The following code is a sample to quickly demonstrate some features of gdspy. Please take a look at the full documentation for further information.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 | #!/usr/bin/python
########################################################################
## ##
## Copyright 2009-2011 Lucas Heitzmann Gabrielli ##
## ##
## This file is part of gdspy. ##
## ##
## gdspy is free software: you can redistribute it and/or modify it ##
## under the terms of the GNU General Public License as published ##
## by the Free Software Foundation, either version 3 of the ##
## License, or any later version. ##
## ##
## gdspy is distributed in the hope that it will be useful, but ##
## WITHOUT ANY WARRANTY; without even the implied warranty of ##
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ##
## GNU General Public License for more details. ##
## ##
## You should have received a copy of the GNU General Public ##
## License along with gdspy. If not, see ##
## <http://www.gnu.org/licenses/>. ##
## ##
########################################################################
import os
import numpy
import gdspy
print 'Using gdspy module version ' + gdspy.__version__
## ------------------------------------------------------------------ ##
## POLYGONS ##
## ------------------------------------------------------------------ ##
## First we need a cell to add the polygons to.
poly_cell = gdspy.Cell('POLYGONS')
## We define the polygon through its vertices.
points = [(0, 0), (2, 2), (2, 6), (-6, 6), (-6, -6), (-4, -4), (-4, 4),
(0, 4)]
## Create the polygon on layer 1.
poly1 = gdspy.Polygon(1, points)
## Add the new polygon to the cell.
poly_cell.add(poly1)
## Create another polygon from the same set of points, but rotate it
## 180 degrees and add it to the cell.
poly2 = gdspy.Polygon(1, points).rotate(numpy.pi)
poly_cell.add(poly2)
## To create rectangles we don't need to give the 4 corners, only 2.
## Note that we don't need to create a variable if we are not going to
## use it, just add the rectangle directly to the cell. Create a
## rectangle in layer 2.
poly_cell.add(gdspy.Rectangle(2, (18, 1), (22, 2)))
## There are no circles in the GDSII specification, so rounded shapes
## are actually many-sided polygons. Create a circle in layer 2,
## centered at (27, 2), and with radius 2.
poly_cell.add(gdspy.Round(2, (27, 2), 2))
## The Round class is quite versatile: it provides circles, pie slices,
## rings and ring sections, like this one in layer 2.
poly_cell.add(gdspy.Round(2, (23.5, 7), 15, inner_radius=14,
initial_angle=-2.0 * numpy.pi / 3.0,
final_angle=-numpy.pi / 3.0))
## ------------------------------------------------------------------ ##
## PATHS ##
## ------------------------------------------------------------------ ##
path_cell = gdspy.Cell('PATHS')
## Start a path from the origin with width 1.
path1 = gdspy.Path(1, (0, 0))
## Add a straight segment to the path in layer 1, with length 3, going
## in the '+x' direction.
path1.segment(1, 3, '+x')
## Add a curve to the path by specifying its radius as 2 and its initial
## and final angles.
path1.arc(1, 2, -numpy.pi / 2.0, numpy.pi / 6.0)
## Add another segment to the path in layer 1, with length 4 and
## pointing in the direction defined by the last piece we added above.
path1.segment(1, 4)
## Add a curve using the turn command. We specify the radius 2 and
## turning angle. The agnle can also be specified with 'l' and 'r' for
## left and right turns of 90 degrees, or 'll' and 'rr' for 180 degrees.
path1.turn(1, 2, -2.0 * numpy.pi / 3.0)
## Final piece of the path. Add a straight segment and tapper the path
## width from the original 1 to 0.5.
path1.segment(1, 3, final_width=0.5)
path_cell.add(path1)
## We can also create parallel paths simultaneously. Start 2 paths with
## width 0.5 each,nd pitch 1, originating where our last path ended.
path2 = gdspy.Path(0.5, (path1.x, path1.y), number_of_paths=2,
distance=1)
## Add a straight segment to the paths gradually increasing their
## distance to 1.5, in the direction in which the last path ended.
path2.segment(2, 3, path1.direction, final_distance=1.5)
## Path commands can be concatenated. Add a turn and a tapper segment
## in one expression, followed by a final turn.
path2.turn(2, 2, -2.0 * numpy.pi / 3.0).segment(2, 4, final_distance=1)
path2.turn(2, 4, numpy.pi / 6.0)
path_cell.add(path2)
## Create another single path 0.5 wide, starting where the path above
## ended, and add to it a line segment in the 3rd layer in the '-y'
## direction.
path3 = gdspy.Path(0.5, (path2.x, path2.y))
path3.segment(3, 1, '-y')
## We can create paths based on parametric curves. First we need to
## define the curve function, with 1 argument. This argument will vary
## from 0 to 1 and the return value should be the (x, y) coordinates of
## the path. This could be a lambda-expression if the function is
## simple enough. We will create a spiral path. Note that the function
## returns (0, 0) when t=0, so that our path is connected.
def spiral(t):
r = 4 - 3 * t
theta = 5 * t * numpy.pi
x = 4 - r * numpy.cos(theta)
y = -r * numpy.sin(theta)
return (x, y)
## We can also create the derivative of the curve to pass to out path
## path member, otherwise it will be numerically calculated. In the
## spiral case we don't want the exact derivative, but the derivative of
## the spiral as if its radius was constant. This will ensure that our
## path is connected at the start (geometric problem of this kind of
## spiral).
def dspiral_dt(t):
theta = 5 * t * numpy.pi
dx_dt = numpy.sin(theta)
dy_dt = -numpy.cos(theta)
return (dx_dt, dy_dt)
## Add the parametric spiral to the path in layer 3. Note that we can
## still tapper the width. To make the curve smoother, we increase the
## number of evaluations of the function (fracture will be performed
## automatically to ensure polygons with less than 200 points).
path3.parametric(3, spiral, dspiral_dt, final_width=0,
number_of_evaluations=500)
path_cell.add(path3)
## Polygonal paths are defined by the points they pass through. The
## width of the path can be given as a number, representing the path
## width along is whole extension, or as a list, where each element is
## the width of the path at one point. Our path will have width 0.5 in
## all points, except the last, where it will tapper up to 1.5. More
## than 1 path can be defined in parallel as well (useful for buses).
## The distance between the paths work the same way as the width: it's
## either a constant number, or a list. We create 5 parallel paths that
## are larger and further apart on the last point. The paths are put in
## layers 4 and 5. Since we have 5 paths, the list of layers will be
## run more than once, so the 5 paths will actually be in layers 4, 5, 4,
## 5, and 4.
points = [(20, 12), (24, 8), (24, 4), (24, -2)]
widths = [0.5] * (len(points) - 1) + [1.5]
distances = [0.8] * (len(points) - 1) + [2.4]
polypath = gdspy.PolyPath([4, 5], points, widths, number_of_paths=5,
distance=distances)
## We can round the corners of any Polygon or PolygonSet with the fillet
## method. Here we use a radius of 0.2.
polypath.fillet(0.2)
path_cell.add(polypath)
## L1Paths use only segments in 'x' and 'y' directions, useful for some
## lithography mask writers. We specify a path composed of 16 segments
## of length 4. The turns after each segment can be either 90 degrees
## CCW (positive) or CW (negative). The absolute value of the turns
## produces a scaling of the path width and distance between paths in
## segments immediately after the turn.
lengths = [4] * 16
turns = [-1, -1, 1, 1] * 3 + [-1, -2, 1, 0.5]
l1path = gdspy.L1Path(6, (-1, -11), '+y', 0.5, lengths, turns,
number_of_paths=3, distance=0.7)
path_cell.add(l1path)
## ------------------------------------------------------------------ ##
## BOOLEAN OPERATIONS ##
## ------------------------------------------------------------------ ##
## Boolean operations can be executed with polygons (either gdspy
## objects or point lists). The operands are given as a list. In this
## example we will have 2 operands which will be 2 PolygonSet objects.
bool_cell = gdspy.Cell('BOOLEAN')
primitives = []
## Both operands are a path with a ring inside, but with different
## widths. This is how we create them.
for width in [2, 8]:
## Closed path in a square shape with rounded corners. Boolean
## operations become slower with the number of points involved, so
## it's important to keep these to a minimum.
bool_path = gdspy.Path(width, (0, 10))
bool_path.segment(0, 30, '+y')
bool_path.turn(0, 10, 'r', number_of_points=32)
bool_path.segment(0, 30, '+x')
bool_path.turn(0, 10, 'r', number_of_points=32)
bool_path.segment(0, 30, '-y')
bool_path.turn(0, 10, 'r', number_of_points=32)
bool_path.segment(0, 30, '-x')
bool_path.turn(0, 10, 'r', number_of_points=32)
## Ring inside the square path.
ring = gdspy.Round(0, (25, 25), 25 + width * 0.5,
inner_radius=25 - width * 0.5,
number_of_points=128)
## We create a PolygonSet that contains both our path segments and
## ring, and then append it to our list of operands.
primitives.append(gdspy.PolygonSet(0, bool_path.polygons +
ring.polygons))
## The list of operands contains 2 polygon sets. We will subtract the
## 1st (narrower) from the 2nd (wider). For that we need to define a
## function that receives a list of 2 integers (each representing an
## operand) and returns the operation we want executed. Here we use
## a lambda expression to do so.
subtraction = lambda polygons: polygons[1] and not polygons[0]
## We perform the operation, put the resulting polygons in layer 1, and
## add to our boolean cell.
bool_cell.add(gdspy.boolean(1, primitives, subtraction,
precision=1.0e-6, max_points=199))
## ------------------------------------------------------------------ ##
## SLICING POLYGONS ##
## ------------------------------------------------------------------ ##
## If there is the need to cut a polygon or set of polygons, it's better
## to use the slice function than set up a boolean operation, since it
## runs much faster. Slices are multiple cuts perpendicular to an axis.
slice_cell = gdspy.Cell('SLICE')
original = gdspy.Round(1, (0, 0), 10, inner_radius = 5)
## Slice the original ring along x = -7 and x = 7.
result = gdspy.slice(1, original, [-7, 7], 0)
## The result is a tuple of polygon sets, one for each slice. To keep
## add the region betwen our 2 cuts, we chose result[1].
slice_cell.add(result[1])
## If the cut needs to be at an angle we can rotate the geometry, slice
## it, and rotate back.
original = gdspy.PolyPath(2, [(12, 0), (12, 8), (28, 8), (28, -8),
(12, -8), (12, 0)], 1, 3, 2)
original.rotate(numpy.pi / 3, center=(20, 0))
result = gdspy.slice(2, original, 7, 1)
result[0].rotate(-numpy.pi / 3, center=(20, 0))
slice_cell.add(result[0])
## ------------------------------------------------------------------ ##
## REFERENCES AND TEXT ##
## ------------------------------------------------------------------ ##
## Cells can contain references to other cells.
ref_cell = gdspy.Cell('REFS')
ref_cell.add(gdspy.CellReference(poly_cell, (0, 30), x_reflection=True))
ref_cell.add(gdspy.CellReference(poly_cell, (25, 0), rotation=180))
## References can be whole arrays. Add an array of the boolean cell
## with 2 lines and 3 columns and 1st element at (50, -15).
ref_cell.add(gdspy.CellArray(bool_cell, 3, 2, (35, 35) ,(50, -15),
magnification=0.5))
## Text are also sets of polygons. They have edges parallel to 'x' and
## 'y' only.
ref_cell.add(gdspy.Text(6, 'Created with gsdpy ' + gdspy.__version__,
7, (-7, -35)))
## ------------------------------------------------------------------ ##
## OUTPUT ##
## ------------------------------------------------------------------ ##
## Create a binary file to save the GDSII layout.
name = os.path.abspath(os.path.dirname(os.sys.argv[0])) + os.sep +\
'gdspy-sample'
file_out = open(name + '.gds', 'wb')
## Output the layout to a GDSII file (default to all created cells).
## Set the units we used to micrometers and the precision to nanometers.
gdspy.gds_print(file_out, unit=1.0e-6, precision=1.0e-9)
file_out.close()
print 'Sample gds file saved: ' + name + '.gds'
## Save an image of the boolean cell in a png file. Resolution refers
## to the number of pixels per unit in the layout.
gdspy.gds_image([bool_cell], image_name=name, resolution=4,
antialias=4)
print 'Image of the boolean cell saved: ' + name + '.png'
## View the layout using a GUI. Full description of the controls can
## be found in the online help at http://gdspy.sourceforge.net/
gdspy.LayoutViewer()
|