
Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

Surrogate Optimization Toolbox (pySOT) - 0.1.14
Tutorial

DAVID ERIKSSON

DAVID BINDEL

CHRISTINE SHOEMAKER

Cornell University
Center for Applied Mathematics

dme65@cornell.edu

22nd September, 2015

Contents

1 Change history: 3

2 Introduction 5

3 Licensing 6

4 Surrogate Model Algorithms 6

5 Installation 7

6 Sphinx documentation 7

7 Options 7
7.1 Experimental design . 8
7.2 Surrogate model . 8
7.3 Capped RBF model . 10
7.4 Objective function . 10
7.5 Generation of next point to evaluate 12

8 POAP 13
8.1 Controller . 14
8.2 Strategies . 14

9 Guidelines for selecting parameters and components 15

10 Graphical user interface 16

1

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

11 Examples 18
11.1 First example (Hello World) . 18
11.2 Continuous problem with non-bound constraints 19
11.3 Ensemble Surrogates . 20
11.4 Mixed-integer problem with non-bound constraints 22
11.5 External C++ objective function . 23

12 Hierarchy of POAP + pySOT 25

13 Future changes 26

2

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

1 Change history:
• (0.1.14)

– Updated the Tutorial to reflect the changes for the last few months
– Simplified the object creation from strings in the GUI by importing di-

rectly from the namespace.

• (0.1.13)

– Allowed to still import the rest of pySOT when PySide is not found. In
this case, the GUI will be unavailable.

• (0.1.12)

– The capping can now take in a general transformation that is used to
transform the function values. Default is median capping.

– The Genetic Algorithm now defaults to initialize the population using a
symmetric latin hypercube design

– DYCORS uses the remaining evaluation budget to change the probabili-
ties after a restart instead of using the total budget

• (0.1.11)

– Fixed a bug in the capped response surface
– pySOT now internally works on the unit hypercube
– The distance can be passed to the RBF after being computed when gen-

erating candidate points so it is not computed twice anymore
– Fixed some bugs in the candidate functions
– GA and Multi-Search gradient perturb the best solution in the case when

the best solution is a previously evaluated point
– Added an additional test for the multi-search strategy

• (0.1.10)

– README.md not uploaded to pypi which caused the pip install to fail

• (0.1.9)

– Fixed a bug in the merit function and several bugs in the DYCORS strat-
egy

– Added a DDS candidate based strategy for searching on the surrogate

• (0.1.8)

– Multi Start Gradient method that uses the L-BFGS-B algorithm to search
on the surroagate

• (0.1.7)

3

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

– Fixed some parameters (and bugs) to improve the DYCORS results. Us-
ing DYCORS together with the genetic algorithm is recommended.

– Added polynomial regression (not yet in the GUI)
– Changed so that candidate points are generated using truncated normal

distribution to avoid projections onto the boundary
– Removed some accidental scikit dependencies in the ensemble surrogate

• (0.1.6)

– GUI inactivates all buttons but the stop button while running
– Bug fixes

• (0.1.5)

– GUI now has support for multiple search strategies and ensemble surro-
gates

– Reallocation bug in the ensemble surrogates fixed
– Genetic algorithm added to search on the surrogate

• (0.1.4)

– GUI now has improved error handling
– Strategies informs the user if they get constraints when not expecting

constraints (and the other way) before the run starts

• (0.1.3)

– Experimental (but not documented) GUI added. You need PySide to use
it.

– Changes in testproblems.py to allow external objective functions that im-
plement ProcessWorkerThread

– Added GUI test examples in documentation (Ackley.py, Keane.py, Sphere-
Ext.py)

• (0.1.2)

– Changed to using the logging module for all the logging in order to con-
form to the changes in POAP 0.1.9

– The quiet and stream arguments in the strategies were removed and the
tests updated accordingly

– Turned sleeping of in the sub process test, to avoid platform dependency
issues

• (0.1.1)

– surrogate optimizer.py was removed, so the user now has to create his
own controller

4

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

– constraint method.py is gone, and the constraint handling is handled in
specific strategies instead

– There are now two strategies, SyncStrategyNoConstraints and SyncStrat-
egyPenalty

– The search strategies now take a method for providing surrogate predic-
tions rather than keeping a copy of the response surface

– It is now possible for the user to provide additional points to be added
to the initial design, in case a ’good starting point’ is known.

– Ensemble surrogates have been added to the toolbox
– The strategies takes an additional option ’quiet’ so that all of the printing

can be avoided if the user wants
– There is also an option ’stream’ in case the printing should be redirected

somewhere else, for example to a text file. Default is printing to stdout.
– Several examples added to pySOT.test

• (0.1.0)

– Initial release

2 Introduction
This is a tutorial (user guide) for the Surrogate Optimization Toolbox (pySOT) for
global deterministic optimization problems. The main purpose of the toolbox is
for optimization of computationally expensive black-box objective functions with
continuous and/or integer variables. We support inequality constraints of any
form through a penalty method approach, but cannot yet efficiently handle equal-
ity constraints. All variables are assumed to have bound constraints in some form
where none of the bounds are infinity. The tighter the bounds, the more efficient
are the algorithms since it reduces the search region and increases the quality of
the constructed surrogate. The longer the objective functions are to evaluate, the
more efficient are these algorithms. For this reason, this toolbox may not be very
efficient for problems with computationally cheap function evaluations. Surro-
gate models are intended to be used when function evaluations take from several
minutes to several hours or more. The toolbox is based on the following published
papers that should be cited when the toolbox is used for own research purposes:

1. J. Muller and R. Piche, 2011. ”Mixture Surrogate Models Based on Dempster-
Shafer Theory for Global Optimization Problems”, Journal of Global Opti-
mization, vol. 51, pp. 79-104

2. J. Muller, C.A. Shoemaker, and R. Piche, 2012. ”SO-MI: A Surrogate Model
Algorithm for Computationally Expensive Nonlinear Mixed-Integer Black-
Box Global Optimization Problems”, Computers & Operations Research,
http://dx.doi.org/10.1016/j.cor.2012.08.022

5

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

3. R.G. Regis and C.A. Shoemaker, 2007. ”A Stochastic Radial Basis Function
Method for the Global Optimization of Expensive Functions”, INFORMS
Journal on Computing, vol. 19, pp. 497-509

4. R.G. Regis and C.A. Shoemaker, 2009. ”Parallel Stochastic Global Optimiza-
tion Using Radial Basis Functions”, INFORMS Journal on Computing, vol.
21, pp. 411-426

For easier understanding of the algorithms in this toolbox, it is recommended
and helpful to read these papers. If you have any questions, or you encounter any
bugs, please feel free to either submit a bug report on Github (recommended) or to
contact me at the email address: dme65@cornell.edu. Keep an eye on the Github
repository for updates and changes to both the toolbox and the documentation.

3 Licensing
Please refer to LICENSE.txt

4 Surrogate Model Algorithms
Surrogates models (or response surfaces) are used to approximate an underlying
function that has been evaluated for a set of points. During the optimization phase
information from the surrogate model is used in order to guide the search for
improved solutions, which has the advantage of not needing as many function
evaluations to find a good solution. Most surrogate model algorithms consist of
the same steps as shown in the algorithm below.

1. Generate an initial experimental design.

2. Carry out the costly function evaluations at the points generated in Step 1.

3. Fit a response surface to the data generated in Steps 1 and 2.

4. Use the response surface to predict the objective function values at new points
in the variable domain in order to decide the next point(s) to be evaluated.

5. Do the expensive function evaluation at the point(s) selected in Step 4.

6. Use the new data to update the surrogate model.

7. Iterate through Steps 4 to 6 until the stopping criterion has been met.

Surrogate model algorithms in the literature differ mainly with respect to

• The generation of the initial experimental design;

• The chosen surrogate model;

• The strategy for selecting the sample point(s) in each iteration.

Typically used stopping criteria are a maximum number of allowed function eval-
uations (used in this toolbox), a maximum allowed CPU time, or a maximum
number of failed iterative improvement trials.

6

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

5 Installation
Before starting you will need Python 2.7 and pypi (pip). There are currently two
ways to install the toolbox:

1. The easiest way to install the toolbox is through pypi in which case the fol-
lowing command should suffice (you may need sudo for UNIX):

pip install pySOT

2. (a) Clone the repository:

git clone https://github.com/dme65/pySOT

or alternatively download the repository directly:
i. Go to https://github.com/dme65/pySOT

ii. Download the repository, extract the zip folder and change the name
to pySOT

(b) Navigate to the repository using:

cd pySOT

(c) Install dependencies:

pip install -r ./requirements.txt

(d) Install pySOT (you may need to use sudo for UNIX):

python setup.py install

(e) Several test problems are available at ./pySOT/test

Optional: If you want to use MARS you need to install the py-earth toolbox
(http://github.com/jcrudy/py-earth)

6 Sphinx documentation
The necessary files to build the Sphinx documentation are provided in the docs
subdirectory. We use the napoleon extension so you need to make sure you have
this package. This can be done through pip

pip install sphinxcontrib-napoleon

To build the documentation run the command:

make html

7 Options
These are the the components and the supported options:

7

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

7.1 Experimental design
The experimental design generates the initial points to be evaluated. A well-
chosen experimental design is critical in order to fit a Surrogate model that cap-
tures the behavior of the underlying objective function. The following experimen-
tal designs are supported:

• LatinHypercube. Arguments:

– dim: Number of dimensions
– npts: Number of points to generate (2dim + 1 is recommended)

Example:

from pySOT import LatinHypercube
exp_des = LatinHypercube(dim=3, npts=10)

creates a Latin hypercube design with 10 points in 3 dimensions

• SymmetricLatinHypercube Arguments:

– dim: Number of dimensions
– npts: Number of points to generate (2dim + 1 is recommended)

Example:

from pySOT import SymmetricLatinHypercube
exp_des = SymmetricLatinHypercube(dim=3, npts=10)

creates a symmetric Latin hypercube design with 10 points in 3 dimensions

7.2 Surrogate model
The surrogate model approximates the underlying objective function given all of
the points that have been evaluated. The following surrogate models are sup-
ported:

• RBFInterpolant. A radial basis function interpolant. Arguments:

– surftype: Kernel function. The options are

* LinearRBFSurface: Linear RBF (comes with a constant tail)

* CubicRBFSurface: Cubic RBF (comes with a linear tail)

* TPSSurface: Thin-Plate RBF (comes with a linear tail)
– maxp: Initial maximum number of points (can grow). Default is 100.

Example:

from pySOT import RBFInterpolant, CubicRBFSurface
fhat = RBFInterpolant(surftype=CubicRBFSurface, maxp=500)

8

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

creates a cubic RBF with a linear tail with a capacity for 500 points.

Note: The RBF surfaces automatically applies damping to the RBF system
in order to keep the system well-conditioned.

• KrigingInterpolant: A Kriging interpolant. Arguments:

– maxp: Maximum number of points (can grow). Default is 100

Example:

from pySOT import KrigingInterpolant
fhat = KrigingInterpolant(maxp=500)

creates a Kriging interpolant with a capacity of 500 points.

• MARSInterpolant: Generate a Multivariate Adaptive Regression Splines (MARS)
model. Arguments:

– maxp: Maximum number of points (can grow). Default is 100

Example:

from pySOT import MARSInterpolant
fhat = MARSInterpolant(maxp=500)

creates a MARS interpolant with a capacity of 500 points.

• EnsembleSurrogate: We also provide the option of using multiple surrogates
for the same problem. Suppose we have M surrogate models, then the en-
semble surrogate takes the form

s(x) =
M∑
j=1

wjsj(x)

where wj are non-negative weights that sum to 1. Hence the value of the
ensemble surrogate is the weighted prediction of the M surrogate models.
We use leave-one-out for each surrogate model to predict the function value
at the removed point and then compute several statistics such as correlation
with the true function values, RMSE, etc. Based on these statistics we use
Dempster-Shafer Theory to compute the pignistic probability for each model,
and take this probability as the weight. Surrogate models that does a good
job predicting the removed points will generally be given a large weight. The
arguments are:

– model list: A list of surrogate model objects to be used.
– maxp: Maximum number of points (can grow). Default is 100

9

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

Example:

from pySOT import RBFInterpolant, CubicRBFSurface, LinearRBFSurface, \
TPSSurface, EnsembleSurrogate

models = [
RBFInterpolant(surftype=CubicRBFSurface, maxp=500),
RBFInterpolant(surftype=LinearRBFSurface, maxp=500),
RBFInterpolant(surftype=TPSSurface, maxp=500)

]

response_surface = EnsembleSurrogate(model_list=models, maxp=500)

creates an ensemble surrogate with three surrogate models, namely a Cubic
RBF Interpolant, a Linear RBF Interpolant, and a TPS RBF Interpolant.

Note: The user is responsible for resetting the response surface after each experi-
ment and this is done by calling the reset() method.
7.3 Capped RBF model
Functions with very large function values can cause the fitted surface to oscillate
wildly. In the case of the RBFInterpolant we therefore provide a capped version
that transforms the function values. The default is to replace all function values
larger than the median of the function values by the median, but it is possible to
provide an other transformation. Arguments:

• fhat: Surrogate model.

• maxp: Initial maximum number of points (can grow). Default is 100.

Example:

from pySOT import RSCapped, RBFInterpolant, CubicRBFSurface

Set inf and nan to the largest value observed so far
def transform(fvalues):

ind = np.isfinite(fvalues)
fvalues[np.logical_not(ind)] = np.max(fvalues[ind])
return fvalues

fhat = RSCapped(RBFInterpolant(model=CubicRBFSurface, maxp=500), \
transformation=transform)

creates a cubic RBF with a linear tail with a capacity for 500 points with capping
that transforms inf and nan to the largest finite function value found so far.
7.4 Objective function
The objective function is its own object and must have certain attributes and meth-
ods in order to work with the framework. We start by giving an example of a

10

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

mixed-integer optimization problem with constraints. The following attributes
must always be specified in the objective function class:

• xlow: Lower bounds for the variables.

• xup: Upper bounds for the variables.

• dim: Number of dimensions

• integer: Specifies the integer variables. If no variables have integer con-
straints, set to []

• continuous: Specifies the continuous variables. If no variables are continu-
ous, set to []

The following methods must also exist.

• objfunction: Takes one input in the form of an numpy.ndarray with shape (1,
dim), which corresponds to one point in dim dimensions. Returns the value
(a scalar) of the objective function at this point.

• eval ineq constraints: Only necessary if there are non-constraints. All con-
straints must be inequality constraints and the must be written in the form
gi(x) ≤ 0. The function takes one input in the form of an numpy.ndarray of
shape (n, dim), which corresponds to n points in dim dimensions. Returns
an numpy.ndarray of size n ×M where M is the number of inequality con-
straints.

What follows is an example of an objective function in 5 dimensions with 3 inte-
ger and 2 continuous variables. There are also 3 inequality constraints that are not
bound constraints which means that we need to implement the eval ineq constraints
method.

import numpy as np

class LinearMI:
def __init__(self):

self.xlow = np.zeros(5)
self.xup = np.array([10, 10, 10, 1, 1])
self.dim = 5
self.min = -1
self.integer = np.arange(0, 3)
self.continuous = np.arange(3, 5)

def eval_ineq_constraints(self, x):
vec = np.zeros((x.shape[0], 3))
vec[:, 0] = x[:, 0] + x[:, 2] - 1.6
vec[:, 1] = 1.333 * x[:, 1] + x[:, 3] - 3
vec[:, 2] = - x[:, 2] - x[:, 3] + x[:, 4]
return vec

11

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

def objfunction(self, x):
if len(x) != self.dim:

raise ValueError('Dimension mismatch')
return - x[0] + 3 * x[1] + 1.5 * x[2] + 2 * x[3] - 0.5 * x[4]

Note: The method validate which is available in pySOT is helpful in order to test
that the objective function is compatible with the framework.

7.5 Generation of next point to evaluate
We provide several different methods for selecting the next point to evaluate. All
methods in this version are based in generating candidate points by perturbing
the best solution found so far or in some cases just choose a random point. We also
provide the option of using many different strategies in the same experiment and
how to cycle between the different strategies. We start by listing all the different
options and describe shortly how they work.

• CandidateSRBF: Generate perturbations around the best solution found so
far

• CandidateSRBF INT: Uses CandidateSRBF but only perturbs the integer vari-
ables

• CandidateSRBF CONT: Uses CandidateSRBF but only perturbs the contin-
uous variables

• CandidateDYCORS Uses a DDS strategy which perturbs each coordinate
with some iteration dependent probability. This probability is a monotoni-
cally decreasing function with the number of iteration.

• CandidateDYCORS CONT: Uses CandidateDYCORS but only perturbs the
continuous variables

• CandidateDYCORS INT: Uses CandidateDYCORS but only perturbs the in-
teger variables

• CandidateUniform: Chooses a new point uniformly from the box-constrained
domain

• CandidateUniform CONT: Given the best solution found so far the contin-
uous variables are chosen uniformly from the box-constrained domain

• CandidateUniform INT: Given the best solution found so far the integer
variables are chosen uniformly from the box-constrained domain

The CandidateDYCORS algorithm is the bread-and-butter algorithm for any prob-
lems with more than 5 dimensions whilst CandidateSRBF is recommended for
problems with only a few dimensions. It is sometimes efficient in mixed-integer
problems to perturb the integer and continuous variables separately and we there-
fore provide such method for each of these algorithms. Finally, uniformly choos-
ing a new point has the advantage of creating diversity to avoid getting stuck in

12

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

a local minima. Each method needs an objective function object as described in
the previous section (the input name is data) and how many perturbations should
be generated around the best solution found so far (the input name is numcand).
Around 100 points per dimension, but no more than 5000, is recommended. Next
is an example on how to generate a multi-start strategy that uses CandidateDY-
CORS, CandidateDYCORS CONT, CandidateDYCORS INT, and CandidateUni-
form and that cycles evenly between the methods i.e., the first point is generated
using CandidateDYCORS, the second using CandidateDYCORS CONT and so
on.

from pySOT import LinearMI, MultiSearchStrategy, CandidateDYCORS, \
CandidateDYCORS_CONT, CandidateDYCORS_INT, \
CandidateUniform

data = LinearMI() # Optimization problem
search_strategies = [CandidateDYCORS(data=data, numcand=100*data.dim),

CandidateDYCORS_CONT(data=data, numcand=100*data.dim),
CandidateDYCORS_INT(data=data, numcand=100*data.dim),
CandidateUniform(data=data, numcand=100*data.dim)]

weights = [0, 1, 2, 3]
search_strategy = MultiSearchStrategy(search_strategies, weights)

8 POAP
pySOT uses POAP, which an event-driven framework for building and combining
asynchronous optimization strategies. There are two main components in POAP,
namely controllers and strategies. The controller is capable of asking workers to
run function evaluations and the strategy decides where to evaluate next. POAP
works with external black-box objective functions and handles potential crashes
in the objective function evaluation. There is also a logfile from which all function
evaluations can be accessed after the run finished. In its simplest form, an opti-
mization code with POAP that evaluates a function predetermined set of points
using NUM WORKERS threads may look the following way:

from poap.strategy import FixedSampleStrategy
from poap.strategy import CheckWorkStrategy
from poap.controller import ThreadController
from poap.controller import BasicWorkerThread

samples = list of sample points ...

controller = ThreadController()
sampler = FixedSampleStrategy(samples)
controller.strategy = CheckWorkerStrategy(controller, sampler)

for i in range(NUM_WORKERS):
t = BasicWorkerThread(controller, objective)
controller.launch_worker(t)

result = controller.run()
print 'Best result: {0} at {1}'.format(result.value, result.params)

13

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

8.1 Controller
pySOT needs only the ThreadController, where we create a team of workers (threads)
that carry our objective function evaluations. If the objective function is an ex-
ternal program we use workers of the class ProcessWorkerThread, whilst if the
objective function isn’t external we can just use the BasicWorkerThread class.
8.2 Strategies
pySOT provides two strategies:

• SyncStrategyNoConstraints: This strategy is to be used in case there are only
bound constraints and no additional constraints. The arguments to this strat-
egy are:

– worker id: An idea that the controller can use to distinguish between
multiple simultaneously running optimization problems.

– data: Objective function object, as described in Section 7.4
– response surface: Response surface object, as described in Section 7.2
– maxeval: Maximum number of function evaluations
– nsamples: Maximum number of simultaneous function evaluations (can

be set to the number of workers/threads)
– exp design: Experimental design to do the initial evaluations, as de-

scribed in Section 7.1. Default is a Latin Hypercube with 2dim+1 points
– search procedure Method to propose new evaluations, as described in

Section 7.5. Default is Candidate DyCORS with 100dim candidate points.
– extra: Additional point to be added to the experimental design. If a good

solution is known, you can use this argument to make sure this point is
evaluated early.

– quiet: Set to false if you want all messages to be suppressed. Default is
True and the value of each evaluation is printed when it finishes.

– stream: If you want pySOT to print messages during the optimization
run to some other place than stdout you can provide a stream here. If no
argument is given, messages are printed to stdout.

• SyncStrategyPenalty: If there are additional non-bound constraints we pro-
vide a penalty based strategy. This strategy assumes that it makes sense to
evaluate the objective function outside the feasible region. The strategy also
assumes that there is a method eval ineq constraints that works exactly as de-
scribed in Section 7.4. The startegy takes the same argument as SyncStrateg-
yNoConstraints plus one addition argument which is the penalty to be used
in the penalty method. Given a penalty µ set by the user we try to solve the

14

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

box-constrained optimization problem

minimize
x

f̃(x) = f(x) + µ
M∑
i=1

max(0, gi(x))
2

subject to: −∞ < `i ≤ xi ≤ ui <∞, i = 1, . . . , n

where x ∈ Rn and there areM inequality constraints of the form gi(x) ≤ 0, for
i = 1, . . . ,M . If you want the resulting solution to be feasible, just set µ to a
very large value. This will force the algorithms to work there way towards a
feasible solution. Candidate points are generated based on the solution with
the smallest value of f̃ . In order to rank function value prediction by the re-
sponse surface we set all infeasible solutions to have the same prediction as
the worst feasible candidate point. The reason for this is that large penalties
make it impossible for the weighted distance criteria to distinguish between
feasible points. This modified approach will make the algorithm prefer feasi-
ble candidate points over infeasible candidate points as long as the function
value is weighted higher than the minimum distance.

9 Guidelines for selecting parameters and components
Dimensions Problem type Search Strategies
≤ 10 Continuous CandidateSRBF
> 10 Continuous CandidateDYCORS
≤ 10 Integer CandidateSRBF INT
> 10 Integer CandidateSRBF INT
≤ 10 Mixed [CandidateSRBF,

CandidateSRBF INT,
CandidateSRBF CONT]

> 10 Mixed [CandidateDYCORS,
CandidateDYCORS INT,

CandidateDYCORS CONT]

Non-bound constraints Optimization Strategy
No SyncStrategyNoConstraints
Yes SyncStrategyPenalty

Evaluation budget Experimental design
< 10dim Latin Hypercube with dim + 1 points
≥ 10dim Symmetric Latin Hypercube with 2dim + 1 points

15

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

• Response surface: By default we recommend the CubicRBFSurface (with
capping if necessary). We recommend not using Kriging since it is very slow.

• Number of threads: Setting both the number of simultaneous evaluations
and the number of threads to the number of available cores.

10 Graphical user interface
pySOT comes with a graphical user interface (GUI) built in PySide. In order to use
the GUI you need to have PySide installed together with all other dependencies
of pySOT. Initializing the GUI is as easy as typing from the terminal:

python
from pySOT import GUI
GUI()

or more compactly:

python -c 'from pySOT import GUI; GUI()'

The objective function has to be implemented in a separate file and this file must
satisfy the requirements mentioned above for an objective function. In addition,
the separate python implementation is only allowed to contain one class and this
class has to have the same name as the file name (excluding .py). As an example,
this is an implementation of the Ackley function in a separate file with file name
Ackley.py:

import numpy as np

class Ackley:
def __init__(self, dim=10):

self.xlow = -15 * np.ones(dim)
self.xup = 20 * np.ones(dim)
self.dim = dim
self.info = str(dim)+"-dimensional Ackley function \n" +\

"Global optimum: f(0,0,...,0) = 0"
self.integer = []
self.continuous = np.arange(0, dim)

def objfunction(self, x):
if len(x) != self.dim:

raise ValueError('Dimension mismatch')
n = float(len(x))
return -20.0 * np.exp(-0.2*np.sqrt(sum(x**2)/n)) - \

np.exp(sum(np.cos(2.0*np.pi*x))/n)

Note that both the file name and the class names are the same.
The four figures in Figure 1 show what the GUI looks like and how the opti-

mization results are reported to the user. If the user want a search strategy that
uses DYCORS, DYCORS, SRBF, DYCORS, DYCORS, SRBF, ... this can be achieved
in the GUI by adding CandidateDYCORS twice and CandidateSRBF once.

16

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

(a) After initializing the GUI (b) After importing an Optimization problem

(c) After choosing optimization components (d) After running the optimizer

Figure 1: Illustration of the GUI

17

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

11 Examples
This section provides several examples that shows how to use POAP and pySOT
to solve optimization problems.
11.1 First example (Hello World)
This example is a continuous optimization problem of the 10-dimensional Ackley-
function which has only bound constraints. We are using 4 threads and 1000
evaluations. To generate new points to evaluate we use Candidate DyCORS.
The experimental design is created using a Latin Hypercube with 2dim+1 points.
The response surface is a cubic radial basis function with a linear tail. We use
the ThreadController and the SyncStrategyNoConstraints strategy, since there are
only bound constraints. We launch 4 BasicWorkerThread, start the optimization
and finally print the result to the screen.

import logging
from pySOT import *
from poap.controller import ThreadController, BasicWorkerThread
import numpy as np
import os.path

if not os.path.exists("./logfiles"):
os.makedirs("logfiles")

logging.basicConfig(filename="./logfiles/test_simple.log",
level=logging.INFO)

print("Number of threads: 4")
print("Maximum number of evaluations: 1000")
print("Search strategy: Candidate DyCORS")
print("Experimental design: Latin Hypercube")
print("Ensemble surrogates: Cubic RBF")

nthreads = 4
maxeval = 1000
nsamples = nthreads

data = Ackley(dim=10)
print(data.info)

Create a strategy and a controller
controller = ThreadController()
controller.strategy = \

SyncStrategyNoConstraints(
worker_id=0, data=data,
maxeval=maxeval, nsamples=nsamples,
exp_design=LatinHypercube(dim=data.dim, npts=2*data.dim+1),
response_surface=RBFInterpolant(phi=phi_cubic, P=linear_tail,

dphi=dphi_cubic, dP=dlinear_tail,
eta=1e-8, maxp=maxeval),

search_procedure=CandidateDyCORS(data=data, numcand=200*data.dim))

Launch the threads and give them access to the objective function
for _ in range(nthreads):

worker = BasicWorkerThread(controller, data.objfunction)
controller.launch_worker(worker)

18

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

Run the optimization strategy
result = controller.run()

print('Best value found: {0}'.format(result.value))
print('Best solution found: {0}'.format(

np.array_str(result.params[0], max_line_width=np.inf,
precision=5, suppress_small=True)))

11.2 Continuous problem with non-bound constraints
This example is a continuous optimization problem of the 10-dimensional Keane’s
bump function which has two non-bound constraints. We are using 4 threads and
500 evaluations. To generate new points to evaluate we use Candidate DyCORS.
The experimental design is created using a Latin Hypercube with 2dim+1 points.
The response surface is a cubic radial basis function with a linear tail. We use the
ThreadController and the SyncStrategyPenalty strategy, with the default penalty
106. POAP doesn’t check feasibility, so we need to modify the run command to
supply a filter that makes POAP discard infeasible points when looking for the
best solution at the end of the run. The feasible merit method simply sets infea-
sible points to have infinite function value so that only feasible points are consid-
ered. If for example small constraint violations are accepted the user can provide
a merit function that is more suitable such a case.

import logging
from pySOT import *
from poap.controller import ThreadController, BasicWorkerThread
import numpy as np
import os.path

if not os.path.exists("./logfiles"):
os.makedirs("logfiles")

logging.basicConfig(filename="./logfiles/test_constraints.log",
level=logging.INFO)

print("Number of threads: 4")
print("Maximum number of evaluations: 500")
print("Search strategy: CandidateDycors")
print("Experimental design: Latin Hypercube")
print("Surrogate: Cubic RBF")

nthreads = 4
maxeval = 500
nsamples = nthreads

data = Keane(dim=10)
print(data.info)

def feasible_merit(record):
"""Merit function for ordering final answers -- kill infeasible x"""
x = record.params[0].reshape((1, record.params[0].shape[0]))
if np.max(data.eval_ineq_constraints(x)) > 0:

return np.inf
return record.value

Create a strategy and a controller

19

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

controller = ThreadController()
controller.strategy = \

SyncStrategyPenalty(
worker_id=0, data=data,
maxeval=maxeval, nsamples=nsamples,
response_surface=RBFInterpolant(phi=phi_cubic, P=linear_tail,

dphi=dphi_cubic, dP=dlinear_tail,
eta=1e-8, maxp=maxeval),

exp_design=LatinHypercube(dim=data.dim, npts=2*data.dim+1),
search_procedure=CandidateDyCORS(data=data, numcand=5000))

Launch the threads
for _ in range(nthreads):

worker = BasicWorkerThread(controller, data.objfunction)
controller.launch_worker(worker)

result = controller.run(merit=feasible_merit)
best, xbest = result.value, result.params[0]

print('Best value: {0}'.format(best))
print('Best solution: {0}'.format(

np.array_str(xbest, max_line_width=np.inf,
precision=5, suppress_small=True)))

11.3 Ensemble Surrogates
This example is a continuous optimization problem of the 3-dimensional Hartman3-
function which has only bound constraints. We are using 4 threads and 50 evalu-
ations. To generate new points to evaluate we use Candidate SRBF, since the op-
timization problem is low-dimensional. The experimental design is created using
a Latin Hypercube with 2dim+1 points. We also add the extra point [0.1, 0.5, 0.8],
which we pretend is a known good solution to the problem. The response surface
is an ensemble surrogate consisting of a cubic radial basis function with a linear
tail, a linear radial basis function with constant tail, a thin-plate radial basis func-
tion with linear tail, and a MARS interpolant. We also redirect the stream from
stdout and let pySOT print all messages to the text file surrogate optimizer.log
placed in the current directory. We use the ThreadController and the SyncStrateg-
yNoConstraints strategy, since there are only bound constraints. We launch 4 Ba-
sicWorkerThread, start the optimization and finally print the result to the screen.

import logging
from pySOT import *
from poap.controller import ThreadController, BasicWorkerThread
import numpy as np
import os.path

if not os.path.exists("./logfiles"):
os.makedirs("logfiles")

logging.basicConfig(filename="./logfiles/test_ensemble.log",
level=logging.INFO)

print("Number of threads: 4")
print("Maximum number of evaluations: 50")
print("Search strategy: Candidate SRBF")

20

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

print("Experimental design: Latin Hypercube + point [0.1, 0.5, 0.8]")
print("Surrogate: Cubic RBF, Linear RBF, Thin-plate RBF, MARS")

nthreads = 4
maxeval = 50
nsamples = nthreads

data = Hartman3()
print(data.info)

Use 3 differents RBF's and MARS as an ensemble surrogate
models = [

RBFInterpolant(phi_cubic, linear_tail, dphi_cubic,
dlinear_tail, 1e-8, maxeval),

RBFInterpolant(phi_linear, const_tail, dphi_linear,
dconst_tail, 1e-8, maxeval),

RBFInterpolant(dphi_plate, linear_tail, dphi_plate,
dlinear_tail, 1e-8, maxeval),

]
response_surface = EnsembleSurrogate(models, maxeval)

Add an additional point to the experimental design. If a good
solution is already known you can add this point to the
experimental design
extra = np.atleast_2d([0.1, 0.5, 0.8])

Create a strategy and a controller
controller = ThreadController()
controller.strategy = \

SyncStrategyNoConstraints(
worker_id=0, data=data,
response_surface=response_surface,
maxeval=maxeval, nsamples=nsamples,
exp_design=LatinHypercube(dim=data.dim, npts=2*data.dim+1),
search_procedure=CandidateSRBF(data=data, numcand=200*data.dim),
extra=extra)

Launch the threads and give them access to the objective function
for _ in range(nthreads):

worker = BasicWorkerThread(controller, data.objfunction)
controller.launch_worker(worker)

Run the optimization strategy
result = controller.run()

response_surface.compute_weights()
print('Final weights: {0}'.format(

np.array_str(response_surface.weights, max_line_width=np.inf,
precision=5, suppress_small=True)))

print('Best value found: {0}'.format(result.value))
print('Best solution found: {0}'.format(

np.array_str(result.params[0], max_line_width=np.inf,
precision=5, suppress_small=True)))

21

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

11.4 Mixed-integer problem with non-bound constraints
This example is a mixed-integer optimization problem of a 5-dimensional prob-
lem with 3 inequality constraints. The first three variables are discrete and the
last 2 are continuous. We are using 4 threads and 200 evaluations. To generate
new points to evaluate we use a Multi-search strategy consisting of Candidat-
eDyCORS, CandidateDyCORS INT, CandidateDyCORS CONT, and Candidate-
Uniform. The experimental design is created using a Symmetric Latin Hypercube
with 2dim+1 points. The response surface is a cubic radial basis function with
a linear tail. We use the ThreadController and the SyncStrategyPenalty strategy,
with the default penalty 106. We submit the same merit function as in the previous
example with constraints. The best solution is finally printed to the screen.

import logging
from pySOT import *
from poap.controller import ThreadController, BasicWorkerThread
import numpy as np
import os.path

if not os.path.exists("./logfiles"):
os.makedirs("logfiles")

logging.basicConfig(filename="./logfiles/test_mixed_integer_constraints.log",
level=logging.INFO)

print("Number of threads: 4")
print("Maximum number of evaluations: 200")
print("Search strategy: CandidateDyCORS, CandidateDyCORS_INT"

", CandidateDyCORS_CONT, CandidateUniform")
print("Experimental design: Symmetric Latin Hypercube")
print("Surrogate: Cubic RBF")

nthreads = 4
maxeval = 200
nsamples = nthreads

data = LinearMI()
print(data.info)

def feasible_merit(record):
"Merit function for ordering final answers -- kill infeasible x"
x = record.params[0].reshape((1, record.params[0].shape[0]))
if np.max(data.eval_ineq_constraints(x)) > 0:

return np.inf
return record.value

exp_design = SymmetricLatinHypercube(dim=data.dim, npts=2*data.dim+1)
response_surface = RBFInterpolant(phi=phi_cubic, P=linear_tail,

dphi=dphi_cubic, dP=dlinear_tail,
eta=1e-8, maxp=maxeval)

Use a multi-search strategy for candidate points
search_proc = MultiSearchStrategy(

[CandidateDyCORS(data=data, numcand=200*data.dim),
CandidateUniform(data=data, numcand=200*data.dim),
CandidateDyCORS_INT(data=data, numcand=200*data.dim),
CandidateDyCORS_CONT(data=data, numcand=200*data.dim)],

22

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

[0, 1, 2, 3])

Create a strategy and a controller
controller = ThreadController()
controller.strategy = \

SyncStrategyPenalty(
worker_id=0, data=data,
response_surface=response_surface,
maxeval=maxeval, nsamples=nsamples,
exp_design=exp_design,
search_procedure=search_proc)

Launch the threads
for _ in range(nthreads):

worker = BasicWorkerThread(controller, data.objfunction)
controller.launch_worker(worker)

result = controller.run(merit=feasible_merit)
best, xbest = result.value, result.params[0]

print('Best value: {0}'.format(best))
print('Best solution: {0}'.format(

np.array_str(xbest, max_line_width=np.inf,
precision=5, suppress_small=True)))

11.5 External C++ objective function
This last example shows how to use POAP and pySOT with an external objective
function. We consider an objective function written in C++ that computes the
sum of square of a given input, which is an easy convex optimization problem.
The program takes its input as a string ′x1, x2, . . . , x

′
n. With a probability of 0.9 the

program prints the value of the sum of squares to the screen. With probability 0.1
the program prints nothing and terminates, which is supposed to imitate that the
evaluation crashed. The C++ program that is compiled with the name sphere ext
is provided below:
include <iostream>
include <vector>
include <sstream>
include <unistd . h>
include <numeric>
include <random>

i n t main (i n t argc , char * * argv) {
/ / Random number g e n e r a t o r
std : : random device rand dev ;
std : : mt19937 generator (rand dev ()) ;
s td : : u n i f o r m r e a l d i s t r i b u t i o n<f l o a t> d i s t r (0 . 0 , 1 . 0) ;

/ / P r e t e n d t h e s i m u l a t i o n c r a s h e s wi th p r o b a b i l i t y 0 . 1
i f (d i s t r (generator) > 0 . 1) {

/ / Conver t i n p u t t o a s t a n d a r d v e c t o r
std : : vector<f l o a t> vect ;
s td : : s t r ings t ream ss (argv [1]) ;
f l o a t f ;

while (ss >> f) {

23

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

vect . push back (f) ;
i f (ss . peek () == ’ , ’)

ss . ignore () ;
}
p r i n t f (”%g\n” , std : : inner product (vect . begin () , vec t . end () ,

vec t . begin () , 0 . 0)) ;
}
return 0 ;

}

We will use the subprocess library in Python to launch the objective function eval-
uations to our compiled C++ program. The help method array2str converts a
numpy array to a string 'x1, x2, . . . , xn', which is what our C++ program wants as
an input. The class SphereExt is the basic objective function class and the Dum-
mySim class overloads the evaluation method for a ProcessWorkerThread. In case
the objective function evaluation fails, a message is printed to the screen just to il-
lustrate that things are working correctly.

import logging
from pySOT import *
from poap.controller import ThreadController, ProcessWorkerThread
import numpy as np
from subprocess import Popen, PIPE
import os.path

def array2str(x):
return ",".join(np.char.mod('%f', x))

class SphereExt:
def __init__(self, dim=10):

self.xlow = -15 * np.ones(dim)
self.xup = 20 * np.ones(dim)
self.dim = dim
self.info = str(dim)+"-dimensional Sphere function \n" + \

"Global optimum: f(0,0,...,0) = 0"
self.min = 0
self.integer = []
self.continuous = np.arange(0, dim)

class DummySim(ProcessWorkerThread):

def handle_eval(self, record):
self.process = Popen(['./sphere_ext', array2str(record.params[0])],

stdout=PIPE)
out = self.process.communicate()[0]
try:

val = float(out) # This raises ValueError if out is not a float
self.finish_success(record, val)

except ValueError:
logging.warning("Function evaluation crashed/failed")
self.finish_failure(record)

if not os.path.exists("./logfiles"):
os.makedirs("logfiles")

logging.basicConfig(filename="./logfiles/test_subprocess.log",

24

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

level=logging.INFO)

print("Number of threads: 4")
print("Maximum number of evaluations: 200")
print("Search strategy: Candidate DyCORS")
print("Experimental design: Latin Hypercube")
print("Ensemble surrogates: Cubic RBF")

assert os.path.isfile("./sphere_ext"), "You need to build sphere_ext"
nthreads = 4
maxeval = 200
nsamples = nthreads

data = SphereExt(dim=10)
print(data.info)

Create a strategy and a controller
controller = ThreadController()
controller.strategy = \

SyncStrategyNoConstraints(
worker_id=0, data=data,
maxeval=maxeval, nsamples=nsamples,
exp_design=LatinHypercube(dim=data.dim, npts=2*data.dim+1),
search_procedure=CandidateDyCORS(data=data, numcand=200*data.dim),
response_surface=RBFInterpolant(phi=phi_cubic, P=linear_tail,

dphi=dphi_cubic, dP=dlinear_tail,
eta=1e-8, maxp=maxeval))

Launch the threads and give them access to the objective function
for _ in range(nthreads):

controller.launch_worker(DummySim(controller))

Run the optimization strategy
result = controller.run()

print('Best value found: {0}'.format(result.value))
print('Best solution found: {0}'.format(

np.array_str(result.params[0], max_line_width=np.inf,
precision=5, suppress_small=True)))

12 Hierarchy of POAP + pySOT

25

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

 RBF Hierarchy

Response SurfaceExperimental design

RBF

Kriging

Latin
Hypercube

Symmetric Latin
Hypercube Search

Procedure

Blue: Interfaces 
Green: Implementations of interfaces  

Candidate
points

SRBFDYCORS

Ensemble
Surrogates

MARS

Candidate
merit function

Weighted
distance

Multi-
search

Optimization
Strategy

Uniform

Workers
(threads)Controller

Objective
functionThreaded

Controller

Synchronous
No constraints

Synchronous
Penalty method

Figure 2: Overview of the pySOT hierarchy

13 Future changes
• Add an asynchronous strategy

• Add Heuristic Algorithms to search on the surrogate

• Add more experimental designs

26

Surrogate Optimization Toolbox in Python (pySOT) - 0.1.14 • Tutorial • David Eriksson, David
Bindel, Christine Shoemaker • 22nd September, 2015

• Add more methods for handling constraints, especially a barrier method

• Support for Python 3.x

27

	Change history:
	Introduction
	Licensing
	Surrogate Model Algorithms
	Installation
	Sphinx documentation
	Options
	Experimental design
	Surrogate model
	Capped RBF model
	Objective function
	Generation of next point to evaluate

	POAP
	Controller
	Strategies

	Guidelines for selecting parameters and components
	Graphical user interface
	Examples
	First example (Hello World)
	Continuous problem with non-bound constraints
	Ensemble Surrogates
	Mixed-integer problem with non-bound constraints
	External C++ objective function

	Hierarchy of POAP + pySOT
	Future changes

