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This documents lists all statistics computed by EggLib in the context of
population genetics analysis and provides the formulæ used and bibliographic
references.

The standard form of accepted data is site, allowing to load data taken
from sequence alignments, large-scale sequencing or genotyping data, or other
kinds of markers. Typically, it is expected that the user verifies that the site is
polymorphic. In addition, the user may have previously checked that the site
contains enough non-missing data (using FreqBase::nsam(), also available
from FreqBase’s subclasses). FreqBase

In equations, statistics are named using mathematical notations that are
not necessarily matching notations from the literature (in particular when
notations have been inconsistent or when several statistics have identical
names). For example, in this document, Tajima’s D and Fu and Li’s D are
named Dt and Dfl, respectively, in this document. The corresponding access-
ing functions in the C++ library are given in this format: Diversity1::D()
and Diversity1::Dfl().

Reference: De Mita S. & M. Siol. 2012. EggLib: processing, analysis and
simulation tools for population genetics and genomics. BMC Genet. 13: 27

URL: http://egglib.sourceforge.net/
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1 Single-site statistics

These statistics are computed from a single site. Many biological marker can fit in this
category, including SNPs, SSRs and haplotypes after phase reconstruction. Analyzes
are provided by the SiteDiversity class and data may be loaded from several classes
(Site, DataMatrix or VcfParser).

1.1 Basic statistics

The first set of statistics are not really statistics in themselves but are important. They
can be computed by several methods. In addition to this list, the sample sizes are avail-
able in the object used to analyze polymorphism (usually a subclass of FreqBase).

Stat Accessing method Explanation

k SiteDiversity::k() Number of populations
ke SiteDiversity::keff() — with enough samples †
ns SiteDiversity::ns() Number of analyzed samples
Io SiteDiversity::orientable() 1 if the site is orientable, 0 otherwise ‡
d SiteDiversity::derived() Sum of frequencies of derived alleles §

† The criterion depends on the method called: at least two samples for standard
and differentiation statistics, at least one sample (or diploid sample) for Weir and
Cockerham’s F -statistics (except with two levels of structure where this statistic
is not computed) and for allele size variance.

‡ A site is orientable if and only if exactly one ingroup-specific allele is present in
the outgroup.

§ Also available per population.

As set of standard statistics are computed by SiteDiversity::stats(),
SiteDiversity::vstats() (for the allele size variance) and for θ estimators, directly
by accessors.

Stat Accessing method Explanation

A SiteDiversity::Atot() Number of alleles †
Ae SiteDiversity::Aeff() — excluding outgroup-specific alleles †‡
ε SiteDiversity::S() — present in one copy (singletons) †
εd SiteDiversity::Sd() — present in one copy (only derived) †
R SiteDiversity::R() Allelic richness ‡
H ′ SiteDiversity::pairdiff() Average number of pairwise differences
H ′ij SiteDiversity::pairdiff inter(i,j) — between populations i and j

He SiteDiversity::He() Unbiased heterozygosity ‡
V SiteDiversity::V() Allele size variance ‡
θ̂I SiteDiversity::thetaIAM() Estimator of θ assuming IAM ‡
θ̂S SiteDiversity::thetaSMM() Estimator of θ assuming SMM ‡
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† An allele is an instance of a marker (nucleotide, haplotype, band or any other)
which is present at a non-null frequency (even if fixed) in the considered sample.

‡ Also available per population.

H ′ = 1−
Ae∑
i

pi
2

H ′ij =

Ae∑
k

pki · pkj

He = H ′
ns

ns − 1

R =
Ae − 1

ns − 1

V =
1

ns

Ae∑
i

(piXi)
2 −

(
1

ns

Ae∑
i

piXi

)2

θ̂I =
He

1−He

θ̂S =
1

2

[
1

(1−He)
2 − 1

]
with pi, the relative frequency of allele i, pij the relative frequency of allele i in popu-

lation j, and Xi the integer value of allele i, which is interpreted as the allele size when
it is used.

The observed (absolute of frequency can be accessed from the class GenoFreq which is
designed to hold diploid data (actually, it can support any ploidy, provided that it is
consistent over samples).

Accessing method Explanation

GenoFreq::Ho() Absolute frequency of heterozygotes
GenoFreq::Ho(k) — in population k
GenoFreq::Ho out() — in the outgroup
GenoFreq::het(a) — for allele a †
GenoFreq::het(a,p) — for allele a in population k †

† Number of heterozygotes containing the allele a (at least one copy, whenever higher
level of ploidy are used).

Note He and R are not defined if ns < 2. V is not defined if ns = 0.
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1.2 Weir and Cockerham’s F-statistics

The fixation indices defined by Weir & Cockerham (1984) are implemented in three
variants of the methods SiteDiversity::fstats(), depending on whether one or two
levels of structure are processed and whether genotypes are available. The statistics are
not computed directly in the C++ library (in order to let the user compute sums if
needed). They can be computed using the components of variances.

Diploid data, one level of structure In the standard case, the components of variance
are computed as follows (Weir & Cockerham 1984):

Stat Accessing method Source of variance

a SiteDiversity::a() Between populations
b SiteDiversity::b() Between individuals within populations
c SiteDiversity::c() Within individuals

a =

Ae∑
i

n̄

nc

{
s2i −

1

n̄− 1

[
p̄i(1− p̄i)−

ke − 1

ke
si −

1

4
h̄i

]}

b =

Ae∑
i

n̄

n̄− 1

[
p̄i(1− p̄i)−

ke − 1

ke
s2i −

2n̄− 1

4n̄
h̄i

]

c =

Ae∑
i

1

2
h̄i

with:

n̄ =
1

ke

ke∑
i

ni

nc =
1

ke − 1

(
ke · n̄−

1

ke · n̄

ke∑
i

ni
2

)

h̄i =
1

n̄ · ke

ke∑
j

hj

p̄i =
1

ke

ke∑
j

pij
nj

s2i =
1

n̄(ke − 1)

ke∑
j

nj(pij − p̄i)

where nj is the number of diploid individuals in population j, hj is the number of
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heterozygotes in population j and pij is the relative frequency of allele i in population
j.

The user may compute the final statistics using the relations, where F̂ is the estimator
corresponding to Fit, θ̂ to Fst, and f̂ to Fis, summing the numerator and denominator
as needed over loci:

1− F̂ =
c

a+ b+ c

θ̂ =
a

a+ b+ c

1− f̂ =
c

b+ c

Diploid data, two levels of structure Here is how are computed the components of
variance when populations are arranged in clusters (Weir & Cockerham 1984):

Stat Accessing method Source of variance

a SiteDiversity::a() Between clusters
b2 SiteDiversity::b2() Between populations within clusters
b1 SiteDiversity::b1() Between individuals within populations
c SiteDiversity::c() Within individuals

a =

Ae∑
i

1

2n2n3
[n3αi − n1βi − (n3 − n1)γi]

b2 =

Ae∑
i

1

2n3
(βi − γi)

b1 =

Ae∑
i

1

2
(γi − δi)

c =

Ae∑
i

δi

αi, βi, γi and δi correspond, respectively, to MSP, MSD, MSI and MSG in Weir and
Cockerham (1984). To compute them, we define: K, the number of clusters; ri, the
number of populations in cluster i; nij the number of diploid samples of population j
of cluster i; ni. the number of diploid samples in cluster i; and n.. the total number of
diploid samples. r′i is the number of populations with at least one sample in cluster i,
K ′ the number of clusters i such that r′i > 0 and r′ is the number of populations with
at least one diploid sample. Then we have:
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n1 =
1

K ′ − 1

K′∑
i

r′i∑
j

(n.. − ni.)nij2

ni.n..

n2 =
1

K ′ − 1

(
n.. −

1

n..

K′∑
i

ni.
2

)

n3 =
1

r′ −K ′

n.. − K′∑
i

1

ni.

r′i∑
j

nij
2


Let pijk be the relative frequency of allele i in population k of cluster j, pij. the relative

frequency of allele i in cluster j and pi. the relative frequency of allele i in the whole
sample. kijk is the relative frequency of heterozygotes for allele i in population k of
cluster j. Then we have:

αi =
2

K ′ − 1

K′∑
j

nj.(pij. − pi..)2

βi =
2

r′ −K ′
K′∑
j

r′j∑
k

njk(pijk − pij.)2

γi =
1

n.. − r′

2
K′∑
j

r′j∑
k

njk · pijk(1− pijk)− 1

2

K′∑
j

r′j∑
k

njk · hijk



δi =
1

n..

K′∑
j

r′j∑
k

njk · hijk

There is now two levels fixation indices corresponding to between-population differ-
entiation that may be computed, θ̂1 and θ̂2, but once again only the components of
variance are exposed by the library, to allow summing over loci:

1− F̂ =
c

a+ b1 + b2 + c

θ̂1 =
a+ b2

a+ b1 + b2 + c

θ̂2 =
a

a+ b1 + b2 + c

Haploid data, one level of structure It is also possible to compute θ̂ (corresponding
to Fst) with haploid data. Again, the C++ library provides only the terms to compute
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the value, as n, the numerator, and d, the denominator (Weir and Hill, 2002).

Stat Accessing method Source of variance

n SiteDiversity::n() Between population
d SiteDiversity::d() Total

n =

Ae∑
i

αi − δi

d =

Ae∑
i

αi + (nc − 1)δi

where αi is MSP and δi is MSG (for locus i) in Weir and Cockerham (2002) and are
computed as follows (all terms as previously defined):

αi =
1

ke

ke∑
j

nj(pij − p̄i)2

and

δi =
1

n̄(ke − 1)

ke∑
i

njpij(1− pij)

Finally, θ̂ can be obtained easily:

θ̂ =
n

d

Note The components of variance are not computed if ke < 2 or if n̄ = ke (meaning
that there is not more than one sample per population). In the case with two levels of
structure, the computation is also skipped if the number of clusters is < 2 or if there is
not more than one population per cluster (that is, if r′ = K ′).

1.3 Differentiation statistics

The method SiteDiversity::hstats() computes the differentiation index D of Jost
(2008), Nei’s Gst and Hudson’s Hst (Hudson et al. 1992a), as well as Nei and Chesser’s
Ĝst (Nei and Chesser 1983) and Hedrick’s Ĝ′st (Hedrick 2005). All but D are not avail-
able directly but must be computed by the user using terms provided by the C++ library.
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Stat Accessing method Explanation

Dj SiteDiversity::D() Jost’s differentiation index D
Hs SiteDiversity::Hs() Within-population diversity

H̃t SiteDiversity::Httilde() Total diversity, Hudson’s formula

Ĥs SiteDiversity::Hse() Estimator of Hs

Ĥt SiteDiversity::Hte() Estimator of the total diversity

Hs =
1

ns

ke∑
i

niHe,i

H̃t = H ′ +
Hs

keñ

where He,i is He for population i and ñ is such that:

1

ñ
=

1

ke

ke∑
i

1

ni

Hudson’s, Nei’s, Nei and Chesser’s and Hedrick’s F -statistics must be computed by
the user as:

Hst = 1− Hs

He

Gst = 1− Hs

H̃t

Ĝst = 1− Ĥs

Ĥt

Ĝ′st =
Ĝst(ke − 1 + Ĥs)

(ke − 1)(1− Ĥs)

In contrast, Jost’s D is computed directly using the relation:

Dj =
(Ĥt − Ĥs)

1− Ĥs

· he
ke − 1

where:

Ĥs =
1

ke

ke∑
i

H ′i

Ĥt = 1−

 Ae∑
i

1

ke

ke∑
j

pij

2

+
Ĥs

2ñke
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H ′i (as defined above) is the biaised heterogyzosity, or the average number of pairwise
differences, in population i. The statistics are not defined if ke < 2.

1.4 Allele status

The class AlleleStatus is dedicated to analyze the qualitative pattern of allele frequen-
cies over several population. The following categories are defined:

Method Explanation

AlleleStatus::num pop() Number of populations
AlleleStatus::fixed() Number of fixed alleles †
AlleleStatus::shared sl() Number of shared alleles †
AlleleStatus::shared ss() Number of shared polymorphisms †
AlleleStatus::specific() Number of population-specific alleles ‡
AlleleStatus::specific() — only derived alleles ‡

† Also available for all population pairs.

‡ Also available for all populations.

If several sites are loaded, the sums are available as separate methods. A fixed allele
is at frequency 0 in a population and at relative frequency 1 in another population. A
shared allele is present in two populations, but might be fixed in either or both. A shared
polymorphism is like a shared allele, but must be segregating in both populations. A
population-specific allele is present in only one population.

2 Multi-site statistics with unphased data

These statistics are computed by the Diversity1 class using several sites but only
considering allele frequencies.

2.1 Basic statistics

They are computed on the fly by Diversity1::load() and updated at each loaded site.

Stat Accessing method Explanation

L Diversity1::num sites() Number of loaded sites †‡
nm Diversity1::nsmax() Maximal number of exploitable samples †
S Diversity1::S() Number of loaded sites †
π Diversity1::Pi() Diversity
η Diversity1::eta() Minimal number of mutations †
Υ Diversity1::singletons() Total number of singletons

θ̂t Diversity1::thetaT() Tajima’s θ estimator
Da,ij Diversity1::Da() Net pairwise distance Da ]
Dxy,ij Diversity1::Dxy() Net pairwise distance Dxy ]
Pm Diversity1::pM(i,j) P -value of Li’s MFDM test

10



† A version is also available for orientable sites only.

‡ Also available for the number of sites used in Li’s MDFM test.

] Provided for the first pair of populations (i = 1 and j = 2).

π =

S∑
i

He,i

η =
S∑
i

Ae,i − 1

Υ =
S∑
i

εi − 1

θ̂t =
S∑
i

1−
Ae,i∑
j

cij(cij − 1)

ns,i(ns,i − 1)
(Tajima 1983)

Dxy,ij =

S∑
k

H ′kij

Da,ij =
S∑
k

H ′kij −
He,ki +He,kj

2

Pm =
S

min
i




undefined if di < ns,i/2

1 if di = ns,i/2
2(ns,i−di)
ns,i−1 otherwise

 (Li 2011)

with:

ns,i – the number of exploitable samples for site i

He,i – the unbiased heterozygosity of site i

He,ij – the unbiased heterozygosity of site i for population j only

Ae,i – the number of alleles of sites i

εi – the number of singletons at site i

cij – the absolute frequency of allele j in site i

H ′kij – the average number of pairwise differences at site k between populations i
and j

di – the sum of frequencies of derived alleles at site i
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2.2 Neutrality tests without outgroup

The method Diversity1::basic() computes the following neutrality tests and associ-
ated statistics:

Stat Accessing method Explanation

ne Diversity1::nseff() Average number of exploitable samples

θ̂w Diversity1::thetaW() θ estimator based on S
Dt Diversity1::D() Tajima’s D
Dη Diversity1::Deta() Tajima’s D using η for S
D∗fl Diversity1::Dstar() Fu and Li’s D without an outgroup

F ∗fl Diversity1::Fstar() Fu and Li’s F without an outgroup

ne =
1

L

L∑
i

ns,i

θ̂w =
S

a1
(Watterson 1975)

Dt =
π− θ̂w√

var(π− θ̂w)
(Tajima 1989)

Dη =
π− η√

var(π− θ̂w)

with:

var(π− θ̂w) = e1S + e2S(S − 1)

using:

n′e = round(ne)

a1 =
∑n′e−1

i
1
i

a′1 =
∑n′e

i
1
i

a2 =
∑n′e−1

i
1
i2

b1 = ne+1
3(ne−1)

b2 = 2(n2
e+ne+3)

9ne(ne−1)

c1 = b1 − 1
a1

c2 = b2 − ne+2
a1ne

+ a2
a21
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D∗fl =
ne

ne−1η− a1Υ√
ud∗η+ vd∗η2

(Fu & Li 1993)

F ∗fl =
Πn − ne−1

ne
Ss√

ud∗η+ vd∗η2
(id.)

using:

cn = 2[nea1−2(ne−1)]
(ne−1)(ne−2) if ne > 2 (otherwise: 1)

dn = cn + ne−2
(ne−1)2 + 2

ne−1 ·
(
3
2 −

2a′1−3
ne−2 −

1
ne

)
vd∗ = 1

a12+a2

[(
ne

ne−1

)2
a2 + a1

2dn − 2ne
(ne−1)2a1(a1 + 1)

]
ud∗ = ne

ne−1(a1 − ne
ne−1)− vd∗

Πn = 2
ne(ne−1)

∑S
i H

′
i where H ′i is the average number of pairwise differences for site i

vf∗ = 1
a12+a2

[
dn + 2(ne

2+ne+3)
9ne(ne−1) −

2
ne−1(4a2 − 6 + 8

ne
)
]

uf∗ = 1
a1

[
ne

ne−1 + ne+1
3(ne−1) −

4
ne(ne−1) + 2(ne+1)

(ne−1)2 · (a
′
1 − 2ne

ne+1)
]
− vf∗

Note It is up to the user to skip computations in cases where data are not computable,
that is when ne < 2.

2.3 Neutrality tests with outgroup

The method Diversity1::oriented() assumes that loaded data contain at least one
outgroup with exploitable data and computes the following neutrality tests and associ-
ated statistics:

Stat Accessing method Explanation

no Diversity1::nseffo() Average number of samples for orientable sites

θ̂l Diversity1::thetaH() θ estimator based on the number of mutations

θ̂h Diversity1::thetaH() θ estimator based on derived alleles
Hfw Diversity1::Hns() Fay and Wu’s H, unstandardized
H ′fw Diversity1::Hsd() Fay and Wu’s H, standardized

E Diversity1::E() Zeng et al.’s E
Dfl Diversity1::Dfl() Fu and Li’s D
Ffl Diversity1::F() Fu and Li’s F

no =
1

So

So∑
i

ns,i
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θ̂h =
2

nmo(nmo − 1)

nmo−1∑
i

i2ξi

θ̂l =
1

nmo

nmo−1∑
i

iξi

Hfw = π
So
S
− θ̂h (Fay & Wu 2000)

H ′fw =
πSo

S − θ̂l√
Vz

(Zeng et al. 2006)

E =
θ̂l − θ̂w√

Ve
(id.)

using:

So – the number of loaded orientable sites, assuming they are all polymorphic

nmo – the maximal number of samples over orientable sites

n′o = round(no)

ξi – the number of sites for which d = i

a1o =
∑n′o−1

i
1
i

a′1o =
∑n′o

i
1
i

a2o =
∑n′o−1

i
1
i2

a′2o =
∑n′o

i
1
i2

θ̂s = So
a1o

θ̂′s = So(So−1)
a1o2+a2o

Vz = no−2
6(no−1) θ̂s +

18no
2(3no+2)a′2o−(88no

3+9no
2−13no+6)

9no(no−1)2 θ̂′s

Ve =
[

no
2(no−1) −

1
a1o

]
θ̂s +

[
a2o
a1o2

+ 2a2o

(
no

no−1

)2
− 2(noa2o−no+1)

a1o(no−1) − 3no+1
no−1

]
θ̂′s

Dfl =
ηo − a1oΥd√
udηo + vdηo2

(Fu & Li 1993)

Ffl =
Πno −Υd√
ufηo + vfηo2

(id.)
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with:

cno = 2[noa1o−2(no−1)]
(no−1)(no−2) if no > 2 (otherwise: 1)

Ad,i – the number of derived alleles at site i

εd,i – the number of derived singletons at site i

ηo =
∑So

i Ad,i − 1

Υd =
∑So

i εd,i

Πno = 2
no(no−1)

∑So
i H ′i where H ′i is the average number of pairwise differences for site i

vd = 1 + a1o2

a2o+a1o2
·
(
cno − no+1

no−1

)
ud = a1o − 1− vd

vf = 1
a1o2+a2o

[
cno + 2(no

2+no+3)
9no(no−1) −

2
no−1

]
uf = 1

a1o

[
1 + no+1

3(no−1) −
4(no+1)
(no−1)2 ·

(
a′1o − 2no

no+1

)]
− vf

Note The same restrictions as for the statistics without outgroup apply. The fact that
statistics without outgroup can be computed does not necessarily imply that statistics
with outgroup can be computed, as non-orientable sites may be rejected. In contrast,
the opposite holds (if statistics with outgroup can be computed, then statistics without
outgroup can be computed as well).

2.4 Paralog divergence

The method of Innan (2003) is implemented in the class ParalogPi which takes stan-
dard Site objects for which the populations represent paralog classes, and for which
each sample represent a paralog copy of an individual, where individuals must be repre-
sented by one copy in each class. The class computes the following statistics:

Stat Accessing method Explanation

K ParalogPi.num paralogs() Number of paralogs
n ParalogPi.num samples() Number of samples
S ParalogPi.num sites() Number of analyzed sites
Si ParalogPi.num sites(i) Number of exploitable sites for paralog i †
Sij ParalogPi.num sites(i,j) Number of exploitable sites for paralogs i and j †
πw,i ParalogPi.Piw() Within-paralog π for paralog i
πb,ij ParalogPi.Pib() Between-paralog π for paralogs i and j

† A site is exploitable is there if at least two samples with exploitable data for each
of the concerned paralogs.
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πw,i =

Si∑
s

2

nsi(nsi − 1)

nsi−1∑
m

nsi∑
n=m+1

{
0 if dmis = dnis

1 otherwise

πb,ij =

Sij∑
s

np−1∑
k

np∑
l=k+1

1

nsinsj

nsi∑
m

nsj∑
n

{
0 if dmis = dnjs

1 otherwise

where nsi is the number of exploitable samples for paralog i at site s, the number of
exploitable samples for both paralogs i and j at site s and dmis is the allele of sample
m for paralog i at site s.

Note πw,i is not defined if Si < 1 and πb,ij is not defined if Sij < 1.

3 Multi-site statistics with phased data

These statistics are computed by the Diversity2 class using several sites for which the
phase is known. The class Site (which implies that the phase is known) must be used.

3.1 Basic statistics

They are computed on the fly by Diversity2::load() and updated a each loaded site.

Stat Accessing method Explanation

ns Diversity2::num samples() Number of samples
S Diversity2::num sites() Number of loaded sites †
S∗ Diversity2::num orientable() — orientable only †
Sc Diversity2::num clear() — with no missing data †
k Diversity2::k() Average number of pairwise differences
k∗ Diversity2::ko() — for orientable sites only

† They are all assumed to be polymorphic.

k =

S∑
i

H ′i

k∗ =
S∗∑
i

H ′i

with:

H ′i – the average number of pairwise differences for site i
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3.2 Singleton-based statistics

They are computed by Diversity2::singletonStats() following Ramos-Onsins &
Rozas (2002).

Stat Accessing method Explanation

R2 Diversity2::R2() Test based on the number of singletons
R∗2 Diversity2::R2E() — using external mutations
R3 Diversity2::R3() — variant
R∗3 Diversity2::R3E() — variant, using external mutations
R4 Diversity2::R4() — variant
R∗4 Diversity2::R4E() — variant, using external mutations
Ch Diversity2::Ch() Test based on the difference of the number

of singletons to its expectation
C∗h Diversity2::ChE() — using external mutations

Rn =
1

S

(
1

ns

ns∑
i

(τi − k/2)n

)1/n

R∗n =
1

S

(
1

ns

ns∑
i

(τ∗i − k/2)n

)1/n

Ch =
S

m(S −m)

(
ns∑
i

τi −m

)2

C∗h =
S∗

m∗(S∗ −m∗)

(
ns∑
i

τ∗i −m∗
)2

with:

τi – the number of singletons carried by sequence i

τ∗i – the number of derived singletons carried by sequence i

m = k ns
ns−1

m∗ = k∗ ns
ns−1

Note Statistics are undefined if there is less than one polymorphic site loaded (less than
one polymorphic orientable site for statistics based on the number of derived singleton).

3.3 Partition-based statistics

They are computed by Diversity2::partitionStats() following Wall (1999).
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Stat Accessing method Explanation

B Diversity2::B() Wall’s B
Q Diversity2::Q() Wall’s Q

B =
B′

Sc − 1

Q =
B + np
Sc

where B′ is the number of pairs of adjacent sites that induce the sample partition and
np is the number of distinct partitions induced by all sites.

Note Only sites without any missing data are considered, and B and Q are not defined
if Sc < 2.

4 Haplotype analysis

The class Haplotypes allows to identify haplotypes from a set of sites. By default, the
method Haplotypes::find haplotypes() ignores samples with missing data. Sam-
ples without missing data are affected to haplotypes that all differ at at least one
site. The method Haplotypes::impute haplotypes() attempts to affect each sam-
ples with some (small) number of missing data to one of the haplotypes identified by
Haplotypes::find haplotypes(). This class can generate a Site instance for comput-
ing site statistics (which are described above).

In this section we discuss statistics available in the Haplotypes class, plus the Fs()

function.

Stat Accessing method Explanation

K Haplotypes::num haplotypes() Number of haplotypes
Dij Haplotypes::get dist() Differences between haplotypes i and j
Fst Haplotypes::Fst() Population fixation index
Kst Haplotypes::Hst() Population fixation index
Snn Haplotypes::Snn() Nearest neighbor statistics
Fs Fs() Fu’s Fs

The method Haplotypes::compute dist() generates the matrix of Dij values, and
Haplotypes::stats() computes the fixation indexes, and Haplotypes::Snn() com-
putes Snn directly (on the fly).

Fst = 1− Hw

Hb
(Hudson et al. 1992b)

where Hw is the average number of pairwise differences of samples within populations
and Hb is the average number of pairwise differences of samples between populations.
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Kst = 1− Ks

Kt
(Hudson et al. 1992a)

with:

Ks =
1

ns

k∑
i

Ki

ni − 1

Kt =
1

ns(ns − 1)

ns−1∑
i

ns∑
j=i+1

Dij

where ns is the total number of samples, k is the number of populations, ni is the
number of samples in population i, Ki is the sum of number of pairwise differences
between samples of population i. Note that Ks is half the average number of pairwise
differences within populations, and Kt is half the average number of pairwise differences
in the total.

Snn =
1

ns

ns∑
i

N∗i
Ni

(Hudson 2000)

where Ni is the number of “nearest neigbhor” of sample i (that is, sequences that have
the minimum of pairwise differences), and N∗i is the number of nearest neighbors that
belong to the population of sample i.

Fs = ln
S′

1− S′
(Fu 1997)

with:

S′ =

ns∑
i=K

|Si|πk∑ns−1
i=0 π+ i

where Snk are the Stirling numbers of the first kind.

Note Fst is not defined if there is no polymorphism at all, Kst is not if there is no
between-population polymorphism, or no within- or between-population pairs at all.
Snn is not defined if there is less than two samples. Fs is not defined if there is no poly-
morphism and cannot be computed if the number of samples is over a given threshold.

5 Linkage disequilibrium analyses

The analyses based on linkage disequilibrium are available through three different classes:
PairwiseLD for processing a single pair of sites, MatrixLD for processing all pairs within
a set of sites, and Rd, which is devoted to a single statistic (r̄d).
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5.1 Pairwise linkage disequilibrium

The class PairwiseLD processes a single pair of sites, which will be represented by in-
dices i and j. The method PairwiseLD.process() determines the following variables:

Stat Accessing method Explanation

Ai PairwiseLD::num alleles1() Number of alleles for site i
Aj PairwiseLD::num alleles2() Number of alleles for site j
ns PairwiseLD::nsam() Number of analyzed samples
Pim PairwiseLD::freq1() Absolute frequency of allele m at site i
Pjn PairwiseLD::freq2() Absolute frequency of allele n at site j
Pij,mn PairwiseLD::freq() Absolute frequency of genotype {m,n}

The relative frequencies are:

pim = Pim/ns

pjn = Pjn/ns

pij,mn = Pij,mn/ns

The method PairwiseLD.compute() computes linkage disequilibrium statistics for a
given pair of alleles at the two sites, say a at site i and b at site j:

Stat Accessing method Explanation

Dij,ab PairwiseLD::D() Standard linkage disequilibrium D
D′ij,ab PairwiseLD::Dp() Standardized linkage disequilibrium

rij,ab PairwiseLD::r() Correlation coefficient
rij,ab

2 PairwiseLD::rsq() Squared correlation coefficient

Dij,ab = pij,ab − pimpjn

D′ij,ab =
Dij,ab

D∗ij,ab
(Lewontin 1964)

where D∗ij,ab =

{
min[pimpjn, (1− pim)(1− pjn)] if Dij,ab < 0

min[pim(1− pjn), (1− pim)pjn] otherwise

rij,ab =
Dij,ab√

pim(1− pim)pjn(1− pjn)
(Hill & Robertson 1968)

Note Statistics are not computed if there is no valid samples (samples must be ex-
ploitable at both sites), no polymorphism, or if the pairwise comparison does not pass
the criteria fixed by options to the Pairwise::process() method.
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5.2 Linkage disequilibrium matrix

The class MatrixLD processes all pairs from a set of Site instances. After loading all
sites and computing linkage disequilibrium using MatrixLD::computeLD(), the follow-
ing variables are available:

Stat Accessing method Explanation

ns MatrixLD::nsam() Number of analyzed samples
nt MatirxLD::num tot() Total number of processed pairs of sites
np MatrixLD::num pairs() Number of accepted pairs of sites †
nap MatrixLD::num alleles() Total number of pairs of alleles
dij MatrixLD::distance() Distance between sites i and j

† Sites are filtered according to user-provided thresholds (number of samples used
and allele frequency).

The linkage disequilibrium statistics can be accessed through the class PairwiseLD

which is provided for all accepted pairs of sites.
The method MatrixLD::computeStats() computes neutrality tests based on pairwise
linkage disequilibrium.

Stat Accessing method Explanation

n′ap MatrixLD::num allele pairs() Number of used pairs of alleles †
n′′ap MatrixLD::num allele pairs adj() Number of used pairs of alleles ‡
ZnS MatrixLD::ZnS() Kelly’s ZnS

Z∗nS MatrixLD::ZnS star1() Kelly’s Z∗nS
Z∗nS

∗ MatrixLD::ZnS star2() Kelly’s Z∗nS
∗

Za MatrixLD::Za Rozas et al.’s Za

ZZ MatrixLD::ZZ Rozas et al.’s ZZ

† n′ap may be smaller than nap if there are sites with more than two alleles (see
remark below for the treatment of sites with more than two alleles).

‡ n′′ap is the same as n′ap but considering pairs of adjacent sites.

The user may select three strategies for processing sites that exhibit more than two
alleles:

1. Ignore all pairs for which one site has more than two alleles.

2. Use the most frequent allele at each site.

3. Use all possible pairs of alleles.

ZnS =
1

n′ap

n′ap∑
i

ri
2 (Kelly 1997)
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Z∗nS = ZnS + 1− 1

n′ap

n′ap∑
i

D′i
2

(id.)

Z∗nS
∗ =

ZnS

1
n′ap

∑n′ap
i D′i

2
(id.)

Za =
1

n′′ap

n′ap∑
i

{
ri

2 for adjacent sites

0 otherwise
(Rozas et al. 2001)

ZZ = Za − ZnS (id.)

where ri
2 is the squared correlation coefficient for a given pair of alleles of a pair of

sites, noted rij,ab
2 above, and D′i is Lewontin’s D′ value for the same pair of sites (D′ij,ab).

Note Kelly’s and Rozas et al.’s statistics are not defined if the number of processed
pairs n′ap and n′′ap, respectively, is 0.

5.3 Rmin and r̄d

Rmin (Hudson & Kaplan 1985) is computed by the method MatrixLD::computeRmin()

which exposes the following values:

Accessing method Explanation

MatrixLD::Rmin() Rmin, the minimal number of recombination events
MatrixLD::Rmin num sites() Number of sites used to compute Rmin

MatrixLD::Rmin left() Get an recombination interval (left bound)
MatrixLD::Rmin right() Get an recombination interval (rigth bound)

For a rigorous description of the algorithm for computing Rmin, see Appendix 2 of
Hudson & Kaplan (1985). In short, Rmin is computed as the smallest possible number
of non-overlapping intervals between sites violating the four-gamete rule (if the four ga-
metes are present in the sample for a given pair of sites, then a recombination must have
occurred between these sites). In case of oriented sites, the four-gamete rule becomes
the three-gamete rule and the approach is unchanged. The positions of sites defining
the final set of non-overlapping intervals are available as MatrixLD::Rmin left() and
MatrixLD::Rmin right().

Note If there are less than two sites, MatrixLD::Rmin num sites() is set to 0. If
MatrixLD::Rmin num sites() is less than 2, all the other Rmin variables are defined.

The class Rd is specifically dedicated to the r̄d statistic.
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Stat Accessing method Explanation

r̄d Rd::rD() Multilocus linkage disequilibrium †

† r̄d is available for per population and for the total sample.

r̄d =

∑S−1
i

∑S
j=i+1 cov(di, dj)∑S−1

i

∑S
j=i+1

√
var(di) var(dj)

where S is the number of loaded sites (which must all be polymorphic), var(di) is
the variance of the genetic distance between samples at site i (skipping samples that
have missing data at this site), and cov(di, dj) is the covariance of the genetic distance
between samples at sites i and j (skipping samples with missing data at either site).
The genetic distance is 0 or 1 when alleles are loaded, and 0, 1 or 2 when genotypes are
loaded.

Note r̄d is always computed, but its value is not defined if there is not polymorphism
(this may happen easily within populations).

6 Extended haplotype heterozygosity

EHH statistics are computed by two classes, EHH for phased data and EHHG for unphased
diploid data (using observed heterozygosity). Both EHH and EHHG classes process full
sites. Individuals must match over sites in both cases. EHH ignores genotypes while
EHHG requires them. Both classes require that a core site is loaded first and then distant
sites. In this section, all EHH statistics are renamed using a variety of Greek letters (the
correspondance can be found in tables listing EHH statistics).

6.1 EHH with phased data

Variables Here are the variables used for computing EHH statistics:
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Stat Explanation

L Number of sites (excluding core)
K0 Number of core haplotypes
Ks Number of haplotypes at site s
R Number of populations
nir Number of samples of core haplotype i in population r
ni∗ Number of samples of core haplotype i in total
n∗r Number of samples in population r
n∗∗ Total number of samples
Psijk Probability that sample j of core haplotype i is haplotype k at site s
Dsij Allele index for sample j of core haplotype i at site s
Hsk Allele index for haplotype k at site s
As Number of alleles at site s
fsak Frequency (at current site s) of allele a in samples of haplotype k at site s− 1
ds Distance of site s from core site (note: ds ≥ 0, ds ≥ ds−1 and d0 = 0)

For readability, iterators names are used consistently in this section and the next one:

Iterator

1 ≤ s ≤ L
1 ≤ i ≤ K0

1 ≤ j ≤ ni∗
1 ≤ k ≤ Ks

1 ≤ r ≤ R
1 ≤ a ≤ As

In addition, the following indicator functions are defined:

I(x, y) =

{
1, if x = y

0, otherwise

V (s, i, j, k) =

{
0, if Dsijk is missing

1, otherwise

M(i, j, r) =

{
1, if sample i of population j belongs to population r

0, otherwise

With ∗ used as a wild card for representing the whole sample, we have M(i, j, ∗) = 1

Accessory statistics Below is the list of accessory statistics computed by the class EHH:
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Stat Method Explanation

K0 EHH::Kcore() Number of core haplotypes †
Ks EHH::K() Current number of haplotypes ‡
R EHH::R() Number of populations †
n∗∗ EHH::nsam() Number of samples †§]

EHH::ncur() Number of exploitable samples at last distant site ‡§
EHH::num decay() Number of EHH values that reached decay threshold ‡
EHH::num intrg() Number of iHH values still incrementing ‡
EHH::num intrg c() Number of iHHc values still incrementing ‡
EHH::intrg S() True if iES is still incrementing ‡

† Available after the core site has been loaded, if there was exploitable polymorphism.

‡ Available after at least one distant site has been loaded, also requiring exploitable
polymorphism.

§ Available for population r (n∗r), for core haplotype i (ni∗), for population r and
haplotype i jointly (nir), and for the total (n∗∗).

] Samples with missing data at core are ignored throughout all loaded distant sites.

EHH statistics Below is the list of EHH statistics computed by the class EHH:

Stat Method Explanation

Ψsir EHH::EHHi() EHH for core haplotype i †
Ψ′sir EHH::EHHc() EHH for the complement of core haplotype i †
Υsir EHH::rEHH() EHHr for core haplotype i †
ψsir EHH::iHH() iHH for core haplotype i ‡
ψ′sir EHH::iHHc() iHH for the complement of core haplotype i ‡
λsir EHH::iHS() iHS for core haplotype i ‡
Φsr EHH::EHHS() EHHS (for whole site) §
φsr EHH::iES() iES ratio §
δtir EHH::decay() EHH decay distance for core haplotype i at threshold t ]

δ̄tr EHH::davg() average of EHH decay distance with threshold t ]

δ̇tr EHH::dmax() maximum of EHH decay distance with threshold t ]

γtr EHH::decayS() EHHS decay distance for at threshold t ]

– Note: s stands for the current site and and r for one population. All statistics that
are expressed for a population are also available for the total.

† Following Sabeti et al. (2002).

‡ Following Voight et al. (2006).

§ Following Tan et al. (2007).

] After Ramı́rez-Soriano et al. (2008).
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Computation Here, we will allow for missing data, therefore we need to compute the
probabilities of haplotypes taking into account allele frequencies for each loaded distant
site. For a starter, if k > Ks−1, then P(s−1)ijk = P(s−1)ijp where p is the parent of k (this
is how we find probabilities of haplotypes at previous sites by following the haplotype
hierarchy).

fsak =

K0∑
i=1

ni∗∑
j=1

I(Dsij , a) · P(s−1)ijk/

K0∑
i=1

ni∗∑
j=1

V (Dsij) · P(s−1)ijk

P0ijk =

{
1, if i 6= k

0, otherwise

Psijk =


P(s−1)ijk · fsDsijk, if V (Dsij) = 0

P(s−1)ijk, if Dsij = Hsk

0, otherwise

The EHH statistics are computed as follows (note that statistics computed for a pop-
ulation r can also be computed for the total):

Ψsir =

Ks∑
k=1

 1

nir

Ni∗∑
j=1

M(i, j, r) · psijk

2

Ψ′sir =

Ks∑
k=1

 1

n∗r − nir

K0∑
i′ 6=i

Ni∗∑
j=1

M(i, j, r) · psi′jk

2

Υsir = Ψsir/Ψ
′
sir

IHH:

ψsir =
s∑

s′=1

(ds′ − ds′−1)(Ψs′ir + Ψ(s′−1)ir)

2

ψ′sir =

s∑
s′=1

(ds′ − ds′−1)(Ψ′s′ir + Ψ′(s′−1)ir)

2

λsir = ln

(
ψ′sir
ψsir

)
EHHS and iES:

Φsr =

1− n∗r
n∗r−1

[
1− 1

n∗r2
∑Ks

k=1

(∑K0
i=1

∑ni∗
j=1M(i, j, r) · pijk

)2]
1− n∗r

n∗r−1

(
1− 1

n∗r2
∑K0

i=1 nir
2
)
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φsr =
s∑

s′=1

(ds′ − ds′−1)(Φs′r + Φ(s′−1)r)

2

Decay statistics:

δtir = ds such as Ψ(s−1)ir > t and Ψsir ≤ t

δ̄tr =
1

N∗r

K0∑
i=1

Nirδ
t
ir

δ̇tr = max
i
δtir

γtr = ds such as Φ(s−1)r > t and Φsr ≤ t

6.2 EHH with unphased data

Variables Here are the variables used for computing EHHG statistics:

Stat Explanation

L Number of sites (excluding core)
K0 Number of core genotypes
Ks Number of genotypes at site s
R Number of populations
nr Number of samples in population r
n∗ Total number of samples
Tsgh Probability of g at site s given h at s− 1
Psig Probability that sample i is genotype g at site s
Dsi Genotype index for sample i at site s
ds Distance of site s from core site (note: ds ≥ 0, ds ≥ ds−1 and d0 = 0)

Here are the iterators used while computing EHHG statistics:

Iterator

1 ≤ s ≤ L
1 ≤ i ≤ n∗
1 ≤ r ≤ R
1 ≤ g ≤ Ks

1 ≤ h ≤ Ks−1

In addition, the following indicating functions are defined:

I(x, y) =

{
1, if x = y

0, otherwise
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V (s, i, k) =

{
1, if Dsik is not missing

0, otherwise

M(i, r) =

{
1, if sample i belongs to population r

0, otherwise

With ∗ used as a wild card for representing the whole sample, we have M(i, ∗) = 1

H(s, g) =

{
1, if g is homozygote

0, otherwise

Accessory statistics Below is the list of accessory statistics computed by the class EHHG:

Stat Method Explanation

Ks EHHG::K() Current number of haplotypes ‡
R EHHG::R() Number of populations †
n∗ EHHG::nsam() Number of samples (including missing data at core) †§

EHHG::ncur() Number of exploitable samples at last distant site †§
EHHG::intrg() True if iES is still incrementing ‡

† Available after the core site has been loaded, if there was exploitable polymorphism.

‡ Available after at least one distant site has been loaded, also requiring exploitable
polymorphism.

§ Available for population r (nr) and for total (n∗).

EHHG statistics Below is the list of EHH statistics computed by the class EHHG:

Stat Method Explanation

Φsr EHHG::EHHS() EHHS value §
φsr EHHG::iES() iES ratio §
γtr EHHG::decay() EHHS decay distance ]

– Note: s stands for the current site and and r for one population. All statistics are
also available for the total.

§ Following Tan et al. (2007).

] After Ramı́rez-Soriano et al. (2008).
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Computation The computation of EHHG statistics is based on the matrix of proba-
bilities of all possible genotypes which is updated at each site.

Tsgh =

∑n
i=1 I(Dsi, g) · P(s−1)ih∑n

i=1 P(s−1)ih

Psig =


∑Ks−1

h=1 P(s−1)ih · Tsgh, if V (Dsi) = 0

1, if Dsi = g

0, otherwise

The initial probability values are determined as follows:

P0ig =


∑n∗

j=1 I(Dsj ,g)

n∗ , if V (Dsi) = 0

1, if Dsi = g

0, otherwise

The EHHG statistics are computed as follows (note that statistics computed for a
population r can also be computed for the total):

Φsr =

∑n∗
i=1M(i, r)

∑Ks
g=1H(s, g) · Psig∑n∗

i=1M(i, r)
∑K0

g=1H(0, g) · P0ig

φsr =
s∑

s′=1

(ds′ − ds′−1)(Φs′r + Φ(s′−1)r)

2

γtr = ds such as Φ(s−1)r > t and Φsr ≤ t

7 Coding site analysis

The analysis of coding data is performed site-by-site. Each coding site is passed through a
triplet of Site to the class CodingSite which performs elementary operations. CodingSite
computes the following values:

Stat Method Explanation

n Codingsite::ns() Number of samples
ne Codingsite::nseff() Number of exploitable samples †
nstop Codingsite::nstop() Number of stop codons ‡
LNS Codingsite::NSsites() Estimated number of non-synonymous sites

† Samples containing missing data at either position of the codon are excluded.
Samples presenting a stop codons may be excluded as well, depending of the value
of an option.

‡ Returns the number of stop codons even if stop codons are considered as missing
data.
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In addition, CodingSite provides a Site instance containing the amino acid value for
every sample, and another for codons recoded as a single integer. These objects can be
used to compute actual diversity statistics using any other class of the libraty, typically
SiteDiversity.

The estimated number of non-synonymous sites LNS is computed as:

LNS =
1

ne

ne∑
i

3∑
j

Fij (Nei & Gojobori 1986)

where Fij is the proportion of nucleotide substitutions affecting the codon of sample
i at position j that would lead to an amino acid changes. The possible values of Fij

are in principle 0, 1/3, 2/3 and 1 (there are three possible nucleotide substitutions). If
stop codons are ignored, nucleotide substitutions causing a change to a stop codons are
discarded. Otherwise there are considered as non-synonymous changes.
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