
PyModel
Model-based testing in Python

Jon Jacky

University of Washington
jon@u.washington.edu

http://staff.washington.edu/jon/pymodel/www/

Jon Jacky Model-based testing in Python

Model-based testing

Unit testing: code each test case, including an assertion that
checks whether the test passed

Model-based testing: code a model that generates as many test
cases as desired, and also acts as the oracle that checks whether
any case passed

A model-based testing project is a programming project!

In PyModel the models are coded in Python. It is convenient when
the implementation under test is also in Python (but this is not
required).

Jon Jacky Model-based testing in Python

Model-based testing

What problem does model-based testing solve?

Testing behavior: ongoing activities that may exhibit
history-dependence and nondeterminism.

Many variations (data values, interleavings, etc.) should be tested
for each scenario (or use case).

So many test cases are needed that it is not feasible to code them
all by hand.

Examples: communication protocols, web applications, control
systems, user interfaces, ...

Jon Jacky Model-based testing in Python

Behavior

We need to test behavior: ongoing activities that may exhibit
history dependence and nondeterminism.

We represent behavior with traces: sequences of actions with
arguments. Specify a system by describing which traces are
allowed, and which are forbidden.

Example: alternating bit protocol

Allowed

Send(0)

Ack(0)

Send(1)

Ack(1)

Allowed

Send(1)

Send(1)

Ack(1)

Send(0)

Ack(1)

Ack(1)

Send(0)

Ack(0)

Allowed

Send(1)

Send(1)

Ack(1)

Send(1)

Ack(1)

Send(1)

Allowed

Send(1)

Ack(1)

Send(1)

Ack(1)

Ack(1)

Send(0)

Ack(0)

Forbidden

Send(0)

Ack(0)

Send(0)

Ack(0)

Forbidden

Send(0)

Ack(1)

Send(1)

Ack(1)

Jon Jacky Model-based testing in Python

Finite State Machines

Finite State Machines (FSMs) can represent finite behaviors. Every
path through the graph represents an allowed trace.

0

Ack(1)
Send(1)

1
Send(0)

2

Ack(0)

3
Send(1)

4

Ack(1)

Send(0)

Ack(0)

Ack(1)
Send(0)

Ack(1)
Ack(0)
Send(1)

Allowed

Send(0)

Ack(0)

Send(1)

Ack(1)

Allowed

Send(1)

Send(1)

Ack(1)

Send(0)

Ack(1)

Ack(1)

Send(0)

Ack(0)

Allowed

Send(1)

Send(1)

Ack(1)

Send(1)

Ack(1)

Send(1)

Allowed

Send(1)

Ack(1)

Send(1)

Ack(1)

Ack(1)

Send(0)

Ack(0)

Forbidden

Send(0)

Ack(0)

Send(0)

Ack(0)

Forbidden

Send(0)

Ack(1)

Send(1)

Ack(1)

Jon Jacky Model-based testing in Python

Finite State Machines

FSMs are one kind of model in PyModel, coded as follows:

0

Ack(1)
Send(1)

1
Send(0)

2

Ack(0)

3
Send(1)

4

Ack(1)

Send(0)

Ack(0)

Ack(1)
Send(0)

Ack(1)
Ack(0)
Send(1)

graph = ((0, (Send, (1,), None), 0),

(0, (Ack, (1,), None), 0),

(0, (Send, (0,), None), 1),

(1, (Ack, (0,), None), 2),

... etc. ...

(4, (Send, (0,), None), 1))

The PyModel Graphics program pmg generates graphics from an
FSM in this form.

Jon Jacky Model-based testing in Python

Generating tests

The PyModel Tester pmt generates traces from a model. Each
trace describes a test run, including the expected test results.

Offline testing: pmt saves the traces in a test suite.

On-the-fly testing: pmt executes the traces as they are generated.

C:\Users\jon\Documents\mbt\samples\abp>pmt.py -n 10 ABP

Send(1,)

Send(1,)

Ack(1,)

Send(1,)

Ack(1,)

Send(0,)

Ack(1,)

Send(0,)

Ack(0,)

Ack(0,)

Finished at step 10, reached accepting state

Jon Jacky Model-based testing in Python

Model programs

Model programs are another kind of model in PyModel. They can
describe behaviors where the action arguments can have an
“infinite” (very large) number of values.

A model program consists of state variables, action functions and
enabling conditions.

stack = list() # State

def Push(x): # Push is always enabled

global stack

stack.insert(0,x)

def Pop(): # Pop requires an enabling condition

global stack

result = stack[0]

del stack[0]

return result

def PopEnabled(): # Pop is enabled when the stack is not empty

return stack
Jon Jacky Model-based testing in Python

Exploration

The PyModel Analyzer pma generates an FSM from a model
program by a process called Exploration.

0
0

1

Push(0)

2

Push(1)

0

1

Push(0)

2

Push(1)Pop(0)

15

Push(0)

16

Push(1)

0

1

Push(0)

2

Push(1)Pop(0)

15

Push(0)

16

Push(1)

Pop(1)

4

Push(1)

3

Push(0)

etc ...

Jon Jacky Model-based testing in Python

Exploration

The PyModel Analyzer pma generates an FSM from a model
program by a process called Exploration.

0

0

1

Push(0)

2

Push(1)

0

1

Push(0)

2

Push(1)Pop(0)

15

Push(0)

16

Push(1)

0

1

Push(0)

2

Push(1)Pop(0)

15

Push(0)

16

Push(1)

Pop(1)

4

Push(1)

3

Push(0)

etc ...

Jon Jacky Model-based testing in Python

Exploration

The PyModel Analyzer pma generates an FSM from a model
program by a process called Exploration.

0
0

1

Push(0)

2

Push(1)

0

1

Push(0)

2

Push(1)Pop(0)

15

Push(0)

16

Push(1)

0

1

Push(0)

2

Push(1)Pop(0)

15

Push(0)

16

Push(1)

Pop(1)

4

Push(1)

3

Push(0)

etc ...

Jon Jacky Model-based testing in Python

Exploration

The PyModel Analyzer pma generates an FSM from a model
program by a process called Exploration.

0
0

1

Push(0)

2

Push(1)

0

1

Push(0)

2

Push(1)Pop(0)

15

Push(0)

16

Push(1)

0

1

Push(0)

2

Push(1)Pop(0)

15

Push(0)

16

Push(1)

Pop(1)

4

Push(1)

3

Push(0)

etc ...

Jon Jacky Model-based testing in Python

Exploration

The PyModel Analyzer pma generates an FSM from a model
program by a process called Exploration.

0
0

1

Push(0)

2

Push(1)

0

1

Push(0)

2

Push(1)Pop(0)

15

Push(0)

16

Push(1)

0

1

Push(0)

2

Push(1)Pop(0)

15

Push(0)

16

Push(1)

Pop(1)

4

Push(1)

3

Push(0)

etc ...

Jon Jacky Model-based testing in Python

Exploration

We must limit exploration of infinite programs. Here we define a
finite domain to limit the width of the graph, and a state filter to
limit its depth.

domains = { Push: {’x’:[0,1]} }

def StateFilter():

return len(stack) < 4

0

1

Push(0)

2

Push(1)Pop(0)

15

Push(0)

16

Push(1)

Pop(1)

4

Push(1)

3

Push(0)Pop(1)

9

Push(0)

10

Push(1)

Pop(0)

5

Push(0)

6

Push(1)Pop(0) Pop(1)Pop(0) Pop(1)

Pop(0)

25

Push(0)

26

Push(1)

Pop(1)

18

Push(1)

17

Push(0)Pop(1) Pop(0)Pop(0) Pop(1)

Jon Jacky Model-based testing in Python

Strategies

Test generation can select the next enabled action at random, or
use an optional strategy to select an action that increases coverage
according to some measure.

> pmt.py Stack

Push(1,)

Push(2,)

Push(2,)

Push(1,)

Pop(), 1

Pop(), 2

Pop(), 2

Push(2,)

Push(1,)

Push(1,)

> pmt.py Stack

-g ActionNameCoverage

Push(1,)

Pop(), 1

Push(2,)

Pop(), 2

Push(1,)

Pop(), 1

Push(2,)

Pop(), 2

Push(1,)

Pop(), 1

> pmt.py Stack

-g StateCoverage

Push(1,)

Push(2,)

Push(2,)

Push(1,)

Push(1,)

Push(1,)

Push(2,)

Push(2,)

Push(1,)

Push(1,)

ActionNameCoverage and StateCoverage are included in PyModel.
You can also code your own custom strategy.

Jon Jacky Model-based testing in Python

Composition

We need scenario control to limit test runs to scenarios of interest.

PyModel uses composition, a versatile technique combines two or
more models to form a new model, the product.

M1 ×M2 = P

Usually we combine a contract model program (with action
functions, etc.) with a scenario machine, an FSM.

Contract × Scenario = Product

Composition can also be used for validation, program structuring,
etc. . . .

Jon Jacky Model-based testing in Python

Composition

Composition synchronizes shared actions.

0

2

Push(1)

1

Push(0)Pop(1)

4

Push(1)

3

Push(0)

Pop(0)

9

Push(0)

10

Push(1)Pop(0) Pop(1)Pop(1) Pop(0)

× 0

1

Push(1)Pop(1)

Push(1)

=

0

2

Push(1)Pop(1)

1

Push(1)Pop(1)

This usually has the effect of restricting behavior.

Jon Jacky Model-based testing in Python

Composition

Composition synchronizes shared actions.

0

2

Push(1)

1

Push(0)Pop(1)

4

Push(1)

3

Push(0)

Pop(0)

9

Push(0)

10

Push(1)Pop(0) Pop(1)Pop(1) Pop(0)

× 0

1

Push(1)Pop(1)

Push(1)

=

0

2

Push(1)Pop(1)

1

Push(1)Pop(1)

This usually has the effect of restricting behavior.

Jon Jacky Model-based testing in Python

Composition

Composition synchronizes shared actions.

0

2

Push(1)

1

Push(0)Pop(1)

4

Push(1)

3

Push(0)

Pop(0)

9

Push(0)

10

Push(1)Pop(0) Pop(1)Pop(1) Pop(0)

× 0

1

Push(1)Pop(1)

Push(1)

=

0

2

Push(1)Pop(1)

1

Push(1)Pop(1)

This usually has the effect of restricting behavior.

Jon Jacky Model-based testing in Python

Composition

Composition interleaves unshared actions.

0

1

PowerOn()PowerOff()

×
0

1

IncrementSpeed()

2

IncrementSpeed()

IncrementSpeed()
=

0

1

PowerOn()

2

IncrementSpeed()

PowerOff()

3

IncrementSpeed()

4

IncrementSpeed()

PowerOn()

IncrementSpeed()

5

PowerOn()

PowerOff()

IncrementSpeed()

IncrementSpeed()

PowerOff()

This usually has the effect of adding behavior.

Jon Jacky Model-based testing in Python

Composition

Composition interleaves unshared actions.

0

1

PowerOn()PowerOff()

×
0

1

IncrementSpeed()

2

IncrementSpeed()

IncrementSpeed()

=

0

1

PowerOn()

2

IncrementSpeed()

PowerOff()

3

IncrementSpeed()

4

IncrementSpeed()

PowerOn()

IncrementSpeed()

5

PowerOn()

PowerOff()

IncrementSpeed()

IncrementSpeed()

PowerOff()

This usually has the effect of adding behavior.

Jon Jacky Model-based testing in Python

Composition

Composition interleaves unshared actions.

0

1

PowerOn()PowerOff()

×
0

1

IncrementSpeed()

2

IncrementSpeed()

IncrementSpeed()
=

0

1

PowerOn()

2

IncrementSpeed()

PowerOff()

3

IncrementSpeed()

4

IncrementSpeed()

PowerOn()

IncrementSpeed()

5

PowerOn()

PowerOff()

IncrementSpeed()

IncrementSpeed()

PowerOff()

This usually has the effect of adding behavior.

Jon Jacky Model-based testing in Python

Validation

Composition with a scenario can help validate a model program.

0

2

Push(1)

1

Push(0)Pop(1)

4

Push(1)

3

Push(0)

Pop(0)

9

Push(0)

10

Push(1)Pop(0) Pop(1)Pop(1) Pop(0)

× 0

1

Push(1)Pop(0)

= 0

1

Push(1)

The product shows whether the model program can execute the
complete scenario. Does the product reach an accepting state?

Jon Jacky Model-based testing in Python

Validation

Composition with a scenario can help validate a model program.

0

2

Push(1)

1

Push(0)Pop(1)

4

Push(1)

3

Push(0)

Pop(0)

9

Push(0)

10

Push(1)Pop(0) Pop(1)Pop(1) Pop(0)

× 0

1

Push(1)Pop(0)

= 0

1

Push(1)

The product shows whether the model program can execute the
complete scenario. Does the product reach an accepting state?

Jon Jacky Model-based testing in Python

Validation

Composition with a scenario can help validate a model program.

0

2

Push(1)

1

Push(0)Pop(1)

4

Push(1)

3

Push(0)

Pop(0)

9

Push(0)

10

Push(1)Pop(0) Pop(1)Pop(1) Pop(0)

× 0

1

Push(1)Pop(0)

= 0

1

Push(1)

The product shows whether the model program can execute the
complete scenario. Does the product reach an accepting state?

Jon Jacky Model-based testing in Python

Scenario Control

In this example we compose the model program with a scenario
machine to eliminate redundant startup and shutdown paths.

0

1

ClientSocket()

2

ServerSocket()

27

3

9

ClientSocket()

11

29

28

ServerClose()

4

ServerSocket()

ServerClose()

5

ServerBind() ClientSocket()

ServerClose() 7

ClientSocket()

6

ServerListen()

ServerClose()

ServerBind()

ServerClose()8

ServerListen()

ServerClose()

10

ClientConnect()

ServerClose()

12

ServerAccept()

16

ServerSend(double("99.9"))

13

ServerCloseConnection()

14

ClientClose()

15

ClientSend()

17

ServerSend(double("100"))

18

ServerCloseConnection()

19

ClientReceive_Start()

ClientSend()

26

ServerClose()

20

ClientClose()

ServerCloseConnection()ServerCloseConnection()

ServerReceive()

22

ClientReceive_Start()

21

ServerCloseConnection()

ClientReceive_Finish(double("100"))

23

ServerClose()

24

ClientReceive_Start()

25

ClientReceive_Start() ClientReceive_Finish(double("100"))

ClientReceive_Finish(double("100"))

ClientClose()ClientSend() ServerClose()

30

ServerClose()

31

ClientReceive_Start()

ClientReceive_Finish(double("99.9"))

32

ClientReceive_Start()ClientReceive_Finish(double("99.9"))

ClientReceive_Finish(double("99.9"))

ServerClose() ClientSocket()

×

0

1

ServerSocket()

9

2

ServerBind()

3

ServerListen()

4

ClientSocket()

5

ClientConnect()

6

ServerAccept()

7

ClientClose()

8

ServerCloseConnection()

ServerClose()

=

0

1

ServerSocket()

13

2

ServerBind()

3

ServerListen()

4

ClientSocket()

5

ClientConnect()

6

ServerAccept()

7

ClientSend()

8

ClientClose()

9

ServerSend(double("99.9"))

10

ServerSend(double("100"))ServerReceive()

12

ServerCloseConnection()

ClientReceive() / double("99.9") ClientReceive() / double("100")

ServerClose()

Now the product will only generate interesting traces.

Jon Jacky Model-based testing in Python

Scenario Control

In this example we compose the model program with a scenario
machine to eliminate redundant startup and shutdown paths.

0

1

ClientSocket()

2

ServerSocket()

27

3

9

ClientSocket()

11

29

28

ServerClose()

4

ServerSocket()

ServerClose()

5

ServerBind() ClientSocket()

ServerClose() 7

ClientSocket()

6

ServerListen()

ServerClose()

ServerBind()

ServerClose()8

ServerListen()

ServerClose()

10

ClientConnect()

ServerClose()

12

ServerAccept()

16

ServerSend(double("99.9"))

13

ServerCloseConnection()

14

ClientClose()

15

ClientSend()

17

ServerSend(double("100"))

18

ServerCloseConnection()

19

ClientReceive_Start()

ClientSend()

26

ServerClose()

20

ClientClose()

ServerCloseConnection()ServerCloseConnection()

ServerReceive()

22

ClientReceive_Start()

21

ServerCloseConnection()

ClientReceive_Finish(double("100"))

23

ServerClose()

24

ClientReceive_Start()

25

ClientReceive_Start() ClientReceive_Finish(double("100"))

ClientReceive_Finish(double("100"))

ClientClose()ClientSend() ServerClose()

30

ServerClose()

31

ClientReceive_Start()

ClientReceive_Finish(double("99.9"))

32

ClientReceive_Start()ClientReceive_Finish(double("99.9"))

ClientReceive_Finish(double("99.9"))

ServerClose() ClientSocket()

×

0

1

ServerSocket()

9

2

ServerBind()

3

ServerListen()

4

ClientSocket()

5

ClientConnect()

6

ServerAccept()

7

ClientClose()

8

ServerCloseConnection()

ServerClose()

=

0

1

ServerSocket()

13

2

ServerBind()

3

ServerListen()

4

ClientSocket()

5

ClientConnect()

6

ServerAccept()

7

ClientSend()

8

ClientClose()

9

ServerSend(double("99.9"))

10

ServerSend(double("100"))ServerReceive()

12

ServerCloseConnection()

ClientReceive() / double("99.9") ClientReceive() / double("100")

ServerClose()

Now the product will only generate interesting traces.

Jon Jacky Model-based testing in Python

Scenario Control

In this example we compose the model program with a scenario
machine to eliminate redundant startup and shutdown paths.

0

1

ClientSocket()

2

ServerSocket()

27

3

9

ClientSocket()

11

29

28

ServerClose()

4

ServerSocket()

ServerClose()

5

ServerBind() ClientSocket()

ServerClose() 7

ClientSocket()

6

ServerListen()

ServerClose()

ServerBind()

ServerClose()8

ServerListen()

ServerClose()

10

ClientConnect()

ServerClose()

12

ServerAccept()

16

ServerSend(double("99.9"))

13

ServerCloseConnection()

14

ClientClose()

15

ClientSend()

17

ServerSend(double("100"))

18

ServerCloseConnection()

19

ClientReceive_Start()

ClientSend()

26

ServerClose()

20

ClientClose()

ServerCloseConnection()ServerCloseConnection()

ServerReceive()

22

ClientReceive_Start()

21

ServerCloseConnection()

ClientReceive_Finish(double("100"))

23

ServerClose()

24

ClientReceive_Start()

25

ClientReceive_Start() ClientReceive_Finish(double("100"))

ClientReceive_Finish(double("100"))

ClientClose()ClientSend() ServerClose()

30

ServerClose()

31

ClientReceive_Start()

ClientReceive_Finish(double("99.9"))

32

ClientReceive_Start()ClientReceive_Finish(double("99.9"))

ClientReceive_Finish(double("99.9"))

ServerClose() ClientSocket()

×

0

1

ServerSocket()

9

2

ServerBind()

3

ServerListen()

4

ClientSocket()

5

ClientConnect()

6

ServerAccept()

7

ClientClose()

8

ServerCloseConnection()

ServerClose()

=

0

1

ServerSocket()

13

2

ServerBind()

3

ServerListen()

4

ClientSocket()

5

ClientConnect()

6

ServerAccept()

7

ClientSend()

8

ClientClose()

9

ServerSend(double("99.9"))

10

ServerSend(double("100"))ServerReceive()

12

ServerCloseConnection()

ClientReceive() / double("99.9") ClientReceive() / double("100")

ServerClose()

Now the product will only generate interesting traces.

Jon Jacky Model-based testing in Python

Test Harness

Executing tests requires a harness (or adapter) to connect the
model to the implementation. In PyModel a test harness is called a
stepper. Its core TestAction function contains a branch for each
action in the model.

def TestAction(aname, args, modelResult):

...

if aname == ’Initialize’:

session = dict() # clear out cookies/session IDs from previous session

elif aname == ’Login’:

user = users[args[0]]

...

password = passwords[user] if args[1] == ’Correct’ else wrongPassword

postArgs = urllib.urlencode({’username’:user, ’password’:password})

page = session[user].opener.open(webAppUrl).read() # GET login page

...

if result != modelResult:

return ’received Login %s, expected %s’ % (result, modelResult)

elif aname == ’Logout’:

...

Jon Jacky Model-based testing in Python

On-the-fly Testing

On-the-fly testing generates test cases as the test run executes. It
overcomes some disadvantages of offline test generation.

No FSM is generated, needn’t finitize

Test runs can be indefinitely long, nonrepeating

Especially

Handles nondeterminism — responds to the nondeterministic
choice that the implementation actually made!

This last requires an asynchronous stepper that distinguishes
between controllable actions (functions the stepper can call) and
observable actions (events the stepper can detect).

Jon Jacky Model-based testing in Python

Implications

Model-based testing can encourage different approaches to testing.

Encourages on-the-fly testing — but test runs may not be
reproducible.

Extends testing to noninvasive monitoring or run time
verification — if the harness supports observable actions, the
tester can check log files or monitor network traffic for
conformance violations.

Enables better integration of design analysis with testing —
exploration is like model checking, can check for safety,
liveness, and temporal properties.

A rational workflow might be to write the model before writing the
implementation, analyze and tweak the design, then implement
and test.

Jon Jacky Model-based testing in Python

Download PyModel

PyModel is an open-source model-based testing framework.

http://staff.washington.edu/jon/pymodel/www/

Jon Jacky Model-based testing in Python

