Coverage for pygeodesy/ellipsoidalBase.py: 94%
295 statements
« prev ^ index » next coverage.py v7.2.2, created at 2023-12-29 12:35 -0500
« prev ^ index » next coverage.py v7.2.2, created at 2023-12-29 12:35 -0500
2# -*- coding: utf-8 -*-
4u'''(INTERNAL) Private ellipsoidal base classes C{CartesianEllipsoidalBase}
5and C{LatLonEllipsoidalBase}.
7A pure Python implementation of geodesy tools for ellipsoidal earth models,
8transcoded in part from JavaScript originals by I{(C) Chris Veness 2005-2016}
9and published under the same MIT Licence**, see for example U{latlon-ellipsoidal
10<https://www.Movable-Type.co.UK/scripts/geodesy/docs/latlon-ellipsoidal.js.html>}.
11'''
12# make sure int/int division yields float quotient, see .basics
13from __future__ import division as _; del _ # PYCHOK semicolon
15# from pygeodesy.basics import _xinstanceof # from .datums
16from pygeodesy.constants import EPS, EPS0, EPS1, _0_0, _0_5
17from pygeodesy.cartesianBase import CartesianBase # PYCHOK used!
18from pygeodesy.datums import Datum, Datums, _earth_ellipsoid, _ellipsoidal_datum, \
19 _WGS84, _EWGS84, _xinstanceof # _spherical_datum
20# from pygeodesy.ellipsoids import _EWGS84 # from .datums
21from pygeodesy.errors import _incompatible, _IsnotError, RangeError, TRFError, \
22 _TypeError, _ValueError, _xattr, _xellipsoidal, \
23 _xError, _xkwds, _xkwds_get, _xkwds_not
24# from pygeodesy.fmath import favg # _MODS
25from pygeodesy.interns import MISSING, NN, _COMMA_, _conversion_, _DOT_, \
26 _ellipsoidal_, _no_, _reframe_, _SPACE_
27from pygeodesy.latlonBase import LatLonBase, _trilaterate5, fabs, _Wrap
28from pygeodesy.lazily import _ALL_DOCS, _ALL_LAZY, _ALL_MODS as _MODS
29# from pygeodesy.lcc import toLcc # _MODS
30# from pygeodesy.named import notOverloaded # _MODS
31# from pygeodesy.namedTuples import Vector3Tuple # _MODS
32from pygeodesy.props import deprecated_method, deprecated_property_RO, \
33 Property_RO, property_doc_, property_RO, _update_all
34from pygeodesy.units import Epoch, _isDegrees, Radius_, _1mm as _TOL_M
35# from pygeodesy.utily import _Wrap # from .latlonBase
37# from math import fabs # from .latlonBase
39__all__ = _ALL_LAZY.ellipsoidalBase
40__version__ = '23.12.18'
43class CartesianEllipsoidalBase(CartesianBase):
44 '''(INTERNAL) Base class for ellipsoidal C{Cartesian}s.
45 '''
46 _datum = _WGS84 # L{Datum}
47 _reframe = None
49# def __matmul__(self, other): # PYCHOK Python 3.5+
50# '''Return C{NotImplemented} for C{c_ = c @ datum}, C{c_ = c @ reframe} and C{c_ = c @ Transform}.
51# '''
52# RefFrame = _MODS.trf.RefFrame
53# return NotImplemented if isinstance(other, (Datum, RefFrame, Transform)) else \
54# _NotImplemented(self, other)
56 @deprecated_method
57 def convertRefFrame(self, reframe2, reframe, epoch=None):
58 '''DEPRECATED, use method L{toRefFrame}.'''
59 return self.toRefFrame(reframe2, reframe, epoch=epoch)
61 @property_RO
62 def ellipsoidalCartesian(self):
63 '''Get this C{Cartesian}'s ellipsoidal class.
64 '''
65 return type(self)
67 def intersections2(self, radius, center2, radius2, sphere=True,
68 Vector=None, **Vector_kwds):
69 '''Compute the intersection of two spheres or circles, each defined by a
70 cartesian center point and a radius.
72 @arg radius: Radius of this sphere or circle (same units as this point's
73 coordinates).
74 @arg center2: Center of the second sphere or circle (C{Cartesian}, L{Vector3d},
75 C{Vector3Tuple} or C{Vector4Tuple}).
76 @arg radius2: Radius of the second sphere or circle (same units as this and
77 the B{C{other}} point's coordinates).
78 @kwarg sphere: If C{True} compute the center and radius of the intersection
79 of two I{spheres}. If C{False}, ignore the C{z}-component and
80 compute the intersection of two I{circles} (C{bool}).
81 @kwarg Vector: Class to return intersections (C{Cartesian}, L{Vector3d} or
82 C{Vector3Tuple}) or C{None} for an instance of this (sub-)class.
83 @kwarg Vector_kwds: Optional, additional B{C{Vector}} keyword arguments,
84 ignored if C{B{Vector} is None}.
86 @return: If B{C{sphere}} is C{True}, a 2-tuple of the C{center} and C{radius}
87 of the intersection of the I{spheres}. The C{radius} is C{0.0} for
88 abutting spheres (and the C{center} is aka the I{radical center}).
90 If B{C{sphere}} is C{False}, a 2-tuple with the two intersection
91 points of the I{circles}. For abutting circles, both points are
92 the same instance, aka the I{radical center}.
94 @raise IntersectionError: Concentric, invalid or non-intersecting spheres or circles.
96 @raise TypeError: Invalid B{C{center2}}.
98 @raise UnitError: Invalid B{C{radius}} or B{C{radius2}}.
100 @see: U{Sphere-Sphere<https://MathWorld.Wolfram.com/Sphere-SphereIntersection.html>},
101 U{Circle-Circle<https://MathWorld.Wolfram.com/Circle-CircleIntersection.html>}
102 Intersection and function L{pygeodesy.radical2}.
103 '''
104 try:
105 return _MODS.vector3d._intersects2(self, Radius_(radius=radius),
106 center2, Radius_(radius2=radius2),
107 sphere=sphere, clas=self.classof,
108 Vector=Vector, **Vector_kwds)
109 except (TypeError, ValueError) as x:
110 raise _xError(x, center=self, radius=radius, center2=center2, radius2=radius2)
112 @property_doc_(''' this cartesian's reference frame (L{RefFrame}).''')
113 def reframe(self):
114 '''Get this cartesian's reference frame (L{RefFrame}) or C{None}.
115 '''
116 return self._reframe
118 @reframe.setter # PYCHOK setter!
119 def reframe(self, reframe):
120 '''Set or clear this cartesian's reference frame (L{RefFrame}) or C{None}.
122 @raise TypeError: The B{C{reframe}} is not a L{RefFrame}.
123 '''
124 _set_reframe(self, reframe)
126 def toRefFrame(self, reframe2, reframe=None, epoch=None):
127 '''Convert this cartesian point from one to an other reference frame.
129 @arg reframe2: Reference frame to convert I{to} (L{RefFrame}).
130 @arg reframe: Reference frame to convert I{from} (L{RefFrame}),
131 overriding this cartesian's C{reframe}.
132 @kwarg epoch: Optional epoch to observe (C{scalar}, fractional
133 calendar year), overriding B{C{reframe}}'s epoch.
135 @return: The converted point (C{Cartesian}) or this point if
136 conversion is C{nil}.
138 @raise TRFError: No conversion available from B{C{reframe}}
139 to B{C{reframe2}} or invalid B{C{epoch}}.
141 @raise TypeError: B{C{reframe2}} or B{C{reframe}} not a
142 L{RefFrame}.
143 '''
144 r = self.reframe if reframe is None else reframe
145 if r in (None, reframe2):
146 xs = None # XXX _set_reframe(self, reframe2)?
147 else:
148 trf = _MODS.trf
149 _xinstanceof(trf.RefFrame, reframe2=reframe2, reframe=r)
150 _, xs = trf._reframeTransforms2(reframe2, r, epoch)
151 return self.toTransforms_(*xs) if xs else self
153 def toTransforms_(self, *transforms, **datum):
154 '''Apply none, one or several Helmert transforms.
156 @arg transforms: Transforms to apply, in order (L{Transform}s).
157 @kwarg datum: Datum for the transformed point (L{Datum}),
158 overriding this point's datum.
160 @return: The transformed point (C{Cartesian}) or this point
161 if the B{C{transforms}} produce the same point.
162 '''
163 r = self
164 if transforms:
165 xyz = r.xyz
166 for t in transforms:
167 xyz = t.transform(*xyz)
168 d = _xkwds_get(datum, datum=r.datum)
169 if d != r.datum or xyz != r.xyz:
170 r = r.classof(xyz, datum=d)
171 return r
174class LatLonEllipsoidalBase(LatLonBase):
175 '''(INTERNAL) Base class for ellipsoidal C{LatLon}s.
176 '''
177 _datum = _WGS84 # L{Datum}
178 _elevation2to = None # _elevation2 timeout (C{secs})
179 _epoch = None # overriding .reframe.epoch (C{float})
180 _gamma = None # UTM/UPS meridian convergence (C{degrees})
181 _geoidHeight2to = None # _geoidHeight2 timeout (C{secs})
182 _reframe = None # reference frame (L{RefFrame})
183 _scale = None # UTM/UPS scale factor (C{float})
184 _toLLEB_args = () # Etm/Utm/Ups._toLLEB arguments
186 def __init__(self, latlonh, lon=None, height=0, datum=None, reframe=None,
187 epoch=None, wrap=False, name=NN):
188 '''Create an ellipsoidal C{LatLon} point from the givenlat-, longitude
189 and height on the given datum, reference frame and epoch.
191 @arg latlonh: Latitude (C{degrees} or DMS C{str} with N or S suffix) or
192 a previous C{LatLon} instance provided C{B{lon}=None}.
193 @kwarg lon: Longitude (C{degrees} or DMS C{str} with E or W suffix) or
194 C(None), indicating B{C{latlonh}} is a C{LatLon}.
195 @kwarg height: Optional height above (or below) the earth surface
196 (C{meter}, same units as the datum's ellipsoid axes).
197 @kwarg datum: Optional, ellipsoidal datum to use (L{Datum}, L{Ellipsoid},
198 L{Ellipsoid2} or L{a_f2Tuple}).
199 @kwarg reframe: Optional reference frame (L{RefFrame}).
200 @kwarg epoch: Optional epoch to observe for B{C{reframe}} (C{scalar}),
201 a non-zero, fractional calendar year; silently ignored
202 if C{B{reframe}=None}.
203 @kwarg wrap: If C{True}, wrap or I{normalize} B{C{lat}} and B{C{lon}}
204 (C{bool}).
205 @kwarg name: Optional name (C{str}).
207 @raise RangeError: Value of C{lat} or B{C{lon}} outside the valid
208 range and L{rangerrors} set to C{True}.
210 @raise TypeError: If B{C{latlonh}} is not a C{LatLon}, B{C{datum}} is
211 not a L{Datum}, B{C{reframe}} is not a L{RefFrame}
212 or B{C{epoch}} is not C{scalar} non-zero.
214 @raise UnitError: Invalid B{C{lat}}, B{C{lon}} or B{C{height}}.
215 '''
216 LatLonBase.__init__(self, latlonh, lon=lon, height=height, wrap=wrap, name=name)
217 if datum not in (None, self._datum, _EWGS84):
218 self.datum = _ellipsoidal_datum(datum, name=name)
219 if reframe:
220 self.reframe = reframe
221 self.epoch = epoch
223# def __matmul__(self, other): # PYCHOK Python 3.5+
224# '''Return C{NotImplemented} for C{ll_ = ll @ datum} and C{ll_ = ll @ reframe}.
225# '''
226# RefFrame = _MODS.trf.RefFrame
227# return NotImplemented if isinstance(other, (Datum, RefFrame)) else \
228# _NotImplemented(self, other)
230 def antipode(self, height=None):
231 '''Return the antipode, the point diametrically opposite
232 to this point.
234 @kwarg height: Optional height of the antipode, height
235 of this point otherwise (C{meter}).
237 @return: The antipodal point (C{LatLon}).
238 '''
239 lla = LatLonBase.antipode(self, height=height)
240 if lla.datum != self.datum:
241 lla.datum = self.datum
242 return lla
244 @deprecated_property_RO
245 def convergence(self):
246 '''DEPRECATED, use property C{gamma}.'''
247 return self.gamma
249 @deprecated_method
250 def convertDatum(self, datum2):
251 '''DEPRECATED, use method L{toDatum}.'''
252 return self.toDatum(datum2)
254 @deprecated_method
255 def convertRefFrame(self, reframe2):
256 '''DEPRECATED, use method L{toRefFrame}.'''
257 return self.toRefFrame(reframe2)
259 @Property_RO
260 def _css(self):
261 '''(INTERNAL) Get this C{LatLon} point as a Cassini-Soldner location (L{Css}).
262 '''
263 css = _MODS.css
264 return css.toCss(self, height=self.height, Css=css.Css, name=self.name)
266 @property_doc_(''' this points's datum (L{Datum}).''')
267 def datum(self):
268 '''Get this point's datum (L{Datum}).
269 '''
270 return self._datum
272 @datum.setter # PYCHOK setter!
273 def datum(self, datum):
274 '''Set this point's datum I{without conversion} (L{Datum}).
276 @raise TypeError: The B{C{datum}} is not a L{Datum}
277 or not ellipsoidal.
278 '''
279 _xinstanceof(Datum, datum=datum)
280 if not datum.isEllipsoidal:
281 raise _IsnotError(_ellipsoidal_, datum=datum)
282 if self._datum != datum:
283 _update_all(self)
284 self._datum = datum
286 def distanceTo2(self, other, wrap=False):
287 '''I{Approximate} the distance and (initial) bearing between this
288 and an other (ellipsoidal) point based on the radii of curvature.
290 I{Suitable only for short distances up to a few hundred Km
291 or Miles and only between points not near-polar}.
293 @arg other: The other point (C{LatLon}).
294 @kwarg wrap: If C{True}, wrap or I{normalize} the B{C{other}}
295 point (C{bool}).
297 @return: An L{Distance2Tuple}C{(distance, initial)}.
299 @raise TypeError: The B{C{other}} point is not C{LatLon}.
301 @raise ValueError: Incompatible datum ellipsoids.
303 @see: Method L{Ellipsoid.distance2} and U{Local, flat earth
304 approximation<https://www.EdWilliams.org/avform.htm#flat>}
305 aka U{Hubeny<https://www.OVG.AT/de/vgi/files/pdf/3781/>}
306 formula.
307 '''
308 p = self.others(other)
309 if wrap:
310 p = _Wrap.point(p)
311 E = self.ellipsoids(other)
312 return E.distance2(*(self.latlon + p.latlon))
314 @Property_RO
315 def _elevation2(self):
316 '''(INTERNAL) Get elevation and data source.
317 '''
318 return _MODS.elevations.elevation2(self.lat, self.lon,
319 timeout=self._elevation2to)
321 def elevation2(self, adjust=True, datum=None, timeout=2):
322 '''Return elevation of this point for its or the given datum, ellipsoid
323 or sphere.
325 @kwarg adjust: Adjust the elevation for a B{C{datum}} other than
326 C{NAD83} (C{bool}).
327 @kwarg datum: Optional datum overriding this point's datum (L{Datum},
328 L{Ellipsoid}, L{Ellipsoid2}, L{a_f2Tuple} or C{scalar}
329 radius).
330 @kwarg timeout: Optional query timeout (C{seconds}).
332 @return: An L{Elevation2Tuple}C{(elevation, data_source)} or
333 C{(None, error)} in case of errors.
335 @note: The adjustment applied is the difference in geocentric earth
336 radius between the B{C{datum}} and C{NAV83} upon which the
337 L{elevations.elevation2} is based.
339 @note: NED elevation is only available for locations within the
340 U{Conterminous US (CONUS)
341 <https://WikiPedia.org/wiki/Contiguous_United_States>}.
343 @see: Function L{elevations.elevation2} and method C{Ellipsoid.Rgeocentric}
344 for further details and possible C{error}s.
345 '''
346 if self._elevation2to != timeout:
347 self._elevation2to = timeout
348 LatLonEllipsoidalBase._elevation2._update(self)
349 return self._Radjust2(adjust, datum, self._elevation2)
351 def ellipsoid(self, datum=_WGS84):
352 '''Return the ellipsoid of this point's datum or the given datum.
354 @kwarg datum: Default datum (L{Datum}).
356 @return: The ellipsoid (L{Ellipsoid} or L{Ellipsoid2}).
357 '''
358 return _xattr(self, datum=datum).ellipsoid
360 @property_RO
361 def ellipsoidalLatLon(self):
362 '''Get this C{LatLon}'s ellipsoidal class.
363 '''
364 return type(self)
366 def ellipsoids(self, other):
367 '''Check the type and ellipsoid of this and an other point's datum.
369 @arg other: The other point (C{LatLon}).
371 @return: This point's datum ellipsoid (L{Ellipsoid} or L{Ellipsoid2}).
373 @raise TypeError: The B{C{other}} point is not C{LatLon}.
375 @raise ValueError: Incompatible datum ellipsoids.
376 '''
377 self.others(other, up=2) # ellipsoids' caller
379 E = self.ellipsoid()
380 try: # other may be Sphere, etc.
381 e = other.ellipsoid()
382 except AttributeError:
383 try: # no ellipsoid method, try datum
384 e = other.datum.ellipsoid
385 except AttributeError:
386 e = E # no datum, XXX assume equivalent?
387 if e != E:
388 raise _ValueError(e.named2, txt=_incompatible(E.named2))
389 return E
391 @property_doc_(''' this point's observed or C{reframe} epoch (C{float}).''')
392 def epoch(self):
393 '''Get this point's observed or C{reframe} epoch (C{float}) or C{None}.
394 '''
395 return self._epoch or (self.reframe.epoch if self.reframe else None)
397 @epoch.setter # PYCHOK setter!
398 def epoch(self, epoch):
399 '''Set or clear this point's observed epoch, a fractional
400 calendar year (L{Epoch}, C{scalar}) or C{None}.
402 @raise TRFError: Invalid B{C{epoch}}.
403 '''
404 self._epoch = None if epoch is None else Epoch(epoch)
406 @Property_RO
407 def Equidistant(self):
408 '''Get the prefered azimuthal equidistant projection I{class} (L{EquidistantKarney} or L{EquidistantExact}).
409 '''
410 try:
411 _ = self.datum.ellipsoid.geodesic
412 return _MODS.azimuthal.EquidistantKarney
413 except ImportError: # no geographiclib
414 return _MODS.azimuthal.EquidistantExact # XXX no longer L{azimuthal.Equidistant}
416 @Property_RO
417 def _etm(self):
418 '''(INTERNAL) Get this C{LatLon} point as an ETM coordinate (L{pygeodesy.toEtm8}).
419 '''
420 etm = _MODS.etm
421 return etm.toEtm8(self, datum=self.datum, Etm=etm.Etm)
423 @property_RO
424 def gamma(self):
425 '''Get this point's UTM or UPS meridian convergence (C{degrees}) or
426 C{None} if not available or not converted from L{Utm} or L{Ups}.
427 '''
428 return self._gamma
430 @Property_RO
431 def _geoidHeight2(self):
432 '''(INTERNAL) Get geoid height and model.
433 '''
434 return _MODS.elevations.geoidHeight2(self.lat, self.lon, model=0,
435 timeout=self._geoidHeight2to)
437 def geoidHeight2(self, adjust=False, datum=None, timeout=2):
438 '''Return geoid height of this point for its or the given datum, ellipsoid
439 or sphere.
441 @kwarg adjust: Adjust the geoid height for a B{C{datum}} other than
442 C{NAD83/NADV88} (C{bool}).
443 @kwarg datum: Optional datum overriding this point's datum (L{Datum},
444 L{Ellipsoid}, L{Ellipsoid2}, L{a_f2Tuple} or C{scalar}
445 radius).
446 @kwarg timeout: Optional query timeout (C{seconds}).
448 @return: A L{GeoidHeight2Tuple}C{(height, model_name)} or
449 C{(None, error)} in case of errors.
451 @note: The adjustment applied is the difference in geocentric earth
452 radius between the B{C{datum}} and C{NAV83/NADV88} upon which
453 the L{elevations.geoidHeight2} is based.
455 @note: The geoid height is only available for locations within the
456 U{Conterminous US (CONUS)
457 <https://WikiPedia.org/wiki/Contiguous_United_States>}.
459 @see: Function L{elevations.geoidHeight2} and method C{Ellipsoid.Rgeocentric}
460 for further details and possible C{error}s.
461 '''
462 if self._geoidHeight2to != timeout:
463 self._geoidHeight2to = timeout
464 LatLonEllipsoidalBase._geoidHeight2._update(self)
465 return self._Radjust2(adjust, datum, self._geoidHeight2)
467 def intermediateTo(self, other, fraction, height=None, wrap=False): # PYCHOK no cover
468 '''I{Must be overloaded}.'''
469 _MODS.named.notOverloaded(self, other, fraction, height=height, wrap=wrap)
471 def intersection3(self, end1, other, end2, height=None, wrap=False, # was=True
472 equidistant=None, tol=_TOL_M):
473 '''I{Iteratively} compute the intersection point of two lines, each
474 defined by two points or a start point and bearing from North.
476 @arg end1: End point of this line (C{LatLon}) or the initial
477 bearing at this point (compass C{degrees360}).
478 @arg other: Start point of the other line (C{LatLon}).
479 @arg end2: End point of the other line (C{LatLon}) or the initial
480 bearing at the other point (compass C{degrees360}).
481 @kwarg height: Optional height at the intersection (C{meter},
482 conventionally) or C{None} for the mean height.
483 @kwarg wrap: If C{True}, wrap or I{normalize} and unroll the
484 B{C{other}} and B{C{end*}} points (C{bool}).
485 @kwarg equidistant: An azimuthal equidistant projection (I{class} or
486 function L{pygeodesy.equidistant}), or C{None}
487 for this point's preferred C{.Equidistant}.
488 @kwarg tol: Tolerance for convergence and skew line distance and
489 length (C{meter}, conventionally).
491 @return: An L{Intersection3Tuple}C{(point, outside1, outside2)}
492 with C{point} a C{LatLon} instance.
494 @raise ImportError: Package U{geographiclib
495 <https://PyPI.org/project/geographiclib>}
496 not installed or not found, but only if
497 C{B{equidistant}=}L{EquidistantKarney}.
499 @raise IntersectionError: Skew, colinear, parallel or otherwise
500 non-intersecting lines or no convergence
501 for the given B{C{tol}}.
503 @raise TypeError: If B{C{end1}}, B{C{other}} or B{C{end2}} point
504 is not C{LatLon}.
506 @note: For each line specified with an initial bearing, a pseudo-end
507 point is computed as the C{destination} along that bearing at
508 about 1.5 times the distance from the start point to an initial
509 gu-/estimate of the intersection point (and between 1/8 and 3/8
510 of the authalic earth perimeter).
512 @see: I{Karney's} U{intersect.cpp<https://SourceForge.net/p/geographiclib/
513 discussion/1026621/thread/21aaff9f/>}, U{The B{ellipsoidal} case<https://
514 GIS.StackExchange.com/questions/48937/calculating-intersection-of-two-circles>}
515 and U{Karney's paper<https://ArXiv.org/pdf/1102.1215.pdf>}, pp 20-21, section
516 B{14. MARITIME BOUNDARIES} for more details about the iteration algorithm.
517 '''
518 try:
519 s2 = self.others(other)
520 return _MODS.ellipsoidalBaseDI._intersect3(self, end1,
521 s2, end2,
522 height=height, wrap=wrap,
523 equidistant=equidistant, tol=tol,
524 LatLon=self.classof, datum=self.datum)
525 except (TypeError, ValueError) as x:
526 raise _xError(x, start1=self, end1=end1, other=other, end2=end2,
527 height=height, wrap=wrap, tol=tol)
529 def intersections2(self, radius1, other, radius2, height=None, wrap=False, # was=True
530 equidistant=None, tol=_TOL_M):
531 '''I{Iteratively} compute the intersection points of two circles,
532 each defined by a center point and a radius.
534 @arg radius1: Radius of this circle (C{meter}, conventionally).
535 @arg other: Center of the other circle (C{LatLon}).
536 @arg radius2: Radius of the other circle (C{meter}, same units as
537 B{C{radius1}}).
538 @kwarg height: Optional height for the intersection points (C{meter},
539 conventionally) or C{None} for the I{"radical height"}
540 at the I{radical line} between both centers.
541 @kwarg wrap: If C{True}, wrap or I{normalize} and unroll the B{C{other}}
542 center (C{bool}).
543 @kwarg equidistant: An azimuthal equidistant projection (I{class} or
544 function L{pygeodesy.equidistant}) or C{None}
545 for this point's preferred C{.Equidistant}.
546 @kwarg tol: Convergence tolerance (C{meter}, same units as
547 B{C{radius1}} and B{C{radius2}}).
549 @return: 2-Tuple of the intersection points, each a C{LatLon}
550 instance. For abutting circles, both intersection
551 points are the same instance, aka the I{radical center}.
553 @raise ImportError: Package U{geographiclib
554 <https://PyPI.org/project/geographiclib>}
555 not installed or not found, but only if
556 C{B{equidistant}=}L{EquidistantKarney}.
558 @raise IntersectionError: Concentric, antipodal, invalid or
559 non-intersecting circles or no
560 convergence for the given B{C{tol}}.
562 @raise TypeError: Invalid B{C{other}} or B{C{equidistant}}.
564 @raise UnitError: Invalid B{C{radius1}}, B{C{radius2}} or B{C{height}}.
566 @see: U{The B{ellipsoidal} case<https://GIS.StackExchange.com/questions/48937/
567 calculating-intersection-of-two-circles>}, U{Karney's paper
568 <https://ArXiv.org/pdf/1102.1215.pdf>}, pp 20-21, section B{14. MARITIME BOUNDARIES},
569 U{circle-circle<https://MathWorld.Wolfram.com/Circle-CircleIntersection.html>} and
570 U{sphere-sphere<https://MathWorld.Wolfram.com/Sphere-SphereIntersection.html>}
571 intersections.
572 '''
573 try:
574 c2 = self.others(other)
575 return _MODS.ellipsoidalBaseDI._intersections2(self, radius1,
576 c2, radius2,
577 height=height, wrap=wrap,
578 equidistant=equidistant, tol=tol,
579 LatLon=self.classof, datum=self.datum)
580 except (AssertionError, TypeError, ValueError) as x:
581 raise _xError(x, center=self, radius1=radius1, other=other, radius2=radius2,
582 height=height, wrap=wrap, tol=tol)
584 def isenclosedBy(self, points, wrap=False):
585 '''Check whether a polygon or composite encloses this point.
587 @arg points: The polygon points or clips (C{LatLon}[],
588 L{BooleanFHP} or L{BooleanGH}).
589 @kwarg wrap: If C{True}, wrap or I{normalize} and unroll the
590 B{C{points}} (C{bool}).
592 @return: C{True} if this point is inside the polygon or composite,
593 C{False} otherwise.
595 @raise PointsError: Insufficient number of B{C{points}}.
597 @raise TypeError: Some B{C{points}} are not C{LatLon}.
599 @raise ValueError: Invalid B{C{point}}, lat- or longitude.
601 @see: Functions L{pygeodesy.isconvex}, L{pygeodesy.isenclosedBy}
602 and L{pygeodesy.ispolar} especially if the B{C{points}} may
603 enclose a pole or wrap around the earth I{longitudinally}.
604 '''
605 return _MODS.points.isenclosedBy(self, points, wrap=wrap)
607 @property_RO
608 def iteration(self):
609 '''Get the most recent C{intersections2} or C{nearestOn} iteration
610 number (C{int}) or C{None} if not available/applicable.
611 '''
612 return self._iteration
614 @Property_RO
615 def _lcc(self):
616 '''(INTERNAL) Get this C{LatLon} point as a Lambert location (L{Lcc}).
617 '''
618 lcc = _MODS.lcc
619 return lcc.toLcc(self, height=self.height, Lcc=lcc.Lcc, name=self.name)
621 def midpointTo(self, other, height=None, fraction=_0_5, wrap=False):
622 '''Find the midpoint on a geodesic between this and an other point.
624 @arg other: The other point (C{LatLon}).
625 @kwarg height: Optional height for midpoint, overriding the
626 mean height (C{meter}).
627 @kwarg fraction: Midpoint location from this point (C{scalar}),
628 may be negative or greater than 1.0.
629 @kwarg wrap: If C{True}, wrap or I{normalize} and unroll the
630 B{C{other}} point (C{bool}).
632 @return: Midpoint (C{LatLon}).
634 @raise TypeError: The B{C{other}} point is not C{LatLon}.
636 @raise ValueError: Invalid B{C{height}}.
638 @see: Methods C{intermediateTo} and C{rhumbMidpointTo}.
639 '''
640 return self.intermediateTo(other, fraction, height=height, wrap=wrap)
642 def nearestOn(self, point1, point2, within=True, height=None, wrap=False, # was=True
643 equidistant=None, tol=_TOL_M):
644 '''I{Iteratively} locate the closest point on the geodesic between
645 two other (ellipsoidal) points.
647 @arg point1: Start point (C{LatLon}).
648 @arg point2: End point (C{LatLon}).
649 @kwarg within: If C{True} return the closest point I{between}
650 B{C{point1}} and B{C{point2}}, otherwise the
651 closest point elsewhere on the geodesic (C{bool}).
652 @kwarg height: Optional height for the closest point (C{meter},
653 conventionally) or C{None} or C{False} for the
654 interpolated height. If C{False}, the closest
655 takes the heights of the points into account.
656 @kwarg wrap: If C{True}, wrap or I{normalize} and unroll both
657 B{C{point1}} and B{C{point2}} (C{bool}).
658 @kwarg equidistant: An azimuthal equidistant projection (I{class} or
659 function L{pygeodesy.equidistant}) or C{None}
660 for this point's preferred C{.Equidistant}.
661 @kwarg tol: Convergence tolerance (C{meter}, conventionally).
663 @return: Closest point (C{LatLon}).
665 @raise ImportError: Package U{geographiclib
666 <https://PyPI.org/project/geographiclib>}
667 not installed or not found, but only if
668 C{B{equidistant}=}L{EquidistantKarney}.
670 @raise TypeError: Invalid B{C{point1}}, B{C{point2}} or
671 B{C{equidistant}}.
673 @raise ValueError: Datum or ellipsoid of B{C{point1}} or B{C{point2}} is
674 incompatible or no convergence for the given B{C{tol}}.
676 @see: I{Karney}'s U{intercept.cpp<https://SourceForge.net/p/geographiclib/
677 discussion/1026621/thread/21aaff9f/>}, U{The B{ellipsoidal} case<https://
678 GIS.StackExchange.com/questions/48937/calculating-intersection-of-two-circles>}
679 and U{Karney's paper<https://ArXiv.org/pdf/1102.1215.pdf>}, pp 20-21, section
680 B{14. MARITIME BOUNDARIES} for details about the iteration algorithm.
681 '''
682 try:
683 t = _MODS.ellipsoidalBaseDI._nearestOn2(self, point1, point2, within=within,
684 height=height, wrap=wrap,
685 equidistant=equidistant,
686 tol=tol, LatLon=self.classof)
687 except (TypeError, ValueError) as x:
688 raise _xError(x, point=self, point1=point1, point2=point2, within=within,
689 height=height, wrap=wrap, tol=tol)
690 return t.closest
692 @Property_RO
693 def _osgr(self):
694 '''(INTERNAL) Get this C{LatLon} point as an OSGR coordinate (L{Osgr}),
695 based on the OS recommendation.
696 '''
697 return _MODS.osgr.toOsgr(self, kTM=False, name=self.name) # datum=self.datum
699 @Property_RO
700 def _osgrTM(self):
701 '''(INTERNAL) Get this C{LatLon} point as an OSGR coordinate (L{Osgr})
702 based on I{Karney}'s Krüger implementation.
703 '''
704 return _MODS.osgr.toOsgr(self, kTM=True, name=self.name) # datum=self.datum
706 def parse(self, strllh, height=0, datum=None, epoch=None, reframe=None,
707 sep=_COMMA_, wrap=False, name=NN):
708 '''Parse a string consisting of C{"lat, lon[, height]"},
709 representing a similar, ellipsoidal C{LatLon} point.
711 @arg strllh: Lat, lon and optional height (C{str}),
712 see function L{pygeodesy.parse3llh}.
713 @kwarg height: Optional, default height (C{meter} or
714 C{None}).
715 @kwarg datum: Optional datum (L{Datum}), overriding this
716 datum I{without conversion}.
717 @kwarg epoch: Optional datum (L{Epoch}), overriding this
718 epoch I{without conversion}.
719 @kwarg reframe: Optional datum (L{RefFrame}), overriding
720 this reframe I{without conversion}.
721 @kwarg sep: Optional separator (C{str}).
722 @kwarg wrap: If C{True}, wrap or I{normalize} the lat-
723 and longitude (C{bool}).
724 @kwarg name: Optional instance name (C{str}), overriding
725 this name.
727 @return: The similar point (ellipsoidal C{LatLon}).
729 @raise ParseError: Invalid B{C{strllh}}.
730 '''
731 a, b, h = _MODS.dms.parse3llh(strllh, height=height, sep=sep, wrap=wrap)
732 r = self.classof(a, b, height=h, datum=self.datum)
733 if datum not in (None, self.datum):
734 r.datum = datum
735 if epoch not in (None, self.epoch):
736 r.epoch = epoch
737 if reframe not in (None, self.reframe):
738 r.reframe = reframe
739 return self._xnamed(r, name=name, force=True) if name else r
741 def _Radjust2(self, adjust, datum, meter_text2):
742 '''(INTERNAL) Adjust an C{elevation} or C{geoidHeight} with
743 difference in Gaussian radii of curvature of the given
744 datum and NAD83 ellipsoids at this point's latitude.
746 @note: This is an arbitrary, possibly incorrect adjustment.
747 '''
748 if adjust: # Elevation2Tuple or GeoidHeight2Tuple
749 m, t = meter_text2
750 if isinstance(m, float) and fabs(m) > EPS:
751 n = Datums.NAD83.ellipsoid.rocGauss(self.lat)
752 if n > EPS0:
753 # use ratio, datum and NAD83 units may differ
754 E = self.ellipsoid() if datum in (None, self.datum) else \
755 _earth_ellipsoid(datum)
756 r = E.rocGauss(self.lat)
757 if r > EPS0 and fabs(r - n) > EPS: # EPS1
758 m *= r / n
759 meter_text2 = meter_text2.classof(m, t)
760 return self._xnamed(meter_text2)
762 @property_doc_(''' this point's reference frame (L{RefFrame}).''')
763 def reframe(self):
764 '''Get this point's reference frame (L{RefFrame}) or C{None}.
765 '''
766 return self._reframe
768 @reframe.setter # PYCHOK setter!
769 def reframe(self, reframe):
770 '''Set or clear this point's reference frame (L{RefFrame}) or C{None}.
772 @raise TypeError: The B{C{reframe}} is not a L{RefFrame}.
773 '''
774 _set_reframe(self, reframe)
776 @Property_RO
777 def scale(self):
778 '''Get this point's UTM grid or UPS point scale factor (C{float})
779 or C{None} if not converted from L{Utm} or L{Ups}.
780 '''
781 return self._scale
783 def toCss(self, **toCss_kwds):
784 '''Convert this C{LatLon} point to a Cassini-Soldner location.
786 @kwarg toCss_kwds: Optional L{pygeodesy.toCss} keyword arguments.
788 @return: The Cassini-Soldner location (L{Css}).
790 @see: Function L{pygeodesy.toCss}.
791 '''
792 return self._css if not toCss_kwds else _MODS.css.toCss(
793 self, **_xkwds(toCss_kwds, name=self.name))
795 def toDatum(self, datum2, height=None, name=NN):
796 '''Convert this point to an other datum.
798 @arg datum2: Datum to convert I{to} (L{Datum}).
799 @kwarg height: Optional height, overriding the
800 converted height (C{meter}).
801 @kwarg name: Optional name (C{str}), iff converted.
803 @return: The converted point (ellipsoidal C{LatLon})
804 or a copy of this point if B{C{datum2}}
805 matches this point's C{datum}.
807 @raise TypeError: Invalid B{C{datum2}}.
808 '''
809 n = name or self.name
810 d2 = _ellipsoidal_datum(datum2, name=n)
811 if self.datum == d2:
812 r = self.copy(name=name)
813 else:
814 kwds = _xkwds_not(None, LatLon=self.classof, name=n,
815 epoch=self.epoch, reframe=self.reframe)
816 c = self.toCartesian().toDatum(d2)
817 r = c.toLatLon(datum=d2, height=height, **kwds)
818 return r
820 def toEtm(self, **toEtm8_kwds):
821 '''Convert this C{LatLon} point to an ETM coordinate.
823 @kwarg toEtm8_kwds: Optional L{pygeodesy.toEtm8} keyword arguments.
825 @return: The ETM coordinate (L{Etm}).
827 @see: Function L{pygeodesy.toEtm8}.
828 '''
829 return self._etm if not toEtm8_kwds else _MODS.etm.toEtm8(
830 self, **_xkwds(toEtm8_kwds, name=self.name))
832 def toLcc(self, **toLcc_kwds):
833 '''Convert this C{LatLon} point to a Lambert location.
835 @kwarg toLcc_kwds: Optional L{pygeodesy.toLcc} keyword arguments.
837 @return: The Lambert location (L{Lcc}).
839 @see: Function L{pygeodesy.toLcc}.
840 '''
841 return self._lcc if not toLcc_kwds else _MODS.lcc.toLcc(
842 self, **_xkwds(toLcc_kwds, name=self.name))
844 def toMgrs(self, center=False, pole=NN):
845 '''Convert this C{LatLon} point to an MGRS coordinate.
847 @kwarg center: If C{True}, try to I{un}-center MGRS
848 to its C{lowerleft} (C{bool}) or by
849 C{B{center} meter} (C{scalar}).
850 @kwarg pole: Optional top/center for the MGRS UPS
851 projection (C{str}, 'N[orth]' or 'S[outh]').
853 @return: The MGRS coordinate (L{Mgrs}).
855 @see: Method L{toUtmUps} and L{Mgrs.toLatLon}.
856 '''
857 return self.toUtmUps(center=center, pole=pole).toMgrs(center=False)
859 def toOsgr(self, kTM=False, **toOsgr_kwds):
860 '''Convert this C{LatLon} point to an OSGR coordinate.
862 @kwarg kTM: If C{True} use I{Karney}'s Krüger method from module
863 L{ktm}, otherwise I{Ordinance Survery}'s recommended
864 formulation (C{bool}).
865 @kwarg toOsgr_kwds: Optional L{pygeodesy.toOsgr} keyword arguments.
867 @return: The OSGR coordinate (L{Osgr}).
869 @see: Function L{pygeodesy.toOsgr}.
870 '''
871 if toOsgr_kwds:
872 r = _MODS.osgr.toOsgr(self, kTM=kTM, **_xkwds(toOsgr_kwds, name=self.name))
873 else:
874 r = self._osgrTM if kTM else self._osgr
875 return r
877 def toRefFrame(self, reframe2, height=None, name=NN):
878 '''Convert this point to an other reference frame.
880 @arg reframe2: Reference frame to convert I{to} (L{RefFrame}).
881 @kwarg height: Optional height, overriding the converted
882 height (C{meter}).
883 @kwarg name: Optional name (C{str}), iff converted.
885 @return: The converted point (ellipsoidal C{LatLon}) or this
886 point if conversion is C{nil}, or a copy of this
887 point if the B{C{name}} is non-empty.
889 @raise TRFError: This point's C{reframe} is not defined or
890 conversion from this point's C{reframe} to
891 B{C{reframe2}} is not available.
893 @raise TypeError: Invalid B{C{reframe2}}, not a L{RefFrame}.
894 '''
895 if not self.reframe:
896 t = _SPACE_(_DOT_(repr(self), _reframe_), MISSING)
897 raise TRFError(_no_(_conversion_), txt=t)
899 trf = _MODS.trf
900 trf._xinstanceof(trf.RefFrame, reframe2=reframe2)
902 e, xs = trf._reframeTransforms2(reframe2, self.reframe, self.epoch)
903 if xs:
904 c = self.toCartesian().toTransforms_(*xs)
905 n = name or self.name
906 ll = c.toLatLon(datum=self.datum, epoch=e, height=height,
907 LatLon=self.classof, name=n, reframe=reframe2)
908 else:
909 ll = self.copy(name=name) if name else self
910 return ll
912 def toUps(self, pole=NN, falsed=True, center=False):
913 '''Convert this C{LatLon} point to a UPS coordinate.
915 @kwarg pole: Optional top/center of (stereographic)
916 projection (C{str}, 'N[orth]' or 'S[outh]').
917 @kwarg falsed: False easting and northing (C{bool}).
918 @kwarg center: If C{True}, I{un}-center the UPS
919 to its C{lowerleft} (C{bool}) or
920 by C{B{center} meter} (C{scalar}).
922 @return: The UPS coordinate (L{Ups}).
924 @see: Function L{pygeodesy.toUps8}.
925 '''
926 if self._upsOK(pole, falsed):
927 u = self._ups
928 else:
929 ups = _MODS.ups
930 u = ups.toUps8(self, datum=self.datum, Ups=ups.Ups,
931 pole=pole, falsed=falsed)
932 return _lowerleft(u, center)
934 def toUtm(self, center=False):
935 '''Convert this C{LatLon} point to a UTM coordinate.
937 @kwarg center: If C{True}, I{un}-center the UTM
938 to its C{lowerleft} (C{bool}) or
939 by C{B{center} meter} (C{scalar}).
941 @return: The UTM coordinate (L{Utm}).
943 @see: Method L{Mgrs.toUtm} and function L{pygeodesy.toUtm8}.
944 '''
945 return _lowerleft(self._utm, center)
947 def toUtmUps(self, pole=NN, center=False):
948 '''Convert this C{LatLon} point to a UTM or UPS coordinate.
950 @kwarg pole: Optional top/center of UPS (stereographic)
951 projection (C{str}, 'N[orth]' or 'S[outh]').
952 @kwarg center: If C{True}, I{un}-center the UTM or UPS to
953 its C{lowerleft} (C{bool}) or by C{B{center}
954 meter} (C{scalar}).
956 @return: The UTM or UPS coordinate (L{Utm} or L{Ups}).
958 @see: Function L{pygeodesy.toUtmUps8}.
959 '''
960 if self._utmOK():
961 u = self._utm
962 elif self._upsOK(pole):
963 u = self._ups
964 else: # no cover
965 utmups = _MODS.utmups
966 u = utmups.toUtmUps8(self, datum=self.datum, pole=pole, name=self.name,
967 Utm=utmups.Utm, Ups=utmups.Ups)
968 if isinstance(u, utmups.Utm):
969 self._update(False, _utm=u) # PYCHOK kwds
970 elif isinstance(u, utmups.Ups):
971 self._update(False, _ups=u) # PYCHOK kwds
972 else:
973 _xinstanceof(utmups.Utm, utmups.Ups, toUtmUps8=u)
974 return _lowerleft(u, center)
976 @deprecated_method
977 def to3xyz(self): # PYCHOK no cover
978 '''DEPRECATED, use method C{toEcef}.
980 @return: A L{Vector3Tuple}C{(x, y, z)}.
982 @note: Overloads C{LatLonBase.to3xyz}
983 '''
984 r = self.toEcef()
985 return _MODS.namedTuples.Vector3Tuple(r.x, r.y, r.z, name=self.name)
987 def triangulate(self, bearing1, other, bearing2, **height_wrap_tol):
988 '''I{Iteratively} locate a point given this, an other point and the (initial)
989 bearing at this and at the other point.
991 @arg bearing1: Bearing at this point (compass C{degrees360}).
992 @arg other: Start point of the other line (C{LatLon}).
993 @arg bearing2: Bearing at the other point (compass C{degrees360}).
994 @kwarg height_wrap_tol: Optional keyword arguments C{B{height}=None},
995 C{B{wrap}=False} and C{B{tol}}, see method L{intersection3}.
997 @return: Triangulated point (C{LatLon}).
999 @see: Method L{intersection3} for further details.
1000 '''
1001 if _isDegrees(bearing1) and _isDegrees(bearing2):
1002 r = self.intersection3(bearing1, other, bearing2, **height_wrap_tol)
1003 return r.point
1004 raise _TypeError(bearing1=bearing1, bearing2=bearing2 **height_wrap_tol)
1006 def trilaterate5(self, distance1, point2, distance2, point3, distance3,
1007 area=True, eps=EPS1, wrap=False):
1008 '''Trilaterate three points by I{area overlap} or I{perimeter
1009 intersection} of three intersecting circles.
1011 @arg distance1: Distance to this point (C{meter}), same units
1012 as B{C{eps}}).
1013 @arg point2: Second center point (C{LatLon}).
1014 @arg distance2: Distance to point2 (C{meter}, same units as
1015 B{C{eps}}).
1016 @arg point3: Third center point (C{LatLon}).
1017 @arg distance3: Distance to point3 (C{meter}, same units as
1018 B{C{eps}}).
1019 @kwarg area: If C{True} compute the area overlap, otherwise the
1020 perimeter intersection of the circles (C{bool}).
1021 @kwarg eps: The required I{minimal overlap} for C{B{area}=True}
1022 or the I{intersection margin} for C{B{area}=False}
1023 (C{meter}, conventionally).
1024 @kwarg wrap: If C{True}, wrap or I{normalize} and unroll
1025 B{C{point2}} and B{C{point3}} (C{bool}).
1027 @return: A L{Trilaterate5Tuple}C{(min, minPoint, max, maxPoint, n)}
1028 with C{min} and C{max} in C{meter}, same units as B{C{eps}},
1029 the corresponding trilaterated points C{minPoint} and
1030 C{maxPoint} as I{ellipsoidal} C{LatLon} and C{n}, the number
1031 of trilatered points found for the given B{C{eps}}.
1033 If only a single trilaterated point is found, C{min I{is}
1034 max}, C{minPoint I{is} maxPoint} and C{n = 1}.
1036 For C{B{area}=True}, C{min} and C{max} are the smallest
1037 respectively largest I{radial} overlap found.
1039 For C{B{area}=False}, C{min} and C{max} represent the
1040 nearest respectively farthest intersection margin.
1042 If C{B{area}=True} and all 3 circles are concentric, C{n=0}
1043 and C{minPoint} and C{maxPoint} are the B{C{point#}} with
1044 the smallest B{C{distance#}} C{min} respectively C{max} the
1045 largest B{C{distance#}}.
1047 @raise IntersectionError: Trilateration failed for the given B{C{eps}},
1048 insufficient overlap for C{B{area}=True}, no
1049 circle intersections for C{B{area}=False} or
1050 all circles are (near-)concentric.
1052 @raise TypeError: Invalid B{C{point2}} or B{C{point3}}.
1054 @raise ValueError: Coincident B{C{points}} or invalid B{C{distance1}},
1055 B{C{distance2}} or B{C{distance3}}.
1057 @note: Ellipsoidal trilateration invokes methods C{LatLon.intersections2}
1058 and C{LatLon.nearestOn} based on I{Karney}'s Python U{geographiclib
1059 <https://PyPI.org/project/geographiclib>} if installed, otherwise
1060 the accurate (but slower) C{ellipsoidalExact.LatLon} methods.
1061 '''
1062 return _trilaterate5(self, distance1,
1063 self.others(point2=point2), distance2,
1064 self.others(point3=point3), distance3,
1065 area=area, eps=eps, wrap=wrap)
1067 @Property_RO
1068 def _ups(self): # __dict__ value overwritten by method C{toUtmUps}
1069 '''(INTERNAL) Get this C{LatLon} point as UPS coordinate (L{Ups}),
1070 see L{pygeodesy.toUps8}.
1071 '''
1072 ups = _MODS.ups
1073 return ups.toUps8(self, datum=self.datum, Ups=ups.Ups,
1074 pole=NN, falsed=True, name=self.name)
1076 def _upsOK(self, pole=NN, falsed=True):
1077 '''(INTERNAL) Check matching C{Ups}.
1078 '''
1079 try:
1080 u = self._ups
1081 except RangeError:
1082 return False
1083 return falsed and (u.pole == pole[:1].upper() or not pole)
1085 @Property_RO
1086 def _utm(self): # __dict__ value overwritten by method C{toUtmUps}
1087 '''(INTERNAL) Get this C{LatLon} point as UTM coordinate (L{Utm}),
1088 see L{pygeodesy.toUtm8}.
1089 '''
1090 utm = _MODS.utm
1091 return utm.toUtm8(self, datum=self.datum, Utm=utm.Utm, name=self.name)
1093 def _utmOK(self):
1094 '''(INTERNAL) Check C{Utm}.
1095 '''
1096 try:
1097 _ = self._utm
1098 except RangeError:
1099 return False
1100 return True
1103def _lowerleft(utmups, center):
1104 '''(INTERNAL) Optionally I{un}-center C{utmups}.
1105 '''
1106 if center in (False, 0, _0_0):
1107 u = utmups
1108 elif center in (True,):
1109 u = utmups._lowerleft
1110 else:
1111 u = _MODS.utmupsBase._lowerleft(utmups, center)
1112 return u
1115def _nearestOn(point, point1, point2, within=True, height=None, wrap=False, # was=True
1116 equidistant=None, tol=_TOL_M, **LatLon_and_kwds):
1117 '''(INTERNAL) Get closest point, imported by .ellipsoidalExact,
1118 -GeodSolve, -Karney and -Vincenty to embellish exceptions.
1119 '''
1120 try:
1121 p = _xellipsoidal(point=point)
1122 t = _MODS.ellipsoidalBaseDI._nearestOn2(p, point1, point2, within=within,
1123 height=height, wrap=wrap,
1124 equidistant=equidistant,
1125 tol=tol, **LatLon_and_kwds)
1126 except (TypeError, ValueError) as x:
1127 raise _xError(x, point=point, point1=point1, point2=point2)
1128 return t.closest
1131def _set_reframe(inst, reframe):
1132 '''(INTERNAL) Set or clear an instance's reference frame.
1133 '''
1134 if reframe is not None:
1135 _xinstanceof(_MODS.trf.RefFrame, reframe=reframe)
1136 inst._reframe = reframe
1137 elif inst.reframe is not None:
1138 inst._reframe = None
1141__all__ += _ALL_DOCS(CartesianEllipsoidalBase, LatLonEllipsoidalBase)
1143# **) MIT License
1144#
1145# Copyright (C) 2016-2024 -- mrJean1 at Gmail -- All Rights Reserved.
1146#
1147# Permission is hereby granted, free of charge, to any person obtaining a
1148# copy of this software and associated documentation files (the "Software"),
1149# to deal in the Software without restriction, including without limitation
1150# the rights to use, copy, modify, merge, publish, distribute, sublicense,
1151# and/or sell copies of the Software, and to permit persons to whom the
1152# Software is furnished to do so, subject to the following conditions:
1153#
1154# The above copyright notice and this permission notice shall be included
1155# in all copies or substantial portions of the Software.
1156#
1157# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
1158# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
1159# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
1160# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
1161# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
1162# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
1163# OTHER DEALINGS IN THE SOFTWARE.