
aenum --- support for advanced enumerations
and namedtuples

An enumeration is a set of symbolic names (members) bound to unique, constant values. Within an
enumeration, the members can be compared by identity, and the enumeration itself can be iterated over.

A NamedTuple is a class-based, fixed-length tuple with a name for each possible position accessible
using attribute-access notation.

Module Contents
This module defines five enumeration classes that can be used to define unique sets of names and
values, one Enum class decorator, and one named tuple class

Enum

Base class for creating enumerated constants. See section Enum Functional API for an alternate
construction syntax.

IntEnum

Base class for creating enumerated constants that are also subclasses of int.

AutoNumberEnum

Derived class that automatically assigns an int value to each member.

OrderedEnum

Derived class that adds <, <=, >=, and > methods to an Enum.

UniqueEnum

Derived class that ensures only one name is bound to any one value.

unique

Enum class decorator that ensures only one name is bound to any one value.

NamedTuple

Base class for creating NamedTuples, either by subclassing or via it's functional API.

Note

the UniqueEnum class and the unique decorator both do the same thing, you do not need to
use both of them at the same time.

Creating an Enum
Enumerations are created using the class syntax, which makes them easy to read and write. An
alternative creation method is described in Enum Functional API. To define an enumeration, subclass
Enum as follows:

>>> from aenum import Enum
>>> class Color(Enum):
... red = 1
... green = 2
... blue = 3

Note

Nomenclature

• The class Color is an enumeration (or enum)

• The attributes Color.red, Color.green, etc., are enumeration members (or enum
members).

• The enum members have names and values (the name of Color.red is red, the value of
Color.blue is 3, etc.)

Note

Even though we use the class syntax to create Enums, Enums are not normal Python classes.
See How are Enums different? for more details.

Enumeration members have human readable string representations:

>>> print(Color.red)
Color.red

...while their repr has more information:

>>> print(repr(Color.red))
<Color.red: 1>

The type of an enumeration member is the enumeration it belongs to:

>>> type(Color.red)
<enum 'Color'>
>>> isinstance(Color.green, Color)
True
>>>

Enum members also have a property that contains just their item name:

>>> print(Color.red.name)
red

Enumerations support iteration. In Python 3.x definition order is used; in Python 2.x the definition order is
not available, but class attribute __order__ is supported; otherwise, value order is used:

>>> class Shake(Enum):
... __order__ = 'vanilla chocolate cookies mint' # only needed in 2.x
... vanilla = 7
... chocolate = 4
... cookies = 9
... mint = 3
...
>>> for shake in Shake:
... print(shake)
...
Shake.vanilla
Shake.chocolate
Shake.cookies
Shake.mint

The __order__ attribute is always removed, and in 3.x it is also ignored (order is definition order);
however, in the stdlib version it will be ignored but not removed.

Enumeration members are hashable, so they can be used in dictionaries and sets:

>>> apples = {}
>>> apples[Color.red] = 'red delicious'
>>> apples[Color.green] = 'granny smith'
>>> apples == {Color.red: 'red delicious', Color.green: 'granny smith'}
True

Programmatic access to enumeration members and
their attributes
Sometimes it's useful to access members in enumerations programmatically (i.e. situations where
Color.red won't do because the exact color is not known at program-writing time). Enum allows such
access:

>>> Color(1)
<Color.red: 1>
>>> Color(3)
<Color.blue: 3>

If you want to access enum members by name, use item access:

>>> Color['red']
<Color.red: 1>
>>> Color['green']
<Color.green: 2>

If have an enum member and need its name or value:

>>> member = Color.red
>>> member.name
'red'
>>> member.value
1

Duplicating enum members and values
Having two enum members (or any other attribute) with the same name is invalid; in Python 3.x this would
raise an error, but in Python 2.x the second member simply overwrites the first:

python 2.x
--> class Shape(Enum):
... square = 2
... square = 3
...
--> Shape.square
<Shape.square: 3>

python 3.x
--> class Shape(Enum):
... square = 2
... square = 3
Traceback (most recent call last):
...
TypeError: Attempted to reuse key: 'square'

However, two enum members are allowed to have the same value. Given two members A and B with the
same value (and A defined first), B is an alias to A. By-value lookup of the value of A and B will return A.
By-name lookup of B will also return A:

>>> class Shape(Enum):
... __order__ = 'square diamond circle alias_for_square' # only needed in 2.x
... square = 2
... diamond = 1
... circle = 3
... alias_for_square = 2
...
>>> Shape.square
<Shape.square: 2>
>>> Shape.alias_for_square
<Shape.square: 2>
>>> Shape(2)
<Shape.square: 2>

Allowing aliases is not always desirable. unique can be used to ensure that none exist in a particular
enumeration:

>>> from aenum import unique
>>> @unique
... class Mistake(Enum):
... __order__ = 'one two three four' # only needed in 2.x
... one = 1
... two = 2
... three = 3
... four = 3
Traceback (most recent call last):
...
ValueError: duplicate names found in <enum 'Mistake'>: four -> three

Iterating over the members of an enum does not provide the aliases:

>>> list(Shape)
[<Shape.square: 2>, <Shape.diamond: 1>, <Shape.circle: 3>]

The special attribute __members__ is a dictionary mapping names to members. It includes all names
defined in the enumeration, including the aliases:

>>> for name, member in sorted(Shape.__members__.items()):
... name, member
...
('alias_for_square', <Shape.square: 2>)
('circle', <Shape.circle: 3>)
('diamond', <Shape.diamond: 1>)
('square', <Shape.square: 2>)

The __members__ attribute can be used for detailed programmatic access to the enumeration members.
For example, finding all the aliases:

>>> [name for name, member in Shape.__members__.items() if member.name != name]
['alias_for_square']

Comparisons
Enumeration members are compared by identity:

>>> Color.red is Color.red
True
>>> Color.red is Color.blue
False
>>> Color.red is not Color.blue
True

Ordered comparisons between enumeration values are not supported. Enum members are not integers
(but see IntEnum below):

>>> Color.red < Color.blue
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unorderable types: Color() < Color()

Warning

In Python 2 everything is ordered, even though the ordering may not make sense. If you want your
enumerations to have a sensible ordering consider using an OrderedEnum.

Equality comparisons are defined though:

>>> Color.blue == Color.red
False
>>> Color.blue != Color.red

True
>>> Color.blue == Color.blue
True

Comparisons against non-enumeration values will always compare not equal (again, IntEnum was
explicitly designed to behave differently, see below):

>>> Color.blue == 2
False

Allowed members and attributes of enumerations
The examples above use integers for enumeration values. Using integers is short and handy (and
provided by default by the Enum Functional API), but not strictly enforced. In the vast majority of
use-cases, one doesn't care what the actual value of an enumeration is. But if the value is important,
enumerations can have arbitrary values.

Enumerations are Python classes, and can have methods and special methods as usual. If we have this
enumeration:

>>> class Mood(Enum):
... funky = 1
... happy = 3
...
... def describe(self):
... # self is the member here
... return self.name, self.value
...
... def __str__(self):
... return 'my custom str! {0}'.format(self.value)
...
... @classmethod
... def favorite_mood(cls):
... # cls here is the enumeration
... return cls.happy

Then:

>>> Mood.favorite_mood()
<Mood.happy: 3>
>>> Mood.happy.describe()
('happy', 3)
>>> str(Mood.funky)
'my custom str! 1'

The rules for what is allowed are as follows: _sunder_ names (starting and ending with a single
underscore) are reserved by enum and cannot be used; all other attributes defined within an enumeration
will become members of this enumeration, with the exception of __dunder__ names and descriptors
(methods are also descriptors).

Note

If your enumeration defines __new__ and/or __init__ then whatever value(s) were given to the
enum member will be passed into those methods. See Planet for an example.

Restricted subclassing of enumerations
Subclassing an enumeration is allowed only if the enumeration does not define any members. So this is
forbidden:

>>> class MoreColor(Color):
... pink = 17
Traceback (most recent call last):
...
TypeError: Cannot extend enumerations

But this is allowed:

>>> class Foo(Enum):
... def some_behavior(self):
... pass
...
>>> class Bar(Foo):
... happy = 1
... sad = 2
...

Allowing subclassing of enums that define members would lead to a violation of some important invariants
of types and instances. On the other hand, it makes sense to allow sharing some common behavior
between a group of enumerations. (See OrderedEnum for an example.)

Pickling
Enumerations can be pickled and unpickled:

>>> from aenum.test import Fruit
>>> from pickle import dumps, loads
>>> Fruit.tomato is loads(dumps(Fruit.tomato, 2))
True

The usual restrictions for pickling apply: picklable enums must be defined in the top level of a module,
since unpickling requires them to be importable from that module.

Note

With pickle protocol version 4 (introduced in Python 3.4) it is possible to easily pickle enums
nested in other classes.

Enum Functional API
The Enum class is callable, providing the following functional API:

>>> Animal = Enum('Animal', 'ant bee cat dog')
>>> Animal
<enum 'Animal'>
>>> Animal.ant
<Animal.ant: 1>
>>> Animal.ant.value
1
>>> list(Animal)
[<Animal.ant: 1>, <Animal.bee: 2>, <Animal.cat: 3>, <Animal.dog: 4>]

The semantics of this API resemble namedtuple. The first argument of the call to Enum is the name of
the enumeration.

The second argument is the source of enumeration member names. It can be a whitespace-separated
string of names, a sequence of names, a sequence of 2-tuples with key/value pairs, or a mapping (e.g.
dictionary) of names to values. The last two options enable assigning arbitrary values to enumerations;
the others auto-assign increasing integers starting with 1. A new class derived from Enum is returned. In
other words, the above assignment to Animal is equivalent to:

>>> class Animals(Enum):
... ant = 1
... bee = 2
... cat = 3
... dog = 4

Pickling enums created with the functional API can be tricky as frame stack implementation details are
used to try and figure out which module the enumeration is being created in (e.g. it will fail if you use a
utility function in separate module, and also may not work on IronPython or Jython). The solution is to
specify the module name explicitly as follows:

>>> Animals = Enum('Animals', 'ant bee cat dog', module=__name__)

Derived Enumerations

IntEnum
A variation of Enum is provided which is also a subclass of int. Members of an IntEnum can be
compared to integers; by extension, integer enumerations of different types can also be compared to each
other:

>>> from aenum import IntEnum
>>> class Shape(IntEnum):
... circle = 1
... square = 2
...
>>> class Request(IntEnum):
... post = 1
... get = 2
...
>>> Shape == 1

False
>>> Shape.circle == 1
True
>>> Shape.circle == Request.post
True

However, they still can't be compared to standard Enum enumerations:

>>> class Shape(IntEnum):
... circle = 1
... square = 2
...
>>> class Color(Enum):
... red = 1
... green = 2
...
>>> Shape.circle == Color.red
False

IntEnum values behave like integers in other ways you'd expect:

>>> int(Shape.circle)
1
>>> ['a', 'b', 'c'][Shape.circle]
'b'
>>> [i for i in range(Shape.square)]
[0, 1]

For the vast majority of code, Enum is strongly recommended, since IntEnum breaks some semantic
promises of an enumeration (by being comparable to integers, and thus by transitivity to other unrelated
enumerations). It should be used only in special cases where there's no other choice; for example, when
integer constants are replaced with enumerations and backwards compatibility is required with code that
still expects integers.

Others
While IntEnum is part of the aenum module, it would be very simple to implement independently:

class IntEnum(int, Enum):
 pass

This demonstrates how similar derived enumerations can be defined; for example a StrEnum that mixes
in str instead of int.

Some rules:

1. When subclassing Enum, mix-in types must appear before Enum itself in the sequence of bases, as
in the IntEnum example above.

2. While Enum can have members of any type, once you mix in an additional type, all the members
must have values of that type, e.g. int above. This restriction does not apply to mix-ins which only
add methods and don't specify another data type such as int or str.

3. When another data type is mixed in, the value attribute is not the same as the enum member itself,
although it is equivalant and will compare equal.

4. %-style formatting: %s and %r call Enum's __str__ and __repr__ respectively; other codes
(such as %i or %h for IntEnum) treat the enum member as its mixed-in type.

5. str.__format__ (or format) will use the mixed-in type's __format__. If the Enum's str or
repr is desired use the !s or !r str format codes.

Note

Prior to Python 3.4 there is a bug in str's %-formatting: int subclasses are printed as strings
and not numbers when the %d, %i, or %u codes are used.

Decorators

unique
A class decorator specifically for enumerations. It searches an enumeration's __members__ gathering
any aliases it finds; if any are found ValueError is raised with the details:

>>> @unique
... class NoDupes(Enum):
... first = 'one'
... second = 'two'
... third = 'two'
Traceback (most recent call last):
...
ValueError: duplicate names found in <enum 'NoDupes'>: third -> second

Interesting examples
While Enum and IntEnum are expected to cover the majority of use-cases, they cannot cover them all.
Here are recipes for some different types of enumerations that can be used directly (the first three are
included in the module), or as examples for creating one's own.

AutoNumber
Avoids having to specify the value for each enumeration member:

>>> class AutoNumber(Enum):
... def __new__(cls):
... value = len(cls.__members__) + 1
... obj = object.__new__(cls)
... obj._value_ = value
... return obj
...
>>> class Color(AutoNumber):
... __order__ = "red green blue" # only needed in 2.x
... red = ()
... green = ()
... blue = ()
...

>>> Color.green.value == 2
True

Note

The __new__ method, if defined, is used during creation of the Enum members; it is then replaced
by Enum's __new__ which is used after class creation for lookup of existing members. Due to the
way Enums are supposed to behave, there is no way to customize Enum's __new__ without
modifying the class after it is created.

UniqueEnum
Raises an error if a duplicate member name is found instead of creating an alias:

>>> class UniqueEnum(Enum):
... def __init__(self, *args):
... cls = self.__class__
... if any(self.value == e.value for e in cls):
... a = self.name
... e = cls(self.value).name
... raise ValueError(
... "aliases not allowed in UniqueEnum: %r --> %r"
... % (a, e))
...
>>> class Color(UniqueEnum):
... __order__ = 'red green blue'
... red = 1
... green = 2
... blue = 3
... grene = 2
Traceback (most recent call last):
...
ValueError: aliases not allowed in UniqueEnum: 'grene' --> 'green'

OrderedEnum
An ordered enumeration that is not based on IntEnum and so maintains the normal Enum invariants
(such as not being comparable to other enumerations):

>>> class OrderedEnum(Enum):
... def __ge__(self, other):
... if self.__class__ is other.__class__:
... return self._value_ >= other._value_
... return NotImplemented
... def __gt__(self, other):
... if self.__class__ is other.__class__:
... return self._value_ > other._value_
... return NotImplemented
... def __le__(self, other):
... if self.__class__ is other.__class__:

... return self._value_ <= other._value_

... return NotImplemented

... def __lt__(self, other):

... if self.__class__ is other.__class__:

... return self._value_ < other._value_

... return NotImplemented

...
>>> class Grade(OrderedEnum):
... __ordered__ = 'A B C D F'
... A = 5
... B = 4
... C = 3
... D = 2
... F = 1
...
>>> Grade.C < Grade.A
True

Planet
If __new__ or __init__ is defined the value of the enum member will be passed to those methods:

>>> class Planet(Enum):
... MERCURY = (3.303e+23, 2.4397e6)
... VENUS = (4.869e+24, 6.0518e6)
... EARTH = (5.976e+24, 6.37814e6)
... MARS = (6.421e+23, 3.3972e6)
... JUPITER = (1.9e+27, 7.1492e7)
... SATURN = (5.688e+26, 6.0268e7)
... URANUS = (8.686e+25, 2.5559e7)
... NEPTUNE = (1.024e+26, 2.4746e7)
... def __init__(self, mass, radius):
... self.mass = mass # in kilograms
... self.radius = radius # in meters
... @property
... def surface_gravity(self):
... # universal gravitational constant (m3 kg-1 s-2)
... G = 6.67300E-11
... return G * self.mass / (self.radius * self.radius)
...
>>> Planet.EARTH.value
(5.976e+24, 6378140.0)
>>> Planet.EARTH.surface_gravity
9.802652743337129

How are Enums different?
Enums have a custom metaclass that affects many aspects of both derived Enum classes and their
instances (members).

Enum Classes
The EnumMeta metaclass is responsible for providing the __contains__, __dir__, __iter__ and
other methods that allow one to do things with an Enum class that fail on a typical class, such as
list(Color) or some_var in Color. EnumMeta is responsible for ensuring that various other
methods on the final Enum class are correct (such as __new__, __getnewargs__, __str__ and
__repr__).

Note

__dir__ is not changed in the Python 2 line as it messes up some of the decorators included in
the stdlib.

Enum Members (aka instances)
The most interesting thing about Enum members is that they are singletons. EnumMeta creates them all
while it is creating the Enum class itself, and then puts a custom __new__ in place to ensure that no new
ones are ever instantiated by returning only the existing member instances.

Finer Points
Enum members are instances of an Enum class, and even though they are accessible as
EnumClass.member, they should not be accessed directly from the member as that lookup may fail or,
worse, return something besides the Enum member you were looking for (changed in version 1.1.1):

>>> class FieldTypes(Enum):
... name = 0
... value = 1
... size = 2
...
>>> FieldTypes.value.size
<FieldTypes.size: 2>
>>> FieldTypes.size.value
2

Likewise, __members__ is only available on the class.

__members__ is always an OrderedDict, with the order being the definition order in Python 3.x or the
order in __order__ in Python 2.7; if no __order__ was specified in Python 2.7 then the order of
__members__ is meaningless.

If you give your Enum subclass extra methods, like the Planet class above, those methods will show up in
a dir of the member, but not of the class (in Python 3.x):

--> dir(Planet)
['EARTH', 'JUPITER', 'MARS', 'MERCURY', 'NEPTUNE', 'SATURN', 'URANUS',
 'VENUS', '__class__', '__doc__', '__members__', '__module__']
--> dir(Planet.EARTH)
['__class__', '__doc__', '__module__', 'name', 'surface_gravity', 'value']

A __new__ method will only be used for the creation of the Enum members -- after that it is replaced.
This means if you wish to change how Enum members are looked up you either have to write a helper
function or a classmethod.

Creating NamedTuples

Simple
The most common way to create a new NamedTuple will be via the functional API:

>>> from aenum import NamedTuple
>>> Book = NamedTuple('Book', 'title author genre', module=__name__)

This creates a NamedTuple called Book that will always contain three items, each of which is also
addressable as title, author, or genre.

Book instances can be created using positional or keyword argements or a mixture of the two:

>>> b1 = Book('Lord of the Rings', 'J.R.R. Tolkien', 'fantasy')
>>> b2 = Book(title='Jhereg', author='Steven Brust', genre='fantasy')
>>> b3 = Book('Empire', 'Orson Scott Card', genre='scifi')

If too few or too many arguments are used a TypeError will be raised:

>>> b4 = Book('Hidden Empire')
Traceback (most recent call last):
...
TypeError: values not provided for field(s): author, genre
>>> b5 = Book(genre='business')
Traceback (most recent call last):
...
TypeError: values not provided for field(s): title, author

As a class the above Book NamedTuple would look like:

>>> class Book(NamedTuple):
... title = 0
... author = 1
... genre = 2
...

For compatibility with the stdlib namedtuple, NamedTuple also has the _asdict, _make, and
_replace methods, which function similarly:

>>> class Point(NamedTuple):
... x = 0, 'horizontal coordinate', 1
... y = 1, 'vertical coordinate', -1
...
>>> class Color(NamedTuple):
... r = 0, 'red component', 11
... g = 1, 'green component', 29
... b = 2, 'blue component', 37
...
>>> Pixel = NamedTuple('Pixel', Point+Color, module=__name__)
>>> pixel = Pixel(99, -101, 255, 128, 0)
>>> pixel._asdict()
OrderedDict([('x', 99), ('y', -101), ('r', 255), ('g', 128), ('b', 0)])

>>> class Point(NamedTuple):
... x = 0, 'horizontal coordinate', 1
... y = 1, 'vertical coordinate', -1
...
>>> Point._make((4, 5))
Point(x=4, y=5)

>>> class Color(NamedTuple):
... r = 0, 'red component', 11
... g = 1, 'green component', 29
... b = 2, 'blue component', 37
...
>>> purple = Color(127, 0, 127)
>>> mid_gray = purple._replace(g=127)
>>> mid_gray
Color(r=127, g=127, b=127)

Advanced
The simple method of creating NamedTuples requires always specifying all possible arguments when
creating instances; failure to do so will raise exceptions:

>>> class Point(NamedTuple):
... x = 0
... y = 1
...
>>> Point()
Traceback (most recent call last):
...
TypeError: values not provided for field(s): x, y
>>> Point(1)
Traceback (most recent call last):
...
TypeError: values not provided for field(s): y
>>> Point(y=2)
Traceback (most recent call last):
...
TypeError: values not provided for field(s): x

However, it is possible to specify both docstrings and default values when creating a NamedTuple:

>>> class Point(NamedTuple):
... x = 0, 'horizontal coordinate', 0
... y = 1, 'vertical coordinate', 0
...
>>> Point()
Point(x=0, y=0)
>>> Point(1)
Point(x=1, y=0)
>>> Point(y=2)
Point(x=0, y=2)

It is also possible to create NamedTuples that only have named attributes for certain fields; any fields
without names can still be accessed by index:

>>> class Person(NamedTuple):
... fullname = 2
... phone = 5
...
>>> p = Person('Ethan', 'Furman', 'Ethan Furman',
... 'ethan at stoneleaf dot us',
... 'ethan.furman', '999.555.1212')
>>> p
Person('Ethan', 'Furman', 'Ethan Furman', 'ethan at stoneleaf dot us',
 'ethan.furman', '999.555.1212')
>>> p.fullname
'Ethan Furman'
>>> p.phone
'999.555.1212'
>>> p[0]
'Ethan'

In the above example the last named field was also the last field possible; in those cases where you don't
need to have the last possible field named, you can provide a __size__ of TupleSize.minimum to
declare that more fields are okay:

>>> from aenum import TupleSize
>>> class Person(NamedTuple):
... __size__ = TupleSize.minimum
... first = 0
... last = 1
...

>>> Person('Ethan', 'Furman')
Person(first='Ethan', last='Furman')

>>> Person('Ethan', 'Furman', 'ethan.furman')
Person('Ethan', 'Furman', 'ethan.furman')

>>> Person('Ethan', 'Furman', 'ethan.furman', 'yay Python!')
Person('Ethan', 'Furman', 'ethan.furman', 'yay Python!')

>>> Person('Ethan')
Traceback (most recent call last):
...
TypeError: values not provided for field(s): last

Also, for those cases where even named fields may not be present, you can specify
TupleSize.variable:

>>> class Person(NamedTuple):
... __size__ = TupleSize.variable
... first = 0
... last = 1
...

>>> Person('Ethan')
Person('Ethan')

>>> Person(last='Furman')

Traceback (most recent call last):
...
TypeError: values not provided for field(s): first

Creating new NamedTuples from existing NamedTuples is simple:

>>> Point = NamedTuple('Point', 'x y')
>>> Color = NamedTuple('Color', 'r g b')
>>> Pixel = NamedTuple('Pixel', Point+Color, module=__name__)
>>> Pixel
NamedTuple('Pixel', 'x y r g b', module=...)

The existing fields in the bases classes are renumbered to fit the new class, but keep their doc strings and
default values.

	Module Contents
	Creating an Enum
	Programmatic access to enumeration members and their attributes
	Duplicating enum members and values
	Comparisons
	Allowed members and attributes of enumerations
	Restricted subclassing of enumerations
	Pickling
	Enum Functional API
	Derived Enumerations
	IntEnum
	Others

	Decorators
	unique

	Interesting examples
	AutoNumber
	UniqueEnum
	OrderedEnum
	Planet

	How are Enums different?
	Enum Classes
	Enum Members (aka instances)
	Finer Points

	Creating NamedTuples
	Simple
	Advanced

