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Abstract

With the explosion of the size of digital dataset, the limgtifactor for decom-
position algorithms is theumber of passesver the input, as the input is often
stored out-of-core or even off-site. Moreover, we're omlierested in algorithms
that operate irconstant memoryv.r.t. to the input size, so that arbitrarily large
input can be processed. In this paper, we present a practiogparison of two
such algorithms: a distributed method that operates inglesipass over the input
vs. a streamed two-pass stochastic algorithm. The expetinteck the effect
of distributed computing, oversampling and memory traffe-on the accuracy
and performance of the two algorithms. To ensure meanimgfullts, we choose
the input to be a real dataset, namely the whole of the Entiglipedia, in the
application settings of Latent Semantic Analysis.

1 Introduction

Matrix decomposition algorithms are commonly used in aetsrof domains across much of the
field of Computer Sciengie Research has traditionally focused on optimizing the remobFLOPS
(floating point operations) and numerical robustness dfdtadgorithms [Comon and Golub, 1990,
[Golub and Van Loan, 1996]. However, modern datasets aredsite be stored in main memory,
or even on a single computer, so that communication itsetkdybecomes a bottleneck.

One of the oldest and most widely known matrix decomposiéilgorithms is the Singular Value
Decomposition (SVD), or its closely related eigen decontjmrs which produce a provably optimal
(in the least-squares sense) rdnfactorizations when truncated. In the followingwill denote the
number of observations (matrix columns),the number of features (matrix rows) ahdhe trun-
cated target ranl; < m < n. In practise, the optimal decompositions are notoriouspe@sive to
compute and truly large-scale applications are rare. Th&t smmmon remedy is a) approximation
(subsampling the input), b) some sort of incremental updatcheme which avoids recomputing
the truncated models from scratch every time an obserVétature is updated, or ¢) giving up on a
globally optimal solution and using another, heuristicoaidnm. One way or another, the algorithm
must avoid asking fo©(n) memory, as the number of observations is assumed to be g®itar
modern problems. Tablg 1 summarizes available algorittand their implementations) with re-
spect to several interesting characteristics, such ashwhet not they are distributed, whether they
can be incrementally updated, how many input passes areedar whether they realize subspace
tracking (infinite input stream, gradual model decay).

This paper compares two particular modern approachesge-trale eigen decomposition: a one-
pass streamed distributed algorithm frdRehlirek, 2010] and a modified stochastic streamed two-

1Examples include Latent Semantic Analysis in Natural LawguProcessing; (discrete) Karhunen—Loéve
Transform in Image Processing or Recommendation Systenmdrmation Retrieval. SVD is also used in
solving shift-invariant Differential Equations, in Gegjics, in Signal Processing, in Antenna Array Process-
ing, ...



Table 1: Selected algorithms for truncated, partial eidecemposition and their characteristics.
“—” stands forno/not found

Algorithm Distributed Incremental in # passes | Subspace | Implementations
observations| features tracking
Krylov subspace methods yes — — O(k) — PROPACK| ARPACK| SVDPACK,
(Lanczos, Arnoldi) MAHOUT! ...
Halko et al., 200B] yes — — O(1) — redsvd| pca:m, our own
[Gorrell and Webb, 2005] — — — O(k) — LingPipe, our own
[2ha'and Simon, 1999] — yes yes 1 yes —, our own
[Levy and Lindenbaum, 2000] — yes — 1 yes —, our own
[Brand, 2006] — yes yes 1 — —, our own
[Rehtifek, 2010] yes yes — 1 yes our own, open-sourced

pass algorithm from [Halko et al., 2009]. They require ond dmo passes over the input respec-
tively; we will call them P1 and P2 from now on. Both are streamed, meaning no random access to
observations is required and their memory requirementsarstant in the number of observations.
Some modifications to the origin&l2 algorithm were necessary to achieve this; these are deskcrib
below. Apart from the practical side-by-side comparisoa,also present a hybrid of the two meth-
ods here, a novel algorithm which takes advantage of thedspieB2 while retaining the one-pass
quality of P1.

1.1 Stochastic two-pass algorithmp2

The one-pass stochastic algorithm as described in [Hal&b,6t009] is unsuitable for large-scale
decompositions, because the computation requies: + mk) memory. We can reduce this to a
managable)(mk), i.e. independent of the input stream sizeat the cost of running two passes
over the input matrix instead of dheThis is achieved by two optimizations: 1) the sample matrix
is constructed piece-by-piece from the stream, insteaddifegt matrix multiplication, and 2) the
final dense decomposition is performed on a smaller k eigenproblemBB” instead of the full

k x n matrix B.

These two “tricks” allow us to compute the decompositionamg&tant memory, by processing the
observations one after another, or, preferrably, in aglahynks as fit into core memory. The intu-
ition behind these optimizations if fairly straightforvdaiso we defer fleshing out the full algorithm
to Appendix1.

1.2 One-pass algorithmP1

Streamed one-pass algorithms are fundamentally différemt the 2-pass algorithm above (or any
other multi-pass algorithm), in that as long as they manageetp their memory requirements
constant, they allow us to process infinite input streamsniknronments where the input cannot be
persistently stored, this may be the only option.

In [Rehiifek, 201/0], | describe one such algorithm. It worksbmputing in-core decompositions
of document chunks, possibly on different machines, andieffily merging these dense partial

decompositions into one. The partial in-core decompaséigorithm is viewed as “black box” and
chosen to be Douglas Rohde’s SVDLIBC. The coarsely-grgiaedllelism of this algorithm makes
it suitable for distributing the computation over a clustécommodity computers connected by a
high-latency network.

1.3 Hybrid algorithm, P12

In this work, we also explore combining the two above appheac We consider using the in-
core stochastic decomposition pf [Halko et al., 2009] iadtef SVDLIBC in the one-pass merging
framework of Rehiifek, 2010]. This hybrid approach is labellet in the experiments below.

2Actually, 2 + g passes are needed when usjmpwer iterations.


http://soi.stanford.edu/~rmunk/PROPACK/
http://www.caam.rice.edu/software/ARPACK/
http://www.netlib.org/svdpack/
http://mahout.apache.org/
http://code.google.com/p/redsvd/
http://cims.nyu.edu/~tygert/pca.m
http://alias-i.com/lingpipe/
http://nlp.fi.muni.cz/projekty/gensim/
http://tedlab.mit.edu/~dr/SVDLIBC

2 Experiments

We will be comparing the algorithms on an implicit 100,603,199,665 sparse matrix with 0.5
billion non-zero entries (0.15% density). This matrix regents the entire English Wikipeia
with the vocabulary (number of features) clipped to the @00,most frequent word tyd&sin all
experiments, the number of requested eigen factors iganibytset tok = 400.

The experiments used three 2.0GHz Intel Xeon workstatioitis 4GB of RAM, connected by
Ethernet on a single network segment. The machines weresdatated; due to the large amount of
experiments, we only managed to run each experiment twieerébort the better of the two times.

2.1 Oversampling

In this set of experiments, we examine the relative accuoédiie three algorithmsP2 has two
parameters which affect accuracy: the oversampling fdcod the number of power iterations
In the one-pass algorithni31 and P12, we improve accuracy by asking for extra factbduring
intermediate computations, to be truncated at the very éticealecomposition.

Figure[1 summarizes both the relative accuracy and runtiemfopnance of the algorithms, for
multiple choices of andq. We see that although all methods are very accurate for thategt
factors, without oversampling the accuracy quickly degeadThis is especially true of the2
algorithm, where no amount of oversampling helps and potgeations are definitely required.

The “ground-truth” decomposition is unknown, so we canrive gbsolute errors. However, accord-
ing to our preliminary experiments on a smaller corpus, tbetmstic algorithm with extra power
iterations and oversampling gives the most accurate sgsuét will therefore plot it in all subse-
quent figures, in magenta colour, as a frame of references that all algorithm consistently err on
the side ounderestimatinghe magnitude of the singular values—as a rule of thumb, tbatgr the
singular values in each plot, the more accurate the result.

2.2 Chunk size

The one-pass algorithmB1 and P12 proceed in document chunks that fit into core memory. A
natural question is, what effect does the size of these chhalte on performance and accuracy?
With smaller chunks, the algorithm requires less memoryhwarger chunks, it performs fewer
merges, so we might expect better performance. This intuis quantified in Figurgl2, which lists
accuracy and performance results for chunk sizes of 102000 and 40,000 documents.

We see that chunk sizes in this range have little impact oaracy, and that performance gradually
improves with increasing chunk size. This speed-up is selgmproportional to the efficiency of the
decomposition merge algorithm: with a hypothetical zevstenerge algorithm, there would be no
improvementat all, and runtime would be strictly domindigaosts of the in-core decompositions.
On the other hand, a very costly merge routine would implyedr relationship.

2.3 Input stream order

In the Wikipedia input stream, observations are presemtéekicographic order—observation cor-
responding to the Wikipedia entry @marchycomes before the entry diible, which comes before
censorshipetc. This order is of course far from random, so we are ndyuiratierested in how it
affects the resulting decomposition of the single-passrilyms (the two-pass algorithm is order-
agnostic by construction).

To test this, we randomly shuffled the input stream and rethrarexperiments o®1. Ideally, the
results should be identical, no matter how we permute thetispeam. Results in Figuié 3 reveal
that this is not the case: singular values coming from théflgldlruns are distinctly different to the
ones coming from the original, alphabetically ordered sege. This likely shows that the one-pass
truncated scheme has some difficulties adjusting to graslirgpace drift. With the shuffled input,

3Static dump as downloaded frdht t p: /7 downl oad. wi ki medi a. or g/ enwi Ki / [ at est} June
2010.

“The corpus preprocessing setup is described in more detaieo


http://download.wikimedia.org/enwiki/latest
http://nlp.fi.muni.cz/projekty/gensim/wiki.html

no significant drift can occur thanks to the completely ranadservation order, and a much higher
accuracy is retained even without oversampling.

2.4 Distributed computing

The two single pass algorithmB1 and P12, lend themselves to easy parallelization. In Figdre 4,
we evaluate them on a cluster of 1, 2 and 4 computing nodes.s@dlang behaviour is linear in
the number of machines, as there is virtually no commuraoajbing on except for dispatching the
input data and collecting the results. As with chunk size,dhoice of cluster size does not affect
accuracy much.

The P2 algorithm can be distributed too, but is already dominatgthle cost of accessing data in
its ¢ + 2 passes. Routing data around the network gives no perforrmust, so we omit the results
from the figure. We note that distributing2 would still make sense under the condition that the
data is already predistributed to the computing nodes gpsrby means of a distributed filesystem.

3 Conclusion

We presented a streamed version of a two-pass stochastit @ggomposition algorithm and com-
pared it to two streamed one-pass algorithms, one of whigimgssel one-pass distributed algorithm.
The comparison was done in the context of Latent Semantidy&isaon a corpus of 3.2 million
documents comprising the English Wikipedia.

On a single 2GHz machine, the top achieved decompositiagstivere 4 hours and 42 minutes for
the one-pas#12 algorithm and 3 hours 6 minutes for the stochastic multsgagorithm. Without
power iterations and with reduced amount of oversamplirg:agorded even lower times, but at the
cost of a serious loss of accuracy. On a cluster of four comguiodes on three physical machines,
the single pas®12 decomposition was completed in 1 hour and 41 minutes.

We observed that the lightning-fast stochastic algorithffess from serious accuracy issues, which
can be remedied by increasing the number of passes overnghe(power iterations), as suggested
in [Halko et al., 2009]. But, as the number of passes is thet piETious resource in streaming

environments, the otherwise slower one-pass algorithrmerbe quickly competitive. The one-pass
algorithms, one the other hand, suffer from dependency erotter of observations in the input

stream; we will return to this behaviour in future work.

A practical and perhaps even more exciting contribution iscaern implementation of these al-
gorithms that we release into open-sourcgassim Written in Python, it still manages to get top
performance thanks to the use of Python’s NumPYy library feih BLAS calls under the hood.
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Figure 1: Effects of the oversampling paraméten accuracy (Experimehi2.1). Wall-clock times
are in brackets. Experiments were run on a single machirtle cliuinks of 20,000 documents.

singular value s; (log scale)

34

3

P1,1=0[10h36m]

P1, 1=200 [21h17m]
P1, [ =400 [32h40m]
P12, 1=0[6h30m]
P12, 1=200 [9h21m]
P2, 1=0 [2h8m]

P2, 1=200 [2h28m]

P2, 1=400 [2h54m]

P2, 1=400, ¢=3 [7Th57m

1

50

100

150

200
factor i

250 300

(a) Oversampling foP1, P2 and P12 algorithms.

Figure 2: Accuracy and wall-clock times for
different chunk sizes iP1 and P12 (Experi-
men{2.2), no oversampling.
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Figure 4: Distributed computing for algorithms
P1, P12 (ExperimenfZ}). The chunk size is
set to 20,000 documents, no oversampling.
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Figure 3: Effects of input order on the1 al-
gorithm (Experimeni 2]13). Chunk size is set to
40,000 documents, no oversampling.
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A Streamed Stochastic Eigen Decomposition

Algorithm 1 : Two-pass Stochastic Decomposition in Constant Memorly ®itteamed Input

Input: m x ninput matrixA, presented as a stream of observation chuhks[C1, Cs, ..., Ccl.
Truncation factok. Oversampling factol. Number of power iterationg.
Output: U, S? spectral decomposition of (i.e, U S?UT = AAT) truncated to thé greatest
factors.
Data: Intermediate matrices requi®m(k + 1)) memory; in particular, the algorithm avoids
materializing anyO(n) or O(m?) matrices.

/I Construct then x (k + [) sample matriXx™ = AO, in one pass over the input stream.

Y « sum(C;0; for C; in A) ; /] eachO; is a randomC;| x (k + 1) gaussian matrix

/I Rungq power iterations to improve accuracy (optionaf)= (AAT)9A0. Needs; extra passes.

for iteration «+— 1to g do
Y — sum(C;(CTY) for C; in A);

/I Construct then x (k + ) orthonormal action matrik), in-core.
Q — orth(Y);

Il Construct(k + 1) x (k + 1) covariance matrixX = BB” in one pass, wherB = QT A.

X —sum((QTC)(QTC;)T for C; in A) ; /I BLAS rank+ update routine SYRK

/I Computel, S by means of the sma(k + [) x (k + ) matrix X.
Ux,SX — ez’gh(X);

/I Go back from the eigen values &f to the eigen values dB (= eigen values ofl).

S? «— first k values ofy/Sx;
U « first k columns ofQUx;




B Wikipedia LSA Topics

First ten topics coming from th22 decomposition with three power iterations and 400 extra-sam
ples. The top ten topics are apparently dominated by metiag@f Wikipedia administration and
by robots importing large databases of countries, filmsrtspmusic etc.

Topic: | Singular  Ten most salient words for topici, with their weights
value s;
1. 201.118 | -0.474*“delete” + -0.383*“deletion” + -0.275*‘debate” 4:223*‘comments” + -
0.220*edits” + -0.213**modify” + -0.208*“appropriate” +0.194*'subsequent” +
-0.155*wp” + -0.117*“notability”

2. 143.479 | 0.340*diff” + 0.325*link” + 0.190*image” + 0.179*www” + 0.169*user”
+ 0.157*undo” + 0.154*“contribs” + -0.145*‘delete” + 0.Bt“alboum” + -
0.111*deletion”

3. 136.235 | 0.421*diff” + 0.386*“link” + 0.195*undo” + 0.182*‘user” + -0.176*‘image”
+ 0.174*www” + 0.170*contribs” + -0.111*album” + 0.105*%added” + -
0.101*“copyright”

4. 125.436 | 0.346*image” + -0.246*‘age” + -0.223*'median” + -0.208pbpulation” +
0.208*“copyright” + -0.200*income” + 0.190**fair” + -0.Z1*‘census” + -
0.168*km” + -0.165**households”

5. 117.243 | 0.317*image” + -0.196*‘players” + 0.190*‘copyright” + Q76*‘median”
+ 0.174*age” + 0.173*fair” + 0.155*‘income” + 0.144*‘poplation” + -
0.134**football” + 0.129**households”

6. 100.451 | -0.504*players” + -0.319**football” + -0.284*‘|eague” +0.194*“footballers”
+ -0.141*image” + -0.132*'season” + -0.117*cup” + -0.118lub” + -
0.110**baseball” + -0.103*f"

7. 92.376 | 0.411*album” + 0.275*albums” + 0.217*band” + 0.215*sw"” +
0.184*‘chart” + 0.164*“songs” + 0.160*“singles” + 0.149%6cals” + 0.139*“gui-
tar” + 0.129*“track”

8. 84.024 | 0.246*wikipedia” + 0.183*‘keep” + -0.179*‘delete” + 0.I8“articles” +
0.153*'your” + 0.150*'my” + -0.141*film” + 0.129*‘we” + 0.123*‘think” +
0.121*user”

9. 79.548 | word “category” in ten different languages (and their exotin-EX-able scripts)

10. 79.074 | -0.587*film” + -0.459*fiims” + 0.129*album” + 0.127*‘stdion” + -
0.121*television” + -0.119*‘poster” + -0.112*‘directéd+ -0.109*“actors” +
0.095*railway” + -0.085**movie”
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