
RBApy.estim package

Ana Bulovic

August 2018

Contents

1 Parameter estimation 2
1.1 Percentage of protein per compartment 2
1.2 Percentage of nonenzymatic protein per compartment 3
1.3 Apparent catalytic rates . 4

1

Chapter 1

Parameter estimation

1.1 Percentage of protein per compartment

In RBA, the amount of protein per compartment is represented by the con-
centration of amino acids in unit of mmol.AA

gCDW . This amount is later used in
the optimization procedure as an inequality constraint limiting how much of
protein produced for metabolic and process requirements can fit into each com-
partment. With the change in growth rate, bacteria change their size, and with
it the amount of protein, and so we model these concentrations as functions
of the growth rate. Because the amount of protein per cell has been shown
to vary linearly with the growth rate, we initially assume that the estimated
functions are either linear or constant. Within the RBApy.estim package, we
offer an estimation procedure that can estimate the best linear fit of percentage
of protein in each compartment, given that the user provides proteomics data
and assignment of proteins to compartments. Because we assume the data will
be provided for experiments of different growth rates, we also require a file in
which the experiment ID is matched to a measured growth rate.

The estimation procedure expects the files to be in either CSV or Excel
format. Three files are necessary: (1) a file describing the experiments, by
linking the IDs to the growth rates (see Fig 1.1), (2) a proteomics file which
needs to have all the columns with abundances (in any unit) corresponding to
the experiments specified in the first file, and cellular localization column (see
1.1)and (3) the output file where the results of the fit will be stored. Also, the
procedure allows for mapping of compartments, as one could choose to do in
the case Uniprot offers two different compartments, Inner membrane, and Cell
inner membrane, which the user would want to map onto one compartment.

The estimates of percentages of protein per compartment necessarily all need
to be non-negative and need to sum to one. As this constraint cannot be ensured
with ordinary least-squares, we transform the original least squares problem

2

Figure 1.1: Simple example of files needed to run the procedure to estimate
the percentage of protein per compartment. The experiment IDs need to be
matched to the corresponding growth rates and the protein data file needs to
have columns that correspond to experiments. Protein data file needs to have
a location column. The names of all the files and columns can be specified in
the configuration file.

min
x

‖Ax− y‖2
s.t. Ax− y ≥ 0

(1.1)

into a quadratic programming problem:

min
x

1
2x

TQx+ cTx

s.t. Gx ≤ h
(1.2)

where Q = ATA, c = −AT y, G = −A, h = y.
The script to run this estimation is called prot per compartment.py, and

the accompanying configuration file is prot per compartment.cfg.

1.2 Percentage of nonenzymatic protein per com-
partment

RBA model will rarely cover all cellular processes. Therefore, there will always
be a portion of the proteome which will not be represented in the model. How-
ever, this portion still serves some cellular function. When we limit the amount
of protein per each compartment, we need to take into an account that not all
proteins can serve some function within the model, but that they in reallity
take up only a portion of all available protein per compartment. Therefore,
we estimate a percentage of nonenzymatic protein per each compartment as a
function of the growth rate (or as a constant).

The algorithm and the configuration for the estimation are the same as
in Section 1.1, the only difference being that, alongside cellular localization,
proteins need to be assigned a functional category. One additional file is needed,

3

where the functional categories are mapped assigned True or False values: True
if they are considered to be enzymatic, False if they are not. Enzymatic are those
categories which are already functionally represented in the RBA model, such
as metabolic enzymes or translation machinery, and nonenzymatic those which
are missing from the model, such as for example DNA repair and signalling
pathways.

The script to run this estimation is called nonenz per compartment.py, and
the accompanying configuration file is nonenz per compartment.cfg.

1.3 Apparent catalytic rates

An apparent catalytic rate describes not the maximal, but the situation depen-
dent catalytic rate. In case no data is available for parameter estimation, RBApy
assumes an equal default apparent catalytic rate for all enzymes of 10s−1. In
case that the user can provide proteomics and fluxomics data of sufficiently
similar experimental conditions (regarding the strain, medium, culture type -
batch vs. chemostat, growth rate, etc.), she can use a simple kapp estimation
procedure provided in the RBApy.estim package. Data needed for estimation
is:

• Genome-scale metabolic reconstruction

• Fluxomics data (in mmol
gCDW×h)

• Proteomics data (can be provided in two units - copies per cell or mmol
gCDW .

In the case it is provided in copies per cell, convert option of the configu-
ration file needs to be set to True, and dry weight per cell needs to be
updated to a correct value)

.
The fluxomics data is used to restrain an FBA model (the same genome-scale

metabolic model used for the generation of the RBA model). The simulation of
the thus restrained FBA model yields a flux distribution to be used in the subse-
quent estimation. The proteomics data is used to estimate enzyme abundances.
Since the same protein can be used for construction of different enzymes, we
divide the protein abundance between the corresponding enzymes. The appar-
ent catalytic rates are computed as a solution the the least-squares problem
where the residues are defines as ri = νi−kappi ×Ei, where νi, Ei and kappi are
the flux amount, enzyme concentration and an apparent catalytic rate of the
ith reaction. The solution for individual apparent catalytic rates then becomes:
kappi = νi

Ei
.

The script to run this estimation is called kapp.py, and the accompanying
configuration file is kapp.cfg.

4

