δ = {1,2,3} in DREAM and use these settings in the following 
case studies. We have now given recommendations for all algorithmic parameters in 
DREAM.  
 
Table 3 compares the performance of DREAM against the RWM, DRAM and DE-MC 
sampling methods. Note that the RWM scheme employed a fixed proposal distribution, 
whereas DRAM and DE-MC continuously updated the scale and orientation of the 
proposal distribution during sampling. The DRAM scheme used a non-adaptation period 
of 50 draws and value of κ = 10 for the scaling factor of the second proposal. RWM and 
DRAM with N=1 do not allow the convergence to assessed by Gelman-Rubin statistics 

jR̂ [28] as in the DE-MC and DREAM algorithms. Therefore, we actually ran RWM and 

DRAM with 10 independent chains and determined the number of generations so that 

jR̂ < 1.2 for all dimensions [27] using the last 50% of the samples in each chain. To 

mimic nevertheless the N = 1 case, the number of generations is then the number of 
function evaluations (iterations) used in a single chain and thus the appropriate value of 
FE; correspondingly the samples of the first chain only are used to calculate D and AR. 
This approach is advantageous for RWM and DRAM as a single chain run cannot give a 
reliable assessment of convergence. 
 
The DRAM and DREAM sampling schemes have a very similar performance, requiring 
about 50,000 function evaluations to converge to the appropriate limiting distribution. 
The results for DREAM with and without CR adaptation show again the advantage of CR 
adaptation; with CR adaptation, about 15% less function evaluations are required. The 
performance of RWM and DE-MC is rather poor. These MCMC schemes require many 
more function evaluations to converge to the target distribution, and the RWM estimates 
of the posterior mean and standard deviation are, on average, much further removed from 
their actual values.  
 
Case Study 3:10-dimensional Bimodal Target Distribution 
 
The third case study considers a 10-dimensional bimodal pdf with two well-separated 
modes. This example is taken from [27] and is given by, π(x) = 1/3Nd(-5,Id) + 2/3Nd(5,Id) 
where -5 and 5 are d-dimensional vectors. This probability distribution is notoriously 
difficult to approximate with MCMC simulation, because the individual modes of the 
normal distributions are so far separated that a jump from one mode to the other has very 
low probability, complicating convergence to the target. 
 



Figure 2a depicts the transitions of x1 in a selected set of Markov chains in DREAM 
during their evolution to the posterior target distribution. Each individual chain is coded 
with a different color. The 1-D scatter plots of the sampled parameter space demonstrate 
that DREAM exhibits no difficulty jumping from one mode to the other, resulting in an 
excellent mixing of the individual paths, and therefore a relatively quick convergence. 
Although DREAM employs adaptive proposal updating the sampler is not inclined to 
converge to a single mode, provided the initial population is wide enough. The marginal 
posterior pdf of x1 is shown in Fig. 2b. The sampled histogram shows an excellent match 
with the known target distribution indicated with the black line. Two outlier chains were 
reported with DREAM during burn-in. 
 
Table 4 compares the performance of DREAM with RWM, DE-MC and DRAM for the 
10-dimensional bimodal target distribution. The listed statistics demonstrate that 
DREAM has superior performance. It not only requires about 50% less function 
evaluations than DE-MC to converge to the target, but simultaneously also provides the 
most accurate estimates of the first and second order moments of the target. This 
increased efficiency of DREAM over DE-MC is explained by the smaller number of 
chains it uses for posterior exploration (N = 2d = 20 for DE-MC against N = d = 10 for 
DREAM), and because γ = 1.0 at every 10th generation in DE-MC, but 0.1)',( =dδγ  at 
every 5th generation in DREAM, increasing the chance of jumping between the two 
modes, and speeding up convergence. The RWM and DRAM schemes exhibit particular 
poor performance on this test problem, as they are unable to jump between the two 
(disconnected) modes sufficiently frequently to accurately assess their underlying 
probability mass. 
 
Case Study 4: Flood Forecasting with the Sacramento Soil Moisture Accounting Model 
 
The final case study considers application of MCMC simulation to parameter inference in 
the Sacramento Soil Moisture Accounting (SAC-SMA) model. The SAC-SMA model is 
a lumped conceptual watershed model that describes the transformation from rainfall into 
basin runoff using six state variable reservoirs. A unit hydrograph is commonly used to 
rout channel inflow downstream and compute streamflow at the gauging point. This 
model is extensively used by the National Weather Service for flood forecasting 
throughout the United States, and has 13 user-specifiable (and 3 fixed) parameters, which 
are listed in Table 5. Inputs to the model include mean areal precipitation (MAP) and 
potential evapotranspiration (PET) while the outputs are estimated evapotranspiration and 
channel inflow. Various studies have demonstrated that calibration of the SAC-SMA 
model is very difficult due to the presence of numerous local optima in the parameter 
space with both small and large domains of attraction, discontinuous first derivatives, and 
curving multidimensional ridges [35]. This real-world study therefore poses an 
interesting challenge for MCMC samplers. 
 
We estimate the posterior pdf of the SAC-SMA parameters using 2 years of historical 
daily streamflow data from the Leaf River watershed. This humid basin of approximately 
1,950 km2 is located north of Collins, Mississippi, USA. We use a squared deviation 
likelihood function [36, 37]  
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where T denotes the number of streamflow observations, and S(x) and Ŝ are the 
simulated and observed data, respectively. A uniform prior for each parameter is used 
with ranges specified in Table 5. Consistent with our recommendations and previous 
settings, we used N = 26 parallel chains with DE-MC, and N = 13 parallel chains with 
DREAM, whereas N = 5 independent chains where generated with RWM and DRAM. As 
proposal distribution in RWM, we used a multiple of the covariance matrix of the target 
derived with DREAM. 
 
Figure 3 illustrates the evolution of the sampled values in millimeter of the upper zone 
tension water maximum storage (UZTWM) parameter as function of the number of SAC-
SMA model evolutions using the a) RWM, b) DRAM (c), DE-MC, (d) DREAM, and (e) 
Shuffled Complex Evolution (SCE-UA) global optimization algorithm. The SCE-UA 
method was developed by [35] in the early 1990s to find the global optimum for highly 
nonlinear, non-convex, and non-continuous d-dimensional parameter spaces of typical 
watershed models. The bottom panel (Fig. 3e) depicts the evolution of the mean RMSE 
value derived with the RWM (purple), DRAM (cyan), DE-MC (blue), DREAM (red) and 
SCE-UA (green) methods. The results presented in this figure highlight two important 
observations. 
 
First, DREAM exhibits superior performance. The N = 13 chains have converged to a 
limiting distribution within 40,000 SAC-SMA model evaluations with a good mixing of 
the individual trajectories. The DE-MC exhibits a decent performance as well, but 
suggests bimodality of the target with a number of paths that maintain their presence at 
the upper bound of UZTWM. Long-run performance however, shows that these 
respective Markov chains are stuck in an area with negligible probability mass [38]. This 
prohibits convergence of DE-MC [32]. The performance of the RWM sampler is rather 
disappointing. All N = 5 independent chains have converged to the wrong limiting 
distribution, even though the proposal distribution has been chosen optimal. A similar 
problem is observed with DRAM, where the different chains have been captured in 
different basins of attraction with RMSE values ranging between 14.0 and 14.5 (m3/s). 
These chains are unable to traverse the target. These results clearly demonstrate the need 
for explicit handling of aberrant trajectories. 
 
Second, it is interesting to observe that DREAM is not only superior to the RWM, 
DRAM and DE-MC sampling schemes, but also outperforms the widely used SCE-UA 
global optimization algorithm. The bottom panel clearly shows that DREAM not only 
exhibits the fastest decline of the objective function, but also finds the minimum overall 
RMSE value of about 13.25 (m3/s). This value is significantly lower than its counterpart 
of approximately 13.70 (m3/s) separately derived with SCE-UA. This shows that SCE-
UA has converged prematurely to a sub-optimal region in the parameter space, 
contradicting many published studies in the literature that have shown that SCE-UA is a 



reliable and efficient optimizer of nonlinear watershed models. Using different settings 
for the algorithmic parameters in the various methods yielded very similar traces as those 
depicted in Fig. 3. We conclude that DREAM enhances the efficiency of MCMC 
simulation, and simultaneously estimates values of the SAC-SMA model parameters that 
improve the reliability of flood forecasts. 
 
 
 
Conclusions 
 
In this paper we have shown that significant improvements to the efficiency of MCMC 
simulation can be made by running multiple interacting chains simultaneously using 
differential evolution. This method entitled, DREAM automatically tunes the scale and 
orientation of the proposal distribution during the search, adapts subspace sampling to 
maximize the average normalized jumping distance in each chain, and explicitly handles 
outlier chains to avoid convergence problems on difficult response surfaces with 
numerous local optimal solutions.  Detailed balance and ergodicity of the algorithm have 
been proved, and various case studies covering a wide range of problem features have 
shown that DREAM is generally superior to existing MCMC schemes, and can 
efficiently handle problems involving high-dimensionality, multimodality, nonlinearity, 
and local optimas. 
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Table 1: Performance of DREAM using different combinations of nCR and δ for the 100-dimensional multivariate normal distribution 
with an underdispersed initial distribution The variable nCR determines how many different crossover values, CR = {1/nCR,2/nCR,…,1} 
are being used to generate candidate points, whereas δ determines the number of pairs of chains to generate proposals. We ran 
DREAM without (left-side) and with (right-side) delayed rejection, and with (top part) and without (bottom part) adaptation of CR. 
The column headings D, FE and AR denote the average normalized Euclidean distance to the true mean and standard deviation of the 
target distribution (·10-2), the number of function evaluations (·105) needed to reach convergence (jR̂ < 1.2 for all dimensions [27]) and 

the acceptance rate (%). Listed values represent averages over 100 independent trials. 



 
 Without Delayed Rejection With Delayed Rejection 
nCR δ = {1} δ = {1,2} δ = {1,2,3} δ = {1} δ = {1,2} δ = {1,2,3} 
 
 D FE AR D FE AR D FE AR D FE AR D FE AR D FE AR 
  
1    74.3   2.31   24.0    69.5   2.36   24.0    71.6   2.34   24.0 90.5   3.84   38.6     92.6   3.84   38.6     90.1   3.92   38.6 
2    3.57   3.89   17.7    3.77   3.80   17.8    3.80   3.94   17.7 4.86   6.62   34.5     4.93   6.47   34.5     4.94    6.45   34.5 
3    3.71   4.26   17.0    3.75   4.24   17.0    3.73   4.23   17.1 4.73   7.19   33.9     4.72   7.15   33.9     4.83    7.17   33.9 
5    4.02   4.71   16.5    4.23   4.68   16.5    3.83   4.75   16.5 4.85   7.99   33.4     5.17   7.76   33.4     4.74    7.90   33.4 
10    4.11   5.12   16.2    4.24   5.15   16.2    3.93   5.10   16.2 5.48   8.46   32.9     5.19   8.80   32.9     5.23    8.42   32.9 
 
nCR   Without CR adaptation      Without CR adaptation 
 
2   4.06   4.07   17.3    3.90   4.06   17.3    3.80   4.12   17.3 5.04   7.15   34.0    5.25   7.15   34.0    5.09   7.22   34.0 
3    4.10   4.57   16.6    4.00   4.51   16.6    3.86   4.51   16.7 5.10   8.20   33.3    5.60   8.09   33.3    5.48   8.00   33.1 
5 4.08   5.09   16.1    4.07   4.98   16.0    3.66   5.06   16.1 5.45   8.90   32.8    5.44   8.91   32.8    5.34   8.86   32.8 
10    4.13   5.38   15.8    4.07   5.61   15.8    4.15   5.51   15.9 5.34   9.47   32.6    5.51   9.68   32.6    5.43   9.51   32.5 
 
CR   Single fixed CR value         Single fixed CR value 
 
1/2   4.29   7.44   15.1    4.98   7.38   15.0    4.28   7.35 15.1 7.69   N/C   31.9    8.26   N/C   31.9    7.54   N/C 31.9 
1/3   6.31   N/C†   14.5    5.47   N/C  14.4    5.28   N/C 14.6 16.9   N/C   31.7    17.5   N/C   31.7    15.7   N/C 31.7 
 
† More than 50% of the runs did not converge within the total number of 1,000,000 function evaluations.  



Table 2: Performance of DREAM using different combinations of nCR and δ for the 10-dimensional nonlinear twisted Gaussian 
distribution with (a) b = 0.1, and (b) b = 0.01. The content of this Table is similar to Table 1, and variables have been defined there. 
Listed values represent averages over 100 independent trials. 
 
 (a) b = 0.1; highly nonlinear (D·10-2 ; FE·104)  (b) b = 0.01; mildly nonlinear (D·10-2 ; FE·103) 
 
nCR δ = {1} δ = {1,2} δ = {1,2,3} δ = {1} δ = {1,2} δ = {1,2,3} 
 
 D FE AR D FE AR D FE AR D FE AR D FE AR D FE AR 
  
1 23.3   2.69   16.7    21.4   2.90   14.4    21.8   3.75   13.4 17.7   7.26   28.1    17.1   7.66   27.8    17.2   7.12   27.8  
2 9.94   3.09   9.13    9.19   4.45   8.53    8.81   4.60   8.23 5.11   6.28   19.9    5.41   6.04   19.7    6.09   5.85   19.7 
3 9.75   3.31   11.1    9.79   4.47   10.5    8.31   3.54   10.1 5.04   5.53   20.5    6.13   6.26   20.4    5.79   5.91   20.4 
5   10.1   4.62   12.9    8.71   3.96   12.4    8.38   5.03   12.2 5.02   6.35   21.4    5.48   5.64   21.2    5.22   5.78   21.1 
10    9.35   3.75   14.1    8.63   4.07   13.7    9.00   4.96   13.6 5.63   6.54   22.2    4.88   5.97   21.9    4.82   6.33   21.8 
 
 
 



Table 3: Comparison of DREAM (nCR = 3; δ = {1,2,3}) against the Random Walk 
Metropolis (RWM), Delayed Rejection Adaptive Metropolis (DRAM) and 
DiffeRential Evolution-Markov Chain (DE-MC) MCMC schemes for the 10-
dimensional twisted Gaussian distribution with b = 0.1. N denotes the number 
of parallel chains; FE = N· (number of generations) = number of function 
evaluations in an N chain sampler needed to reach convergence and AR the 
acceptance rate (%). The reported values represent averages over 100 
independent trials. 

 N D  FE (·104) AR (%) 
 
RWM 1 0.12 6.71  24.3 
DRAM 1 0.08 4.82  51.6 
DE-MC 20 0.09 9.45  6.33      
DREAM† 10 0.09 4.01  9.50 
DREAM 10 0.08 3.54  10.1  
 
† nCR = 3 without adaptation, p1 = p2 = p3 = 1/3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 4: Comparison of DREAM against the RWM, DRAM and DE-MC schemes for 
posterior exploration of the 10-dimensional bimodal mixture function. The 
values represent averages over 100 independent trials. For symbols see Table 3. 

 
 N D  FE (·104) AR (%) 
 
RWM 1 0.99 N/C†  24.6 
DRAM 1 0.96 N/C†  57.4 
DE-MC 20 0.05 4.95  12.5     
DREAM 10 0.04 2.56  11.7    
 
† None of the runs have converged within 106 generations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 5: Description of the SAC-SMA model parameters, including their prior and 95% posterior uncertainty intervals derived with 
DREAM. 

Parameter    Description      Units  Prior    Posterior   
        Capacity thresholds 
 
UZTWM upper zone tension water maximum storage    [mm]  1.0 – 150.0  19.4 – 45.7 
UZFWM upper zone free water maximum storage    [mm]  1.0 – 150.0  16.2 – 33.8 
LZTWM lower zone tension water maximum storage    [mm]  1.0 – 500.0  224.9 – 275.3 
LZFPM lower zone free water primary maximum storage   [mm]  1.0 – 1000.0  80.7 – 127.4 
LZFSM lower zone free water supplemental maximum storage  [mm]  1.0 – 1000.0  27.7 – 88.4 
ADIMP additional impervious area      [-]  0.0 – 0.40  0.23 – 0.36 
 

       Recession parameters 
 
UZK  upper zone free water lateral depletion rate    [day-1]  0.1 – 0.5  0.28 – 0.49 
LZPK  lower zone primary free water depletion rate    [day-1]  0.0001 – 0.025 0.015 – 0.025 
LZSK  lower zone supplemental free water depletion rate   [day-1]  0.01 – 0.25  0.22 – 0.25 
 
        Percolation and other 
 
ZPERC maximum percolation rate      [-]  1.0 – 250.0  144.7 – 248.9 
REXP  exponent of the percolation equation      [-]  0.0 – 5.0  2.91 – 4.84 
PCTIM impervious fraction of the watershed area    [-]  0.0 – 0.1  7.7⋅10-5 – 0.011 
PFREE fraction percolating from upper to lower zone free water storage [-]  0.0 – 0.1  0.11 – 0.22 
 
         Not optimized 
 
RIVA  riparian vegetation area      [-]  0.0  
SIDE  ratio of deep recharge to channel base flow    [-]  0.0 
RSERV fraction of lower zone free water not transferable to tension water [-]  0.3 



Table 6:  Number of parallel chains, N, and obtained probability distributions P for the 
crossover probability CR in the various case studies (P={pm | pm = Prob(CR = 
1/m), m = 1,…,nCR} with nCR = 3 so that CR = {1/3, 2/3, 1}). 

 
Case Study 1: 100-d normal distribution with underdispersed initial distribution 

 
N = 100 → P = {0.28, 0.28, 0.44}  

 
Case Study 1: 100-d normal distribution with overdispersed initial distribution 

 
N = 100 → P = {0.40, 0.42, 0.18}  

 
Case Study 2a: 10-d twisted Gaussian with b = 0.1 

 
N = 10 → P = {0.45, 0.32, 0.23}  

 
Case Study 2b: 10-d twisted Gaussian with b = 0.01 

 
N = 10 → P = {0.36, 0.37, 0.27}  

 
Case Study 3: 10-d bimodal mixture distribution 

 
N = 10 → P = {0.16, 0.18, 0.66}  

 
Case Study 4: 13-d SAC-SMA watershed model 

 
N = 13 → P = {0.37, 0.28, 0.35}  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure Captions 
 
 
Figure 1: Simulated traces for the 100 dimensional Gaussian target distribution with 

correlated dimensions using the (a,b) RWM, (c,d) DRAM, (e,f) DE-MC and 
(g,h) DREAM sampling schemes initialized with an overdispersed (left 
column) and underdispersed (right column) prior distribution. The blue and 
green line depict the evolution of the sampled standard deviations of x100 and 
x1, respectively, whereas the red and black line denote the evolution of the 
Cov(x1,x100) and mean of sampled x1 values, respectively. The true values of 
these four entities are separately indicated with different symbols at the right 
hand side in each panel. 

 
Figure 2:  Results of DREAM for the 10-dimensional bimodal mixture model. This 

target function is notoriously difficult to sample from using standard MCMC 

schemes with for d = 10 a distance of 1010  between the modes; (a) Sampled 
x1 values with DREAM in the N = d = 10 different chains. Each of the chains 
is coded with a different color, and (b) estimated marginal posterior 
probability distribution of x1. The black line depicts the true bimodal target 
distribution. 

 
Figure 3:  Evolution of sampled values of the upper zone tension water maximum 

storage (UZTWM) parameter (in mm) with the (a) RWM, (b) DRAM, (c) DE-
MC, (d) DREAM Markov chain Monte Carlo sampling schemes, and (e) 
SCE-UA global optimization algorithm. Each trajectory in panels (a)-(d) is 
coded with a different color and symbol. The lines in the bottom panel (f) 
depict the evolution of the mean Root Mean Square Error (RMSE) value 
derived with the RWM (purple), DRAM (cyan), DE-MC (blue), DREAM 
(red), and SCE-UA (green) algorithms. 
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