
XML format for RBA models,
version 1

BioSys group, INRA Jouy, France

January 15, 2019

1

Contents

1 Introduction 4
1.1 Overview of an RBA model . 4
1.2 Overview of the document . 4
1.3 Conventions . 5

1.3.1 Naming conventions in XML and RBApy 5
1.3.2 Boolean attributes . 6
1.3.3 Variables for user-defined functions 6
1.3.4 Units . 6

2 metabolism.xml 7
2.1 Rationale . 7
2.2 RBAMetabolism . 7
2.3 Compartment . 7
2.4 Species . 7
2.5 Reaction . 8
2.6 SpeciesReference . 9
2.7 Examples . 9

3 proteins.xml, rnas.xml and dna.xml 9
3.1 Rationale . 9
3.2 RBAMacromolecules . 11
3.3 Component . 11
3.4 Macromolecule . 13
3.5 ComponentReference . 13
3.6 Examples . 13

4 enzymes.xml 14
4.1 Rationale . 14
4.2 RBAEnzymes . 14
4.3 Enzyme . 14
4.4 Examples . 17

5 processes.xml 19
5.1 Rationale . 19
5.2 RBAProcesses . 20
5.3 Process . 20
5.4 Machinery . 22
5.5 MachineryComposition . 22
5.6 Processings . 22
5.7 Processing . 22
5.8 ProcessingMap . 23
5.9 ConstantProcessing . 24

2

5.10 ComponentProcessing . 24
5.11 Examples . 24

6 density.xml 25
6.1 Rationale . 25
6.2 RBADensity . 28
6.3 TargetDensity . 28
6.4 TargetValue . 28
6.5 Examples . 29

7 targets.xml 29
7.1 Rationale . 29
7.2 RBATargets . 30
7.3 TargetSpecies . 31
7.4 TargetReaction . 31
7.5 Examples . 31

8 parameters.xml 32
8.1 Rationale . 33
8.2 RBAParameters . 33
8.3 Function . 33
8.4 Parameter . 35
8.5 Aggregate . 35
8.6 FunctionReference . 36
8.7 Examples . 36

3

1 Introduction

1.1 Overview of an RBA model

In Figure 1, we summarize the systemic cell description underlying to the RBA method
and the mathematical relationships defining the interactions and allocation of resources
between the cellular processes. All these relationships take the form of linear growth-
rate dependent equalities and inequalities: for cells growing in exponential phase at a
rate µ, (I) the metabolic network has to produce all metabolic precursors necessary for
biomass production (equalities C1 in green); (II) the capacity of all molecular machines
must be sufficient to ensure their function, i.e. to catalyze chemical conversions at a
sufficient rate (inequalities C2 in blue for the enzymes and transporters, in yellow for
the molecular machines of macromolecular processes); (III) the intracellular density of
compartments and the occupancy of membranes are limited (inequalities C3 in red);
(IV) mass conservation is satisfied for all molecule types (equalities C1 in green). Taken
together, the equalities and inequalities define, at a given rate µ, a feasibility linear pro-
gramming (LP) problem that can be solved efficiently. Parsimonious resource allocation
between cellular processes is modelled mathematically by optimizing the maximal cell
growth, and computed by solving a series of such LP feasibility problems for different
growth rate values. For a given medium, an RBA optimization problem predicts the
maximal possible growth rate, the corresponding reaction fluxes and the abundances of
molecular machines. Consequently, generating an RBA model requires information for
formalizing constraints C1, C2 and C3 (Figure 1), and in particular: (i) the localization
and the composition of the molecular machines, (ii) the molecules that are consumed
and released by the molecular machines for functioning; (iii) the efficiencies of molecular
machines, i.e. the rates of the process per amount of the catalyzing molecular machine;
(iv) parameters such as the maximal density of each compartment.

1.2 Overview of the document

In this document we present the XML structures used to define a RBA model. A
complete RBA model is composed of the following files:

• metabolism.xml (definition of compartments, metabolic species and metabolic re-
actions).

• proteins.xml (definition of proteins).

• rnas.xml (definition of RNAs).

• dna.xml (definition of DNA).

• enzymes.xml (definition of enzymatic machineries catalyzing metabolic reactions).

• processes.xml (definition of cell processes used to produce macromolecules).

• density.xml (definition of density constraints).

4

metabolism.xml
(section 2)

proteins.xml
rnas.xml
dna.xml

(section 3)

enzymes.xml
(section 4)

processes.xml
(section 5)

density.xml
(section 6)

targets.xml
(section 7)

parameters.xml
(section 8)

Figure 1: Overview of the files used in the XML model. Files were designed according
to the 3 central constraints of RBA.

• targets.xml (definition of production or degradation constraints necessary for growth
and maintenance).

• parameters.xml (definition of user-defined functions).

A valid RBA model must contain all these files with these exact names in the same
directory to be recognized by the RBApy parser. We dedicate one section of this docu-
ment for every file. Each section starts with a subsection containing a brief description
about the relevance of the node in the RBA model. The following subsections are more
technical: we present the nodes that compose the XML structure and show a class di-
agram with the nodes’ attributes and the children nodes that they may/must contain.
The last subsection presents examples from real models and from a minimal model (see
XML tutorial for RBApy).

1.3 Conventions

Before we start looking into files, we briefly review the conventions we used for the RBA
format.

1.3.1 Naming conventions in XML and RBApy

We strongly advise not to modify XML files directly. Instead, RBApy can be used to
access the XML files and modify them through scripts. Writing scripts allows you to

5

reproduce all the modifications you have made automatically. For example, if you need
to regenerate the basic XML model with preRBA, you will be able to re-apply all the
modifications that you had done on your orginal model.

All XML elements can be accessed with the RBApy package. For example, the XML
element Reaction can be accessed through python objects of class Reaction. This mir-
rorring scheme (every XML element has a corresponding python class) is inspired by the
scheme used in SBML and libSBML. However, as in libSBML, the naming conventions
may differ between python and XML:

• XML elements and python classes both follow ThisConvention (e.g. SpeciesReference).

• XML attributes follow thisConvention (e.g. boundaryCondition), while python
attributes follow this_convention (e.g. boundary_condition).

• In XML, list elements follow the convention listOfThings when they are seen as
an instance/subelement (e.g. RBAMetabolism contains one instance of ListOfCompartments
called listOfCompartments). In python, the listOf prefix is dropped and lower
case is used (e.g. RBAMetabolism contains one instance of ListOfCompartments
called compartments).

Throughout this document, XML conventions are used. Please keep in mind that the
convention for attributes/instances is different when using the python package.

1.3.2 Boolean attributes

A boolean attribute evaluates to true if it is "1" or "true" (case does not matter). In
all other cases it evaluates to false.

1.3.3 Variables for user-defined functions

The default variable for functions is the growth rate. It can also be explicitly defined as
by the string growth_rate. Alternatively, a function can take as an input the external
concentration of a metabolite (e.g. for transport functions). A metabolite identifier
is expected to look like met_c, where met is the name of the metabolite and c its
compartment. Note that in the current version of RBApy, every time a function based on
met_c is evaluated, the compartment suffix is ignored and the extracellular concentration
of the metabolite is used no matter where the transport takes place. Typically, glucose
import rates from the periplasm to the cytosol will be based on the concentration of
extracellular glucose.

1.3.4 Units

In the current version of RBApy, units are implicitly defined! It is left to the user to make
sure that the model is consistent. For example, density constraints rely on a weight unit
that is used in the density file (density.xml) and the macromolecule files (proteins.xml,
rnas.xml, dna.xml). You need to make sure that you use the same unit in all files! In

6

the density example, our group usually uses amino acids as a weight unit. The density
file sets an upper limit in the number of amino acids that can be contained in the cell.
The protein file defines the weight of all amino acid residues to be 1. For RNAs and
DNA, we convert the weight of nucleotides to amino acid equivalents. For example, the
weight of an Adenosine residue is 2.9036 (a nucleotide is heavier than an amino acid).

2 metabolism.xml

The metabolism file is strongly inspired by SBML. More precisely, it can be seen as a
subpart of an SBML file. It is used to define compartments, metabolites and reactions.

2.1 Rationale

metabolism.xml contains the most basic bricks of an RBA model. In our effort to define
a minimal structure that contains an RBA model, we decided to start with an SBML
structure and strip it down to elements that are essential to RBA.

metabolism.xml defines the structure of the metabolic network: simple chemical
species (metabolites) that flow between compartments through transport reactions or
transformed into other simple chemical species that will be available as building blocks
for more complex molecules.

The description is entirely static: input fluxes are defined through the medium and
parameters.xml, output fluxes are defined by targets.xml, the dynamics of internal fluxes
is defined in enzymes.xml.

2.2 RBAMetabolism

The outermost part of the metabolism file is an instance of class RBAMetabolism,
shown in Figure 2.

Currently, RBAMetabolism has no simple attributes. It includes exactly one in-
stance of each ListOf container class. All ListOf classes do not have own attributes,
they are merely used to organize a list of instances from another class. This organization
was inspired by SBML.

2.3 Compartment

The Compartment class is used to list existing cell compartments.

The id attribute The id attribute is a string defining the identifier of a compartment.
Every compartment should have a different id.

2.4 Species

The Species class is used to define metabolic species.

7

listOfCompartments

listOfSpecies

listOfReactions

compartment 1..*

species 1..*

reaction 1..*

id: string

Compartment

id: string
boundaryCondition: bool

Species

Reaction

ListOfReactions

ListOfCompartments

ListOfSpecies

RBAMetabolism

Figure 2: XML structure of metabolism document.

id: string
reversible: bool

Reaction

ListOfSpeciesReferences

species: SpeciesId
stoichiometry: float

listOfReactants

listOfProducts 0..1

0..1

1..*

SpeciesReference

speciesReference

Figure 3: Class storing metabolic reactions.

The id attribute The id attribute is a string defining the identifier of a metabolite.

The boundaryCondition attribute The boundaryCondition attribute is a boolean.
If the attribute is set to true, the metabolite is considered to be at a constant concen-
tration. In other words, it is not affected by reactions. This is typical for metabolites in
the external medium.

2.5 Reaction

The Reaction class is used to define metabolic reactions (Fig. 3). Reactants and prod-
ucts are defined using a ListOfSpeciesReferences.

The id attribute The id attribute is a string defining the identifier of a reaction.

8

The reversible attribute The reversible attribute is a boolean. If the attribute is
set to true, the reaction can occur in both directions. If the attribute is set to false, only
the forward reaction can occur.

2.6 SpeciesReference

The SpeciesReference class is used to refer to a metabolic Species and associate with
it a stoichiometry (Fig. 3).

The species attribute The species attribute must match the identifier of a Species.

The stoichiometry attribute The stoichiometry is a positive real number. It
repensents the stoichiometry of a Species in a given context (typically a Reaction).

2.7 Examples

Figure 4 shows a very simple example with 2 compartments, 4 metabolites and 3 reac-
tions. In this example, we tagged M_carbon_source_e with boundary_condition="true",
implying that it is an external metabolite whose concentration is known and set through
the medium in medium.tsv. Boundary metabolites are essential in the model, as they
define input fluxes in the model.

Note that the description of the metabolic network ends with the protein precursor.
Proteins should not be defined in metabolism.xml. Their composition is described in
proteins.xml, while their assembly is described in processes.xml.

3 proteins.xml, rnas.xml and dna.xml

All these files are base on the same class RBAMacromolecules.

3.1 Rationale

In RBA, basic molecules are seen either as metabolites or macromolecules. In the current
version, macromolecules encompass the polymer molecules proteins, RNAs and DNA.
In future versions, we would like to extend the definition to other molecules that have
polymer-like properties in their assembly process (e.g. lipids).

The formal distinction between macromolecules and other molecules is that macro-
molecules can be defined as an ensemble of other, simpler molecules or molecule residues.
Elements of a macromolecule family (proteins, RNAs, DNA) are based on the same sub-
set of component molecules (amino acid residues, vitamins, ions for proteins), share
common assembly processes, but differ in the stoichiometry of components they are
built of.

For example, a protein is often described as a sequence of letters, say "MAGLKYAAALK",
where every letter implicitly represents a component (an amino acid residue). It may

9

Figure 4: metabolism.xml from the minimal model with 2 compartments, 4 metabolites
and 3 reactions.

10

also contain post-translational modifications, such as a phosphorylation on the tyrosine
Y. The RBA format starts by listing the components that are common to all proteins:
all amino acid residues (A, C, .., Y), vitamins, ions and other cofactors. The second
part of the RBA format lists all proteins broken down as an ensemble of components.
For example, the protein above would be described as {(A:4), (G:1), (K:2), (L:2), (M:1),
(Y:1), (Phospho:1)}, where Phospho represents the tyrosine phosphorylation (in this
example, we pooled all possible phosphorylations into a single component).

Note that macromolecule components are not metabolites. How they are built from
metabolites is part of the assembly process defined in processes.xml. They may share
identical identifiers as metabolites, but we advise using different identifiers for clarity.
For example, an amino acid residue is not an amino acid: it is obtained by loading a
charged tRNA onto a nascent protein with the appropriate energetic molecules, while
releasing several byproducts, including an uncharged tRNA. In a sense, a component
can be seen as an atomic assembly action, rather than a submolecule.

The macromolecule files contain static descriptions of the macromolecules. How they
are assembled from metabolites and the machines needed to assemble them are defined
in processes.xml.

3.2 RBAMacromolecules

The outermost part of the protein, RNA and DNA files is an instance of class RBA-
Macromolecules, shown in Figure 5.
RBAMacromolecules has no simple attributes. It contains exactly one instance of

ListOfComponents and ListOfMacromolecules.

3.3 Component

The Component class is used to define the components of a Macromolecule (Fig. 5).
For example, these are expected to be amino acids, vitamins and ions for proteins. Even
if there is a strong connection between metabolic Species and Components, they are
seen as independent entities with separate identifiers. The connection between Species
and Components is established in the process file, where ProcessingMaps define how
components are assembled from metabolites.

The id attribute The id attribute is a string defining the identifier of a component.

The weight attribute The weight attribute is a real number defining the weight of
a component. This information is essential for the density constraints. The weight of a
macromolecule is defined as the sum of the weight of its components. The weight unit
is unspecified, however it should be consistent with the parameters used in the density
constraints.

11

listOfComponents

listOfMacromolecules

component 1..*

macromolecule 1..*

id: string
weight: float
name: string (optional)
type: string (optional)

Component

id: string
compartment: CompartmentId

Macromolecule

ListOfComponents

ListOfMacromolecules

RBAMacromolecules

ListOfComponentReferences
composition0..1

component: ComponentId
stoichiometry: float

ComponentReference
componentReference 1..*

Figure 5: XML structure of macromolecule document.

12

The name and type attributes The name and type attributes are strings that
provide additional information about the component. The name is a standard name
of the component (e.g. full amino acid name). The type can be used to distinguish
components if necessary (e.g. in amino acids, vitamins, ions).

3.4 Macromolecule

The Macromolecule class is used to define macromolecular species (Fig. 5). Its com-
position is given by a ListOfComponentReferences.

The id attribute The id attribute is a string defining the identifier of the macro-
molecule.

The compartment attribute The compartment attribute must match the identifier
of a Compartment. It represents the compartment where the molecule is thought to
be active.

3.5 ComponentReference

The ComponentReference class is used to refer to a Component and associate with
it a stoichiometry (Fig. 5).

The component attribute The component attribute must match the identifier of a
Component defined in the same RBAMacromolecules instance.

The stoichiometry attribute The stoichiometry is a positive real number. It rep-
resents the stoichiometry of a Component (typically how often it appears in a Macro-
molecule, e.g. the number of alanine residues in a protein).

3.6 Examples

The list of components and complexity of macromolecule definitions depends on the
desired level of detail. In real models, we include a large list of possible components
including all amino acid residues and cofactors for proteins (Fig. 6). In processes.xml,
we will define how each component is built from metabolites. In particular, a protein
can only be built if all components can be assembled, including cofactors. For example,
BSU29470 cannot be produced in the absence of magnesium. Note that in this model,
we consider that all amino acid residues have a weight of 1, while cofactors have a weight
of 0. This is a simplifying assumption that enables us to estimate the overall weight of
proteins in the model. We consider that this level of granularity is sufficient to define
density constraints at a satisfactory resolution.

In our minimal model (Fig. 7), we consider that all proteins are made of a single
component that more or less represents all amino acid residues, there is no cofactor. We

13

only define two proteins with different lengths for illustration purposes. In comparison,
the real model contains several thousands of proteins.

4 enzymes.xml

4.1 Rationale

The enzyme file is used to define enzyme composition and their catalytic efficiency. It
defines efficiency constraints in the RBA model. These constraints ensure that a reaction
flux is smaller than the product of efficiency and concentration of the enzyme catalyzing
the reaction.

So far, we have defined two types of basic molecules: metabolites (in metabolism.xml)
and macromolecules (e.g. in proteins.xml). There is a third type of molecule in RBA
models called a molecular machine.

Molecular machines are composed of metabolites and macromolecules. Contrary to
macromolecules, who share a small pool of components and undergo complex assembly
processes, molecular machines can be composed of any metabolite or macromolecule,
and their assembly is described by a single reaction. Molecular machines also have a
functional role within the cell: catalyzing metabolic reactions or assisting the assembly
of macromolecules.

Enzymes are the simplest molecular machines in RBA models, their role is to catalyze
metabolic reactions (as defined in metabolism.xml). Process machines are the other
molecular machines in RBA models, their composition is defined identically to enzymes,
but characterizing their role in the assembly of macromolecules, although similar to the
catalysis description, is significantly more complex (as we will see in processes.xml).

The definition of enzymes contains three parts: the composition of the enzyme, the
reaction the enzyme catalyzes, and the forward and backward efficiencies of the enzyme.
Only one enzyme can be associated with a reaction: if a reaction may be catalyzed by
several enzyme, it must be duplicated so that every enzyme can be associated with a
separate reaction.

4.2 RBAEnzymes

The outermost part of the metabolism file is an instance of class RBAEnzymes, shown
in Figure 8.
RBAEnzymes has no simple attributes. It contains excatly one instance of ListOfEn-

zymes that is used to store Enzyme information.

4.3 Enzyme

The Enzyme class is used to define enzymes (Fig. 8).
It contains aMachineryComposition that refers to metabolic Species andMacro-

molecules composing the Enzyme. Note that the composition can be left unspecified.

14

Figure 6: proteins.xml from the model automatically generated by RBApy for the model
bacteria B. subtilis. Large chunks of the files were removed for brevity. The
file contains two lists. The component list contains construction blocks for
proteins: amino acid residues and cofactors such as ions and vitamins. The
macromolecule list defines all the proteins in the system. Here we show two
examples of cytosolic proteins, defined as an ensemble of amino acid residues
and cofactors.

15

Figure 7: proteins.xml from the minimal model. In the minimal model, we do not de-
tail every amino acid residue, we just consider that proteins contain different
amounts of a "protein_component_residue".

listOfEnzymes

enzyme

1..*

ListOfEnzymes

RBAEnzymes

machineryComposition MachineryComposition

Enzyme

id: string
reaction: ReactionId
forwardEfficiency: ParameterId
backwardEfficiency: ParameterId
zeroCost: bool (optional)

0..1

Figure 8: XML structure of enzyme document.

16

In this case, the reaction associated with the enzyme is considered spontaneous.

The id attribute The id attribute is a string defining the identifier of the enzyme.

The reaction attribute The reaction attribute must match the identifier of a metabolic
Reaction. It represents the reaction catalyzed by the enzyme. This must be a one-to-
one mapping. A Reaction can only have one associated Enzyme. If several Enzymes
catalyze the same Reaction, the Reaction must be duplicated.

The forwardEfficiency attribute The forwardEfficiency attribute must match the
identifier of a parameter (Function or Aggregate). It represents the forward catalytic
constant.

The backwardEfficiency attribute The backwardEfficiency attribute must match
the identifier of a parameter (Function or Aggregate). It represents the backward
catalytic constant (only applicable if reaction catalyzed by enzyme is reversible).

The zeroCost attribute The zeroCost attribute is a boolean value. If set to true,
the reaction associated may occur without having to produce the enzyme. If set to false
or unspecified, an efficiency constraint is created where the flux through the reaction
has to be smaller than the product of enzyme efficiency and enzyme concentration.

4.4 Examples

A typical enzymes.xml contains a long list of enzymes (Fig. 9), typically one enzyme
per metabolic reaction (Fig. 10). If a reaction occurs spontaneously, it is not technically
necessary to associate a reaction with it, but RBApy creates an enzyme none-the-less,
showing that the reaction was correctly identified as spontaneous.

The MachineryComposition is identical to a metabolic reaction, except that it
may contain macromolecules, not just metabolites. In the two examples, enzymes are
composed of proteins, with identifiers defined in proteins.xml. The reaction could also
have included byproducts by defining a ListOfProducts. A typical example would have
been the inclusion of GTP as a reactant and GDP as a byproduct of the assembly of
some enzymes, but we neglected these costs in our models.

Note that the efficiencies are not numerical values: they are parameter identifiers, all
parameters of the model being defined in parameters.xml. Also note that zero_cost is a
flag that is almost always set to false. Setting it to true effectively removes the enzyme,
making the associated reaction spontaneous. It was included for retrocompatibility with
early RBA versions, where it was used to counterbalance numerical instabilities.

17

Figure 9: enzymes.xml from a model automatically generated by RBApy for the model
bacteria E. coli. Large chunks of the files were removed for brevity. The list
starts with 4 enzymes with no composition, indicating that the associated re-
actions occur spontaneously. The last two enzymes have different compositions
but are associated with identical metabolic reactions: either of these enzyme
may be produced by the cell to catalyze the reaction.

Figure 10: enzymes.xml from the minimal model. We associate one enzyme with all
3 reactions defined in metabolism.xml. Enzymes are defined by using the
proteins that we defined in proteins.xml.

18

5 processes.xml

5.1 Rationale

The process file is used to define cellular processes involved in the production or degra-
dation of macromolecules. In proteins.xml, rnas.xml and dna.xml, we have described
proteins in terms of components (amino acid residues, nucteotides, protein cofactors).
processes.xml defines how components are assembled from metabolites and what ma-
chines are needed to catalyze the assembly.

A typical example of a cellular process is protein translation. Translation relies on ribo-
somes as a molecular machine, and participates in protein production. The metabolites
used during proteins assembly include charged and uncharged-tRNAs and GTP/GDP,
e.g. an alanine residue is obtained by using a charged tRNA-alanine and GTP as reac-
tants, generating an uncharged tRNA, GDP and water as a byproduct.

Theoretically, the translation of a protein could be written down as a single reaction,
listing all charged-/uncharged-tRNAs, GTP/GDP, according to the SBML format. In
a model containing 1000 proteins, we would have to write 1000Âăreactions that follow
the same template. Now, if we add other processes undergone by proteins (translation,
chaperoning, translocation), we would have to add more reactions per protein to account
for the fact that each process is catalyzed by the appropriate molecular machine such
as an enzyme or a ribosome. For example, if all proteins need chaperones for folding,
we need to add 1000 reactions for chaperoning to the pre-existing 1000 reactions for
reaction synthesis. If we add translocation/transport of proteins to target locations,
that’s 1000 more reactions. If we update the template of one of the process, e.g. we
revise the number of GTPs that are consumed per amino acid for protein synthesis, we
need to rewrite all 1000 reactions describing protein synthesis, which is an extremely
error-prone process.

RBA Processes can be seen as template reactions that specify howMacromolecules
are produced and degraded based on theirComponents. Instead of writing one reaction
per protein, we write one generic reaction per process, and proteins are seen as input of
these processes. Every cellular process is described by (1) the molecular machine that
catalyzes the process (e.g. the ribosome), (2) the list of macromolecules to be processed
or produced (e.g. proteins), (3) the processing costs (e.g. tRNAs and GTP consumed to
assemble an amino acid), and (4) the efficiency of the molecular machine in catalyzing the
process, which corresponds to the rate of the process per amount of process machinery
(e.g. translation rate for ribosomes in amino acids per hour).

The processing costs are defined by a ProcessingMap, which explicits how every
Component is processed, i.e. what Species are consumed and what Species are
produced as byproducts of the assembly process. For example, in order to assemble an
Alanine residue, a charged alanine-tRNA is consumed along with GTP, and an uncharged
alanine-tRNA and GDP are generated as byproducts. ProcessingMaps define one
reaction per Component, frow which the overall production/degradation reactions of
Macromolecules can be deduced.
Processes are flexible: Macromolecules can be listed as input of several processes.

19

listOfProcesses

listOfProcessingMaps

process 1..*

processingMap 1..*

Process

ProcessingMap

ListOfProcesses

ListOfProcessingMaps

RBAProcesses

Figure 11: XML structure of process document.

For example, proteins may undergo translation, folding and translocation. The overall
production/degradation reaction of a Macromolecule reflects all the Processes it tra-
verses. When we modify a process, e.g. we update the number of GTPs consumed per
amino acid, it automatically affects the production of all input macromolecules.

5.2 RBAProcesses

The outermost part of the process file is an instance of class RBAProcesses, shown in
Figure 11.
RBAProcesses has no simple attributes. It contains exactly one instance of ListOf-

Processes and ListOfProcessingMaps.

5.3 Process

The Process class is used to define cellular processes (Fig. 12).
A Process revolves around 2 optional substructures. The Machinery is the molecu-

lar entity enabling the process (e.g. ribosome for translation.) Each machinery unit has
a limited production/degradation capacity. Every macromolecule produced by a process
has a metabolite cost (metabolites needed to produce/degrade it and byproducts). How-
ever, if a machinery is defined, there is an additional cost to produce the machinery that
will enable the production/degradation of the target. This is similar to the production
of Enzymes in order to catalyze metabolic Reactions.
Processings define the sets of macromolecules that a process produces or degrades.

The production reaction of a Macromolecule is determined by the Processes it goes
through. For example, a protein’s production reaction is defined by listing the protein
as an input in the Processings of the translation process. If a protein is not listed
as an input of any process, its production reaction is empty, meaning that it does not

20

MachineryComposition

Process

id: string
name: string (optional)

0..1 listOfReactants

listOfProducts

machinery

MachineryComposition

processings Processings0..1

0..1 0..1
Machinery

TargetValue

machineryComposition

capacity

Processing

processingMap: ProcessingMapId
set: SetId

processing
1..*

listOfProductions

listOfDegradations
0..1

0..1 ListOfProcessings

ListOfSpeciesReferences

listOfInputs
ListOfSpeciesReferences

1

Figure 12: Class used to store processes.

21

cost anything to produce the protein. Processings break down Macromolecules in
metabolic Species and Machinery costs.

The id attribute The id attribute is a string defining the identifier of a process.

The name attribute The name attribute is a string that can be used to give the
process a more human understandable name.

5.4 Machinery

The Machinery class defines the machinery used by a process (Fig. 12). Machinery
has no simple attributes. If a Machinery is defined, it defines a capacity constraint.
Every Machinery unit is produced accordint to the reaction defined by a Machin-
eryComposition. Every unit also has a capacity defined by a TargetValue. The
capacity defines how many targets a Machinery can process in 1 unit of time. Total
capacity (base capacity multiplied by number of Machinery units) must always exceed
the number of targets produced.

5.5 MachineryComposition

The MachineryComposition class defines the assembly of a complex molecular ma-
chinery (Fig. 12). MachineryComposition has no simple attributes. It contains two
ListOfSpeciesReferences. One is for reactants, the other for potential byproducts of
the assembly reaction of the complex itself (e.g. GDP when connecting ribosomal sub-
units). Note that in this case, SpeciesReferences can refer to both metabolic Species
and Macromolecules. The assembly reaction should contain obvious components of
the machinery, but also metabolic costs related to assembly (such as ATP/GTP costs)
unless these costs are already covered by a process.

5.6 Processings

TheProcessings relatesMacromolecules production/degradation to some givenPro-
cesses (Fig. 12). Processings has no simple attributes. It may contain two ListOf-
Processings, one for production and one for degradation.

5.7 Processing

The Processing class defines how Macromolecules are produced/degraded (Fig. 12).
Processing is used to break down Macromolecules into metabolites by linking them
to a ProcessingMap. It contains one ListOfSpeciesReferences that lists Macro-
molecules that are inputs of this process. In this context, the species of a SpeciesRef-
erence must be a macromolecule and the stoichiometry attribute is ignored.

22

listOfComponentProcessings

ListOfComponentProcessings

ProcessingMap

id: string

0..1

listOfProducts 0..1 ListOfSpeciesReferences

ConstantProcessing

constantProcessing

0..1

ComponentProcessing

component: ComponentId
machineryCost: float (optional)

componentProcessing

1..*

listOfReactants
0..1

listOfProducts

listOfReactants

0..10..1

Figure 13: Class used to compute production/degradation of macromolecules.

The processingMap attribute The processingMap attribute must match the iden-
tifier of a ProcessingMap. This ProcessingMap will be used to compute the pro-
duction/degradation reaction of Macromolecules, as well as Machinery costs.

The set attribute The set attribute must refer to a Macromolecule set. Currently,
the only acceptable values are protein, rna and dna. Macromolecules that are listed
as input must belong to this set.

5.8 ProcessingMap

The ProcessingMap class is used to convert Macromolecules in metabolic and ma-
chinery costs (Fig.13).

There are two types of processings. The ConstantProcessing lists metabolites that
are always consumed or produced when processing a macromolecule, no matter its com-
position (e.g. translation initiation). The ListOfComponentProcessing container
details ComponentProcessings depending on the individual Components of the
Macromolecule. They cover metabolites used to assemble the Component onto the
nascent Macromolecule. They also cover machinery costs, i.e. how many Machinery
units are needed to assemble the Component.

23

The id attribute The id attribute is a string defining the identifier of a processing
map.

5.9 ConstantProcessing

The ConstantProcessing class defines metabolites consumed and byproducts gener-
ated by an assembly process (Fig.13). It contains two ListOfSpeciesReferences, one
for metabolites consumed and one for metabolites produced. Note that in this context,
a SpeciesReference must refer to a metabolic Species.

5.10 ComponentProcessing

TheComponentProcessing class defines metabolites consumed and byproducts gener-
ated when assembling a specific Component (Fig.13). It contains two ListOfSpecies-
References, one for metabolites consumed and one for metabolites produced. Note that
in this context, a SpeciesReference must refer to a metabolic Species. Additionally,
it defines a machinery cost used in a Machinery’s capacity constraint.

The component attribute The component attribute is a string that must match
the identifier of a Component.

The machineryCost attribute The machineryCost attribute is a real value that is
used to compute how many Machinery units are needed to assemble the Component.
For example, let the machinery cost for the processing of an amino acid be 1. The
capacity of the Machinery (the ribosome) is the number of amino acids it can assemble
per unit of time. The machinery cost allows to compute how many ribosomes are needed
to produce the Component and, in the end, the Macromolecule (in this example the
number of amino acids divided by the ribosome’s capacity).

5.11 Examples

The best example to illustrate processes is protein translation (Fig. 14). The XML
structures are quite long, but processes depend on 3 relatively simple substructures.
First, we define the process machine. The definition is reminiscent of enzymes: a machine
composition, here all ribosome components (proteins and RNAs), and a catalytic rate,
here expressed in number of amino acids per hour. Second, we list all macromolecules
that undergo the process, here all proteins. Finally, the processing map, containing
one reaction per macromolecule component. The question this structure answers is the
following: my macromolecule contains a component named "alanine residue", how do
I produce it from metabolites? Is the process machine involved? The answers are: for
every alanine residue, you consume a charged t-RNA, water and GTP, by-producing an
uncharged t-RNA, GDP, phosphate and protons. The machine cost is an additive cost
that is related to the capacity defined earlier. For translation, we define the machine
cost for every amino acid to be 1. In the end the total production cost of a protein is

24

its number of amino acids. We defined the ribosome capacity in terms of amino acid
per hour, say 1000. If a protein has 500 amino acids, a single ribosome will be able to
produce two copies of this protein per hour.

The machine costs define a capacity constraint for the cell: in order to be viable,
the cell needs not only to produce essential macrocomponents, but also the machines
that assemble these macrocomponents. Production of machines cannot be neglected,
as they increase very rapidly. When the production rate of macromolecule increases,
the amount of machines needed for production increases in a seemingly linear fashion.
However, machines are themselves composed of macromolecules (Fig. 15), and you need
more machines to assemble those. Roughly speaking, if you want more proteins, you
need to produce more ribosomes. But if you want more ribosoms, you need ribosomes
to produce the new ribosomes. In the end the amount of machines increases more than
linearly, imposing strong constraints on the cell.

6 density.xml

The density file contains density constraints for the RBA model.

6.1 Rationale

A cell can only contain a limited number of macromolecules: there is a threshold that
the total density (weight per unit volume) cannot exceed. Every macromolecule has a
weight that equals the sum of its components’ weights:

Wi =
∑

c∈components

wc

If we assign every macromolecule a concentration Ci, the total density is:∑
i∈[1..M]

CiWi

where M is the total number of macromolecules.
There are two types of density contraints. In the first case, the density must be equal

to some density d: ∑
i∈[1..M]

CiWi = d

Alternatively, the density must not exceed some maximal density dmax∑
i∈[1..M]

CiWi ≤ dmax

The XML format allows for equality and inequality constraints by specifying whether
the bound is a lower bound (not applicable for density), an upper bound (like dmax), or
a set value (like d).

25

Figure 14: processes.xml from the hand curated model for model bacteria B. subtilis.
Large chunks of the files were removed for brevity. This example focuses on
some aspects of the definition of the translation process. The first element
that is defined is the process machine: the ribosome. The machine is defined
as a single assemble reaction from macromolecules (ribosomal proteins and
rRNAs) and metabolites (GTP needed to assemble ribosomal proteins and
rRNAs). Process machines have a catalytic rate termed capacity: for the
ribosome, this is the number of amino acids processed per hour, later defined
by the parameter P_TA_capacity. Finally the process contains the list of
macromolecules to produce or degrade, here all the proteins in the model. A
processing map explicits how macromolecules are produced from their com-
ponents. Here, the processing map starts by defining metabolites that are
consumed and produced independent of protein composition (translation ini-
tiation). We also show how an alanine residue is built from metabolites.

26

Figure 15: processes.xml from the minimal model. We only define one process corre-
sponding to pseudo-translation. It contains a two-protein machine with a
capacity that we will define later. We list all the proteins from the model as
input of translation. Proteins only had one component so the processing map
is short. We define a constant cost corresponding to translation initiation
and metabolites consumed for every residue that has to be assembled.

27

listOfTargetDensities

targetDensity

0..*

ListOfTargetDensities

RBAParameters

compartment: CompartmentId

TargetDensity

value: ParameterId (optional)
lb: ParameterId (optional)
ub: ParameterId (optional)

TargetValue

Figure 16: XML structure of density document.

6.2 RBADensity

The outermost part of the density file is an instance of class RBADensity, shown in
Figure 16.
RBADensity has no simple attributes. It includes exactly one instance of ListOf

container classes. All ListOf classes do not have own attributes, they are merely used
to organize a list of instances from another class.

6.3 TargetDensity

The TargetDensity class is used to define density constraints (Fig. 16). In a RBA
model, a density constraint defines how many molecules a given compartment can con-
tain. It inherits TargetValue for the constraint definition part.

The compartment attribute The compartment attribute must match the identifier
of a Compartment.

6.4 TargetValue

The TargetValue class is used to define the sign of an additional RBA constraint and
the value of its second member (Fig. 16). It is designed to be inherited. The child class
usually holds information about the first member of the constraint (e.g. compartment
for a density constraint, metabolite for a production constraint).

The value, lowerBound and upperBound attributes Every attribute can be left
undefined, or contain the identifier of a Function or an Aggregate.

28

Figure 17: density.xml from a hand-curated model for the model bacteria B. subtils.
The model defines two density constraints, one per compartment. By us-
ing upperBound, we define two inquality constraints: the density of macro-
molecules may not exceed parameter Cytoplasm_density in the cytoplasm or
Cell_membrane_density in the membrane, but any lower value is acceptable.

Figure 18: density.xml from the minimal model. There is only one compartment in the
minimal model, for which we define an upperBound type density constraint.

If value is defined, the constraint is an equally constraint. lowerBound and upper-
Bound are ignored. If value is undefined, lowerBound (resp. upperBound) defines
a lower bound (resp. upper bound) inequality constraint. Note that lowerBound and
upperBound may both be defined, yielding two separate inequality constraints.

6.5 Examples

density.xml is by far the shortest file in an RBA model (Fig. 17 and 18). Usually it
contains one constraint per compartment, even though there may be zero or more than
one constraint per compartment. In general, we advise using inequality constraints for
greater flexibility in the model.

7 targets.xml

The targets file is used to define production and degradation constraints, i.e. fluxes
of metabolic Species or Macromolecules that must be maintained for the cell to be
functional.

7.1 Rationale

In an RBA model, the production of machines (enzymes and process machines) is au-
tomatically computed to sustain the metabolic fluxes and the production of macro-
molecules necessary to achieve optimal growth rate. However, in order to grow, the cell
must produce more than just enzymes and ribosomes. These production constraints are

29

RBATargets

TargetValue

TargetSpecies

species: SpeciesId

TargetReaction

reaction: ReactionId

listOfConcentrations

listOfProductionFluxes

listOfDegradationFluxes

listOfReactionFluxes

0..1
ListOfTargetSpecies

0..1
0..1

ListOfTargetReactions0..1

targetSpecies1..*

targetReaction1..*

Figure 19: XML structure of target document.

defined in targets.xml as fluxes or concentrations that a cell must maintain in order to
be functional.

Typical targets include molecules such as DNA, mRNAs, or housekeeping proteins
whose concentration must be maintained at all times. Structural molecules contained in
cell wall for example, must also be maintained at a constant concentration. A less obvious
example are essential metabolites whose concentration is high and well regulated, such as
NADP/NADPH. Defining a target concentration for NADP forces de novo production
of NADP, otherwise the model assumes that recycling existing NADP is sufficient to
achieve any growth rate. We suggest defining target concentrations for metabolites
whenever metabolomic data are available.

In general, targets are defined as concentrations to maintain, but it’s also possible to
specify absolute fluxes of production for metabolites or reactions. A typical reaction flux
that must be maintained is the production of maintenance ATP (ATP used by secondary
processes of the cell).

From the XML point of view, the definition of target constraints uses the same struc-
ture as the density constraints. In particular, the constraints may be equalities (the
concentration must be maintained to that exact value) or inequalities (the concentra-
tion must be maintained between these bounds).

7.2 RBATargets

The outermost part of the process file is an instance of class RBATargets, shown in
Figure 19.
RBATargets has no simple attributes. It contains 3 ListOfTargetSpecies. These

30

targets allow to define metabolic Species orMacromolecule fluxes. One is for produc-
tion fluxes, another for degradation fluxes. The last list is for maintaining a target at a
given concentration. The difference with a simple production flux is that keeping a tar-
get at a concentration depends on growth rate. More precisely, the flux needed to keep
the concentration is the growth rate multiplied by the target concentration. Note that
all fluxes must be positive. If the target is a Macromolecule, production/degradation
can only occur if the Processings section of some Process defines how the Macro-
molecule is actually produced/degraded.
It contains a ListOfTargetReactions. It is also possible to define target fluxes

as reaction fluxes. These targets add constraints on the flux of a specific metabolic
Reaction. In this case, fluxes may be positive or negative.

7.3 TargetSpecies

The TargetSpecies class defines constraints for a species flux (Fig. 19). It inherits
TargetValue for the constraint definition part, allowing for equality or inequality con-
straints.

The species attribute The species attribute is a string that must match the identifier
of a metabolic Species or a Macromolecule. Note that the Macromolecule must be
broken down into metabolite costs through the Processings section of some Process.
Otherwise no cost will be applied.

7.4 TargetReaction

The TargetReaction class defines constraints for a reaction flux (Fig. 19). It inher-
its TargetValue for the constraint definition part, allowing for equality or inequality
constraints.

The reaction attribute The reaction attribute is a string that must match the iden-
tifier of a metabolic Reaction.

7.5 Examples

Most targets in an RBA model are concentration targets for DNA production, mRNA
production, housekeeping protein production, de novo metabolite production, by speci-
fying a concentration that must be maintained (Fig. 20 and 21).

The second class of targets are fluxes related to degradation. For example, our B.
subtilis model explicitly accounts for mRNA degradation. As a result, there are 3 tar-
get fluxes associated with mRNAs: a flux associated with the target concentration to
maintain, a flux indicating how many molecules are degraded by seconds (how mRNAs
are degraded is defined in processes.xml), and an absolute production flux that exactly
compensates degradation (Fig. 20).

31

Figure 20: targets.xml from a hand-curated model for the model bacteria B. subtilis.
Large parts of the files where removed for brevity. The first 3 targetSpecies
encompass all nonenzymatic proteins that must be produced by the cell for
housekeeping purposes. mRNAs have two production constraints: the first
contraint defines a flux that must be generated in order to maintain their
concentration, the second constraint defines a flux that must be generated
in order to compensate degradation (defined later in the file). Finally, there
are two example of reaction targets: a lowerBound for maintainance ATP
production, and a set bound for the reaction controlling flagella movement.

The third class of targets are targets that reference reactions instead of metabolic
species or macromolecules. Maintenance ATPÂăis one of the most common examples,
but there are a lot of contextual requirements that can be written in this form, such
as flagella movement, response to stresses such as oxidative stresses causing NADPH
consumption.

8 parameters.xml

The parameter file contains user-defined parameters and functions.

32

Figure 21: targets.xml from the minimal model. We pool all non-machine production
requirements in a generic biomass production requirement.

8.1 Rationale

The file parameters.xml contains all numerical values occurring in the model (except
for stoichiometries). Nearly all other files refer to this file, as we have seen through-
out the examples, where numerical values were defined as parameter identifiers. The
most common parameters are: total amino acid concentrations, fractions of protein
per compartment, percentages of non-enzymatic protein per compartment and cellular
machinery, target fluxes for metabolites and macromolecules, efficiencies of enzymes,
transporters and molecular machines.

A parameter may be defined as: a constant, a function of growth rate, or a function
of an external metabolite concentrations (defined in medium.tsv). Currently, the format
supports the following function types: linear, inverse, exponential and Michaelis-Menten.
The function types have been chosen to reflect common biochemical functions. Typically,
enzyme efficiencies vary linearly with growth rate and transporters have activities that
depend on the concentration of metabolites transported according to a Michaelis-Menten
function.

A parameter can also be defined as a product of functions, called an “aggregate”. For
example, the activity of a transporter can be described as the product of a growth rate-
dependent maximal activity and a concentration-dependent Michaelis-Menten term. All
parameters are allowed to have growth-rate or concentration dependencies. For instance,
maximal densities and target fluxes can be defined as constant or growth rate dependent.

8.2 RBAParameters

The outermost part of the parameter file is an instance of class RBAParameters,
shown in Figure 22.
RBAParameters has no simple attributes. It includes exactly one instance of

ListOf container classes. All ListOf classes do not have own attributes, they are
merely used to organize a list of instances from another class.

8.3 Function

The Function class is used for user-defined functions and parameters (Fig. 23). The
default variable of a function is the growth rate, but it may also be the extracellu-

33

listOfFunctions

listOfAggregates

function 0..*

aggregate 1..*
Aggregate

ListOfAggregates

ListOfFunctions

RBAParameters

Function

Figure 22: XML structure of parameter document.

id: string
variable: string
type: FunctionType

Function

0..*

ListOfParameters
listOfParameters

id: string
value: float

Parameter

parameter

Figure 23: Class used to store user-defined functions.

lar concentration of a metabolite. Every function holds a ListOfParameters, where
Parameter are defined according to each type of function.

The id attribute The id attribute is a string defining the identifier of the function.

The variable attribute The variable attribute is a string defining the variable of
the function. If empty or set to growth_rate, the variable is the current growth rate.
Alternatively, the variable may the prefix of a metabolite.

The type attribute The type attribute is a string that must match a known function
type. Currently, the supported types are:

• constant. Constant function with parameter CONSTANT.

• linear. Linear function with parameters LINEAR_CONSTANT, LINEAR_COEF,
X_MIN, X_MAX, Y_MIN, Y_MAX. The 4 last parameters are used to saturate
the function. The computation is done in three steps. First, if the variable (e.g.
growth rate) is outside of the [X_MIN, X_MAX] range, it is set to the closest
value in that range. Second, the function is computed. Finally, if the return value
is outside of the [Y_MIN, Y_MAX] range, it is set to the closest value in that

34

id: string
type: AggregateType

Aggregate

1..*

ListOfFunctionReferences
listOfFunctionReference

FunctionReference

functionReference

function: FunctionId

Figure 24: Class used to store user-defined aggregates.

range. The range parameters can be set to infinity by setting them to ("-inf") or
("inf").

• exponential. Exponential function with parameter RATE.

• indicator. Indicator function with parameters X_MIN and X_MAX. This func-
tion returns one if the variable (growth rate) is in the [X_MIN, X_MAX], zero
otherwise.

• michaelisMenten. Irreversible Michaelis Menten function with parameters kmax,
Km and Y_MIN (optional). If Y_MIN is defined, any return value lower than
Y_MIN will be set to Y_MIN.

8.4 Parameter

The Parameter class is used to store the values of function parameters (Fig. 23).

The id attribute The id attribute is a string that should match a valid parameter
identifier. The list of valid parameters for each type of Function is listed above.

The value attribute The value attribute is a real number representing the value of
the attribute.

8.5 Aggregate

The Aggregate class is used to assemble user-defined functions (Fig. 24). Every aggre-
gate holds a ListOfFunctionReferences, where each FunctionReference refers to a
previously defined function.

The id attribute The id attribute is a string defining the identifier of the aggregate.

The type attribute The type attribute is a string that must match a known aggregate
type. Currently, the supported types are:

• multiplication. The result is the multiplication of the values returned by the
function listed in the aggregate at current growth rate.

35

8.6 FunctionReference

The FunctionReference class is used to refer to a user-defined Function (Fig. 24).

The function attribute The function attribute is a string that must match the iden-
tifier of a user-defined Function.

8.7 Examples

parameters.xml is one of the longest files in the model as it contains all numerical values
in the model. All parameters follow the same rules, no matter whether they define a
density constraint, a target concentration or a catalytic activity.

In the first example (Fig. 25), we show the definition of a parameter related to the
density constraint, protein_concentration. This parameter reflects measured protein
densities, later used to define a growth-dependent maximal density bound. The measures
showed that the density of proteins decreases with growth rate: the density bound
becomes smaller for larger growth rates. We also show the definition of a transporter
catalytic rate. A transporter can be defined in two parts: its base efficiency (potentially
growth-rate dependent, here modeled as a constant), and transport factors related to
the concentration of the transported molecule and potential cofactors.

In the example from the minimal model (Fig. 26), we see how quickly parameters
accumulate: we need parameters for catalytic activities, process machines, target con-
centrations and density constraints.

36

Figure 25: parameters.xml from a hand-curated model for model bacteria B. subtilis.
Large parts of the file were removed for brevity. Parameters are defined
either as constants, functions (e.g. linear or Michealis-Menten), or aggregates,
representing the multiplication of functions. Functions can be defined in
terms of growth rate (the default) or concentration of external metabolites.
Aggregates may contain an arbitrary number of functions, and functions in
an aggregate can be defined according to different variables (growth rate,
concentration of different metabolites).

37

Figure 26: parameters.xml from the minimal model. For simplicity, all parameters were
defined as constants, except for transport terms, which adopt the traditional
Michaelis-Menten.

38

	Introduction
	Overview of an RBA model
	Overview of the document
	Conventions
	Naming conventions in XML and RBApy
	Boolean attributes
	Variables for user-defined functions
	Units

	metabolism.xml
	Rationale
	RBAMetabolism
	Compartment
	Species
	Reaction
	SpeciesReference
	Examples

	proteins.xml, rnas.xml and dna.xml
	Rationale
	RBAMacromolecules
	Component
	Macromolecule
	ComponentReference
	Examples

	enzymes.xml
	Rationale
	RBAEnzymes
	Enzyme
	Examples

	processes.xml
	Rationale
	RBAProcesses
	Process
	Machinery
	MachineryComposition
	Processings
	Processing
	ProcessingMap
	ConstantProcessing
	ComponentProcessing
	Examples

	density.xml
	Rationale
	RBADensity
	TargetDensity
	TargetValue
	Examples

	targets.xml
	Rationale
	RBATargets
	TargetSpecies
	TargetReaction
	Examples

	parameters.xml
	Rationale
	RBAParameters
	Function
	Parameter
	Aggregate
	FunctionReference
	Examples

