Coverage for pygeodesy/vector3d.py: 98%

234 statements  

« prev     ^ index     » next       coverage.py v7.2.2, created at 2023-04-21 13:14 -0400

1 

2# -*- coding: utf-8 -*- 

3 

4u'''Extended 3-D vector class L{Vector3d} and functions. 

5 

6Function L{intersection3d3}, L{intersections2}, L{parse3d}, L{sumOf}, 

7L{trilaterate2d2} and L{trilaterate3d2}. 

8''' 

9 

10from pygeodesy.basics import isscalar, len2 

11from pygeodesy.constants import EPS, EPS0, EPS1, EPS4, INT0, isnear0, \ 

12 _0_0, _1_0 

13from pygeodesy.errors import IntersectionError, _ValueError, VectorError, \ 

14 _xError, _xkwds, _xkwds_popitem 

15from pygeodesy.fmath import euclid, fabs, fdot, fsum, fsum1_, hypot, sqrt 

16# from pygeodesy.fsums import fsum, fsum1_ # from .fmath 

17# from pygeodesy.formy import _radical2 # in _intersects2 below 

18from pygeodesy.interns import MISSING, NN, _COMMA_, _concentric_, _datum_, \ 

19 _h_, _height_, _intersection_, _name_, _near_, \ 

20 _negative_, _no_, _too_, _z_ 

21from pygeodesy.iters import Fmt, PointsIter 

22from pygeodesy.lazily import _ALL_DOCS, _ALL_LAZY, _ALL_MODS as _MODS 

23from pygeodesy.named import _xnamed, _xotherError 

24from pygeodesy.namedTuples import Intersection3Tuple, NearestOn2Tuple, \ 

25 NearestOn6Tuple, Vector3Tuple # Vector4Tuple 

26# from pygeodesy.streprs import Fmt # from .iters 

27from pygeodesy.units import _fi_j2, Radius, Radius_ 

28from pygeodesy.utily import atan2b, sincos2d 

29# from pygeodesy.vector2d import .... # in .... below 

30from pygeodesy.vector3dBase import Vector3dBase 

31 

32# from math import fabs, sqrt # from .fmath 

33 

34__all__ = _ALL_LAZY.vector3d 

35__version__ = '23.04.10' 

36 

37 

38class Vector3d(Vector3dBase): 

39 '''Extended 3-D vector. 

40 

41 In a geodesy context, these may be used to represent: 

42 - earth-centered, earth-fixed cartesian (ECEF) 

43 - n-vector representing a normal to a point on earth's surface 

44 - great circle normal to vector 

45 - motion vector on earth's surface 

46 - etc. 

47 ''' 

48 

49 def bearing(self, useZ=True): 

50 '''Get the "bearing" of this vector. 

51 

52 @kwarg useZ: If C{True}, use the Z component, otherwise 

53 consider the Y as +Z axis. 

54 

55 @return: Bearing (compass C{degrees}), the counter-clockwise 

56 angle off the +Z axis. 

57 ''' 

58 x, y = self.x, self.y 

59 if useZ: 

60 x, y = hypot(x, y), self.z 

61 return atan2b(x, y) 

62 

63 def circin6(self, point2, point3, eps=EPS4): 

64 '''Return the radius and center of the I{inscribed} aka I{In- circle} 

65 of a (3-D) triangle formed by this and two other points. 

66 

67 @arg point2: Second point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple}, 

68 C{Vector4Tuple} or C{Vector2Tuple} if C{B{useZ}=False}). 

69 @arg point3: Third point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple}, 

70 C{Vector4Tuple} or C{Vector2Tuple} if C{B{useZ}=False}). 

71 @kwarg eps: Tolerance for function L{pygeodesy.trilaterate3d2} if 

72 C{B{useZ} is True} otherwise L{pygeodesy.trilaterate2d2}. 

73 

74 @return: L{Circin6Tuple}C{(radius, center, deltas, cA, cB, cC)}. The 

75 C{center} and contact points C{cA}, C{cB} and C{cC}, each an 

76 instance of this (sub-)class, are co-planar with this and the 

77 two given points. 

78 

79 @raise ImportError: Package C{numpy} not found, not installed or older 

80 than version 1.10. 

81 

82 @raise IntersectionError: Near-coincident or -colinear points or 

83 a trilateration or C{numpy} issue. 

84 

85 @raise TypeError: Invalid B{C{point2}} or B{C{point3}}. 

86 

87 @see: Function L{pygeodesy.circin6}, U{Incircle 

88 <https://MathWorld.Wolfram.com/Incircle.html>} and U{Contact 

89 Triangle<https://MathWorld.Wolfram.com/ContactTriangle.html>}. 

90 ''' 

91 try: 

92 return _MODS.vector2d._circin6(self, point2, point3, eps=eps, useZ=True) 

93 except (AssertionError, TypeError, ValueError) as x: 

94 raise _xError(x, point=self, point2=point2, point3=point3) 

95 

96 def circum3(self, point2, point3, circum=True, eps=EPS4): 

97 '''Return the radius and center of the smallest circle I{through} or 

98 I{containing} this and two other (3-D) points. 

99 

100 @arg point2: Second point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} 

101 or C{Vector4Tuple}). 

102 @arg point3: Third point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} 

103 or C{Vector4Tuple}). 

104 @kwarg circum: If C{True} return the C{circumradius} and C{circumcenter}, 

105 always, ignoring the I{Meeus}' Type I case (C{bool}). 

106 @kwarg eps: Tolerance passed to function L{pygeodesy.trilaterate3d2}. 

107 

108 @return: A L{Circum3Tuple}C{(radius, center, deltas)}. The C{center}, an 

109 instance of this (sub-)class, is co-planar with this and the two 

110 given points. 

111 

112 @raise ImportError: Package C{numpy} not found, not installed or older than 

113 version 1.10. 

114 

115 @raise IntersectionError: Near-concentric, -coincident or -colinear points 

116 or a trilateration or C{numpy} issue. 

117 

118 @raise TypeError: Invalid B{C{point2}} or B{C{point3}}. 

119 

120 @see: Function L{pygeodesy.circum3} and methods L{circum4_} and L{meeus2}. 

121 ''' 

122 try: 

123 return _MODS.vector2d._circum3(self, point2, point3, circum=circum, 

124 eps=eps, useZ=True, clas=self.classof) 

125 except (AssertionError, TypeError, ValueError) as x: 

126 raise _xError(x, point=self, point2=point2, point3=point3, circum=circum) 

127 

128 def circum4_(self, *points): 

129 '''Best-fit a sphere through this and two or more other (3-D) points. 

130 

131 @arg points: Other points (each a C{Cartesian}, L{Vector3d}, C{Vector3Tuple} 

132 or C{Vector4Tuple}). 

133 

134 @return: L{Circum4Tuple}C{(radius, center, rank, residuals)} with C{center} 

135 an instance if this (sub-)class. 

136 

137 @raise ImportError: Package C{numpy} not found, not installed or 

138 older than version 1.10. 

139 

140 @raise NumPyError: Some C{numpy} issue. 

141 

142 @raise PointsError: Too few B{C{points}}. 

143 

144 @raise TypeError: One of the B{C{points}} invalid. 

145 

146 @see: Function L{pygeodesy.circum4_} and methods L{circum3} and L{meeus2}. 

147 ''' 

148 return _MODS.vector2d.circum4_(self, *points, useZ=True, Vector=self.classof) 

149 

150 def iscolinearWith(self, point1, point2, eps=EPS): 

151 '''Check whether this and two other (3-D) points are colinear. 

152 

153 @arg point1: One point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} 

154 or C{Vector4Tuple}). 

155 @arg point2: An other point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} 

156 or C{Vector4Tuple}). 

157 @kwarg eps: Tolerance (C{scalar}), same units as C{x}, 

158 C{y}, and C{z}. 

159 

160 @return: C{True} if this point is colinear with B{C{point1}} and 

161 B{C{point2}}, C{False} otherwise. 

162 

163 @raise TypeError: Invalid B{C{point1}} or B{C{point2}}. 

164 

165 @see: Method L{nearestOn}. 

166 ''' 

167 v = self if self.name else _otherV3d(NN_OK=False, this=self) 

168 return _MODS.vector2d._iscolinearWith(v, point1, point2, eps=eps) 

169 

170 def meeus2(self, point2, point3, circum=False): 

171 '''Return the radius and I{Meeus}' Type of the smallest circle I{through} 

172 or I{containing} this and two other (3-D) points. 

173 

174 @arg point2: Second point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} 

175 or C{Vector4Tuple}). 

176 @arg point3: Third point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} 

177 or C{Vector4Tuple}). 

178 @kwarg circum: If C{True} return the C{circumradius} and C{circumcenter} 

179 always, overriding I{Meeus}' Type II case (C{bool}). 

180 

181 @return: L{Meeus2Tuple}C{(radius, Type)}, with C{Type} the C{circumcenter} 

182 iff C{B{circum}=True}. 

183 

184 @raise IntersectionError: Coincident or colinear points, iff C{B{circum}=True}. 

185 

186 @raise TypeError: Invalid B{C{point2}} or B{C{point3}}. 

187 

188 @see: Function L{pygeodesy.meeus2} and methods L{circum3} and L{circum4_}. 

189 ''' 

190 try: 

191 return _MODS.vector2d._meeus2(self, point2, point3, circum, clas=self.classof) 

192 except (TypeError, ValueError) as x: 

193 raise _xError(x, point=self, point2=point2, point3=point3, circum=circum) 

194 

195 def nearestOn(self, point1, point2, within=True): 

196 '''Locate the point between two points closest to this point. 

197 

198 @arg point1: Start point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} or 

199 C{Vector4Tuple}). 

200 @arg point2: End point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} or 

201 C{Vector4Tuple}). 

202 @kwarg within: If C{True} return the closest point between the given 

203 points, otherwise the closest point on the extended 

204 line through both points (C{bool}). 

205 

206 @return: Closest point, either B{C{point1}} or B{C{point2}} or an instance 

207 of this (sub-)class. 

208 

209 @raise TypeError: Invalid B{C{point1}} or B{C{point2}}. 

210 

211 @see: Method L{sphericalTrigonometry.LatLon.nearestOn3} and U{3-D Point-Line 

212 Distance<https://MathWorld.Wolfram.com/Point-LineDistance3-Dimensional.html>}. 

213 ''' 

214 return _nearestOn2(self, point1, point2, within=within).closest 

215 

216 def nearestOn6(self, points, closed=False, useZ=True): # eps=EPS 

217 '''Locate the point on a path or polygon closest to this point. 

218 

219 The closest point is either on and within the extent of a polygon 

220 edge or the nearest of that edge's end points. 

221 

222 @arg points: The path or polygon points (C{Cartesian}, L{Vector3d}, 

223 C{Vector3Tuple} or C{Vector4Tuple}[]). 

224 @kwarg closed: Optionally, close the path or polygon (C{bool}). 

225 @kwarg useZ: If C{True}, use the Z components, otherwise force C{z=INT0} (C{bool}). 

226 

227 @return: A L{NearestOn6Tuple}C{(closest, distance, fi, j, start, end)} 

228 with the C{closest}, the C{start} and the C{end} point each 

229 an instance of this point's (sub-)class. 

230 

231 @raise PointsError: Insufficient number of B{C{points}} 

232 

233 @raise TypeError: Non-cartesian B{C{points}}. 

234 

235 @note: Distances measured with method L{Vector3d.equirectangular}. 

236 

237 @see: Function L{nearestOn6}. 

238 ''' 

239 return nearestOn6(self, points, closed=closed, useZ=useZ) # Vector=self.classof 

240 

241 def parse(self, str3d, sep=_COMMA_, name=NN): 

242 '''Parse an C{"x, y, z"} string to a L{Vector3d} instance. 

243 

244 @arg str3d: X, y and z string (C{str}), see function L{parse3d}. 

245 @kwarg sep: Optional separator (C{str}). 

246 @kwarg name: Optional instance name (C{str}), overriding this name. 

247 

248 @return: The instance (L{Vector3d}). 

249 

250 @raise VectorError: Invalid B{C{str3d}}. 

251 ''' 

252 return parse3d(str3d, sep=sep, Vector=self.classof, name=name or self.name) 

253 

254 def radii11(self, point2, point3): 

255 '''Return the radii of the C{Circum-}, C{In-}, I{Soddy} and C{Tangent} 

256 circles of a (3-D) triangle. 

257 

258 @arg point2: Second point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple}, 

259 C{Vector4Tuple} or C{Vector2Tuple} if C{B{useZ}=False}). 

260 @arg point3: Third point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple}, 

261 C{Vector4Tuple} or C{Vector2Tuple} if C{B{useZ}=False}). 

262 

263 @return: L{Radii11Tuple}C{(rA, rB, rC, cR, rIn, riS, roS, a, b, c, s)}. 

264 

265 @raise TriangleError: Near-coincident or -colinear points. 

266 

267 @raise TypeError: Invalid B{C{point2}} or B{C{point3}}. 

268 

269 @see: Function L{pygeodesy.radii11}, U{Incircle 

270 <https://MathWorld.Wolfram.com/Incircle.html>}, U{Soddy Circles 

271 <https://MathWorld.Wolfram.com/SoddyCircles.html>} and U{Tangent 

272 Circles<https://MathWorld.Wolfram.com/TangentCircles.html>}. 

273 ''' 

274 try: 

275 return _MODS.vector2d._radii11ABC(self, point2, point3, useZ=True)[0] 

276 except (TypeError, ValueError) as x: 

277 raise _xError(x, point=self, point2=point2, point3=point3) 

278 

279 def soddy4(self, point2, point3, eps=EPS4): 

280 '''Return the radius and center of the C{inner} I{Soddy} circle of a 

281 (3-D) triangle. 

282 

283 @arg point2: Second point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple}, 

284 C{Vector4Tuple} or C{Vector2Tuple} if C{B{useZ}=False}). 

285 @arg point3: Third point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple}, 

286 C{Vector4Tuple} or C{Vector2Tuple} if C{B{useZ}=False}). 

287 @kwarg eps: Tolerance for function L{pygeodesy.trilaterate3d2} if 

288 C{B{useZ} is True} otherwise L{pygeodesy.trilaterate2d2}. 

289 

290 @return: L{Soddy4Tuple}C{(radius, center, deltas, outer)}. The C{center}, 

291 an instance of B{C{point1}}'s (sub-)class, is co-planar with the 

292 three given points. 

293 

294 @raise ImportError: Package C{numpy} not found, not installed or older 

295 than version 1.10. 

296 

297 @raise IntersectionError: Near-coincident or -colinear points or 

298 a trilateration or C{numpy} issue. 

299 

300 @raise TypeError: Invalid B{C{point2}} or B{C{point3}}. 

301 

302 @see: Function L{pygeodesy.soddy4}. 

303 ''' 

304 return _MODS.vector2d.soddy4(self, point2, point3, eps=eps, useZ=True) 

305 

306 def trilaterate2d2(self, radius, center2, radius2, center3, radius3, eps=EPS, z=INT0): 

307 '''Trilaterate this and two other circles, each given as a (2-D) center 

308 and a radius. 

309 

310 @arg radius: Radius of this circle (same C{units} as this C{x} and C{y}. 

311 @arg center2: Center of the 2nd circle (C{Cartesian}, L{Vector3d}, 

312 C{Vector2Tuple}, C{Vector3Tuple} or C{Vector4Tuple}). 

313 @arg radius2: Radius of this circle (same C{units} as this C{x} and C{y}. 

314 @arg center3: Center of the 3rd circle (C{Cartesian}, L{Vector3d}, 

315 C{Vector2Tuple}, C{Vector3Tuple} or C{Vector4Tuple}). 

316 @arg radius3: Radius of the 3rd circle (same C{units} as this C{x} and C{y}. 

317 @kwarg eps: Tolerance to check the trilaterated point I{delta} on all 

318 3 circles (C{scalar}) or C{None} for no checking. 

319 @kwarg z: Optional Z component of the trilaterated point (C{scalar}). 

320 

321 @return: Trilaterated point, an instance of this (sub-)class with C{z=B{z}}. 

322 

323 @raise IntersectionError: No intersection, near-concentric or -colinear 

324 centers, trilateration failed some other way 

325 or the trilaterated point is off one circle 

326 by more than B{C{eps}}. 

327 

328 @raise TypeError: Invalid B{C{center2}} or B{C{center3}}. 

329 

330 @raise UnitError: Invalid B{C{radius1}}, B{C{radius2}} or B{C{radius3}}. 

331 

332 @see: Function L{pygeodesy.trilaterate2d2}. 

333 ''' 

334 

335 def _xyr3(r, **name_v): 

336 v = _otherV3d(useZ=False, **name_v) 

337 return v.x, v.y, r 

338 

339 try: 

340 return _MODS.vector2d._trilaterate2d2(*(_xyr3(radius, center=self) + 

341 _xyr3(radius2, center2=center2) + 

342 _xyr3(radius3, center3=center3)), 

343 eps=eps, Vector=self.classof, z=z) 

344 except (AssertionError, TypeError, ValueError) as x: 

345 raise _xError(x, center=self, radius=radius, 

346 center2=center2, radius2=radius2, 

347 center3=center3, radius3=radius3) 

348 

349 def trilaterate3d2(self, radius, center2, radius2, center3, radius3, eps=EPS): 

350 '''Trilaterate this and two other spheres, each given as a (3-D) center 

351 and a radius. 

352 

353 @arg radius: Radius of this sphere (same C{units} as this C{x}, C{y} 

354 and C{z}). 

355 @arg center2: Center of the 2nd sphere (C{Cartesian}, L{Vector3d}, 

356 C{Vector3Tuple} or C{Vector4Tuple}). 

357 @arg radius2: Radius of this sphere (same C{units} as this C{x}, C{y} 

358 and C{z}). 

359 @arg center3: Center of the 3rd sphere (C{Cartesian}, , L{Vector3d}, 

360 C{Vector3Tuple} or C{Vector4Tuple}). 

361 @arg radius3: Radius of the 3rd sphere (same C{units} as this C{x}, C{y} 

362 and C{z}). 

363 @kwarg eps: Pertubation tolerance (C{scalar}), same units as C{x}, C{y} 

364 and C{z} or C{None} for no pertubations. 

365 

366 @return: 2-Tuple with two trilaterated points, each an instance of this 

367 (sub-)class. Both points are the same instance if all three 

368 spheres intersect or abut in a single point. 

369 

370 @raise ImportError: Package C{numpy} not found, not installed or 

371 older than version 1.10. 

372 

373 @raise IntersectionError: Near-concentric, -colinear, too distant or 

374 non-intersecting spheres or C{numpy} issue. 

375 

376 @raise NumPyError: Some C{numpy} issue. 

377 

378 @raise TypeError: Invalid B{C{center2}} or B{C{center3}}. 

379 

380 @raise UnitError: Invalid B{C{radius}}, B{C{radius2}} or B{C{radius3}}. 

381 

382 @note: Package U{numpy<https://PyPI.org/project/numpy>} is required, 

383 version 1.10 or later. 

384 

385 @see: Norrdine, A. U{I{An Algebraic Solution to the Multilateration 

386 Problem}<https://www.ResearchGate.net/publication/ 

387 275027725_An_Algebraic_Solution_to_the_Multilateration_Problem>} 

388 and U{I{implementation}<https://www.ResearchGate.net/publication/ 

389 288825016_Trilateration_Matlab_Code>}. 

390 ''' 

391 try: 

392 c1 = _otherV3d(center=self, NN_OK=False) 

393 return _MODS.vector2d._trilaterate3d2(c1, Radius_(radius, low=eps), 

394 center2, radius2, 

395 center3, radius3, 

396 eps=eps, clas=self.classof) 

397 except (AssertionError, TypeError, ValueError) as x: 

398 raise _xError(x, center=self, radius=radius, 

399 center2=center2, radius2=radius2, 

400 center3=center3, radius3=radius3) 

401 

402 

403def _intersect3d3(start1, end1, start2, end2, eps=EPS, useZ=False): # MCCABE 16 in .formy.intersection2, .rhumbx._RhumbLine 

404 # (INTERNAL) Intersect two lines, see L{intersection3d3} below, 

405 # separated to allow callers to embellish any exceptions 

406 

407 def _outside(t, d2, o): # -o before start#, +o after end# 

408 return -o if t < 0 else (o if t > d2 else 0) # XXX d2 + eps? 

409 

410 def _rightangle2(s1, b1, s2, useZ): 

411 # Get the C{s1'} and C{e1'}, corners of a right-angle 

412 # triangle with the hypotenuse thru C{s1} at bearing 

413 # C{b1} and the right angle at C{s2} 

414 dx, dy, d = s2.minus(s1).xyz 

415 if useZ and not isnear0(d): # not supported 

416 raise IntersectionError(useZ=d, bearing=b1) 

417 s, c = sincos2d(b1) 

418 if s and c: 

419 dx *= c / s 

420 dy *= s / c 

421 e1 = Vector3d(s2.x, s1.y + dx, s1.z) 

422 s1 = Vector3d(s1.x + dy, s2.y, s1.z) 

423 else: # orthogonal 

424 d = euclid(dx, dy) # hypot? 

425 e1 = Vector3d(s1.x + s * d, s1.y + c * d, s1.z) 

426 return s1, e1 

427 

428 s1 = x = _otherV3d(useZ=useZ, start1=start1) 

429 s2 = _otherV3d(useZ=useZ, start2=start2) 

430 b1 = isscalar(end1) 

431 if b1: # bearing, make an e1 

432 s1, e1 = _rightangle2(s1, end1, s2, useZ) 

433 else: 

434 e1 = _otherV3d(useZ=useZ, end1=end1) 

435 b2 = isscalar(end2) 

436 if b2: # bearing, make an e2 

437 s2, e2 = _rightangle2(s2, end2, x, useZ) 

438 else: 

439 e2 = _otherV3d(useZ=useZ, end2=end2) 

440 

441 a = e1.minus(s1) 

442 b = e2.minus(s2) 

443 c = s2.minus(s1) 

444 

445 ab = a.cross(b) 

446 d = fabs(c.dot(ab)) 

447 e = max(EPS0, eps or _0_0) 

448 if d > EPS0 and ab.length > e: # PYCHOK no cover 

449 d = d / ab.length # /= chokes PyChecker 

450 if d > e: # argonic, skew lines distance 

451 raise IntersectionError(skew_d=d, txt=_no_(_intersection_)) 

452 

453 # co-planar, non-skew lines 

454 ab2 = ab.length2 

455 if ab2 < e: # colinear, parallel or null line(s) 

456 x = b.length2 < a.length2 

457 if x: # make C{a} the shortest 

458 a, b = b, a 

459 s1, s2 = s2, s1 

460 e1, e2 = e2, e1 

461 b1, b2 = b2, b1 

462 if b.length2 < e: # PYCHOK no cover 

463 if c.length < e: 

464 return s1, 0, 0 

465 elif e2.minus(e1).length < e: 

466 return e1, 0, 0 

467 elif a.length2 < e: # null (s1, e1), non-null (s2, e2) 

468 # like _nearestOn2(s1, s2, e2, within=False, eps=e) 

469 t = s1.minus(s2).dot(b) 

470 v = s2.plus(b.times(t / b.length2)) 

471 if s1.minus(v).length < e: 

472 o = 0 if b2 else _outside(t, b.length2, 1 if x else 2) 

473 return (v, o, 0) if x else (v, 0, o) 

474 raise IntersectionError(length2=ab2, txt=_no_(_intersection_)) 

475 

476 cb = c.cross(b) 

477 t = cb.dot(ab) 

478 o1 = 0 if b1 else _outside(t, ab2, 1) 

479 v = s1.plus(a.times(t / ab2)) 

480 o2 = 0 if b2 else _outside(v.minus(s2).dot(b), b.length2, 2) 

481 return v, o1, o2 

482 

483 

484def intersection3d3(start1, end1, start2, end2, eps=EPS, useZ=True, 

485 **Vector_and_kwds): 

486 '''Compute the intersection point of two lines, each defined by two 

487 points or by a point and a bearing. 

488 

489 @arg start1: Start point of the first line (C{Cartesian}, L{Vector3d}, 

490 C{Vector3Tuple} or C{Vector4Tuple}). 

491 @arg end1: End point of the first line (C{Cartesian}, L{Vector3d}, 

492 C{Vector3Tuple} or C{Vector4Tuple}) or the bearing at 

493 B{C{start1}} (compass C{degrees}). 

494 @arg start2: Start point of the second line (C{Cartesian}, L{Vector3d}, 

495 C{Vector3Tuple} or C{Vector4Tuple}). 

496 @arg end2: End point of the second line (C{Cartesian}, L{Vector3d}, 

497 C{Vector3Tuple} or C{Vector4Tuple}) or the bearing at 

498 B{C{start2}} (Ccompass C{degrees}). 

499 @kwarg eps: Tolerance for skew line distance and length (C{EPS}). 

500 @kwarg useZ: If C{True}, use the Z components, otherwise force C{z=INT0} (C{bool}). 

501 @kwarg Vector_and_kwds: Optional class C{B{Vector}=None} to return the 

502 intersection points and optional, additional B{C{Vector}} 

503 keyword arguments, otherwise B{C{start1}}'s (sub-)class. 

504 

505 @return: An L{Intersection3Tuple}C{(point, outside1, outside2)} with 

506 C{point} an instance of B{C{Vector}} or B{C{start1}}'s (sub-)class. 

507 

508 @note: The C{outside} values is C{0} for lines specified by point and bearing. 

509 

510 @raise IntersectionError: Invalid, skew, non-co-planar or otherwise 

511 non-intersecting lines. 

512 

513 @see: U{Line-line intersection<https://MathWorld.Wolfram.com/Line-LineIntersection.html>} 

514 and U{line-line distance<https://MathWorld.Wolfram.com/Line-LineDistance.html>}, 

515 U{skew lines<https://MathWorld.Wolfram.com/SkewLines.html>} and U{point-line 

516 distance<https://MathWorld.Wolfram.com/Point-LineDistance3-Dimensional.html>}. 

517 ''' 

518 try: 

519 v, o1, o2 = _intersect3d3(start1, end1, start2, end2, eps=eps, useZ=useZ) 

520 except (TypeError, ValueError) as x: 

521 raise _xError(x, start1=start1, end1=end1, start2=start2, end2=end2) 

522 v = _nVc(v, **_xkwds(Vector_and_kwds, clas=start1.classof, 

523 name=intersection3d3.__name__)) 

524 return Intersection3Tuple(v, o1, o2) 

525 

526 

527def intersections2(center1, radius1, center2, radius2, sphere=True, **Vector_and_kwds): 

528 '''Compute the intersection of two spheres or circles, each defined by a 

529 (3-D) center point and a radius. 

530 

531 @arg center1: Center of the first sphere or circle (C{Cartesian}, L{Vector3d}, 

532 C{Vector3Tuple} or C{Vector4Tuple}). 

533 @arg radius1: Radius of the first sphere or circle (same units as the 

534 B{C{center1}} coordinates). 

535 @arg center2: Center of the second sphere or circle (C{Cartesian}, L{Vector3d}, 

536 C{Vector3Tuple} or C{Vector4Tuple}). 

537 @arg radius2: Radius of the second sphere or circle (same units as the 

538 B{C{center1}} and B{C{center2}} coordinates). 

539 @kwarg sphere: If C{True} compute the center and radius of the intersection of 

540 two spheres. If C{False}, ignore the C{z}-component and compute 

541 the intersection of two circles (C{bool}). 

542 @kwarg Vector_and_kwds: Optional class C{B{Vector}=None} to return the 

543 intersection points and optional, additional B{C{Vector}} 

544 keyword arguments, otherwise B{C{center1}}'s (sub-)class. 

545 

546 @return: If B{C{sphere}} is C{True}, a 2-tuple of the C{center} and C{radius} 

547 of the intersection of the I{spheres}. The C{radius} is C{0.0} for 

548 abutting spheres (and the C{center} is aka the I{radical center}). 

549 

550 If B{C{sphere}} is C{False}, a 2-tuple with the two intersection 

551 points of the I{circles}. For abutting circles, both points are 

552 the same instance, aka the I{radical center}. 

553 

554 @raise IntersectionError: Concentric, invalid or non-intersecting spheres 

555 or circles. 

556 

557 @raise TypeError: Invalid B{C{center1}} or B{C{center2}}. 

558 

559 @raise UnitError: Invalid B{C{radius1}} or B{C{radius2}}. 

560 

561 @see: U{Sphere-Sphere<https://MathWorld.Wolfram.com/Sphere-SphereIntersection.html>} and 

562 U{Circle-Circle<https://MathWorld.Wolfram.com/Circle-CircleIntersection.html>} 

563 Intersection. 

564 ''' 

565 try: 

566 return _intersects2(center1, Radius_(radius1=radius1), 

567 center2, Radius_(radius2=radius2), sphere=sphere, 

568 clas=center1.classof, **Vector_and_kwds) 

569 except (TypeError, ValueError) as x: 

570 raise _xError(x, center1=center1, radius1=radius1, center2=center2, radius2=radius2) 

571 

572 

573def _intersects2(center1, r1, center2, r2, sphere=True, too_d=None, # in CartesianEllipsoidalBase.intersections2, 

574 **clas_Vector_and_kwds): # .ellipsoidalBaseDI._intersections2, .formy.intersections2 

575 # (INTERNAL) Intersect two spheres or circles, see L{intersections2} 

576 # above, separated to allow callers to embellish any exceptions 

577 

578 def _nV3(x, y, z): 

579 v = Vector3d(x, y, z) 

580 n = intersections2.__name__ 

581 return _nVc(v, **_xkwds(clas_Vector_and_kwds, name=n)) 

582 

583 def _xV3(c1, u, x, y): 

584 xy1 = x, y, _1_0 # transform to original space 

585 return _nV3(fdot(xy1, u.x, -u.y, c1.x), 

586 fdot(xy1, u.y, u.x, c1.y), _0_0) 

587 

588 c1 = _otherV3d(useZ=sphere, center1=center1) 

589 c2 = _otherV3d(useZ=sphere, center2=center2) 

590 

591 if r1 < r2: # r1, r2 == R, r 

592 c1, c2 = c2, c1 

593 r1, r2 = r2, r1 

594 

595 m = c2.minus(c1) 

596 d = m.length 

597 if d < max(r2 - r1, EPS): 

598 raise IntersectionError(_near_(_concentric_)) # XXX ConcentricError? 

599 

600 o = fsum1_(-d, r1, r2) # overlap == -(d - (r1 + r2)) 

601 # compute intersections with c1 at (0, 0) and c2 at (d, 0), like 

602 # <https://MathWorld.Wolfram.com/Circle-CircleIntersection.html> 

603 if o > EPS: # overlapping, r1, r2 == R, r 

604 x = _MODS.formy._radical2(d, r1, r2).xline 

605 y = _1_0 - (x / r1)**2 

606 if y > EPS: 

607 y = r1 * sqrt(y) # y == a / 2 

608 elif y < 0: # PYCHOK no cover 

609 raise IntersectionError(_negative_) 

610 else: # abutting 

611 y = _0_0 

612 elif o < 0: # PYCHOK no cover 

613 t = d if too_d is None else too_d 

614 raise IntersectionError(_too_(Fmt.distant(t))) 

615 else: # abutting 

616 x, y = r1, _0_0 

617 

618 u = m.unit() 

619 if sphere: # sphere center and radius 

620 c = c1 if x < EPS else ( 

621 c2 if x > EPS1 else c1.plus(u.times(x))) 

622 t = _nV3(c.x, c.y, c.z), Radius(y) 

623 

624 elif y > 0: # intersecting circles 

625 t = _xV3(c1, u, x, y), _xV3(c1, u, x, -y) 

626 else: # abutting circles 

627 t = _xV3(c1, u, x, 0) 

628 t = t, t 

629 return t 

630 

631 

632def iscolinearWith(point, point1, point2, eps=EPS, useZ=True): 

633 '''Check whether a point is colinear with two other (2- or 3-D) points. 

634 

635 @arg point: The point (L{Vector3d}, C{Vector3Tuple} or C{Vector4Tuple}). 

636 @arg point1: First point (L{Vector3d}, C{Vector3Tuple} or C{Vector4Tuple}). 

637 @arg point2: Second point (L{Vector3d}, C{Vector3Tuple} or C{Vector4Tuple}). 

638 @kwarg eps: Tolerance (C{scalar}), same units as C{x}, C{y} and C{z}. 

639 @kwarg useZ: If C{True}, use the Z components, otherwise force C{z=INT0} (C{bool}). 

640 

641 @return: C{True} if B{C{point}} is colinear B{C{point1}} and B{C{point2}}, 

642 C{False} otherwise. 

643 

644 @raise TypeError: Invalid B{C{point}}, B{C{point1}} or B{C{point2}}. 

645 

646 @see: Function L{nearestOn}. 

647 ''' 

648 p = _otherV3d(useZ=useZ, point=point) 

649 return _MODS.vector2d._iscolinearWith(p, point1, point2, eps=eps, useZ=useZ) 

650 

651 

652def nearestOn(point, point1, point2, within=True, useZ=True, Vector=None, **Vector_kwds): 

653 '''Locate the point between two points closest to a reference (2- or 3-D). 

654 

655 @arg point: Reference point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} 

656 or C{Vector4Tuple}). 

657 @arg point1: Start point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} or 

658 C{Vector4Tuple}). 

659 @arg point2: End point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} or 

660 C{Vector4Tuple}). 

661 @kwarg within: If C{True} return the closest point between both given 

662 points, otherwise the closest point on the extended line 

663 through both points (C{bool}). 

664 @kwarg useZ: If C{True}, use the Z components, otherwise force C{z=INT0} (C{bool}). 

665 @kwarg Vector: Class to return closest point (C{Cartesian}, L{Vector3d} 

666 or C{Vector3Tuple}) or C{None}. 

667 @kwarg Vector_kwds: Optional, additional B{C{Vector}} keyword arguments, 

668 ignored if C{B{Vector} is None}. 

669 

670 @return: Closest point, either B{C{point1}} or B{C{point2}} or an instance 

671 of the B{C{point}}'s (sub-)class or B{C{Vector}} if not C{None}. 

672 

673 @raise TypeError: Invalid B{C{point}}, B{C{point1}} or B{C{point2}}. 

674 

675 @see: U{3-D Point-Line Distance<https://MathWorld.Wolfram.com/Point-LineDistance3-Dimensional.html>}, 

676 C{Cartesian} and C{LatLon} methods C{nearestOn}, method L{sphericalTrigonometry.LatLon.nearestOn3} 

677 and function L{sphericalTrigonometry.nearestOn3}. 

678 ''' 

679 p0 = _otherV3d(useZ=useZ, point =point) 

680 p1 = _otherV3d(useZ=useZ, point1=point1) 

681 p2 = _otherV3d(useZ=useZ, point2=point2) 

682 

683 p, _ = _nearestOn2(p0, p1, p2, within=within) 

684 if Vector is not None: 

685 p = Vector(p.x, p.y, **_xkwds(Vector_kwds, z=p.z, name=nearestOn.__name__)) 

686 elif p is p1: 

687 p = point1 

688 elif p is p2: 

689 p = point2 

690 else: # ignore Vector_kwds 

691 p = point.classof(p.x, p.y, Vector_kwds.get(_z_, p.z), name=nearestOn.__name__) 

692 return p 

693 

694 

695def _nearestOn2(p0, p1, p2, within=True, eps=EPS): 

696 # (INTERNAL) Closest point and fraction, see L{nearestOn} above, 

697 # separated to allow callers to embellish any exceptions 

698 p21 = p2.minus(p1) 

699 d2 = p21.length2 

700 if d2 < eps: # coincident 

701 p = p1 # ~= p2 

702 t = 0 

703 else: # see comments in .points.nearestOn5 

704 t = p0.minus(p1).dot(p21) / d2 

705 if within and t < eps: 

706 p = p1 

707 t = 0 

708 elif within and t > (_1_0 - eps): 

709 p = p2 

710 t = 1 

711 else: 

712 p = p1.plus(p21.times(t)) 

713 return NearestOn2Tuple(p, t) 

714 

715 

716def nearestOn6(point, points, closed=False, useZ=True, **Vector_and_kwds): # eps=EPS 

717 '''Locate the point on a path or polygon closest to a reference point. 

718 

719 The closest point is either on and within the extent of a polygon edge or 

720 the nearest of that edge's end points. 

721 

722 @arg point: Reference point (C{Cartesian}, L{Vector3d}, C{Vector3Tuple} or 

723 C{Vector4Tuple}). 

724 @arg points: The path or polygon points (C{Cartesian}, L{Vector3d}, 

725 C{Vector3Tuple} or C{Vector4Tuple}[]). 

726 @kwarg closed: Optionally, close the path or polygon (C{bool}). 

727 @kwarg useZ: If C{True}, use the Z components, otherwise force C{z=INT0} (C{bool}). 

728 @kwarg Vector_and_kwds: Optional class C{B{Vector}=None} to return the closest 

729 point and optional, additional B{C{Vector}} keyword 

730 arguments, otherwise B{C{point}}'s (sub-)class. 

731 

732 @return: A L{NearestOn6Tuple}C{(closest, distance, fi, j, start, end)} with the 

733 C{closest}, the C{start} and the C{end} point each an instance of the 

734 B{C{Vector}} keyword argument of if {B{Vector}=None} or not specified, 

735 an instance of the reference B{C{point}}'s (sub-)class. 

736 

737 @raise PointsError: Insufficient number of B{C{points}} 

738 

739 @raise TypeError: Non-cartesian B{C{point}} and B{C{points}}. 

740 

741 @note: Distances measured with method L{Vector3d.equirectangular}. 

742 

743 @see: Method C{LatLon.nearestOn6} or function L{nearestOn5} for geodetic points. 

744 ''' 

745 r = _otherV3d(useZ=useZ, point=point) 

746 D2 = r.equirectangular # distance squared 

747 

748 Ps = PointsIter(points, loop=1, name=nearestOn6.__name__) 

749 p1 = c = s = e = _otherV3d(useZ=useZ, i=0, points=Ps[0]) 

750 c2 = D2(c) # == r.minus(c).length2 

751 

752 f = i = 0 # p1..p2 == points[i]..[j] 

753 for j, p2 in Ps.enumerate(closed=closed): 

754 p2 = _otherV3d(useZ=useZ, i=j, points=p2) 

755 p, t = _nearestOn2(r, p1, p2) # within=True, eps=EPS 

756 d2 = D2(p) # == r.minus(p).length2 

757 if d2 < c2: 

758 c2, c, s, e, f = d2, p, p1, p2, (i + t) 

759 p1, i = p2, j 

760 

761 f, j = _fi_j2(f, len(Ps)) # like .ellipsoidalBaseDI._nearestOn2_ 

762 

763 kwds = _xkwds(Vector_and_kwds, clas=point.classof, name=Ps.name) 

764 v = _nVc(c, **kwds) 

765 s = _nVc(s, **kwds) if s is not c else v 

766 e = _nVc(e, **kwds) if e is not c else v 

767 return NearestOn6Tuple(v, sqrt(c2), f, j, s, e) 

768 

769 

770def _nVc(v, clas=None, name=NN, Vector=None, **Vector_kwds): # in .vector2d 

771 # return a named C{Vector} or C{clas} instance 

772 if Vector is not None: 

773 v = Vector(v.x, v.y, v.z, **Vector_kwds) 

774 elif clas is not None: 

775 v = clas(v.x, v.y, v.z) # ignore Vector_kwds 

776 return _xnamed(v, name) if name else v 

777 

778 

779def _otherV3d(useZ=True, NN_OK=True, i=None, **name_v): # in .CartesianEllipsoidalBase.intersections2, 

780 # check named vector instance, return Vector3d .Ellipsoid.height4, .formy.hartzell, .vector2d 

781 def _name_i(name, i): 

782 return name if i is None else Fmt.SQUARE(name, i) 

783 

784 name, v = _xkwds_popitem(name_v) 

785 if useZ and isinstance(v, Vector3dBase): 

786 return v if NN_OK or v.name else v.copy(name=_name_i(name, i)) 

787 try: 

788 return Vector3d(v.x, v.y, (v.z if useZ else INT0), name=_name_i(name, i)) 

789 except AttributeError: # no .x, .y or .z attr 

790 pass 

791 raise _xotherError(Vector3d(0, 0, 0), v, name=_name_i(name, i), up=2) 

792 

793 

794def parse3d(str3d, sep=_COMMA_, Vector=Vector3d, **Vector_kwds): 

795 '''Parse an C{"x, y, z"} string. 

796 

797 @arg str3d: X, y and z values (C{str}). 

798 @kwarg sep: Optional separator (C{str}). 

799 @kwarg Vector: Optional class (L{Vector3d}). 

800 @kwarg Vector_kwds: Optional B{C{Vector}} keyword arguments, 

801 ignored if C{B{Vector} is None}. 

802 

803 @return: A B{C{Vector}} instance or if B{C{Vector}} is C{None}, 

804 a named L{Vector3Tuple}C{(x, y, z)}. 

805 

806 @raise VectorError: Invalid B{C{str3d}}. 

807 ''' 

808 try: 

809 v = [float(v.strip()) for v in str3d.split(sep)] 

810 n = len(v) 

811 if n != 3: 

812 raise _ValueError(len=n) 

813 except (TypeError, ValueError) as x: 

814 raise VectorError(str3d=str3d, cause=x) 

815 return _xnamed((Vector3Tuple(v) if Vector is None else # *v 

816 Vector(*v, **Vector_kwds)), parse3d.__name__) 

817 

818 

819def sumOf(vectors, Vector=Vector3d, **Vector_kwds): 

820 '''Compute the vectorial sum of several vectors. 

821 

822 @arg vectors: Vectors to be added (L{Vector3d}[]). 

823 @kwarg Vector: Optional class for the vectorial sum (L{Vector3d}). 

824 @kwarg Vector_kwds: Optional B{C{Vector}} keyword arguments, 

825 ignored if C{B{Vector} is None}. 

826 

827 @return: Vectorial sum as B{C{Vector}} or if B{C{Vector}} is 

828 C{None}, a named L{Vector3Tuple}C{(x, y, z)}. 

829 

830 @raise VectorError: No B{C{vectors}}. 

831 ''' 

832 n, vectors = len2(vectors) 

833 if n < 1: 

834 raise VectorError(vectors=n, txt=MISSING) 

835 

836 v = Vector3Tuple(fsum(v.x for v in vectors), 

837 fsum(v.y for v in vectors), 

838 fsum(v.z for v in vectors)) 

839 return _xnamed((v if Vector is None else 

840 Vector(*v, **Vector_kwds)), sumOf.__name__) 

841 

842 

843def trilaterate2d2(x1, y1, radius1, x2, y2, radius2, x3, y3, radius3, 

844 eps=None, **Vector_and_kwds): 

845 '''Trilaterate three circles, each given as a (2-D) center and a radius. 

846 

847 @arg x1: Center C{x} coordinate of the 1st circle (C{scalar}). 

848 @arg y1: Center C{y} coordinate of the 1st circle (C{scalar}). 

849 @arg radius1: Radius of the 1st circle (C{scalar}). 

850 @arg x2: Center C{x} coordinate of the 2nd circle (C{scalar}). 

851 @arg y2: Center C{y} coordinate of the 2nd circle (C{scalar}). 

852 @arg radius2: Radius of the 2nd circle (C{scalar}). 

853 @arg x3: Center C{x} coordinate of the 3rd circle (C{scalar}). 

854 @arg y3: Center C{y} coordinate of the 3rd circle (C{scalar}). 

855 @arg radius3: Radius of the 3rd circle (C{scalar}). 

856 @kwarg eps: Tolerance to check the trilaterated point I{delta} on all 

857 3 circles (C{scalar}) or C{None} for no checking. 

858 @kwarg Vector_and_kwds: Optional class C{B{Vector}=None} to return the 

859 trilateration and optional, additional B{C{Vector}} 

860 keyword arguments, otherwise (L{Vector3d}). 

861 

862 @return: Trilaterated point as C{B{Vector}(x, y, **B{Vector_kwds})} 

863 or L{Vector2Tuple}C{(x, y)} if C{B{Vector} is None}.. 

864 

865 @raise IntersectionError: No intersection, near-concentric or -colinear 

866 centers, trilateration failed some other way 

867 or the trilaterated point is off one circle 

868 by more than B{C{eps}}. 

869 

870 @raise UnitError: Invalid B{C{radius1}}, B{C{radius2}} or B{C{radius3}}. 

871 

872 @see: U{Issue #49<https://GitHub.com/mrJean1/PyGeodesy/issues/49>}, 

873 U{Find X location using 3 known (X,Y) location using trilateration 

874 <https://math.StackExchange.com/questions/884807>} and function 

875 L{pygeodesy.trilaterate3d2}. 

876 ''' 

877 return _MODS.vector2d._trilaterate2d2(x1, y1, radius1, 

878 x2, y2, radius2, 

879 x3, y3, radius3, eps=eps, **Vector_and_kwds) 

880 

881 

882def trilaterate3d2(center1, radius1, center2, radius2, center3, radius3, 

883 eps=EPS, **Vector_and_kwds): 

884 '''Trilaterate three spheres, each given as a (3-D) center and a radius. 

885 

886 @arg center1: Center of the 1st sphere (C{Cartesian}, L{Vector3d}, 

887 C{Vector3Tuple} or C{Vector4Tuple}). 

888 @arg radius1: Radius of the 1st sphere (same C{units} as C{x}, C{y} 

889 and C{z}). 

890 @arg center2: Center of the 2nd sphere (C{Cartesian}, L{Vector3d}, 

891 C{Vector3Tuple} or C{Vector4Tuple}). 

892 @arg radius2: Radius of this sphere (same C{units} as C{x}, C{y} 

893 and C{z}). 

894 @arg center3: Center of the 3rd sphere (C{Cartesian}, L{Vector3d}, 

895 C{Vector3Tuple} or C{Vector4Tuple}). 

896 @arg radius3: Radius of the 3rd sphere (same C{units} as C{x}, C{y} 

897 and C{z}). 

898 @kwarg eps: Pertubation tolerance (C{scalar}), same units as C{x}, 

899 C{y} and C{z} or C{None} for no pertubations. 

900 @kwarg Vector_and_kwds: Optional class C{B{Vector}=None} to return the 

901 trilateration and optional, additional B{C{Vector}} 

902 keyword arguments, otherwise B{C{center1}}'s 

903 (sub-)class. 

904 

905 @return: 2-Tuple with two trilaterated points, each a B{C{Vector}} 

906 instance. Both points are the same instance if all three 

907 spheres abut/intersect in a single point. 

908 

909 @raise ImportError: Package C{numpy} not found, not installed or 

910 older than version 1.10. 

911 

912 @raise IntersectionError: Near-concentric, -colinear, too distant or 

913 non-intersecting spheres. 

914 

915 @raise NumPyError: Some C{numpy} issue. 

916 

917 @raise TypeError: Invalid B{C{center1}}, B{C{center2}} or B{C{center3}}. 

918 

919 @raise UnitError: Invalid B{C{radius1}}, B{C{radius2}} or B{C{radius3}}. 

920 

921 @see: Norrdine, A. U{I{An Algebraic Solution to the Multilateration 

922 Problem}<https://www.ResearchGate.net/publication/ 

923 275027725_An_Algebraic_Solution_to_the_Multilateration_Problem>}, 

924 the U{I{implementation}<https://www.ResearchGate.net/publication/ 

925 288825016_Trilateration_Matlab_Code>} and function 

926 L{pygeodesy.trilaterate2d2}. 

927 ''' 

928 try: 

929 return _MODS.vector2d._trilaterate3d2(_otherV3d(center1=center1, NN_OK=False), 

930 Radius_(radius1=radius1, low=eps), 

931 center2, radius2, center3, radius3, eps=eps, 

932 clas=center1.classof, **Vector_and_kwds) 

933 except (AssertionError, TypeError, ValueError) as x: 

934 raise _xError(x, center1=center1, radius1=radius1, 

935 center2=center2, radius2=radius2, 

936 center3=center3, radius3=radius3) 

937 

938 

939def _xyzhdn3(xyz, height, datum, ll): # in .cartesianBase, .nvectorBase 

940 '''(INTERNAL) Get a C{(h, d, name)} 3-tuple. 

941 ''' 

942 h = height or getattr(xyz, _height_, None) \ 

943 or getattr(xyz, _h_, None) \ 

944 or getattr(ll, _height_, None) 

945 

946 d = datum or getattr(xyz, _datum_, None) \ 

947 or getattr(ll, _datum_, None) 

948 

949 return h, d, getattr(xyz, _name_, NN) 

950 

951 

952__all__ += _ALL_DOCS(intersections2, sumOf, Vector3dBase) 

953 

954# **) MIT License 

955# 

956# Copyright (C) 2016-2023 -- mrJean1 at Gmail -- All Rights Reserved. 

957# 

958# Permission is hereby granted, free of charge, to any person obtaining a 

959# copy of this software and associated documentation files (the "Software"), 

960# to deal in the Software without restriction, including without limitation 

961# the rights to use, copy, modify, merge, publish, distribute, sublicense, 

962# and/or sell copies of the Software, and to permit persons to whom the 

963# Software is furnished to do so, subject to the following conditions: 

964# 

965# The above copyright notice and this permission notice shall be included 

966# in all copies or substantial portions of the Software. 

967# 

968# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 

969# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

970# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 

971# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 

972# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 

973# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 

974# OTHER DEALINGS IN THE SOFTWARE.