
CREATING HETEROGENEOUS SIMULATIONS BY INTEROPERATING SST WITH

HARDWARE DESCRIPTION FRAMEWORKS

Sabbir Ahmed
Booz Allen Hamilton

ahmed_sabbir@bah.com

ABSTRACT

Implementing new computer system designs involves careful study of both programming models and hard-
ware design and organization, a process that frequently introduces distinct challenges. Hardware and software
definitions are often simulated to undertake these difficulties. Structural Simulation Toolkit (SST), a parallel
event-based simulation framework that allows custom and vendor models to be interconnected to create a
system simulation [1], is one such toolkit. However, SST must be able to support models implemented in var-
ious hardware-level modeling languages (Chisel, PyRTL, SystemC, etc.) and hardware description languages
(VHDL, Verilog and SystemVerilog). Establishing communication with these modules would allow SST to
interface numerous existing synthesizable hardware models. SST Interoperability Toolkit (SIT) is a toolkit
developed to provide interoperability between SST and other frameworks. SIT aims to achieve this capability
in a modular design without interfering with the kernels by concealing the communication protocols in black
box interfaces.

1 Introduction

The increasing size and complexity of systems require engineers heavily rely on simulation techniques during the develop-
ment phases. Typically, simulations of these complex systems require both custom and off-the-shelf logic functionality in
application-specific integrated circuits (ASIC) or field programmable gate arrays (FPGA). High-level commercial tools simu-
late and model these components in their native environments. On the other side, developers create the register transfer level
(RTL) models representing the systems to simulate them with computer-aided design (CAD) tools and test benches. These
duplicative strategies require a method that simulates the entire system in one heterogeneous model.

SST is an event-based framework that has the capabilities to simulate not only functionality but timing, power or any other
information required. Each SST components can be assigned a clock to synchronize tasks. They communicate events with each
other via SST links by triggering their corresponding event handlers. The SST models are constructed in C++ and consist of the
functionality of the element, the definition of each links’ ports and the event handlers. The models are connected and initialized
through the SST Python module.

Implementing a heterogeneous system to synchronize signals and events between the frameworks would allow the developers
to work cooperatively and efficiently.

Note: For the sake of simplicity and consistency in the nomenclature, the languages, toolkits or libraries in the following
categories will be simply labeled as “hardware description frameworks”, “HDL” or “external HDL”:

• hardware description languages (SystemVerilog, Verilog, VHDL, etc.)

• system-level modeling languages (Chisel, PyRTL, SystemC, etc.)

2 Black Box Interface

SIT conceals the communication implementation in black box driver files. This strategy allows the SST component to connect
with the HDL processes via SST links as if they were a component itself.

The interface consists of:

1. an HDL driver



Figure 1: Components of SIT

2. an SST component

3. additional HDL specific files

2.1 SST Component

The black box SST component consists of the following methods:

• Constructor

• void setup()

• bool tick(SST::Cycle_t)

• void handle_event(SST::Event *)

2.1.1 Constructor

The constructor assigns the component links and declares the member attributes and sizes.

2.1.2 setup

The overridden method forks and synchronizes with its corresponding HDL driver child process.

2.1.3 tick

The overridden method simply returns false to prevent any clock delays.

2.1.4 handle_event

The method is a custom event handler that receives SST String Events and parses the string buffer for transfer. The first 2
characters of the string are flags for the HDL driver to continue sending and receiving data respectively. The rest of the data is
prepended with the HDL driver power state flag and sent to the child process via the selected communication protocol.

2.2 HDL Driver

Each HDL modules must have their corresponding driver file to interoperate with the SST kernel within the black box interface.
The language or framework must be able to bind to interprocess communication (IPC) ports to send and receive data. The driver
must be compiled separately from the SST component.

2



2.3 Boilerplate Code Generator

The toolkit includes a Python class that generates the boilerplate code required for the black box interface.

The generator expects the following inputs:

• ipc - method of interprocess communication protocol

• module - SST element component and HDL module name

• lib - SST element library name

• width_macros (default: None) - mapping of signal width macros to their integer values. An HDL module may declare
constants or user-inputted variables in their implementation to determine signal widths.

• module_dir (default: "") - directory of HDL module

• lib_dir (default: "") - directory of SIT library

• desc (default: "") - description of the SST model

• driver_template_path (default: "") - path to the black box-driver boilerplate

• component_template_path (default: "") - path to the black box-model boilerplate

3 Communication

Figure 2: Black Box Interface Data Flow Diagram; Arrows Highlighted in Red Indicate Communication Signals

3



3.1 Inter-Black Box Communication

The data is serialized into a string buffer with the substring positions and lengths generated by the Boilerplate Code Generator.
The components inside the black box interface are spawned in the same node and therefore communicate via interprocess
communication (IPC) transports. The following is a list of supported IPC transports:

1. Unix domain sockets

2. ZeroMQ

It is possible to integrate additional IPC protocols to the interface such as named pipes and shared memories.

3.2 SST-Black Box Communication

SST links are used to interface the SST component with the black box. The data is received as a SST::Interfaces::StringEvent
object which is casted to a standard string. SIT provides a custom event handler as part of its black box interface to allocate the
substring positions and lengths for the ports.

3.3 HDL-Black Box Communication

The HDL module utilizes its program specific mechanism of communication to interface the black box driver. The method may
be source file inclusion or importing modules.

4 Extensibility

4.1 Communication

As mentioned in Section 3.1, it is possible to integrate additional IPC protocols to the interface by implementing a derived class
of sigutils::SignalIO with customized sending and receiving methods. The base sigutils::SignalIO class provides
methods of serializing and deserializing the data structures utilized within the black box interface. The derived sending and
receiving methods would have to simply implement their specific approaches of reading and flushing buffers.

4.2 Interface

This entire paper focuses on the interoperability established between SST and SystemC processes. However, the concept was
derived off of the efforts already established by the SST-PyRTL project [2]. In fact, a hybrid version of the Traffic Intersection
Simulation has been implemented where both SystemC and PyRTL take control over one traffic light using the same IPC
method. The black box SST component had to be provided distinct instructions to spawn and communicate with a SystemC
and a non-SystemC process. Meanwhile, the other side of the black box interface consisted of a SystemC driver and a PyRTL
driver with their respective native configurations for establishing communication with the parent process.

This extensibility was possible due to the generic structure of the black box interface. In theory, the interface is able to establish
interoperability between SST and almost any other synthesizable HDL.

References

[1] SST Simulator - The Structural Simulation Toolkit. sst-simulator.org.

[2] Mrosky, Robert P, et al. Creating Heterogeneous Simulations with SST and PyRTL.

4


	Introduction
	Black Box Interface
	SST Component
	Constructor
	setup
	tick
	handle_event

	HDL Driver
	Boilerplate Code Generator

	Communication
	Inter-Black Box Communication
	SST-Black Box Communication
	HDL-Black Box Communication

	Extensibility
	Communication
	Interface


