
Implementation Explained:

Partition Optimization in sequential Information Bottleneck

1 Abstract

This document describes the enclosed implementation of the optimization step in the text clustering al-
gorithm sequential Information Bottleneck. We present a mathematical development of the formulas from
the original paper, which allows us to reach an efficient and simple computation of the optimization step,
with focus on the case of sparse vector representation. Based on this development, the enclosed open-source
implementation of the algorithm is more practical for real-world use-cases.

2 Introduction

The sequential Information Bottleneck (sIB) [3] is a text clustering algorithm that shows strong results
on standard benchmark datasets, such as [1], compared to the more commonly used Lloyd’s K-Means [2].
However, sIB has never been as popular as K-Means, partly because in the trade-off between quality and
speed, sIB has a very strong tendency towards better quality, at the expense of longer run-time, while K-
Means is a more balanced choice. This makes sIB unsuitable in many circumstances, especially when speed
is a high priority.

The goal of this work is to present a mathematical development of the formulas presented in sIB’s
original paper, and to explain how this development is used for a new efficient implementation of sIB. This
is achieved without scarifying the quality of the clustering analysis that the algorithm generates. The new
implementation makes sIB more practical for real-world applications and is available as an open-source in
Python and C++.1

3 sIB in a Nutshell

In contrast to algorithms such as K-Means, where the objective function and the distance function that they
employ are two separate entities, in the case of sIB, the objective of in-cluster information maximization
dictates the formula of the distance function by means of a mathematical derivation. Thus, sIB benefits from
using an optimal distance function for the objective it uses, which turns out to be a weighted Jensen-Shannon
divergence. However, this distance function is also more compute-intensive compared to distance functions
such as Euclidean or Cosine distance.

Moreover, sIB is a sequential algorithm, which means that (a) before computing the new cluster for a
sample, sIB withdraws the sample from its current cluster to prevent that sample from biasing the distance
function towards keeping it in the same cluster, and (b) sIB updates the centroids while iterating over the
samples and not only at the end of the iteration.

Overall, while iterating over the samples, every sample is withdrawn from its cluster, the centroid of that
cluster is updated, a new cluster is selected for the sample using the weighted JS divergence distance function,
then the sample is added to the new cluster and eventually the centroid of the new cluster is updated. In
total, sIB performs 2 · n samples centroid updates during a full iteration, while Lloyd’s K-Means performs
only n clusters updates.

1https://github.com/IBM/sib
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By taking into account both the higher computational intensity of sIB’s distance function and the signifi-
cantly higher number of centroid updates that it performs, it is easy to see why sIB is inherently slower than
algorithms such as Lloyd K-Means. However, as we show here, an efficient implementation is employable
and closes the run-time gap between sIB and K-Means to a large extent.

4 Bag-of-Words and Vector Representation

sIB adopts the Bag-of-Words (BoW) model, in which texts are represented using vectors over a vocabulary
of terms, such as unigrams. The vocabulary is a corpus-level concept – an ordered list that aims to include
the terms that are assumed to be meaningful for comparing texts in this corpus. When a text is represented
in the BoW model, a vector is used to specify the frequency of each vocabulary item in that text. In our
implementation, we assume that the vectors of texts are raw (un-normalized) count vectors.

Typically, the number of unique terms found in a specific text is smaller than the vocabulary size by
a large margin. Therefore, it is more efficient to represent texts using sparse vector representations, both
in terms of memory usage and computation workload. In the sparse representation, it is sufficient to hold
the list of ids of vocabulary items found in the text and their frequency, rather than an array of the size of
the full vocabulary in which most of the values are zero. However, there are circumstances in which it is
preferable to use a dense representation for all vectors. Thus, the two representations should be supported.

sIB is a centroid-based clustering algorithm, and as such it represents centroids using vectors. The
centroid of every cluster is constructed from the set of vectors that are associated with that cluster, and
therefore centroid vectors refer to a large part of the vocabulary. As a result, such vectors are typically
represented as dense vectors, regardless of the format of the vectors of individual texts.

5 Pseudo-Code and Focus

The pseudo-code of the algorithm main-loop is given in Figure 1 (quoted from [3]) and outlines the sequential
workflow in which sIB works. In this code, X is the vectors of the samples to cluster, K is the number
of clusters, n is the number of (random) initializations, maxL is the maximal number of iterations per
initialization, and ε is a lower bound threshold on the cluster updates for continuing to another iteration.2

In addition, t is used as a cluster identifier, and x as a sample identifier.
In this document we will focus on the inner for -loop of the pseudo-code, which is the partition optimization

part. This part contains the three statements repeated below:

1. Draw xj out of t(xj)

2. Compute tnew(xj) = arg mint′ d({xj}, t′)

3. Merge xj into tnew(xj)

Statement 2 is at the core of the partition optimization and is the most intense to compute. Therefore, we
start by investigating it in Section 6, and after that we move on to statements 1 and 3 in Section 7.

6 Computing tnew(x)

Let us rephrase the equation for computing tnew(x) in a simpler form in equation (1).

tnew(x) = arg min
t

dF (x, t) (1)

According to (1), we assign a sample x to the cluster t that minimizes the function dF , given in (2).

dF (x, t) = (p(x) + p(t)) · JS(p(y|x), p(y|t)) (2)

2Using several random initializations is a common practice with many clustering algorithms, as each initialization converges
only to a local maximum/minimum.
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Input:
|X| objects to be clustered
Parameters: K, n, maxL, ε

Output:
A partition T of X into K clusters

Main Loop:
For i = 1, . . . , n

Ti ← random partition of X.
c← 0, C ← 0, done = FALSE
While not done

For j = 1, . . . , |X|
draw xj out of t(xj)
tnew(xj) = arg mint′ d({xj}, t′)
If tnew(xj) 6= t(xj) then c← c+ 1
Merge xj into tnew(xj)

C ← C + 1
if C ≥ maxL or c ≤ ε · |X| then

done← TRUE
T ← arg maxTi(Ti)

Figure 1: Pseudo-code for the sequential clustering algorithm.

where JS is a weighted Jensen-Shannon divergence defined with weights pi1 and pi2 as follows:

pi1x,t =
p(x)

p(x) + p(t)
(3)

pi2x,t =
p(t)

p(x) + p(t)
(4)

JS(p(y|x), p(y|t)) : (5)

average = pi1 · p(y|x) + pi2 · p(y|t)) (6)

kl1 = KL(p(y|x), average) (7)

kl2 = KL(p(y|t)), average) (8)

return pi1 · kl1 + pi2 · kl2 (9)

and KL is the Kullback-Leibler divergence defined as:

KL(u, v) =
∑
i

u[i] · log(
u[i]

v[i]
) (10)

Intuitively, when assigning the sample x to a new cluster, tnew, we look at the distribution of the vocabulary
over x (p(y|x)) and compare it to the distribution of the vocabulary over each cluster’s centroid (p(y|t))
using the weighted JS divergence. The cluster tnew is the cluster in which the distribution of the vocabulary
in its centroid is the closest to the distribution of the vocabulary in x.

Definitions

Let XY be the joint count matrix of samples, where sample xi is represented by the vector at raw i. We
indicate the vector of sample x by the notation XY [x].3 In addition, let t be a cluster and let x0t , ..., x

n
t be

the samples associated with it. We define the set of notations in Table 1.

3In the case of spare vector representation, XY is a sparse matrix.
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Notation Definition Description Type

XYsum
∑

x,yXY [x][y] The sum of values in the count matrix Scalar

xsum
∑

yXY [x][y] The sum of values in the vector of x Scalar

p(x) xsum

XYsum
The probability of x Scalar

p(y|x) XY [x]
xsum

The probability vector representing x Vector

tsum
∑n

i x
i
tsum The sum of values in all vectors of samples associated with t Scalar

p(t) tsum

XYsum
The probability of t Scalar

tcentroid
∑n

i XY [xit] The sum of vectors of samples associated with t Vector

p(y|t) tcentroid

tsum
The probability vector representing the centroid of t Vector

Table 1: Basic Definitions

From the above definitions we can derive a set of equations:

p(x) + p(t) =
xsum
XYsum

+
tsum
XYsum

=
xsum + tsum
XYsum

(11)

1

pi2
=
p(x) + p(t)

pt
= (p(x) + p(t)) · 1

pt
=
xsum + tsum
XYsum

· XYsum
tsum

=
xsum + tsum

tsum
(12)

p(y|t) · pi2 =
tcentroid
tsum

· p(t)

p(x) + p(t)
=
tcentroid
tsum

· tsum
XYsum

· XYsum
xsum + tsum

=
tcentroid

xsum + tsum
(13)

p(x) · p(y|x) + p(t) · p(y|t) =
xsum
XYsum

· XY [x]

xsum
+

tsum
XYsum

· tcentroid
tsum

=
XY [x] + tcentroid

XYsum
(14)

pi1 · p(y|x) + pi2 · p(y|t) =
p(x)

p(x) + p(t)
· p(y|x) +

p(t)

p(x) + p(t)
· p(y|t) =

p(x) · p(y|x) + p(t)· (y|t)
p(x) + p(t)

=
XY [x] + tcentroid
xsum + tsum

(15)

In the computations below we use s and c as abbreviations of p(y|x) and p(y|t) respectively. Since p(y|x)
and p(y|t) are probability vectors, we get:∑

i

s[i] =
∑
i

p(y|x)[i] = 1 (16)

∑
i

c[i] =
∑
i

p(y|t)[i] = 1 (17)

In addition, we will use the following equations:

arg min
t

f(x) + g(x, t) = arg min
t

g(x, t) (18)

arg min
t

f(x) · g(x, t) = arg min
t

g(x, t) (19)
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6.1 Computation for Sparse Vector Representation

Let us assume that x is represented by a sparse vector in which xind is the list of indices of vocabulary items
that are found in x and x[i] = XY [x][i] is the frequency of the item at index i. It follows that:

∀i ∈ xind.x[i] > 0 (20)

∀i 6∈ xind.x[i] = 0 (21)

It follows that:

∀i ∈ xind.p(y|x)[i] =
XY [x][i]

xsum
=

x[i]

xsum
> 0 (22)

∀i 6∈ xind.p(y|x)[i] =
XY [x][i]

xsum
=

x[i]

xsum
= 0 (23)

Computation of kl1

kl1 = KL(s, pi1 · s+ pi2 · c) (24)

=
∑
i

s[i] · log(
s[i]

(pi1 · s[i] + pi2 · c[i])
) (25)

=

[ ∑
i∈xind

s[i] · log(
s[i]

(pi1 · s[i] + pi2 · c[i])
)

]
+

[ ∑
i 6∈xind

s[i] · log(
s[i]

(pi1 · s[i] + pi2 · c[i])
)

]
(26)

=
∑

i∈xind

s[i] · log(
s[i]

(pi1 · s[i] + pi2 · c[i])
) by (23) (27)

Computation of kl2

kl2 = KL(c, pi1 · s+ pi2 · c) (28)

=

d∑
i=0

c[i] · log(
c[i]

(pi1 · s[i] + pi2 · c[i])
) (29)

=

[ ∑
i∈xind

c[i] · log(
c[i]

(pi1 · s[i] + pi2 · c[i])
)

]
+

[ ∑
i6∈xind

c[i] · log(
c[i]

(pi1 · s[i] + pi2 · c[i])
)

]
(30)

=

[ ∑
i∈xind

c[i] · log(
c[i]

(pi1 · s[i] + pi2 · c[i])
)

]
+
∑

i 6∈xind

c[i] · log(
c[i]

pi2 · c[i]
) by (23) (31)

=

[ ∑
i∈xind

c[i] · log(
c[i]

(pi1 · s[i] + pi2 · c[i])
)

]
+
∑

i 6∈xind

c[i] · log(
1

pi2
) (32)

=

[ ∑
i∈xind

c[i] · log(
c[i]

(pi1 · s[i] + pi2 · c[i])
)

]
+ log(

1

pi2
) ·

∑
i 6∈xind

c[i] (33)

=

[ ∑
i∈xind

c[i] · log(
c[i]

(pi1 · s[i] + pi2 · c[i])
)

]
+ log(

1

pi2
) · (
∑
i

c[i]−
∑

i∈xind

c[i]) (34)

=

[ ∑
i∈xind

c[i] · log(
c[i]

(pi1 · s[i] + pi2 · c[i])
)

]
+ log(

1

pi2
) · (1−

∑
i∈xind

c[i]) by (17) (35)
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Computation of dF

dF (x, t) = (p(x) + p(t)) · JS(p(y|x), p(y|t)) (36)

= (p(x) + p(t)) · JS(s, c) (37)

= (p(x) + p(t))(pi1 · kl1 + pi2 · kl2) (38)

= (p(x) + p(t))(
p(x)

p(x) + p(t)
· kl1 +

p(t)

p(x) + p(t)
· kl2) (39)

= p(x) · kl1 + p(t) · kl2 (40)

= p(x) ·
[ ∑
i∈xind

s[i] · log(
s[i]

(pi1 · s[i] + pi2 · c[i])
)

]
+ (41)

p(t) ·
[[ ∑

i∈xind

c[i] · log(
c[i]

(pi1 · s[i] + pi2 · c[i])
)
]

+ log(
1

pi2
) · (1−

∑
i∈xind

c[i])

]
(42)

Computation of tnew(x)

tnew(x) = arg min
t

dF (x, t)

= arg min
t

(
p(x) ·

[ ∑
i∈xind

s[i] · log(
s[i]

(pi1 · s[i] + pi2 · c[i])

]
+

p(t) ·
[[ ∑

i∈xind

c[i] · log(
c[i]

(pi1 · s[i] + pi2 · c[i])
]

+ log(
1

pi2
) · (1−

∑
i∈xind

c[i])

]) (43)

= arg min
t

([
p(x) ·

∑
i∈xind

s[i] · log(s[i])

]
+

[
p(x) ·

∑
i∈xind

s[i] · log(
1

(pi1 · s[i] + pi2 · c[i])
)

]
+

p(t) ·
[[ ∑

i∈xind

c[i] · log(
c[i]

(pi1 · s[i] + pi2 · c[i])
]

+ log(
1

pi2
) · (1−

∑
i∈xind

c[i])

]) (44)

Based on equation (18) :

= arg min
t

(
p(x) ·

[ ∑
i∈xind

s[i] · log(
1

(pi1 · s[i] + pi2 · c[i])
)

]
+

p(t) ·
[[ ∑

i∈xind

c[i] · log(
c[i]

(pi1 · s[i] + pi2 · c[i])
]

+ log(
1

pi2
) · (1−

∑
i∈xind

c[i])

]) (45)

= arg min
t

([ ∑
i∈xind

(p(x) · s[i] + p(t) · c[i]) · log(
1

(pi1 · s[i] + pi2 · c[i])
)

]
+

p(t) ·
[[ ∑

i∈xind

c[i] · log(c[i])
]

+ log(
1

pi2
) · (1−

∑
i∈xind

c[i])

]) (46)

= arg min
t

([ ∑
i∈xind

(p(x) · s[i] + p(t) · c[i]) · log(
1

(pi1 · s[i] + pi2 · c[i])
)

]
+

p(t) ·
[[ ∑

i∈xind

c[i] · log(c[i])
]
−
[ ∑
i∈xind

c[i] · log(
1

pi2
)
]

+ log(
1

pi2
)

]) (47)
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= arg min
t

([ ∑
i∈xind

(p(x) · s[i] + p(t) · c[i]) · log(
1

(pi1 · s[i] + pi2 · c[i])
)

]
+

p(t) ·
[[ ∑

i∈xind

c[i] · log(c[i] · pi2)
]

+ log(
1

pi2
)

]) (48)

= arg min
t

([ ∑
i∈xind

(p(x) · p(y|x) + p(t) · p(y|t))[i] · log(
1

(pi1 · p(y|x) + pi2 · p(y|t))[i]
)

]
+

p(t) ·
[[ ∑

i∈xind

p(y|t)[i] · log((p(y|t) · pi2)[i])
]

+ log(
1

pi2
)

]) (49)

Based on equations (12), (13), (14) and (15), and the definition of p(t) and p(y|t) from Table 1:

= arg min
t

([ ∑
i∈xind

(
(XY [x] + tcentroid)[i]

XYsum
) · log(

xsum + tsum
(XY [x] + tcentroid)[i]

)

]
+

tsum
XYsum

·
[[ ∑

i∈xind

tcentroid[i]

tsum
· log(

tcentroid[i]

xsum + tsum
)
]

+ log(
xsum + tsum

tsum
)

]) (50)

= arg min
t

(
1

XYsum
·
([ ∑

i∈xind

(XY [x] + tcentroid)[i] · log(
xsum + tsum

(XY [x] + tcentroid)[i]
)

]
+ tsum·[[ ∑

i∈xind

tcentroid[i]

tsum
· log(

tcentroid[i]

xsum + tsum
)
]

+ log(
xsum + tsum

tsum
)

])) (51)

Based on equation (19) :

= arg min
t

([ ∑
i∈xind

(XY [x] + tcentroid)[i] · log(
xsum + tsum

(XY [x] + tcentroid)[i]
)

]
+ tsum·[[ ∑

i∈xind

tcentroid[i]

tsum
· log(

tcentroid[i]

xsum + tsum
)
]

+ log(
xsum + tsum

tsum
)

]) (52)

= arg min
t

([ ∑
i∈xind

(XY [x] + tcentroid)[i] · log(
xsum + tsum

(XY [x] + tcentroid)[i]
)

]
+[ ∑

i∈xind

tcentroid[i] · log(
tcentroid[i]

xsum + tsum

]
+ tsum · log(

xsum + tsum
tsum

)

) (53)

Implementation Symbols

In the implementation we use the following symbols:

sum1 =
∑

i∈xind

(XY [x] + tcentroid)[i] · log(
xsum + tsum

(XY [x] + tcentroid)[i]
) (54)

sum2 =
∑

i∈xind

tcentroid[i] · log(
tcentroid[i]

xsum + tsum
) (55)

Computational Complexity

We get that computing the new centroid for a sample x is done in O(|xind|) operations. Assuming that there
are k centroids to select from, the overall complexity of computing tnew(x) is O(k · |xind|)
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6.2 Computation for Dense Vector Representation

Let us assume that x is represented by a dense vector at the size of the vocabulary. In this representation,
x[i] indicates the frequency of the vocabulary item at index i in x.

Computation of kl1, kl2 and dF

kl1 = KL(s, pi1 · s+ pi2 · c) =
∑
i

s[i] · log(
s[i]

(pi1 · s[i] + pi2 · c[i])
) (56)

kl2 = KL(c, pi1 · s+ pi2 · c) =

d∑
i=0

c[i] · log(
c[i]

(pi1 · s[i] + pi2 · c[i])
) (57)

dF (x, t) = (p(x) + p(t)) · JS(p(y|x), p(y|t)) (58)

= (p(x) + p(t)) · JS(s, c) (59)

= (p(x) + p(t))(pi1 · kl1 + pi2 · kl2) (60)

= (p(x) + p(t))(
p(x)

p(x) + p(t)
· kl1 +

p(t)

p(x) + p(t)
· kl2) (61)

= p(x) · kl1 + p(t) · kl2 (62)

= p(x) ·
[∑

i

s[i] · log(
s[i]

(pi1 · s[i] + pi2 · c[i])
)

]
+

p(t) ·
[∑

i

c[i] · log(
c[i]

(pi1 · s[i] + pi2 · c[i])
)

] (63)

= p(x) ·
[∑

i

s[i] ·
[
log(s[i]) +

1

log(pi1 · s[i] + pi2 · c[i])
]]

+

p(t) ·
[∑

i

c[i] ·
[
log(c[i]) +

1

log(pi1 · s[i] + pi2 · c[i])
]
)

] (64)

=

[
p(x) ·

∑
i

s[i] · log(s[i])

]
+

[
p(t) ·

∑
i

c[i] · log(c[i])

]
+[∑

i

(p(x) · s+ p(t) · c)[i] · ( 1

log(pi1 · s[i] + pi2 · c[i])
)

] (65)

Computation of tnew(x)

tnew(x) = arg min
t

dF (x, t)

= arg min
t

([
p(x) ·

∑
i

s[i] · log(s[i])

]
+

[
p(t) ·

∑
i

c[i] · log(c[i])

]
+[∑

i

(p(x) · s+ p(t) · c)[i] · ( 1

log(pi1 · s[i] + pi2 · c[i])
)

]) (66)

Based on equation (18) :

= arg min
t

([
p(t) ·

∑
i

c[i] · log(c[i])

]
+[∑

i

(p(x) · s+ p(t) · c)[i] · ( 1

log(pi1 · s[i] + pi2 · c[i])
)

]) (67)
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= arg min
t

([
p(t) ·

∑
i

p(y|t)[i] · log(p(y|t)[i])
]
−[∑

i

(p(x) · p(y|x) + p(t) · p(y|t))[i] · log((pi1 · p(y|x) + pi2 · p(y|t))[i])
]) (68)

We can now use equations (14) and (15), and the definition of p(t) and p(y|t) from Table 1:

= arg min
t

([
tsum
XYsum

·
∑
i

tcentroid[i]

tsum
· log(

tcentroid[i]

tsum
)

]
−[∑

i

(
(XY [x] + tcentroid)[i]

XYsum
) · log(

(XY [x] + tcentroid)[i]

xsum + tsum
)

]) (69)

= arg min
t

(
1

XYsum
·
([∑

i

tcentroid[i] · log(
tcentroid[i]

tsum
)

]
−[∑

i

(XY [x] + tcentroid)[i] · log(
(XY [x] + tcentroid)[i]

xsum + tsum
)

])) (70)

Based on equation (19) :

= arg min
t

([∑
i

tcentroid[i] · log(
tcentroid[i]

tsum
)

]
−[∑

i

(XY [x] + tcentroid)[i] · log(
(XY [x] + tcentroid)[i]

xsum + tsum
)

]) (71)

Implementation Symbols

In the implementation we use the following symbols:

sum1 =
∑
i

tcentroid[i] · log(
tcentroid[i]

tsum
) (72)

sum2 =
∑
i

(XY [x] + tcentroid)[i] · log(
(XY [x] + tcentroid)[i]

xsum + tsum
) (73)

Computational Complexity

We get that computing the new centroid for a sample x is done in O(vocab size) operations. For k centroids,
the complexity is O(k · vocab size)

Data Structures

We showed two developments of the equations from the pseudo-code, for sparse and dense vectors represen-
tations. Let us examine the terms in these equations and explain the data structures that we use to store
them:

• XY - the joint count matrix of the bag-of-words representation of the input. It is given as part of the
inputs to the algorithm, either as a sparse matrix or a dense matrix.

• xsum - the sum of values in the vector of sample x. It can be calculated once for each sample and
stored for quick retrieval. We use an array of size n samples to store the values of all samples.
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• tsum - the sum of values in the vectors of samples associated with cluster t. We use an array of size
n clusters to store this value for all clusters.

• tcentroid - the sum of vectors of the samples associated with cluster t. We use a 2d dense matrix of size
n clusters× vocab size to store all centroids.

7 Updating Clusters

Let us recall the workflow of partition optimization mentioned in Section (5) and repeated below:

1. Draw xj out of t(xj)

2. Compute tnew(xj) = arg mint′ d({xj}, t′)

3. Merge xj into tnew(xj)

Let us now turn to the implementation of steps 1 and 3.
Drawing a sample x out of its cluster t is rather simple: we retrieve x’s sum from the array holding all

xsum values, and we decrease it from t’s entry in the array that maintains tsum. This is a single operation
of subtraction. In addition, we subtract x’s vector values (XY [x]) from the centroid of t. If XY is a sparse
matrix, this requires |xind| operations. If XY is dense, it requires vocab size operations.

Merging a sample into a new cluster is exactly the same but with additions instead of subtractions.
Overall, updating clusters is significantly less compute-intensive than computing the new cluster for a sample.

8 Working with Uniform Prior

In its default mode, sIB clusters texts that are represented by count vectors, as generated by a Bag-of-Words
model. However, this creates a bias towards longer texts, since such texts would have higher probability and
influence the clustering analysis more than short texts.

To avoid this bias and assign all texts with equal probability, it is convenient to apply L1 normalization
to all vectors. This guarantees that all vectors sum to the same scalar (1.0) and have the same probability
(1/n samples). This mode of operation is called Uniform Prior, while the default model is called Native.

The downside of using the Uniform Prior mode is that the vectors data type is no longer integer, which
makes all computations more time-consuming and less convenient to optimize.

9 Caching log Computations

The most time-consuming operation in the computation of a new cluster for a sample is the log function.
By examining some of the expressions in the equations, we can develop an optimization via caching.

In the case of sparse vector representations, we have:

sum2 =
∑

i∈xind

tcentroid[i] · log(
tcentroid[i]

xsum + tsum
) (74)

Since xsum and tsum are scalars, their sum is a scalar, and we can separate its log computation from the log
of tcentroid:

log(
tcentroid[i]

xsum + tsum
) = log(tcentroid[i])− log(xsum + tsum) (75)

In the case of dense vector representations, we have:

sum1 =
∑
i

tcentroid[i] · log(
tcentroid[i]

tsum
) (76)

And we can develop the log expression it in a similar way:
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log(
tcentroid[i]

tsum
) = log(tcentroid[i])− log(tsum) (77)

We observe that log(tcentroid) is independent of the sample x for which we calculate the new cluster. Thus,
we can use a matrix of the same size as tcentroid, to cache this computation and reuse it when we iterate over
the samples. When a sample is drawn out of a cluster or merged into a cluster, we update only the entries
in the cache matrix that refer to the cluster that has been updated.

The gain can be summarized as follows. Given a sample x for which we compute a new cluster, instead
of computing the log operation over all centroids, we will compute the log only over two centroids – when
updating the cached centroid of the cluster from where x is drawn out, and the one of the cluster to which
x is merged into.

10 Experimental Optimizations

As we mentioned earlier, the log function is the most time-consuming operation in the computation of a new
cluster for a sample. We have shown a way to optimize the computation of log(tcentroid) via simple caching
and now we will discuss a way to optimize the computation of log(XY [x] + tcentroid), appearing both in
sum1 of the development for sparse vector representation and in sum2 of the development for dense vector
representation.

This optimization is based on replacing log invocation with a retrieval from lookup table in which log(i)
is pre-computed for every integer value in a defined range. This is an experimental direction that is still
under investigation. If it will prove successful, it could replace the caching optimization proposed in Section
(9).

In the Native mode, all expressions are integers, thus if a, b, c and d are integers, we can develop any
expression of the form log(a+b

c+d ) to log(a+ b)− log(c+ d) and therefore log will be applied only to integers.
Due to that, a lookup table (array) in which the log is pre-computed can be used to avoid the computation
of log in run-time. First experiments in this approach indicated a substantial improvement in run-time. The
smaller the data, the more likely that the full lookup table will fit into the CPU cache and be accessible
more quickly.

In the Uniform Prior mode, a lookup table solution is less straightforward to use. Expressions such as
tcentroid are computed by summing a large number of rational numbers, each having a different denominator
due to the different L1 norm of every sample, thus requiring a very large common denominator for keeping
a rational representation. However, even for a small set of samples, this denominator quickly exceeds any
reasonable integer representation. To deal with this, either a floating-point or a fixed-point representation
should be used, but any such representation has a penalty in precision when translated to an integer that
can be used for accessing a lookup table.
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