
LilypondToBandVideoConverter
Automated Generation of Notation Videos with

Backing Tracks (v1.1.1)

Dr. Thomas Tensi

June 23, 2022

2 Dr. Thomas Tensi

CONTENTS

Contents

1 Introduction 7
1.1 Overview . 7
1.2 Outline of this Document . 8

2 Preliminaries 11
2.1 Requirements . 11
2.2 Installation . 12

3 Terminology 13

4 Usage 15

5 Configuration File Overview 19
5.1 Configuration File Location 19
5.2 Configuration File Syntax . 19

6 Lilypond Fragment File Overview 23
6.1 Chords . 25
6.2 Lyrics . 25
6.3 Things Not to Put in the Lilypond Fragment File 26

7 Configuration File Settings 29
7.1 Overall Configuration . 29
7.2 Song Group Configuration . 32
7.3 Song Configuration . 32
7.4 Configuration of the Processing Phases 33

7.4.1 Preprocessing Phases 33
7.4.1.1 Notation Generation: “extract” and “score”

Phase . 34
7.4.1.2 Midi File Generation: “midi” Phase 38
7.4.1.3 Video Generation: “silentvideo” Phase 43

7.4.2 Postprocessing Phases 47

LilypondToBVC, v1.1.1 3

CONTENTS

7.4.2.1 Audio Generation: “rawaudio” and “refinedaudio”
Phase . 47

7.4.2.2 Final Audio Generation: “mix” Phase 53
7.4.2.3 Video Generation: “finalvideo” Phase 57

7.5 Summary . 58

8 Example 61
8.1 Example Lilypond Fragment File 61
8.2 Example Configuration File 64

8.2.1 Overall Configuration - Part 1 64
8.2.2 Song-Specific Configuration 66
8.2.3 Overall Configuration - Part 2 67

8.3 Putting it All Together . 68

9 Debugging 71

10 Future Extensions 73

11 References 75

A Table of Configuration File Variables 77

B Glossary 81

C Release Changes 85

4 Dr. Thomas Tensi

LIST OF FIGURES

List of Figures

1 Dependencies between Generation Phases 16

2 Dependency of Lilypond Macros on Configuration Variables . 24

3 Global Configuration Variables for Programs 30
4 Parameters for Command Lines in audioProcessor Variable . . 30
5 Global Configuration Variables for File Paths 31
6 Song Group Related Configuration File Variables 32
7 Song Related Configuration File Variables 32
8 Information Flow for the Preprocessing Phases 33
9 Notation Generation Configuration File Variables 36
10 Example Layout of an Extract File 37
11 Extract Generation Configuration File Variables 37
12 Example Layout of a Score File 38
13 Score Generation Configuration File Variables 39
14 Midi Related Configuration File Variables 39
15 Automatic Humanization of a Note 42
16 Midi Humanization Related Configuration File Variables . . . 43
17 Parameters for Video Target in videoTargetMap Variable . . . 44
18 Target Parameters for Video Generation 44
19 Parameters for Video File Kind in videoFileKindMap Variable . 45
20 Video Configuration File Variables 46
21 Information Flow for the Postprocessing Phases 48
22 Audio Configuration File Variables 53
23 Default Panning Function for Left and Right Channels 54
24 Parameters for Audio Track in audioTrackList Variable 55
25 Audio Flow during Track Mixdown 56
26 Mix Configuration File Variables 58

27 Examples for Target File Images 69

LilypondToBVC, v1.1.1 5

LIST OF FIGURES

6 Dr. Thomas Tensi

CHAPTER 1. INTRODUCTION

1. Introduction

1.1 Overview

The LilypondToBandVideoConverter is an application consisting of several
python scripts that orchestrate standard command-line tools to convert a
music piece (a song) written in the lilypond notation to

• a PDF score of the whole song,

• several PDF voice extracts,

• a MIDI file with all voices (with additional preprocessing applied to
achieve some humanization),

• audio mix files with several subsets of voices (specified by configuration),
and

• video files for several output targets visualizing the score notation pages
and having the mixes as mutually selectable audio tracks as backing
tracks.

The central aim is to finally have a video file with several audio tracks
containing mixes of different voice subsets to be used as selectable backing
tracks. The video itself shows a score with “pages” turned at the right time
and an indication of the current measure as a subtitle.
So one might have a score video to be displayed on some device (like a tablet)
that synchronously plays, for example, a backing track without vocals, guitar
and keyboard, but with bass and drums. Hence a (partial) band can play the
missing voices live (reading the score) and have the other voices coming from
the backing track.
For processing a song one must have

• a lilypond include file with the score information containing specific
lilypond identifiers, and

• a configuration file giving details like the voices occuring in the song,
their associated midi instrument, target audio volume, list of mutable
voices for the audio tracks etc.

Based on those files the python script – together with some open-source
command-line software like ffmpeg – produces all the target files. This is
done either incrementally or altogether depending on command-line settings
for the script.

LilypondToBVC, v1.1.1 7

1.2. OUTLINE OF THIS DOCUMENT

In principle, all this could also be done with standard lilypond files using
command line tools. But the LilypondToBandVideoConverter application
automates a lot of that: based on data given in a song-dependent configuration
file plus the lilypond fragment file for the notes of the voices, it adds boilerplate
lilypond code, parametrizes the tool chain and calls the necessary programs
automatically. And the process is completely unattended: once the required
configuration and lilypond notation files are set up the process runs on its
own. Additionally the audio generation can be tweaked by defining midi
humanization styles and command chains (“sound styles”) for the audio
postprocessing.
This document assumes that you have an adequate knowledge of the following
underlying software:

lilypond:
for the notation specification,

sox:
for postprocessing the audio files

1.2 Outline of this Document

This document will present how to setup a lilypond fragment file and
an associated configuration file for processing with LilypondToBandVideo-
Converter.

• Chapter 2 describes the installation requirements and defines some
terminology used in this document.

• Chapter 4 tells how the (command line) program is used and what
kind of processing phases are available. There is also some dependency
between the artifacts of the phases that is presented there.

• Chapter 5 gives an overview of the syntax of a LilypondToBandVideo-
Converter configuration file. It consists of key-value-pairs; the keys are
identifiers, but the values may be a bit more complicated.

• Chapter 6 tells how the lilypond fragment file should look. Of course,
the syntax is given by the lilypond program, but — since we have
fragments with external boilerplate code — we discuss what kind of
information must be provided in those files.

• Chapter 7 discusses in detail each configuration file variable needed by
going through all the processing phases in sequence.

8 Dr. Thomas Tensi

CHAPTER 1. INTRODUCTION

• Chapter 8 gives an example by showing all the lilypond macros and
all required configuration settings for a simple two-verse blues song
with three instruments. It shows that some initial effort is needed, but
normally you can reuse things once you have understood how to make
it work.

• Because things will certainly go wrong some time, chapter 9 gives some
hints on how to trace the problem.

• Further bibliographic information and links to the tools are given in
chapter 11.

• Appendix A gives an overview table of all configuration file commands,
appendix B gives a glossary of terms, appendix C shows all the release
changes.

LilypondToBVC, v1.1.1 9

1.2. OUTLINE OF THIS DOCUMENT

10 Dr. Thomas Tensi

CHAPTER 2. PRELIMINARIES

2. Preliminaries

2.1 Requirements

All the scripts are written in python and can be installed as a python package.
The package requires either Python 2.7 or Python 3.3 or later and relies on
the python package mutagen.
Additionally the following software must be available:

lilypond:
for generating the score pdf, voice extract pdfs, the raw midi file and
the score images used in the video files [LILY],

ffmpeg:
for video generation and video postprocessing [FFMPEG],

fluidsynth:
for generation of voice audio files from a midi file [FLUID] plus some
soundfont (e.g. FluidR3_GM.sf3 at [SFNT-ORIG] or [SFNT-MS]), and

sox:
for instrument-specific postprocessing of audio files for the target mix
files as well as the mixdown [SOX]

Both “fluidsynth” and “sox” may be replaced by other software that does
similar file transformations. “fluidsynth” can be substituted by a command-
line program transforming MIDI to WAV, “sox” by one doing command-line
audio processing on WAV files. In both cases the corresponding configuration
has to be adapted accordingly.
The following software is optional:

aac:
an AAC-encoder for the final audio mix file compression (for example
[AAC]), and

mp4box:
the MP4 container packaging software mp4box [MP4BOX]

The location of all those commands as well as a few other settings has to be
defined in a global configuration file for the LilypondToBandVideoConverter
(cf. overall configuration file syntax)

LilypondToBVC, v1.1.1 11

2.2. INSTALLATION

2.2 Installation

The program is available via the Python platform PyPi, the Python package
index.

pip install lilypondToBandVideoConverter

Once installed the program is ready for use. Make sure that the scripts
directory of python is in the path for executables on your platform.

12 Dr. Thomas Tensi

CHAPTER 3. TERMINOLOGY

3. Terminology
Because the different programs do not completely agree in their terminology,
a single terminology is used throughout the document and this is defined
here. Appendix B gives a detailed description of the all terms used in this
document.
The most important terms are:

voice:
a polyphonic part of a composition belonging to a single instrument to
be notated in one or several musical staffs

song:
a collection of several parallel voices forming a musical piece

album:
a collection of several related songs (for example, related by year, artist,
etc.)

audio track:
the audio rendering of a subset of all song voices (typically within the
final notation video)

LilypondToBVC, v1.1.1 13

14 Dr. Thomas Tensi

CHAPTER 4. USAGE

4. Usage
The LilypondToBandVideoConverter is a commandline program with the
following syntax:

lilypondToBVC [-h] [-k] [-l loggingFilePath] --phases PHASELIST
[--voices VOICELIST] configurationFilePath

The options have the following meaning:

-h
makes the program show all the commandline options and exit

-k
force the program to keep intermediate files

-l loggingFilePath
gives the path for the logging file (overriding any corresponding setting
in the configuration file)

–phases PHASELIST
specifies the processing phases or combination of processing phases to be
applied; is a slash-separated identifier list from the set
{all, preprocess, postprocess, extract, score, midi, silentvideo, rawaudio,
refinedaudio, mix, finalvideo} defined here

–voices VOICELIST
gives the slash-separated list of voices where current phase should be
done on (for example, only on vocals and on drums); those voice names
should be a subset of the list of voices given in the configuration file and
in the associated lilypond fragment file; this option is optional: when
it is not given, all voices are used; only applies to phases “extract”,
“rawaudio” and “refinedaudio”

configurationFilePath
gives the path to the configuration file specifying all information about
the song to be processed

The several processing phases of LilypondToBandVideoConverter produce
the several outputs incrementally and are named by the kind of result they
produce. Those phases have the following meanings:

extract:
generates PDF notation files for single voices as extracts (might use
compacted versions if specified),

score:
generates a single PDF file containing all voices as a score,

LilypondToBVC, v1.1.1 15

lilypond
file

configuration
file

extract

score

midi

silentvideo

voice
extract

files

score
file

midi
file

silent
video
files

subtitle
text
file

rawaudio

refinedaudio

mix

finalvideo

raw
audio
files

refined
audio
files

mix
audio
files

video
files

Figure 1: Dependencies between Generation Phases

midi:
generates a MIDI file containing all voices with specified instruments,
pan positions and volumes,

silentvideo:
generates (intermediate) silent videos containing the score pages for
several output video file kinds (with configurable resolution and size),

rawaudio:
generates unprocessed (intermediate) audio files for all the instrument
voices from the midi tracks,

refinedaudio:
generates (intermediate) audio files for all the instrument voices with
additional audio processing applied,

mix:
generates final compressed audio files with submixes of all instrument
voices based on the refined audio files with a specified volume balance
and some subsequent mastering audio processing (where the submix
variants are configurable), and

finalvideo:
generates a final video file with all submixes as selectable audio tracks
and with a measure indication as subtitle

16 Dr. Thomas Tensi

CHAPTER 4. USAGE

Of course, those phases are not independent. Several phases rely on results
produced by other phases. Figure 1 shows how the phases depend on each
other. The files (in yellow) are generated by the phases (in magenta), the
configuration file (in green) and the lilypond fragment file (in blue) are the
only manual inputs into the processing chain.
For example, the phase rawaudio needs a midi file as input containing all
voices to be rendered as audio files. When using combining phases (see below)
or when specifying several phases for a single run of the LilypondToBand-
VideoConverter application, the phases are processed in a correct order, but
when doing a manual selection of phases, you have to make sure that the
dependencies given are obeyed.
In the following we shall use the color coding for the files as given in figure 1:
parts from the configuration file have a green background, parts from the
lilypond fragment file have a blue background.
There are also some combining phase available as follows:

preprocess:
combining all the phases extract, score, midi and silentvideo for generation
of voice extract PDFs and score PDF, MIDI file as well the silent videos
for all video file kinds

postprocess:
combining all the phases rawaudio, refinedaudio, mix and finalvideo for
generation of the intermediate raw and refined WAV files, the submixes
as compressed audios and the final videos for all video file kinds

all:
full processing via phase groups preprocess and postprocess

So for example
lilypondToBVC --phases voice/score

--voices vocals/strings/drums config.txt

will generate the voice extracts for vocals, strings and drums as well as a song
score with those three voices specified in file config.txt. The vertical order
within the score as well as other layout parameters are given by the order of
voice descriptions and specific variables in the configuration file.

LilypondToBVC, v1.1.1 17

18 Dr. Thomas Tensi

CHAPTER 5. CONFIGURATION FILE OVERVIEW

5. Configuration File Overview
The song processing is controlled by several variables; those have to be
defined in the configuration file for a song. The name of this file is given as a
mandatory parameter for the application.
Note that typically there is not a single configuration file, but several. Often
a song configuration file includes others with global definitions (like, for
example, defining the location of the ffmpeg command or some style of audio
postprocessing).
Although there is some internal program logic separating the variables into
different domains for global setup variables, album related variables and song
variables, this is somewhat academical: a variable definition can be given at
any place and a later definition overrides a previous one.

5.1 Configuration File Location

The configuration file(s) are searched for in the following locations in the
given order:

• the current directory

• the directory /.ltbvc within the user’s home directory

• the directory config and ../config relative to the directory of the python
program files

5.2 Configuration File Syntax

Each configuration file has a simple line-oriented syntax as follows:

• Leading and trailing whitespace in a line is ignored. Other whitespace
is only interpreted as token separator.

• A line starting with a comment marker “--” (double-dash) is ignored.

• Each relevant line starts with an identifier followed by an equal sign and
the associated value. The associated value may be an integer, a decimal,
a boolean or a string. By this assignment the value is associated with
the variable given by the identifier. A subsequent assignment to the
same variable will replace that value.

• An identifier is a sequence of lower- and uppercase letters or underscores
and signifies a variable. One may define such variables arbitrarily.

LilypondToBVC, v1.1.1 19

5.2. CONFIGURATION FILE SYNTAX

• Several physical lines are collected into a single logical value assignment
line until either an empty line (with only whitespace) or a new assigment
line is encountered.

• A line may end with a continuation marker “\”. That marker is discarded
and the line is combined into the previous logical assignment line (if
any).

• An integer literal is a digit sequence, a decimal value is a digit sequence
with at most one decimal point, a boolean value is either the string
“true” or “false” and a string value is a character sequence enclosed by
double quotes. Two double quotes within a string are interpreted as a
double quote character.

• When a variable identifier occurs on the right hand side of an assignment,
it is immediately replaced by its associated value. If there is none, this
is an error. The processing is strictly sequential: the use of an identifier
must occur after its definition. It is okay to use an identifier in its own
redefinition or to have more than one definitions of an identifier.

• A sequence of adjacent string literals or variables with string contents
are concatenated into a single string value.

• A line starting with “INCLUDE” followed by a string specifies the name
of a file to be included in place.

• As a convention sets have comma-separated string values and maps are
strings with a leading and trailing brace and key and values separated
by a colon. White space within those strings is not significant except
when it is itself part of a value string enclosed in single quotation marks.

• It is helpful to distinguish auxiliary variables from those used by the
program. As a simple convention in this document we prefix auxiliary
variables with an underscore (but any convention — even none — is
fine).

Assume for an example the following definitions in two files “test.text” and
“config.txt”:

-- test.txt file to be included elsewhere
voiceNameList = "vocals, guitar, drums"
humanizedVoiceNameSet = "vocals"
_initialTempo = "90"
year = 2021

-- config.txt file including test file
INCLUDE "test.txt"
voiceNameList = "vocals, guitar"
humanizedVoiceNameSet = humanizedVoiceNameSet ", drums"
measureToTempoMap = "{ 1 : " _initialTempo ", 20 : 67 }"

20 Dr. Thomas Tensi

CHAPTER 5. CONFIGURATION FILE OVERVIEW

leads to the following overall variable settings:
_initialTempo = "90"
year = 2021
voiceNameList = "vocals, guitar"
humanizedVoiceNameSet = "vocals, drums"
measureToTempoMap = "{ 1 : 90, 20 : 67 }"

LilypondToBVC, v1.1.1 21

5.2. CONFIGURATION FILE SYNTAX

22 Dr. Thomas Tensi

CHAPTER 6. LILYPOND FRAGMENT FILE OVERVIEW

6. Lilypond Fragment File Overview
The lilypond fragment file used for a song contains lilypond macros. We do
not discuss the details of the lilypond language here, it is recommended to
have a look into the lilypond documentation[LILY].
At least there must be definitions for the following items in the lilypond file:

keyAndTime:
tells the key and time of the song and assumes that this applies to all
voices

«voice»XXX:
for each voice given in the configuration file containing the musical
expression to be used in an extract, in a score, in the midi file or in the
video; here “XXX” depends on the target, so you might have different
macros for a voice for the different targets it occurs in (extract, score,
midi, video).

The names of all voices are given by the configuration variable voiceNameList.
Because lilypond only allows letters in macro names, those voice names must
consist of small and capital letters only (no blanks, no digits, no special
characters!) and they are case sensitive. And they should not clash with
predefined lilypond macros 1.
The above looks quite complicated because you need macros for each voice
and each processing phase. But often you will reuse lilypond macros and
typically the MIDI macro «voice»Midi is the same as the score macro «voice»
only with all repetitions unfolded. You do not have to do this by yourself: for
midi output this unfolding is done by the generator.
There is even another automatism: if the generator looks for some voice macro
with some extension it also accepts the plain macro for the voice (if available).
For example, if the macro guitarMidi cannot be found, the generator looks for
the macro guitar and automatically applies necessary lilypond transformations
(like unfolding repeats).
There is a connection between the lilypond and the configuration file: some
variables in the configuration file make some lilypond macros “mandatory”.
The table in figure 2 gives the configuration variable, the corresponding
lilypond macro(s) and a short description. The dependency is not strict,
because some default settings are applied, but in general the logic described
in the figure is a good orientation. Video voice names are not specified in
a single variable, but via video target and video file kind definitions (see
section 7.4.1.3).

1Like drums, but because this is a common voice name it is automatically mapped to
myDrums by the generator.

LilypondToBVC, v1.1.1 23

Config. Variable Description Lilypond Var.
audioVoiceNameSet for each voice given in the set the lilypond

macro gives the musical expression for the voice
to be rendered as an audio file with the voice
name

«voice»Midi

extractVoiceNameSet for each voice given in the list the lilypond
macro gives the musical expression for a voice to
be rendered in the corresponding voice extract

«voice»Extract

midiVoiceNameList for each voice given in the list the lilypond
macro gives the musical expression for the voice
to be rendered in the midi file and rendered as
an audio file with the voice name; the list is
the order of the voices in the file

«voice»Midi

scoreVoiceNameList for each voice given in the list the lilypond
macro gives the musical expression for the voice
to be rendered in the midi file, the list is the
order of the voices in the score from top to
bottom

«voice»Score

Figure 2: Dependency of Lilypond Macros on Configuration Variables

For example, assume we have three voices in the song called “vocals”, “drums”
and “guitar”. We also assume that we shall have all voices in the midi file,
vocals in an extract, drums and guitar in the score and vocals and guitar in
the video.
So the configuration file for the song contains the following definitions:

...
voiceNameList = "vocals, drums, guitar"
extractVoiceNameSet = "vocals"
scoreVoiceNameList = "guitar, drums"
midiVoiceNameList = "vocals, guitar, drums"
...

Note that the midiVoiceNameList could be omitted, because the default is to
use the voices from the overall voice list voiceNameList and the “wrong” order
of voices does not really matter in the midi file. In this example the audio
variable audioVoiceNameSet has been omitted: it defaults to the setting of
midiVoiceNameList, so we nevertheless have audio for “vocals”, “guitar” and
“drums” (that means, all voices).
For the given configuration we must have the following macros in the lilypond
fragment file:

keyAndTime = {...}

vocalsExtract = {...}
vocalsScore = {...}
vocalsMidi = {...}

guitarScore = {...}
guitarMidi = {...}
guitarVideo = {...}

myDrumsScore = {...}
myDrumsMidi = {...}

24 Dr. Thomas Tensi

CHAPTER 6. LILYPOND FRAGMENT FILE OVERVIEW

Again some simplification is possible: when some global macros like guitar is
introduced, the associated variants can be omitted.

6.1 Chords

Because the software is used in a band context, chord symbols may also be
used. Chords may depend on voice and very often depend on the processing
target, because the voice formatting may be different per target.
The configuration file variable responsible for chords is voiceNameToChordsMap
and tells where chords are shown and for which voices.
All voices with chords are mentioned as keys and mapped onto a slash
separated list of single character abbreviations for the targets. We have “e”
for the extract, “s” for the score and “v” for the video. There are no chords
for the midi file.
So for the configuration file line

voiceNameToChordsMap = "{ vocals: v/s, guitar: e }"

the chords are shown for the vocals in video and score and for guitar in its
extract. This means the lilypond fragment file must contain the following
definitions in \chordmode:

guitarChordsExtract = {...}
vocalsChordsScore = {...}
vocalsChordsVideo = {...}

Again there is a default: when some chord macro is missing, either the plain
chords macro for the voice or even the chords for all voices are used.
So for example, when guitarChordsExtract is missing, the search is first done
for guitarChords and finally for allChords (the latter as a catch-all since chords
is a keyword in lilypond).

6.2 Lyrics

Also lyrics may be attached to voices. Lyrics may occur in voice extracts, in
the score and in the video. The difference to chords is that multiple lyrics
lines (for example, for stanzas) may be attached to a single voice, hence we
need an additional count information.
It is assumed that each lyrics line is always valid for all the notes in the voice,
hence you have to provide appropriate padding (at least leading padding).
The syntax is similar to chords, hence we have a voiceNameToLyricsMap, but
it also contains a count of parallel lyrics lines directly following the target

LilypondToBVC, v1.1.1 25

6.3. THINGS NOT TO PUT IN THE LILYPOND FRAGMENT FILE

letter (“e” for the extract, “s” for the score and “v” for the video).
So for the configuration file line

voiceNameToLyricsMap = "{ vocals: e2/s2/v, bgVocals: e3 }"

the lyrics are shown for the vocals in extract, video and score and for the
background vocals only in its extract. The lyrics line macros have capital
letters as suffices (A, B, . . .) and hence are confined to 26 parallel lines per
voice.
This means the lilypond fragment file must contain the following definitions
in \lyricmode:

vocalsLyricsExtractA = {...}
vocalsLyricsExtractB = {...}
vocalsLyricsScoreA = {...}
vocalsLyricsScoreB = {...}
vocalsLyricsVideoA = {...}

bgVocalsLyricsExtractA = {...}
bgVocalsLyricsExtractB = {...}
bgVocalsLyricsExtractC = {...}

Again there is a default: when some lyrics macro is missing, the macro for
the voice without the target (but with the appropriate suffix) is used. So
for example, for a missing vocalsLyricsScoreB an existing vocalsLyricsB is
used. Additionally for the first line the suffix may be totally omitted, so
vocalsLyricsScoreA can be replaced by vocalsLyricsScore or even vocalsLyrics.

6.3 Things Not to Put in the Lilypond Fragment
File

Because the different phases add their own boilerplate code, the following
lilypond code must not occur in the lilypond fragment file:

• a \score block, and

• staff definitions

The following should not occur in the fragment, unless you want to override
the presets from the program:

• a \header block,

• a \paper block, and

• a setting of the global-staff-size

26 Dr. Thomas Tensi

CHAPTER 6. LILYPOND FRAGMENT FILE OVERVIEW

Note that settings overriding presets above might interfere with some phases:
e.g. the videos use their own paper and resolution settings and those would
be shadowed by conflicting definitions in the fragment.

LilypondToBVC, v1.1.1 27

6.3. THINGS NOT TO PUT IN THE LILYPOND FRAGMENT FILE

28 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

7. Configuration File Settings
In the following we show all the settings of the configuration file in detail and
what to put in an associated lilypond music fragment file.
In principle one only needs a single configuration file and a single lilypond
fragment file. For systematic reasons the information can be divided for
didactic reasons and must then be combined into a single configuration file
by INCLUDE statements.
Very often reasonable defaults are used for the variables. All settings are
described in a table in figure in appendix A.

7.1 Overall Configuration

In this section the configuration file settings are discussed that define the
locations of programs and files used. Note that paths use the Unix forward
slash as a separator. If a relative path is used, it is relative to the current
directory where the program call is made.
Some variables define the program locations and global program parameters
and are shown in figure 3. For example, ffmpegCommand tells the path of the
ffmpeg command (you wouldn’t have guessed that, would you?).
Two entries are special: aacCommandLine and audioProcessor.

• The aac command line specifies the complete line for an aac encoding
command with ${infile} and ${outfile} as placeholders for the input and
output file name. If empty, ffmpeg is used for aac encoding.

• The audio processor map settings variable specifies three commands
lines used in the refinement and mix phases and two (optional) strings
used for the refinement commands:

– the command line for refining audio files with ${infile}, ${outfile}
and ${effects} as placeholders for the input and output file name
and the refinement effects from a sound style,

– the command line for mixing audio files with associated volume
factors containing ${factor}, ${infile} and ${outfile} as placeholders
with the repeating group of factor and infile embraced by parentheses,

– the effect for amplifying an audio file by some factor given in dB
containing ${amplificationLevel} as placeholder,

– the command line for padding an audio files with leading silence
containing ${duration} (in seconds), ${infile} and ${outfile} as
placeholders, and

LilypondToBVC, v1.1.1 29

7.1. OVERALL CONFIGURATION
Variable Description Example
aacCommandLine aac encoder command line with parameters

for input (${infile}) and output (${outfile})
(optional, if not defined ffmpeg is used for aac
encoding)

"/pathto/qaac -
V100 -i ${infile} -o
${outfile}"

ffmpegCommand location of ffmpeg command "/pathto/ffmpeg"
lilypondCommand location of lilypond command "/pathto/lilypond"
lilypondVersion the version string for lilypond "2.18.2"
midiToWavRendering-
CommandLine

command line for rendering command from
MIDI file to WAV audio file (typically
“fluidsynth” with parameters for input
(${infile}) and output (${outfile}))

"/pathto/fluidsynth"

mp4boxCommand location of mp4box command (if available); if
empty ffmpeg is used instead

"/pathto/mp4box"

Figure 3: Global Configuration Variables for Programs

Variable Description
amplificationEffect audio processor command for amplifying audio by some dB value

containing ${amplificationLevel} as placeholder
chainSeparator string or character used for separating audio chains within audio

refinement effects; defaults to ";"
mixingCommandLine audio processor command line for mixing audio files with volume factors

containing ${factor}, ${pan}, ${infile} and ${outfile} as placeholders;
the group of factor and infile is embraced by parentheses ("[]") and will
be repeated depending on the number of infiles with the parentheses
removed; if missing, mixing will be done by (slow) internal routines, if
“pan” is not specified as a placeholder, an internal panning via ffmpeg
is done

paddingCommandLine audio processor command line for padding an audio files with leading
silence containing ${duration} (in seconds), ${infile} and ${outfile} as
placeholders; if missing, padding will be done by (slow) internal routines

redirector string or character used for specifying special inputs or outputs within
audio refinement effects; defaults to "->"

refinementCommandLine audio processor command line for audio refinement with parameters
for input (${infile}), output (${outfile}) and the refinement effects
(${effects})

Figure 4: Parameters for Command Lines in audioProcessor Variable

– the strings for separation of parallel chains and for the redirection
into temporary buffers (see below)

So an example setting in the configuration file for the global configuration
variables could look like that:

aacCommandLine = "/usr/local/qaac -V100 -i $1 -o $2"
ffmpegCommand = "/usr/local/ffmpeg"
lilypondCommand = "/usr/local/lilypond"
lilypondVersion = "2.18.2"
midiToWavRenderingCommandLine =

"/usr/local/fluidsynth ${infile} ${outfile}"

Note that LilypondToBandVideoConverter tries to locate the programs on
your system’s executable path. When they can be found, you do not have
to specify anything here: the defaults are used instead.
When using the standard software “sox” for audio refinement, this is specified
by setting the audioProcessor variable accordingly using the components from

30 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS
Variable Description Example
intermediateFile-
DirectoryPath

path of directory where intermediate files go
that are either used for processing within a
phase or as information between phases

"temp"

loggingFilePath path of file containing the processing log
(potentially overridden by the -l option on the
command-line

"/pathto/ltbvc.log"

targetDirectoryPath path of directory where all generated files go
(except for audio and video files)

"generated"

tempAudioDirectoryPath path of directory for temporary audio files "/pathto/audiofiles"
tempLilypondFilePath path of temporary lilypond file containing

placeholders for ${phase} and ${voiceName}
"temp_${phase}
_${voiceName}.ly"

Figure 5: Global Configuration Variables for File Paths

figure 4.
_sox = "/usr/local/sox --buffer 100000 --multi-threaded"
audioProcessor =
"{ redirector: ’->’,"
" chainSeparator: ’;’,"
" amplificationEffect: ’gain ${amplificationLevel}’,"
" mixingCommandLine: ’" _sox

" -m [-v ${factor} ${infile}] ${outfile}’,"
" paddingCommandLine: ’" _sox

" ${infile} ${outfile} pad ${duration}’,"
" refinementCommandLine: ’" _sox

" ${infile} ${outfile} ${effects}’ }"

The above setting is also the default if you do not specify the processor.
Other variables shown in figure 5 define file and path locations. Very important
is the path where the logging file ltvbc.log is located: sometimes it is the only
way to find out what went wrong. But — as mentioned in section 4 — you
can also specify the logging file name via the command-line.
Temporary files go to intermediateFileDirectoryPath. By default, all temp files
go to the current directory and the phase-internal files are deleted at the end
of a phase (but you can prevent that, see chapter 9).
An example setting in the configuration file for file path configuration variables
could look like that:

intermediateFileDirectoryPath = "temp"
loggingFilePath = "/var/logs/ltbvc.log"
targetDirectoryPath = "generated"
tempAudioDirectoryPath = "~/ltbvc_audiofilesdir"
tempLilypondFilePath = "temp_\placeholder{phase}_\placeholder{voiceName}.ly"

Note that tempLilypondFilePath may have placeholders for the processing
phase and the voice name. This is only relevant when the intermediate files
are kept: otherwise the temp files are deleted after a program run.

LilypondToBVC, v1.1.1 31

7.2. SONG GROUP CONFIGURATION
Variable Description Example
albumName album for song group (embedded as “album”

in audio and video files)
"Best of Fredo"

artistName artist of that song group (embedded as “artist”
and “album artist” in audio and video files)

"Fredo"

Figure 6: Song Group Related Configuration File Variables

Variable Description Example
composerText composer text to be shown in voice extracts

and score
"arranged by Fredo,
2021"

fileNamePrefix file name prefix used for all generated files for
this song

"wonderful_song"

includeFilePath path for the music include file containing all
fragments for lilypond processing; if unset,
defaults to fileNamePrefix plus “-music.ly”

"wonderful_song-
music.ly"

intermediateFilesAreKept boolean telling whether temporary files are kept False
measureToTempoMap map defining the tempo for measure in bpm

until another tempo setting is given; the time
signature as a fraction may be appended after
a vertical bar (4/4 is default)

"{ 1 : 60|3/4, 20 : 100
}"

trackNumber track number within album 22
title human visible title of song used as tag in the

target audio file and as header line in the
notation files

"Wonderful Song"

year year of arrangement 2021

Figure 7: Song Related Configuration File Variables

7.2 Song Group Configuration

Very often several songs are combined into a song group, for example, into an
album.
A song group is characterized by two parameters in the configuration file as
shown in figure 6.

7.3 Song Configuration

The song is characterized by some very simple parameters in the configuration
file shown in figure 7. The most important variable is fileNamePrefix because
it is used in the file names of the generated files; all the other variables may
be missing and are set to some reasonable default.
The lilypond include file containing all fragments can be specified via
includeFilePath, but if unset defaults to fileNamePrefix plus “-music.ly”.

32 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

lilypond
file

configuration
file

extract

score

midi

silentvideo

voice
extract

files

score
file

midi
file

silent
video
files

subtitle
text
file

Figure 8: Information Flow for the Preprocessing Phases

7.4 Configuration of the Processing Phases

7.4.1 Preprocessing Phases

All preprocessing phases rely on the configuration and the lilypond fragment
file, while the postprocessing phase start from the generated midi file and the
silent videos.
In each preprocessing phase the lilypond fragment file with the music is
embedded into some generated boilerplate lilypond file and this file is then
input for the notation typesetter lilypond.
Figure 8 shows the connection between the inputs and the outputs for the
phases. Both lilypond fragment file and configuration file serve as manual
input into the processing chain, the other files are generated.
For the “extract” and “score” phases this is all there is to do, but the “midi”
and “silentvideo” phases do further processing:

midi:
the midi file produced by lilypond has humanization applied to the
voices, and

silentvideo:
the image files produced by lilypond are combined into a correctly timed
video and a subtitle file in SRT format is produced

LilypondToBVC, v1.1.1 33

7.4. CONFIGURATION OF THE PROCESSING PHASES

If you really want to fiddle with lilypond, the processing phase is provided
as the lilypond macro ltbvcProcessingPhase with values “extract”, “score”,
“midi” or “silentvideo”. You can use that for conditional processing, layout
changes etc., because the fragment file is included into the boilerplate file at
a very late position. Be warned that the whole generation might fail, because
the generator assumes a simple-structured lilypond include file.

7.4.1.1 Notation Generation: “extract” and “score” Phase

Preliminaries

The central settings in the configuration file define the characteristics of
the voices. Each voice is given by its name (an identifier) in the variable
voiceNameList.
Note that the order in the voice name list is significant, because later on
variable in other phases rely on that order. For example, the reverb levels for
phase “refinedaudio” in variable reverbLevelList have the same order as the
voiceNameList. So the lines

voiceNameList = "vocals, guitar, drums"
reverbLevelList = " 0.2, 0.3, 0.1"

associate “vocals” with reverb level 0.2, “guitar” with level 0.3 etc. A simple
table logic: and it is fine to align the data in different entries with blanks.
The staff layout is specified by several variables that map voice names into
several kinds of staff-related layout information. Because this might be phase-
dependent, another mapping layer is added, mapping the phase onto the voice
name to staff info map.
phaseAndVoiceNameToStaffListMap tells the staff to use for the voice in extract,
score and video for a given processing phase. Default is “Staff”, special staffs
like “DrumStaff” may be defined in the map. The mapping goes from phase
name to a map from voice name to staff names.
To reduce the mental complexity we first define a map from voice name to
staff by the following configuration file lines

_voiceNameToStaffListMap =
"{ drums : DrumStaff,"
" keyboard : PianoStaff,"
" percussion : DrumStaff }"

that are reused in the mapping from phase name
phaseAndVoiceNameToStaffListMap =

"{ extract : " _voiceNameToStaffListMap ","
" midi : " _voiceNameToStaffListMap ","
" score : " _voiceNameToStaffListMap ","
" video : " _voiceNameToStaffListMap "}"

34 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

Very often the different phases use exactly identical definitions. Hence the
approach shown above is often fine (with individual definitions per phase if
necessary). Note that only phaseAndVoiceNameToStaffListMap is used by the
generator, _voiceNameToStaffListMap is just an auxiliary variable.
The default is “drums” and “percussion” as “DrumStaff” in Lilypond, the
rest uses “Staff”.
It is also allowed to have more than one staff as the target of a voice. In
that case the staff names are slash-separated and are filled from several
voice macros in the lilypond fragment file. For two systems the macros are
«voice»Top and «voice»Bottom with the phase target name appended, for
three systems we have «voice»Top, «voice»Middle and «voice»Bottom. For
example, a keyboard with a piano staff in a score references the macros
keyboardTopScore and keyboardBottomScore.
Some replacement is done: if, for example, «voice»MiddleExtract does not
exist, «voice»Middle and finally «voice» are taken instead.
So for a guitar with a tab the following definition in the configuration file
is fine and it either reuses the guitar macro in the lilypond fragment file
for both staffs or you can define special guitarTop/guitarBottom macros to
differentiate:

...
"guitar" : "Staff/TabStaff",
...

When reusing the same voice data in different staffs, be careful with respect
to the midi generation. Normally you only want the voice notes once in the
midi file, hence you will have to adapt the phaseAndVoiceNameToStaffListMap
definition and only include one staff in the midi file.
A similar logic as for the staffs applies to the mapping from voice name to clef.
The standard clef is “G”, others have to be defined explicitely. Especially
this applies to multi-system-staffs like the “PianoStaff”: here at least the
“xxxBottom” must have a special clef definition (it must be a bass clef).
A typical definition might be given as follows:

_voiceNameToClefMap =
"{ bass" : ’bass_8’, "
" drums" : ’’,"
" guitar" : ’G_8’,"
" keyboardBottom" : ’bass’,"
" percussion" : ’’ }"

Here bass and guitar have the transposed clef (as their traditional notation),
drums and percussion have none and the lower part of a piano staff is notated
in a bass clef.
Again the above is only an auxiliary definition. The relevant variable is
phaseAndVoiceNameToClefMap shown below. In our case — as above — the

LilypondToBVC, v1.1.1 35

7.4. CONFIGURATION OF THE PROCESSING PHASES
Variable Description Example
phaseAndVoiceName-
ToClefMap

mapping from processing phase to maps from
voice name to lilypond clef

see text

phaseAndVoiceName-
ToStaffListMap

mapping from processing phase to maps from
voice name to slash-separated lilypond staff
names

see text

voiceNameToChordsMap mapping from voice names to phase
abbreviations where chords are shown
for that voice system

"{vocals: v/s, guitar:
e}"

voiceNameToLyricsMap mapping from voice name to a count of parallel
lyrics lines directly following the target letter
(“e” for the extract, “s” for the score and “v”
for the video)

"{vocals: e2/s2/v}"

Figure 9: Notation Generation Configuration File Variables

mapping is identical for all phases, but, of course, individual definitions per
phase are possible.

phaseAndVoiceNameToClefMap =
"{ extract : " _voiceNameToClefMap ","
" midi : " _voiceNameToClefMap ","
" score : " _voiceNameToClefMap ","
" video : " _voiceNameToClefMap "}"

The above definition is the default, if you do not specify anything.
Figure 9 shows all notation related configuration variables discussed in the
current section.

“extract” Phase

Once everything is set up as described above, the “extract” phase generates
an extract for each voice given in extractVoiceNameSet. The processing order
of the voices is undefined.
As a result of this phase for each voice an extract pdf file is put into the
directory given by targetDirectoryPath with name fileNamePrefix, a dash, the
voice name and the extension “.pdf”.
The headings in the extract are set as follows: the song name from the title
variable is the extract title, the voice name is the extract subtitle, and the
contents of composerText is the text for the composer part.
Figure 10 shows how the first page of an extract might look like and figure 11
shows the specific configuration variables for voice extracts.

“score” Phase

In the “score” phase the generator produces a single score with the voices
given in scoreVoiceNameList in the order given by this variable and with
default layout parameters.
The score pdf file is put into the directory given by targetDirectoryPath with

36 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

Figure 10: Example Layout of an Extract File

Variable Description Example
extractVoiceNameSet set of voices to be rendered as a voice extract "vocals, drums"

Figure 11: Extract Generation Configuration File Variables

name fileNamePrefix followed by “_score” and the extension “.pdf”.
Headings in the score are set as follows: the song name from the title variable
is the score title and the contents of composerText is the text for the composer
part.
Because voice names might be long, there is a mapping that provides a short
name for each voice to be used in the score as the system identification by
filling the variable voiceNameToScoreNameMap. A possible setting is:

voiceNameToScoreNameMap =
"{ bass : bs,"
" bgVocals : bvc,"
" drums : dr,"
" guitar : gtr,"
" keyboard : kb,"
" keyboardSimple : kb,"
" organ : org,"
" percussion : prc,"
" strings : str,"
" synthesizer : syn,"
" vocals : voc }"

With the settings above, the “bass” voice has a “bs” name in the score. You
do not have to use that mechanism: the default is just to use the original
voice name for staff identification in the score.
Figure 12 shows how the first page of a score might look like, figure 13 shows
the specific configuration variables for scores.

LilypondToBVC, v1.1.1 37

7.4. CONFIGURATION OF THE PROCESSING PHASES

Figure 12: Example Layout of a Score File

7.4.1.2 Midi File Generation: “midi” Phase

The lilypond fragment file normally does not contain any further macros for
MIDI because the voices used for the score are often fine for the MIDI file.
Nevertheless it could happen that you need special processing here. Examples
are

• A voice has different notes or is transposed in the MIDI and audio
rendering than in the notation. This can be achieved by having a
different «voice»Midi macro.

• Some hidden voice occurs in MIDI and audio output, for example, a
voice delayed or transposed relative to some other voice (to enhance the
sound of the original voice). This can be achieved by adding a voice
to the voiceNameList macro, but excluding it from extracts, score and

38 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS
Variable Description Example
scoreVoiceNameList list of voices to be rendered in order given into

the score
"vocals, guitar,
drums"

voiceNameToScore-
NameMap

mapping from voices name to short score name
at the beginning of a system

"{ vocals : voc, bass :
bs }"

Figure 13: Score Generation Configuration File Variables

Variable Description Example
midiVoiceNameList list of voices to be rendered in order given into

the MIDI file
"guitar, drums"

midiChannelList list of midi channels per voice each between 1
and 16 (10 for a drum voice)

see text

midiInstrumentList list of midi instrument programs per voice each
as an integer between 0 and 127; each entry
may be prefixed by a bank number (0 to 127)
followed by a colon

see text

midiVolumeList list of midi volumes per voice each as an integer
between 0 and 127

see text

panPositionList list of pan positions per voice as a decimal value
between 0 and 1 with suffix “R” or “L” (for
right/left) or the character “C” (for center)

see text

Figure 14: Midi Related Configuration File Variables

video.

The “midi” processing phase unfolds all repeats in the given voices and
generates corresponding midi streams. Those streams are generated only for
those voices specified in the configuration variable midiVoiceNameList and
stored in a single file in the directory given by targetDirectoryPath with name
fileNamePrefix plus “-std” and extension “.mid”.
All those voices have specific settings defined by several list variables, that
align with the list voiceNameList and are shown in figure 14.
For example, the following settings in the configuration file

voiceNameList = "vocals, guitar, drums"
midiChannelList = " 1, 2, 10 "
midiInstrumentList = " 54, 2:29, 16 "
midiVolumeList = " 90, 60, 110 "
panPositionList = " C, 0.5L, 0.1R"

define vocals to be a synth vox in the center with 3/4 volume, the guitar to
be an overdrive guitar (in bank 2), located half left with medium volume, and
the drums to be a power set, located slightly right with almost full volume.
Nevertheless the midi phase not only transforms lilypond to plain midi, but
does further processing by adding humanization. This is specified by the
variable humanizedVoiceNameSet: it tells what voices shall be humanized, the
others are left untouched.
Humanization is done by adding random variations in timing and velocity to
the notes in a voice. This is not completely random, but depends on voice,

LilypondToBVC, v1.1.1 39

7.4. CONFIGURATION OF THE PROCESSING PHASES

position within measure and on the style of the song.
The voice- (or instrument-specific) variation is global and defined by the
configuration variable voiceNameToVariationFactorMap. Each voice name is
mapped onto a slash-separated pair of two numbers with the first giving the
velocity, the second the timing variation percentage.
For a standard band instrument set, we take the variations of the drum as the
reference in a humanization style. Hence drums should have an instrument-
specific variation factor of 1.0 each which means that the calculated variation
for some note is taken directly for drums. Other voices like, for example,
vocals are slightly more loose and might have a value of 1.5 for velocity and
1.2 for timing which means that the calculated variation for those parameters
is scaled accordingly. Of course, the velocity values are adjusted to their
ranges after the variation, because there is a maximum and minimum velocity.
Our example would result in

voiceNameToVariationFactorMap = "{ drums: 1.0/1.0,"
" vocals: 1.5/1.2}"

The humanization style of a song tells individual variations based on the
position of a note within a measure. Hence it gives timing and velocity
variations for the main beats and all other notes.
A timing variation is a positive decimal number and tells how much a note
can be shifted in 1/32nd notes (where 0 means no shift at all, 1 means a shift
by at most a 1/32nd etc.). A velocity variation tells the standard velocity
level of a note at this position and the slack gives the maximum variation.
When specifying a style, the note positions within a measure are given as
decimal fractions of a semibreve giving the offset to the measure start. For
example, the first beat in a measure has offset 0, the third beat an offset of
0.5. Additionally each style specifies a raster size r, for example 0.125 for an
eight note raster. When a measure position is given by an offset o, all notes
in the open interval (o− r

2
, o+ r

2
) will be handled by the given humanization

definition.
The algorithmic logic for a note humanization is as follows:

1. Assume that the given note has time ti and velocity vi. Further assume
that length of a thirtysecond note in time units is ` and that the
instrument-specific adjustments from the table are adjt and adjv.

2. Pick two random numbers rt and rv both in the interval [−1, 1] from a
quadratic probability distribution (which favours smaller numbers).

3. Depending on ti find the note position pi within its measure. Calculate
the note offset within the measure and convert it to a fraction of a
semibreve giving oi. If oi lies in some interval (p− r

2
, p+ r

2
) — where r

40 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

is the raster size specified in the style —, then the position pi is given
as p, otherwise the position is “OTHER”.

4. For the timing take the offset τ(pi) given by the timing map for
the current position pi and multiply it by rt and by the length of
a thirtysecond note and by the instrument-specific adjustment adjt
giving ∆t. If the offset has a “B”(ehind) prefix, take the absolute
value abs(rt) instead of rt, because the note may only be behind the
position; if the offset has an “A”(head) prefix, take the negative absolute
value −abs(rt) instead of rt because the note may only be ahead of the
position; otherwise keep the sign of rt.
Finally we have

t′i := ti +∆t = ti + rt · (τ(pi) · adjt · `)

For a single voice the timing of notes in a voice starting simultaneously
is changed in an identical fashion (the timing adjustment is “cached”).

5. For the velocity take the associated velocity emphasis value σ(pi) given
by the velocity map for the current position and the global slack in
the velocity map ψ. The velocity is first scaled by the emphasis value
σ(pi) (to accentuate beats) then randomly adjusted by slack ψ and
instrument-specific adjustment adjv and finally capped to the MIDI
velocity interval [0, 127]. Note that there is no sign change on the
random factor for the velocity.
Finally we have

v′i := min(127,max(0, vi · (σ(pi) + rv · (ψ · adjv))))

If the velocity already varies within a measure, emphasis will not be
applied, but only the slack. This means that whenever the voice already
has some nontrivial accentuation, only some random velocity variation
is applied.

Figure 15 shows the example humanization of a single note by the above
algorithm:

• Here pi is the second quarter position and we assume that there is a
definition available in the map for position “0.25”.

• The timing for a note at that position in the measure is adjusted by a
random offset in the interval of ±τ(pi) · adjt · ` around the original note
start position ti. Here τ(pi) is the position-dependent timing factor,
adjt the instrument-specific timing scaling factor and ` the duration of
a 1/32nd note.

LilypondToBVC, v1.1.1 41

7.4. CONFIGURATION OF THE PROCESSING PHASES

measure

0 0.25 0.5 0.75 1

note

position ti

velocity
vi

measure

0 0.25 0.5 0.75 1

note

ti + rt · (τ(pi) · ` · adjt)

velocity
· factor
vi · σ(pi)

velocity
variation

2 · ψ · adjv

timing
variation

2 · τ(pi) · ` · adjt

Figure 15: Automatic Humanization of a Note

• The velocity for a note at that position in the measure is adjusted by a
random offset in the interval of ±ψ·adjv around the original note velocity
multiplied by σ(pi), the position-dependent velocity factor. Here ψ is
the position-independent slack and adjv the instrument-specific velocity
scaling factor.

• Both variations use a quadratic random distribution, which is symbolized
by the colored parabolas in the diagram.

The idea behind the approach for the velocity is to accent some beats in a
measure. For example, a rock style would favour the 2 and 4, a march the 1.
Timing may be varied or even be dragged or hurried.
So altogether a single style definition is a map telling about the velocity and
the timing for positions in a measure plus information about position raster
and velocity slack.
Let us take a rock style with steady beats on two and four (so no time
variation here) and some emphasis on the second beat. In the configuration
file it might look like

humanizationStyleRockHard =
"{ 0.00: 1/0.2, 0.25: 1.15/0,"
" 0.50: 0.95/0.2, 0.75: 1.1/0,"
" OTHER: 0.9/B0.25,"
" RASTER : 0.03125, SLACK : 0.1 }"

All available humanization styles in the configuration file must have a fixed
prefix humanizationStyle in their names to be elegible.
Note that because all those definitions go anywhere in the configuration files,
humanization styles could even be song-specific. On the other hand it is
helpful to just reuse those styles, because humanization normally should not
depend on the song, but on the style of the song only.

42 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS
Variable Description Example
countInMeasureCount number of count-in measures for the song

(which defines the time before the first measure)
2

humanizedVoiceNameSet set of voice names to be humanized by random
variations of timing and velocity

"vocals, drums,
keyboard"

measureToHumaniza-
tionStyleNameMap

map of measure number to humanization
style name used from this position onward
for humanized voices; if map is empty, no
humanization is done

" 1: styleXXX, 5:
styleYYY "

humanizationStyle«name» map that tells the initial count-in measures,
the variation in timing and velocity for several
positions within a measure

see text

voiceNameToVaria-
tionFactorMap

map from voice name to a pair of decimal
factors characterizing the timing and velocity
variation for this kind of voice to be applied
additional to the humanization style

see text

Figure 16: Midi Humanization Related Configuration File Variables

The song itself defines the styles to be applied as a style map from measure
number to style starting here. Styles apply to all humanized instruments
simultaneously, it is not possible to have, for example, a reggae on drums
against a rumba on bass.
So the style map in the configuration file might look like

measureToHumanizationStyleNameMap =
"{ 1 : humanizationStyleRockHard,"
" 45 : humanizationStyleBeat}"

and tells that the “rock hard” style defined above is used at the beginning
and that the style switches to a “beat” style in measure 45.
All humanization variables discussed above are shown summarized in the
table in figure 16.

7.4.1.3 Video Generation: “silentvideo” Phase

The video from the lilypond fragment file is produced by combining rendered
images from lilypond in an intelligent fashion. “silentvideo” just renders the
video without sound, later on the “finalvideo” phase in the postprocessing
combines the silent video with the rendered audio tracks.
For the video rendering we need the characteristics of the video target, for
example, the size and resolution of the device used. Additionally there is data
as the rendering directory or the suffix used for the video files.
Because it might happen that several video renderings have similar video
target properties, the information is split: a video rendering relies on a specific
video target and gives details such as the directory where the video file goes
or the names of the displayed voices.
So we have two configuration file variables:

LilypondToBVC, v1.1.1 43

7.4. CONFIGURATION OF THE PROCESSING PHASES
Variable Description
height height of device and video (in dots)
width width of device and video (in dots)
resolution resolution of the device (in dpi)
topBottomMargin margin for video on top and bottom (in millimeters)
leftRightMargin margin for video on left and right side (in millimeters)
systemSize size of lilypond system (in lilypond units, cf. lilypond system size)
scalingFactor the factor by which width and height are multiplied for lilypond image

rendering to be downscaled accordingly by the video renderer (an
integer); this is used for antialiasing

frameRate the frame rate of the video (in frames per second)
ffmpegPresetName a specific ffmpeg preset for the current video target device (a string, a

missing value defaults to a baseline level 3 profile)
mediaType the Quicktime media type of the video (for example "TV Show")
subtitleColor color of overlayed subtitle in final video for measure display (as integer

for 16bit alpha/red/green/blue)
subtitleFontSize height of subtitle (in pixels)
subtitlesAreHardcoded flag to tell whether subtitles are burnt into the video or are available

as a separate subtitle track

Figure 17: Parameters for Video Target in videoTargetMap Variable

VIDEO TARGET

width

leftRightMargin

heighttopBottomMargin

resolution

Figure 18: Target Parameters for Video Generation

• videoTargetMap provides video device dependent properties of notation
videos, but also some device independent parameters (like, for example,
the subtitle font size).
This variable is a map from “target name” to a target descriptor. A
target descriptor is itself a map with the several fields as shown in
figure 17. Some of the variables like resolution, height or width describe
“hardware” parameters (because normally the video should have the
appropriate size), others like topBottomMargin the layout of the video.
Figure 18 shows how some of the parameters for video generation are
connected to the physical output device and the video target in general.

• videoFileKindMap provides further details on the rendering (like, for
example, the list of voices to be shown).

44 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS
Variable Description
target name of associated video target that is used when rendering video files

of that kind
directoryPath directory where final videos for that target go
fileNameSuffix suffix to be used for the video file names for that target
voiceNameList list of voice names to be rendered in order to audio files via the phase

“silentvideo”

Figure 19: Parameters for Video File Kind in videoFileKindMap Variable

This variable is a map from a “video file kind name” to a video file kind
descriptor. A video file kind descriptor is itself a map with the several
fields as shown in figure 19. There is information about the target file
given by videoDirectoryPath and fileNameSuffix and the list of the voices
in those video files.

So a video target definition for a single midrange tablet could look like this:
videoTargetMap =
"{"

" tablet:"
" { fileNameSuffix: ’-i-v’,"
" targetVideoDirectoryPath: ’/pathto/tablet’,"
" resolution: 132,"
" height: 1024,"
" width: 768,"
" topBottomMargin: 5,"
" leftRightMargin: 10,"
" systemSize: 25,"
" ffmpegPresetName: ’mydevice’,"
" scalingFactor: 4,"
" frameRate: 10,"
" mediaType: ’TV Show’,"
" subtitleColor: 2281766911,"
" subtitleFontSize: 20,"
" subtitlesAreHardcoded: false }"

"}"

The above defines a target called “tablet” having a video with 1024x768 pixels,
a resolution of 132dpi, a margin of 5mm at top and bottom, a margin of
10mm left and right, slightly enlarged systems (lilypond standard system size
is 20), a yellow semi-transparent subtitle with size 20 pixels. The video is
encoded by ffmpeg with an ffmpeg preset called “mydevice” at a frame rate
of 10fps (which is ample for a more or less static video and ensures that the
time resolution for page turning and subtitle changes is 0.1s) and lilypond
produces images 4 times wider and higher than needed to be downscaled by
the video renderer for better video image quality. The quicktime media type
is “TV Show” and subtitles in the final video are on a separate track.
Based on the video target definition given above a video file kind definition
could look like this:

LilypondToBVC, v1.1.1 45

7.4. CONFIGURATION OF THE PROCESSING PHASES
Variable Description Example
videoTargetMap mapping from video target name to video target

descriptor with several parameters for specific
video file generation

see text

videoFileKindMap mapping from video file kind name to video
file kind descriptor with several parameters for
specific video file generation referencing a video
target that gives overall video parameters

see text

Figure 20: Video Configuration File Variables

videoFileKindMap =
"{"
" tabletVocGtr:"

" { target: tablet,"
" fileNameSuffix: ’-i-v’,"
" directoryPath: ’/pathto/xyz’,"
" voiceNameList: ’vocals, guitar’ }"

"}"

The above defines a single file kind for output. The target characteristics are
those of a “tablet”, those videos contain a score with vocals plus guitar and
all the files have suffix ’-i-v’ (followed by ’.mp4’, of course).
So the silent video generation produces an MP4 video file for each video
file kind specified. Each video displays a score with all voices specified in
the configuration variable videoFileKind.voiceNameList with automatic page
turning at the right points in time. That video is stored in a single file in the
directory given by videoFileKind.directoryPath with name fileNamePrefix plus
"_noaudio" and the videoFileKind.fileNameSuffix from the file kind specification
and extension “.mp4”.
Additionally a subtitle file with all measure numbers is generated in the
directory given by targetDirectoryPath with name fileNamePrefix plus "_subtitle"
and extension “.srt”.
This means that a song with file name prefix “wonderful_song” and a target
file name suffix “-tablet” leads to a silent video file of “wonderful_song_no-
audio-tablet.mp4” and a subtitle file of “wonderful_song_subtitle.srt”. Note
that the subtitle file is independent of the video target, because it only gives
the time intervals of each measure and those do not depend on the video.
If you really want to fiddle with the video generation, the video target name
is provided as the lilypond macro ltbvcVideoTargetName and has the values
specified as keys in the list videoTargetMap. You can use this for conditional
processing, video layout changes etc., because the file inclusion into the
boilerplate file is done at a very late position. Be warned that the whole video
generation might fail, because the generator assumes that it has to handle a
simple-structured lilypond include file.
There is only a single configuration file variable for video as shown in figure 20
that defines all video targets that are used in the generation.

46 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

Because the algorithm for finding the page breaks in the video relies on data
scraping of a postscript file produced by lilypond, some restrictions apply for
the notation videos: the bar numbers are activated for the line starts only
and those bar numbers as well as the bar lines will be black.

7.4.2 Postprocessing Phases

All postprocessing phases rely on the configuration file, the generated midi
file and the silent videos; the lilypond fragment file is not used any longer.
Figure 21 shows the connection between the inputs and the outputs for the
phases. Only the configuration file serves as manual input into the processing
chain, the other files are generated from files coming from the preprocessing
phases in section 7.4.1.
The following processing is done:

rawaudio:
the midi file is rendered via fluidsynth and sound fonts into plain audio
files for each relevant audio voice,

refinedaudio:
based on voice-specific sound definitions each plain audio file is refined
typically by sox processing for each relevant audio voice into a refined
audio file,

mix:
mixed and mastered versions of the voice audio files are generated,
mastered and grouped into audio groups from the configuration file (for
later selection as audio track) typically by sox , and

finalvideo:
the still videos and the subtitle file produced from the lilypond fragment
file are combined with the grouped audio files to video files with selectable
audio tracks and either selectable or burnt in

7.4.2.1 Audio Generation: “rawaudio” and “refinedaudio” Phase

Each voice in audioVoiceNameSet is rendered to audio files via the phases
“rawaudio” and “refinedaudio”. Central input is the humanized midi file from
section 7.4.1.2. The audioVoiceNameSet variable is an (unordered) list of
voices names that are a subset of those occuring in the midiVoiceNameList.

LilypondToBVC, v1.1.1 47

7.4. CONFIGURATION OF THE PROCESSING PHASES

configuration
file

midi
file

silent
video
files

subtitle
text
file

rawaudio

refinedaudio

mix

finalvideo

raw
audio
files

refined
audio
files

mix
audio
files

video
files

Figure 21: Information Flow for the Postprocessing Phases

“rawaudio” Phase

The “rawaudio” phase simply takes each voice given in the audio voice
name set and converts the humanized midi stream into a wave file using
midiToWavRenderingCommandLine typically using the fluidsynth program.
This command line relies on soundfont files specified in that string. The name
order of the soundfonts (of type sf2 or sf3) give the order of matching a given
midi instrument number: the first match is accepted.
Note that the midi volume is not used by this phase: any midi volume changes
are suppressed and only the velocity is used.
For each voice the resulting wave file after generation is stored in directory
tempAudioDirectoryPath as an intermediate file for further processing. The
naming convention is to use the voice name with a “.wav” extension (for
example, “bass.wav” stores the result for a bass voice).

“refinedaudio” Phase

Normally the sounds produced by soundfonts need some beefing up. This is
done in the “refinedaudio” phase where the audio file from the previous phase
are postprocessed by the sound processor sox.
sox is a commandline program where chains of effects are applied to audio
input files producing audio output files. For example, the command

sox input.wav output.wav highpass 80 2q reverb 50

48 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

applies a double-pole highpass filter at 80Hz with a width of 2q followed by a
medium reverb to file input.wav and stores the result in file output.wav.
sox has a lot of those filters and all those can be used for sound shaping. In
this document we cannot go into details, but a thorough information can be
found in the sox documentation [SOX].
Of course, it is also possible to use another command-line audio processor by
setting the variable audioProcessor appropriately and adapting the refinement
commands for the voices for the tool used. But this is an expert solution
beyond the scope of this documentation; hence you are on your own. . .
Each audio voice is transformed depending on voice-specific settings in the
configuration file. Because the input file comes from the previous “rawaudio”
phase (for example “bass.wav”) and the output file name for the “refinedaudio”
phase is also well-defined (for example as “bass-processed.wav”), we only have
to specify the sox effects for the transformation itself.
Those effects depend on the voice/instrument and on the style of the playing
and this is combined in a so-called sound style variable.
The name of sound style variables is constructed as follows: the prefix
“soundStyle” is followed by the voice name with initial caps (for example
“Bass”) and by the style variant — a single word — capitalized as suffix
(“Hard”). When following this convention, a hard bass has a sound style
name “soundStyleBassHard”.
Very often a sound style is not defined on its own, but relies on other definitions.
Let us assume we have some standard postprocessing for a bass. This consists
of a normalization with 24dB headroom (to prevent distortion in the following
steps), an enhancement of the 150Hz band by 10dB and a 6dB cutoff of high
frequencies above 600Hz. In the configuration file this could look as follows:

_bassPostprocess =
" norm -24"
" equalizer 150 4o +10"
" lowpass -2 600 1.2o"

Based on that definition above the actual sound style can be defined as follows
(referencing the definition by name):

soundStyleBassHard =
" highpass -2 40"
" lowpass -2 2k"
" norm -6 "
" tee"
" overdrive 12 0 "
_bassPostprocess

The sound style definition uses a low- and highpass followed by an overdrive
and the final equalization. Note that the name is not in double quotes: this
distinguishes it from plain text (as explained in section 5.2).
There are four things to note:

LilypondToBVC, v1.1.1 49

7.4. CONFIGURATION OF THE PROCESSING PHASES

1. As demonstrated sound styles may rely on other definitions; so you can
build a hierarchy of effect chains.

2. The special effect “tee” is not part of sox. When debugging is active, this
“effect” writes out the audio data available at that position in the chain
into a temporary file in the target audio directory called “«voice»X.wav”
where X stands for a hex number. Multiple “tee” occurrences are
possible, so you can do an audio debugging of your chain.

3. Normally processing is purely sequential with a single signal path (which
is standard sox behaviour). But it is possible to add parallel signal
paths and to combine them (e.g. for New York parallel compression
etc.). See below. . .

4. Reverb may be specified in the chain or — for really simple applications —
is automatically applied with default parameters and an intensity defined
by the configuration variable reverbLevelList to the final audio.
Note that this feature is only available when the sox audio processor is
used.
If this is not the case or the simple reverb is not good enough and
specific settings are needed, you can set the reverb level for some voice
to 0 and add a more elaborate reverb effect to the sound style. If you
leave off the reverbLevelList altogether, all voices have no automatic
reverb applied.

So how do we apply the specific sound style and some reverb to our bass?
The settings in the song configuration file are as follows

voiceNameList = "..., bass, ..."
reverbLevelList = "..., 0.4, ..."
soundVariantList = "..., HARD, ..."

As above reverbLevelList and soundVariantList are lists with elements in the
same order as voiceNameList. There is a special sound variant called copy
that just takes the raw audio file and applies the specified reverb to it. This
is also the default, when you do not specify a soundVariantList at all.
The sound variant may be given in any letter case, because it is automatically
adapted for the selection of the sound style. Combined with the above sound
style this leads to the following sox effects — when debugging is active —
(note the effect line split at the tee effect and the added final reverb with 100·
reverbLevel):

sox bass.wav bassA.wav highpass -2 40 lowpass -2 2k norm -6
sox bassA.wav bass-processed.wav overdrive 12 0 norm -24

equalizer 150 4o +10 lowpass -2 600 1.2o reverb 40

In general, sound styles can be defined per song or globally. I prefer the latter,
because I use a few bread-and-butter sounds per instrument and adapt them

50 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

only by using different midi instruments, audio volumes and reverb levels in
the voice configuration; hence the sound styles itself are not adapted. But in
principle you can fine-tune the voice sounds per song, which I find tedious,
but occasionally do that for fine-tuning.
For the bread-and-butter sound approach, it is helpful to use a simple set
of variant names that apply to all voices, for example, “STD” (for a normal
sound), “HARD” (for some heavier sound), “EXTREME” (for an ultra-hard
sound) etc.
So finally each audio voice has its processed wav version in targetDirectoryPath
called “«voice»-processed.wav” for later mixdown.

Parallel Paths

Parallel signal paths cannot be handled directly by sox and are emulated by
LilypondToBandVideoConverter. They can be specified as follows:

• Parallel chains are specified by using chain separators in the list of
effects using the character token “;” (which can be redefined by setting
the variable audioProcessor.chainSeparator).

• For each chain its (single) source and target are each given by an
identifier that is immediately preceeded or followed by “->” (which
can be redefined by setting audioProcessor.redirector). So a chain target
might be specified as “->xxx”, a chain source might be specified as
“yyy->”. When no identifier is given for a source, the raw audio file is
used.
Note that, of course, the name of a chain source must occur as a chain
target somewhere before.
The first chain has “->” (the raw audio file) as its implicit chain source,
the last chain has the refined audio file as its implicit target.

• A chain may consist of a special “mix” effect that does a weighted mix
of several sources into a single target. E.g. the chain

mix 1.0 -> 0.3 A-> 0.5 B-> ->C

mixes 100% of the raw audio file, 30% of A and 50% of B into C.
Very often, the last chain is a mix of several sources into the refined
audio file as the target.
A “mix” effect must not have an embedded “tee”.

As an example let us enhance a bass part by adding a copy pitched down
by an octave and having some parallel compression added. We assume that
the bass is pre-processed by “soundStyleBassStd” and we simple add the
postprocessing as follows:

LilypondToBVC, v1.1.1 51

7.4. CONFIGURATION OF THE PROCESSING PHASES

soundStyleBassStd ->A
; A-> pitch -1200 ->B
; mix 1.0 A-> 0.75 B-> ->C
; C-> compand 0.04,0.5 6:-25,-20,-5 -6 -90 0.02 ->D
; mix 1.0 C-> 0.4 D->

“A” contains the preprocessed audio, “B” the pitched down version, “C” the
enriched bass sound, “D” the compressed version of it and the combined audio
goes to the refined audio file.

Special Tracks

Another helpful feature of the “refinedaudio” phase is the ability to introduce
other audio files into the processing. There are two cases:

1. One can override a processed track by some external audio file.

2. A parallel track in a file not related to some voice can be added.

So both cases involve external audio files to be added.
The first case is common when you want to replace a track by a real recording.
For example, the vocals with midi beeps could be enhanced by having a real
singer sing the track.
All those tracks are mentioned and overridden in the configuration variable
voiceNameToOverrideFileNameMap. As its name tells, it maps voice names to
file names.

voiceNameToOverrideFileNameMap =
"{ vocals : ’vocals.flac’,"

"bass : ’mybass.wav’ }"

This approach replaces the processed voice files by the contents of the files
given in the map. File types supported are all those supported by sox as
input. Note that the overriding file has to have the length of a refined voice
file, that means, it also has to contain material for the count-in measures.
In the second case no specific voice track is replaced, but some parallel track
is introduced. For example, this could be used for lead-in text or audience
audio.
In principle this could be handled by introducing an artificial voice only used
for audio, but for convenience there is another variable called parallelTrack for
a single additional track. It contains comma-separated data for an audio file
name, a volume factor in decibels and offset relative to the start of the song
in seconds as follows:

parallelTrack = " parallelFile.wav, -2, 2.8"

Note that it is only possible to have a single parallel track.

52 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS
Variable Description Example
audioVoiceNameSet set of voice names to be rendered to audio files

via the phases “rawaudio” and “refinedaudio”
based on voice representations in humanized
midi file

"vocals, drums, bass"

parallelTrack specification of an audio file name, a volume
factor (in decibels) and an offset (in seconds)
relative to the start of the song for an audio
track to be added to all audio submixes (e.g.
for pre-rendered audio)

"prerendered.wav, 0,
2.5"

reverbLevelList list of reverb levels (as decimal values typically
between 0 and 1) for the voices aligned with
the list voiceNameList; those reverb levels are
applied to each voice as the final refinement
operation (when the sox audio processor is
used)

"0.1, 1.1, 0.5, 0.0"

soundStyle«Voice»-
«Variant»

sequence of refinement effects (typically from
sox) to be applied on raw audio file when this
style is selected for «voice»

see text

soundVariantList list of variant names for the sound styles of
the voices aligned with the list voiceName;
those style variant names are combined into a
complete style name to be applied during audio
refinement

"COPY, EXTREME,
STD, HARD"

voiceNameToOverride-
FileNameMap

map from voice name to name of file overriding
that voice in the processed audio files and in
the final mixdown audio files and in the target
videos

see text

Figure 22: Audio Configuration File Variables

Summary of Audio Configuration Variables

Figure 22 shows all the configuration variables described for the “rawaudio”
and “refinedaudio” phases.

7.4.2.2 Final Audio Generation: “mix” Phase

The “mix” phase combines the refined audio files into one or more audio file
with all voices and in aac audio format.
Audio levels and pan positions of the individual voices, mastering effects and
a final amplification factor are specified in the configuration. Hence the audio
voices are mixed with those levels and to the given pan positions, have the
mastering audio processing applied and finally are amplified by the given
factor before the result is compressed into an AAC file.
When the variable mixingCommandLine does not specify a “pan” placeholder,
panning is done internally. This algorithm does a traditional balancing of the
stereo channels. That means, when the pan value is less than zero the left
channel is unchanged, while the right channel is linearly attenuated and vice
versa for a positive pan value. So the amplification factors are

LilypondToBVC, v1.1.1 53

7.4. CONFIGURATION OF THE PROCESSING PHASES

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
left right

Pan Position

A
m

p
li
fi
ca

ti
o
n

F
a
ct

o
r

Figure 23: Default Panning Function for Left and Right Channels

amplification factorleft =

{
1 if panValue < 0

1− panValue if panValue ≥ 0

amplification factorright =

{
1 + panValue if panValue < 0

1 if panValue ≥ 0

Figure 23 shows how this default panning function affects the left and right
channel of a stereo signal.
After panning and mixing the target file is stored in the audioTargetDirectoryPath
with its name constructed as the concatenation of targetFileNamePrefix,
fileNamePrefix and suffix “-ALL.m4a”.
But: you do not want a backing track with all voices of your arrangement,
but the ones to be played live should be missing and ideally you should be
able to switch them on and off!
Again we specify this by several mapping variables in the configuration file.
The first variable, audioGroupToVoicesMap, specifies a partitioning of the
audio voices into groups where some freely selectable audio group names are
mapped onto sets of audio voice names.

audioGroupToVoicesMap = "{"
" base : bass/keyboard/keyboardSimple/strings,"
" voc : vocals/bgVocals,"
" gtr : guitar,"
" drm : drums/percussion"

"}"

The voice names in the song should be a subset of the voice names mentioned
in the audio group map; missing or extraneous voice names will simply be
ignored. When defining those settings globally for a group of songs, ensure

54 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS
Variable Description
audioGroupList slash-separated list of audio group names occuring as keys in

audioGroupToVoicesMap
audioFileTemplate template string defining how the audio file name of the target audio

file for given list of voices is constructed from the plain audio file name
(indicated by a dollar-sign)

songNameTemplate template string defining how the song name for given list of voices is
constructed from the plain song name (indicated by a dollar-sign)

albumName name of the album of the audio file for given list of voices (where an
embedded dollar-sign is replaced by the global album name)

description description for audio track within target video (typically unsupported
by video players)

languageCode ISO language code for audio track within target video (typically
supported by video players)

voiceNameTo-
MixSettingMap

mapping from voice names to volume factors and pan positions used
for mixing the refined audio files into cumulated audio file for given
track with both elements separated by a slash; the factors are decimal
values in decibels (where 0.0 means that the refined voice file is taken
without change with a conversion of 10dBValue/20), the pan position is
given as a decimal value between 0 and 1 with suffix “R” or “L” (for
right/left) or the character “C” (for center)

masteringEffectList list of audio track specific refinement effects to be applied after voice
mixdown

amplificationLevel decimal value in decibels telling the volume change to be applied to a
track audio file; this is helpful to adjust volume levels of different songs
within an album

Figure 24: Parameters for Audio Track in audioTrackList Variable

that typical voice name variants (like, for example, “keyboardSimple”) are
included in one of the lists; otherwise those voices will be missing in the mix
files and videos.
The second variable, audioTrackList, specifies all tracks that will later occur
as tracks in the video, but also that are rendered as compressed audio files.
Each track is described by a track descriptor with several fields as shown in
figure 24. It consists of a list of the several groups to be combined, templates
for the audio file and the song name, an album name, and some description
and a language code for the video track. Also there is some audio information
about the specific volume levels for each voice, the mastering effects for this
voice and the final amplification level.
“Language code” sounds a bit strange: why do you need that?
Unfortunately not many video players support audio track description texts
for MP4 videos, but most of them allow to select audio tracks by “language”.
So the audio tracks in the final video are tagged with both description and
language code for some kind of identification. Of course, the selected languages
are quite arbitrary, because you typically do not find a connection between a
list of audio voice names and some language name. So you must be creative. . .
The final stage of audio processing is described by several attributes in the
entry for a single audio track within the list of tracks: amplificationLevel,
voiceNameToMixSettingMap and masteringEffectList. Figure 25 illustrates how
the audio voice files from the “refinedaudio” phase are combined into the

LilypondToBVC, v1.1.1 55

7.4. CONFIGURATION OF THE PROCESSING PHASES

audio for voice1

audio for voice2

audio for voicen

...

m
ix

in
g A

b
y

v
o
i
c
e
N
a
m
e
T
o
M
i
x
S
e
t
t
i
n
g
s
M
a
p

m
a
st

er
in

g
A

v
ia

m
a
s
t
e
r
i
n
g
C
o
m
m
a
n
d
L
i
s
t

am
p

li
fi

ca
ti

on
A

b
y

a
m
p
l
i
f
i
c
a
t
i
o
n
L
e
v
e
l

m
ix

in
g K

m
a
st

er
in

g
K

am
p

li
fi

ca
ti

on
K

...

audio for trackA

audio for trackK

...

Figure 25: Audio Flow during Track Mixdown

several audio tracks by the mix phase. In principle the mix levels per voice
can be individual per audio track as well as its mastering effects and its final
level, but of course there is no adaptation of the voice files done: they are
taken unchanged from the previous phase.
Nevertheless you can also define global settings for all of those and reference
them in the audio track list variable. Especially the mix settings map may
be global, because the track specific mapping will only use the levels of those
voices defined in its associated audio groups.
In the configuration file we can define auxiliary variables for the audio
processing:

_voiceNameToMixSettingMap = "{"
" bass : -6, keyboard : -10.5, keyboardSimple : -14,"
" strings : -2, vocals : 0, bgVocals : -1,"
" guitar : -4.5, drums : 1.6, percussion : 0"

"}"
_masteringEffectList = ""
_amplificationLevel = -1.2

Note that an individual mix setting may also contain a pan specification
(separated by a slash). Hence “bass : -6/0.3R” would also be okay and
overrides the pan specification given as a list with variable panPositionList.
For audio tracks we also define an auxiliary variable each to make thing more
comprehensible.

56 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

This is the track with all voices:
_audioTrackWithAllVoices =
"all : { audioGroupList : base/voc/gtr/drm,"
" audioFileTemplate : ’$’,"
" songNameTemplate : ’$ [ALL]’,"
" albumName : ’Best’,"
" description : ’all voices’,"
" languageCode : eng,"
" voiceNameToMixSettingMap : "_voiceNameToMixSettingMap","
" masteringEffectList : "_masteringEffectList","
" amplificationLevel : "_amplificationLevel" }"

This is the track with all voices except for vocals:
_audioTrackNoVocals =
"novoc : { audioGroupList : base/gtr/drm,"
" audioFileTemplate : ’$-novoc’,"
" songNameTemplate : ’$ [-V]’,"
" albumName : ’Best [no vocals]’,"
" description : ’no vocals’,"
" languageCode : deu,"
" voiceNameToMixSettingMap : "_voiceNameToMixSettingMap","
" masteringEffectList : "_masteringEffectList","
" amplificationLevel : "_amplificationLevel"}"

Both of them are used in the audio track list definition.
audioTrackList = "{"
_audioTrackWithAllVoices ","
_audioTrackWithNoVocals ","
...

"}"

So any number of audio tracks is possible. In the example above we have two
(if you ignore the ellipsis!). If we assume that the target file name prefix is
“test-” and that the song has file name prefix “wonderful_song” and is called
“Wonderful Song”, the files have the following properties:

1. The first track contains all voices, it is stored in “test-wonderful_song.m4a”
with title “Wonderful Song [ALL]” in album “Best” and it has the
description “all voices” and an English language tag.

2. The second track contains all voices except for vocals and bg vocals, it is
stored in “test-wonderful_song-novoc.m4a” with title “Wonderful Song [-
V]” in album “Best [no vocals]” and it has the description “no vocals”
and a German language tag.

Figure 26 shows the variables introduced in this section in summary.

7.4.2.3 Video Generation: “finalvideo” Phase

The still videos from the lilypond fragment file contain rendered score images
from lilypond with appropriate display times. The “finalvideo” phase combines
those silent videos with the subtitle file and the rendered audio tracks from
above.

LilypondToBVC, v1.1.1 57

7.5. SUMMARY
Variable Description Example
audioGroupToVoicesMap mapping from freely defined voice group names

to names of voices contained in that group
described by a slash-separated name list

see text

audioTargetDirectoryPath path for the final AAC audio files with subsets
of rendered and refined audio tracks

"/pathto/XXX"

audioTrackList list of track descriptors defining groups of audio
groups to be put on some track with naming
templates for audio file, song and album name
and a track description and language

see text

Figure 26: Mix Configuration File Variables

There are no big surprises here: for every video file kind in the list given by
videoFileKindMap a video is built with the following parts:

• the file-kind-specific still video (without sound) with the appropriate
extension fileNameSuffix for the given target name finally located in
targetDirectoryPath,

• the subtitle file located in targetDirectoryPath, and

• the compressed audio files generated by the “mix” phase and located in
audioTargetDirectoryPath

If subtitlesAreHardcoded is set for the target, the subtitle is burnt into the
video with specified subtitleFontSize and subtitleColor. Otherwise the subtitle
is put into the target video as a subtitle track (to be switched on or off). In
the latter case, the rendering of the subtitle is done by the video player.
The name of the combined video is constructed from several variables as
follows: the targetFileNamePrefix is concatenated with fileNamePrefix for the
song, a minus character, the video file kind name suffix and “.mp4” extension.
It is stored in the directory given by videoFileKind.directoryPath.
For example, by those conventions the “Wonderful Song” for the “tablet” has
name “test-wonderful_song-tablet.mp4” and is stored in the directory given
in the target definition.

7.5 Summary

We’re done! We have achieved the following results from a lilypond fragment
file with song voices and a song configuration file:

• notation extracts of selected voices as PDF files,

• a notation score of selected voices as a PDF file,

58 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

• a MIDI file with selected voices slightly humanized,

• several single voice audio files,

• audio file mixes combining voices into groups, and

• video files for different target devices containing selectable audio tracks
and possibly a selectable subtitle with measure indication

LilypondToBVC, v1.1.1 59

7.5. SUMMARY

60 Dr. Thomas Tensi

CHAPTER 8. EXAMPLE

8. Example
As the example we take a twelve-bar blues in E with two verses and some
intro and outro. Note that this song is just an example, its musical merit is
limited.
In the following we shall work with two files:

• a song-specific configuration file containing the settings for the song
(like, for example, the title of the song or the voice names) plus some
overall settings (like for example, the path to programs), and

• a lilypond music file containing the music fragments used by the
generator.

Often the single configuration file is split into a song-specific fragment
including overall settings files thus keeping global and song-specific stuff
separate. For the example we only use a single configuration file and rely on
default settings.
In the following we explain the lilypond fragment file and the configuration
file in pieces; the complete versions are in the distribution.

8.1 Example Lilypond Fragment File

The lilypond fragment file starts with the inclusion of the note name language
file (using e.g. “ef” for e[or “cs” for c]); additionally the first musical
definition is the key and time designation of the song: it is in e major and
uses common time.

\include "english.ly"
keyAndTime = { \key e \major \time 4/4 }

The chords are those of a plain blues with a very simple intro and outro.
Note that the chords differ for extract and other notation renderings: for the
extract and score we use a volta repeat for the verses, hence in that case all
verse lyrics are stacked vertically and we only have one pass of the verse.
All chords are generic: there is no distinction by instrument.

chordsIntro = \chordmode { b1*2 | }
chordsOutro = \chordmode { e1*2 | b2 a2 | e1 }
chordsVerse = \chordmode { e1*4 | a1*2 e1*2 | b1 a1 e1*2 }
allChords = {
\chordsIntro \repeat unfold 2 { \chordsVerse }
\chordsOutro

}
chordsExtract = { \chordsIntro \chordsVerse \chordsOutro }
chordsScore = { \chordsExtract }

LilypondToBVC, v1.1.1 61

8.1. EXAMPLE LILYPOND FRAGMENT FILE

b1*2 means that it is a B-major chord with a duration of a whole note (1/1)
and this goes for two measures (“*2”). Analogously there is an a2; this is an
A-major chord with duration of a half note (1/2). The chords are repeated
twice (“\repeat unfold 2”) and preceeded by the intro and followed by the
outro.
The vocals are simple with a pickup measure. Because we want to keep the
structure consistent across the voices we have to use two alternate endings
for the vocalsExtract and vocalsScore.

vocTransition = \relative c’ { r4 b’8 as a g e d | }
vocVersePrefix = \relative c’ {

e2 r | r8 e e d e d b a |
b2 r | r4 e8 d e g a g | a8 g4. r2 | r4 a8 g a e e d |
e2 r | r1 | b’4. a2 g8 | a4. g4 d8 d e~ | e2 r |

}
vocIntro = { r1 \vocTransition }
vocVerse = { \vocVersePrefix \vocTransition }
vocals = { \vocIntro \vocVerse \vocVersePrefix R1*5 }
vocalsExtract = {

\vocIntro
\repeat volta 2 { \vocVersePrefix }
\alternative {

{ \vocTransition }{ R1 }
}
R1*4

}
vocalsScore = { \vocalsExtract }

The lyrics of the demo song are really bad. Nevertheless note the lilypond
separation for the syllables and the stanza marks. For the video notation the
lyrics are serialized. Because of the pickup measure, the lyrics have to be
juggled around.

vocalsLyricsBPrefix = \lyricmode {
\set stanza = #"2. " Don’t you know I’ll go for }

vocalsLyricsBSuffix = \lyricmode {
good, be- cause you’ve ne- ver un- der- stood,
that I’m bound to leave this quar- ter,
walk a- long to no- ones home:
go down to no- where in the end. }

vocalsLyricsA = \lyricmode {
\set stanza = #"1. "
Fee- ling lone- ly now I’m gone,
it seems so hard I’ll stay a- lone,
but that way I have to go now,
down the road to no- where town:
go down to no- where in the end.
\vocalsLyricsBPrefix }

vocalsLyricsB = \lyricmode {
_ _ _ _ _ _ \vocalsLyricsBSuffix }

vocalsLyrics = { \vocalsLyricsA \vocalsLyricsBSuffix }
vocalsLyricsVideo = { \vocalsLyrics }

The bass simply hammers out eighth notes. As before there is an extract and
a score version with volta repeats and an unfolded version for the rest (for
MIDI and the videos).

62 Dr. Thomas Tensi

CHAPTER 8. EXAMPLE

bsTonPhrase = \relative c, { \repeat unfold 7 { e,8 } fs8 }
bsSubDPhrase = \relative c, { \repeat unfold 7 { a8 } gs8 }
bsDomPhrase = \relative c, { \repeat unfold 7 { b8 } cs8 }
bsDoubleTonPhrase = { \repeat percent 2 { \bsTonPhrase } }
bsOutroPhrase = \relative c, { b8 b b b a a b a | e1 | }
bsIntro = { \repeat percent 2 { \bsDomPhrase } }
bsOutro = { \bsDoubleTonPhrase \bsOutroPhrase }
bsVersePrefix = {
\repeat percent 4 { \bsTonPhrase }
\bsSubDPhrase \bsSubDPhrase \bsDoubleTonPhrase
\bsDomPhrase \bsSubDPhrase \bsTonPhrase

}
bsVerse = { \bsVersePrefix \bsTonPhrase }

bass = { \bsIntro \bsVerse \bsVerse \bsOutro }
bassExtract = {
\bsIntro
\repeat volta 2 { \bsVersePrefix }
\alternative {

{\bsTonPhrase} {\bsTonPhrase}
}
\bsOutro

}
bassScore = { \bassExtract }

The guitar plays arpeggios. As can be seen here, very often the lilypond
macro structure is similar for different voices.

gtrTonPhrase = \relative c { e,8 b’ fs’ b, b’ fs b, fs }
gtrSubDPhrase = \relative c { a8 e’ b’ e, e’ b e, b }
gtrDomPhrase = \relative c { b8 fs’ cs’ fs, fs’ cs fs, cs }
gtrDoubleTonPhrase = { \repeat percent 2 { \gtrTonPhrase } }
gtrOutroPhrase = \relative c { b4 fs’ a, e | <e b’>1 | }
gtrIntro = { \repeat percent 2 { \gtrDomPhrase } }
gtrOutro = { \gtrDoubleTonPhrase | \gtrOutroPhrase }
gtrVersePrefix = {
\repeat percent 4 { \gtrTonPhrase }
\gtrSubDPhrase \gtrSubDPhrase \gtrDoubleTonPhrase
\gtrDomPhrase \gtrSubDPhrase \gtrTonPhrase

}
gtrVerse = { \gtrVersePrefix \gtrTonPhrase }
guitar = { \gtrIntro \gtrVerse \gtrVerse \gtrOutro }
guitarExtract = {
\gtrIntro
\repeat volta 2 { \gtrVersePrefix }
\alternative {

{\gtrTonPhrase} {\gtrTonPhrase}
}
\gtrOutro

}
guitarScore = { \guitarExtract }

Finally the drums do some monotonic blues accompaniment. We have to
use the myDrums name here, because drums is a predefined name in lilypond.
There is no preprocessing of the lilypond fragment file that could fix this:
the fragment is just included into some boilerplate code, hence it must be
conformant to the lilypond syntax.

LilypondToBVC, v1.1.1 63

8.2. EXAMPLE CONFIGURATION FILE

drmPhrase = \drummode { <bd hhc>8 hhc <sn hhc> hhc }
drmOstinato = { \repeat unfold 2 { \drmPhrase } }
drmFill = \drummode { \drmPhrase tomh16 tomh tommh tommh

toml toml tomfl tomfl }
drmIntro = { \drmOstinato \drmFill }
drmOutro = \drummode {

\repeat percent 6 { \drmPhrase } | <sn cymc>1 | }
drmVersePrefix = {

\repeat percent 3 { \drmOstinato } \drmFill
\repeat percent 2 { \drmOstinato \drmFill }
\repeat percent 3 { \drmOstinato }

}
drmVerse = { \drmVersePrefix \drmFill }

myDrums = { \drmIntro \drmVerse \drmVerse \drmOutro }
myDrumsExtract = { \drmIntro

\repeat volta 2 {\drmVersePrefix}
\alternative {
{\drmFill} {\drmFill}
}
\drmOutro }

myDrumsScore = { \myDrumsExtract }

So we are done with the lilypond fragment file. What we have defined are

• the song key and time,

• the chords,

• the vocal lyrics, and

• voices for vocals, bass, guitar and drums.

All those definitions take care that the notations shall differ in our case for
extracts/score and other notation renderings.

8.2 Example Configuration File

Our configuration file contains global settings as well as song-specific settings.
As a convention we prefix auxiliary variable with an underscore to distinguish
them from the real configuration variables.

8.2.1 Overall Configuration - Part 1

If the programs are in special locations one has to define the specific paths for
them. When they are however reachable by the system’s program path (which
is normally the case) nothing has to be done. But this is not completely
true, because midiToWavRenderingCommandLine needs special handling: this
is necessary because for fluidsyth as WAV renderer we have to specify the
soundfont location (via a temporary variable).

64 Dr. Thomas Tensi

CHAPTER 8. EXAMPLE

_soundFonts = "/usr/local/midi/soundfonts/FluidR3_GM.SF2"
midiToWavRenderingCommandLine =

"fluidsynth -n -i -g 1 -R 0"
" -F ${outfile} " _soundFonts " ${infile}"

Other global settings would define paths for files or directories, but for most
settings we rely on the defaults. But we want the temporary lilypond file to
go to “temp” (and have some parts in the name for phase and voice name),
the generated PDF and MIDI files to go to subdirectory “generated” of the
current directory and audio into “mediafiles”). Note that those directories
have to be created manually before running the program, since it checks for
their existence before doing something.

tempLilypondFilePath = "./temp/temp_${phase}_${voiceName}.ly"
intermediateFileDirectoryPath = "./temp"
targetDirectoryPath = "./generated"
tempAudioDirectoryPath = "./mediafiles"

Also the default notation settings are fine: they ensure that drums use the
drum staff, that the clefs for bass and guitar have the voices transposed
by an octave up resp. down and that drums have no clef at all. Chords
shall be shown for all extracts of melodic instruments and on the top voice
“vocals” in the score and video. If this were not okay, we’d have to adapt the
variables phaseAndVoiceNameToStaffListMap, phaseAndVoiceNameToClefMap
and voiceNameToChordsMap from section 7.4.1.1 and figure 9.
But the humanization for the MIDI and audio files must be defined for this
song. It is quite simple: we use a rock groove with tight hits on two and
four and slight timing variations for other positions within a measure. Those
timing variations are very subtle as the maximum variation specified is 0.3
1/32nd notes.
As the velocity variation there is a hard accent on two and a slighter accent
on four while the other positions are much weaker.
We have not defined individual variation factors per instrument; hence all
humanized instruments have similar variations in timing and velocity.

countInMeasureCount = 2
humanizationStyleRockHard =
"{ 0.00: 0.95/A0.2, 0.25: 1.15/0,"
" 0.50: 0.98/0.3, 0.75: 1.1/0,"
" OTHER: 0.85/0.25,"
" SLACK:0.1, RASTER: 0.03125 }"

The video generation uses the default single video target called “tablet” with
a landscape orientation of 640x480 and yellow subtitles, hence there is nothing
to be specified in the configuration file.
For the transformation from midi tracks to audio files there are four simple
sound style definitions: a crunchy bass and guitar, some gritty drums and
distortion for the vocals emulation. They use overdrive, some sound shaping
and also a bit of compression. Details of the parameters can be found in the

LilypondToBVC, v1.1.1 65

8.2. EXAMPLE CONFIGURATION FILE

sox documentation [SOX].

soundStyleBassCrunch =
" compand 0.05,0.1 6:-20,0,-15"
" highpass -2 60 1o lowpass -2 800 1o equalizer 120 1o +3"
" reverb 60 100 20 100 10"

soundStyleDrumsGrit = "overdrive 4 0 reverb 25 50 60 100 40"
soundStyleGuitarCrunch =

" compand 0.01,0.1 6:-10,0,-7.5 -6"
" overdrive 30 0 gain -10"
" highpass -2 300 0.5o lowpass -1 1200"
" reverb 40 50 50 100 30"

soundStyleVocalsSimple = " overdrive 5 20"

For the final audio files we have two variants: one with all voices, the other
one with missing vocals and background vocals (the “karaoke version”). The
song and album names have the appropriate info in brackets.
All songs and the video will go to the “mediaFiles” subdirectory. Audio and
video files have “test-” as their prefix before the song name. So, for example,
the audio file for “Wonderful Song” with all voices has path “./mediaFiles/test-
wonderful_song.m4a”.

targetFileNamePrefix = "test-"
albumArtFilePath = "./mediaFiles/demo.jpg"

audioGroupToVoicesMap = "{"
" base : bass/drums, voc : vocals, gtr : guitar"

"}"

When all the global settings would be in a specific file, now were the
place where to split this into a preceding file and a file following the song-
specification.

8.2.2 Song-Specific Configuration

There is not much left to define the song. First come the overall properties
(where we rely on the defaults as much as possible).

title = "Wonderful Song"
fileNamePrefix = "wonderful_song"
composerText = "arranged by Fredo, 2021"
artistName = "Fredo"
albumName = "Best of Fredo"

The main information about a song is given in the table of voices with the
voice names, midi data, reverb levels and the sound variants. All voices have
audio postprocessing, nothing is merely copied. The midi channels are at
their defaults meaning 10 for drums and arbitrary other values for non-drums.

voiceNameList = "vocals, bass, guitar, drums"
midiInstrumentList = " 18, 35, 26, 13"
midiVolumeList = " 100, 120, 70, 110"
panPositionList = " C, 0.5L, 0.6R, 0.1L"
reverbLevelList = " 0.3, 0.0, 0.0, 0.0"
soundVariantList = "SIMPLE, CRUNCH, CRUNCH, GRIT"

66 Dr. Thomas Tensi

CHAPTER 8. EXAMPLE

The audio levels and pan positions are given in a separate mapping, which
is used in the audio track list. We use a single mapping for all targets, that
means the relative levels and pan positions are identical in all mixes.

_voiceNameToMixSettingMap =
"{ vocals : -4, bass : 0, guitar : -6, drums : -2 }"

Note that the above definition must come before the audioTrackList definition.
We also have lyrics: two lines of lyrics in the vocals extract and score, one
(serialized) line in the video.

voiceNameToLyricsMap = "{ vocals : e2/s2/v }"

Humanization relies on the humanization style defined in section 8.2.1. It
applies to all voices except vocals and starts in measure 1.

humanizedVoiceNameSet = "bass, guitar, drums"
measureToHumanizationStyleNameMap =

"{ 1 : humanizationStyleRockHard }"

The overall tempo is 90bpm throughout the song.
measureToTempoMap = "{ 1 : 90 }"

8.2.3 Overall Configuration - Part 2

Because we want to set the audioTrackList variable to non-default (default is
one track with all voices), this must come after the song parameters, because
it relies on the voice name to mix settings mapping.
For a separate global file this means, it has to be included as another fragment
after the song-specific setting. Since we are using a single file, this just comes
at the end of the file.
We have two tracks: one with all voices and, one without the vocals; for
convenience we put them each into an auxiliary variable (but this is not
mandatory).

_audioTrackWithAllVoices =
"all : { audioGroupList : base/voc/gtr,"
" audioFileTemplate : ’$’,"
" songNameTemplate : ’$ [ALL]’,"
" albumName : ’$’,"
" description : ’all voices’,"
" languageCode : deu,"
" voiceNameToMixSettingMap : "_voiceNameToMixSettingMap"}"

LilypondToBVC, v1.1.1 67

8.3. PUTTING IT ALL TOGETHER

_audioTrackWithoutVocals =
"novocals : { audioGroupList : base/gtr,"
" audioFileTemplate : ’$-v’,"
" songNameTemplate : ’$ [-V]’,"
" albumName : ’$ [-V]’,"
" description : ’no vocals’,"
" languageCode : eng,"
" voiceNameToMixSettingMap : "_voiceNameToMixSettingMap"}"

Both are combined into the audioTrackList.
audioTrackList = "{"

_audioTrackWithAllVoices ","
_audioTrackWithoutVocals

"}"

The separate variable _voiceNameToMixSettingMap defined above defines the
audio level (and optionally the pan positions) for all voices; there are no
special mastering effects and all amplification levels are (the default) 0dB.

8.3 Putting it All Together

Assuming that the configuration is in file “wonderful_song-config.txt” and
the lilypond stuff is in “wonderful_song-music.ly”, the command to produce
everything is

lilypondToBVC --phases all wonderful_song-config.txt

and it produces the following target files

• in directory “generated” the extracts “wonderful_song-bass.pdf”, “won-
derful_song-drums.pdf”, “wonderful_song-guitar.pdf” and “wonder-
ful_song-vocals.pdf”,

• the score file “generated/wonderful_song_score.pdf”,

• the midi file “generated/wonderful_song-std.mid”,

• in directory “ /mediaFiles” the audio files “test-wonderful_song.m4a”
and “test-wonderful_song-v.m4a”, and

• the video file with two audio tracks “ /videos/test-wonderful_song-
tblt.mp4”

Figure 27 shows an extract page (a), one image of the target video (b) and
the first score page (c) as an illustration.

68 Dr. Thomas Tensi

CHAPTER 8. EXAMPLE

a)

b) c)

Figure 27: Examples for Target File Images

LilypondToBVC, v1.1.1 69

8.3. PUTTING IT ALL TOGETHER

70 Dr. Thomas Tensi

CHAPTER 9. DEBUGGING

9. Debugging
Several tools are orchestrated by the script and typically something goes
wrong. The script or one of the underlying tools issues some error message,
but how can you find out what really went wrong?
The first place to look is the logging file located in loggingFilePath or in the
path given by the -l option on the command-line. It does a very fine-grained
tracing of the relevant function calls and the last lines should give you some
indication about the error.
Note that the outputs of the called programs are not logged, but at least
the commandlines to call them. This would not be helpful in itself, because
typically those programs work on generated intermediate files. But you can
tell ltbvc to keep the intermediate files by setting intermediateFilesAreKept to
true or alternatively calling the program with the “-k” flag. This only applies
to the preprocessing phases, because in the postprocessing phases all files are
kept as they serve as input for other phases 1.
For example, assume that the score generation phase does not produce a
meaningful output. If you have set the keep-files-flag, then a file called
“temp.ly” is produced and kept that contains the boiler-plate code for the
score. You can then run

lilypond test.ly

and see what happens. Of course, you must be able to get by with the lilypond
messages, but this is plain lilypond expertise.
Assuming default settings of the configuration variables, the following
temporary files will be produced:

extract:
a single temp.ly file containing a single voice,

score:
a single temp.ly file for the complete score,

midi:
a single temp.ly file for the midi voices and a generated “.mid”
file containing the voices with standard sound assignment and no
humanization, and

silentvideo:
a single temp.ly file for the video voices, “.png” image files with single
pages of the video and “.mp4” files containing the parts of the video
showing just a single page.

1The silent videos and the subtitle file also go into the intermediate file directory,
because they are not interesting in themselves, but must be kept.

LilypondToBVC, v1.1.1 71

For the postprocessing phases all intermediate files are kept as follows:

rawaudio:
each voice wave-file goes into the path specified by tempAudioDirectoryPath
as “«voice».wav”,

refinedaudio:
each voice wave-file goes into the path specified by tempAudioDirectoryPath
as “«voice»-processed.wav”,

mix and finalvideo:
both phases only have target files in audioTargetDirectoryPath and the
target specific path in targetVideoDirectory.

Most problems in postprocessing probably occur in the “refinedaudio” phase,
because sox does a lot of complex transformations. It might be helpful to
insert “tee” commands in the sox processing chain in the command file to
have a peek at intermediate audio stages.
Be aware that “tee” is not a standard sox command: if you execute the sox
steps directly on the command line, you must take care of any intermediate
files yourself.

72 Dr. Thomas Tensi

CHAPTER 10. FUTURE EXTENSIONS

10. Future Extensions
The following things are not contained in the current version, but are planned
for future versions:

• The sound variant list (describing a single sound variant for each voice)
shall be replaced by map from voice to a map from measure to sound
variant. This allows to have individual sound styles for different parts
in a song (like, for example, for an instrument solo part where special
sounds are required).

• The algorithm for finding the measures for the page breaks for the
video is quite naive and fragile. The page breaks are currently found
by scanning the Lilypond Postscript file, because to my knowledge
Lilypond currently has no means for providing the location of those
breaks programmatically. Some better solution must be found.

• Currently the humanization algorithm can only cope with a single time
signature for the complete song and uses the same (measure-specific)
humanization pattern for all voices. Similarly to the sound variants
a map should be used from measure and voice to the humanization
pattern.

• In professional audio productions drums are processed by handling the
different drum instrument groups (e.g. kick, snare, toms, cymbals)
individually. This is currently not possible: drums are simply a single
audio voice. A workaround could be done, if the used midi-to-wav-
converter produced a multi-channel result and the refinement stage
were able to combine those parts into a final result. But possibly this
should go into the workflow itself.

• It is not clear whether the modelled workflow is really adequate for a
band setting. Many steps (e.g. the different submixes) are similar to
aux busses in an analog mixer, but in digital mixers also pan position
or even equalization of voices may be adapted for the submix. This
cannot be achieved now.

• If you use this setup feeding a mixer from e.g. a tablet, there is only
one device available. If other band members have different videos, there
is currently no way to synchronize them (e.g. via a time code).

LilypondToBVC, v1.1.1 73

74 Dr. Thomas Tensi

BIBLIOGRAPHY

11. References
[AAC] QAAC - Quicktime AAC.

https://sites.google.com/site/qaacpage/

[FFMPEG] FFMPEG - Documentation.
http://ffmpeg.org/documentation.html

[FLUID] FluidSynth - Software synthesizer based on the SoundFont 2
specifications.
http://fluidsynth.org

[LILY] Lilypond - Music Notation for Everyone.
http://lilypond.org

[MP4BOX] GPAC - General Documentation MP4Box.
https://gpac.wp.imt.fr/mp4box/mp4box-documentation/

[SFNT-ORIG] FluidR3_GM.sf2 SoundFont at archive.org.
https://archive.org/compress/fluidr3-gm-gs

[SFNT-MS] FluidR3_GM.sf3 SoundFont at musescore.org.
https://github.com/musescore/MuseScore/raw/2.1/share/sound/FluidR3Mono_GM.sf3

[SOX] Chris Bagwell, Lance Norskog et al.: SoX - Sound eXchange -
Documentation.
http://sox.sourceforge.net/Docs/Documentation

LilypondToBVC, v1.1.1 75

BIBLIOGRAPHY

76 Dr. Thomas Tensi

APPENDIX A. TABLE OF CONFIGURATION FILE VARIABLES

A. Table of Configuration File Variables
The following table describes all the configuration variables with their default
values and the figure numbers where those variables have been mentioned
first in the current document.

Variable Description Default Fig.
aacCommandLine aac encoder command line with parameters

for input (${infile}) and output (${outfile})
(optional, if not defined ffmpeg is used for
aac encoding)

empty, will be
replaced by ffmpeg

3

albumName album for song group (embedded as “album”
in audio and video files)

"UNKNOWN
ALBUM"

6

artistName artist of that song group (embedded as
“artist” and “album artist” in audio and
video files)

"UNKNOWN
ARTIST"

6

audioGroupToVoicesMap mapping from freely defined voice group
names to names of voices contained in that
group described by a slash-separated name
list

single group "all"
mapped to set of
all voice names in
voiceNameList plus
a group for each
voice with the same
name

26

audioProcessor
.amplificationEffect

audio processor command for amplifying
audio by some dB value containing
${amplificationLevel} as placeholder

"gain
${amplificationLevel}"

4

audioProcessor
.chainSeparator

string or character used for separating
audio chains within audio refinement effects;
defaults to ";"

";" 4

audioProcessor
.mixingCommandLine

audio processor command line for mixing
audio files with volume factors containing
${factor}, ${pan}, ${infile} and ${outfile}
as placeholders; the group of factor and
infile is embraced by parentheses ("[]") and
will be repeated depending on the number
of infiles with the parentheses removed;
if missing, mixing will be done by (slow)
internal routines, if “pan” is not specified
as a placeholder, an internal panning via
ffmpeg is done

"sox -m [-v ${factor}
${infile}] ${outfile}"

4

audioProcessor
.paddingCommandLine

audio processor command line for padding
an audio files with leading silence containing
${duration} (in seconds), ${infile} and
${outfile} as placeholders; if missing,
padding will be done by (slow) internal
routines

"sox ${infile}
${outfile} pad
${duration}"

4

audioProcessor.redirector string or character used for specifying
special inputs or outputs within audio
refinement effects; defaults to "->"

"->" 4

audioProcessor
.refinementCommandLine

audio processor command line for audio
refinement with parameters for input
(${infile}), output (${outfile}) and the
refinement effects (${effects})

"sox ${infile}
${outfile}
${effects}"

4

audioTargetDirectoryPath path for the final AAC audio files with
subsets of rendered and refined audio tracks

"./mediafiles" 26

audioTrack.albumName name of the album of the audio file for given
list of voices (where an embedded dollar-sign
is replaced by the global album name)

albumName 24

audioTrack
.amplificationLevel

decimal value in decibels telling the volume
change to be applied to a track audio file;
this is helpful to adjust volume levels of
different songs within an album

0 26

LilypondToBVC, v1.1.1 77

Variable Description Default Fig.
audioTrack
.audioFileTemplate

template string defining how the audio file
name of the target audio file for given list of
voices is constructed from the plain audio
file name (indicated by a dollar-sign)

"$" 24

audioTrack.audioGroupList slash-separated list of audio group names
occuring as keys in audioGroupToVoicesMap

all voice names in
voiceNameList

24

audioTrack.description description for audio track within target
video (typically unsupported by video
players)

empty 24

audioTrack.languageCode ISO language code for audio track within
target video (typically supported by video
players)

eng 24

audioTrack
.masteringEffectList

list of audio track specific refinement effects
to be applied after voice mixdown

empty 26

audioTrack
.songNameTemplate

template string defining how the song name
for given list of voices is constructed from
the plain song name (indicated by a dollar-
sign)

title 24

audioTrackList list of track descriptors defining groups of
audio groups to be put on some track with
naming templates for audio file, song and
album name and a track description and
language

a single audio track
with all voices from
voiceNameList

26

audioVoiceNameSet set of voice names to be rendered to
audio files via the phases “rawaudio”
and “refinedaudio” based on voice
representations in humanized midi file

voiceNameList 22

composerText composer text to be shown in voice extracts
and score

empty 7

countInMeasureCount number of count-in measures for the song
(which defines the time before the first
measure)

0 16

extractVoiceNameSet set of voices to be rendered as a voice extract voiceNameList 11
ffmpegCommand location of ffmpeg command ffmpeg on system’s

path otherwise
MANDATORY

3

fileNamePrefix file name prefix used for all generated files
for this song

MANDATORY 7

humanizationStyleXXX map that tells the initial count-in measures,
the variation in timing and velocity for
several positions within a measure

empty 16

humanizedVoiceNameSet set of voice names to be humanized by
random variations of timing and velocity

empty 16

includeFilePath path for the music include file containing all
fragments for lilypond processing; if unset,
defaults to fileNamePrefix plus “-music.ly”

fileNamePrefix plus
“-music.ly”

5

intermediateFilesAreKept boolean telling whether temporary files are
kept

false 7

intermediateFileDirectoryPath path of directory where intermediate files
go that are either used for processing within
a phase or as information between phases

current directory 5

lilypondCommand location of lilypond command lilypond on
system’s path
otherwise
MANDATORY

3

lilypondVersion the version string for lilypond "2.18.22" 3
loggingFilePath path of file containing the processing log

(potentially overridden by the -l option on
the command-line

ltbvc.log in current
directory

5

measureToHumanization-
StyleNameMap

map of measure number to humanization
style name used from this position onward
for humanized voices; if map is empty, no
humanization is done

empty 16

78 Dr. Thomas Tensi

APPENDIX A. TABLE OF CONFIGURATION FILE VARIABLES
Variable Description Default Fig.
measureToTempoMap map defining the tempo for measure in

bpm until another tempo setting is given;
the time signature as a fraction may be
appended after a vertical bar (4/4 is default)

120 bpm starting at
first measure

7

midiChannelList list of midi channels per voice each between
1 and 16 (10 for a drum voice)

channel 10 for
drums and
percussion,
arbitrary other
number for other
voices

14

midiInstrumentList list of midi instrument programs per voice
each as an integer between 0 and 127; each
entry may be prefixed by a bank number (0
to 127) followed by a colon

some default
assignments from
General MIDI

14

midiToWavRendering-
CommandLine

command line for rendering command from
MIDI file to WAV audio file (typically
“fluidsynth” with parameters for input
(${infile}) and output (${outfile}))

MANDATORY 3

midiVoiceNameList list of voices to be rendered in order given
into the MIDI file

voiceNameList 14

midiVolumeList list of midi volumes per voice each as an
integer between 0 and 127

80 for each voice in
voiceNameList

14

mp4boxCommand location of mp4box command (if available);
if empty ffmpeg is used instead

empty, will be
replaced by ffmpeg

3

panPositionList list of pan positions per voice as a decimal
value between 0 and 1 with suffix “R” or
“L” (for right/left) or the character “C” (for
center)

all voices have
center pan position

14

parallelTrack specification of an audio file name, a volume
factor (in decibels) and an offset (in seconds)
relative to the start of the song for an audio
track to be added to all audio submixes (e.g.
for pre-rendered audio)

empty 22

phaseAndVoiceName-
ToClefMap

mapping from processing phase to maps
from voice name to lilypond clef

empty 9

phaseAndVoiceName-
ToStaffListMap

mapping from processing phase to maps
from voice name to slash-separated lilypond
staff names

empty 9

reverbLevelList list of reverb levels (as decimal values
typically between 0 and 1) for the voices
aligned with the list voiceNameList; those
reverb levels are applied to each voice as
the final refinement operation (when the sox
audio processor is used)

0.0 (no reverb)
for each voice in
voiceNameList

22

scoreVoiceNameList list of voices to be rendered in order given
into the score

voiceNameList 13

soundStyleXXX sequence of refinement effects (typically
from sox) to be applied on raw audio file
when this style is selected for «voice»

empty 22

soundVariantList list of variant names for the sound styles of
the voices aligned with the list voiceName;
those style variant names are combined into
a complete style name to be applied during
audio refinement

"COPY" for each of
the voices

22

targetDirectoryPath path of directory where all generated files
go (except for audio and video files)

current directory 5

tempAudioDirectoryPath path of directory for temporary audio files current directory 5
tempLilypondFilePath path of temporary lilypond file containing

placeholders for ${phase} and ${voiceName}
"temp_${phase}
_${voiceName}.ly"
in current directory

5

title human visible title of song used as tag in
the target audio file and as header line in
the notation files

MANDATORY 7

trackNumber track number within album 0 7
videoFileKind
.directoryPath

directory where final videos for that target
go

current directory 19

LilypondToBVC, v1.1.1 79

Variable Description Default Fig.
videoFileKind
.fileNameSuffix

suffix to be used for the video file names for
that target

MANDATORY 19

videoFileKind.target name of associated video target that is used
when rendering video files of that kind

MANDATORY 19

videoFileKind
.voiceNameList

list of voice names to be rendered in order
to audio files via the phase “silentvideo”

voiceNameList 19

videoTarget
.ffmpegPresetName

a specific ffmpeg preset for the current video
target device (a string, a missing value
defaults to a baseline level 3 profile)

“” 17

videoTarget.frameRate the frame rate of the video (in frames per
second)

10 17

videoTarget.height height of device and video (in dots) MANDATORY 17
videoTarget
.leftRightMargin

margin for video on left and right side (in
millimeters)

MANDATORY 17

videoTarget.mediaType the Quicktime media type of the video (for
example "TV Show")

"TV Show" 17

videoTarget.resolution resolution of the device (in dpi) MANDATORY 17
videoTarget.scalingFactor the factor by which width and height are

multiplied for lilypond image rendering to
be downscaled accordingly by the video
renderer (an integer); this is used for
antialiasing

1 17

videoTarget.subtitleColor color of overlayed subtitle in final video
for measure display (as integer for 16bit
alpha/red/green/blue)

(yellow) 17

videoTarget
.subtitleFontSize

height of subtitle (in pixels) 10 17

videoTarget
.subtitlesAreHardcoded

flag to tell whether subtitles are burnt into
the video or are available as a separate
subtitle track

false 17

videoTarget.systemSize size of lilypond system (in lilypond units, cf.
lilypond system size)

20 (default of
lilypond)

17

videoTarget
.topBottomMargin

margin for video on top and bottom (in
millimeters)

MANDATORY 17

videoTarget.width width of device and video (in dots) MANDATORY 17
videoTargetMap mapping from video target name to video

target descriptor with several parameters
for specific video file generation

MANDATORY 20

voiceNameToChordsMap mapping from voice names to phase
abbreviations where chords are shown for
that voice system

empty 9

voiceNameToLyricsMap mapping from voice name to a count of
parallel lyrics lines directly following the
target letter (“e” for the extract, “s” for the
score and “v” for the video)

empty 9

voiceNameToOverride-
FileNameMap

map from voice name to name of file
overriding that voice in the processed audio
files and in the final mixdown audio files
and in the target videos

empty 22

voiceNameToScore-
NameMap

mapping from voices name to short score
name at the beginning of a system

empty 13

voiceNameToVariation-
FactorMap

map from voice name to a pair of
decimal factors characterizing the timing
and velocity variation for this kind of voice
to be applied additional to the humanization
style

empty 16

year year of arrangement current year 7

80 Dr. Thomas Tensi

APPENDIX B. GLOSSARY

B. Glossary
album

→song group

all (phase group)
a group of →processing phases doing full processing via phase groups
→preprocess and →postprocess

audio group
a group of →voice →audio tracks to be mixed into a target audio file
or into a single audio track in the target video files

audio track
the audio rendering of a subset of all song voices (typically within the
final notation video)

(song) configuration file
a text file containing configuration information for a single →song
(possibly including other text configuration files) that is used in
generation of wrapper →lilypond files and parametrization of underlying
generation programs; consists of key-value pairs with variable names as
keys followed by an equal sign and a string, boolean or numeric value

(audio) effect
a filter applied to audio files during the phases →refinedaudio and →mix
to transform input audio; typically the program →sox will provide the
necessary filters

extract (phase)
a →processing phase producing the extract PDF notation files for single
→voices using the program →lilypond

ffmpeg
a command-line program for producing videos from notation page images,
inserting hard subtitles into them and possibly combining those silent
videos with audio tracks (when →mp4box is not used for that)

finalvideo (phase)
a →processing phase generating final video files for each →video file
kind with all submixes as selectable audio tracks and with a measure
indication as subtitle using the programs →ffmpeg and optionally
→mp4box

fluidsynth
a command-line program for conversion of MIDI files into WAV audio
files (representing →audio tracks) using →sound fonts

LilypondToBVC, v1.1.1 81

humanization
a part of the →midi phase applying algorithmic and rule-based random
time and volume (velocity) shifts to notes in the midi stream of →voices

humanization style
the configuration information for →humanization of a →song telling
individual variations based on the position of a note within a measure;
gives timing and velocity variations for the main beats, the other
sixteenths and all other notes; multiple styles may be given for a song
for non-overlapping measure ranges

lilypond
a typesetting program transforming text files with music notation
information into PDF or MIDI files

lilypond fragment file
a text file with fragmentary →lilypond typesetting information; based
on a song-specific →configuration file the generator provides wrapping
lilypond code and calls the appropriated underlying programs

midi (phase)
a →processing phase producing a MIDI file containing all →voices with
specified instruments, pan positions and volumes using the program
→lilypond plus some →humanization

mix (phase)
a →processing phase generating final compressed audio files with
submixes of all instrument →voices based on the refined audio files
with specified volume balance and some subsequent mastering audio
processing (where the submix variants are configurable) typically using
the program →sox

mp4box
a command-line program for combining the silent notation videos
with →audio tracks; used optionally instead of →ffmpeg for a better
compatibility with Apple devices

override (of a voice audio)
a replacement of the refined audio file for some →voice by an external
audio file to be applied in the →refinedaudio phase; is normally applied
when the external file has a higher quality (like, for example, with a
real singer instead of a vocals instrumental rendition)

parallel track (audio)
an additional audio file to be added in the →mix phase; this is used
for a single external audio file not associated with some voice (like, for
example, background sounds)

82 Dr. Thomas Tensi

APPENDIX B. GLOSSARY

preprocess (phase group)
a group of →processing phases combining →extract, →score, →midi
and →silentvideo for generation of →voice extract PDFs and score PDF,
MIDI file as well the silent videos for all →video file kinds

postprocess (phase group)
a group of →processing phases combining →rawaudio, →refinedaudio,
→mix and →finalvideo for generation of the intermediate raw and
refined WAV files, the submixes as compressed audios and the final
videos for all →video file kinds

processing phase
a part of the generation of →song artifacts from given →lilypond
fragment file and →configuration file; possible processing phases or
processing phase groups are →all, →preprocess, →postprocess, →extract,
→score, →midi, →silentvideo, →rawaudio, →refinedaudio, →mix and
→finalvideo

qaac
a command-line program for converting WAV audio files into aac encoded
audio files (representing →audio groups); used optionally instead of
→ffmpeg for a better encoding quality

rawaudio (phase)
a →processing phase producing unprocessed (intermediate) audio files
for all the instrument →voices from the midi tracks using the program
→fluidsynth plus some →sound fonts

refinedaudio (phase)
a →processing phase producing (intermediate) audio files for all the
instrument →voices with additional audio processing applied by the
program →sox

score (phase)
a →processing phase producing a single PDF notation file containing
all →voices as a score generated by the program →lilypond

silentvideo (phase)
a →processing phase to generate (intermediate) silent videos containing
the score pages for several output →video targets (with configurable
resolution and size) using →ffmpeg as the video generator from notation
pages produced by →lilypond

song
a collection of several parallel →voices forming a musical piece

LilypondToBVC, v1.1.1 83

song group
a collection of several related →songs (for example, related by year,
artist, etc.) sharing common characteristics

sound font (file)
a file containing data for a sample-based rendering of MIDI data as audio
files; the generator uses the →fluidsynth program for this conversion
within the →rawaudio phase

sound style
a (sequential) chain of →sox audio filters to be applied to a an audio
rendering of a →voice in phase →refinedaudio; typically those sound
styles are instrument specific

sox
a program for transformation of audio files via parametrizable audio
→effects (like, for example, equalizers, distortions or reverbs) used in
the →refinedaudio and →mix phases

video file kind
the configuration information used in the →silentvideo and →finalvideo
phases giving video rendering properties of notation videos extending
characteristics of a →video target by data (like, for example, the list of
voices to be shown or the video files target directory)

video target
the configuration information used in the →silentvideo and →finalvideo
phases giving video device dependent properties of notation videos (like,
for example, device resolution or pixel width and height), but also some
device independent parameters (like, for example, the subtitle font size)

voice
a polyphonic part of a composition belonging to a single instrument to
be notated in one or several musical staffs

84 Dr. Thomas Tensi

APPENDIX C. RELEASE CHANGES

C. Release Changes
• Version 1.1 (2021-11):

– added static typing tags for additional documentation
– professionalized the processing and handling of configuration file

data by a generic data type management
– tried to reduce the mandatory configuration variables as much as

possible by providing reasonable default settings
– added a new logging file command line parameter (overriding the

setting in the configuration file)
– set logging time resolution to 10ms (instead of 1s)
– renamed keepIntermediateFiles to intermediateFilesAreKept
– added several minor corrections in the processing variables (e.g.

tempLilypondFilePath now has placeholders for phase and voice
name)

– ensured that the temporary MIDI file now uses the instruments
from the configuration file

– made all temporary files go into directory given by configuration
variable intermediateFileDirectoryPath and allowed for a distinctive
naming for different phases or voices

– corrected erroneous AAC processing by ffmpeg

• Version 1.0 (2018-04): initial version

LilypondToBVC, v1.1.1 85

