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1 Motivation

Consider the common scenario of a biologist who is studying a particular reg-
ulatory network. They study a set of genes that are known to play a role in
the network. They have some background knowledge of particular regulatory
connections from their own studies or from the literature. In addition, they have
time-course perturbation data that reveal the temporal order of expression of
the genes under various conditions. For example, these could be derived from
loss-of-function or over-expression experiments. The biologist would like to elu-
cidate the entire network and to this end can perform various experiments to
test particular regulatory connections. These experiments are costly and time-
consuming. Which connections should he focus on? This is where the pybool
package can help. By modelling candidate regulatory networks using Boolean
logic, pybool evaluates which networks are consistent with the perturbation data
and the known regulatory connections. The biologist can then examine the con-
sistent networks to determine which unknown regulatory connections are most
promising for further experimentation.

1.1 Boolean networks

Kaufman [7] and Thomas [I4] proposed Boolean networks in 1969 and 1973 re-
spectively. Davidson et al. [4] used them to model the development of the sea
urchin embryo. Giacomantonio and Goodhill used them to model mammalian
cortical area development [B]. Li et al. [10] analysed the robustness of the yeast
cell-cycle regulatory network using Boolean networks with threshold functions.
Shmulevich et al. [I3] extended Boolean networks to incorporate probabilist-
ically determined regulation functions. Karlebach and Shamir have reviewed
Boolean networks as models of gene regulatory networks [6]. Akutsu et al. [I]
and Lahdesméki et al. [9] provide algorithms for the consistency problem, that
is finding those networks that agree with observations.

In its most general form, a Boolean network, G(V, F)), consists of a set of
nodes with initial values, V = {X{,..., X%}, and a set of Boolean functions,



F={f1,-..,f~}, fi : {0,1}" + {0,1}. When modelling gene regulatory net-
works, X! € {0,1} represents the expression state of gene i at time ¢ where
0 <t < T. The dynamics of the network are defined by F, X! = f;(X!™1).

2 Methods

Our Boolean network model follows that of Nakajima et al. [I2] which is in turn
based on that of Li et al. [10]. In these models, the functions, f;, are restricted
to be of a particular threshold type

1 if Zj JZ]X; >0
XM =X =3 0 if Y, Ji XF <0 (1)
0; it Y JyXi=0

As above, X! is the expression state of gene i at time point ¢ and can be on
(1) or off (0). J;; represents the regulatory effect of gene j on gene i. J;; > 0,
Jij < 0 and J;; = 0 imply activation, repression and the absence of regulation
respectively. 6; € {0,1} is the constitutive expression state of gene i, that is
it determines whether the gene is off or on in the absence of activation and
repression. A network is fully specified by F = F(J,0) and a set of initial
conditions, V = {X?}. The recurrence relation (1)) allows us to run the network
forward through time and achieve a realisation of the network, {Xf :0<t <
T}.

It is not possible to model all regulatory relationships as threshold func-
tions. The simplest relationship that cannot be modelled as a threshold is an
exclusive-or relationship where a regulated gene is on when exactly one of its two
regulating genes is on. Nevertheless threshold functions are able to model most
of the typical regulatory relationships seen in recently characterised genetic net-
works. On the other hand, this lack of flexibility is not necessarily a drawback.
It may well be that the regulatory relationships that cannot be modelled by
threshold functions are not common in nature. For example they may not be
implemented easily on a molecular level or perhaps they exhibit some property
such as instability that makes them evolutionarily unattractive. In any case,
focussing our attention on threshold functions does not seem overly restrictive
and also brings some beneficial side-effects. In general form, Boolean functions
are most economically represented by a truth table that has 2V entries where N
is the number of input genes. These large tables make interpretation of inferred
functions difficult. For similar reasons of size, integrating prior knowledge of
regulatory relationships is not easy. For example, we may know that gene A has
an activatory effect on gene B. In the threshold function formalism this is easily
encoded. It is not obvious there is an intuitive way to do this with a generalised
truth table.



2.1 The consistency problem

Returning to the problem at hand, the biologist is interested in those networks
that agree with their understanding of which regulatory connections are possible
and that also lead to realisations that agree with their time-course perturbation
data. This is known as the consistency problem (Lahdesmiki et al. [9]). To use
pybool to solve this problem, the biologist defines a set of restrictions and a set
of conditions. The restrictions limit the space of networks by constraining the
possible regulatory connections. Each condition is associated with a perturba-
tion data set and has constraints associated with it. Each constraint represents
the observed temporal order of gene expression in the data set. pybool examines
each network in the restricted space and tests if its realisations for each condi-
tion satisfy the condition’s constraints. Those that do satisfy all the conditions’
constraints are the consistent networks.

Restrictions take the form of sets of valid values for the parameters that
define the network, J, § and {X?}. These reflect which parameters the biolo-
gist is confident about. The restrictions limit the size of the network space that
pybool searches. The search space grows exponentially with the permitted regu-
latory connections so it is in the biologist’s interests to restrict the search space
as much as possible. Connections can be constrained to be absent, activatory,
repressive or a combination of the above.

A condition and its associated constraints model the information a biologist
has from a time-course pertubation experiment. For example, when a particular
gene is over-expressed, time-course microarrays may reveal the temporal order
of gene expression. When searching the network space for consistent networks,
pybool will override the recurrence relation to reflect the perturbations made
in the experiment and generate realisations that can be checked against the
condition’s constraints. A condition is not limited to one perturbation, it is
possible to define a condition that models the combination of multiple knock-
downs or over-expressions.

The biologist can also define genes as external inputs. External inputs rep-
resent knowledge the biologist may have regarding external signals coming into
the regulatory network. They are encoded as functions that tell pybool to fix
the values of the external input gene at each time point.

2.2 Comparison to existing software

A brief round-up of other software for Boolean networks:

e BoolNet in R by Miissel et al. [I1]. Solves the consistency problem with the
REVEAL algorithm and has a best-fit extension implementation. Cannot
integrate expert knowledge into threshold functions explicitly. Artistic
License 2.0.

e Matlab Random Boolean Network Toolbox by Schwarzer http://www.
teuscher.ch/rbntoolbox/index.htm. Finds attractors. Does not seem
to solve the consistency problem.
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e Matlab PBN toolbox by Shmulevich et al. [13]. Infers network from data.
No documentation outside of MatLab so hard to determine if handles
threshold functions. Uses MatLab.

e NetBuilder [3] and NetBuilder’ [I5] by Schilstra et al. http://strc.
herts.ac.uk/bio/maria/NetBuilder. Does not appear to infer networks
from data, is more of a simulation tool.

e DDLab by Andy Wuensche http://www.ddlab.com/. Needs license for
academic and other use except for personal. Huge manual mainly focussed
on attractors.

e BooleanNet by Albert et al. [2]. Appears to be a simulator of networks
rather than an inferrer of networks. MIT Open Source License.

e CellNetAnalyzer by Klamt et al. [8]. This runs in Matlab. Another simu-
lator rathan than an inferrer. Free academic license.

3 Running pybool

We illustrate how pybool works using an example from a paper by Nakajima et
al. [I2]. They are interested in the regulatory network that controls neurogenesis
in Drosophila. Their system consists of six genes, hb, Kr, pdm, cas, sup and X.
They have loss-of-function and over-expression time-course data for hb, Kr, pdm
and cas. svp and X are regarded as external inputs to the system.

Once pybool has been installed (see Section it can be run via its command-
line interface

pybool_run_constraints.py --plot 5 pybool.examples.tutorial

Here we have run the pybool_run_constraints.py Python script and passed
an argument pybool.examples.tutorial. The argument is the name of a Py-
thon module that contains all information about the conditions and constraints.
--plot 5 is an option that asks pybool to plot a graph of the first five of the
consistent networks.

Let’s have a look at some of the output pybool produces. To start with pybool
outputs information about the restrictions.

The possible regulatory relationships are:

[ SVp hb Kr pdm cas X ]
[ svp 0 0 0 0 0 0 ]
[ hb — 0 0 0 0 —/0/4+ ]
[ Kr 0 + 0 — 0 —/0/+ ]
[ pdm 0 - + 0 - —/0/+ ]
[ cas 0 —-/0 - + 0 -/0/+ ]
[ X 0 0 0 0 0 0 11

The possible constitutive expression levels are:

svp : (0,)
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Figure 1: The possible networks. Dashed edges represent regulatory connections
that may not exist. Square nodes are external inputs. Open triangle arrow tips
represent activation and filled reversed triangle arrow tips represent repression.

hb (0, 1)
Kr : (0, 1)
pdm : (0, 1)
cas : (0, 1)
X : (0,)
svp is an external input with possible input parameters:
None

X is an external input with possible input parameters:
1,2,3,4,5,6,7,8,9,10,11

These define the possible Js, fs and external input parameters for the networks
we will test. In the J matrix, the columns are the regulators and the rows are
the regulated genes. For example we see that sup and X cannot be regulated but
can regulate other genes. pybool will also output a graph showing the possible
Js (see Figure|1)).

We see some information about what pybool will do. It tells us how many
different networks it will test against which conditions.

The conditions to test are: wt, hb—, Kr—, pdm—, cas—, hb++, Kr
++, pdm++, cas++
Will generate 28512 different networks.

When it has completed testing the networks, we see a summary of the results

Evaluated 28512 networks in 5.4 seconds. 5273.5/sec

Total mismatches = 99192

Found 27368 networks which match the default condition ”wt”
(161 distinct Js).

Found 149 consistent networks which match all conditions (17
distinct Js).

Condition broken count: wt

Condition broken count: hb—

26873
995



Condition broken count: Kr— = 243

Condition broken count: pdm— = 252
Condition broken count: cas— = 0
Condition broken count: hb++ = 0
Condition broken count: Kr++ =0
Condition broken count: pdot—+ = 0
Condition broken count: cas++ = 0

Here only 149 out of the 28,512 possible networks satisfied the constraints in all
conditions. Each one of the 149 is a different combination of J and . In all there
were only 17 unique Js in the 149. The remaining variation in the consistent
networks comes from the fs. We are also shown counts of the number of networks
which did not satisfy each condition. Note that the conditions are tested in a
particular order. Once one condition has failed, pybool does not evaluate the
other conditions so these counts are skewed towards the earlier conditions.
Now we see a summary of the 149 consistent networks

The consistent regulatory relationships in the networks are:

[ SVp hb Kr pdm cas X ]

[ svp 0 0 0 0 0 0 ]

[ hb — 0 0 0 0 —/0/+ ]

[ Kr 0 + 0 - 0 + ]

[ pdm 0 - + 0 - —/0/+ ]

[ cas 0 —-/0 - + 0 - ]

[ X 0 0 0 0 0 0 11

Valid constitutive expression levels for svp are 0

Valid constitutive expression levels for hb are 0

Valid constitutive expression levels for Kr are 0

Valid constitutive expression levels for pdm are 0,1

Valid constitutive expression levels for cas are 1

Valid constitutive expression levels for X are 0

Valid input parameters for the external input of SVp are:
None

Valid input parameters for the external input of X are:

1,2,3,4,5,6,7,8,9

We can see that in the consistent networks, X always activates Kr and represses
cas. Only some of the tested constitutive expression levels are possible. Most of
the possible input parameters that control the timing of X are consistent. The
possible Js are summarised in Figure

Because we included the command-line option --plot 5 we will have 5 net-
works and their realisations plotted. See Figure [3| for an example.

3.1 Running in parallel

Checking which networks are consistent is trivially parallelisable. pybool uses the
simple yet powerful IPython package for parallelisation (see http://ipython.
scipy.org/doc/stable/html/parallel/index.html). To run pybool in par-
allel mode is as easy as starting an ipcluster with the desired number of
engines
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Figure 2: The consistent networks that satisfy the constraints in the Nakajima
et al. example.
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Figure 3: Top: One of the consistent networks that satisfies the constraints in
the Nakajima et al. example. Below: Graphical representations of the realisa-
tions for each of the conditions. Time is represented on the y-axis and the genes
are colour-coded as in the network above.



ipcluster local -n 2
and then running pybool with the -p command-line option
pybool_run_constraints.py -p pybool.examples.tutorial

The task will then be distributed over all the engines in the ipcluster.

3.2 Other options

e —-black-and-white will generate black and white network diagrams.
e —m=N will limit the number of networks examined to N.

e ——use-LaTeX will generate network diagrams in LaTeX using the tikz
package. This option is provided for publication quality figures. However
the standard network diagrams are of a reasonable quality in any case.

e -F=<format> will add the format to the list of formats that the network
diagrams are generated in. Any format supported by GraphViz and mat-
plotlib is permissible, for example eps, or pdf. png is the default format.

e -h will display all the possible options.

4 Configuration

Now we have seen how to run pybool, we can examine how to configure the
conditions and the constraints. Let’s look at the Python code in the module
pybool.examples.tutorial. The pybool code interfaces with the module via
the MetaData class

class MetaData(BaseMetaData) :

nmmnn

Meta-data for drosophtila meurogenesis regulatory

networks in Nakajima paper.
mimn

pybool will instantiate an instance of this class and query its attributes for the
conditions and constraints. First of all we set up the basic info in the class’s
constructor

def __init__(self):
"Construct."

BaseMetaData.__init__(self)

self.genes = (
’svp’, # 0



‘hb?,  # 1

’Kr’, #2
‘pdm’, # 3
‘cas’, # 4
X7, #5

)

"The gene names."

self.G = len(self.genes)
"The number of genes."

self. T = 12
"The number of time steps to realise."

Next we define the conditions and which genes are forced on or off in each

self.conditions = [
Jth s
Jhb_) ,
)Kr_J ,
Iden_) ,
’cas-’,
’hb++7
‘Kr++7,
’pdm++7,
’cas++’,

]

"Conditions."

self.condition_inputs = {

Twt? {3,

’hb-’ : { HB : gene_off },
’Kr-? : { KR : gene_off 1},
’pdm-’  : { PDM : gene_off I},
’cas-’ : { CAS : gene_off },
’hb++’ : { HB : gene_on 1,
’Kr++> : { KR : gene_on },
’pdm++’ : { PDM : gene_on I,
’cas++’ : { CAS : gene_on 1},

}

mimn

Condition input functions that map genes

to fized exzpression states (up or douwn).
mimnn

self.default_condition = ’wt’
"The condition to use if none specified."



We define the external inputs, each one is defined as a function that takes a
parameter

self.external_inputs = {
# svp ts on at time=1
SVP : svp_external_input,

# X 1s activated at time < parameter
X : X_external_input,
3
mmn
Default external inputs into the network (can be over-ridden

when generating a realisation for a particular condition).
mnmnn

The algorithm needs to be provided with initial expression states for each gene

# All initial states are O except for HB and X
self.initial_states = N.zeros((self.G,), dtype=int)
"Initial expression states."
self.initial_states[HB] = 1

self.initial_states[X] = 1

In the following code we define which regulatory connections are possible

# set up the possible regulatory connections

self .possible_Js = N.empty((self.G, self.G), dtype=object)
"Possible values of J."

unconstrained = (-5, 0, 1)

represses_or_none = (-5, 0)

activates (1,)

represses = (-5,)

no_regulation = (0,)

# initialise all connections to unconstrained
for gl in xrange(self.G):
for g2 in xrange(self.G):
self .possible_Js[gl, g2] = no_regulation

# X can regulate any of HB, KR, PDM and CAS
self .possible_Js[ X, HB] = unconstrained
self .possible_Js[ X, KR] = unconstrained
self .possible_Js[ X,PDM] = unconstrained
self .possible_Js[ X,CAS] = unconstrained

# from Figure 1 in Nakajima paper
self .possible_Js[SVP, HB] = represses
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self .possible_Js[ HB, KR] = activates
self .possible_Js[ HB,PDM] = represses
self .possible_Js[ HB,CAS] = represses_or_none
self .possible_Js[ KR,PDM] = activates
self .possible_Js[ KR,CAS] = represses
self .possible_Js[PDM, KR] = represses
self.possible_Js[PDM,CAS] = activates
self .possible_Js[CAS,PDM] = represses

We set the possible constitutive expression levels. These are irrelevant for the
external input genes, svp and X so we set them to off.

# possible constitutive expression levels
self .possible_thetas = N.empty((self.G), dtype=object)
"Possible values of theta."
unconstrained = (0, 1)
for g in xrange(self.G):
# thetas for external inputs are irrelevant
if g in self.external_inputs:
self .possible_thetas([g] = (0,)
else:
self.possible_thetas[g] = unconstrained

However the external inputs are parameterised and we have to define the possible
parameter sets.

# set up all possible input parameters.

self .possible_input_params = [(None,)] * self.G
"The possible input parameters."

self .possible_input_params[X] = N.arange(l, self.T)

We provide some details that allow pybool to create graphics of the networks.
We define a colour for each gene and a fixed position for when the network is
drawn.

self.colours = N.array((
M.colors.colorConverter.to_rgb(’purple’),
M.colors.colorConverter.to_rgb(’green’),
M.colors.colorConverter.to_rgb(’darkblue’),
M.colors.colorConverter.to_rgb(’deepskyblue’),
M.colors.colorConverter.to_rgb(’#DD0000’),
M.colors.colorConverter.to_rgb(’black’),

)

"Colours to use when plotting realisations, etc...

self.graph_positions = {
SVP : (2, 3),
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HB : (0, 3),
KR : (-2, 2),
PDM : ( 0, 1),
CAS : (-2, 0),
X: (2, 1),

}

"Fixed positions of the genes in a graph."

Finally we call a base class method that makes sure we limit the set of possible
networks to those that are relevant. For example this enforces that external
inputs can only have one constitutive expression level.

# make sure we don’t allow regulation of inputs, etc..
self._tighten_constraints_on_inputs()

5 Conclusions

Due to current levels of ignorance about most regulatory networks, the simplest
models can often be the most practical for modelling. Thresholded Boolean
network functions fit into this category. When combined with qualitative con-
straints on the order of gene expression they offer an attractive method of in-
vestigating regulatory networks.

Python is a well regarded and easy to use language. Our parallelisable C++
implementation can efficiently analyse tens of thousands of networks per second.

pybool offers a range of graphical outputs to make interpretation of the results
easier. Several different image formats are supported.

6 License

pybool is free for academic use. For commercial licenses please contact the
author

John Reid,

MRC Biostatistics Unit,
Institute of Public Health,
University Forvie Site,
Robinson Way,

Cambridge.

CB2 OSR.

7 Appendix: Installation

The README file that comes with the pybool source download covers the install-
ation instructions. See http://sysbio.mrc-bsu.cam.ac.uk/johns/pybool/,
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