
gensim Documentation
Release 0.6.0

Radim Řehůřek

August 10, 2010

CONTENTS

1 Quick Reference Example 3

2 Contents 5
2.1 Introduction . 5
2.2 Installation . 6
2.3 Tutorial . 8
2.4 Distributed Computing . 18
2.5 API Reference . 21

Module Index 35

Index 37

i

ii

gensim Documentation, Release 0.6.0

What’s new?

Version 0.6 is out!

It contains several minor bug fixes and a fully online implementation of Latent Semanting Indexing! You can now
update LSI with new documents at will, and use the resulting LSI transformation at each step. The training document
stream may even be infinite!

For an introduction on what gensim does (or does not do), go to the introduction.

To download and install gensim, consult the install page.

For examples on how to use it, try the tutorials.

CONTENTS 1

http://pypi.python.org/pypi/gensim

gensim Documentation, Release 0.6.0

2 CONTENTS

CHAPTER

ONE

QUICK REFERENCE EXAMPLE

>>> from gensim import corpora, models, similarities
>>>
>>> # load corpus iterator from a Matrix Market file on disk
>>> corpus = corpora.MmCorpus(’/path/to/corpus.mm’)
>>>
>>> # initialize a transformation (Latent Semantic Indexing with twenty latent dimensions)
>>> lsi = models.LsiModel(corpus, numTopics = 200)
>>>
>>> # convert the same corpus to latent space and index it
>>> index = similarities.MatrixSimilarity(lsi[corpus])
>>>
>>> # perform similarity query of another vector in LSI space against the whole corpus
>>> sims = index[query]

3

gensim Documentation, Release 0.6.0

4 Chapter 1. Quick Reference Example

CHAPTER

TWO

CONTENTS

2.1 Introduction

Gensim is a Python framework designed to help make the conversion of natural language texts to the Vector Space
Model as simple and natural as possible.

Gensim contains algorithms for unsupervised learning from raw, unstructured digital texts, such as Latent Semantic
Analysis, Latent Dirichlet Allocation or Random Projections. These algorithms discover hidden (latent) corpus
structure. Once found, documents can be succinctly expressed in terms of this structure, queried for topical similarity
and so on.

If the previous paragraphs left you confused, you can read more about the Vector Space Model and unsupervised
document analysis at Wikipedia.

Note: Gensim’s target audience is the NLP research community and interested general public; gensim is not meant
to be a production tool for commercial environments.

2.1.1 Design objectives

Gensim includes the following features:

• Memory independence – there is no need for the whole text corpus (or any intermediate term-document matrices)
to reside fully in RAM at any one time.

• Provides implementations for several popular vector space algorithms, including Tf-Idf, Latent Semantic Anal-
ysis (LSA/LSI via incremental SVD), Latent Dirichlet Allocation (LDA) or Random Projection, and makes
adding new ones simple.

• Contains I/O wrappers and converters around several popular data formats.

• Allows similarity queries across documents in their latent, topical representation.

Creation of gensim was motivated by a perceived lack of available, scalable software frameworks that realize topic
modeling, and/or their overwhelming internal complexity. You can read more about the motivation in our LREC 2010
workshop paper.

The principal design objectives behind gensim are:

1. Straightforward interfaces and low API learning curve for developers, facilitating modifications and rapid pro-
totyping.

2. Memory independence with respect to the size of the input corpus; all intermediate steps and algorithms operate
in a streaming fashion, processing one document at a time.

5

http://en.wikipedia.org/wiki/Vector_space_model
http://en.wikipedia.org/wiki/Latent_semantic_indexing
http://en.wikipedia.org/wiki/Latent_semantic_indexing
http://en.wikipedia.org/wiki/Singular_value_decomposition
http://nlp.fi.muni.cz/projekty/gensim/lrec2010_final.pdf
http://nlp.fi.muni.cz/projekty/gensim/lrec2010_final.pdf

gensim Documentation, Release 0.6.0

2.1.2 Availability

Gensim is licensed under the OSI-approved GNU LPGL license and can be downloaded either from its SVN repository
or from the Python Package Index.

See Also:

See the install page for more info on package deployment.

2.1.3 Core concepts

The whole gensim package revolves around the concepts of corpus, vector and model.

Corpus A collection of digital documents. This collection is used to automatically infer structure of the documents,
their topics etc. For this reason, the collection is also called a training corpus. The inferred latent structure
can be later used to assign topics to new documents, which did not appear in the training corpus. No human
intervention (such as tagging the documents by hand, or creating other metadata) is required.

Vector In the Vector Space Model (VSM), each document is represented by an array of features. For example, a
single feature may be thought of as a question-answer pair:

1. How many times does the word splonge appear in the document? Zero.

2. How many paragraphs does the document consist of? Two.

3. How many fonts does the document use? Five.

The question is usually represented only by its integer id, so that the representation of a document becomes a
series of pairs like (1, 0.0), (2, 2.0), (3, 5.0). If we know all the questions in advance, we may
leave them implicit and simply write (0.0, 2.0, 5.0). This sequence of answers can be thought of as a
high-dimensional (in our case 3-dimensional) vector. For practical purposes, only questions to which the answer
is (or can be converted to) a single real number are allowed.

The questions are the same for each document, so that looking at two vectors (representing two documents),
we will hopefully be able to make conclusions such as “The numbers in these two vectors are very similar,
and therefore the original documents must be similar, too”. Of course, whether such conclusions correspond to
reality depends on how well we picked our questions.

Sparse vector Typically, the answer to most questions will be 0.0. To save space, we omit them from the docu-
ment’s representation, and write only (2, 2.0), (3, 5.0) (note the missing (1, 0.0)). Since the set
of all questions is known in advance, all the missing features in sparse representation of a document can be
unambiguously resolved to zero, 0.0.

Model For our purposes, a model is a transformation from one document representation to another (or, in other words,
from one vector space to another). Both the initial and target representations are still vectors – they only differ
in what the questions and answers are. The transformation is automatically learned from the traning corpus,
without human supervision, and in hopes that the final document representation will be more compact and more
useful (with similar documents having similar representations) than the initial one. The transformation process
is also sometimes called clustering in machine learning terminology, or noise reduction, from signal processing.

See Also:

For some examples on how this works out in code, go to tutorials.

2.2 Installation

Gensim is known to run on Linux, Windows and Mac OS X and should run on any other platform that supports Python
2.5 and NumPy. Gensim depends on the following software:

6 Chapter 2. Contents

http://www.gnu.org/licenses/lgpl.html
http://my-trac.assembla.com/gensim
http://pypi.python.org/pypi/gensim

gensim Documentation, Release 0.6.0

• 3.0 > Python >= 2.5. Tested with versions 2.5 and 2.6.

• NumPy >= 1.0.4. Tested with version 1.4.0, 1.3.0rc2 and 1.0.4.

• SciPy >= 0.6. Tested with version 0.8.0b1, 0.7.1 and 0.6.0.

2.2.1 Install Python

Check what version of Python you have with:

python --version

You can download Python 2.5 from http://python.org/download.

Note: Gensim requires Python 2.5 or greater and will not run under earlier versions.

2.2.2 Install SciPy & NumPy

These are quite popular Python packages, so chances are there are pre-built binary distributions available for your
platform. You can try installing from source using easy_install:

sudo easy_install numpy
sudo easy_install scipy

If that doesn’t work or if you’d rather install using a binary package, consult http://www.scipy.org/Download.

2.2.3 Install gensim

You can now install (or upgrade) gensim with:

sudo easy_install gensim

That’s it! Congratulations, you can now proceed to the tutorials.

There are also alternative routes to install:

1. If you have downloaded and unzipped the tar.gz source for gensim (or you’re installing gensim from svn), you
can run:

sudo python setup.py install

to install gensim into your site-packages folder.

2. If you wish to make local changes to gensim code (gensim is, after all, a package which targets research proto-
typing and modifications), a preferred way may be installing with:

sudo python setup.py develop

This will only place a symlink into your site-packages directory. The actual files will stay wherever you
unpacked them.

3. If you don’t have root priviledges (or just don’t want to put the package into your site-packages), simply
unpack the source package somewhere and that’s it! No compilation or installation needed. Just don’t forget to
set your PYTHONPATH (or modify sys.path), so that Python can find the package when importing.

2.2. Installation 7

http://www.python.org
http://www.numpy.org
http://www.scipy.org
http://python.org/download
http://www.scipy.org/Download
http://pypi.python.org/pypi/gensim
http://my-trac.assembla.com/gensim

gensim Documentation, Release 0.6.0

2.2.4 Testing gensim

To test the package, unzip the tar.gz source and run:

python setup.py test

2.2.5 Contact

If you encounter problems or have any questions regarding gensim, let me know at:

>>> ’@’.join([’radimrehurek’, ’.’.join([’seznam’, ’cz’])])

2.3 Tutorial

This tutorial is organized as a series of examples that highlight various features of gensim. It is assumed that the reader
is familiar with the Python language and has read the Introduction.

The examples are divided into parts on:

2.3.1 Corpora and Vector Spaces

Don’t forget to set

>>> import logging
>>> logging.root.setLevel(logging.INFO) # will suppress DEBUG level events

if you want to see logging events.

From Strings to Vectors

This time, let’s start from documents represented as strings:

>>> from gensim import corpora, models, similarities
>>>
>>> documents = ["Human machine interface for lab abc computer applications",
>>> "A survey of user opinion of computer system response time",
>>> "The EPS user interface management system",
>>> "System and human system engineering testing of EPS",
>>> "Relation of user perceived response time to error measurement",
>>> "The generation of random binary unordered trees",
>>> "The intersection graph of paths in trees",
>>> "Graph minors IV Widths of trees and well quasi ordering",
>>> "Graph minors A survey"]

This is a tiny corpus of nine documents, each consisting of only a single sentence.

First, let’s tokenize the documents, remove common words (using a toy stoplist) as well as words that only appear
once in the corpus:

8 Chapter 2. Contents

http://pypi.python.org/pypi/gensim

gensim Documentation, Release 0.6.0

>>> # remove common words and tokenize
>>> stoplist = set(’for a of the and to in’.split())
>>> texts = [[word for word in document.lower().split() if word not in stoplist]
>>> for document in documents]
>>>
>>> # remove words that appear only once
>>> allTokens = sum(texts, [])
>>> tokensOnce = set(word for word in set(allTokens) if allTokens.count(word) == 1)
>>> texts = [[word for word in text if word not in tokensOnce]
>>> for text in texts]
>>>
>>> print texts
[[’human’, ’interface’, ’computer’],
[’survey’, ’user’, ’computer’, ’system’, ’response’, ’time’],
[’eps’, ’user’, ’interface’, ’system’],
[’system’, ’human’, ’system’, ’eps’],
[’user’, ’response’, ’time’],
[’trees’],
[’graph’, ’trees’],
[’graph’, ’minors’, ’trees’],
[’graph’, ’minors’, ’survey’]]

Your way of processing the documents will likely vary; here, we only split on whitespace to tokenize, followed by
lowercasing each word. In fact, we use this particular (simplistic and inefficient) setup to mimick the experiment done
in Deerwester et al.’s original LSA article 1.

The ways to process documents are so varied and application- and language-dependent that we decided to not constrain
them by any interface. Instead, a document is represented by the features extracted from it, not by its “surface” string
form: how you get to the features is up to you. Below we describe one common, general-purpose approach (called
bag-of-words), but keep in mind that different application domains call for different features, and, as always, it’s
garbage in, garbage out...

To convert documents to vectors, we will use a document representation called bag-of-words. In this representation,
each document is represented by one vector where each vector element represents a question-answer pair, in the style
of:

“How many times does the word system appear in the document? Once.”

It is advantageous to represent the questions only by their (integer) ids. The mapping between the questions and ids is
called a dictionary:

>>> dictionary = corpora.Dictionary.fromDocuments(texts)
>>> dictionary.save(’/tmp/deerwester.dict’) # store the dictionary, for future reference
>>> print dictionary
Dictionary(12 unique tokens)

Here we assigned a unique integer id to all words appearing in the corpus by calling
Dictionary.fromDocuments(). This sweeps across the texts, collecting words and relevant statistics.
In the end, we see there are twelve distinct words in the processed corpus, which means each document will be
represented by twelve numbers (ie., by a 12-D vector). To see the mapping between words and their ids:

>>> print dictionary.token2id
{’minors’: 11, ’graph’: 10, ’system’: 5, ’trees’: 9, ’eps’: 8, ’computer’: 0,
’survey’: 4, ’user’: 7, ’human’: 1, ’time’: 6, ’interface’: 2, ’response’: 3}

To actually convert tokenized documents to vectors:

1 This is the same corpus as used in Deerwester et al. (1990): Indexing by Latent Semantic Analysis, Table 2.

2.3. Tutorial 9

http://en.wikipedia.org/wiki/Garbage_In,_Garbage_Out
http://en.wikipedia.org/wiki/Bag_of_words
http://www.cs.bham.ac.uk/~pxt/IDA/lsa_ind.pdf

gensim Documentation, Release 0.6.0

>>> newDoc = "Human computer interaction"
>>> newVec = dictionary.doc2bow(newDoc.lower().split())
>>> print newVec # the word "interaction" does not appear in the dictionary and is ignored
[(0, 1), (1, 1)]

The function doc2bow() simply counts the number of occurences of each distinct word, converts the word to its
integer word id and returns the result as a sparse vector. The sparse vector [(0, 1), (1, 1)] therefore reads: in
the document “Human computer interaction”, the words computer (id 0) and human (id 1) appear once; the other ten
dictionary words appear (implicitly) zero times.

>>> corpus = [dictionary.doc2bow(text) for text in texts]
>>> corpora.MmCorpus.saveCorpus(’/tmp/deerwester.mm’, corpus) # store to disk, for later use
>>> print corpus
[[(0, 1.0), (1, 1.0), (2, 1.0)],
[(2, 1.0), (3, 1.0), (4, 1.0), (5, 1.0), (6, 1.0), (8, 1.0)],
[(1, 1.0), (3, 1.0), (4, 1.0), (7, 1.0)],
[(0, 1.0), (4, 2.0), (7, 1.0)],
[(3, 1.0), (5, 1.0), (6, 1.0)],
[(9, 1.0)],
[(9, 1.0), (10, 1.0)],
[(9, 1.0), (10, 1.0), (11, 1.0)],
[(8, 1.0), (10, 1.0), (11, 1.0)]]

By now it should be clear that the vector feature with id=10 stands for the question “How many times does the word
graph appear in the document?” and that the answer is “zero” for the first six documents and “one” for the remaining
three. As a matter of fact, we have arrived at exactly the same corpus of vectors as in the Quick Example.

And that is all there is to it! At least as far as bag-of-words representation is concerned. Of course, what we do with
such corpus is another question; it is not at all clear how counting the frequency of distinct words could be useful. As
it turns out, it isn’t, and we will need to apply a transformation on this simple representation first, before we can use it
to compute any meaningful document vs. document similarities. Transformations are covered in the next tutorial, but
before that, let’s briefly turn our attention to corpus persistency.

Corpus Formats

There exist several file formats for storing a Vector Space corpus (~sequence of vectors) to disk. Gensim implements
them via the streaming corpus interface mentioned earlier: documents are read from disk in a lazy fashion, one
document at a time, without the whole corpus being read into main memory at once.

One of the more notable formats is the Market Matrix format. To save a corpus in the Matrix Market format:

>>> from gensim import corpora
>>>
>>> corpus = [[(1, 0.5)], []] # create a toy corpus of 2 documents (one of them empty, for the heck of it)
>>>
>>> corpora.MmCorpus.saveCorpus(’/tmp/corpus.mm’, corpus)

Other formats include Joachim’s SVMlight format, Blei’s LDA-C format and GibbsLDA++ format.

>>> corpora.SvmLightCorpus.saveCorpus(’/tmp/corpus.svmlight’, corpus)
>>> corpora.BleiCorpus.saveCorpus(’/tmp/corpus.lda-c’, corpus)
>>> corpora.LowCorpus.saveCorpus(’/tmp/corpus.low’, corpus)

Conversely, to load a corpus iterator from a Matrix Market file:

10 Chapter 2. Contents

http://math.nist.gov/MatrixMarket/formats.html
http://gibbslda.sourceforge.net/

gensim Documentation, Release 0.6.0

>>> corpus = corpora.MmCorpus(’/tmp/corpus.mm’)

Corpus objects are streams, so typically you won’t be able to print them directly:

>>> print corpus
MmCorpus(2 documents, 2 features, 1 non-zero entries)

Instead, to view the contents of a corpus:

>>> # one way of printing a corpus: load it entirely into memory
>>> print list(corpus) # calling list() will convert any sequence to a plain Python list
[[(1, 0.5)], []]

or

>>> # another way of doing it: print one document at a time, making use of the streaming interface
>>> for doc in corpus:
>>> print doc
[(1, 0.5)]
[]

The second way is obviously more memory-friendly, but for testing and development purposes, nothing beats the
simplicity of calling list(corpus).

To save the same corpus in Blei’s LDA-C format,

>>> corpora.BleiCorpus.saveCorpus(’/tmp/corpus.lda-c’, corpus)

In this way, gensim can also be used as a simple I/O format conversion tool: just load a document stream using one
format and immediately save it in another format.

For a complete reference (want to prune the dictionary to a smaller size? convert between sparse vectors and
numpy/scipy arrays?), see the API documentation. Or continue to the next tutorial on Topics and Transformations.

2.3.2 Topics and Transformations

Don’t forget to set

>>> import logging
>>> logging.root.setLevel(logging.INFO) # will suppress DEBUG level events

if you want to see logging events.

Transformation interface

In the previous tutorial on Corpora and Vector Spaces, we created a corpus of documents represented as a stream of
vectors. To continue, let’s fire up gensim and use that corpus:

2.3. Tutorial 11

gensim Documentation, Release 0.6.0

>>> from gensim import corpora, models, similarities
>>> dictionary = corpora.Dictionary.load(’/tmp/deerwester.dict’)
>>> corpus = corpora.MmCorpus(’/tmp/deerwester.mm’)
>>> print corpus
MmCorpus(9 documents, 12 features, 28 non-zero entries)

In this tutorial, we will show how to transform documents from one vector representation into another. This process
serves two goals:

1. To bring out hidden structure in the corpus, discover relationships between the original features and use them to
describe the documents in a new and (hopefully) more realistic way.

2. To make the document representation more compact. This both improves efficiency (new representation con-
sumes less resources) and efficacy (marginal data trends are ignored, so that transformations can be thought of
as noise-reduction).

Creating a transformation

The transformations are standard Python objects, typically initialized by means of a training corpus:

>>> tfidf = models.TfidfModel(corpus) # step 1 -- initialize a model

We used our old corpus to initialize (train) the transformation model. Different transformations may require different
initialization parameters; in case of TfIdf, the “training” consists simply of going through the supplied corpus once
and computing document frequencies of all its features. Training other models, such as Latent Semantic Analysis or
Latent Dirichlet Allocation, is much more involved and, consequently, takes much more time.

Note: Transformations are initialized to convert between two specific vector spaces. The same vector space (= the
same set of feature ids) must be used for training as well as for subsequent vector transformations. Failure to use
the same input feature space, such as applying a different string preprocessing, using different feature ids, or using
bag-of-words input vectors where TfIdf vectors are expected, will result in feature mismatch during transformation
calls and consequently in either garbage output and/or runtime exceptions.

Transforming vectors

From now on, tfidf is treated as a read-only object that can be used to convert any vector from the old representation
(bag-of-words integer counts) to the new representation (TfIdf real-valued weights):

>>> doc_bow = [(0, 1), (1, 1)]
>>> print tfidf[doc_bow] # step 2 -- use the model to transform vectors
[(0, 0.70710678), (1, 0.70710678)]

Or to apply a transformation to a whole corpus:

>>> corpus_tfidf = tfidf[corpus]
>>> for doc in corpus_tfidf:
>>> print doc

In this particular case, we are transforming the same corpus that we used for training, but this is only incidental. Once
the transformation model has been initialized, it can be used on any vectors (provided they come from the correct
vector space, of course), even if they were not used in the training corpus at all. This is achieved by a process called
folding-in for LSA, by topic inference for LDA etc.

12 Chapter 2. Contents

gensim Documentation, Release 0.6.0

Note: Calling model[corpus] only creates a wrapper around the old corpus document stream – actual conver-
sions are done on-the-fly, during document iteration. This is because conversion at the time of calling corpus2 =
model[corpus] would mean storing the result in main memory, which contradicts gensim’s objective of memory-
indepedence. If you will be iterating over the transformed corpus2 multiple times, and the transformation is costly,
serialize the resulting corpus to disk first and continue using that.

Transformations can also be serialized, one on top of another, in a sort of chain:

>>> lsi = models.LsiModel(corpus_tfidf, id2word = dictionary.id2token, numTopics = 2) # initialize an LSI transformation
>>> corpus_lsi = lsi[corpus_tfidf] # create a double wrapper over the original corpus: bow->tfidf->fold-in-lsi

Here we transformed our Tf-Idf corpus via Latent Semantic Indexing into a latent 2-D space (2-D because we set
numTopics=2). Now you’re probably wondering: what do these two latent dimensions stand for? Let’s inspect with
models.LsiModel.printTopics():

>>> for topicNo in range(lsi.numTopics):
>>> print ’topic %i: %s’ % (topicNo, lsi.printTopic(topicNo))
topic 0: -0.703 * "trees" + -0.538 * "graph" + -0.402 * "minors" + -0.187 * "survey" + -0.061 * "system" + -0.060 * "time" + -0.060 * "response" + -0.058 * "user" + -0.049 * "computer" + -0.035 * "interface" + -0.035 * "eps" + -0.030 * "human"
topic 1: 0.460 * "system" + 0.373 * "user" + 0.332 * "eps" + 0.328 * "interface" + 0.320 * "time" + 0.320 * "response" + 0.293 * "computer" + 0.280 * "human" + 0.171 * "survey" + -0.161 * "trees" + -0.076 * "graph" + -0.029 * "minors"

It appears that according to LSI, “trees”, “graphs” and “minors” are all related words (and contribute the most to the
direction of the first topic), while the second topic practically concerns itself with all the other words. As expected,
the first five documents are more strongly related to the second topic while the remaining four documents to the first
topic:

>>> for doc in corpus_lsi: # both bow->tfidf and tfidf->lsi transformations are actually executed here, on the fly
>>> print doc
[(0, -0.066), (1, 0.520)] # "Human machine interface for lab abc computer applications"
[(0, -0.197), (1, 0.761)] # "A survey of user opinion of computer system response time"
[(0, -0.090), (1, 0.724)] # "The EPS user interface management system"
[(0, -0.076), (1, 0.632)] # "System and human system engineering testing of EPS"
[(0, -0.102), (1, 0.574)] # "Relation of user perceived response time to error measurement"
[(0, -0.703), (1, -0.161)] # "The generation of random binary unordered trees"
[(0, -0.877), (1, -0.168)] # "The intersection graph of paths in trees"
[(0, -0.910), (1, -0.141)] # "Graph minors IV Widths of trees and well quasi ordering"
[(0, -0.617), (1, 0.054)] # "Graph minors A survey"

Model persistency is achieved with the save() and load() functions:

>>> lsi.save(’/tmp/model.lsi’) # same for tfidf, lda, ...
>>> lsi = models.LsiModel.load(’/tmp/model.lsi’)

The next question might be: just how exactly similar are those documents to each other? Is there a way to formalize the
similarity, so that for a given input document, we can order some other set of documents according to their similarity?
Similarity queries are covered in the next tutorial.

Available transformations

Gensim implements several popular Vector Space Model algorithms:

• Term Frequency * Inverse Document Frequency, Tf-Idf expects a bag-of-words (integer values) training corpus
during initialization. During transformation, it will take a vector and return another vector of the same dimen-
sionality, except that features which were rare in the training corpus will have their value increased. It therefore
converts integer-valued vectors into real-valued ones, while leaving the number of dimensions intact. It can also
optionally normalize the resulting vectors to (Euclidean) unit length.

2.3. Tutorial 13

http://en.wikipedia.org/wiki/Latent_semantic_indexing
http://en.wikipedia.org/wiki/Tf%E2%80%93idf

gensim Documentation, Release 0.6.0

>>> model = tfidfmodel.TfidfModel(bow_corpus, normalize = True)

• Latent Semantic Indexing, LSI (or sometimes LSA) transforms documents from either bag-of-words or (pre-
ferrably) TfIdf-weighted space into a latent space of a lower dimensionality. For the toy corpus above we used
only 2 latent dimensions, but on real corpora, target dimensionality of 200–500 is recommended as a “golden
standard” 2.

>>> model = lsimodel.LsiModel(tfidf_corpus, id2word = dictionary.id2token, numTopics = 300)

LSI training is unique in that it only inspects each input document once. This allows us to continue “training” at
any point, simply by providing more training documents. This is done by incremental updates to the underlying
model, in a process called online training. Because of this feature, the input document stream may even be
infinite – just keep feeding LSI new documents as they arrive, while using the computed transformation model
as read-only in the meanwhile!

>>> model.addDocuments(another_tfidf_corpus) # now LSI has been trained on tfidf_corpus + another_tfidf_corpus
>>> lsi_vec = model[tfidf_vec] # convert a new document into the LSI space, without affecting the model
>>> ...
>>> model.addDocuments(more_documents) # tfidf_corpus + another_tfidf_corpus + more_documents
>>> lsi_vec = model[tfidf_vec]
>>> ...

See the gensim.models.lsimodel documentation for details on how to make LSI gradually “forget” old
observations in infinite streams and how to tweak parameters affecting speed vs. memory footprint vs. numerical
precision of the algorithm.

• Random Projections, RP aim to reduce vector space dimensionality. This is a very efficient (both memory- and
CPU-friendly) approach to approximating TfIdf distances between documents, by throwing in a little random-
ness. Recommended target dimensionality is again in the hundreds/thousands, depending on your dataset.

>>> model = rpmodel.RpModel(tfidf_corpus, numTopics = 500)

• Latent Dirichlet Allocation, LDA is yet another transformation from bag-of-words counts into a topic space of
lower dimensionality. LDA is much slower than the other algorithms, so we are currently looking into ways of
making it faster (see eg. 3, 4). If you could help, let us know!

>>> model = ldamodel.LdaModel(bow_corpus, id2word = dictionary.id2token, numTopics = 200)

Adding new VSM (Vector Space Model) transformations (such as different weighting schemes) is rather trivial; see
the API reference or directly the Python code for more info and examples.

It is worth repeating that these are all unique, incremental implementations, which do not require the whole training
corpus to be present in main memory all at once. With memory taken care of, we are now implementing Distributed
Computing, to improve CPU efficiency, too. If you feel you could contribute, please let us know!

2 Bradford, R.B., 2008. An empirical study of required dimensionality for large-scale latent semantic indexing applications.
3 Asuncion, A., 2009. On Smoothing and Inference for Topic Models.
4 Yao, Mimno, McCallum, 2009. Efficient Methods for Topic Model Inference on Streaming Document Collections

14 Chapter 2. Contents

http://en.wikipedia.org/wiki/Latent_semantic_indexing
http://www.cis.hut.fi/ella/publications/randproj_kdd.pdf
http://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
mailto:radimrehurek@seznam.cz
mailto:radimrehurek@seznam.cz

gensim Documentation, Release 0.6.0

2.3.3 Similarity Queries

Don’t forget to set

>>> import logging
>>> logging.root.setLevel(logging.INFO) # will suppress DEBUG level events

if you want to see logging events.

Similarity interface

In the previous tutorials on Corpora and Vector Spaces and Topics and Transformations, we covered what it means to
create a corpus in the Vector Space Model and how to transform it between different vector spaces. A common reason
for such a charade is that we want to determine similarity between pairs of documents, or the similarity between a
specific document and a set of other documents (such as a user query vs. indexed documents).

To show how this can be done in gensim, let us consider the same corpus as in the previous examples (which really
originally comes from Deerwester et al.’s “Indexing by Latent Semantic Analysis” seminal 1990 article):

>>> from gensim import corpora, models, similarities
>>> dictionary = corpora.Dictionary.load(’/tmp/deerwester.dict’)
>>> corpus = corpora.MmCorpus(’/tmp/deerwester.mm’) # comes from the first tutorial, "From strings to vectors"
>>> print corpus
MmCorpus(9 documents, 12 features, 28 non-zero entries)

To follow Deerwester’s example, we first use this tiny corpus to define a 2-dimensional LSI space:

>>> lsi = models.LsiModel(corpus, id2word = dictionary.id2token, numTopics = 2)

Now suppose a user typed in the query “Human computer interaction”. We would like to sort our nine corpus
documents in decreasing order of relevance to this query. Unlike modern search engines, here we only concentrate on
a single aspect of possible similarities – on apparent semantic relatedness of their texts (words). No hyperlinks, no
random-walk static ranks, just an extension over a boolean keyword match:

>>> doc = "Human computer interaction"
>>> vec_bow = dictionary.doc2bow(doc.lower().split())
>>> vec_lsi = lsi[vec_bow] # convert the query to LSI space
>>> print vec_lsi # result is already scaled by singular values
[(0, -0.461821), (1, 0.070028)]

In addition, we will be considering cosine similarity to determine the similarity of two vectors. Cosine similarity is
a standard measure in Vector Space Modeling, but wherever the vectors represent probability distributions, different
similarity measures may be more appropriate.

Initializing query structures

To prepare for similarity queries, we need to enter all documents which we will want to compare against subsequent
queries. In our case, they are the same nine documents used for training LSI, converted to 2-D LSA space. But that’s
only incidental, we might also be indexing a different corpus altogether.

>>> index = similarities.MatrixSimilarity(lsi[corpus]) # transform corpus to LSI space and index it

2.3. Tutorial 15

http://www.cs.bham.ac.uk/~pxt/IDA/lsa_ind.pdf
http://en.wikipedia.org/wiki/Cosine_similarity
http://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#Symmetrised_divergence
http://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#Symmetrised_divergence

gensim Documentation, Release 0.6.0

Warning: The class similarities.MatrixSimilarity is only appropriate when the whole set of
vectors fits into memory. For example, a corpus of one million documents would require 1GB of RAM in a
256-dimensional LSI space, when used with this class. Without 1GB of free RAM, you would need to use
the similarities.Similarity class. This class operates in constant memory, in a streaming (and more
gensim-like) fashion, but is also much slower than similarities.MatrixSimilarity, which uses fast
level-2 BLAS routines to determine similarities.

Index persistency is handled via the standard save() and load() functions:

>>> index.save(’/tmp/deerwester.index’)
>>> index = similarities.MatrixSimilarity.load(’/tmp/deerwester.index’)

Performing queries

To obtain similarities of our query document against the nine indexed documents:

>>> sims = index[vec_lsi] # perform a similarity query against the corpus
>>> print list(enumerate(sims)) # print (document_number, document_similarity) 2-tuples
[(0, 0.99809301), (1, 0.93748635), (2, 0.99844527), (3, 0.9865886), (4, 0.90755945),
(5, -0.12416792), (6, -0.1063926), (7, -0.098794639), (8, 0.05004178)]

Cosine measure returns similarities in the range <-1, 1> (the greater, the more similar), so that the first document has
a score of 0.99809301 etc.

With some standard Python magic we sort these similarities into descending order, and obtain the final answer to the
query “Human computer interaction”:

>>> sims = sorted(enumerate(sims), key = lambda item: -item[1])
>>> print sims # print sorted (document number, similarity score) 2-tuples
[(2, 0.99844527), # The EPS user interface management system
(0, 0.99809301), # Human machine interface for lab abc computer applications
(3, 0.9865886), # System and human system engineering testing of EPS
(1, 0.93748635), # A survey of user opinion of computer system response time
(4, 0.90755945), # Relation of user perceived response time to error measurement
(8, 0.050041795), # Graph minors A survey
(7, -0.098794639), # Graph minors IV Widths of trees and well quasi ordering
(6, -0.1063926), # The intersection graph of paths in trees
(5, -0.12416792)] # The generation of random binary unordered trees

(We added the original documents in their “string form” to the output comments, to improve clarity.)

The thing to note here is that documents no. 2 ("The EPS user interface management system") and
4 ("Relation of user perceived response time to error measurement") would never be re-
turned by a standard boolean fulltext search, because they do not share any common words with "Human computer
interaction". However, after applying LSI, we can observe that both of them received quite high similarity scores,
which corresponds better to our intuition of them sharing a “computer-human” related topic with the query. In fact,
this semantic generalization is the reason why we apply transformations and do topic modeling in the first place.

Where next?

Congratulations, you have finished the tutorials – now you know how gensim works :-) To delve into more details, you
can browse through the API documentation.

Please remember that gensim is an experimental package, aimed at the NLP research community. This means that:

16 Chapter 2. Contents

http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms

gensim Documentation, Release 0.6.0

• there certainly are parts that could be implemented more efficiently (in C, for example), and there may also be
bugs in the code

• your feedback is most welcome and appreciated, be it in code and idea contributions, bug reports or just user
stories.

Gensim has no ambition to become a production-level tool, with robust failure handling and error recoveries. Its main
goal is to help NLP newcomers try out popular algorithms and to facilitate prototyping of new algorithms for NLP
researchers.

2.3.4 Preliminaries

All the examples can be directly copied to your Python interpreter shell (assuming you have gensim installed, of
course). IPython‘s cpaste command is especially handy for copypasting code fragments which include superfluous
characters, such as the leading >>>.

Gensim uses Python’s standard logging module to log various stuff at various priority levels; to activate logging
(this is optional), run

>>> import logging
>>> logging.basicConfig(format = ’%(asctime)s : %(levelname)s : %(message)s’, level = logging.INFO)

2.3.5 Quick Example

First, let’s import gensim and create a small corpus of nine documents 5:

>>> from gensim import corpora, models, similarities
>>>
>>> corpus = [[(0, 1.0), (1, 1.0), (2, 1.0)],
>>> [(2, 1.0), (3, 1.0), (4, 1.0), (5, 1.0), (6, 1.0), (8, 1.0)],
>>> [(1, 1.0), (3, 1.0), (4, 1.0), (7, 1.0)],
>>> [(0, 1.0), (4, 2.0), (7, 1.0)],
>>> [(3, 1.0), (5, 1.0), (6, 1.0)],
>>> [(9, 1.0)],
>>> [(9, 1.0), (10, 1.0)],
>>> [(9, 1.0), (10, 1.0), (11, 1.0)],
>>> [(8, 1.0), (10, 1.0), (11, 1.0)]]

Corpus is simply an object which, when iterated over, returns its documents represented as sparse vectors.

If you’re familiar with the Vector Space Model, you’ll probably know that the way you parse your documents and
convert them to vectors has major impact on the quality of any subsequent applications. If you’re not familiar with
VSM, we’ll bridge the gap between raw strings and sparse vectors in the next tutorial on Corpora and Vector Spaces.

Note: In this example, the whole corpus is stored in memory, as a Python list. However, the corpus interface only
dictates that a corpus must support iteration over its constituent documents. For very large corpora, it is advantageous
to keep the corpus on disk, and access its documents sequentially, one at a time. All the operations and transformations
are implemented in such a way that makes them independent of the size of the corpus, memory-wise.

Next, let’s initialize a transformation:

>>> tfidf = models.TfidfModel(corpus)

A transformation is used to convert documents from one vector representation into another:

5 This is the same corpus as used in Deerwester et al. (1990): Indexing by Latent Semantic Analysis, Table 2.

2.3. Tutorial 17

http://ipython.scipy.org
http://en.wikipedia.org/wiki/Vector_space_model
http://www.cs.bham.ac.uk/~pxt/IDA/lsa_ind.pdf

gensim Documentation, Release 0.6.0

>>> vec = [(0, 1), (4, 1)]
>>> print tfidf[vec]
[(0, 0.8075244), (4, 0.5898342)]

Here, we used Tf-Idf, a simple transformation which takes documents represented as bag-of-words counts and applies
a weighting which discounts common terms (or, equivalently, promotes rare terms). It also scales the resulting vector
to unit length (in the Euclidean norm).

Transformations are covered in detail in the tutorial on Topics and Transformations.

To transform the whole corpus via TfIdf and index it, in preparation for similarity queries:

>>> index = similarities.SparseMatrixSimilarity(tfidf[corpus])

and to query the similarity of our query vector vec against every document in the corpus:

>>> sims = index[tfidf[vec]]
>>> print list(enumerate(sims))
[(0, 0.4662244), (1, 0.19139354), (2, 0.24600551), (3, 0.82094586), (4, 0.0), (5, 0.0), (6, 0.0), (7, 0.0), (8, 0.0)]

Thus, according to TfIdf document representation and cosine similarity measure, the most similar to our query doc-
ument vec is document no. 3, with a similarity score of 82.1%. Note that in the TfIdf representation, all documents
which do not share any common features with vec at all (documents no. 4–8) get a similarity score of 0.0. See the
Similarity Queries tutorial for more detail.

2.4 Distributed Computing

2.4.1 Why distributed computing?

Need to build semantic representation of a corpus that is millions of documents large and it’s taking forever? Have
several idle machines at your disposal that you could use? Distributed computing tries to accelerate computations by
splitting a given task into several smaller subtasks, passing them on to several computing nodes in parallel.

In the context of gensim, computing nodes are computers identified by their IP address/port, and communication
happens over TCP/IP. The whole collection of available machines is called a cluster. The distribution is very coarse
grained (not much communication going on), so the network is allowed to be of relatively high latency.

Warning: The primary reason for using distributed computing is making things run faster. In gensim, most of
the time consuming stuff is done inside low-level routines for linear algebra, inside NumPy, independent of any
gensim code. Installing a fast BLAS (Basic Linear Algebra) library for NumPy can improve performance
up to 8 times! So before you start buying those extra computers, consider installing a fast, threaded BLAS first.
Options include your vendor’s BLAS library (Intel’s MKL, AMD’s ACML, OS X’s vecLib, Sun’s Sunperf, ...) or
some open-source alternative (GotoBLAS, ALTAS).
To see what BLAS and LAPACK your NumPy’s using, type into your shell:

python -c ’import numpy; numpy.show_config()’

18 Chapter 2. Contents

http://en.wikipedia.org/wiki/Tf%E2%80%93idf
http://en.wikipedia.org/wiki/Norm_%28mathematics%29#Euclidean_norm
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms

gensim Documentation, Release 0.6.0

2.4.2 Distributed computing in gensim

As always, gensim strives for a clear and straightforward API (see Design objectives). To this end, you do not need to
make any changes in your code at all in order to run it in a distributed manner!

What you need to do is run a worker script (see below) on each of your cluster nodes prior to starting your computation.
Running this script tells gensim that it may use the node as a slave to delegate some work to it. During initialization,
the algorithms inside gensim will automatically try to look for and enslave all available worker nodes. If at least one
worker is found, things will run in the distributed mode; if not, in serial node.

To remove a node from your cluster, simply kill its worker script process.

For communication between nodes, gensim uses Pyro (PYthon Remote Objects), version >= 4.1. This is a library
for low-level socket communication and remote procedure calls (RPC) in Python. Pyro is a pure-Python library, so
installation is quite painless and only involves copying its *.py files somewhere onto your Python’s import path:

sudo easy_install Pyro

You don’t have to install Pyro to run gensim, but if you don’t, you won’t be able to access the distributed features
(i.e., everything will always run in serial mode). Currently, network broadcasting is used to discover and connect all
communicating nodes, so the nodes must lie within the same broadcast domain.

2.4.3 Available distributed algorithms

Currently, there is only distributed Latent Semantic Analysis (LSA, LSI). Distributed Latent Dirichlet Allocation is on
its way.

Distributed LSA

We will show how to run distributed Latent Semantic Analysis on an example. Let’s say we have 5 computers at our
disposal, all in the same broadcast domain. To start with, install gensim and Pyro on each one of them with:

$ sudo easy_install gensim[distributed]

Let’s say our example cluster consists of five dual-core computers with loads of memory. We will therefore run two
worker scripts on four of the physical machines, creating eight logical worker nodes:

$ python -m gensim.models.lsi_worker &

This will execute gensim‘s lsi_worker.py script, to be run twice on each computer. This lets gensim know that it can
run two jobs on each of the four computers in parallel, so that the computation will be done faster (but also taking up
twice as much memory on each machine).

Next, pick one computer that will be a job scheduler, in charge of worker synchronization, and on it, start Pyro’s name
server and an LSA dispatcher:

$ python -m Pyro.naming &
$ python -m gensim.models.lsi_dispatcher &

The dispatcher can be run on the same machine as one of the worker nodes, or it can be another, distinct computer
within the same broadcast domain. The dispatcher will be in charge of negotiating all computations, queueing and
distributing (“dispatching”) individual jobs to the workers (not doing much with CPU most of the time), so pick a
computer with ample memory. Computations never “talk” to worker nodes directly, only through the dispatcher.

2.4. Distributed Computing 19

http://pypi.python.org/pypi/Pyro
http://en.wikipedia.org/wiki/Broadcast_domain

gensim Documentation, Release 0.6.0

In our example, we will use the fifth computer to act as the dispatcher and run the lsi_dispatcher and Pyro.naming
scripts from there.

And that’s it! The cluster is set up and running, ready to accept jobs. To remove a worker later on, simply terminate its
lsi_worker process. To add another worker, run another lsi_worker (this will not affect a computation that is already
running). If you terminate lsi_dispatcher, you won’t be able to run computations until you run it again on some node
(surviving workers can be re-used though).

So let’s test our setup and run one computation of distributed LSA. Open a Python shell on a worker node (again, this
can be done on any computer in the same broadcast domain, our choice is incidental) and try:

>>> from gensim import corpora, models, utils
>>> import logging
>>> logging.basicConfig(format = ’%(asctime)s : %(levelname)s : %(message)s’, level = logging.INFO)
>>>
>>> corpus = corpora.MmCorpus(’/tmp/deerwester.mm’) # load a corpus of nine documents, from the Tutorials
>>> id2word = corpora.Dictionary.load(’/tmp/deerwester.dict’).id2token
>>>
>>> lsi = models.LsiModel(corpus, id2word, numTopics = 200, chunks = 1) # run distributed LSA on nine documents

This uses the corpus and feature-token mapping created in the Corpora and Vector Spaces tutorial. If you look at the
log in your Python session, you should see a line similar to:

2010-08-09 23:44:25,746 : INFO : using distributed version with 8 workers

which means all went well. You can also check the logs coming from your worker and dispatcher processes — this is
especially helpful in case of problems. To check the LSA results, let’s print the first two latent topics:

>>> for i in xrange(2): lsi.printTopic(i, topN = 5)
0.644 * "survey" + 0.404 * "response" + 0.301 * "user" + 0.265 * "time" + 0.265 * "system"
0.623 * "graph" + 0.490 * "trees" + 0.451 * "minors" + 0.274 * "eps" + -0.167 * "survey"

Success! But a corpus of nine documents is no challenge for our powerful cluster... In fact, we had to lower the job
size (chunks parameter) to a single document at a time, otherwise all documents would be processed at once by a
single worker.

So let’s run LSA on one million documents instead:

>>> corpus1m = utils.RepeatCorpus(corpus, 1000000) # inflate the corpus to 1M documents, by repeating it over&over
>>> lsi1m = models.LsiModel(corpus1m, id2word, numTopics = 200, serial_only = False) # run distributed LSA on 1 million documents!

>>> for i in xrange(2): lsi1m.printTopic(i, topN = 5)
-0.644 * "survey" + -0.404 * "response" + -0.301 * "user" + -0.265 * "time" + -0.265 * "system
0.623 * "graph" + 0.490 * "trees" + 0.451 * "minors" + 0.274 * "eps" + -0.167 * "survey"

The serial_only parameter instructs gensim whether to run in serial or distributed mode. Setting it to True will result
in LSA running inside the active Python shell, without any inter-node communication whatsoever, even if there are
worker nodes available. Setting serial_only=False forces distributed mode (raising an exception in case of failure).
And finally, leaving serial_only unspecified tells gensim to try running in distributed mode, or, failing that, run in serial
mode.

On my Macbook (all 8 “distributed” workers operating on a single physical machine), the log from 1M LSA looks
like:

20 Chapter 2. Contents

http://en.wikipedia.org/wiki/Broadcast_domain

gensim Documentation, Release 0.6.0

2010-08-10 02:46:35,087 : INFO : using distributed version with 8 workers
2010-08-10 02:46:35,087 : INFO : updating SVD with new documents
2010-08-10 02:46:35,202 : INFO : dispatched documents up to #10000
2010-08-10 02:46:35,296 : INFO : dispatched documents up to #20000
...
2010-08-10 02:46:46,524 : INFO : dispatched documents up to #990000
2010-08-10 02:46:46,694 : INFO : dispatched documents up to #1000000
2010-08-10 02:46:46,694 : INFO : reached the end of input; now waiting for all remaining jobs to finish
2010-08-10 02:46:47,195 : INFO : all jobs finished, downloading final projection
2010-08-10 02:46:47,200 : INFO : decomposition complete

Due to the small vocabulary size and trivial structure of our “one-million corpus”, the computation of LSA still takes
only 12 seconds. To really stress-test our cluster, Wikipedia FIXME TODO.

2.5 API Reference

Modules:

2.5.1 interfaces – Core gensim interfaces

This module contains basic interfaces used throughout the whole gensim package.

The interfaces are realized as abstract base classes (ie., some optional functionality is provided in the interface itself,
so that the interfaces can be subclassed).

class CorpusABC()
Interface for corpora. A corpus is simply an iterable, where each iteration step yields one document. A document
is a list of (fieldId, fieldValue) 2-tuples.

See the corpora package for some example corpus implementations.

Note that although a default len() method is provided, it is very inefficient (performs a linear scan through the
corpus to determine its length). Wherever the corpus size is needed and known in advance (or at least doesn’t
change so that it can be cached), the len() method should be overridden.

See the gensim.corpora.mmcorpus module for an example of a corpus.

class load(fname)
Load a previously saved object from file (also see save).

save(fname)
Save the object to file via pickling (also see load).

class SimilarityABC(corpus)
Abstract interface for similarity searches over a corpus.

In all instances, there is a corpus against which we want to perform the similarity search.

For each similarity search, the input is a document and the output are its similarities to individual corpus docu-
ments.

Similarity queries are realized by calling self[query_document].

There is also a convenience wrapper, where iterating over self yields similarities of each document in the corpus
against the whole corpus (ie., the query is each corpus document in turn).

getSimilarities(doc)
Return similarity of a sparse vector doc to all documents in the corpus.

2.5. API Reference 21

gensim Documentation, Release 0.6.0

The document is assumed to be either of unit length or empty.

class load(fname)
Load a previously saved object from file (also see save).

save(fname)
Save the object to file via pickling (also see load).

class TransformationABC()
Interface for transformations. A ‘transformation’ is any object which accepts a sparse document via the dictio-
nary notation [] and returns another sparse document in its stead.

See the gensim.models.tfidfmodel module for an example of a transformation.

class load(fname)
Load a previously saved object from file (also see save).

save(fname)
Save the object to file via pickling (also see load).

2.5.2 utils – Various utility functions

This module contains various general utility functions.

class FakeDict(numTerms)
Objects of this class act as dictionaries that map integer->str(integer), for a specified range of integers <0,
numTerms).

This is meant to avoid allocating real dictionaries when numTerms is huge, which is a waste of memory.

keys()
Override the dict.keys() function, which is used to determine the maximum internal id of a corpus = the
vocabulary dimensionality.

HACK: To avoid materializing the whole range(0, self.numTerms), we return [self.numTerms - 1] only.

class RepeatCorpus(corpus, reps)
Used in the tutorial on distributed computing and likely not useful anywhere else.

Wrap a corpus as another corpus of length reps. This is achieved by repeating documents from corpus over and
over again, until requested length is reached. Repetition is done on-the-fly=efficiently, via itertools.

>>> corpus = [[(1, 0.5)], []] # 2 documents
>>> list(RepeatCorpus(corpus, 5)) # repeat 2.5 times to get 5 documents
>>> [[(1, 0.5)], [], [(1, 0.5)], [], [(1, 0.5)]]

class load(fname)
Load a previously saved object from file (also see save).

save(fname)
Save the object to file via pickling (also see load).

class SaveLoad()
Objects which inherit from this class have save/load functions, which un/pickle them to disk.

This uses cPickle for de/serializing, so objects must not contains unpicklable attributes, such as lambda functions
etc.

class load(fname)
Load a previously saved object from file (also see save).

22 Chapter 2. Contents

gensim Documentation, Release 0.6.0

save(fname)
Save the object to file via pickling (also see load).

deaccent(text)
Remove accentuation from the given string.

Input text is either a unicode string or utf8 encoded bytestring. Return input string with accents removed, as
unicode.

>>> deaccent("Šéf chomutovských komunistů dostal poštou bílý prášek")
u’Sef chomutovskych komunistu dostal postou bily prasek’

dictFromCorpus(corpus)
Scan corpus for all word ids that appear in it, then construct and return a mapping which maps each wordId
-> str(wordId).

This function is used whenever words need to be displayed (as opposed to just their ids) but no wordId->word
mapping was provided. The resulting mapping only covers words actually used in the corpus, up to the highest
wordId found.

getMaxId(corpus)
Return highest feature id that appears in the corpus.

For empty corpora (no features at all), return -1.

get_my_ip()
Try to obtain our external ip (from the pyro nameserver’s point of view)

This tries to sidestep the issue of bogus /etc/hosts entries and other local misconfigurations, which often mess
up hostname resolution.

If all else fails, fall back to simple socket.gethostbyname() lookup.

isCorpus(obj)
Check whether obj is a corpus.

NOTE: When called on an empty corpus (no documents), will return False.

synchronous(tlockname)
A decorator to place an instance based lock around a method.

Adapted from http://code.activestate.com/recipes/577105-synchronization-decorator-for-class-methods/

tokenize(text, lowercase=False, deacc=False, errors=’strict’, toLower=False, lower=False)
Iteratively yield tokens as unicode strings, optionally also lowercasing them and removing accent marks.

Input text may be either unicode or utf8-encoded byte string.

The tokens on output are maximal contiguous sequences of alphabetic characters (no digits!).

>>> list(tokenize(’Nic nemůže letět rychlostí vyšší, než 300 tisíc kilometrů za sekundu!’, deacc = True))
[u’Nic’, u’nemuze’, u’letet’, u’rychlosti’, u’vyssi’, u’nez’, u’tisic’, u’kilometru’, u’za’, u’sekundu’]

2.5.3 matutils – Math utils

This module contains math helper functions.

class MmReader(fname)
Wrap a term-document matrix on disk (in matrix-market format), and present it as an object which supports
iteration over the rows (~documents).

2.5. API Reference 23

http://code.activestate.com/recipes/577105-synchronization-decorator-for-class-methods/

gensim Documentation, Release 0.6.0

Note that the file is read into memory one document at a time, not the whole matrix at once (unlike
scipy.io.mmread). This allows for representing corpora which are larger than the available RAM.

Initialize the matrix reader.

The fname is a path to a file on local filesystem, which is expected to be in sparse (coordinate) Matrix Market
format. Documents are assumed to be rows of the matrix (and document features are columns).

class MmWriter(fname)
Store corpus in Matrix Market format.

static writeCorpus(fname, corpus)
Save the vector space representation of an entire corpus to disk.

Note that the documents are processed one at a time, so the whole corpus is allowed to be larger than the
available RAM.

writeVector(docNo, vector)
Write a single sparse vector to the file.

Sparse vector is any iterable yielding (field id, field value) pairs.

corpus2csc(m, corpus, dtype=<type ’numpy.float64’>)
Convert corpus into a sparse matrix, in scipy.sparse.csc_matrix format.

The corpus must not be empty (at least one document).

pad(mat, padRow, padCol)
Add additional rows/columns to a numpy.matrix mat. The new rows/columns will be initialized with zeros.

sparse2full(doc, length)
Convert document in sparse format (sequence of 2-tuples) into a full numpy array (of size length).

unitVec(vec)
Scale a vector to unit length. The only exception is the zero vector, which is returned back unchanged.

If the input is sparse (list of 2-tuples), output will also be sparse. Otherwise, output will be a numpy array.

2.5.4 corpora.bleicorpus – Corpus in Blei’s LDA-C format

Blei’s LDA-C format.

class BleiCorpus(fname, fnameVocab=None)
Corpus in Blei’s LDA-C format.

The corpus is represented as two files: one describing the documents, and another describing the mapping
between words and their ids.

Each document is one line:

N fieldId1:fieldValue1 fieldId2:fieldValue2 ... fieldIdN:fieldValueN

The vocabulary is a file with words, one word per line; word at line K has an implicit id=K.

Initialize the corpus from a file.

fnameVocab is the file with vocabulary; if not specified, it defaults to fname.vocab.

class load(fname)
Load a previously saved object from file (also see save).

save(fname)
Save the object to file via pickling (also see load).

24 Chapter 2. Contents

gensim Documentation, Release 0.6.0

static saveCorpus(fname, corpus, id2word=None)
Save a corpus in the Matrix Market format.

There are actually two files saved: fname and fname.vocab, where fname.vocab is the vocabulary file.

2.5.5 corpora.dictionary – Construct word<->id mappings

This module implements the concept of Dictionary – a mapping between words and their integer ids.

Dictionaries can be created from a corpus and can later be pruned according to document frequency (re-
moving (un)common words via the Dictionary.filterExtremes() method), save/loaded from disk via
Dictionary.save() and Dictionary.load() methods etc.

class Dictionary()
Dictionary encapsulates mappings between normalized words and their integer ids.

The main function is doc2bow, which converts a collection of words to its bag-of-words representation, option-
ally also updating the dictionary mapping with new words and their ids.

doc2bow(document, allowUpdate=False)
Convert document (a list of words) into the bag-of-words format = list of (tokenId, tokenCount) 2-tuples.
Each word is assumed to be a tokenized and normalized utf-8 encoded string.

If allowUpdate is set, then also update of dictionary in the process: create ids for new words. At the same
time, update document frequencies – for each word appearing in this document, increase its self.docFreq
by one.

If allowUpdate is not set, this function is const, ie. read-only.

filterExtremes(noBelow=5, noAbove=0.5)
Filter out tokens that appear in

1.less than noBelow documents (absolute number) or

2.more than noAbove documents (fraction of total corpus size, not absolute number).

After the pruning, shrink resulting gaps in word ids.

Note: The same word may have a different word id before and after the call to this function!

filterTokens(badIds)
Remove the selected tokens from all dictionary mappings.

badIds is a collection of word ids to be removed.

static fromDocuments(documents)
Build dictionary from a collection of documents. Each document is a list of tokens (ie. tokenized and
normalized utf-8 encoded strings).

This is only a convenience wrapper for calling doc2bow on each document with allowUpdate=True.

>>> print Dictionary.fromDocuments(["máma mele maso".split(), "ema má máma".split()])
Dictionary(5 unique tokens)

class load(fname)
Load a previously saved object from file (also see save).

rebuildDictionary()
Assign new word ids to all words.

This is done to make the ids more compact, ie. after some tokens have been removed via
filterTokens() and there are gaps in the id series. Calling this method will remove the gaps.

2.5. API Reference 25

gensim Documentation, Release 0.6.0

save(fname)
Save the object to file via pickling (also see load).

2.5.6 corpora.dmlcorpus – Corpus in DML-CZ format

Corpus for the DML-CZ project.

class DmlConfig(configId, resultDir, acceptLangs=None)
DmlConfig contains parameters necessary for the abstraction of a ‘corpus of articles’ (see the DmlCorpus class).

Articles may come from different sources (=different locations on disk/netword, different file formats etc.), so
the main purpose of DmlConfig is to keep all sources in one place.

Apart from glueing sources together, DmlConfig also decides where to store output files and which articles to
accept for the corpus (= an additional filter over the sources).

class DmlCorpus()
DmlCorpus implements a collection of articles. It is initialized via a DmlConfig object, which holds information
about where to look for the articles and how to process them.

Apart from being a regular corpus (bag-of-words iterable with a len() method), DmlCorpus has methods for
building a dictionary (mapping between words and their ids).

articleDir(docNo)
Return absolute normalized path on filesystem to article no. docNo.

buildDictionary()
Populate dictionary mapping and statistics.

This is done by sequentially retrieving the article fulltexts, splitting them into tokens and converting tokens
to their ids (creating new ids as necessary).

getMeta(docNo)
Return metadata for article no. docNo.

class load(fname)
Load a previously saved object from file (also see save).

processConfig(config, shuffle=False)
Parse the directories specified in the config, looking for suitable articles.

This updates the self.documents var, which keeps a list of (source id, article uri) 2-tuples. Each tuple is a
unique identifier of one article.

Note that some articles are ignored based on config settings (for example if the article’s language doesn’t
match any language specified in the config etc.).

save(fname)
Save the object to file via pickling (also see load).

saveAsText()
Store the corpus to disk, in a human-readable text format.

This actually saves multiple files:

1.Pure document-term co-occurence frequency counts, as a Matrix Market file.

2.Token to integer mapping, as a text file.

3.Document to document URI mapping, as a text file.

The exact filesystem paths and filenames are determined from the config.

26 Chapter 2. Contents

gensim Documentation, Release 0.6.0

2.5.7 corpora.lowcorpus – Corpus in List-of-Words format

Corpus in GibbsLda++ format of List-Of-Words.

class LowCorpus(fname, id2word=None, line2words=<function splitOnSpace at 0x18c1730>)
List_Of_Words corpus handles input in GibbsLda++ format.

Quoting http://gibbslda.sourceforge.net/#3.2_Input_Data_Format:

Both data for training/estimating the model and new data (i.e., previously
unseen data) have the same format as follows:

[M]
[document1]
[document2]
...
[documentM]

in which the first line is the total number for documents [M]. Each line
after that is one document. [documenti] is the ith document of the dataset
that consists of a list of Ni words/terms.

[documenti] = [wordi1] [wordi2] ... [wordiNi]

in which all [wordij] (i=1..M, j=1..Ni) are text strings and they are separated
by the blank character.

Initialize the corpus from a file.

id2word and line2words are optional parameters.

If provided, id2word is a dictionary mapping between wordIds (integers) and words (strings). If not provided,
the mapping is constructed from the documents.

line2words is a function which converts lines into tokens. Defaults to simple splitting on spaces.

class load(fname)
Load a previously saved object from file (also see save).

save(fname)
Save the object to file via pickling (also see load).

static saveCorpus(fname, corpus, id2word=None)
Save a corpus in the List-of-words format.

2.5.8 corpora.mmcorpus – Corpus in Matrix Market format

Corpus in the Matrix Market format.

class MmCorpus(fname)
Corpus in the Matrix Market format.

Initialize the matrix reader.

The fname is a path to a file on local filesystem, which is expected to be in sparse (coordinate) Matrix Market
format. Documents are assumed to be rows of the matrix (and document features are columns).

class load(fname)
Load a previously saved object from file (also see save).

2.5. API Reference 27

http://gibbslda.sourceforge.net/#3.2_Input_Data_Format

gensim Documentation, Release 0.6.0

save(fname)
Save the object to file via pickling (also see load).

static saveCorpus(fname, corpus, id2word=None)
Save a corpus in the Matrix Market format to disk.

2.5.9 corpora.svmlightcorpus – Corpus in SVMlight format

Corpus in SVMlight format.

class SvmLightCorpus(fname)
Corpus in SVMlight format.

Quoting http://svmlight.joachims.org/: The input file example_file contains the training examples. The first lines
may contain comments and are ignored if they start with #. Each of the following lines represents one training
example and is of the following format:

<line> .=. <target> <feature>:<value> <feature>:<value> ... <feature>:<value> # <info>
<target> .=. +1 | -1 | 0 | <float>
<feature> .=. <integer> | "qid"
<value> .=. <float>
<info> .=. <string>

The “qid” feature (used for SVMlight ranking), if present, is ignored.

Although not mentioned in the specification above, SVMlight also expect its feature ids to be 1-based (counting
starts at 1). We convert features to 0-base internally by decrementing all ids when loading a SVMlight input file,
and increment them again when saving as SVMlight.

Initialize the corpus from a file.

class load(fname)
Load a previously saved object from file (also see save).

save(fname)
Save the object to file via pickling (also see load).

static saveCorpus(fname, corpus, id2word=None)
Save a corpus in the SVMlight format.

The SVMlight <target> class tag is set to 0 for all documents.

2.5.10 models.ldamodel – Latent Dirichlet Allocation

This module encapsulates functionality for the Latent Dirichlet Allocation algorithm.

It allows both model estimation from a training corpus and inference on new, unseen documents.

The implementation is based on Blei et al., Latent Dirichlet Allocation, 2003, and on Blei’s LDA-C software in
particular. This means it uses variational EM inference rather than Gibbs sampling to estimate model parameters.

class LdaModel(corpus, id2word=None, numTopics=200, alpha=None, initMode=’random’)
Objects of this class allow building and maintaining a model of Latent Dirichlet Allocation.

The code is based on Blei’s C implementation, see http://www.cs.princeton.edu/~blei/lda-c/ .

This Python code uses numpy heavily, and is about 4-5x slower than the original C version. The up side is that
it is much more straightforward and concise, using vector operations ala MATLAB, easily pluggable/extensible
etc.

28 Chapter 2. Contents

http://svmlight.joachims.org/
http://www.cs.princeton.edu/~blei/lda-c/

gensim Documentation, Release 0.6.0

The constructor estimates model parameters based on a training corpus:

>>> lda = LdaModel(corpus, numTopics = 10)

You can then infer topic distributions on new, unseen documents:

>>> doc_lda = lda[doc_bow]

Model persistency is achieved via its load/save methods.

Initialize the model based on corpus.

id2word is a mapping from word ids (integers) to words (strings). It is used to determine the vocabulary size, as
well as for debugging and topic printing.

numTopics is the number of requested topics.

alpha is either None (to be estimated during training) or a number between (0.0, 1.0).

computeLikelihood(doc, phi, gamma)
Compute the document likelihood, given all model parameters.

countsFromCorpus(corpus, numInitDocs=1)
Initialize the model word counts from the corpus. Each topic will be initialized from numInitDocs random
documents.

docEStep(doc)
Find optimizing parameters for phi and gamma, and update sufficient statistics.

getTopicsMatrix()
Transform topic-word distribution via a tf-idf score and return it instead of the simple self.logProbW word-
topic probabilities.

The transformation is a sort of TF-IDF score, where the word gets higher score if it’s probable in this topic
(the TF part) and lower score if it’s probable across the whole corpus (the IDF part).

The exact formula is taken from Blei&Laffery: “Topic Models”, 2009

The returned matrix is of the same shape as logProbW.

infer(corpus)
Convenience wrapper for making inference over a corpus of documents.

This means that a standard inference() step is taken for each document from the corpus and the results
are saved into file corpus.fname.lda_inferred.

The output format of this file is one document per line:

doc_likelihood[TAB]topic1:prob topic2:prob ... topicK:prob[TAB]word1:topic word2:topic ... wordN:topic

Topics are sorted by probability, words are in the same order as in the input.

inference(doc)
Perform inference on a single document.

Return 3-tuple of (likelihood of this document, word-topic distribution phi, expected word counts gamma
(~topic distribution)).

A document is simply a bag-of-words collection which supports len() and iteration over (wordIndex, word-
Count) 2-tuples.

The model itself is not affected in any way (this function is read-only aka const).

2.5. API Reference 29

gensim Documentation, Release 0.6.0

initialize(corpus, initMode=’random’)
Run LDA parameter estimation from a training corpus, using the EM algorithm.

After the model has been initialized, you can infer topic distribution over other, different corpora, using
this estimated model.

initMode can be either ‘random’, for a fast random initialization of the model parameters, or ‘seeded’, for
an initialization based on a handful of real documents. The ‘seeded’ mode requires a sweep over the entire
corpus, and is thus much slower.

class load(fname)
Load a previously saved object from file (also see save).

mle(estimateAlpha)
Maximum likelihood estimate.

This maximizes the lower bound on log likelihood wrt. to the alpha and beta parameters.

optAlpha(MAX_ALPHA_ITER=1000, NEWTON_THRESH=1.0000000000000001e-05)
Estimate new Dirichlet priors (actually just one scalar shared across all topics).

printTopics(numWords=10)
Print the top numTerms words for each topic, along with the log of their probability.

Uses getTopicsMatrix() method to determine the ‘top words’.

save(fname)
Save the object to file via pickling (also see load).

2.5.11 models.lsimodel – Latent Semantic Indexing

Module for Latent Semantic Indexing.

class LsiModel(corpus=None, id2word=None, numTopics=200, chunks=10000, decay=1.0, serial_only=None)
Objects of this class allow building and maintaining a model for Latent Semantic Indexing (also known as Latent
Semantic Analysis).

The main methods are:

1.constructor, which initializes the projection into latent topics space,

2.the [] method, which returns representation of any input document in the latent space,

3.the addDocuments() method, which allows for incrementally updating the model with new documents.

Model persistency is achieved via its load/save methods.

numTopics is the number of requested factors (latent dimensions).

After the model has been trained, you can estimate topics for an arbitrary, unseen document, using the
topics = self[document] dictionary notation. You can also add new training documents, with
self.addDocuments, so that training can be stopped and resumed at any time, and the LSI transforma-
tion is available at any point.

If you specify a corpus, it will be used to train the model. See the method addDocuments for a description of
the chunks and decay parameters.

The algorithm will automatically try to find active nodes on other computers and run in a distributed manner;
if this fails, it falls back to serial mode (single core). To suppress distributed computing, set the serial_only
constructor parameter to True.

Example:

30 Chapter 2. Contents

gensim Documentation, Release 0.6.0

>>> lsi = LsiModel(corpus, numTopics = 10)
>>> print lsi[doc_tfidf]
>>> lsi.addDocuments(corpus2) # update LSI on additional documents
>>> print lsi[doc_tfidf]

addDocuments(corpus, chunks=None, decay=None)
Update singular value decomposition factors to take into account a new corpus of documents.

Training proceeds in chunks of chunks documents at a time. If the distributed mode is on, each chunk is
sent to a different worker/computer. Size of chunks is a tradeoff between increased speed (bigger chunks)
vs. lower memory footprint (smaller chunks). Default is processing 10,000 documents at a time.

Setting decay < 1.0 causes re-orientation towards new data trends in the input document stream, by giving
less emphasis to old observations. This allows SVD to gradually “forget” old observations and give more
preference to new ones. The decay is applied once after every chunks documents.

class load(fname)
Load a previously saved object from file (also see save).

printTopic(topicNo, topN=10)
Return a specified topic (0 <= topicNo < self.numTopics) as string in human readable format.

>>> lsimodel.printTopic(10, topN = 5)
’-0.340 * "category" + 0.298 * "M" + 0.183 * "algebra" + -0.174 * "functor" + -0.168 * "operator"’

save(fname)
Save the object to file via pickling (also see load).

clipSpectrum(s, k)
Given singular values s, return how many factors should be kept to avoid storing spurious values. The returned
value is at most k.

iterSvd(corpus, numTerms, numFactors, numIter=200, initRate=None, convergence=0.0001)
Perform iterative Singular Value Decomposition on a streaming corpus, returning numFactors greatest factors
U,S,V^T (ie., not necessarily the full spectrum).

The parameters numIter (maximum number of iterations) and initRate (gradient descent step size) guide con-
vergency of the algorithm.

The algorithm performs at most numFactors*numIters passes over the corpus.

See Genevieve Gorrell: Generalized Hebbian Algorithm for Incremental Singular Value Decomposition
in Natural Language Processing. EACL 2006.

Use of this function is deprecated; although it works, it is several orders of magnitude slower than our own,
direct (non-stochastic) version (which operates in a single pass, too, and can be distributed).

I keep this function here purely for backup reasons.

svdUpdate(U, S, V, a, b)
Update SVD of an (m x n) matrix X = U * S * V^T so that [X + a * b^T] = U’ * S’ * V’^T and return U’, S’, V’.

The original matrix X is not needed at all, so this function implements flexible online updates to an existing
decomposition.

a and b are (m, 1) and (n, 1) matrices.

You can set V to None if you’re not interested in the right singular vectors. In that case, the returned V’ will also
be None (saves memory).

2.5. API Reference 31

gensim Documentation, Release 0.6.0

This is the rank-1 update as described in Brand, 2006: Fast low-rank modifications of the thin singular value
decomposition

2.5.12 models.tfidfmodel – TF-IDF model

class TfidfModel(corpus, id2word=None, normalize=True)
Objects of this class realize the transformation between word-document co-occurence matrix (integers) into a
locally/globally weighted matrix (positive floats).

This is done by combining the term frequency counts (the TF part) with inverse document frequency counts (the
IDF part), optionally normalizing the resulting documents to unit length.

The main methods are:

1.constructor, which calculates IDF weights for all terms in the training corpus.

2.the [] method, which transforms a simple count representation into the TfIdf space.

>>> tfidf = TfidfModel(corpus)
>>> print = tfidf[some_doc]
>>> tfidf.save(’/tmp/foo.tfidf_model’)

Model persistency is achieved via its load/save methods.

normalize dictates whether the resulting vectors will be set to unit length.

initialize(corpus)
Compute inverse document weights, which will be used to modify term frequencies for documents.

class load(fname)
Load a previously saved object from file (also see save).

save(fname)
Save the object to file via pickling (also see load).

2.5.13 models.rpmodel – Random Projections

class RpModel(corpus, id2word=None, numTopics=300)
Objects of this class allow building and maintaining a model for Random Projections (also known as Random
Indexing). For theoretical background on RP, see:

Kanerva et al.: “Random indexing of text samples for Latent Semantic Analysis.”

The main methods are:

1.constructor, which creates the random projection matrix

2.the [] method, which transforms a simple count representation into the TfIdf space.

>>> rp = RpModel(corpus)
>>> print rp[some_doc]
>>> rp.save(’/tmp/foo.rp_model’)

Model persistency is achieved via its load/save methods.

id2word is a mapping from word ids (integers) to words (strings). It is used to determine the vocabulary size, as
well as for debugging and topic printing. If not set, it will be determined from the corpus.

initialize(corpus)
Initialize the random projection matrix.

32 Chapter 2. Contents

gensim Documentation, Release 0.6.0

class load(fname)
Load a previously saved object from file (also see save).

save(fname)
Save the object to file via pickling (also see load).

2.5.14 similarities.docsim – Document similarity queries

This module contains functions and classes for computing similarities across a collection of vectors=documents in the
Vector Space Model.

The main classes are :

1. Similarity – answers similarity queries by linearly scanning over the corpus. This is slow but memory indepen-
dent.

2. MatrixSimilarity – stores the whole corpus in memory, computes similarity by in-memory matrix-vector mul-
tiplication. This is much faster than the general Similarity, so use this when dealing with smaller corpora (must
fit in RAM).

3. SparseMatrixSimilarity – same as MatrixSimilarity, but uses less memory if the vectors are sparse.

Once the similarity object has been initialized, you can query for document similarity simply by

>>> similarities = similarity_object[query_vector]

or iterate over within-corpus similarities with

>>> for similarities in similarity_object:
>>> ...

class MatrixSimilarity(corpus, numBest=None, dtype=<type ’numpy.float32’>, numFeatures=None)
Compute similarity against a corpus of documents by storing its term-document (or concept-document) matrix
in memory. The similarity measure used is cosine between two vectors.

This allows fast similarity searches (simple sparse matrix-vector multiplication), but loses the memory-
independence of an iterative corpus.

The matrix is internally stored as a numpy array.

If numBest is left unspecified, similarity queries return a full list (one float for every document in the corpus,
including the query document):

If numBest is set, queries return numBest most similar documents, as a sorted list:

>>> sms = MatrixSimilarity(corpus, numBest = 3)
>>> sms[vec12]
[(12, 1.0), (30, 0.95), (5, 0.45)]

getSimilarities(doc)
Return similarity of sparse vector doc to all documents in the corpus.

doc may be either a bag-of-words iterable (standard corpus document), or a numpy array, or a scipy.sparse
matrix.

class load(fname)
Load a previously saved object from file (also see save).

2.5. API Reference 33

gensim Documentation, Release 0.6.0

save(fname)
Save the object to file via pickling (also see load).

class Similarity(corpus, numBest=None)
Compute cosine similarity against a corpus of documents. This is done by a full sequential scan of the corpus.

If your corpus is reasonably small (fits in RAM), consider using MatrixSimilarity or SparseMatrixSimilarity
instead, for (much) faster similarity searches.

If numBest is left unspecified, similarity queries return a full list (one float for every document in the corpus,
including the query document):

If numBest is set, queries return numBest most similar documents, as a sorted list:

>>> sms = MatrixSimilarity(corpus, numBest = 3)
>>> sms[vec12]
[(12, 1.0), (30, 0.95), (5, 0.45)]

class load(fname)
Load a previously saved object from file (also see save).

save(fname)
Save the object to file via pickling (also see load).

class SparseMatrixSimilarity(corpus, numBest=None, dtype=<type ’numpy.float32’>)
Compute similarity against a corpus of documents by storing its sparse term-document (or concept-document)
matrix in memory. The similarity measure used is cosine between two vectors.

This allows fast similarity searches (simple sparse matrix-vector multiplication), but loses the memory-
independence of an iterative corpus.

The matrix is internally stored as a scipy.sparse.csr matrix.

If numBest is left unspecified, similarity queries return a full list (one float for every document in the corpus,
including the query document):

If numBest is set, queries return numBest most similar documents, as a sorted list:

>>> sms = SparseMatrixSimilarity(corpus, numBest = 3)
>>> sms[vec12]
[(12, 1.0), (30, 0.95), (5, 0.45)]

getSimilarities(doc)
Return similarity of sparse vector doc to all documents in the corpus.

doc may be either a bag-of-words iterable (standard corpus document), or a numpy array, or a scipy.sparse
matrix.

class load(fname)
Load a previously saved object from file (also see save).

save(fname)
Save the object to file via pickling (also see load).

34 Chapter 2. Contents

MODULE INDEX

G
gensim.corpora.bleicorpus, 24
gensim.corpora.dictionary, 25
gensim.corpora.dmlcorpus, 26
gensim.corpora.lowcorpus, 27
gensim.corpora.mmcorpus, 27
gensim.corpora.svmlightcorpus, 28
gensim.interfaces, 21
gensim.matutils, 23
gensim.models.ldamodel, 28
gensim.models.lsimodel, 30
gensim.models.rpmodel, 32
gensim.models.tfidfmodel, 32
gensim.similarities.docsim, 33
gensim.utils, 22

35

gensim Documentation, Release 0.6.0

36 Module Index

INDEX

A
addDocuments() (gensim.models.lsimodel.LsiModel

method), 31
articleDir() (gensim.corpora.dmlcorpus.DmlCorpus

method), 26

B
BleiCorpus (class in gensim.corpora.bleicorpus), 24
buildDictionary() (gen-

sim.corpora.dmlcorpus.DmlCorpus method),
26

C
clipSpectrum() (in module gensim.models.lsimodel), 31
computeLikelihood() (gen-

sim.models.ldamodel.LdaModel method),
29

Corpus, 6
corpus2csc() (in module gensim.matutils), 24
CorpusABC (class in gensim.interfaces), 21
countsFromCorpus() (gen-

sim.models.ldamodel.LdaModel method),
29

D
deaccent() (in module gensim.utils), 23
dictFromCorpus() (in module gensim.utils), 23
Dictionary (class in gensim.corpora.dictionary), 25
DmlConfig (class in gensim.corpora.dmlcorpus), 26
DmlCorpus (class in gensim.corpora.dmlcorpus), 26
doc2bow() (gensim.corpora.dictionary.Dictionary

method), 25
docEStep() (gensim.models.ldamodel.LdaModel

method), 29

F
FakeDict (class in gensim.utils), 22
filterExtremes() (gensim.corpora.dictionary.Dictionary

method), 25
filterTokens() (gensim.corpora.dictionary.Dictionary

method), 25

fromDocuments() (gensim.corpora.dictionary.Dictionary
static method), 25

G
gensim.corpora.bleicorpus (module), 24
gensim.corpora.dictionary (module), 25
gensim.corpora.dmlcorpus (module), 26
gensim.corpora.lowcorpus (module), 27
gensim.corpora.mmcorpus (module), 27
gensim.corpora.svmlightcorpus (module), 28
gensim.interfaces (module), 21
gensim.matutils (module), 23
gensim.models.ldamodel (module), 28
gensim.models.lsimodel (module), 30
gensim.models.rpmodel (module), 32
gensim.models.tfidfmodel (module), 32
gensim.similarities.docsim (module), 33
gensim.utils (module), 22
get_my_ip() (in module gensim.utils), 23
getMaxId() (in module gensim.utils), 23
getMeta() (gensim.corpora.dmlcorpus.DmlCorpus

method), 26
getSimilarities() (gensim.interfaces.SimilarityABC

method), 21
getSimilarities() (gensim.similarities.docsim.MatrixSimilarity

method), 33
getSimilarities() (gensim.similarities.docsim.SparseMatrixSimilarity

method), 34
getTopicsMatrix() (gensim.models.ldamodel.LdaModel

method), 29

I
infer() (gensim.models.ldamodel.LdaModel method), 29
inference() (gensim.models.ldamodel.LdaModel

method), 29
initialize() (gensim.models.ldamodel.LdaModel method),

29
initialize() (gensim.models.rpmodel.RpModel method),

32
initialize() (gensim.models.tfidfmodel.TfidfModel

method), 32

37

gensim Documentation, Release 0.6.0

isCorpus() (in module gensim.utils), 23
iterSvd() (in module gensim.models.lsimodel), 31

K
keys() (gensim.utils.FakeDict method), 22

L
LdaModel (class in gensim.models.ldamodel), 28
load() (gensim.corpora.bleicorpus.BleiCorpus class

method), 24
load() (gensim.corpora.dictionary.Dictionary class

method), 25
load() (gensim.corpora.dmlcorpus.DmlCorpus class

method), 26
load() (gensim.corpora.lowcorpus.LowCorpus class

method), 27
load() (gensim.corpora.mmcorpus.MmCorpus class

method), 27
load() (gensim.corpora.svmlightcorpus.SvmLightCorpus

class method), 28
load() (gensim.interfaces.CorpusABC class method), 21
load() (gensim.interfaces.SimilarityABC class method),

22
load() (gensim.interfaces.TransformationABC class

method), 22
load() (gensim.models.ldamodel.LdaModel class

method), 30
load() (gensim.models.lsimodel.LsiModel class method),

31
load() (gensim.models.rpmodel.RpModel class method),

33
load() (gensim.models.tfidfmodel.TfidfModel class

method), 32
load() (gensim.similarities.docsim.MatrixSimilarity class

method), 33
load() (gensim.similarities.docsim.Similarity class

method), 34
load() (gensim.similarities.docsim.SparseMatrixSimilarity

class method), 34
load() (gensim.utils.RepeatCorpus class method), 22
load() (gensim.utils.SaveLoad class method), 22
LowCorpus (class in gensim.corpora.lowcorpus), 27
LsiModel (class in gensim.models.lsimodel), 30

M
MatrixSimilarity (class in gensim.similarities.docsim), 33
mle() (gensim.models.ldamodel.LdaModel method), 30
MmCorpus (class in gensim.corpora.mmcorpus), 27
MmReader (class in gensim.matutils), 23
MmWriter (class in gensim.matutils), 24
Model, 6

O
optAlpha() (gensim.models.ldamodel.LdaModel

method), 30

P
pad() (in module gensim.matutils), 24
printTopic() (gensim.models.lsimodel.LsiModel method),

31
printTopics() (gensim.models.ldamodel.LdaModel

method), 30
processConfig() (gensim.corpora.dmlcorpus.DmlCorpus

method), 26

R
rebuildDictionary() (gen-

sim.corpora.dictionary.Dictionary method),
25

RepeatCorpus (class in gensim.utils), 22
RpModel (class in gensim.models.rpmodel), 32

S
save() (gensim.corpora.bleicorpus.BleiCorpus method),

24
save() (gensim.corpora.dictionary.Dictionary method), 25
save() (gensim.corpora.dmlcorpus.DmlCorpus method),

26
save() (gensim.corpora.lowcorpus.LowCorpus method),

27
save() (gensim.corpora.mmcorpus.MmCorpus method),

27
save() (gensim.corpora.svmlightcorpus.SvmLightCorpus

method), 28
save() (gensim.interfaces.CorpusABC method), 21
save() (gensim.interfaces.SimilarityABC method), 22
save() (gensim.interfaces.TransformationABC method),

22
save() (gensim.models.ldamodel.LdaModel method), 30
save() (gensim.models.lsimodel.LsiModel method), 31
save() (gensim.models.rpmodel.RpModel method), 33
save() (gensim.models.tfidfmodel.TfidfModel method),

32
save() (gensim.similarities.docsim.MatrixSimilarity

method), 33
save() (gensim.similarities.docsim.Similarity method), 34
save() (gensim.similarities.docsim.SparseMatrixSimilarity

method), 34
save() (gensim.utils.RepeatCorpus method), 22
save() (gensim.utils.SaveLoad method), 22
saveAsText() (gensim.corpora.dmlcorpus.DmlCorpus

method), 26
saveCorpus() (gensim.corpora.bleicorpus.BleiCorpus

static method), 24
saveCorpus() (gensim.corpora.lowcorpus.LowCorpus

static method), 27

38 Index

gensim Documentation, Release 0.6.0

saveCorpus() (gensim.corpora.mmcorpus.MmCorpus
static method), 28

saveCorpus() (gensim.corpora.svmlightcorpus.SvmLightCorpus
static method), 28

SaveLoad (class in gensim.utils), 22
Similarity (class in gensim.similarities.docsim), 34
SimilarityABC (class in gensim.interfaces), 21
Sparse vector, 6
sparse2full() (in module gensim.matutils), 24
SparseMatrixSimilarity (class in gen-

sim.similarities.docsim), 34
svdUpdate() (in module gensim.models.lsimodel), 31
SvmLightCorpus (class in gen-

sim.corpora.svmlightcorpus), 28
synchronous() (in module gensim.utils), 23

T
TfidfModel (class in gensim.models.tfidfmodel), 32
tokenize() (in module gensim.utils), 23
TransformationABC (class in gensim.interfaces), 22

U
unitVec() (in module gensim.matutils), 24

V
Vector, 6

W
writeCorpus() (gensim.matutils.MmWriter static

method), 24
writeVector() (gensim.matutils.MmWriter method), 24

Index 39

	Quick Reference Example
	Contents
	Introduction
	Installation
	Tutorial
	Distributed Computing
	API Reference

	Module Index
	Index

