
Inverted Exponential Distribution1

Zachary Weaver2

April 6, 20243

Contents4

1 Introduction 15

2 Formulating the Probability Density Function 26

3 Parameter Estimation 37

4 Comparison to Kernel Density Estimation 48

5 Conclusion 89

6 Implementation 910

1 Introduction11

A less frequently encountered distribution of data that arises naturally is ex-12

ponentially rising data, and as such, there isn’t a well-known parametric distri-13

bution that describes this type of data. In this paper, we derive a parametric14

distribution to fit exponentially rising data for any closed continuous interval15

with finite Lebesgue measure on the real line and compare it to a kernel density16

estimation to show that kernel density estimation doesn’t do as well to capture17

the behavior of the underlying distribution. This contrasts the standard expo-18

nential distribution as we are attempting to model exponential rise rather than19

decay starting at an arbitrary point in the real line.20

1



2 Formulating the Probability Density Function21

We now start with the derivation. Consider the following figure of sample data22

that we want to build a parametric distribution for.23

Figure 1: An example of exponentially rising data on the interval [600, 800]

There can be varying shapes to this distribution, some with sharper or softer24

rises. To begin, let’s take a look at the standard exponential distribution.25

f(x;λ) = λe−λx (1)

This is the classic well-known exponential decay model. However, we need to26

invert this to model exponentially rising data. We will flip λ in the exponent to27

be positive.28

f(x;λ) = λeλx (2)

As is, this distribution cannot move anywhere. Thus, we introduce a location29

parameter, θ, to do so.30

f(x;λ, θ) = λeλ(x−θ) (3)

To turn this into a proper probability density function, we need to define this31

such that the integral over the domain is one. By definition, this data rises over32

a closed, finite Lebesgue-measurable interval, meaning it’s defined over some33

interval [a, b] for a, b ∈ R and b > a. In this case, our lower bound is set by θ.34

We integrate this function to obtain the normalizing factor.35 ∫ b

θ

f(x;λ, θ)dx =

∫ b

θ

λeλ(x−θ)dx (4)

= λe−λθ

∫ b

θ

eλxdx (5)

2



= λe−λθ

[
1

λ
eλx
]b
θ

(6)

= λe−λθ

[
1

λ
eλb − 1

λ
eλθ
]

(7)

= λe−λθ

[
eλb − eλθ

λ

]
(8)

= λe−λθ

[
eλb − eλθ

λ

]
(9)

= e−λθ
[
eλb − eλθ

]
(10)

= eλ(b−θ) − eλ(θ−θ) (11)

= eλ(b−θ) − 1 (12)

We can now divide our original function by this normalizing factor to convert36

it to a proper probability density function such that, once integrated over [θ, b],37

will be equal to one.38

f(x;λ, θ, b) =
λeλ(x−θ)

eλ(b−θ) − 1
(13)

We define any x /∈ [θ, b] to be 0.39

3 Parameter Estimation40

According to equation 13, there are three total parameters to estimate: λ, θ and41

b. Notice that θ is the lower bound of the domain and b is the upper bound.42

These can be naively estimated as the sample minimum and sample maximum43

respectively. This could be sensitive to outliers and perhaps treated better,44

but this section will mainly focus on estimating λ, the shape parameter of this45

distribution.46

We will approach this with maximum likelihood. Consider the joint proba-47

bility density function which we’ll call the likelihood.48

L(x;λ, θ, b) =

n∏
i=1

f(xi;λ, θ, b) (14)

=

n∏
i=1

λeλ(xi−θ)

eλ(b−θ) − 1
(15)

Due to the complexities of taking derivatives of this, a common trick is to take49

the logarithm of this product as monotonically increasing functions (such as50

3



a logarithm) preserve extrema. It’s easy to see this as if f(x) < f(y) then51

logf(x) < logf(y) since the logarithm is monotonically increasing. This implies52

that a local minimum/maximum is preserved under logarithm. For the remain-53

der of this paper, we notate log as the natural logarithm. That is, a logarithm54

with base e.55

log(L(x;λ, θ, b)) = log

(
n∏

i=1

λeλ(xi−θ)

eλ(b−θ) − 1

)
=

n∑
i=1

log

(
λeλ(xi−θ)

eλ(b−θ) − 1

)
(16)

Due to properties of logarithms, the logarithm of a product can be expressed as56

the sum of individual logarithms. We will also use the fact that the logarithm of57

a ratio, log(xy ), can be expressed as the difference of logarithms, log(x)− log(y).58

=

n∑
i=1

log
(
λeλ(xi−θ)

)
−

n∑
i=1

log
(
eλ(b−θ) − 1

)
(17)

=

n∑
i=1

log(λ) + λ

n∑
i=1

(xi − θ)−
n∑

i=1

log
(
eλ(b−θ) − 1

)
(18)

Note that the first and third terms are just constants, so
∑n

i=1 c = nc.59

= nlog(λ) + λ

n∑
i=1

(xi − θ)− nlog
(
eλ(b−θ) − 1

)
(19)

With this, we can define our gradient by taking the partial derivative with60

respect to λ, our parameter of interest.61

∂

∂λ
log(L(x;λ, θ, b)) =

n

λ
+

n∑
i=1

(xi − θ)− n(b− θ)eλ(b−θ)

eλ(b−θ) − 1
(20)

Finally, we can achieve our estimate by finding the root of this gradient.62

λ̂ =
∂

∂λ
log(L(x;λ, θ, b))

set
= 0 (21)

As of this writing, no analytical solution has been found or proven to exist63

or not exist, but can be numerically approximated.64

4 Comparison to Kernel Density Estimation65

Kernel density estimation is a popular approach to estimating complex dis-66

tributions where the parametric form is either unknown or difficult to ob-67

tain. Here, we compare kernel density estimation against estimating the pa-68

rameters for the inverted exponential distribution on data generated by a few69

known theoretical inverted exponential distributions by varying shape parame-70

ters: f(x; 0.001, 300, 900), f(x; 0.003, 300, 900), f(x; 0.005, 300, 900), f(x; 0.007, 300, 900)71

4



and f(x; 0.01, 300, 900). Note that due to how the distribution is defined, the72

values for λ will always be relatively small, otherwise overflows will occur, so73

we test the range λ ∈ [0.001, 0.01] and should reflect what most ”real world”74

data should follow (higher values of λ will cause the tail end to spike pretty75

significantly.)76

For each experiment, we will sample 30 random points from the given the-77

oretical distribution and fit both a kernel density estimate and estimate the78

parameters for the inverted exponential and use the symmetric form of KL-79

Divergence to evaluate which distribution ”fits” better on 1000 evenly-spaced80

points (using numpy [2]) in the interval [300, 900]. We will repeat this experi-81

ment 250 times and measure the proportion of times that KDE or the estimated82

inverse exponential was a closer fit based on which KL-Divergence value was83

smaller as well as measure the average improvement for each setting.84

For kernel density estimation, we will use Gaussian kernels with the band-85

width estimated by Scott’s rule [1].86

We will denote the kernel density estimate as K̂(x) and the estimated in-87

verted exponential as f̂(x).88

Given a set of evenly-spaced points xi ∈ [300, 900], we define the symmetric89

KL-Divergence as follows.90

SKL(f̂) :=
∑
i

f̂(xi)log

(
f̂(xi)

f(xi)

)
+ f(xi)log

(
f(xi)

f̂(xi)

)
(22)

SKL(K̂) :=
∑
i

K̂(xi)log

(
K̂(xi)

f(xi)

)
+ f(xi)log

(
f(xi)

K̂(xi)

)
(23)

Whichever value is smaller is a ”better” fit.91

Below are visualizations of the theoretical distribution at different parameter92

values.93

Figure 2: The theoretical inverse exponential distribution f(x; 0.001, 300, 900)

5



Figure 3: The theoretical inverse exponential distribution f(x; 0.003, 300, 900)

Figure 4: The theoretical inverse exponential distribution f(x; 0.005, 300, 900)

Figure 5: The theoretical inverse exponential distribution f(x; 0.007, 300, 900)

6



Figure 6: The theoretical inverse exponential distribution f(x; 0.01, 300, 900) -
this parameter value is relatively high so it starts exhibiting odd behavior

After sampling 30 observations and evaluating the divergence metrics for 25094

iterations across the various shape parameters, these are the results:95

N λ # K̂(x) # f̂(x) f̂(x) % Avg. SKL(f̂) Avg. SKL(K̂) f̂(x) % Improvement
30 0.001 45 205 82% 0.156 0.264 40.74%
30 0.003 32 218 87.2% 0.360 0.610 40.94%
30 0.005 50 200 80% 1.023 1.357 24.55%
30 0.007 38 212 84.8% 0.895 1.288 30.51%
30 0.01 109 141 56.4% 1.449 1.159 -25.21%

Table 1: A table of density estimation methods and the count of iterations
where they had a smaller divergence metric (higher count is better) along with
the average KL-Divergence score (lower is better.) NOTE: the % improvement
score is calculated with the un-rounded average values.

7



As we can see in the table, this parametric estimation works pretty well96

in most cases but there is an apparent diminishing return. In particular, the97

estimates start to weaken somewhere in λ ∈ (0.007, 0.01]. Even though we98

technically had slightly more cases where the parametric estimate was ”better”,99

on average it performed 25.21% worse probably due to some particularly bad100

samples that were drawn that are unreliable with a sample size of 30 for this101

value of λ.102

To see the impact of sample size, the simulation was re-ran, but instead of 30103

samples, we now draw 150 samples and run the same 250 experiments. Below104

are the results.105

N λ # K̂(x) # f̂(x) f̂(x) % Avg. SKL(f̂) Avg. SKL(K̂) f̂(x) % Improvement
150 0.001 0 250 100% 0.052 0.235 78.02%
150 0.003 0 250 100% 0.214 0.673 67.27%
150 0.005 0 250 100% 0.670 1.669 59.90%
150 0.007 1 249 99.6% 0.626 1.411 55.69%
150 0.01 7 243 97.2% 0.742 1.129 34.23%

Table 2: The same experiment as before but using 150 samples instead of 30 to
measure the impact of sample size.

There is a very clear impact of sample size, the performance has significantly106

improved with more samples and, looking at the average divergence scores,107

notice that the average scores for kernel density didn’t change much in contrast108

to the inverted exponential - it seems KDE hit a limit of performance pretty109

quickly whereas inverted exponential was able to extract more information. It’s110

unknown at this time what the ”performance cap” in terms of sample size is for111

inverted exponential. It’s clear from here that more samples will be required to112

reliably model larger values of λ.113

5 Conclusion114

We’ve identified a candidate parametric probability distribution to model a115

special case of data that happens to follow an exponential rise over an arbitrary116

continuous interval. We have derived the gradient that can be optimized and117

compared the performance of this parametrization against the popular kernel118

density estimate using various values of λ at sample sizes of 30 and 150. Even at119

30 samples, the model reliably outperforms kernel density estimation for values120

of λ <= 0.007 but diminished somewhere in λ ∈ (0.007, 0.01].121

The performance of inverted exponential drastically improved when moving122

from 30 to 150 samples and was able to more reliably predict the larger val-123

ues of λ > 0.007. Also observed when increasing sample size, kernel density124

didn’t see any performance gains in terms of the average divergence score -125

it hit its performance cap relatively quickly, but the inverted exponential was126

able to extract more information with the increased samples and significantly127

outperformed KDE in every case tested.128

8



It was also observed by visualization the distribution starts to behave oddly129

starting around λ >= 0.01 but may not really occur in practice since one of the130

other smaller values of λ should sufficiently capture the shape.131

6 Implementation132

A Python implementation was created to support fitting, sampling, integrating133

and computing other statistical properties with the help of SciPy [3] as a back-134

end. The package is up on PyPi under the name invexpo (https://pypi.org/project/invexpo/)135

with the source code located at the following GitHub repository: https://github.com/Kiyoshika/inverse-136

exponential137

The code used to run the simulation (section 4) is also provided in the138

repository linked above if you want to audit the results, reproduce or further139

the experimentation.140

References141

[1] D.W. Scott. Multivariate Density Estimation: Theory, Practice, and Visu-142

alization. John Wiley & Sons, 1992. isbn: 9780471547709.143

[2] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585144

(2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2.145

[3] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific146

Computing in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi:147

10.1038/s41592-019-0686-2. url: https://doi.org/10.1038/s41592-148

019-0686-2.149

9

https://pypi.org/project/invexpo/
https://github.com/Kiyoshika/inverse-exponential
https://github.com/Kiyoshika/inverse-exponential
https://github.com/Kiyoshika/inverse-exponential
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2

	Introduction
	Formulating the Probability Density Function
	Parameter Estimation
	Comparison to Kernel Density Estimation
	Conclusion
	Implementation

