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1 Model equations

The shallow water model SAM solves the shallow water equations on a spherical planet
with shallow orography. The model equations and the numerical solution procedure
will be described in the following subsections.

1.1 Continuity equation

In a shallow water model it is assumed that the density ρ is constant. Consequently,
the continuity equation reduces to the condition that the threedimensional flow is
nondivergent. In spherical coordinates the nondivergence condition reads
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= 0, (1.1)

In this equation λ, ϕ and r are the spherical coordinates longitude, latitude and
radius, respectively and u, v and w denote the zonal, meridional and vertical velocity
components, respectively. The last term on the left hand side of this equation can
be neglected since it is assumed that the shallow water system is contained within a
thin spherical shell. Furthermore, the radius r can be approximately replaced be the
mean planet radius a where it appears in a factor. Therefore, the continuity equation
will be simplified to give
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= 0, (1.2)

where z = r − a denotes the height above the spherical surface having the radius
r = a.

In a shallow water model it is assumed that the horizontal velocity components are
vertically independent. Therefore, the continuity equation can be vertically integrated
over the whole shallow water fluid. This gives

Dh

Dt
−
Dhs

Dt
+ (h− hs)∇h · vh = 0 , (1.3)

where ∇h ·vh denotes the divergence of the horizontal flow, h the height of the shallow
water surface, hs the height of the shallow water bottom and
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is the individual time derivative operator.
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1.2 Momentum equation

The fluid of the shallow water model is treated as a nondivergent ideal fluid. Therefore,
the momentum equation is given by Eulers’ equation in a rotating coordinate frame:

∂v

∂t
+ ∇

(

1

2
v2

)

+ (∇× v + 2Ω) × v = −
1

ρ
∇p−∇φ, (1.4)

where p is the pressure, φ the geopotential and Ω the angular velocity vector of the
planet rotation which is directed perpendicular to the equatorial plane (ϕ = 0).

The shallow water model describes flow phenomena having a vertical scale that is
much smaller than its horizontal scale. In this case the hydrostatic balance is satisfied
to a high degree. Therefore, it is assumed that the following hydrostatic balance
equation holds

∂p

∂z
= −ρ

∂φ

∂z
(1.5)

In this equation p denotes the pressure and φ the geopotential. Since density is con-
stant, this equation can easily be integrated in vertical direction over the whole fluid
depth. This gives

ps − p|z=h = ρ(φ|z=h − φs) , (1.6)

where the index s means that the variable is evaluated at the bottom of the shallow
water. For shallow water systems it is usally assumed that the pressure at the free
upper surface vanishes. Furtheremore, for earth-like planets the gravitational attrac-
tion force in addition with the centrifugal force of the planet rotation give rise to
geopotential isosurfaces that are nearly spherical. Therefore, it is assumed that the
geopotential only depends upon height z and is, furthemore, proportional to height
since the corresponding acceleration is nearly constant with in a thin spherical shell.
Consequently, surface pressure is related to the shallow water elevation and surface
orography by

ps = gρ(h− hs) , (1.7)

where g denotes the gravitational acceleration.

Due to this equation the continuity equation (1.3) becomes a tendency equation for
surface pressure:

Dps

Dt
+ ps∇h · vh =

∂ps

∂t
+ ∇h · (vhps) = 0 , (1.8)
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The horizontal components of Eulers equation are retained with little approximati-
on. We obtain for the horizontal components of (∇× v + 2Ω) × v:

((∇× v + 2Ω) × v)h (1.9)

= Ω(ζ + 2 sinϕ)ez × vh −∇h

(

1

2
w2

)

+
vhw

r
+ 2Ω cosϕweλ ,

where ζ is the nondimensional vertical component of the vorticity vector ∇×v (relati-
ve vorticity) and the index h denotes that the vector has only horizontal components.
The last two terms on the right hand side can be neglected due to the small magnitude
of vertical velocity in the shallow water model.

Therefore, the Euler-equation for the horizontal velocity vector becomes:

∂vh

∂t
+ ∇h

(

1

2
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h

)

+ Ω(ζ + 2 sin(ϕ))ez × vh = −
1

ρ
∇hps −∇φs . (1.10)

1.3 Nondimensional model equations

Applying the operators Ω−2ez∇h× and Ω−2∇h· gives the nondimensional vorticity
and divergence equations, respectively

∂η

∂τ
= −

1

1 − µ2

∂

∂λ
(ηU) −

∂

∂µ
(ηV ) , (1.11)

∂D
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U2 + V 2
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+ Φs + BuP

)

, (1.12)

Here, we have used the following notations

µ = sinϕ sine of latitude

τ = Ωt nondimensional time

η = ζ + 2µ nondimensional absolute vorticity

D = Ω−1∇h · vh nondimensional divergence

(U, V ) = cosϕ(Ωa)−1(u, v) nondimensional velocity components multiplied by cosϕ

P =
ps − p0

p0

nondimensional surface pressure anomaly

Φs =
φs

Ω2a2
nondimensional surface geopotential

Bu =
p0

Ω2a2ρ
Burger number

∆h =
1

1 − µ2

∂2

∂λ2
+

∂

∂µ
(1 − µ2)

∂

∂µ
nondimensional Laplace − operator
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Similarly, we obtain for the nondimensional surface pressure equation:

∂P

∂τ
= −

1

1 − µ2

∂

∂λ
(UP ) −

∂

∂µ
(V P ) −D , (1.13)

It remains to compute the horizontal velocity components from vorticity and diver-
gence fields. This can be done with the Helmholtz decomposition of the velocity
vector field:

vh = Ωa2 (∇χ+ ∇× A) . (1.14)

where χ is a nondimensional velocity potential and A a nondimensional vector stream
potential. Because only the horizontal velocity field is related to vorticity and diver-
gence, it is sufficient to restrict the vector potential to a single vertical component,
the so called streamfunction ψ. Therefore:

U = −(1 − µ2)
∂ψ

∂µ
+
∂χ

∂λ
, V =

∂ψ

∂λ
+ (1 − µ2)

∂χ

∂µ
. (1.15)

Streamfunction and velocity potential are related to vorticity and divergence via
Poisson-equations:

η = 2µ+ ∆hψ , D = ∆hχ . (1.16)

Equation (1.11)-(1.13), (1.15) and (1.16) form the governing equations of the shallow
water model. They are solved with a semispectral method which is described in some
detail in the next subsections.

1.4 Spectral representation of the model equations

All fields are projected onto a new base, namely, the so-called spherical harmonics
Y m

n (λ, µ). This gives for a field function Q(λ, µ, τ):

Q(λ, µ, τ) =
∞
∑

m=−∞

∞
∑

n=|m|

Qm
n (τ)Y m

n (λ, µ) . (1.17)

The spherical harmonics are defined by

Y m
n (λ, µ) =

√

√

√

√

2n+ 1
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m

2
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∂µm+n

[

(µ2 − 1)n
]

eimλ . (1.18)
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Since Q must be a real function we have the constraint Qm
n = Q−m∗

n . Therefore, it is
sufficient to calculate only the coefficients withm ≥ 0 and the following representation
is equivalent to (1.19):

Q(λ, µ, τ) =
∞
∑

n=1

Q0

n(τ)Y 0

n (µ) + 2
∞
∑

m=1

∞
∑

n=m

Re (Qm
n (τ)Y m

n (λ, µ)) . (1.19)

The spherical harmonics form an orthogonal base with respect to the scalar product

〈Q1|Q2〉 :=
1

2π

∫

1

−1

∫

2π

0

Q∗
1(λ, µ)Q2(λ, µ)dλdµ (1.20)

Therefore:

〈

Y m
n |Y m′

n′

〉

= δm,m′δn,n′ (1.21)

Furthermore, the spherical harmonics are eigenfunctions of the nondimensional
Laplace-operator ∆h:

∆hY
m
n = −n(n + 1)Y m

n . (1.22)

Further useful relations are:

∂Y m
n

∂λ
= imY m

n , (1.23)

(1 − µ2)
∂

∂µ
Y m

n = ndm,n+1Y
m
n+1 − (n+ 1)dm,nY

m
n−1 , (1.24)

where

dm,n =

√

n2 −m2

4n2 − 1
.

With (1.22) - (1.24) the governing model equations can be converted into component
form after applying the scalar product < Y m

n |.. >:

dηm
n

dτ
= −

〈

Y m
n |

imηU

1 − µ2

〉

−

〈

Y m
n |

∂(ηV )

∂µ

〉

, (1.25)
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dDm
n

dτ
=

〈
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n |

imηV

1 − µ2

〉

−

〈

Y m
n |

∂(ηU)

∂µ

〉

(1.26)

+n(n + 1)

〈

Y m
n |

1

2

U2 + V 2

1 − µ2

〉

+ n(n + 1) [BuPm
n + Φs

m
n ] ,

dPm
n

dτ
= −

〈

Y m
n |

imPU

1 − µ2

〉

−

〈

Y m
n |

∂(PV )

∂µ

〉

−Dm
n , (1.27)

Um
n = (n− 1)dm,nψ

m
n − (n+ 2)dm,n+1ψ

m
n+1 + im χm

n , (1.28)

V m
n = im ψm

n − (q − 1)dm,nχ
m
n−1 + (n+ 2)dm,n+1χ

m
n+1 , (1.29)

ψm
n = −

1

n(n + 1)



ηm
n −

√

8

3
δm,0δn,1



 , (1.30)

χm
n = −

1

n(n + 1)
Dm

n . (1.31)

1.4 Numerical solution technique

An approximative solution of the model is determined by time integration of the
truncated spectral equations. In the truncated model the first summation operator in
(1.17) runs only from −M to M . This gives a triangular truncation TM .

The terms in brackets of Eqs.(1.25)-(1.27) are nonlinear. The computation of these
scalar products is very complicated and consumes a lot of computer time. Therefore,
these terms are evaluated in the numerical model with the so-called spectral transform
method [Orszag (1970) and Eliasen et al. (1970)]. This method uses an auxiliary grid
in the physical space where point values of the dependent variables are computed. The
auxiliary grid in the physical space (Gaussian grid) is defined by Mg equally spaced
longitudes and Jg Gaussian latitudes. For the transformation from gridpoint space
into spectral space the spectral coefficients are obtained by Gaussian quadrature of
the Fourier coefficients. With this method bilinear products are calculated without
error when Mg ≥ 3M + 1 and Jg ≥ (3M + 1)/2. Since only bilinear products appear
as nonlinearities in the equations the spectral transform method is equivalent to the
analytical determination of the nonlinear products using interaction coefficients.

Time integration is done with the semi-implicit time stepping procedure. This has the
advantage that for a stable integration the time-step ∆τ can be larger than the period
of high-frequency inertial gravity modes. The time derivatives are approximated by
a centered difference so that

dQ

dτ
≈ δtQ :=

Q(τ + ∆τ) −Q(τ + ∆τ)

2∆τ
. (1.32)
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The tendency is splitted into an explicit and an implicit part. The explicit part is
related to the sum of all nonlinear terms and is evaluated at the present time τ . The
linear terms form the implicit part. They only occur in the divergence and pressure
equation and enter the equations as a time mean of time step τ + ∆τ and τ − ∆τ .
Altogether, the finite-difference form of the prognostic model equations reads:

δtη
m
n = Nη(τ) , (1.33)

δtD
m
n = ND(τ) + Bu

n(n + 1)

2
[Pm

n (τ − ∆τ) + Pm
n (τ + ∆τ) + 2Φs

m
n ] (1.34)

δtP
m
n = NP (τ) −

1

2
[Dm

n (τ − ∆τ) +Dm
n (τ + ∆τ)] , (1.35)

where Nη, ND and NP denote the respective nonlinear tendency terms. Eliminating
Pm

n (τ + ∆τ) in (1.35) gives

[

1 + ∆τ 2Bu n(n+ 1)
]

Dm
n

τ
(1.36)

= Dm
n (τ − ∆τ) + ∆τ {ND(τ) + Bu n(n+ 1) [Pm

n (τ − ∆τ) + Φs
m
n + ∆τNP (τ)]} ,

where Dm
n

τ
= [Dm

n (τ + ∆τ) +Dm
n (τ − ∆τ)]/2.

The time averaged value Dm
n

τ
can be easily calculated from equation (1.36). With this

value it is straightforward to determine the future values Dm
n (τ+∆τ) and Pm

n (τ+∆τ).

For noise reduction a Robert/Asselin-Filter [Haltiner and Williams (1982)] is ap-
plied at every timestep to a spectral coefficient Qm

n as follows:

Qm
n (τ) = (1 − 2γ)Qm

n (τ) + γ[Qm
n (τ + ∆τ) +Qm

n (τ − ∆τ)] . (1.37)

In the model SAM γ takes the value 0.02 by default.

1.5 Hyperdiffusion

In a turbulent flow regime a cascade from large scales to the dissipative range of the
wavenumber spectrum takes place. The model cannot resolve such small scales. The-
refore, kinetic energy dissipation must occur at resolvable scales in the model without
affecting the large scale too much. This is achieved by introducing hyperdiffusion by
adding the terms

Hm
η n = K [−n(n + 1)]nh



ηm
n −

√

8

3
δm,0δn,1



 (1.38)
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and

Hm
D n = K [−n(n + 1)]nh Dm

n (1.39)

to the vorticity and divergence equations, respectively. nh denotes the order of hyper-
diffusion. Without additional terms the corresponding vorticity or divergence compo-
nent is damped with the dimensional e-folding timescale

τH = {ΩK[n(n + 1)]nh}−1 . (1.40)

In the model τH at the wavenumber where the expansion is truncated will be pres-
cribed. Therefore, the coefficient K becomes:

K = {ΩτH [M(M + 1)]nh}−1 . (1.41)

1.6 Parameterization of baroclinic and dissipative processes

To perform simulations with baroclinic forcing and dissipative damping additional
terms must be added to the spectral vorticity and divergence equations. These are
given by

dηm
n

dτ

∣

∣

∣

∣

∣

P

=
ηm

ne − ηm
n

τm
nR

+ Sm
n (τ) −

ηm
n −

√

8/3δm,0δn,1

τF
(1.42)

−Ah

(

n2 + n− 2
)

(

ηm
n −

√

8/3δm,0δn,1

)

,

dDm
n

dτ

∣

∣

∣

∣

∣

P

= −
Dm

n

τF
− Ahn(n+ 1)Dm

n , (1.43)

where ηm
ne is the equilibrium state of the climatological baroclinic forcing, τm

nR the
timescale of the climatological forcing (depends upon wavenumbers), Sm

n (τ) the time
dependent baroclinic forcing (stochastic), τF the timescale of Rayleigh friction and
Ah the horizontal momentum exchange coefficient.

2 User guide

SAM can like PUMA and PlaSim be compiled and started with the model starter
program most.x. SAM also supports the Graphical User Interface (GUI) developed for
PUMA and PlaSim. In the code several initial conditions are specified with the integer
parameter iexp (1-13). The various experiments are documented in the initialization
subroutine initfd. Further initial conditions can be added at discretion. The model
resolution has to be specified with the namelist resolution namelist. It contains the
parameter NLAT that denotes the number of latitudes. NLAT should be represented
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by 2n with n being an integer to ensure optimal parallelization and consistency with
the fast Fourier transform.

The namelist for SAM somnamelist contains the following parameters

Parameter Default Meaning
KICK 1 Initial noise (not implemented in the current version)
NAFTER 12 Output after intervals of NAFTER timesteps
NCOEFF 0 Number of spectral modes to be print in wrspam
NDEL 6 Order of hyperdiffusion
NDIAG 12 Parameter to determine that ASCII diagnostics

are written after intervals of NDIAG timesteps
NKITS 3 Number of initial timesteps
NRUN 0 Number of timesteps to run - 0: use nyears and
NWSPINI 1 1: Write initial sp(:) to file puma sp ini
NOUTPUT 1 1: Write model output to file sam output
NSTEP 0 Current timestep
NSTOP 0 Stop step - 0: compute from nyears and nmonths
NTSPD 1 Number of timesteps per day
NCU 0 Check unit (for debug output only)
NGUI 0 1: Run with GUI
NGUIDBG 0 1: Switch on GUI debug output
NYEARS 0 Simulation time in years
DISS 0.25 Hyper diffusion time scale [days]
NRUIDO 0 1: Add noise on every time step
DISP 0.0 Noise amplitude for nruido = 1
AH 0.0 Horizontal momentum exchange coefficient [m2/s]
RESTIM 0.0 Timescale for climatological forcing [days] (0.0→ no forcing)
NDL 0 1: Print spectral vorticity and divergence modes
ROTSPD 0. Rotations per day (should be set as in PlaSim)
TFRC 0. Rayleigh friction timescale in days (0.0 → no friction)
LLID .false. Switch for introducing a rigid lid
LEQUIV .false. Switch for equivalent barotropic model
LBAL .false. Switch for balanced initial state
IEXP 4 Number of experiment (1-13, see initfd)
MMAX 0 Maximum zonal waven. for climat. forcing
NMAX 42 Maximum total waven. for climat. forcing

Other parameters can be set in the module pumamod of the code. These are:
Parameter Default Meaning
GA 9.81 Gravity acceleration [m/s2]
PLARAD 6371000.0 Radius of the sphere [m]
WW 0.00007292 Angular velocity of the rotating sphere [1/s]
RHO0 1. Density of the shallow water [kg/m3]
HS 12000. Height of the shallow water [m]
F0 1.e-4 Mean Coriolis parameter [1/s] (only LEQUIV=.true.)

SAM writes output into the file sam output. It contains spectral coefficients of i)
surface geopotential (code 129), ii) logarithm of surface pressue (code 152), iii) diver-
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gence (code 155) and iv) relative vorticity (code 138). The pumaburner can process
the file sam output for further diagnostics.
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