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1. Overview of RBA constraints

In order to build an RBA system, we need to build three sets of constraints.

(C1) Mass conservation.

(C2) Capacity constraints for enzymes and process machines, e.g., ribosomes.

(C3) Density constraints.

All these constraints are linear (in)equalities. We will write them in matrix form, as
it is the best way to summarize all information needed to build a constraint.

1.1. Important concepts and conventions

Production/degradation vector for macromolecules In the following, each macro-
molecule is described by its production vector. It is a column vector containing the
metabolites necessary to build it, with a minus sign for metabolites consumed and a
plus sign for byproducts generated. Similarly, we define degradation vectors.

Concentration to flux conversion Suppose you have a metabolite at concentration
C = n/V . At growth-rate µ, we have dV ' µV . The variation of concentration due to
dilution is

dC = d(n/V ) = −n/V 2dV = −µC

In other words, in order to keep the concentration constant, we need an input metabolite
flux of

ν = µC

When a variable is expressed as a concentration, it may be necessary to convert it to a
flux by using this relationship. When necessary, we indicate this conversion by inserting
a conversion matrix between the main matrix and the variable vector.

Variable representation When we go to full matrix representation in the figures, vari-
ables are represented as a single row vector below matrices. This convention clarifies
how columns and variables are associated. Note the transpose at the end of the row
vector if you are worried about mathematical purity.

1.2. Variables

RBA uses 4 sets of variables:

• ν = (ν1, . . . , νR): Fluxes through metabolic reactions, where R is the number of
reactions.

• E = (e1, . . . , eE): Enzyme concentrations, where E is the number of enzymes.
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• P = (p1, . . . , pP ): Process machine concentrations, where P is the number of
processes.

• T = (t1, . . . , tT ) = (TF, TC): Target values, where T is the number of targets.
Targets may be expressed as fluxes or concentrations. We note target fluxes TF
and target concentrations TC. When necessary, we assume that flux targets are
all listed first, i.e., T = (TF, TC).

Targets are production/degradation requirements for the cell to be fully functional (e.g.
keeping key metabolites at some given concentration, producing housekeeping proteins,
producing/degrading mRNAs). Note that target values may actually be predetermined
constant values, while all others are true variables that must be optimized. We will see
later how predetermined constant values may be eliminated.

1.3. Mathematical formulation of RBA constraints

Before we group all constraints and variables into a single matrix, here is an overview
of the 3 family of constraints used in RBA models.

(C1) Mass conservation

‘Variable’ terms︷ ︸︸ ︷
Sν

metabolic flux
generated by
metabolism

+ µCEE + µCPP
precursors
used/byproducts
generated by produc-
ing new molecules

+

Constant terms︷ ︸︸ ︷
µCTCTC + CTFTF

precursors
used/byproducts
generated by produc-
ing new molecules

= 0

where S is the stoichiometry matrix of the metabolism. C. are composition matrices
where every column is the composition of one of the molecules, e.g. (CE)i is the com-
position of the ith enzyme (see definition of composition vector above). Note the usage
of µ along with E, P and TC as way of converting concentrations into fluxes.

(C2) Capacity constraints

diag
(
kbackward
E

)
E ≤ ν ≤ diag

(
kforward
E

)
E

where kbackward
E is a vector containing the backward catalytic constants of enzymes.

µMCEE + µMCPP + µMCTCTC +MCTFTF ≤ diag (kP )P

where kP is a vector containing the capacities of process machines. MC. are matrices
containing machine costs to produce macromolecules, e.g. (MCE)ij quantifies how much
the machine from the ith process is needed to build the jth enzyme. For example, the
ribosome (machine of translation process) has a processing capacity of kP ' 72, 000
amino acid per hour. If an enzyme contains 3 proteins of 300 amino acid each, its
machine cost is MC = 900.
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Figure 1: Mass conservation constraint. Bars in the main matrix are metabolic reaction
or production/degradation vectors associated with each variable.

(C3) Density constraints

WEE +WPP +WTCTC ≤ D

where W. are weight matrices, e.g. (WE)ij is the weight of the jth enzyme in the ith
compartement. D is a vector containing the maximal weight per compartement, e.g. Di

is the maximum weight in the ith compartment.

2. Constraint matrices

2.1. Mass conservation (C1)

The mass conservation constraint is represented by a matrix where rows are metabolites,
labelled M = (m1, . . . ,mM). Metabolite fluxes must cancel out in order to achive mass
conservation. Note that numerous variables are expressed as concentrations and must
be converted to fluxes as explained previously.

Figure 1 shows how mass conservation is expressed in matrix formalism. The main
matrix contains the metabolic reactions, the production vectors for catalytic elements,
the production/degradation vectors for target elements. This matrix is growth-rate
independent. The second matrix converts variables that are expressed as concentrations
to fluxes. This can also be seen as multiplying the appropriate columns in the main
matrix by the growth-rate.

2.2. Capacity constraints (C2)

The capacity constraintes are represented by a matrix where rows are enzymes or pro-
cess machineries. Currently, we use two different formalisms for enzymes and process
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Figure 2: Capacity constraints.

machineries.
Enzymes are associated to exactly one reaction that may be reversible. For every

enzyme we have the following constraint:

ν ≤ kforwardei

where ν is the flux through the reaction catalyzed by ei. If the reaction is irreversible,
we have the additional constraint

ν ≥ −kbackwardei

In order to write all constraints, we need a reaction to enzyme mapping. This is rep-
resented by a matrix where we have one row per constraint. Each row has a 1 on the
column corresponding to the reaction catalyzed, and 0s everywhere else.

Process machineries participate in the synthesis/degradation of several macromolecules
(enzymes, machineries and targets). For every target, we have a constraint of the form

[machinery cost].[E,P, T ]T ≤ kmachinerypi

Every macromolecule has a set of machinery costs associated with it. It tells how much
a machinery is used in order to produce/degrade the macromolecule (the cost is often
0).

The final matrices are very sparse (Fig. 2). A first matrix contains the reaction to
enzyme mapping and the machinery costs. This matrix is growth-rate independent. A
second matrix contains efficiencies, that may depend on growth-rate. Note that we did
not need to convert concentrations to fluxes here.
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Figure 3: Density constraints.

2.3. Density constraints (C3)

Density constraints are represented by matrices where rows are compartments, labelled
C = (c1, . . . , cC).

Every variable that represents a concentration participates to this constraint. For
every macromolecule, we define a weight vector that defines how much volume one
molecule occupies in every compartment (in user defined units). By putting these vectors
together we get a weight matrix.

The user also defines a vector of maximal weights for every compartment, yielding a
simple set of constraints (Fig. 3). Only the right-hand part may contain growth-rate
dependent values. Again, no conversion from concentration to flux is needed here.
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Figure 4: Blocks that need to be assembled. There is also a vector of constraint signs
that is omitted here (E for equality, L for lower than, G for greater than).

3. Building matrices from XML files

In this file, we briefly describe how matrices are built from files.

Building blocks Figure 4 shows the blocks that are used to build the final matrices.

Stoichiometry matrix The stoichiometry matrix is built from metabolic reactions.
External metabolites are removed from the metabolite pool.

Density limits Density limits are simply extracted from RBADensity and assembled
into a vector (one coefficient per compartment).

Species matrices Figure 5 shows how macromolecules are broken down into matrices
describing their composition, machinery cost and weight. In the end, they are merged
into a single matrix describing composition, machinery cost and weight of all metabolites
and macromolecules.

Enzyme and machinery matrices Figure 6 shows how enzyme and process machinery
matrices are built.
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Figure 5: Matrices extracted from macromolecule information. An example is given
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Figure 6: Every machinery can be described by a reaction matrix. Reactants are species
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cost.
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Target matrices Targets are either metabolites or macromolecules. Their composition,
machinery cost and weight can be extracted as columns from the species matrices.
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  [A_R A_E A_P A_T].[R E P T]T = b

[A_R A_E A_P A_Tu].[R E P Tu]T = b - A_Td.TdT

undetermined
targets

determined
targets

Figure 7: Procedure to reduce matrix size by eliminating targets with predefined values.
This yield a smaller A matrix and a slightly more complicated b matrix.

A. Eliminating target variables

In the previous sections, we included all targets as variables. In practice, most variables
are predetermined, e.g., the target for concentrations for metabolites is known, it does
not need to be optimized. Optimization algorithms will typically eliminate all such
variables in a presolving step, but we might want to eliminate them manually in order
to reduce matrix sizes.

The procedure is fairly simple: we extract the submatrix corresponding to targets with
known values, multiply it by the value vector, and move it to the right-hand side (Fig. 7).
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