Edit on GitHub

Expressions

Every AST node in SQLGlot is represented by a subclass of Expression.

This module contains the implementation of all supported Expression types. Additionally, it exposes a number of helper functions, which are mainly used to programmatically build SQL expressions, such as select.


   1"""
   2## Expressions
   3
   4Every AST node in SQLGlot is represented by a subclass of `Expression`.
   5
   6This module contains the implementation of all supported `Expression` types. Additionally,
   7it exposes a number of helper functions, which are mainly used to programmatically build
   8SQL expressions, such as `sqlglot.expressions.select`.
   9
  10----
  11"""
  12
  13from __future__ import annotations
  14
  15import datetime
  16import math
  17import numbers
  18import re
  19import typing as t
  20from collections import deque
  21from copy import deepcopy
  22from enum import auto
  23from functools import reduce
  24
  25from sqlglot._typing import E
  26from sqlglot.errors import ParseError
  27from sqlglot.helper import (
  28    AutoName,
  29    camel_to_snake_case,
  30    ensure_collection,
  31    ensure_list,
  32    seq_get,
  33    subclasses,
  34)
  35from sqlglot.tokens import Token
  36
  37if t.TYPE_CHECKING:
  38    from sqlglot.dialects.dialect import DialectType
  39
  40
  41class _Expression(type):
  42    def __new__(cls, clsname, bases, attrs):
  43        klass = super().__new__(cls, clsname, bases, attrs)
  44
  45        # When an Expression class is created, its key is automatically set to be
  46        # the lowercase version of the class' name.
  47        klass.key = clsname.lower()
  48
  49        # This is so that docstrings are not inherited in pdoc
  50        klass.__doc__ = klass.__doc__ or ""
  51
  52        return klass
  53
  54
  55SQLGLOT_META = "sqlglot.meta"
  56
  57
  58class Expression(metaclass=_Expression):
  59    """
  60    The base class for all expressions in a syntax tree. Each Expression encapsulates any necessary
  61    context, such as its child expressions, their names (arg keys), and whether a given child expression
  62    is optional or not.
  63
  64    Attributes:
  65        key: a unique key for each class in the Expression hierarchy. This is useful for hashing
  66            and representing expressions as strings.
  67        arg_types: determines what arguments (child nodes) are supported by an expression. It
  68            maps arg keys to booleans that indicate whether the corresponding args are optional.
  69        parent: a reference to the parent expression (or None, in case of root expressions).
  70        arg_key: the arg key an expression is associated with, i.e. the name its parent expression
  71            uses to refer to it.
  72        comments: a list of comments that are associated with a given expression. This is used in
  73            order to preserve comments when transpiling SQL code.
  74        type: the `sqlglot.expressions.DataType` type of an expression. This is inferred by the
  75            optimizer, in order to enable some transformations that require type information.
  76        meta: a dictionary that can be used to store useful metadata for a given expression.
  77
  78    Example:
  79        >>> class Foo(Expression):
  80        ...     arg_types = {"this": True, "expression": False}
  81
  82        The above definition informs us that Foo is an Expression that requires an argument called
  83        "this" and may also optionally receive an argument called "expression".
  84
  85    Args:
  86        args: a mapping used for retrieving the arguments of an expression, given their arg keys.
  87    """
  88
  89    key = "expression"
  90    arg_types = {"this": True}
  91    __slots__ = ("args", "parent", "arg_key", "comments", "_type", "_meta", "_hash")
  92
  93    def __init__(self, **args: t.Any):
  94        self.args: t.Dict[str, t.Any] = args
  95        self.parent: t.Optional[Expression] = None
  96        self.arg_key: t.Optional[str] = None
  97        self.comments: t.Optional[t.List[str]] = None
  98        self._type: t.Optional[DataType] = None
  99        self._meta: t.Optional[t.Dict[str, t.Any]] = None
 100        self._hash: t.Optional[int] = None
 101
 102        for arg_key, value in self.args.items():
 103            self._set_parent(arg_key, value)
 104
 105    def __eq__(self, other) -> bool:
 106        return type(self) is type(other) and hash(self) == hash(other)
 107
 108    @property
 109    def hashable_args(self) -> t.Any:
 110        return frozenset(
 111            (k, tuple(_norm_arg(a) for a in v) if type(v) is list else _norm_arg(v))
 112            for k, v in self.args.items()
 113            if not (v is None or v is False or (type(v) is list and not v))
 114        )
 115
 116    def __hash__(self) -> int:
 117        if self._hash is not None:
 118            return self._hash
 119
 120        return hash((self.__class__, self.hashable_args))
 121
 122    @property
 123    def this(self):
 124        """
 125        Retrieves the argument with key "this".
 126        """
 127        return self.args.get("this")
 128
 129    @property
 130    def expression(self):
 131        """
 132        Retrieves the argument with key "expression".
 133        """
 134        return self.args.get("expression")
 135
 136    @property
 137    def expressions(self):
 138        """
 139        Retrieves the argument with key "expressions".
 140        """
 141        return self.args.get("expressions") or []
 142
 143    def text(self, key) -> str:
 144        """
 145        Returns a textual representation of the argument corresponding to "key". This can only be used
 146        for args that are strings or leaf Expression instances, such as identifiers and literals.
 147        """
 148        field = self.args.get(key)
 149        if isinstance(field, str):
 150            return field
 151        if isinstance(field, (Identifier, Literal, Var)):
 152            return field.this
 153        if isinstance(field, (Star, Null)):
 154            return field.name
 155        return ""
 156
 157    @property
 158    def is_string(self) -> bool:
 159        """
 160        Checks whether a Literal expression is a string.
 161        """
 162        return isinstance(self, Literal) and self.args["is_string"]
 163
 164    @property
 165    def is_number(self) -> bool:
 166        """
 167        Checks whether a Literal expression is a number.
 168        """
 169        return isinstance(self, Literal) and not self.args["is_string"]
 170
 171    @property
 172    def is_int(self) -> bool:
 173        """
 174        Checks whether a Literal expression is an integer.
 175        """
 176        if self.is_number:
 177            try:
 178                int(self.name)
 179                return True
 180            except ValueError:
 181                pass
 182        return False
 183
 184    @property
 185    def is_star(self) -> bool:
 186        """Checks whether an expression is a star."""
 187        return isinstance(self, Star) or (isinstance(self, Column) and isinstance(self.this, Star))
 188
 189    @property
 190    def alias(self) -> str:
 191        """
 192        Returns the alias of the expression, or an empty string if it's not aliased.
 193        """
 194        if isinstance(self.args.get("alias"), TableAlias):
 195            return self.args["alias"].name
 196        return self.text("alias")
 197
 198    @property
 199    def alias_column_names(self) -> t.List[str]:
 200        table_alias = self.args.get("alias")
 201        if not table_alias:
 202            return []
 203        return [c.name for c in table_alias.args.get("columns") or []]
 204
 205    @property
 206    def name(self) -> str:
 207        return self.text("this")
 208
 209    @property
 210    def alias_or_name(self) -> str:
 211        return self.alias or self.name
 212
 213    @property
 214    def output_name(self) -> str:
 215        """
 216        Name of the output column if this expression is a selection.
 217
 218        If the Expression has no output name, an empty string is returned.
 219
 220        Example:
 221            >>> from sqlglot import parse_one
 222            >>> parse_one("SELECT a").expressions[0].output_name
 223            'a'
 224            >>> parse_one("SELECT b AS c").expressions[0].output_name
 225            'c'
 226            >>> parse_one("SELECT 1 + 2").expressions[0].output_name
 227            ''
 228        """
 229        return ""
 230
 231    @property
 232    def type(self) -> t.Optional[DataType]:
 233        return self._type
 234
 235    @type.setter
 236    def type(self, dtype: t.Optional[DataType | DataType.Type | str]) -> None:
 237        if dtype and not isinstance(dtype, DataType):
 238            dtype = DataType.build(dtype)
 239        self._type = dtype  # type: ignore
 240
 241    @property
 242    def meta(self) -> t.Dict[str, t.Any]:
 243        if self._meta is None:
 244            self._meta = {}
 245        return self._meta
 246
 247    def __deepcopy__(self, memo):
 248        copy = self.__class__(**deepcopy(self.args))
 249        if self.comments is not None:
 250            copy.comments = deepcopy(self.comments)
 251
 252        if self._type is not None:
 253            copy._type = self._type.copy()
 254
 255        if self._meta is not None:
 256            copy._meta = deepcopy(self._meta)
 257
 258        return copy
 259
 260    def copy(self):
 261        """
 262        Returns a deep copy of the expression.
 263        """
 264        new = deepcopy(self)
 265        new.parent = self.parent
 266        return new
 267
 268    def add_comments(self, comments: t.Optional[t.List[str]]) -> None:
 269        if self.comments is None:
 270            self.comments = []
 271        if comments:
 272            for comment in comments:
 273                _, *meta = comment.split(SQLGLOT_META)
 274                if meta:
 275                    for kv in "".join(meta).split(","):
 276                        k, *v = kv.split("=")
 277                        value = v[0].strip() if v else True
 278                        self.meta[k.strip()] = value
 279                self.comments.append(comment)
 280
 281    def append(self, arg_key: str, value: t.Any) -> None:
 282        """
 283        Appends value to arg_key if it's a list or sets it as a new list.
 284
 285        Args:
 286            arg_key (str): name of the list expression arg
 287            value (Any): value to append to the list
 288        """
 289        if not isinstance(self.args.get(arg_key), list):
 290            self.args[arg_key] = []
 291        self.args[arg_key].append(value)
 292        self._set_parent(arg_key, value)
 293
 294    def set(self, arg_key: str, value: t.Any) -> None:
 295        """
 296        Sets arg_key to value.
 297
 298        Args:
 299            arg_key: name of the expression arg.
 300            value: value to set the arg to.
 301        """
 302        if value is None:
 303            self.args.pop(arg_key, None)
 304            return
 305
 306        self.args[arg_key] = value
 307        self._set_parent(arg_key, value)
 308
 309    def _set_parent(self, arg_key: str, value: t.Any) -> None:
 310        if hasattr(value, "parent"):
 311            value.parent = self
 312            value.arg_key = arg_key
 313        elif type(value) is list:
 314            for v in value:
 315                if hasattr(v, "parent"):
 316                    v.parent = self
 317                    v.arg_key = arg_key
 318
 319    @property
 320    def depth(self) -> int:
 321        """
 322        Returns the depth of this tree.
 323        """
 324        if self.parent:
 325            return self.parent.depth + 1
 326        return 0
 327
 328    def iter_expressions(self) -> t.Iterator[t.Tuple[str, Expression]]:
 329        """Yields the key and expression for all arguments, exploding list args."""
 330        for k, vs in self.args.items():
 331            if type(vs) is list:
 332                for v in vs:
 333                    if hasattr(v, "parent"):
 334                        yield k, v
 335            else:
 336                if hasattr(vs, "parent"):
 337                    yield k, vs
 338
 339    def find(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Optional[E]:
 340        """
 341        Returns the first node in this tree which matches at least one of
 342        the specified types.
 343
 344        Args:
 345            expression_types: the expression type(s) to match.
 346            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
 347
 348        Returns:
 349            The node which matches the criteria or None if no such node was found.
 350        """
 351        return next(self.find_all(*expression_types, bfs=bfs), None)
 352
 353    def find_all(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Iterator[E]:
 354        """
 355        Returns a generator object which visits all nodes in this tree and only
 356        yields those that match at least one of the specified expression types.
 357
 358        Args:
 359            expression_types: the expression type(s) to match.
 360            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
 361
 362        Returns:
 363            The generator object.
 364        """
 365        for expression, *_ in self.walk(bfs=bfs):
 366            if isinstance(expression, expression_types):
 367                yield expression
 368
 369    def find_ancestor(self, *expression_types: t.Type[E]) -> t.Optional[E]:
 370        """
 371        Returns a nearest parent matching expression_types.
 372
 373        Args:
 374            expression_types: the expression type(s) to match.
 375
 376        Returns:
 377            The parent node.
 378        """
 379        ancestor = self.parent
 380        while ancestor and not isinstance(ancestor, expression_types):
 381            ancestor = ancestor.parent
 382        return t.cast(E, ancestor)
 383
 384    @property
 385    def parent_select(self) -> t.Optional[Select]:
 386        """
 387        Returns the parent select statement.
 388        """
 389        return self.find_ancestor(Select)
 390
 391    @property
 392    def same_parent(self) -> bool:
 393        """Returns if the parent is the same class as itself."""
 394        return type(self.parent) is self.__class__
 395
 396    def root(self) -> Expression:
 397        """
 398        Returns the root expression of this tree.
 399        """
 400        expression = self
 401        while expression.parent:
 402            expression = expression.parent
 403        return expression
 404
 405    def walk(self, bfs=True, prune=None):
 406        """
 407        Returns a generator object which visits all nodes in this tree.
 408
 409        Args:
 410            bfs (bool): if set to True the BFS traversal order will be applied,
 411                otherwise the DFS traversal will be used instead.
 412            prune ((node, parent, arg_key) -> bool): callable that returns True if
 413                the generator should stop traversing this branch of the tree.
 414
 415        Returns:
 416            the generator object.
 417        """
 418        if bfs:
 419            yield from self.bfs(prune=prune)
 420        else:
 421            yield from self.dfs(prune=prune)
 422
 423    def dfs(self, parent=None, key=None, prune=None):
 424        """
 425        Returns a generator object which visits all nodes in this tree in
 426        the DFS (Depth-first) order.
 427
 428        Returns:
 429            The generator object.
 430        """
 431        parent = parent or self.parent
 432        yield self, parent, key
 433        if prune and prune(self, parent, key):
 434            return
 435
 436        for k, v in self.iter_expressions():
 437            yield from v.dfs(self, k, prune)
 438
 439    def bfs(self, prune=None):
 440        """
 441        Returns a generator object which visits all nodes in this tree in
 442        the BFS (Breadth-first) order.
 443
 444        Returns:
 445            The generator object.
 446        """
 447        queue = deque([(self, self.parent, None)])
 448
 449        while queue:
 450            item, parent, key = queue.popleft()
 451
 452            yield item, parent, key
 453            if prune and prune(item, parent, key):
 454                continue
 455
 456            for k, v in item.iter_expressions():
 457                queue.append((v, item, k))
 458
 459    def unnest(self):
 460        """
 461        Returns the first non parenthesis child or self.
 462        """
 463        expression = self
 464        while type(expression) is Paren:
 465            expression = expression.this
 466        return expression
 467
 468    def unalias(self):
 469        """
 470        Returns the inner expression if this is an Alias.
 471        """
 472        if isinstance(self, Alias):
 473            return self.this
 474        return self
 475
 476    def unnest_operands(self):
 477        """
 478        Returns unnested operands as a tuple.
 479        """
 480        return tuple(arg.unnest() for _, arg in self.iter_expressions())
 481
 482    def flatten(self, unnest=True):
 483        """
 484        Returns a generator which yields child nodes who's parents are the same class.
 485
 486        A AND B AND C -> [A, B, C]
 487        """
 488        for node, _, _ in self.dfs(prune=lambda n, p, *_: p and not type(n) is self.__class__):
 489            if not type(node) is self.__class__:
 490                yield node.unnest() if unnest and not isinstance(node, Subquery) else node
 491
 492    def __str__(self) -> str:
 493        return self.sql()
 494
 495    def __repr__(self) -> str:
 496        return self._to_s()
 497
 498    def sql(self, dialect: DialectType = None, **opts) -> str:
 499        """
 500        Returns SQL string representation of this tree.
 501
 502        Args:
 503            dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
 504            opts: other `sqlglot.generator.Generator` options.
 505
 506        Returns:
 507            The SQL string.
 508        """
 509        from sqlglot.dialects import Dialect
 510
 511        return Dialect.get_or_raise(dialect)().generate(self, **opts)
 512
 513    def _to_s(self, hide_missing: bool = True, level: int = 0) -> str:
 514        indent = "" if not level else "\n"
 515        indent += "".join(["  "] * level)
 516        left = f"({self.key.upper()} "
 517
 518        args: t.Dict[str, t.Any] = {
 519            k: ", ".join(
 520                v._to_s(hide_missing=hide_missing, level=level + 1)
 521                if hasattr(v, "_to_s")
 522                else str(v)
 523                for v in ensure_list(vs)
 524                if v is not None
 525            )
 526            for k, vs in self.args.items()
 527        }
 528        args["comments"] = self.comments
 529        args["type"] = self.type
 530        args = {k: v for k, v in args.items() if v or not hide_missing}
 531
 532        right = ", ".join(f"{k}: {v}" for k, v in args.items())
 533        right += ")"
 534
 535        return indent + left + right
 536
 537    def transform(self, fun, *args, copy=True, **kwargs):
 538        """
 539        Recursively visits all tree nodes (excluding already transformed ones)
 540        and applies the given transformation function to each node.
 541
 542        Args:
 543            fun (function): a function which takes a node as an argument and returns a
 544                new transformed node or the same node without modifications. If the function
 545                returns None, then the corresponding node will be removed from the syntax tree.
 546            copy (bool): if set to True a new tree instance is constructed, otherwise the tree is
 547                modified in place.
 548
 549        Returns:
 550            The transformed tree.
 551        """
 552        node = self.copy() if copy else self
 553        new_node = fun(node, *args, **kwargs)
 554
 555        if new_node is None or not isinstance(new_node, Expression):
 556            return new_node
 557        if new_node is not node:
 558            new_node.parent = node.parent
 559            return new_node
 560
 561        replace_children(new_node, lambda child: child.transform(fun, *args, copy=False, **kwargs))
 562        return new_node
 563
 564    @t.overload
 565    def replace(self, expression: E) -> E:
 566        ...
 567
 568    @t.overload
 569    def replace(self, expression: None) -> None:
 570        ...
 571
 572    def replace(self, expression):
 573        """
 574        Swap out this expression with a new expression.
 575
 576        For example::
 577
 578            >>> tree = Select().select("x").from_("tbl")
 579            >>> tree.find(Column).replace(Column(this="y"))
 580            (COLUMN this: y)
 581            >>> tree.sql()
 582            'SELECT y FROM tbl'
 583
 584        Args:
 585            expression: new node
 586
 587        Returns:
 588            The new expression or expressions.
 589        """
 590        if not self.parent:
 591            return expression
 592
 593        parent = self.parent
 594        self.parent = None
 595
 596        replace_children(parent, lambda child: expression if child is self else child)
 597        return expression
 598
 599    def pop(self: E) -> E:
 600        """
 601        Remove this expression from its AST.
 602
 603        Returns:
 604            The popped expression.
 605        """
 606        self.replace(None)
 607        return self
 608
 609    def assert_is(self, type_: t.Type[E]) -> E:
 610        """
 611        Assert that this `Expression` is an instance of `type_`.
 612
 613        If it is NOT an instance of `type_`, this raises an assertion error.
 614        Otherwise, this returns this expression.
 615
 616        Examples:
 617            This is useful for type security in chained expressions:
 618
 619            >>> import sqlglot
 620            >>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
 621            'SELECT x, z FROM y'
 622        """
 623        assert isinstance(self, type_)
 624        return self
 625
 626    def error_messages(self, args: t.Optional[t.Sequence] = None) -> t.List[str]:
 627        """
 628        Checks if this expression is valid (e.g. all mandatory args are set).
 629
 630        Args:
 631            args: a sequence of values that were used to instantiate a Func expression. This is used
 632                to check that the provided arguments don't exceed the function argument limit.
 633
 634        Returns:
 635            A list of error messages for all possible errors that were found.
 636        """
 637        errors: t.List[str] = []
 638
 639        for k in self.args:
 640            if k not in self.arg_types:
 641                errors.append(f"Unexpected keyword: '{k}' for {self.__class__}")
 642        for k, mandatory in self.arg_types.items():
 643            v = self.args.get(k)
 644            if mandatory and (v is None or (isinstance(v, list) and not v)):
 645                errors.append(f"Required keyword: '{k}' missing for {self.__class__}")
 646
 647        if (
 648            args
 649            and isinstance(self, Func)
 650            and len(args) > len(self.arg_types)
 651            and not self.is_var_len_args
 652        ):
 653            errors.append(
 654                f"The number of provided arguments ({len(args)}) is greater than "
 655                f"the maximum number of supported arguments ({len(self.arg_types)})"
 656            )
 657
 658        return errors
 659
 660    def dump(self):
 661        """
 662        Dump this Expression to a JSON-serializable dict.
 663        """
 664        from sqlglot.serde import dump
 665
 666        return dump(self)
 667
 668    @classmethod
 669    def load(cls, obj):
 670        """
 671        Load a dict (as returned by `Expression.dump`) into an Expression instance.
 672        """
 673        from sqlglot.serde import load
 674
 675        return load(obj)
 676
 677    def and_(
 678        self,
 679        *expressions: t.Optional[ExpOrStr],
 680        dialect: DialectType = None,
 681        copy: bool = True,
 682        **opts,
 683    ) -> Condition:
 684        """
 685        AND this condition with one or multiple expressions.
 686
 687        Example:
 688            >>> condition("x=1").and_("y=1").sql()
 689            'x = 1 AND y = 1'
 690
 691        Args:
 692            *expressions: the SQL code strings to parse.
 693                If an `Expression` instance is passed, it will be used as-is.
 694            dialect: the dialect used to parse the input expression.
 695            copy: whether or not to copy the involved expressions (only applies to Expressions).
 696            opts: other options to use to parse the input expressions.
 697
 698        Returns:
 699            The new And condition.
 700        """
 701        return and_(self, *expressions, dialect=dialect, copy=copy, **opts)
 702
 703    def or_(
 704        self,
 705        *expressions: t.Optional[ExpOrStr],
 706        dialect: DialectType = None,
 707        copy: bool = True,
 708        **opts,
 709    ) -> Condition:
 710        """
 711        OR this condition with one or multiple expressions.
 712
 713        Example:
 714            >>> condition("x=1").or_("y=1").sql()
 715            'x = 1 OR y = 1'
 716
 717        Args:
 718            *expressions: the SQL code strings to parse.
 719                If an `Expression` instance is passed, it will be used as-is.
 720            dialect: the dialect used to parse the input expression.
 721            copy: whether or not to copy the involved expressions (only applies to Expressions).
 722            opts: other options to use to parse the input expressions.
 723
 724        Returns:
 725            The new Or condition.
 726        """
 727        return or_(self, *expressions, dialect=dialect, copy=copy, **opts)
 728
 729    def not_(self, copy: bool = True):
 730        """
 731        Wrap this condition with NOT.
 732
 733        Example:
 734            >>> condition("x=1").not_().sql()
 735            'NOT x = 1'
 736
 737        Args:
 738            copy: whether or not to copy this object.
 739
 740        Returns:
 741            The new Not instance.
 742        """
 743        return not_(self, copy=copy)
 744
 745    def as_(
 746        self,
 747        alias: str | Identifier,
 748        quoted: t.Optional[bool] = None,
 749        dialect: DialectType = None,
 750        copy: bool = True,
 751        **opts,
 752    ) -> Alias:
 753        return alias_(self, alias, quoted=quoted, dialect=dialect, copy=copy, **opts)
 754
 755    def _binop(self, klass: t.Type[E], other: t.Any, reverse: bool = False) -> E:
 756        this = self.copy()
 757        other = convert(other, copy=True)
 758        if not isinstance(this, klass) and not isinstance(other, klass):
 759            this = _wrap(this, Binary)
 760            other = _wrap(other, Binary)
 761        if reverse:
 762            return klass(this=other, expression=this)
 763        return klass(this=this, expression=other)
 764
 765    def __getitem__(self, other: ExpOrStr | t.Tuple[ExpOrStr]) -> Bracket:
 766        return Bracket(
 767            this=self.copy(), expressions=[convert(e, copy=True) for e in ensure_list(other)]
 768        )
 769
 770    def __iter__(self) -> t.Iterator:
 771        if "expressions" in self.arg_types:
 772            return iter(self.args.get("expressions") or [])
 773        # We define this because __getitem__ converts Expression into an iterable, which is
 774        # problematic because one can hit infinite loops if they do "for x in some_expr: ..."
 775        # See: https://peps.python.org/pep-0234/
 776        raise TypeError(f"'{self.__class__.__name__}' object is not iterable")
 777
 778    def isin(
 779        self,
 780        *expressions: t.Any,
 781        query: t.Optional[ExpOrStr] = None,
 782        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
 783        copy: bool = True,
 784        **opts,
 785    ) -> In:
 786        return In(
 787            this=maybe_copy(self, copy),
 788            expressions=[convert(e, copy=copy) for e in expressions],
 789            query=maybe_parse(query, copy=copy, **opts) if query else None,
 790            unnest=Unnest(
 791                expressions=[
 792                    maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts) for e in ensure_list(unnest)
 793                ]
 794            )
 795            if unnest
 796            else None,
 797        )
 798
 799    def between(self, low: t.Any, high: t.Any, copy: bool = True, **opts) -> Between:
 800        return Between(
 801            this=maybe_copy(self, copy),
 802            low=convert(low, copy=copy, **opts),
 803            high=convert(high, copy=copy, **opts),
 804        )
 805
 806    def is_(self, other: ExpOrStr) -> Is:
 807        return self._binop(Is, other)
 808
 809    def like(self, other: ExpOrStr) -> Like:
 810        return self._binop(Like, other)
 811
 812    def ilike(self, other: ExpOrStr) -> ILike:
 813        return self._binop(ILike, other)
 814
 815    def eq(self, other: t.Any) -> EQ:
 816        return self._binop(EQ, other)
 817
 818    def neq(self, other: t.Any) -> NEQ:
 819        return self._binop(NEQ, other)
 820
 821    def rlike(self, other: ExpOrStr) -> RegexpLike:
 822        return self._binop(RegexpLike, other)
 823
 824    def __lt__(self, other: t.Any) -> LT:
 825        return self._binop(LT, other)
 826
 827    def __le__(self, other: t.Any) -> LTE:
 828        return self._binop(LTE, other)
 829
 830    def __gt__(self, other: t.Any) -> GT:
 831        return self._binop(GT, other)
 832
 833    def __ge__(self, other: t.Any) -> GTE:
 834        return self._binop(GTE, other)
 835
 836    def __add__(self, other: t.Any) -> Add:
 837        return self._binop(Add, other)
 838
 839    def __radd__(self, other: t.Any) -> Add:
 840        return self._binop(Add, other, reverse=True)
 841
 842    def __sub__(self, other: t.Any) -> Sub:
 843        return self._binop(Sub, other)
 844
 845    def __rsub__(self, other: t.Any) -> Sub:
 846        return self._binop(Sub, other, reverse=True)
 847
 848    def __mul__(self, other: t.Any) -> Mul:
 849        return self._binop(Mul, other)
 850
 851    def __rmul__(self, other: t.Any) -> Mul:
 852        return self._binop(Mul, other, reverse=True)
 853
 854    def __truediv__(self, other: t.Any) -> Div:
 855        return self._binop(Div, other)
 856
 857    def __rtruediv__(self, other: t.Any) -> Div:
 858        return self._binop(Div, other, reverse=True)
 859
 860    def __floordiv__(self, other: t.Any) -> IntDiv:
 861        return self._binop(IntDiv, other)
 862
 863    def __rfloordiv__(self, other: t.Any) -> IntDiv:
 864        return self._binop(IntDiv, other, reverse=True)
 865
 866    def __mod__(self, other: t.Any) -> Mod:
 867        return self._binop(Mod, other)
 868
 869    def __rmod__(self, other: t.Any) -> Mod:
 870        return self._binop(Mod, other, reverse=True)
 871
 872    def __pow__(self, other: t.Any) -> Pow:
 873        return self._binop(Pow, other)
 874
 875    def __rpow__(self, other: t.Any) -> Pow:
 876        return self._binop(Pow, other, reverse=True)
 877
 878    def __and__(self, other: t.Any) -> And:
 879        return self._binop(And, other)
 880
 881    def __rand__(self, other: t.Any) -> And:
 882        return self._binop(And, other, reverse=True)
 883
 884    def __or__(self, other: t.Any) -> Or:
 885        return self._binop(Or, other)
 886
 887    def __ror__(self, other: t.Any) -> Or:
 888        return self._binop(Or, other, reverse=True)
 889
 890    def __neg__(self) -> Neg:
 891        return Neg(this=_wrap(self.copy(), Binary))
 892
 893    def __invert__(self) -> Not:
 894        return not_(self.copy())
 895
 896
 897IntoType = t.Union[
 898    str,
 899    t.Type[Expression],
 900    t.Collection[t.Union[str, t.Type[Expression]]],
 901]
 902ExpOrStr = t.Union[str, Expression]
 903
 904
 905class Condition(Expression):
 906    """Logical conditions like x AND y, or simply x"""
 907
 908
 909class Predicate(Condition):
 910    """Relationships like x = y, x > 1, x >= y."""
 911
 912
 913class DerivedTable(Expression):
 914    @property
 915    def selects(self) -> t.List[Expression]:
 916        return self.this.selects if isinstance(self.this, Subqueryable) else []
 917
 918    @property
 919    def named_selects(self) -> t.List[str]:
 920        return [select.output_name for select in self.selects]
 921
 922
 923class Unionable(Expression):
 924    def union(
 925        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
 926    ) -> Unionable:
 927        """
 928        Builds a UNION expression.
 929
 930        Example:
 931            >>> import sqlglot
 932            >>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
 933            'SELECT * FROM foo UNION SELECT * FROM bla'
 934
 935        Args:
 936            expression: the SQL code string.
 937                If an `Expression` instance is passed, it will be used as-is.
 938            distinct: set the DISTINCT flag if and only if this is true.
 939            dialect: the dialect used to parse the input expression.
 940            opts: other options to use to parse the input expressions.
 941
 942        Returns:
 943            The new Union expression.
 944        """
 945        return union(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
 946
 947    def intersect(
 948        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
 949    ) -> Unionable:
 950        """
 951        Builds an INTERSECT expression.
 952
 953        Example:
 954            >>> import sqlglot
 955            >>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
 956            'SELECT * FROM foo INTERSECT SELECT * FROM bla'
 957
 958        Args:
 959            expression: the SQL code string.
 960                If an `Expression` instance is passed, it will be used as-is.
 961            distinct: set the DISTINCT flag if and only if this is true.
 962            dialect: the dialect used to parse the input expression.
 963            opts: other options to use to parse the input expressions.
 964
 965        Returns:
 966            The new Intersect expression.
 967        """
 968        return intersect(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
 969
 970    def except_(
 971        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
 972    ) -> Unionable:
 973        """
 974        Builds an EXCEPT expression.
 975
 976        Example:
 977            >>> import sqlglot
 978            >>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
 979            'SELECT * FROM foo EXCEPT SELECT * FROM bla'
 980
 981        Args:
 982            expression: the SQL code string.
 983                If an `Expression` instance is passed, it will be used as-is.
 984            distinct: set the DISTINCT flag if and only if this is true.
 985            dialect: the dialect used to parse the input expression.
 986            opts: other options to use to parse the input expressions.
 987
 988        Returns:
 989            The new Except expression.
 990        """
 991        return except_(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
 992
 993
 994class UDTF(DerivedTable, Unionable):
 995    @property
 996    def selects(self) -> t.List[Expression]:
 997        alias = self.args.get("alias")
 998        return alias.columns if alias else []
 999
1000
1001class Cache(Expression):
1002    arg_types = {
1003        "with": False,
1004        "this": True,
1005        "lazy": False,
1006        "options": False,
1007        "expression": False,
1008    }
1009
1010
1011class Uncache(Expression):
1012    arg_types = {"this": True, "exists": False}
1013
1014
1015class DDL(Expression):
1016    @property
1017    def ctes(self):
1018        with_ = self.args.get("with")
1019        if not with_:
1020            return []
1021        return with_.expressions
1022
1023    @property
1024    def named_selects(self) -> t.List[str]:
1025        if isinstance(self.expression, Subqueryable):
1026            return self.expression.named_selects
1027        return []
1028
1029    @property
1030    def selects(self) -> t.List[Expression]:
1031        if isinstance(self.expression, Subqueryable):
1032            return self.expression.selects
1033        return []
1034
1035
1036class Create(DDL):
1037    arg_types = {
1038        "with": False,
1039        "this": True,
1040        "kind": True,
1041        "expression": False,
1042        "exists": False,
1043        "properties": False,
1044        "replace": False,
1045        "unique": False,
1046        "indexes": False,
1047        "no_schema_binding": False,
1048        "begin": False,
1049        "end": False,
1050        "clone": False,
1051    }
1052
1053
1054# https://docs.snowflake.com/en/sql-reference/sql/create-clone
1055# https://cloud.google.com/bigquery/docs/reference/standard-sql/data-definition-language#create_table_clone_statement
1056# https://cloud.google.com/bigquery/docs/reference/standard-sql/data-definition-language#create_table_copy
1057class Clone(Expression):
1058    arg_types = {
1059        "this": True,
1060        "when": False,
1061        "kind": False,
1062        "shallow": False,
1063        "expression": False,
1064        "copy": False,
1065    }
1066
1067
1068class Describe(Expression):
1069    arg_types = {"this": True, "kind": False, "expressions": False}
1070
1071
1072class Kill(Expression):
1073    arg_types = {"this": True, "kind": False}
1074
1075
1076class Pragma(Expression):
1077    pass
1078
1079
1080class Set(Expression):
1081    arg_types = {"expressions": False, "unset": False, "tag": False}
1082
1083
1084class SetItem(Expression):
1085    arg_types = {
1086        "this": False,
1087        "expressions": False,
1088        "kind": False,
1089        "collate": False,  # MySQL SET NAMES statement
1090        "global": False,
1091    }
1092
1093
1094class Show(Expression):
1095    arg_types = {
1096        "this": True,
1097        "target": False,
1098        "offset": False,
1099        "limit": False,
1100        "like": False,
1101        "where": False,
1102        "db": False,
1103        "scope": False,
1104        "scope_kind": False,
1105        "full": False,
1106        "mutex": False,
1107        "query": False,
1108        "channel": False,
1109        "global": False,
1110        "log": False,
1111        "position": False,
1112        "types": False,
1113    }
1114
1115
1116class UserDefinedFunction(Expression):
1117    arg_types = {"this": True, "expressions": False, "wrapped": False}
1118
1119
1120class CharacterSet(Expression):
1121    arg_types = {"this": True, "default": False}
1122
1123
1124class With(Expression):
1125    arg_types = {"expressions": True, "recursive": False}
1126
1127    @property
1128    def recursive(self) -> bool:
1129        return bool(self.args.get("recursive"))
1130
1131
1132class WithinGroup(Expression):
1133    arg_types = {"this": True, "expression": False}
1134
1135
1136class CTE(DerivedTable):
1137    arg_types = {"this": True, "alias": True}
1138
1139
1140class TableAlias(Expression):
1141    arg_types = {"this": False, "columns": False}
1142
1143    @property
1144    def columns(self):
1145        return self.args.get("columns") or []
1146
1147
1148class BitString(Condition):
1149    pass
1150
1151
1152class HexString(Condition):
1153    pass
1154
1155
1156class ByteString(Condition):
1157    pass
1158
1159
1160class RawString(Condition):
1161    pass
1162
1163
1164class Column(Condition):
1165    arg_types = {"this": True, "table": False, "db": False, "catalog": False, "join_mark": False}
1166
1167    @property
1168    def table(self) -> str:
1169        return self.text("table")
1170
1171    @property
1172    def db(self) -> str:
1173        return self.text("db")
1174
1175    @property
1176    def catalog(self) -> str:
1177        return self.text("catalog")
1178
1179    @property
1180    def output_name(self) -> str:
1181        return self.name
1182
1183    @property
1184    def parts(self) -> t.List[Identifier]:
1185        """Return the parts of a column in order catalog, db, table, name."""
1186        return [
1187            t.cast(Identifier, self.args[part])
1188            for part in ("catalog", "db", "table", "this")
1189            if self.args.get(part)
1190        ]
1191
1192    def to_dot(self) -> Dot | Identifier:
1193        """Converts the column into a dot expression."""
1194        parts = self.parts
1195        parent = self.parent
1196
1197        while parent:
1198            if isinstance(parent, Dot):
1199                parts.append(parent.expression)
1200            parent = parent.parent
1201
1202        return Dot.build(deepcopy(parts)) if len(parts) > 1 else parts[0]
1203
1204
1205class ColumnPosition(Expression):
1206    arg_types = {"this": False, "position": True}
1207
1208
1209class ColumnDef(Expression):
1210    arg_types = {
1211        "this": True,
1212        "kind": False,
1213        "constraints": False,
1214        "exists": False,
1215        "position": False,
1216    }
1217
1218    @property
1219    def constraints(self) -> t.List[ColumnConstraint]:
1220        return self.args.get("constraints") or []
1221
1222
1223class AlterColumn(Expression):
1224    arg_types = {
1225        "this": True,
1226        "dtype": False,
1227        "collate": False,
1228        "using": False,
1229        "default": False,
1230        "drop": False,
1231    }
1232
1233
1234class RenameTable(Expression):
1235    pass
1236
1237
1238class Comment(Expression):
1239    arg_types = {"this": True, "kind": True, "expression": True, "exists": False}
1240
1241
1242class Comprehension(Expression):
1243    arg_types = {"this": True, "expression": True, "iterator": True, "condition": False}
1244
1245
1246# https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/mergetree#mergetree-table-ttl
1247class MergeTreeTTLAction(Expression):
1248    arg_types = {
1249        "this": True,
1250        "delete": False,
1251        "recompress": False,
1252        "to_disk": False,
1253        "to_volume": False,
1254    }
1255
1256
1257# https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/mergetree#mergetree-table-ttl
1258class MergeTreeTTL(Expression):
1259    arg_types = {
1260        "expressions": True,
1261        "where": False,
1262        "group": False,
1263        "aggregates": False,
1264    }
1265
1266
1267# https://dev.mysql.com/doc/refman/8.0/en/create-table.html
1268class IndexConstraintOption(Expression):
1269    arg_types = {
1270        "key_block_size": False,
1271        "using": False,
1272        "parser": False,
1273        "comment": False,
1274        "visible": False,
1275        "engine_attr": False,
1276        "secondary_engine_attr": False,
1277    }
1278
1279
1280class ColumnConstraint(Expression):
1281    arg_types = {"this": False, "kind": True}
1282
1283    @property
1284    def kind(self) -> ColumnConstraintKind:
1285        return self.args["kind"]
1286
1287
1288class ColumnConstraintKind(Expression):
1289    pass
1290
1291
1292class AutoIncrementColumnConstraint(ColumnConstraintKind):
1293    pass
1294
1295
1296class CaseSpecificColumnConstraint(ColumnConstraintKind):
1297    arg_types = {"not_": True}
1298
1299
1300class CharacterSetColumnConstraint(ColumnConstraintKind):
1301    arg_types = {"this": True}
1302
1303
1304class CheckColumnConstraint(ColumnConstraintKind):
1305    pass
1306
1307
1308class ClusteredColumnConstraint(ColumnConstraintKind):
1309    pass
1310
1311
1312class CollateColumnConstraint(ColumnConstraintKind):
1313    pass
1314
1315
1316class CommentColumnConstraint(ColumnConstraintKind):
1317    pass
1318
1319
1320class CompressColumnConstraint(ColumnConstraintKind):
1321    pass
1322
1323
1324class DateFormatColumnConstraint(ColumnConstraintKind):
1325    arg_types = {"this": True}
1326
1327
1328class DefaultColumnConstraint(ColumnConstraintKind):
1329    pass
1330
1331
1332class EncodeColumnConstraint(ColumnConstraintKind):
1333    pass
1334
1335
1336class GeneratedAsIdentityColumnConstraint(ColumnConstraintKind):
1337    # this: True -> ALWAYS, this: False -> BY DEFAULT
1338    arg_types = {
1339        "this": False,
1340        "expression": False,
1341        "on_null": False,
1342        "start": False,
1343        "increment": False,
1344        "minvalue": False,
1345        "maxvalue": False,
1346        "cycle": False,
1347    }
1348
1349
1350# https://dev.mysql.com/doc/refman/8.0/en/create-table.html
1351class IndexColumnConstraint(ColumnConstraintKind):
1352    arg_types = {
1353        "this": False,
1354        "schema": True,
1355        "kind": False,
1356        "index_type": False,
1357        "options": False,
1358    }
1359
1360
1361class InlineLengthColumnConstraint(ColumnConstraintKind):
1362    pass
1363
1364
1365class NonClusteredColumnConstraint(ColumnConstraintKind):
1366    pass
1367
1368
1369class NotForReplicationColumnConstraint(ColumnConstraintKind):
1370    arg_types = {}
1371
1372
1373class NotNullColumnConstraint(ColumnConstraintKind):
1374    arg_types = {"allow_null": False}
1375
1376
1377# https://dev.mysql.com/doc/refman/5.7/en/timestamp-initialization.html
1378class OnUpdateColumnConstraint(ColumnConstraintKind):
1379    pass
1380
1381
1382class PrimaryKeyColumnConstraint(ColumnConstraintKind):
1383    arg_types = {"desc": False}
1384
1385
1386class TitleColumnConstraint(ColumnConstraintKind):
1387    pass
1388
1389
1390class UniqueColumnConstraint(ColumnConstraintKind):
1391    arg_types = {"this": False, "index_type": False}
1392
1393
1394class UppercaseColumnConstraint(ColumnConstraintKind):
1395    arg_types: t.Dict[str, t.Any] = {}
1396
1397
1398class PathColumnConstraint(ColumnConstraintKind):
1399    pass
1400
1401
1402# computed column expression
1403# https://learn.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver16
1404class ComputedColumnConstraint(ColumnConstraintKind):
1405    arg_types = {"this": True, "persisted": False, "not_null": False}
1406
1407
1408class Constraint(Expression):
1409    arg_types = {"this": True, "expressions": True}
1410
1411
1412class Delete(Expression):
1413    arg_types = {
1414        "with": False,
1415        "this": False,
1416        "using": False,
1417        "where": False,
1418        "returning": False,
1419        "limit": False,
1420        "tables": False,  # Multiple-Table Syntax (MySQL)
1421    }
1422
1423    def delete(
1424        self,
1425        table: ExpOrStr,
1426        dialect: DialectType = None,
1427        copy: bool = True,
1428        **opts,
1429    ) -> Delete:
1430        """
1431        Create a DELETE expression or replace the table on an existing DELETE expression.
1432
1433        Example:
1434            >>> delete("tbl").sql()
1435            'DELETE FROM tbl'
1436
1437        Args:
1438            table: the table from which to delete.
1439            dialect: the dialect used to parse the input expression.
1440            copy: if `False`, modify this expression instance in-place.
1441            opts: other options to use to parse the input expressions.
1442
1443        Returns:
1444            Delete: the modified expression.
1445        """
1446        return _apply_builder(
1447            expression=table,
1448            instance=self,
1449            arg="this",
1450            dialect=dialect,
1451            into=Table,
1452            copy=copy,
1453            **opts,
1454        )
1455
1456    def where(
1457        self,
1458        *expressions: t.Optional[ExpOrStr],
1459        append: bool = True,
1460        dialect: DialectType = None,
1461        copy: bool = True,
1462        **opts,
1463    ) -> Delete:
1464        """
1465        Append to or set the WHERE expressions.
1466
1467        Example:
1468            >>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
1469            "DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
1470
1471        Args:
1472            *expressions: the SQL code strings to parse.
1473                If an `Expression` instance is passed, it will be used as-is.
1474                Multiple expressions are combined with an AND operator.
1475            append: if `True`, AND the new expressions to any existing expression.
1476                Otherwise, this resets the expression.
1477            dialect: the dialect used to parse the input expressions.
1478            copy: if `False`, modify this expression instance in-place.
1479            opts: other options to use to parse the input expressions.
1480
1481        Returns:
1482            Delete: the modified expression.
1483        """
1484        return _apply_conjunction_builder(
1485            *expressions,
1486            instance=self,
1487            arg="where",
1488            append=append,
1489            into=Where,
1490            dialect=dialect,
1491            copy=copy,
1492            **opts,
1493        )
1494
1495    def returning(
1496        self,
1497        expression: ExpOrStr,
1498        dialect: DialectType = None,
1499        copy: bool = True,
1500        **opts,
1501    ) -> Delete:
1502        """
1503        Set the RETURNING expression. Not supported by all dialects.
1504
1505        Example:
1506            >>> delete("tbl").returning("*", dialect="postgres").sql()
1507            'DELETE FROM tbl RETURNING *'
1508
1509        Args:
1510            expression: the SQL code strings to parse.
1511                If an `Expression` instance is passed, it will be used as-is.
1512            dialect: the dialect used to parse the input expressions.
1513            copy: if `False`, modify this expression instance in-place.
1514            opts: other options to use to parse the input expressions.
1515
1516        Returns:
1517            Delete: the modified expression.
1518        """
1519        return _apply_builder(
1520            expression=expression,
1521            instance=self,
1522            arg="returning",
1523            prefix="RETURNING",
1524            dialect=dialect,
1525            copy=copy,
1526            into=Returning,
1527            **opts,
1528        )
1529
1530
1531class Drop(Expression):
1532    arg_types = {
1533        "this": False,
1534        "kind": False,
1535        "exists": False,
1536        "temporary": False,
1537        "materialized": False,
1538        "cascade": False,
1539        "constraints": False,
1540        "purge": False,
1541    }
1542
1543
1544class Filter(Expression):
1545    arg_types = {"this": True, "expression": True}
1546
1547
1548class Check(Expression):
1549    pass
1550
1551
1552# https://docs.snowflake.com/en/sql-reference/constructs/connect-by
1553class Connect(Expression):
1554    arg_types = {"start": False, "connect": True}
1555
1556
1557class Prior(Expression):
1558    pass
1559
1560
1561class Directory(Expression):
1562    # https://spark.apache.org/docs/3.0.0-preview/sql-ref-syntax-dml-insert-overwrite-directory-hive.html
1563    arg_types = {"this": True, "local": False, "row_format": False}
1564
1565
1566class ForeignKey(Expression):
1567    arg_types = {
1568        "expressions": True,
1569        "reference": False,
1570        "delete": False,
1571        "update": False,
1572    }
1573
1574
1575class ColumnPrefix(Expression):
1576    arg_types = {"this": True, "expression": True}
1577
1578
1579class PrimaryKey(Expression):
1580    arg_types = {"expressions": True, "options": False}
1581
1582
1583# https://www.postgresql.org/docs/9.1/sql-selectinto.html
1584# https://docs.aws.amazon.com/redshift/latest/dg/r_SELECT_INTO.html#r_SELECT_INTO-examples
1585class Into(Expression):
1586    arg_types = {"this": True, "temporary": False, "unlogged": False}
1587
1588
1589class From(Expression):
1590    @property
1591    def name(self) -> str:
1592        return self.this.name
1593
1594    @property
1595    def alias_or_name(self) -> str:
1596        return self.this.alias_or_name
1597
1598
1599class Having(Expression):
1600    pass
1601
1602
1603class Hint(Expression):
1604    arg_types = {"expressions": True}
1605
1606
1607class JoinHint(Expression):
1608    arg_types = {"this": True, "expressions": True}
1609
1610
1611class Identifier(Expression):
1612    arg_types = {"this": True, "quoted": False, "global": False, "temporary": False}
1613
1614    @property
1615    def quoted(self) -> bool:
1616        return bool(self.args.get("quoted"))
1617
1618    @property
1619    def hashable_args(self) -> t.Any:
1620        return (self.this, self.quoted)
1621
1622    @property
1623    def output_name(self) -> str:
1624        return self.name
1625
1626
1627# https://www.postgresql.org/docs/current/indexes-opclass.html
1628class Opclass(Expression):
1629    arg_types = {"this": True, "expression": True}
1630
1631
1632class Index(Expression):
1633    arg_types = {
1634        "this": False,
1635        "table": False,
1636        "using": False,
1637        "where": False,
1638        "columns": False,
1639        "unique": False,
1640        "primary": False,
1641        "amp": False,  # teradata
1642        "partition_by": False,  # teradata
1643        "where": False,  # postgres partial indexes
1644    }
1645
1646
1647class Insert(DDL):
1648    arg_types = {
1649        "with": False,
1650        "this": True,
1651        "expression": False,
1652        "conflict": False,
1653        "returning": False,
1654        "overwrite": False,
1655        "exists": False,
1656        "partition": False,
1657        "alternative": False,
1658        "where": False,
1659        "ignore": False,
1660        "by_name": False,
1661    }
1662
1663    def with_(
1664        self,
1665        alias: ExpOrStr,
1666        as_: ExpOrStr,
1667        recursive: t.Optional[bool] = None,
1668        append: bool = True,
1669        dialect: DialectType = None,
1670        copy: bool = True,
1671        **opts,
1672    ) -> Insert:
1673        """
1674        Append to or set the common table expressions.
1675
1676        Example:
1677            >>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
1678            'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
1679
1680        Args:
1681            alias: the SQL code string to parse as the table name.
1682                If an `Expression` instance is passed, this is used as-is.
1683            as_: the SQL code string to parse as the table expression.
1684                If an `Expression` instance is passed, it will be used as-is.
1685            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
1686            append: if `True`, add to any existing expressions.
1687                Otherwise, this resets the expressions.
1688            dialect: the dialect used to parse the input expression.
1689            copy: if `False`, modify this expression instance in-place.
1690            opts: other options to use to parse the input expressions.
1691
1692        Returns:
1693            The modified expression.
1694        """
1695        return _apply_cte_builder(
1696            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
1697        )
1698
1699
1700class OnConflict(Expression):
1701    arg_types = {
1702        "duplicate": False,
1703        "expressions": False,
1704        "nothing": False,
1705        "key": False,
1706        "constraint": False,
1707    }
1708
1709
1710class Returning(Expression):
1711    arg_types = {"expressions": True, "into": False}
1712
1713
1714# https://dev.mysql.com/doc/refman/8.0/en/charset-introducer.html
1715class Introducer(Expression):
1716    arg_types = {"this": True, "expression": True}
1717
1718
1719# national char, like n'utf8'
1720class National(Expression):
1721    pass
1722
1723
1724class LoadData(Expression):
1725    arg_types = {
1726        "this": True,
1727        "local": False,
1728        "overwrite": False,
1729        "inpath": True,
1730        "partition": False,
1731        "input_format": False,
1732        "serde": False,
1733    }
1734
1735
1736class Partition(Expression):
1737    arg_types = {"expressions": True}
1738
1739
1740class Fetch(Expression):
1741    arg_types = {
1742        "direction": False,
1743        "count": False,
1744        "percent": False,
1745        "with_ties": False,
1746    }
1747
1748
1749class Group(Expression):
1750    arg_types = {
1751        "expressions": False,
1752        "grouping_sets": False,
1753        "cube": False,
1754        "rollup": False,
1755        "totals": False,
1756        "all": False,
1757    }
1758
1759
1760class Lambda(Expression):
1761    arg_types = {"this": True, "expressions": True}
1762
1763
1764class Limit(Expression):
1765    arg_types = {"this": False, "expression": True, "offset": False}
1766
1767
1768class Literal(Condition):
1769    arg_types = {"this": True, "is_string": True}
1770
1771    @property
1772    def hashable_args(self) -> t.Any:
1773        return (self.this, self.args.get("is_string"))
1774
1775    @classmethod
1776    def number(cls, number) -> Literal:
1777        return cls(this=str(number), is_string=False)
1778
1779    @classmethod
1780    def string(cls, string) -> Literal:
1781        return cls(this=str(string), is_string=True)
1782
1783    @property
1784    def output_name(self) -> str:
1785        return self.name
1786
1787
1788class Join(Expression):
1789    arg_types = {
1790        "this": True,
1791        "on": False,
1792        "side": False,
1793        "kind": False,
1794        "using": False,
1795        "method": False,
1796        "global": False,
1797        "hint": False,
1798    }
1799
1800    @property
1801    def method(self) -> str:
1802        return self.text("method").upper()
1803
1804    @property
1805    def kind(self) -> str:
1806        return self.text("kind").upper()
1807
1808    @property
1809    def side(self) -> str:
1810        return self.text("side").upper()
1811
1812    @property
1813    def hint(self) -> str:
1814        return self.text("hint").upper()
1815
1816    @property
1817    def alias_or_name(self) -> str:
1818        return self.this.alias_or_name
1819
1820    def on(
1821        self,
1822        *expressions: t.Optional[ExpOrStr],
1823        append: bool = True,
1824        dialect: DialectType = None,
1825        copy: bool = True,
1826        **opts,
1827    ) -> Join:
1828        """
1829        Append to or set the ON expressions.
1830
1831        Example:
1832            >>> import sqlglot
1833            >>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
1834            'JOIN x ON y = 1'
1835
1836        Args:
1837            *expressions: the SQL code strings to parse.
1838                If an `Expression` instance is passed, it will be used as-is.
1839                Multiple expressions are combined with an AND operator.
1840            append: if `True`, AND the new expressions to any existing expression.
1841                Otherwise, this resets the expression.
1842            dialect: the dialect used to parse the input expressions.
1843            copy: if `False`, modify this expression instance in-place.
1844            opts: other options to use to parse the input expressions.
1845
1846        Returns:
1847            The modified Join expression.
1848        """
1849        join = _apply_conjunction_builder(
1850            *expressions,
1851            instance=self,
1852            arg="on",
1853            append=append,
1854            dialect=dialect,
1855            copy=copy,
1856            **opts,
1857        )
1858
1859        if join.kind == "CROSS":
1860            join.set("kind", None)
1861
1862        return join
1863
1864    def using(
1865        self,
1866        *expressions: t.Optional[ExpOrStr],
1867        append: bool = True,
1868        dialect: DialectType = None,
1869        copy: bool = True,
1870        **opts,
1871    ) -> Join:
1872        """
1873        Append to or set the USING expressions.
1874
1875        Example:
1876            >>> import sqlglot
1877            >>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
1878            'JOIN x USING (foo, bla)'
1879
1880        Args:
1881            *expressions: the SQL code strings to parse.
1882                If an `Expression` instance is passed, it will be used as-is.
1883            append: if `True`, concatenate the new expressions to the existing "using" list.
1884                Otherwise, this resets the expression.
1885            dialect: the dialect used to parse the input expressions.
1886            copy: if `False`, modify this expression instance in-place.
1887            opts: other options to use to parse the input expressions.
1888
1889        Returns:
1890            The modified Join expression.
1891        """
1892        join = _apply_list_builder(
1893            *expressions,
1894            instance=self,
1895            arg="using",
1896            append=append,
1897            dialect=dialect,
1898            copy=copy,
1899            **opts,
1900        )
1901
1902        if join.kind == "CROSS":
1903            join.set("kind", None)
1904
1905        return join
1906
1907
1908class Lateral(UDTF):
1909    arg_types = {"this": True, "view": False, "outer": False, "alias": False}
1910
1911
1912class MatchRecognize(Expression):
1913    arg_types = {
1914        "partition_by": False,
1915        "order": False,
1916        "measures": False,
1917        "rows": False,
1918        "after": False,
1919        "pattern": False,
1920        "define": False,
1921        "alias": False,
1922    }
1923
1924
1925# Clickhouse FROM FINAL modifier
1926# https://clickhouse.com/docs/en/sql-reference/statements/select/from/#final-modifier
1927class Final(Expression):
1928    pass
1929
1930
1931class Offset(Expression):
1932    arg_types = {"this": False, "expression": True}
1933
1934
1935class Order(Expression):
1936    arg_types = {"this": False, "expressions": True}
1937
1938
1939# hive specific sorts
1940# https://cwiki.apache.org/confluence/display/Hive/LanguageManual+SortBy
1941class Cluster(Order):
1942    pass
1943
1944
1945class Distribute(Order):
1946    pass
1947
1948
1949class Sort(Order):
1950    pass
1951
1952
1953class Ordered(Expression):
1954    arg_types = {"this": True, "desc": False, "nulls_first": True}
1955
1956
1957class Property(Expression):
1958    arg_types = {"this": True, "value": True}
1959
1960
1961class AlgorithmProperty(Property):
1962    arg_types = {"this": True}
1963
1964
1965class AutoIncrementProperty(Property):
1966    arg_types = {"this": True}
1967
1968
1969class BlockCompressionProperty(Property):
1970    arg_types = {"autotemp": False, "always": False, "default": True, "manual": True, "never": True}
1971
1972
1973class CharacterSetProperty(Property):
1974    arg_types = {"this": True, "default": True}
1975
1976
1977class ChecksumProperty(Property):
1978    arg_types = {"on": False, "default": False}
1979
1980
1981class CollateProperty(Property):
1982    arg_types = {"this": True}
1983
1984
1985class CopyGrantsProperty(Property):
1986    arg_types = {}
1987
1988
1989class DataBlocksizeProperty(Property):
1990    arg_types = {
1991        "size": False,
1992        "units": False,
1993        "minimum": False,
1994        "maximum": False,
1995        "default": False,
1996    }
1997
1998
1999class DefinerProperty(Property):
2000    arg_types = {"this": True}
2001
2002
2003class DistKeyProperty(Property):
2004    arg_types = {"this": True}
2005
2006
2007class DistStyleProperty(Property):
2008    arg_types = {"this": True}
2009
2010
2011class EngineProperty(Property):
2012    arg_types = {"this": True}
2013
2014
2015class HeapProperty(Property):
2016    arg_types = {}
2017
2018
2019class ToTableProperty(Property):
2020    arg_types = {"this": True}
2021
2022
2023class ExecuteAsProperty(Property):
2024    arg_types = {"this": True}
2025
2026
2027class ExternalProperty(Property):
2028    arg_types = {"this": False}
2029
2030
2031class FallbackProperty(Property):
2032    arg_types = {"no": True, "protection": False}
2033
2034
2035class FileFormatProperty(Property):
2036    arg_types = {"this": True}
2037
2038
2039class FreespaceProperty(Property):
2040    arg_types = {"this": True, "percent": False}
2041
2042
2043class InputModelProperty(Property):
2044    arg_types = {"this": True}
2045
2046
2047class OutputModelProperty(Property):
2048    arg_types = {"this": True}
2049
2050
2051class IsolatedLoadingProperty(Property):
2052    arg_types = {
2053        "no": True,
2054        "concurrent": True,
2055        "for_all": True,
2056        "for_insert": True,
2057        "for_none": True,
2058    }
2059
2060
2061class JournalProperty(Property):
2062    arg_types = {
2063        "no": False,
2064        "dual": False,
2065        "before": False,
2066        "local": False,
2067        "after": False,
2068    }
2069
2070
2071class LanguageProperty(Property):
2072    arg_types = {"this": True}
2073
2074
2075# spark ddl
2076class ClusteredByProperty(Property):
2077    arg_types = {"expressions": True, "sorted_by": False, "buckets": True}
2078
2079
2080class DictProperty(Property):
2081    arg_types = {"this": True, "kind": True, "settings": False}
2082
2083
2084class DictSubProperty(Property):
2085    pass
2086
2087
2088class DictRange(Property):
2089    arg_types = {"this": True, "min": True, "max": True}
2090
2091
2092# Clickhouse CREATE ... ON CLUSTER modifier
2093# https://clickhouse.com/docs/en/sql-reference/distributed-ddl
2094class OnCluster(Property):
2095    arg_types = {"this": True}
2096
2097
2098class LikeProperty(Property):
2099    arg_types = {"this": True, "expressions": False}
2100
2101
2102class LocationProperty(Property):
2103    arg_types = {"this": True}
2104
2105
2106class LockingProperty(Property):
2107    arg_types = {
2108        "this": False,
2109        "kind": True,
2110        "for_or_in": True,
2111        "lock_type": True,
2112        "override": False,
2113    }
2114
2115
2116class LogProperty(Property):
2117    arg_types = {"no": True}
2118
2119
2120class MaterializedProperty(Property):
2121    arg_types = {"this": False}
2122
2123
2124class MergeBlockRatioProperty(Property):
2125    arg_types = {"this": False, "no": False, "default": False, "percent": False}
2126
2127
2128class NoPrimaryIndexProperty(Property):
2129    arg_types = {}
2130
2131
2132class OnProperty(Property):
2133    arg_types = {"this": True}
2134
2135
2136class OnCommitProperty(Property):
2137    arg_types = {"delete": False}
2138
2139
2140class PartitionedByProperty(Property):
2141    arg_types = {"this": True}
2142
2143
2144class RemoteWithConnectionModelProperty(Property):
2145    arg_types = {"this": True}
2146
2147
2148class ReturnsProperty(Property):
2149    arg_types = {"this": True, "is_table": False, "table": False}
2150
2151
2152class RowFormatProperty(Property):
2153    arg_types = {"this": True}
2154
2155
2156class RowFormatDelimitedProperty(Property):
2157    # https://cwiki.apache.org/confluence/display/hive/languagemanual+dml
2158    arg_types = {
2159        "fields": False,
2160        "escaped": False,
2161        "collection_items": False,
2162        "map_keys": False,
2163        "lines": False,
2164        "null": False,
2165        "serde": False,
2166    }
2167
2168
2169class RowFormatSerdeProperty(Property):
2170    arg_types = {"this": True, "serde_properties": False}
2171
2172
2173# https://spark.apache.org/docs/3.1.2/sql-ref-syntax-qry-select-transform.html
2174class QueryTransform(Expression):
2175    arg_types = {
2176        "expressions": True,
2177        "command_script": True,
2178        "schema": False,
2179        "row_format_before": False,
2180        "record_writer": False,
2181        "row_format_after": False,
2182        "record_reader": False,
2183    }
2184
2185
2186class SampleProperty(Property):
2187    arg_types = {"this": True}
2188
2189
2190class SchemaCommentProperty(Property):
2191    arg_types = {"this": True}
2192
2193
2194class SerdeProperties(Property):
2195    arg_types = {"expressions": True}
2196
2197
2198class SetProperty(Property):
2199    arg_types = {"multi": True}
2200
2201
2202class SettingsProperty(Property):
2203    arg_types = {"expressions": True}
2204
2205
2206class SortKeyProperty(Property):
2207    arg_types = {"this": True, "compound": False}
2208
2209
2210class SqlSecurityProperty(Property):
2211    arg_types = {"definer": True}
2212
2213
2214class StabilityProperty(Property):
2215    arg_types = {"this": True}
2216
2217
2218class TemporaryProperty(Property):
2219    arg_types = {}
2220
2221
2222class TransformModelProperty(Property):
2223    arg_types = {"expressions": True}
2224
2225
2226class TransientProperty(Property):
2227    arg_types = {"this": False}
2228
2229
2230class VolatileProperty(Property):
2231    arg_types = {"this": False}
2232
2233
2234class WithDataProperty(Property):
2235    arg_types = {"no": True, "statistics": False}
2236
2237
2238class WithJournalTableProperty(Property):
2239    arg_types = {"this": True}
2240
2241
2242class Properties(Expression):
2243    arg_types = {"expressions": True}
2244
2245    NAME_TO_PROPERTY = {
2246        "ALGORITHM": AlgorithmProperty,
2247        "AUTO_INCREMENT": AutoIncrementProperty,
2248        "CHARACTER SET": CharacterSetProperty,
2249        "CLUSTERED_BY": ClusteredByProperty,
2250        "COLLATE": CollateProperty,
2251        "COMMENT": SchemaCommentProperty,
2252        "DEFINER": DefinerProperty,
2253        "DISTKEY": DistKeyProperty,
2254        "DISTSTYLE": DistStyleProperty,
2255        "ENGINE": EngineProperty,
2256        "EXECUTE AS": ExecuteAsProperty,
2257        "FORMAT": FileFormatProperty,
2258        "LANGUAGE": LanguageProperty,
2259        "LOCATION": LocationProperty,
2260        "PARTITIONED_BY": PartitionedByProperty,
2261        "RETURNS": ReturnsProperty,
2262        "ROW_FORMAT": RowFormatProperty,
2263        "SORTKEY": SortKeyProperty,
2264    }
2265
2266    PROPERTY_TO_NAME = {v: k for k, v in NAME_TO_PROPERTY.items()}
2267
2268    # CREATE property locations
2269    # Form: schema specified
2270    #   create [POST_CREATE]
2271    #     table a [POST_NAME]
2272    #     (b int) [POST_SCHEMA]
2273    #     with ([POST_WITH])
2274    #     index (b) [POST_INDEX]
2275    #
2276    # Form: alias selection
2277    #   create [POST_CREATE]
2278    #     table a [POST_NAME]
2279    #     as [POST_ALIAS] (select * from b) [POST_EXPRESSION]
2280    #     index (c) [POST_INDEX]
2281    class Location(AutoName):
2282        POST_CREATE = auto()
2283        POST_NAME = auto()
2284        POST_SCHEMA = auto()
2285        POST_WITH = auto()
2286        POST_ALIAS = auto()
2287        POST_EXPRESSION = auto()
2288        POST_INDEX = auto()
2289        UNSUPPORTED = auto()
2290
2291    @classmethod
2292    def from_dict(cls, properties_dict: t.Dict) -> Properties:
2293        expressions = []
2294        for key, value in properties_dict.items():
2295            property_cls = cls.NAME_TO_PROPERTY.get(key.upper())
2296            if property_cls:
2297                expressions.append(property_cls(this=convert(value)))
2298            else:
2299                expressions.append(Property(this=Literal.string(key), value=convert(value)))
2300
2301        return cls(expressions=expressions)
2302
2303
2304class Qualify(Expression):
2305    pass
2306
2307
2308class InputOutputFormat(Expression):
2309    arg_types = {"input_format": False, "output_format": False}
2310
2311
2312# https://www.ibm.com/docs/en/ias?topic=procedures-return-statement-in-sql
2313class Return(Expression):
2314    pass
2315
2316
2317class Reference(Expression):
2318    arg_types = {"this": True, "expressions": False, "options": False}
2319
2320
2321class Tuple(Expression):
2322    arg_types = {"expressions": False}
2323
2324    def isin(
2325        self,
2326        *expressions: t.Any,
2327        query: t.Optional[ExpOrStr] = None,
2328        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
2329        copy: bool = True,
2330        **opts,
2331    ) -> In:
2332        return In(
2333            this=maybe_copy(self, copy),
2334            expressions=[convert(e, copy=copy) for e in expressions],
2335            query=maybe_parse(query, copy=copy, **opts) if query else None,
2336            unnest=Unnest(
2337                expressions=[
2338                    maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts) for e in ensure_list(unnest)
2339                ]
2340            )
2341            if unnest
2342            else None,
2343        )
2344
2345
2346class Subqueryable(Unionable):
2347    def subquery(self, alias: t.Optional[ExpOrStr] = None, copy: bool = True) -> Subquery:
2348        """
2349        Convert this expression to an aliased expression that can be used as a Subquery.
2350
2351        Example:
2352            >>> subquery = Select().select("x").from_("tbl").subquery()
2353            >>> Select().select("x").from_(subquery).sql()
2354            'SELECT x FROM (SELECT x FROM tbl)'
2355
2356        Args:
2357            alias (str | Identifier): an optional alias for the subquery
2358            copy (bool): if `False`, modify this expression instance in-place.
2359
2360        Returns:
2361            Alias: the subquery
2362        """
2363        instance = maybe_copy(self, copy)
2364        if not isinstance(alias, Expression):
2365            alias = TableAlias(this=to_identifier(alias)) if alias else None
2366
2367        return Subquery(this=instance, alias=alias)
2368
2369    def limit(
2370        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2371    ) -> Select:
2372        raise NotImplementedError
2373
2374    @property
2375    def ctes(self):
2376        with_ = self.args.get("with")
2377        if not with_:
2378            return []
2379        return with_.expressions
2380
2381    @property
2382    def selects(self) -> t.List[Expression]:
2383        raise NotImplementedError("Subqueryable objects must implement `selects`")
2384
2385    @property
2386    def named_selects(self) -> t.List[str]:
2387        raise NotImplementedError("Subqueryable objects must implement `named_selects`")
2388
2389    def select(
2390        self,
2391        *expressions: t.Optional[ExpOrStr],
2392        append: bool = True,
2393        dialect: DialectType = None,
2394        copy: bool = True,
2395        **opts,
2396    ) -> Subqueryable:
2397        raise NotImplementedError("Subqueryable objects must implement `select`")
2398
2399    def with_(
2400        self,
2401        alias: ExpOrStr,
2402        as_: ExpOrStr,
2403        recursive: t.Optional[bool] = None,
2404        append: bool = True,
2405        dialect: DialectType = None,
2406        copy: bool = True,
2407        **opts,
2408    ) -> Subqueryable:
2409        """
2410        Append to or set the common table expressions.
2411
2412        Example:
2413            >>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
2414            'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
2415
2416        Args:
2417            alias: the SQL code string to parse as the table name.
2418                If an `Expression` instance is passed, this is used as-is.
2419            as_: the SQL code string to parse as the table expression.
2420                If an `Expression` instance is passed, it will be used as-is.
2421            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
2422            append: if `True`, add to any existing expressions.
2423                Otherwise, this resets the expressions.
2424            dialect: the dialect used to parse the input expression.
2425            copy: if `False`, modify this expression instance in-place.
2426            opts: other options to use to parse the input expressions.
2427
2428        Returns:
2429            The modified expression.
2430        """
2431        return _apply_cte_builder(
2432            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
2433        )
2434
2435
2436QUERY_MODIFIERS = {
2437    "match": False,
2438    "laterals": False,
2439    "joins": False,
2440    "connect": False,
2441    "pivots": False,
2442    "where": False,
2443    "group": False,
2444    "having": False,
2445    "qualify": False,
2446    "windows": False,
2447    "distribute": False,
2448    "sort": False,
2449    "cluster": False,
2450    "order": False,
2451    "limit": False,
2452    "offset": False,
2453    "locks": False,
2454    "sample": False,
2455    "settings": False,
2456    "format": False,
2457}
2458
2459
2460# https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-table?view=sql-server-ver16
2461class WithTableHint(Expression):
2462    arg_types = {"expressions": True}
2463
2464
2465# https://dev.mysql.com/doc/refman/8.0/en/index-hints.html
2466class IndexTableHint(Expression):
2467    arg_types = {"this": True, "expressions": False, "target": False}
2468
2469
2470class Table(Expression):
2471    arg_types = {
2472        "this": True,
2473        "alias": False,
2474        "db": False,
2475        "catalog": False,
2476        "laterals": False,
2477        "joins": False,
2478        "pivots": False,
2479        "hints": False,
2480        "system_time": False,
2481        "version": False,
2482        "format": False,
2483        "pattern": False,
2484        "index": False,
2485    }
2486
2487    @property
2488    def name(self) -> str:
2489        if isinstance(self.this, Func):
2490            return ""
2491        return self.this.name
2492
2493    @property
2494    def db(self) -> str:
2495        return self.text("db")
2496
2497    @property
2498    def catalog(self) -> str:
2499        return self.text("catalog")
2500
2501    @property
2502    def selects(self) -> t.List[Expression]:
2503        return []
2504
2505    @property
2506    def named_selects(self) -> t.List[str]:
2507        return []
2508
2509    @property
2510    def parts(self) -> t.List[Expression]:
2511        """Return the parts of a table in order catalog, db, table."""
2512        parts: t.List[Expression] = []
2513
2514        for arg in ("catalog", "db", "this"):
2515            part = self.args.get(arg)
2516
2517            if isinstance(part, Dot):
2518                parts.extend(part.flatten())
2519            elif isinstance(part, Expression):
2520                parts.append(part)
2521
2522        return parts
2523
2524
2525class Union(Subqueryable):
2526    arg_types = {
2527        "with": False,
2528        "this": True,
2529        "expression": True,
2530        "distinct": False,
2531        "by_name": False,
2532        **QUERY_MODIFIERS,
2533    }
2534
2535    def limit(
2536        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2537    ) -> Select:
2538        """
2539        Set the LIMIT expression.
2540
2541        Example:
2542            >>> select("1").union(select("1")).limit(1).sql()
2543            'SELECT * FROM (SELECT 1 UNION SELECT 1) AS _l_0 LIMIT 1'
2544
2545        Args:
2546            expression: the SQL code string to parse.
2547                This can also be an integer.
2548                If a `Limit` instance is passed, this is used as-is.
2549                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2550            dialect: the dialect used to parse the input expression.
2551            copy: if `False`, modify this expression instance in-place.
2552            opts: other options to use to parse the input expressions.
2553
2554        Returns:
2555            The limited subqueryable.
2556        """
2557        return (
2558            select("*")
2559            .from_(self.subquery(alias="_l_0", copy=copy))
2560            .limit(expression, dialect=dialect, copy=False, **opts)
2561        )
2562
2563    def select(
2564        self,
2565        *expressions: t.Optional[ExpOrStr],
2566        append: bool = True,
2567        dialect: DialectType = None,
2568        copy: bool = True,
2569        **opts,
2570    ) -> Union:
2571        """Append to or set the SELECT of the union recursively.
2572
2573        Example:
2574            >>> from sqlglot import parse_one
2575            >>> parse_one("select a from x union select a from y union select a from z").select("b").sql()
2576            'SELECT a, b FROM x UNION SELECT a, b FROM y UNION SELECT a, b FROM z'
2577
2578        Args:
2579            *expressions: the SQL code strings to parse.
2580                If an `Expression` instance is passed, it will be used as-is.
2581            append: if `True`, add to any existing expressions.
2582                Otherwise, this resets the expressions.
2583            dialect: the dialect used to parse the input expressions.
2584            copy: if `False`, modify this expression instance in-place.
2585            opts: other options to use to parse the input expressions.
2586
2587        Returns:
2588            Union: the modified expression.
2589        """
2590        this = self.copy() if copy else self
2591        this.this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
2592        this.expression.unnest().select(
2593            *expressions, append=append, dialect=dialect, copy=False, **opts
2594        )
2595        return this
2596
2597    @property
2598    def named_selects(self) -> t.List[str]:
2599        return self.this.unnest().named_selects
2600
2601    @property
2602    def is_star(self) -> bool:
2603        return self.this.is_star or self.expression.is_star
2604
2605    @property
2606    def selects(self) -> t.List[Expression]:
2607        return self.this.unnest().selects
2608
2609    @property
2610    def left(self):
2611        return self.this
2612
2613    @property
2614    def right(self):
2615        return self.expression
2616
2617
2618class Except(Union):
2619    pass
2620
2621
2622class Intersect(Union):
2623    pass
2624
2625
2626class Unnest(UDTF):
2627    arg_types = {
2628        "expressions": True,
2629        "alias": False,
2630        "offset": False,
2631    }
2632
2633
2634class Update(Expression):
2635    arg_types = {
2636        "with": False,
2637        "this": False,
2638        "expressions": True,
2639        "from": False,
2640        "where": False,
2641        "returning": False,
2642        "order": False,
2643        "limit": False,
2644    }
2645
2646
2647class Values(UDTF):
2648    arg_types = {
2649        "expressions": True,
2650        "ordinality": False,
2651        "alias": False,
2652    }
2653
2654
2655class Var(Expression):
2656    pass
2657
2658
2659class Version(Expression):
2660    """
2661    Time travel, iceberg, bigquery etc
2662    https://trino.io/docs/current/connector/iceberg.html?highlight=snapshot#using-snapshots
2663    https://www.databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
2664    https://cloud.google.com/bigquery/docs/reference/standard-sql/query-syntax#for_system_time_as_of
2665    https://learn.microsoft.com/en-us/sql/relational-databases/tables/querying-data-in-a-system-versioned-temporal-table?view=sql-server-ver16
2666    this is either TIMESTAMP or VERSION
2667    kind is ("AS OF", "BETWEEN")
2668    """
2669
2670    arg_types = {"this": True, "kind": True, "expression": False}
2671
2672
2673class Schema(Expression):
2674    arg_types = {"this": False, "expressions": False}
2675
2676
2677# https://dev.mysql.com/doc/refman/8.0/en/select.html
2678# https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/SELECT.html
2679class Lock(Expression):
2680    arg_types = {"update": True, "expressions": False, "wait": False}
2681
2682
2683class Select(Subqueryable):
2684    arg_types = {
2685        "with": False,
2686        "kind": False,
2687        "expressions": False,
2688        "hint": False,
2689        "distinct": False,
2690        "into": False,
2691        "from": False,
2692        **QUERY_MODIFIERS,
2693    }
2694
2695    def from_(
2696        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
2697    ) -> Select:
2698        """
2699        Set the FROM expression.
2700
2701        Example:
2702            >>> Select().from_("tbl").select("x").sql()
2703            'SELECT x FROM tbl'
2704
2705        Args:
2706            expression : the SQL code strings to parse.
2707                If a `From` instance is passed, this is used as-is.
2708                If another `Expression` instance is passed, it will be wrapped in a `From`.
2709            dialect: the dialect used to parse the input expression.
2710            copy: if `False`, modify this expression instance in-place.
2711            opts: other options to use to parse the input expressions.
2712
2713        Returns:
2714            The modified Select expression.
2715        """
2716        return _apply_builder(
2717            expression=expression,
2718            instance=self,
2719            arg="from",
2720            into=From,
2721            prefix="FROM",
2722            dialect=dialect,
2723            copy=copy,
2724            **opts,
2725        )
2726
2727    def group_by(
2728        self,
2729        *expressions: t.Optional[ExpOrStr],
2730        append: bool = True,
2731        dialect: DialectType = None,
2732        copy: bool = True,
2733        **opts,
2734    ) -> Select:
2735        """
2736        Set the GROUP BY expression.
2737
2738        Example:
2739            >>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
2740            'SELECT x, COUNT(1) FROM tbl GROUP BY x'
2741
2742        Args:
2743            *expressions: the SQL code strings to parse.
2744                If a `Group` instance is passed, this is used as-is.
2745                If another `Expression` instance is passed, it will be wrapped in a `Group`.
2746                If nothing is passed in then a group by is not applied to the expression
2747            append: if `True`, add to any existing expressions.
2748                Otherwise, this flattens all the `Group` expression into a single expression.
2749            dialect: the dialect used to parse the input expression.
2750            copy: if `False`, modify this expression instance in-place.
2751            opts: other options to use to parse the input expressions.
2752
2753        Returns:
2754            The modified Select expression.
2755        """
2756        if not expressions:
2757            return self if not copy else self.copy()
2758
2759        return _apply_child_list_builder(
2760            *expressions,
2761            instance=self,
2762            arg="group",
2763            append=append,
2764            copy=copy,
2765            prefix="GROUP BY",
2766            into=Group,
2767            dialect=dialect,
2768            **opts,
2769        )
2770
2771    def order_by(
2772        self,
2773        *expressions: t.Optional[ExpOrStr],
2774        append: bool = True,
2775        dialect: DialectType = None,
2776        copy: bool = True,
2777        **opts,
2778    ) -> Select:
2779        """
2780        Set the ORDER BY expression.
2781
2782        Example:
2783            >>> Select().from_("tbl").select("x").order_by("x DESC").sql()
2784            'SELECT x FROM tbl ORDER BY x DESC'
2785
2786        Args:
2787            *expressions: the SQL code strings to parse.
2788                If a `Group` instance is passed, this is used as-is.
2789                If another `Expression` instance is passed, it will be wrapped in a `Order`.
2790            append: if `True`, add to any existing expressions.
2791                Otherwise, this flattens all the `Order` expression into a single expression.
2792            dialect: the dialect used to parse the input expression.
2793            copy: if `False`, modify this expression instance in-place.
2794            opts: other options to use to parse the input expressions.
2795
2796        Returns:
2797            The modified Select expression.
2798        """
2799        return _apply_child_list_builder(
2800            *expressions,
2801            instance=self,
2802            arg="order",
2803            append=append,
2804            copy=copy,
2805            prefix="ORDER BY",
2806            into=Order,
2807            dialect=dialect,
2808            **opts,
2809        )
2810
2811    def sort_by(
2812        self,
2813        *expressions: t.Optional[ExpOrStr],
2814        append: bool = True,
2815        dialect: DialectType = None,
2816        copy: bool = True,
2817        **opts,
2818    ) -> Select:
2819        """
2820        Set the SORT BY expression.
2821
2822        Example:
2823            >>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
2824            'SELECT x FROM tbl SORT BY x DESC'
2825
2826        Args:
2827            *expressions: the SQL code strings to parse.
2828                If a `Group` instance is passed, this is used as-is.
2829                If another `Expression` instance is passed, it will be wrapped in a `SORT`.
2830            append: if `True`, add to any existing expressions.
2831                Otherwise, this flattens all the `Order` expression into a single expression.
2832            dialect: the dialect used to parse the input expression.
2833            copy: if `False`, modify this expression instance in-place.
2834            opts: other options to use to parse the input expressions.
2835
2836        Returns:
2837            The modified Select expression.
2838        """
2839        return _apply_child_list_builder(
2840            *expressions,
2841            instance=self,
2842            arg="sort",
2843            append=append,
2844            copy=copy,
2845            prefix="SORT BY",
2846            into=Sort,
2847            dialect=dialect,
2848            **opts,
2849        )
2850
2851    def cluster_by(
2852        self,
2853        *expressions: t.Optional[ExpOrStr],
2854        append: bool = True,
2855        dialect: DialectType = None,
2856        copy: bool = True,
2857        **opts,
2858    ) -> Select:
2859        """
2860        Set the CLUSTER BY expression.
2861
2862        Example:
2863            >>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
2864            'SELECT x FROM tbl CLUSTER BY x DESC'
2865
2866        Args:
2867            *expressions: the SQL code strings to parse.
2868                If a `Group` instance is passed, this is used as-is.
2869                If another `Expression` instance is passed, it will be wrapped in a `Cluster`.
2870            append: if `True`, add to any existing expressions.
2871                Otherwise, this flattens all the `Order` expression into a single expression.
2872            dialect: the dialect used to parse the input expression.
2873            copy: if `False`, modify this expression instance in-place.
2874            opts: other options to use to parse the input expressions.
2875
2876        Returns:
2877            The modified Select expression.
2878        """
2879        return _apply_child_list_builder(
2880            *expressions,
2881            instance=self,
2882            arg="cluster",
2883            append=append,
2884            copy=copy,
2885            prefix="CLUSTER BY",
2886            into=Cluster,
2887            dialect=dialect,
2888            **opts,
2889        )
2890
2891    def limit(
2892        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2893    ) -> Select:
2894        """
2895        Set the LIMIT expression.
2896
2897        Example:
2898            >>> Select().from_("tbl").select("x").limit(10).sql()
2899            'SELECT x FROM tbl LIMIT 10'
2900
2901        Args:
2902            expression: the SQL code string to parse.
2903                This can also be an integer.
2904                If a `Limit` instance is passed, this is used as-is.
2905                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2906            dialect: the dialect used to parse the input expression.
2907            copy: if `False`, modify this expression instance in-place.
2908            opts: other options to use to parse the input expressions.
2909
2910        Returns:
2911            Select: the modified expression.
2912        """
2913        return _apply_builder(
2914            expression=expression,
2915            instance=self,
2916            arg="limit",
2917            into=Limit,
2918            prefix="LIMIT",
2919            dialect=dialect,
2920            copy=copy,
2921            into_arg="expression",
2922            **opts,
2923        )
2924
2925    def offset(
2926        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2927    ) -> Select:
2928        """
2929        Set the OFFSET expression.
2930
2931        Example:
2932            >>> Select().from_("tbl").select("x").offset(10).sql()
2933            'SELECT x FROM tbl OFFSET 10'
2934
2935        Args:
2936            expression: the SQL code string to parse.
2937                This can also be an integer.
2938                If a `Offset` instance is passed, this is used as-is.
2939                If another `Expression` instance is passed, it will be wrapped in a `Offset`.
2940            dialect: the dialect used to parse the input expression.
2941            copy: if `False`, modify this expression instance in-place.
2942            opts: other options to use to parse the input expressions.
2943
2944        Returns:
2945            The modified Select expression.
2946        """
2947        return _apply_builder(
2948            expression=expression,
2949            instance=self,
2950            arg="offset",
2951            into=Offset,
2952            prefix="OFFSET",
2953            dialect=dialect,
2954            copy=copy,
2955            into_arg="expression",
2956            **opts,
2957        )
2958
2959    def select(
2960        self,
2961        *expressions: t.Optional[ExpOrStr],
2962        append: bool = True,
2963        dialect: DialectType = None,
2964        copy: bool = True,
2965        **opts,
2966    ) -> Select:
2967        """
2968        Append to or set the SELECT expressions.
2969
2970        Example:
2971            >>> Select().select("x", "y").sql()
2972            'SELECT x, y'
2973
2974        Args:
2975            *expressions: the SQL code strings to parse.
2976                If an `Expression` instance is passed, it will be used as-is.
2977            append: if `True`, add to any existing expressions.
2978                Otherwise, this resets the expressions.
2979            dialect: the dialect used to parse the input expressions.
2980            copy: if `False`, modify this expression instance in-place.
2981            opts: other options to use to parse the input expressions.
2982
2983        Returns:
2984            The modified Select expression.
2985        """
2986        return _apply_list_builder(
2987            *expressions,
2988            instance=self,
2989            arg="expressions",
2990            append=append,
2991            dialect=dialect,
2992            copy=copy,
2993            **opts,
2994        )
2995
2996    def lateral(
2997        self,
2998        *expressions: t.Optional[ExpOrStr],
2999        append: bool = True,
3000        dialect: DialectType = None,
3001        copy: bool = True,
3002        **opts,
3003    ) -> Select:
3004        """
3005        Append to or set the LATERAL expressions.
3006
3007        Example:
3008            >>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
3009            'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
3010
3011        Args:
3012            *expressions: the SQL code strings to parse.
3013                If an `Expression` instance is passed, it will be used as-is.
3014            append: if `True`, add to any existing expressions.
3015                Otherwise, this resets the expressions.
3016            dialect: the dialect used to parse the input expressions.
3017            copy: if `False`, modify this expression instance in-place.
3018            opts: other options to use to parse the input expressions.
3019
3020        Returns:
3021            The modified Select expression.
3022        """
3023        return _apply_list_builder(
3024            *expressions,
3025            instance=self,
3026            arg="laterals",
3027            append=append,
3028            into=Lateral,
3029            prefix="LATERAL VIEW",
3030            dialect=dialect,
3031            copy=copy,
3032            **opts,
3033        )
3034
3035    def join(
3036        self,
3037        expression: ExpOrStr,
3038        on: t.Optional[ExpOrStr] = None,
3039        using: t.Optional[ExpOrStr | t.Collection[ExpOrStr]] = None,
3040        append: bool = True,
3041        join_type: t.Optional[str] = None,
3042        join_alias: t.Optional[Identifier | str] = None,
3043        dialect: DialectType = None,
3044        copy: bool = True,
3045        **opts,
3046    ) -> Select:
3047        """
3048        Append to or set the JOIN expressions.
3049
3050        Example:
3051            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
3052            'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
3053
3054            >>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
3055            'SELECT 1 FROM a JOIN b USING (x, y, z)'
3056
3057            Use `join_type` to change the type of join:
3058
3059            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
3060            'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
3061
3062        Args:
3063            expression: the SQL code string to parse.
3064                If an `Expression` instance is passed, it will be used as-is.
3065            on: optionally specify the join "on" criteria as a SQL string.
3066                If an `Expression` instance is passed, it will be used as-is.
3067            using: optionally specify the join "using" criteria as a SQL string.
3068                If an `Expression` instance is passed, it will be used as-is.
3069            append: if `True`, add to any existing expressions.
3070                Otherwise, this resets the expressions.
3071            join_type: if set, alter the parsed join type.
3072            join_alias: an optional alias for the joined source.
3073            dialect: the dialect used to parse the input expressions.
3074            copy: if `False`, modify this expression instance in-place.
3075            opts: other options to use to parse the input expressions.
3076
3077        Returns:
3078            Select: the modified expression.
3079        """
3080        parse_args: t.Dict[str, t.Any] = {"dialect": dialect, **opts}
3081
3082        try:
3083            expression = maybe_parse(expression, into=Join, prefix="JOIN", **parse_args)
3084        except ParseError:
3085            expression = maybe_parse(expression, into=(Join, Expression), **parse_args)
3086
3087        join = expression if isinstance(expression, Join) else Join(this=expression)
3088
3089        if isinstance(join.this, Select):
3090            join.this.replace(join.this.subquery())
3091
3092        if join_type:
3093            method: t.Optional[Token]
3094            side: t.Optional[Token]
3095            kind: t.Optional[Token]
3096
3097            method, side, kind = maybe_parse(join_type, into="JOIN_TYPE", **parse_args)  # type: ignore
3098
3099            if method:
3100                join.set("method", method.text)
3101            if side:
3102                join.set("side", side.text)
3103            if kind:
3104                join.set("kind", kind.text)
3105
3106        if on:
3107            on = and_(*ensure_list(on), dialect=dialect, copy=copy, **opts)
3108            join.set("on", on)
3109
3110        if using:
3111            join = _apply_list_builder(
3112                *ensure_list(using),
3113                instance=join,
3114                arg="using",
3115                append=append,
3116                copy=copy,
3117                into=Identifier,
3118                **opts,
3119            )
3120
3121        if join_alias:
3122            join.set("this", alias_(join.this, join_alias, table=True))
3123
3124        return _apply_list_builder(
3125            join,
3126            instance=self,
3127            arg="joins",
3128            append=append,
3129            copy=copy,
3130            **opts,
3131        )
3132
3133    def where(
3134        self,
3135        *expressions: t.Optional[ExpOrStr],
3136        append: bool = True,
3137        dialect: DialectType = None,
3138        copy: bool = True,
3139        **opts,
3140    ) -> Select:
3141        """
3142        Append to or set the WHERE expressions.
3143
3144        Example:
3145            >>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
3146            "SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
3147
3148        Args:
3149            *expressions: the SQL code strings to parse.
3150                If an `Expression` instance is passed, it will be used as-is.
3151                Multiple expressions are combined with an AND operator.
3152            append: if `True`, AND the new expressions to any existing expression.
3153                Otherwise, this resets the expression.
3154            dialect: the dialect used to parse the input expressions.
3155            copy: if `False`, modify this expression instance in-place.
3156            opts: other options to use to parse the input expressions.
3157
3158        Returns:
3159            Select: the modified expression.
3160        """
3161        return _apply_conjunction_builder(
3162            *expressions,
3163            instance=self,
3164            arg="where",
3165            append=append,
3166            into=Where,
3167            dialect=dialect,
3168            copy=copy,
3169            **opts,
3170        )
3171
3172    def having(
3173        self,
3174        *expressions: t.Optional[ExpOrStr],
3175        append: bool = True,
3176        dialect: DialectType = None,
3177        copy: bool = True,
3178        **opts,
3179    ) -> Select:
3180        """
3181        Append to or set the HAVING expressions.
3182
3183        Example:
3184            >>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
3185            'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
3186
3187        Args:
3188            *expressions: the SQL code strings to parse.
3189                If an `Expression` instance is passed, it will be used as-is.
3190                Multiple expressions are combined with an AND operator.
3191            append: if `True`, AND the new expressions to any existing expression.
3192                Otherwise, this resets the expression.
3193            dialect: the dialect used to parse the input expressions.
3194            copy: if `False`, modify this expression instance in-place.
3195            opts: other options to use to parse the input expressions.
3196
3197        Returns:
3198            The modified Select expression.
3199        """
3200        return _apply_conjunction_builder(
3201            *expressions,
3202            instance=self,
3203            arg="having",
3204            append=append,
3205            into=Having,
3206            dialect=dialect,
3207            copy=copy,
3208            **opts,
3209        )
3210
3211    def window(
3212        self,
3213        *expressions: t.Optional[ExpOrStr],
3214        append: bool = True,
3215        dialect: DialectType = None,
3216        copy: bool = True,
3217        **opts,
3218    ) -> Select:
3219        return _apply_list_builder(
3220            *expressions,
3221            instance=self,
3222            arg="windows",
3223            append=append,
3224            into=Window,
3225            dialect=dialect,
3226            copy=copy,
3227            **opts,
3228        )
3229
3230    def qualify(
3231        self,
3232        *expressions: t.Optional[ExpOrStr],
3233        append: bool = True,
3234        dialect: DialectType = None,
3235        copy: bool = True,
3236        **opts,
3237    ) -> Select:
3238        return _apply_conjunction_builder(
3239            *expressions,
3240            instance=self,
3241            arg="qualify",
3242            append=append,
3243            into=Qualify,
3244            dialect=dialect,
3245            copy=copy,
3246            **opts,
3247        )
3248
3249    def distinct(
3250        self, *ons: t.Optional[ExpOrStr], distinct: bool = True, copy: bool = True
3251    ) -> Select:
3252        """
3253        Set the OFFSET expression.
3254
3255        Example:
3256            >>> Select().from_("tbl").select("x").distinct().sql()
3257            'SELECT DISTINCT x FROM tbl'
3258
3259        Args:
3260            ons: the expressions to distinct on
3261            distinct: whether the Select should be distinct
3262            copy: if `False`, modify this expression instance in-place.
3263
3264        Returns:
3265            Select: the modified expression.
3266        """
3267        instance = maybe_copy(self, copy)
3268        on = Tuple(expressions=[maybe_parse(on, copy=copy) for on in ons if on]) if ons else None
3269        instance.set("distinct", Distinct(on=on) if distinct else None)
3270        return instance
3271
3272    def ctas(
3273        self,
3274        table: ExpOrStr,
3275        properties: t.Optional[t.Dict] = None,
3276        dialect: DialectType = None,
3277        copy: bool = True,
3278        **opts,
3279    ) -> Create:
3280        """
3281        Convert this expression to a CREATE TABLE AS statement.
3282
3283        Example:
3284            >>> Select().select("*").from_("tbl").ctas("x").sql()
3285            'CREATE TABLE x AS SELECT * FROM tbl'
3286
3287        Args:
3288            table: the SQL code string to parse as the table name.
3289                If another `Expression` instance is passed, it will be used as-is.
3290            properties: an optional mapping of table properties
3291            dialect: the dialect used to parse the input table.
3292            copy: if `False`, modify this expression instance in-place.
3293            opts: other options to use to parse the input table.
3294
3295        Returns:
3296            The new Create expression.
3297        """
3298        instance = maybe_copy(self, copy)
3299        table_expression = maybe_parse(
3300            table,
3301            into=Table,
3302            dialect=dialect,
3303            **opts,
3304        )
3305        properties_expression = None
3306        if properties:
3307            properties_expression = Properties.from_dict(properties)
3308
3309        return Create(
3310            this=table_expression,
3311            kind="table",
3312            expression=instance,
3313            properties=properties_expression,
3314        )
3315
3316    def lock(self, update: bool = True, copy: bool = True) -> Select:
3317        """
3318        Set the locking read mode for this expression.
3319
3320        Examples:
3321            >>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
3322            "SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
3323
3324            >>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
3325            "SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
3326
3327        Args:
3328            update: if `True`, the locking type will be `FOR UPDATE`, else it will be `FOR SHARE`.
3329            copy: if `False`, modify this expression instance in-place.
3330
3331        Returns:
3332            The modified expression.
3333        """
3334        inst = maybe_copy(self, copy)
3335        inst.set("locks", [Lock(update=update)])
3336
3337        return inst
3338
3339    def hint(self, *hints: ExpOrStr, dialect: DialectType = None, copy: bool = True) -> Select:
3340        """
3341        Set hints for this expression.
3342
3343        Examples:
3344            >>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
3345            'SELECT /*+ BROADCAST(y) */ x FROM tbl'
3346
3347        Args:
3348            hints: The SQL code strings to parse as the hints.
3349                If an `Expression` instance is passed, it will be used as-is.
3350            dialect: The dialect used to parse the hints.
3351            copy: If `False`, modify this expression instance in-place.
3352
3353        Returns:
3354            The modified expression.
3355        """
3356        inst = maybe_copy(self, copy)
3357        inst.set(
3358            "hint", Hint(expressions=[maybe_parse(h, copy=copy, dialect=dialect) for h in hints])
3359        )
3360
3361        return inst
3362
3363    @property
3364    def named_selects(self) -> t.List[str]:
3365        return [e.output_name for e in self.expressions if e.alias_or_name]
3366
3367    @property
3368    def is_star(self) -> bool:
3369        return any(expression.is_star for expression in self.expressions)
3370
3371    @property
3372    def selects(self) -> t.List[Expression]:
3373        return self.expressions
3374
3375
3376class Subquery(DerivedTable, Unionable):
3377    arg_types = {
3378        "this": True,
3379        "alias": False,
3380        "with": False,
3381        **QUERY_MODIFIERS,
3382    }
3383
3384    def unnest(self):
3385        """
3386        Returns the first non subquery.
3387        """
3388        expression = self
3389        while isinstance(expression, Subquery):
3390            expression = expression.this
3391        return expression
3392
3393    def unwrap(self) -> Subquery:
3394        expression = self
3395        while expression.same_parent and expression.is_wrapper:
3396            expression = t.cast(Subquery, expression.parent)
3397        return expression
3398
3399    @property
3400    def is_wrapper(self) -> bool:
3401        """
3402        Whether this Subquery acts as a simple wrapper around another expression.
3403
3404        SELECT * FROM (((SELECT * FROM t)))
3405                      ^
3406                      This corresponds to a "wrapper" Subquery node
3407        """
3408        return all(v is None for k, v in self.args.items() if k != "this")
3409
3410    @property
3411    def is_star(self) -> bool:
3412        return self.this.is_star
3413
3414    @property
3415    def output_name(self) -> str:
3416        return self.alias
3417
3418
3419class TableSample(Expression):
3420    arg_types = {
3421        "this": False,
3422        "expressions": False,
3423        "method": False,
3424        "bucket_numerator": False,
3425        "bucket_denominator": False,
3426        "bucket_field": False,
3427        "percent": False,
3428        "rows": False,
3429        "size": False,
3430        "seed": False,
3431        "kind": False,
3432    }
3433
3434
3435class Tag(Expression):
3436    """Tags are used for generating arbitrary sql like SELECT <span>x</span>."""
3437
3438    arg_types = {
3439        "this": False,
3440        "prefix": False,
3441        "postfix": False,
3442    }
3443
3444
3445# Represents both the standard SQL PIVOT operator and DuckDB's "simplified" PIVOT syntax
3446# https://duckdb.org/docs/sql/statements/pivot
3447class Pivot(Expression):
3448    arg_types = {
3449        "this": False,
3450        "alias": False,
3451        "expressions": False,
3452        "field": False,
3453        "unpivot": False,
3454        "using": False,
3455        "group": False,
3456        "columns": False,
3457        "include_nulls": False,
3458    }
3459
3460
3461class Window(Condition):
3462    arg_types = {
3463        "this": True,
3464        "partition_by": False,
3465        "order": False,
3466        "spec": False,
3467        "alias": False,
3468        "over": False,
3469        "first": False,
3470    }
3471
3472
3473class WindowSpec(Expression):
3474    arg_types = {
3475        "kind": False,
3476        "start": False,
3477        "start_side": False,
3478        "end": False,
3479        "end_side": False,
3480    }
3481
3482
3483class Where(Expression):
3484    pass
3485
3486
3487class Star(Expression):
3488    arg_types = {"except": False, "replace": False}
3489
3490    @property
3491    def name(self) -> str:
3492        return "*"
3493
3494    @property
3495    def output_name(self) -> str:
3496        return self.name
3497
3498
3499class Parameter(Condition):
3500    arg_types = {"this": True, "wrapped": False}
3501
3502
3503class SessionParameter(Condition):
3504    arg_types = {"this": True, "kind": False}
3505
3506
3507class Placeholder(Condition):
3508    arg_types = {"this": False, "kind": False}
3509
3510
3511class Null(Condition):
3512    arg_types: t.Dict[str, t.Any] = {}
3513
3514    @property
3515    def name(self) -> str:
3516        return "NULL"
3517
3518
3519class Boolean(Condition):
3520    pass
3521
3522
3523class DataTypeParam(Expression):
3524    arg_types = {"this": True, "expression": False}
3525
3526
3527class DataType(Expression):
3528    arg_types = {
3529        "this": True,
3530        "expressions": False,
3531        "nested": False,
3532        "values": False,
3533        "prefix": False,
3534        "kind": False,
3535    }
3536
3537    class Type(AutoName):
3538        ARRAY = auto()
3539        BIGDECIMAL = auto()
3540        BIGINT = auto()
3541        BIGSERIAL = auto()
3542        BINARY = auto()
3543        BIT = auto()
3544        BOOLEAN = auto()
3545        CHAR = auto()
3546        DATE = auto()
3547        DATEMULTIRANGE = auto()
3548        DATERANGE = auto()
3549        DATETIME = auto()
3550        DATETIME64 = auto()
3551        DECIMAL = auto()
3552        DOUBLE = auto()
3553        ENUM = auto()
3554        ENUM8 = auto()
3555        ENUM16 = auto()
3556        FIXEDSTRING = auto()
3557        FLOAT = auto()
3558        GEOGRAPHY = auto()
3559        GEOMETRY = auto()
3560        HLLSKETCH = auto()
3561        HSTORE = auto()
3562        IMAGE = auto()
3563        INET = auto()
3564        INT = auto()
3565        INT128 = auto()
3566        INT256 = auto()
3567        INT4MULTIRANGE = auto()
3568        INT4RANGE = auto()
3569        INT8MULTIRANGE = auto()
3570        INT8RANGE = auto()
3571        INTERVAL = auto()
3572        IPADDRESS = auto()
3573        IPPREFIX = auto()
3574        JSON = auto()
3575        JSONB = auto()
3576        LONGBLOB = auto()
3577        LONGTEXT = auto()
3578        LOWCARDINALITY = auto()
3579        MAP = auto()
3580        MEDIUMBLOB = auto()
3581        MEDIUMINT = auto()
3582        MEDIUMTEXT = auto()
3583        MONEY = auto()
3584        NCHAR = auto()
3585        NESTED = auto()
3586        NULL = auto()
3587        NULLABLE = auto()
3588        NUMMULTIRANGE = auto()
3589        NUMRANGE = auto()
3590        NVARCHAR = auto()
3591        OBJECT = auto()
3592        ROWVERSION = auto()
3593        SERIAL = auto()
3594        SET = auto()
3595        SMALLINT = auto()
3596        SMALLMONEY = auto()
3597        SMALLSERIAL = auto()
3598        STRUCT = auto()
3599        SUPER = auto()
3600        TEXT = auto()
3601        TINYBLOB = auto()
3602        TINYTEXT = auto()
3603        TIME = auto()
3604        TIMETZ = auto()
3605        TIMESTAMP = auto()
3606        TIMESTAMPLTZ = auto()
3607        TIMESTAMPTZ = auto()
3608        TINYINT = auto()
3609        TSMULTIRANGE = auto()
3610        TSRANGE = auto()
3611        TSTZMULTIRANGE = auto()
3612        TSTZRANGE = auto()
3613        UBIGINT = auto()
3614        UINT = auto()
3615        UINT128 = auto()
3616        UINT256 = auto()
3617        UMEDIUMINT = auto()
3618        UDECIMAL = auto()
3619        UNIQUEIDENTIFIER = auto()
3620        UNKNOWN = auto()  # Sentinel value, useful for type annotation
3621        USERDEFINED = "USER-DEFINED"
3622        USMALLINT = auto()
3623        UTINYINT = auto()
3624        UUID = auto()
3625        VARBINARY = auto()
3626        VARCHAR = auto()
3627        VARIANT = auto()
3628        XML = auto()
3629        YEAR = auto()
3630
3631    TEXT_TYPES = {
3632        Type.CHAR,
3633        Type.NCHAR,
3634        Type.VARCHAR,
3635        Type.NVARCHAR,
3636        Type.TEXT,
3637    }
3638
3639    INTEGER_TYPES = {
3640        Type.INT,
3641        Type.TINYINT,
3642        Type.SMALLINT,
3643        Type.BIGINT,
3644        Type.INT128,
3645        Type.INT256,
3646    }
3647
3648    FLOAT_TYPES = {
3649        Type.FLOAT,
3650        Type.DOUBLE,
3651    }
3652
3653    NUMERIC_TYPES = {
3654        *INTEGER_TYPES,
3655        *FLOAT_TYPES,
3656    }
3657
3658    TEMPORAL_TYPES = {
3659        Type.TIME,
3660        Type.TIMETZ,
3661        Type.TIMESTAMP,
3662        Type.TIMESTAMPTZ,
3663        Type.TIMESTAMPLTZ,
3664        Type.DATE,
3665        Type.DATETIME,
3666        Type.DATETIME64,
3667    }
3668
3669    @classmethod
3670    def build(
3671        cls,
3672        dtype: str | DataType | DataType.Type,
3673        dialect: DialectType = None,
3674        udt: bool = False,
3675        **kwargs,
3676    ) -> DataType:
3677        """
3678        Constructs a DataType object.
3679
3680        Args:
3681            dtype: the data type of interest.
3682            dialect: the dialect to use for parsing `dtype`, in case it's a string.
3683            udt: when set to True, `dtype` will be used as-is if it can't be parsed into a
3684                DataType, thus creating a user-defined type.
3685            kawrgs: additional arguments to pass in the constructor of DataType.
3686
3687        Returns:
3688            The constructed DataType object.
3689        """
3690        from sqlglot import parse_one
3691
3692        if isinstance(dtype, str):
3693            if dtype.upper() == "UNKNOWN":
3694                return DataType(this=DataType.Type.UNKNOWN, **kwargs)
3695
3696            try:
3697                data_type_exp = parse_one(dtype, read=dialect, into=DataType)
3698            except ParseError:
3699                if udt:
3700                    return DataType(this=DataType.Type.USERDEFINED, kind=dtype, **kwargs)
3701                raise
3702        elif isinstance(dtype, DataType.Type):
3703            data_type_exp = DataType(this=dtype)
3704        elif isinstance(dtype, DataType):
3705            return dtype
3706        else:
3707            raise ValueError(f"Invalid data type: {type(dtype)}. Expected str or DataType.Type")
3708
3709        return DataType(**{**data_type_exp.args, **kwargs})
3710
3711    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3712        """
3713        Checks whether this DataType matches one of the provided data types. Nested types or precision
3714        will be compared using "structural equivalence" semantics, so e.g. array<int> != array<float>.
3715
3716        Args:
3717            dtypes: the data types to compare this DataType to.
3718
3719        Returns:
3720            True, if and only if there is a type in `dtypes` which is equal to this DataType.
3721        """
3722        for dtype in dtypes:
3723            other = DataType.build(dtype, udt=True)
3724
3725            if (
3726                other.expressions
3727                or self.this == DataType.Type.USERDEFINED
3728                or other.this == DataType.Type.USERDEFINED
3729            ):
3730                matches = self == other
3731            else:
3732                matches = self.this == other.this
3733
3734            if matches:
3735                return True
3736        return False
3737
3738
3739# https://www.postgresql.org/docs/15/datatype-pseudo.html
3740class PseudoType(DataType):
3741    arg_types = {"this": True}
3742
3743
3744# https://www.postgresql.org/docs/15/datatype-oid.html
3745class ObjectIdentifier(DataType):
3746    arg_types = {"this": True}
3747
3748
3749# WHERE x <OP> EXISTS|ALL|ANY|SOME(SELECT ...)
3750class SubqueryPredicate(Predicate):
3751    pass
3752
3753
3754class All(SubqueryPredicate):
3755    pass
3756
3757
3758class Any(SubqueryPredicate):
3759    pass
3760
3761
3762class Exists(SubqueryPredicate):
3763    pass
3764
3765
3766# Commands to interact with the databases or engines. For most of the command
3767# expressions we parse whatever comes after the command's name as a string.
3768class Command(Expression):
3769    arg_types = {"this": True, "expression": False}
3770
3771
3772class Transaction(Expression):
3773    arg_types = {"this": False, "modes": False, "mark": False}
3774
3775
3776class Commit(Expression):
3777    arg_types = {"chain": False, "this": False, "durability": False}
3778
3779
3780class Rollback(Expression):
3781    arg_types = {"savepoint": False, "this": False}
3782
3783
3784class AlterTable(Expression):
3785    arg_types = {"this": True, "actions": True, "exists": False, "only": False}
3786
3787
3788class AddConstraint(Expression):
3789    arg_types = {"this": False, "expression": False, "enforced": False}
3790
3791
3792class DropPartition(Expression):
3793    arg_types = {"expressions": True, "exists": False}
3794
3795
3796# Binary expressions like (ADD a b)
3797class Binary(Condition):
3798    arg_types = {"this": True, "expression": True}
3799
3800    @property
3801    def left(self):
3802        return self.this
3803
3804    @property
3805    def right(self):
3806        return self.expression
3807
3808
3809class Add(Binary):
3810    pass
3811
3812
3813class Connector(Binary):
3814    pass
3815
3816
3817class And(Connector):
3818    pass
3819
3820
3821class Or(Connector):
3822    pass
3823
3824
3825class BitwiseAnd(Binary):
3826    pass
3827
3828
3829class BitwiseLeftShift(Binary):
3830    pass
3831
3832
3833class BitwiseOr(Binary):
3834    pass
3835
3836
3837class BitwiseRightShift(Binary):
3838    pass
3839
3840
3841class BitwiseXor(Binary):
3842    pass
3843
3844
3845class Div(Binary):
3846    pass
3847
3848
3849class Overlaps(Binary):
3850    pass
3851
3852
3853class Dot(Binary):
3854    @property
3855    def name(self) -> str:
3856        return self.expression.name
3857
3858    @property
3859    def output_name(self) -> str:
3860        return self.name
3861
3862    @classmethod
3863    def build(self, expressions: t.Sequence[Expression]) -> Dot:
3864        """Build a Dot object with a sequence of expressions."""
3865        if len(expressions) < 2:
3866            raise ValueError(f"Dot requires >= 2 expressions.")
3867
3868        return t.cast(Dot, reduce(lambda x, y: Dot(this=x, expression=y), expressions))
3869
3870
3871class DPipe(Binary):
3872    pass
3873
3874
3875class SafeDPipe(DPipe):
3876    pass
3877
3878
3879class EQ(Binary, Predicate):
3880    pass
3881
3882
3883class NullSafeEQ(Binary, Predicate):
3884    pass
3885
3886
3887class NullSafeNEQ(Binary, Predicate):
3888    pass
3889
3890
3891class Distance(Binary):
3892    pass
3893
3894
3895class Escape(Binary):
3896    pass
3897
3898
3899class Glob(Binary, Predicate):
3900    pass
3901
3902
3903class GT(Binary, Predicate):
3904    pass
3905
3906
3907class GTE(Binary, Predicate):
3908    pass
3909
3910
3911class ILike(Binary, Predicate):
3912    pass
3913
3914
3915class ILikeAny(Binary, Predicate):
3916    pass
3917
3918
3919class IntDiv(Binary):
3920    pass
3921
3922
3923class Is(Binary, Predicate):
3924    pass
3925
3926
3927class Kwarg(Binary):
3928    """Kwarg in special functions like func(kwarg => y)."""
3929
3930
3931class Like(Binary, Predicate):
3932    pass
3933
3934
3935class LikeAny(Binary, Predicate):
3936    pass
3937
3938
3939class LT(Binary, Predicate):
3940    pass
3941
3942
3943class LTE(Binary, Predicate):
3944    pass
3945
3946
3947class Mod(Binary):
3948    pass
3949
3950
3951class Mul(Binary):
3952    pass
3953
3954
3955class NEQ(Binary, Predicate):
3956    pass
3957
3958
3959class SimilarTo(Binary, Predicate):
3960    pass
3961
3962
3963class Slice(Binary):
3964    arg_types = {"this": False, "expression": False}
3965
3966
3967class Sub(Binary):
3968    pass
3969
3970
3971class ArrayOverlaps(Binary):
3972    pass
3973
3974
3975# Unary Expressions
3976# (NOT a)
3977class Unary(Condition):
3978    pass
3979
3980
3981class BitwiseNot(Unary):
3982    pass
3983
3984
3985class Not(Unary):
3986    pass
3987
3988
3989class Paren(Unary):
3990    arg_types = {"this": True, "with": False}
3991
3992    @property
3993    def output_name(self) -> str:
3994        return self.this.name
3995
3996
3997class Neg(Unary):
3998    pass
3999
4000
4001class Alias(Expression):
4002    arg_types = {"this": True, "alias": False}
4003
4004    @property
4005    def output_name(self) -> str:
4006        return self.alias
4007
4008
4009class Aliases(Expression):
4010    arg_types = {"this": True, "expressions": True}
4011
4012    @property
4013    def aliases(self):
4014        return self.expressions
4015
4016
4017class AtTimeZone(Expression):
4018    arg_types = {"this": True, "zone": True}
4019
4020
4021class Between(Predicate):
4022    arg_types = {"this": True, "low": True, "high": True}
4023
4024
4025class Bracket(Condition):
4026    arg_types = {"this": True, "expressions": True}
4027
4028    @property
4029    def output_name(self) -> str:
4030        if len(self.expressions) == 1:
4031            return self.expressions[0].output_name
4032
4033        return super().output_name
4034
4035
4036class SafeBracket(Bracket):
4037    """Represents array lookup where OOB index yields NULL instead of causing a failure."""
4038
4039
4040class Distinct(Expression):
4041    arg_types = {"expressions": False, "on": False}
4042
4043
4044class In(Predicate):
4045    arg_types = {
4046        "this": True,
4047        "expressions": False,
4048        "query": False,
4049        "unnest": False,
4050        "field": False,
4051        "is_global": False,
4052    }
4053
4054
4055class TimeUnit(Expression):
4056    """Automatically converts unit arg into a var."""
4057
4058    arg_types = {"unit": False}
4059
4060    def __init__(self, **args):
4061        unit = args.get("unit")
4062        if isinstance(unit, (Column, Literal)):
4063            args["unit"] = Var(this=unit.name)
4064        elif isinstance(unit, Week):
4065            unit.set("this", Var(this=unit.this.name))
4066
4067        super().__init__(**args)
4068
4069    @property
4070    def unit(self) -> t.Optional[Var]:
4071        return self.args.get("unit")
4072
4073
4074class IntervalOp(TimeUnit):
4075    arg_types = {"unit": True, "expression": True}
4076
4077    def interval(self):
4078        return Interval(
4079            this=self.expression.copy(),
4080            unit=self.unit.copy(),
4081        )
4082
4083
4084# https://www.oracletutorial.com/oracle-basics/oracle-interval/
4085# https://trino.io/docs/current/language/types.html#interval-day-to-second
4086# https://docs.databricks.com/en/sql/language-manual/data-types/interval-type.html
4087class IntervalSpan(DataType):
4088    arg_types = {"this": True, "expression": True}
4089
4090
4091class Interval(TimeUnit):
4092    arg_types = {"this": False, "unit": False}
4093
4094
4095class IgnoreNulls(Expression):
4096    pass
4097
4098
4099class RespectNulls(Expression):
4100    pass
4101
4102
4103# Functions
4104class Func(Condition):
4105    """
4106    The base class for all function expressions.
4107
4108    Attributes:
4109        is_var_len_args (bool): if set to True the last argument defined in arg_types will be
4110            treated as a variable length argument and the argument's value will be stored as a list.
4111        _sql_names (list): determines the SQL name (1st item in the list) and aliases (subsequent items)
4112            for this function expression. These values are used to map this node to a name during parsing
4113            as well as to provide the function's name during SQL string generation. By default the SQL
4114            name is set to the expression's class name transformed to snake case.
4115    """
4116
4117    is_var_len_args = False
4118
4119    @classmethod
4120    def from_arg_list(cls, args):
4121        if cls.is_var_len_args:
4122            all_arg_keys = list(cls.arg_types)
4123            # If this function supports variable length argument treat the last argument as such.
4124            non_var_len_arg_keys = all_arg_keys[:-1] if cls.is_var_len_args else all_arg_keys
4125            num_non_var = len(non_var_len_arg_keys)
4126
4127            args_dict = {arg_key: arg for arg, arg_key in zip(args, non_var_len_arg_keys)}
4128            args_dict[all_arg_keys[-1]] = args[num_non_var:]
4129        else:
4130            args_dict = {arg_key: arg for arg, arg_key in zip(args, cls.arg_types)}
4131
4132        return cls(**args_dict)
4133
4134    @classmethod
4135    def sql_names(cls):
4136        if cls is Func:
4137            raise NotImplementedError(
4138                "SQL name is only supported by concrete function implementations"
4139            )
4140        if "_sql_names" not in cls.__dict__:
4141            cls._sql_names = [camel_to_snake_case(cls.__name__)]
4142        return cls._sql_names
4143
4144    @classmethod
4145    def sql_name(cls):
4146        return cls.sql_names()[0]
4147
4148    @classmethod
4149    def default_parser_mappings(cls):
4150        return {name: cls.from_arg_list for name in cls.sql_names()}
4151
4152
4153class AggFunc(Func):
4154    pass
4155
4156
4157class ParameterizedAgg(AggFunc):
4158    arg_types = {"this": True, "expressions": True, "params": True}
4159
4160
4161class Abs(Func):
4162    pass
4163
4164
4165# https://spark.apache.org/docs/latest/api/sql/index.html#transform
4166class Transform(Func):
4167    arg_types = {"this": True, "expression": True}
4168
4169
4170class Anonymous(Func):
4171    arg_types = {"this": True, "expressions": False}
4172    is_var_len_args = True
4173
4174
4175# https://docs.snowflake.com/en/sql-reference/functions/hll
4176# https://docs.aws.amazon.com/redshift/latest/dg/r_HLL_function.html
4177class Hll(AggFunc):
4178    arg_types = {"this": True, "expressions": False}
4179    is_var_len_args = True
4180
4181
4182class ApproxDistinct(AggFunc):
4183    arg_types = {"this": True, "accuracy": False}
4184    _sql_names = ["APPROX_DISTINCT", "APPROX_COUNT_DISTINCT"]
4185
4186
4187class Array(Func):
4188    arg_types = {"expressions": False}
4189    is_var_len_args = True
4190
4191
4192# https://docs.snowflake.com/en/sql-reference/functions/to_char
4193class ToChar(Func):
4194    arg_types = {"this": True, "format": False}
4195
4196
4197class GenerateSeries(Func):
4198    arg_types = {"start": True, "end": True, "step": False}
4199
4200
4201class ArrayAgg(AggFunc):
4202    pass
4203
4204
4205class ArrayAll(Func):
4206    arg_types = {"this": True, "expression": True}
4207
4208
4209class ArrayAny(Func):
4210    arg_types = {"this": True, "expression": True}
4211
4212
4213class ArrayConcat(Func):
4214    _sql_names = ["ARRAY_CONCAT", "ARRAY_CAT"]
4215    arg_types = {"this": True, "expressions": False}
4216    is_var_len_args = True
4217
4218
4219class ArrayContains(Binary, Func):
4220    pass
4221
4222
4223class ArrayContained(Binary):
4224    pass
4225
4226
4227class ArrayFilter(Func):
4228    arg_types = {"this": True, "expression": True}
4229    _sql_names = ["FILTER", "ARRAY_FILTER"]
4230
4231
4232class ArrayJoin(Func):
4233    arg_types = {"this": True, "expression": True, "null": False}
4234
4235
4236class ArraySize(Func):
4237    arg_types = {"this": True, "expression": False}
4238
4239
4240class ArraySort(Func):
4241    arg_types = {"this": True, "expression": False}
4242
4243
4244class ArraySum(Func):
4245    pass
4246
4247
4248class ArrayUnionAgg(AggFunc):
4249    pass
4250
4251
4252class Avg(AggFunc):
4253    pass
4254
4255
4256class AnyValue(AggFunc):
4257    arg_types = {"this": True, "having": False, "max": False, "ignore_nulls": False}
4258
4259
4260class First(Func):
4261    arg_types = {"this": True, "ignore_nulls": False}
4262
4263
4264class Last(Func):
4265    arg_types = {"this": True, "ignore_nulls": False}
4266
4267
4268class Case(Func):
4269    arg_types = {"this": False, "ifs": True, "default": False}
4270
4271    def when(self, condition: ExpOrStr, then: ExpOrStr, copy: bool = True, **opts) -> Case:
4272        instance = maybe_copy(self, copy)
4273        instance.append(
4274            "ifs",
4275            If(
4276                this=maybe_parse(condition, copy=copy, **opts),
4277                true=maybe_parse(then, copy=copy, **opts),
4278            ),
4279        )
4280        return instance
4281
4282    def else_(self, condition: ExpOrStr, copy: bool = True, **opts) -> Case:
4283        instance = maybe_copy(self, copy)
4284        instance.set("default", maybe_parse(condition, copy=copy, **opts))
4285        return instance
4286
4287
4288class Cast(Func):
4289    arg_types = {"this": True, "to": True, "format": False, "safe": False}
4290
4291    @property
4292    def name(self) -> str:
4293        return self.this.name
4294
4295    @property
4296    def to(self) -> DataType:
4297        return self.args["to"]
4298
4299    @property
4300    def output_name(self) -> str:
4301        return self.name
4302
4303    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
4304        """
4305        Checks whether this Cast's DataType matches one of the provided data types. Nested types
4306        like arrays or structs will be compared using "structural equivalence" semantics, so e.g.
4307        array<int> != array<float>.
4308
4309        Args:
4310            dtypes: the data types to compare this Cast's DataType to.
4311
4312        Returns:
4313            True, if and only if there is a type in `dtypes` which is equal to this Cast's DataType.
4314        """
4315        return self.to.is_type(*dtypes)
4316
4317
4318class TryCast(Cast):
4319    pass
4320
4321
4322class CastToStrType(Func):
4323    arg_types = {"this": True, "to": True}
4324
4325
4326class Collate(Binary, Func):
4327    pass
4328
4329
4330class Ceil(Func):
4331    arg_types = {"this": True, "decimals": False}
4332    _sql_names = ["CEIL", "CEILING"]
4333
4334
4335class Coalesce(Func):
4336    arg_types = {"this": True, "expressions": False}
4337    is_var_len_args = True
4338    _sql_names = ["COALESCE", "IFNULL", "NVL"]
4339
4340
4341class Chr(Func):
4342    arg_types = {"this": True, "charset": False, "expressions": False}
4343    is_var_len_args = True
4344    _sql_names = ["CHR", "CHAR"]
4345
4346
4347class Concat(Func):
4348    arg_types = {"expressions": True}
4349    is_var_len_args = True
4350
4351
4352class SafeConcat(Concat):
4353    pass
4354
4355
4356class ConcatWs(Concat):
4357    _sql_names = ["CONCAT_WS"]
4358
4359
4360class Count(AggFunc):
4361    arg_types = {"this": False, "expressions": False}
4362    is_var_len_args = True
4363
4364
4365class CountIf(AggFunc):
4366    pass
4367
4368
4369class CurrentDate(Func):
4370    arg_types = {"this": False}
4371
4372
4373class CurrentDatetime(Func):
4374    arg_types = {"this": False}
4375
4376
4377class CurrentTime(Func):
4378    arg_types = {"this": False}
4379
4380
4381class CurrentTimestamp(Func):
4382    arg_types = {"this": False}
4383
4384
4385class CurrentUser(Func):
4386    arg_types = {"this": False}
4387
4388
4389class DateAdd(Func, IntervalOp):
4390    arg_types = {"this": True, "expression": True, "unit": False}
4391
4392
4393class DateSub(Func, IntervalOp):
4394    arg_types = {"this": True, "expression": True, "unit": False}
4395
4396
4397class DateDiff(Func, TimeUnit):
4398    _sql_names = ["DATEDIFF", "DATE_DIFF"]
4399    arg_types = {"this": True, "expression": True, "unit": False}
4400
4401
4402class DateTrunc(Func):
4403    arg_types = {"unit": True, "this": True, "zone": False}
4404
4405    @property
4406    def unit(self) -> Expression:
4407        return self.args["unit"]
4408
4409
4410class DatetimeAdd(Func, IntervalOp):
4411    arg_types = {"this": True, "expression": True, "unit": False}
4412
4413
4414class DatetimeSub(Func, IntervalOp):
4415    arg_types = {"this": True, "expression": True, "unit": False}
4416
4417
4418class DatetimeDiff(Func, TimeUnit):
4419    arg_types = {"this": True, "expression": True, "unit": False}
4420
4421
4422class DatetimeTrunc(Func, TimeUnit):
4423    arg_types = {"this": True, "unit": True, "zone": False}
4424
4425
4426class DayOfWeek(Func):
4427    _sql_names = ["DAY_OF_WEEK", "DAYOFWEEK"]
4428
4429
4430class DayOfMonth(Func):
4431    _sql_names = ["DAY_OF_MONTH", "DAYOFMONTH"]
4432
4433
4434class DayOfYear(Func):
4435    _sql_names = ["DAY_OF_YEAR", "DAYOFYEAR"]
4436
4437
4438class ToDays(Func):
4439    pass
4440
4441
4442class WeekOfYear(Func):
4443    _sql_names = ["WEEK_OF_YEAR", "WEEKOFYEAR"]
4444
4445
4446class MonthsBetween(Func):
4447    arg_types = {"this": True, "expression": True, "roundoff": False}
4448
4449
4450class LastDateOfMonth(Func):
4451    pass
4452
4453
4454class Extract(Func):
4455    arg_types = {"this": True, "expression": True}
4456
4457
4458class Timestamp(Func):
4459    arg_types = {"this": False, "expression": False}
4460
4461
4462class TimestampAdd(Func, TimeUnit):
4463    arg_types = {"this": True, "expression": True, "unit": False}
4464
4465
4466class TimestampSub(Func, TimeUnit):
4467    arg_types = {"this": True, "expression": True, "unit": False}
4468
4469
4470class TimestampDiff(Func, TimeUnit):
4471    arg_types = {"this": True, "expression": True, "unit": False}
4472
4473
4474class TimestampTrunc(Func, TimeUnit):
4475    arg_types = {"this": True, "unit": True, "zone": False}
4476
4477
4478class TimeAdd(Func, TimeUnit):
4479    arg_types = {"this": True, "expression": True, "unit": False}
4480
4481
4482class TimeSub(Func, TimeUnit):
4483    arg_types = {"this": True, "expression": True, "unit": False}
4484
4485
4486class TimeDiff(Func, TimeUnit):
4487    arg_types = {"this": True, "expression": True, "unit": False}
4488
4489
4490class TimeTrunc(Func, TimeUnit):
4491    arg_types = {"this": True, "unit": True, "zone": False}
4492
4493
4494class DateFromParts(Func):
4495    _sql_names = ["DATEFROMPARTS"]
4496    arg_types = {"year": True, "month": True, "day": True}
4497
4498
4499class DateStrToDate(Func):
4500    pass
4501
4502
4503class DateToDateStr(Func):
4504    pass
4505
4506
4507class DateToDi(Func):
4508    pass
4509
4510
4511# https://cloud.google.com/bigquery/docs/reference/standard-sql/date_functions#date
4512class Date(Func):
4513    arg_types = {"this": False, "zone": False, "expressions": False}
4514    is_var_len_args = True
4515
4516
4517class Day(Func):
4518    pass
4519
4520
4521class Decode(Func):
4522    arg_types = {"this": True, "charset": True, "replace": False}
4523
4524
4525class DiToDate(Func):
4526    pass
4527
4528
4529class Encode(Func):
4530    arg_types = {"this": True, "charset": True}
4531
4532
4533class Exp(Func):
4534    pass
4535
4536
4537class Explode(Func):
4538    pass
4539
4540
4541class ExplodeOuter(Explode):
4542    pass
4543
4544
4545class Posexplode(Explode):
4546    pass
4547
4548
4549class PosexplodeOuter(Posexplode):
4550    pass
4551
4552
4553class Floor(Func):
4554    arg_types = {"this": True, "decimals": False}
4555
4556
4557class FromBase64(Func):
4558    pass
4559
4560
4561class ToBase64(Func):
4562    pass
4563
4564
4565class Greatest(Func):
4566    arg_types = {"this": True, "expressions": False}
4567    is_var_len_args = True
4568
4569
4570class GroupConcat(AggFunc):
4571    arg_types = {"this": True, "separator": False}
4572
4573
4574class Hex(Func):
4575    pass
4576
4577
4578class Xor(Connector, Func):
4579    arg_types = {"this": False, "expression": False, "expressions": False}
4580
4581
4582class If(Func):
4583    arg_types = {"this": True, "true": True, "false": False}
4584
4585
4586class Initcap(Func):
4587    arg_types = {"this": True, "expression": False}
4588
4589
4590class IsNan(Func):
4591    _sql_names = ["IS_NAN", "ISNAN"]
4592
4593
4594class FormatJson(Expression):
4595    pass
4596
4597
4598class JSONKeyValue(Expression):
4599    arg_types = {"this": True, "expression": True}
4600
4601
4602class JSONObject(Func):
4603    arg_types = {
4604        "expressions": False,
4605        "null_handling": False,
4606        "unique_keys": False,
4607        "return_type": False,
4608        "encoding": False,
4609    }
4610
4611
4612# https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/JSON_ARRAY.html
4613class JSONArray(Func):
4614    arg_types = {
4615        "expressions": True,
4616        "null_handling": False,
4617        "return_type": False,
4618        "strict": False,
4619    }
4620
4621
4622# https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/JSON_ARRAYAGG.html
4623class JSONArrayAgg(Func):
4624    arg_types = {
4625        "this": True,
4626        "order": False,
4627        "null_handling": False,
4628        "return_type": False,
4629        "strict": False,
4630    }
4631
4632
4633# https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/JSON_TABLE.html
4634# Note: parsing of JSON column definitions is currently incomplete.
4635class JSONColumnDef(Expression):
4636    arg_types = {"this": False, "kind": False, "path": False, "nested_schema": False}
4637
4638
4639class JSONSchema(Expression):
4640    arg_types = {"expressions": True}
4641
4642
4643# # https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/JSON_TABLE.html
4644class JSONTable(Func):
4645    arg_types = {
4646        "this": True,
4647        "schema": True,
4648        "path": False,
4649        "error_handling": False,
4650        "empty_handling": False,
4651    }
4652
4653
4654class OpenJSONColumnDef(Expression):
4655    arg_types = {"this": True, "kind": True, "path": False, "as_json": False}
4656
4657
4658class OpenJSON(Func):
4659    arg_types = {"this": True, "path": False, "expressions": False}
4660
4661
4662class JSONBContains(Binary):
4663    _sql_names = ["JSONB_CONTAINS"]
4664
4665
4666class JSONExtract(Binary, Func):
4667    _sql_names = ["JSON_EXTRACT"]
4668
4669
4670class JSONExtractScalar(JSONExtract):
4671    _sql_names = ["JSON_EXTRACT_SCALAR"]
4672
4673
4674class JSONBExtract(JSONExtract):
4675    _sql_names = ["JSONB_EXTRACT"]
4676
4677
4678class JSONBExtractScalar(JSONExtract):
4679    _sql_names = ["JSONB_EXTRACT_SCALAR"]
4680
4681
4682class JSONFormat(Func):
4683    arg_types = {"this": False, "options": False}
4684    _sql_names = ["JSON_FORMAT"]
4685
4686
4687# https://dev.mysql.com/doc/refman/8.0/en/json-search-functions.html#operator_member-of
4688class JSONArrayContains(Binary, Predicate, Func):
4689    _sql_names = ["JSON_ARRAY_CONTAINS"]
4690
4691
4692class ParseJSON(Func):
4693    # BigQuery, Snowflake have PARSE_JSON, Presto has JSON_PARSE
4694    _sql_names = ["PARSE_JSON", "JSON_PARSE"]
4695
4696
4697class Least(Func):
4698    arg_types = {"this": True, "expressions": False}
4699    is_var_len_args = True
4700
4701
4702class Left(Func):
4703    arg_types = {"this": True, "expression": True}
4704
4705
4706class Right(Func):
4707    arg_types = {"this": True, "expression": True}
4708
4709
4710class Length(Func):
4711    _sql_names = ["LENGTH", "LEN"]
4712
4713
4714class Levenshtein(Func):
4715    arg_types = {
4716        "this": True,
4717        "expression": False,
4718        "ins_cost": False,
4719        "del_cost": False,
4720        "sub_cost": False,
4721    }
4722
4723
4724class Ln(Func):
4725    pass
4726
4727
4728class Log(Func):
4729    arg_types = {"this": True, "expression": False}
4730
4731
4732class Log2(Func):
4733    pass
4734
4735
4736class Log10(Func):
4737    pass
4738
4739
4740class LogicalOr(AggFunc):
4741    _sql_names = ["LOGICAL_OR", "BOOL_OR", "BOOLOR_AGG"]
4742
4743
4744class LogicalAnd(AggFunc):
4745    _sql_names = ["LOGICAL_AND", "BOOL_AND", "BOOLAND_AGG"]
4746
4747
4748class Lower(Func):
4749    _sql_names = ["LOWER", "LCASE"]
4750
4751
4752class Map(Func):
4753    arg_types = {"keys": False, "values": False}
4754
4755
4756class MapFromEntries(Func):
4757    pass
4758
4759
4760class StarMap(Func):
4761    pass
4762
4763
4764class VarMap(Func):
4765    arg_types = {"keys": True, "values": True}
4766    is_var_len_args = True
4767
4768    @property
4769    def keys(self) -> t.List[Expression]:
4770        return self.args["keys"].expressions
4771
4772    @property
4773    def values(self) -> t.List[Expression]:
4774        return self.args["values"].expressions
4775
4776
4777# https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
4778class MatchAgainst(Func):
4779    arg_types = {"this": True, "expressions": True, "modifier": False}
4780
4781
4782class Max(AggFunc):
4783    arg_types = {"this": True, "expressions": False}
4784    is_var_len_args = True
4785
4786
4787class MD5(Func):
4788    _sql_names = ["MD5"]
4789
4790
4791# Represents the variant of the MD5 function that returns a binary value
4792class MD5Digest(Func):
4793    _sql_names = ["MD5_DIGEST"]
4794
4795
4796class Min(AggFunc):
4797    arg_types = {"this": True, "expressions": False}
4798    is_var_len_args = True
4799
4800
4801class Month(Func):
4802    pass
4803
4804
4805class Nvl2(Func):
4806    arg_types = {"this": True, "true": True, "false": False}
4807
4808
4809# https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-predict#mlpredict_function
4810class Predict(Func):
4811    arg_types = {"this": True, "expression": True, "params_struct": False}
4812
4813
4814class Pow(Binary, Func):
4815    _sql_names = ["POWER", "POW"]
4816
4817
4818class PercentileCont(AggFunc):
4819    arg_types = {"this": True, "expression": False}
4820
4821
4822class PercentileDisc(AggFunc):
4823    arg_types = {"this": True, "expression": False}
4824
4825
4826class Quantile(AggFunc):
4827    arg_types = {"this": True, "quantile": True}
4828
4829
4830class ApproxQuantile(Quantile):
4831    arg_types = {"this": True, "quantile": True, "accuracy": False, "weight": False}
4832
4833
4834class RangeN(Func):
4835    arg_types = {"this": True, "expressions": True, "each": False}
4836
4837
4838class ReadCSV(Func):
4839    _sql_names = ["READ_CSV"]
4840    is_var_len_args = True
4841    arg_types = {"this": True, "expressions": False}
4842
4843
4844class Reduce(Func):
4845    arg_types = {"this": True, "initial": True, "merge": True, "finish": False}
4846
4847
4848class RegexpExtract(Func):
4849    arg_types = {
4850        "this": True,
4851        "expression": True,
4852        "position": False,
4853        "occurrence": False,
4854        "parameters": False,
4855        "group": False,
4856    }
4857
4858
4859class RegexpReplace(Func):
4860    arg_types = {
4861        "this": True,
4862        "expression": True,
4863        "replacement": True,
4864        "position": False,
4865        "occurrence": False,
4866        "parameters": False,
4867    }
4868
4869
4870class RegexpLike(Binary, Func):
4871    arg_types = {"this": True, "expression": True, "flag": False}
4872
4873
4874class RegexpILike(Func):
4875    arg_types = {"this": True, "expression": True, "flag": False}
4876
4877
4878# https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.functions.split.html
4879# limit is the number of times a pattern is applied
4880class RegexpSplit(Func):
4881    arg_types = {"this": True, "expression": True, "limit": False}
4882
4883
4884class Repeat(Func):
4885    arg_types = {"this": True, "times": True}
4886
4887
4888class Round(Func):
4889    arg_types = {"this": True, "decimals": False}
4890
4891
4892class RowNumber(Func):
4893    arg_types: t.Dict[str, t.Any] = {}
4894
4895
4896class SafeDivide(Func):
4897    arg_types = {"this": True, "expression": True}
4898
4899
4900class SetAgg(AggFunc):
4901    pass
4902
4903
4904class SHA(Func):
4905    _sql_names = ["SHA", "SHA1"]
4906
4907
4908class SHA2(Func):
4909    _sql_names = ["SHA2"]
4910    arg_types = {"this": True, "length": False}
4911
4912
4913class SortArray(Func):
4914    arg_types = {"this": True, "asc": False}
4915
4916
4917class Split(Func):
4918    arg_types = {"this": True, "expression": True, "limit": False}
4919
4920
4921# Start may be omitted in the case of postgres
4922# https://www.postgresql.org/docs/9.1/functions-string.html @ Table 9-6
4923class Substring(Func):
4924    arg_types = {"this": True, "start": False, "length": False}
4925
4926
4927class StandardHash(Func):
4928    arg_types = {"this": True, "expression": False}
4929
4930
4931class StartsWith(Func):
4932    _sql_names = ["STARTS_WITH", "STARTSWITH"]
4933    arg_types = {"this": True, "expression": True}
4934
4935
4936class StrPosition(Func):
4937    arg_types = {
4938        "this": True,
4939        "substr": True,
4940        "position": False,
4941        "instance": False,
4942    }
4943
4944
4945class StrToDate(Func):
4946    arg_types = {"this": True, "format": True}
4947
4948
4949class StrToTime(Func):
4950    arg_types = {"this": True, "format": True, "zone": False}
4951
4952
4953# Spark allows unix_timestamp()
4954# https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.sql.functions.unix_timestamp.html
4955class StrToUnix(Func):
4956    arg_types = {"this": False, "format": False}
4957
4958
4959# https://prestodb.io/docs/current/functions/string.html
4960# https://spark.apache.org/docs/latest/api/sql/index.html#str_to_map
4961class StrToMap(Func):
4962    arg_types = {
4963        "this": True,
4964        "pair_delim": False,
4965        "key_value_delim": False,
4966        "duplicate_resolution_callback": False,
4967    }
4968
4969
4970class NumberToStr(Func):
4971    arg_types = {"this": True, "format": True, "culture": False}
4972
4973
4974class FromBase(Func):
4975    arg_types = {"this": True, "expression": True}
4976
4977
4978class Struct(Func):
4979    arg_types = {"expressions": True}
4980    is_var_len_args = True
4981
4982
4983class StructExtract(Func):
4984    arg_types = {"this": True, "expression": True}
4985
4986
4987# https://learn.microsoft.com/en-us/sql/t-sql/functions/stuff-transact-sql?view=sql-server-ver16
4988# https://docs.snowflake.com/en/sql-reference/functions/insert
4989class Stuff(Func):
4990    _sql_names = ["STUFF", "INSERT"]
4991    arg_types = {"this": True, "start": True, "length": True, "expression": True}
4992
4993
4994class Sum(AggFunc):
4995    pass
4996
4997
4998class Sqrt(Func):
4999    pass
5000
5001
5002class Stddev(AggFunc):
5003    pass
5004
5005
5006class StddevPop(AggFunc):
5007    pass
5008
5009
5010class StddevSamp(AggFunc):
5011    pass
5012
5013
5014class TimeToStr(Func):
5015    arg_types = {"this": True, "format": True, "culture": False}
5016
5017
5018class TimeToTimeStr(Func):
5019    pass
5020
5021
5022class TimeToUnix(Func):
5023    pass
5024
5025
5026class TimeStrToDate(Func):
5027    pass
5028
5029
5030class TimeStrToTime(Func):
5031    pass
5032
5033
5034class TimeStrToUnix(Func):
5035    pass
5036
5037
5038class Trim(Func):
5039    arg_types = {
5040        "this": True,
5041        "expression": False,
5042        "position": False,
5043        "collation": False,
5044    }
5045
5046
5047class TsOrDsAdd(Func, TimeUnit):
5048    arg_types = {"this": True, "expression": True, "unit": False}
5049
5050
5051class TsOrDsToDateStr(Func):
5052    pass
5053
5054
5055class TsOrDsToDate(Func):
5056    arg_types = {"this": True, "format": False}
5057
5058
5059class TsOrDiToDi(Func):
5060    pass
5061
5062
5063class Unhex(Func):
5064    pass
5065
5066
5067class UnixToStr(Func):
5068    arg_types = {"this": True, "format": False}
5069
5070
5071# https://prestodb.io/docs/current/functions/datetime.html
5072# presto has weird zone/hours/minutes
5073class UnixToTime(Func):
5074    arg_types = {"this": True, "scale": False, "zone": False, "hours": False, "minutes": False}
5075
5076    SECONDS = Literal.string("seconds")
5077    MILLIS = Literal.string("millis")
5078    MICROS = Literal.string("micros")
5079
5080
5081class UnixToTimeStr(Func):
5082    pass
5083
5084
5085class Upper(Func):
5086    _sql_names = ["UPPER", "UCASE"]
5087
5088
5089class Variance(AggFunc):
5090    _sql_names = ["VARIANCE", "VARIANCE_SAMP", "VAR_SAMP"]
5091
5092
5093class VariancePop(AggFunc):
5094    _sql_names = ["VARIANCE_POP", "VAR_POP"]
5095
5096
5097class Week(Func):
5098    arg_types = {"this": True, "mode": False}
5099
5100
5101class XMLTable(Func):
5102    arg_types = {"this": True, "passing": False, "columns": False, "by_ref": False}
5103
5104
5105class Year(Func):
5106    pass
5107
5108
5109class Use(Expression):
5110    arg_types = {"this": True, "kind": False}
5111
5112
5113class Merge(Expression):
5114    arg_types = {"this": True, "using": True, "on": True, "expressions": True}
5115
5116
5117class When(Func):
5118    arg_types = {"matched": True, "source": False, "condition": False, "then": True}
5119
5120
5121# https://docs.oracle.com/javadb/10.8.3.0/ref/rrefsqljnextvaluefor.html
5122# https://learn.microsoft.com/en-us/sql/t-sql/functions/next-value-for-transact-sql?view=sql-server-ver16
5123class NextValueFor(Func):
5124    arg_types = {"this": True, "order": False}
5125
5126
5127def _norm_arg(arg):
5128    return arg.lower() if type(arg) is str else arg
5129
5130
5131ALL_FUNCTIONS = subclasses(__name__, Func, (AggFunc, Anonymous, Func))
5132
5133
5134# Helpers
5135@t.overload
5136def maybe_parse(
5137    sql_or_expression: ExpOrStr,
5138    *,
5139    into: t.Type[E],
5140    dialect: DialectType = None,
5141    prefix: t.Optional[str] = None,
5142    copy: bool = False,
5143    **opts,
5144) -> E:
5145    ...
5146
5147
5148@t.overload
5149def maybe_parse(
5150    sql_or_expression: str | E,
5151    *,
5152    into: t.Optional[IntoType] = None,
5153    dialect: DialectType = None,
5154    prefix: t.Optional[str] = None,
5155    copy: bool = False,
5156    **opts,
5157) -> E:
5158    ...
5159
5160
5161def maybe_parse(
5162    sql_or_expression: ExpOrStr,
5163    *,
5164    into: t.Optional[IntoType] = None,
5165    dialect: DialectType = None,
5166    prefix: t.Optional[str] = None,
5167    copy: bool = False,
5168    **opts,
5169) -> Expression:
5170    """Gracefully handle a possible string or expression.
5171
5172    Example:
5173        >>> maybe_parse("1")
5174        (LITERAL this: 1, is_string: False)
5175        >>> maybe_parse(to_identifier("x"))
5176        (IDENTIFIER this: x, quoted: False)
5177
5178    Args:
5179        sql_or_expression: the SQL code string or an expression
5180        into: the SQLGlot Expression to parse into
5181        dialect: the dialect used to parse the input expressions (in the case that an
5182            input expression is a SQL string).
5183        prefix: a string to prefix the sql with before it gets parsed
5184            (automatically includes a space)
5185        copy: whether or not to copy the expression.
5186        **opts: other options to use to parse the input expressions (again, in the case
5187            that an input expression is a SQL string).
5188
5189    Returns:
5190        Expression: the parsed or given expression.
5191    """
5192    if isinstance(sql_or_expression, Expression):
5193        if copy:
5194            return sql_or_expression.copy()
5195        return sql_or_expression
5196
5197    if sql_or_expression is None:
5198        raise ParseError(f"SQL cannot be None")
5199
5200    import sqlglot
5201
5202    sql = str(sql_or_expression)
5203    if prefix:
5204        sql = f"{prefix} {sql}"
5205
5206    return sqlglot.parse_one(sql, read=dialect, into=into, **opts)
5207
5208
5209@t.overload
5210def maybe_copy(instance: None, copy: bool = True) -> None:
5211    ...
5212
5213
5214@t.overload
5215def maybe_copy(instance: E, copy: bool = True) -> E:
5216    ...
5217
5218
5219def maybe_copy(instance, copy=True):
5220    return instance.copy() if copy and instance else instance
5221
5222
5223def _is_wrong_expression(expression, into):
5224    return isinstance(expression, Expression) and not isinstance(expression, into)
5225
5226
5227def _apply_builder(
5228    expression,
5229    instance,
5230    arg,
5231    copy=True,
5232    prefix=None,
5233    into=None,
5234    dialect=None,
5235    into_arg="this",
5236    **opts,
5237):
5238    if _is_wrong_expression(expression, into):
5239        expression = into(**{into_arg: expression})
5240    instance = maybe_copy(instance, copy)
5241    expression = maybe_parse(
5242        sql_or_expression=expression,
5243        prefix=prefix,
5244        into=into,
5245        dialect=dialect,
5246        **opts,
5247    )
5248    instance.set(arg, expression)
5249    return instance
5250
5251
5252def _apply_child_list_builder(
5253    *expressions,
5254    instance,
5255    arg,
5256    append=True,
5257    copy=True,
5258    prefix=None,
5259    into=None,
5260    dialect=None,
5261    properties=None,
5262    **opts,
5263):
5264    instance = maybe_copy(instance, copy)
5265    parsed = []
5266    for expression in expressions:
5267        if expression is not None:
5268            if _is_wrong_expression(expression, into):
5269                expression = into(expressions=[expression])
5270
5271            expression = maybe_parse(
5272                expression,
5273                into=into,
5274                dialect=dialect,
5275                prefix=prefix,
5276                **opts,
5277            )
5278            parsed.extend(expression.expressions)
5279
5280    existing = instance.args.get(arg)
5281    if append and existing:
5282        parsed = existing.expressions + parsed
5283
5284    child = into(expressions=parsed)
5285    for k, v in (properties or {}).items():
5286        child.set(k, v)
5287    instance.set(arg, child)
5288
5289    return instance
5290
5291
5292def _apply_list_builder(
5293    *expressions,
5294    instance,
5295    arg,
5296    append=True,
5297    copy=True,
5298    prefix=None,
5299    into=None,
5300    dialect=None,
5301    **opts,
5302):
5303    inst = maybe_copy(instance, copy)
5304
5305    expressions = [
5306        maybe_parse(
5307            sql_or_expression=expression,
5308            into=into,
5309            prefix=prefix,
5310            dialect=dialect,
5311            **opts,
5312        )
5313        for expression in expressions
5314        if expression is not None
5315    ]
5316
5317    existing_expressions = inst.args.get(arg)
5318    if append and existing_expressions:
5319        expressions = existing_expressions + expressions
5320
5321    inst.set(arg, expressions)
5322    return inst
5323
5324
5325def _apply_conjunction_builder(
5326    *expressions,
5327    instance,
5328    arg,
5329    into=None,
5330    append=True,
5331    copy=True,
5332    dialect=None,
5333    **opts,
5334):
5335    expressions = [exp for exp in expressions if exp is not None and exp != ""]
5336    if not expressions:
5337        return instance
5338
5339    inst = maybe_copy(instance, copy)
5340
5341    existing = inst.args.get(arg)
5342    if append and existing is not None:
5343        expressions = [existing.this if into else existing] + list(expressions)
5344
5345    node = and_(*expressions, dialect=dialect, copy=copy, **opts)
5346
5347    inst.set(arg, into(this=node) if into else node)
5348    return inst
5349
5350
5351def _apply_cte_builder(
5352    instance: E,
5353    alias: ExpOrStr,
5354    as_: ExpOrStr,
5355    recursive: t.Optional[bool] = None,
5356    append: bool = True,
5357    dialect: DialectType = None,
5358    copy: bool = True,
5359    **opts,
5360) -> E:
5361    alias_expression = maybe_parse(alias, dialect=dialect, into=TableAlias, **opts)
5362    as_expression = maybe_parse(as_, dialect=dialect, **opts)
5363    cte = CTE(this=as_expression, alias=alias_expression)
5364    return _apply_child_list_builder(
5365        cte,
5366        instance=instance,
5367        arg="with",
5368        append=append,
5369        copy=copy,
5370        into=With,
5371        properties={"recursive": recursive or False},
5372    )
5373
5374
5375def _combine(
5376    expressions: t.Sequence[t.Optional[ExpOrStr]],
5377    operator: t.Type[Connector],
5378    dialect: DialectType = None,
5379    copy: bool = True,
5380    **opts,
5381) -> Expression:
5382    conditions = [
5383        condition(expression, dialect=dialect, copy=copy, **opts)
5384        for expression in expressions
5385        if expression is not None
5386    ]
5387
5388    this, *rest = conditions
5389    if rest:
5390        this = _wrap(this, Connector)
5391    for expression in rest:
5392        this = operator(this=this, expression=_wrap(expression, Connector))
5393
5394    return this
5395
5396
5397def _wrap(expression: E, kind: t.Type[Expression]) -> E | Paren:
5398    return Paren(this=expression) if isinstance(expression, kind) else expression
5399
5400
5401def union(
5402    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
5403) -> Union:
5404    """
5405    Initializes a syntax tree from one UNION expression.
5406
5407    Example:
5408        >>> union("SELECT * FROM foo", "SELECT * FROM bla").sql()
5409        'SELECT * FROM foo UNION SELECT * FROM bla'
5410
5411    Args:
5412        left: the SQL code string corresponding to the left-hand side.
5413            If an `Expression` instance is passed, it will be used as-is.
5414        right: the SQL code string corresponding to the right-hand side.
5415            If an `Expression` instance is passed, it will be used as-is.
5416        distinct: set the DISTINCT flag if and only if this is true.
5417        dialect: the dialect used to parse the input expression.
5418        opts: other options to use to parse the input expressions.
5419
5420    Returns:
5421        The new Union instance.
5422    """
5423    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
5424    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
5425
5426    return Union(this=left, expression=right, distinct=distinct)
5427
5428
5429def intersect(
5430    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
5431) -> Intersect:
5432    """
5433    Initializes a syntax tree from one INTERSECT expression.
5434
5435    Example:
5436        >>> intersect("SELECT * FROM foo", "SELECT * FROM bla").sql()
5437        'SELECT * FROM foo INTERSECT SELECT * FROM bla'
5438
5439    Args:
5440        left: the SQL code string corresponding to the left-hand side.
5441            If an `Expression` instance is passed, it will be used as-is.
5442        right: the SQL code string corresponding to the right-hand side.
5443            If an `Expression` instance is passed, it will be used as-is.
5444        distinct: set the DISTINCT flag if and only if this is true.
5445        dialect: the dialect used to parse the input expression.
5446        opts: other options to use to parse the input expressions.
5447
5448    Returns:
5449        The new Intersect instance.
5450    """
5451    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
5452    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
5453
5454    return Intersect(this=left, expression=right, distinct=distinct)
5455
5456
5457def except_(
5458    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
5459) -> Except:
5460    """
5461    Initializes a syntax tree from one EXCEPT expression.
5462
5463    Example:
5464        >>> except_("SELECT * FROM foo", "SELECT * FROM bla").sql()
5465        'SELECT * FROM foo EXCEPT SELECT * FROM bla'
5466
5467    Args:
5468        left: the SQL code string corresponding to the left-hand side.
5469            If an `Expression` instance is passed, it will be used as-is.
5470        right: the SQL code string corresponding to the right-hand side.
5471            If an `Expression` instance is passed, it will be used as-is.
5472        distinct: set the DISTINCT flag if and only if this is true.
5473        dialect: the dialect used to parse the input expression.
5474        opts: other options to use to parse the input expressions.
5475
5476    Returns:
5477        The new Except instance.
5478    """
5479    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
5480    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
5481
5482    return Except(this=left, expression=right, distinct=distinct)
5483
5484
5485def select(*expressions: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
5486    """
5487    Initializes a syntax tree from one or multiple SELECT expressions.
5488
5489    Example:
5490        >>> select("col1", "col2").from_("tbl").sql()
5491        'SELECT col1, col2 FROM tbl'
5492
5493    Args:
5494        *expressions: the SQL code string to parse as the expressions of a
5495            SELECT statement. If an Expression instance is passed, this is used as-is.
5496        dialect: the dialect used to parse the input expressions (in the case that an
5497            input expression is a SQL string).
5498        **opts: other options to use to parse the input expressions (again, in the case
5499            that an input expression is a SQL string).
5500
5501    Returns:
5502        Select: the syntax tree for the SELECT statement.
5503    """
5504    return Select().select(*expressions, dialect=dialect, **opts)
5505
5506
5507def from_(expression: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
5508    """
5509    Initializes a syntax tree from a FROM expression.
5510
5511    Example:
5512        >>> from_("tbl").select("col1", "col2").sql()
5513        'SELECT col1, col2 FROM tbl'
5514
5515    Args:
5516        *expression: the SQL code string to parse as the FROM expressions of a
5517            SELECT statement. If an Expression instance is passed, this is used as-is.
5518        dialect: the dialect used to parse the input expression (in the case that the
5519            input expression is a SQL string).
5520        **opts: other options to use to parse the input expressions (again, in the case
5521            that the input expression is a SQL string).
5522
5523    Returns:
5524        Select: the syntax tree for the SELECT statement.
5525    """
5526    return Select().from_(expression, dialect=dialect, **opts)
5527
5528
5529def update(
5530    table: str | Table,
5531    properties: dict,
5532    where: t.Optional[ExpOrStr] = None,
5533    from_: t.Optional[ExpOrStr] = None,
5534    dialect: DialectType = None,
5535    **opts,
5536) -> Update:
5537    """
5538    Creates an update statement.
5539
5540    Example:
5541        >>> update("my_table", {"x": 1, "y": "2", "z": None}, from_="baz", where="id > 1").sql()
5542        "UPDATE my_table SET x = 1, y = '2', z = NULL FROM baz WHERE id > 1"
5543
5544    Args:
5545        *properties: dictionary of properties to set which are
5546            auto converted to sql objects eg None -> NULL
5547        where: sql conditional parsed into a WHERE statement
5548        from_: sql statement parsed into a FROM statement
5549        dialect: the dialect used to parse the input expressions.
5550        **opts: other options to use to parse the input expressions.
5551
5552    Returns:
5553        Update: the syntax tree for the UPDATE statement.
5554    """
5555    update_expr = Update(this=maybe_parse(table, into=Table, dialect=dialect))
5556    update_expr.set(
5557        "expressions",
5558        [
5559            EQ(this=maybe_parse(k, dialect=dialect, **opts), expression=convert(v))
5560            for k, v in properties.items()
5561        ],
5562    )
5563    if from_:
5564        update_expr.set(
5565            "from",
5566            maybe_parse(from_, into=From, dialect=dialect, prefix="FROM", **opts),
5567        )
5568    if isinstance(where, Condition):
5569        where = Where(this=where)
5570    if where:
5571        update_expr.set(
5572            "where",
5573            maybe_parse(where, into=Where, dialect=dialect, prefix="WHERE", **opts),
5574        )
5575    return update_expr
5576
5577
5578def delete(
5579    table: ExpOrStr,
5580    where: t.Optional[ExpOrStr] = None,
5581    returning: t.Optional[ExpOrStr] = None,
5582    dialect: DialectType = None,
5583    **opts,
5584) -> Delete:
5585    """
5586    Builds a delete statement.
5587
5588    Example:
5589        >>> delete("my_table", where="id > 1").sql()
5590        'DELETE FROM my_table WHERE id > 1'
5591
5592    Args:
5593        where: sql conditional parsed into a WHERE statement
5594        returning: sql conditional parsed into a RETURNING statement
5595        dialect: the dialect used to parse the input expressions.
5596        **opts: other options to use to parse the input expressions.
5597
5598    Returns:
5599        Delete: the syntax tree for the DELETE statement.
5600    """
5601    delete_expr = Delete().delete(table, dialect=dialect, copy=False, **opts)
5602    if where:
5603        delete_expr = delete_expr.where(where, dialect=dialect, copy=False, **opts)
5604    if returning:
5605        delete_expr = delete_expr.returning(returning, dialect=dialect, copy=False, **opts)
5606    return delete_expr
5607
5608
5609def insert(
5610    expression: ExpOrStr,
5611    into: ExpOrStr,
5612    columns: t.Optional[t.Sequence[ExpOrStr]] = None,
5613    overwrite: t.Optional[bool] = None,
5614    dialect: DialectType = None,
5615    copy: bool = True,
5616    **opts,
5617) -> Insert:
5618    """
5619    Builds an INSERT statement.
5620
5621    Example:
5622        >>> insert("VALUES (1, 2, 3)", "tbl").sql()
5623        'INSERT INTO tbl VALUES (1, 2, 3)'
5624
5625    Args:
5626        expression: the sql string or expression of the INSERT statement
5627        into: the tbl to insert data to.
5628        columns: optionally the table's column names.
5629        overwrite: whether to INSERT OVERWRITE or not.
5630        dialect: the dialect used to parse the input expressions.
5631        copy: whether or not to copy the expression.
5632        **opts: other options to use to parse the input expressions.
5633
5634    Returns:
5635        Insert: the syntax tree for the INSERT statement.
5636    """
5637    expr = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
5638    this: Table | Schema = maybe_parse(into, into=Table, dialect=dialect, copy=copy, **opts)
5639
5640    if columns:
5641        this = _apply_list_builder(
5642            *columns,
5643            instance=Schema(this=this),
5644            arg="expressions",
5645            into=Identifier,
5646            copy=False,
5647            dialect=dialect,
5648            **opts,
5649        )
5650
5651    return Insert(this=this, expression=expr, overwrite=overwrite)
5652
5653
5654def condition(
5655    expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
5656) -> Condition:
5657    """
5658    Initialize a logical condition expression.
5659
5660    Example:
5661        >>> condition("x=1").sql()
5662        'x = 1'
5663
5664        This is helpful for composing larger logical syntax trees:
5665        >>> where = condition("x=1")
5666        >>> where = where.and_("y=1")
5667        >>> Select().from_("tbl").select("*").where(where).sql()
5668        'SELECT * FROM tbl WHERE x = 1 AND y = 1'
5669
5670    Args:
5671        *expression: the SQL code string to parse.
5672            If an Expression instance is passed, this is used as-is.
5673        dialect: the dialect used to parse the input expression (in the case that the
5674            input expression is a SQL string).
5675        copy: Whether or not to copy `expression` (only applies to expressions).
5676        **opts: other options to use to parse the input expressions (again, in the case
5677            that the input expression is a SQL string).
5678
5679    Returns:
5680        The new Condition instance
5681    """
5682    return maybe_parse(
5683        expression,
5684        into=Condition,
5685        dialect=dialect,
5686        copy=copy,
5687        **opts,
5688    )
5689
5690
5691def and_(
5692    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
5693) -> Condition:
5694    """
5695    Combine multiple conditions with an AND logical operator.
5696
5697    Example:
5698        >>> and_("x=1", and_("y=1", "z=1")).sql()
5699        'x = 1 AND (y = 1 AND z = 1)'
5700
5701    Args:
5702        *expressions: the SQL code strings to parse.
5703            If an Expression instance is passed, this is used as-is.
5704        dialect: the dialect used to parse the input expression.
5705        copy: whether or not to copy `expressions` (only applies to Expressions).
5706        **opts: other options to use to parse the input expressions.
5707
5708    Returns:
5709        And: the new condition
5710    """
5711    return t.cast(Condition, _combine(expressions, And, dialect, copy=copy, **opts))
5712
5713
5714def or_(
5715    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
5716) -> Condition:
5717    """
5718    Combine multiple conditions with an OR logical operator.
5719
5720    Example:
5721        >>> or_("x=1", or_("y=1", "z=1")).sql()
5722        'x = 1 OR (y = 1 OR z = 1)'
5723
5724    Args:
5725        *expressions: the SQL code strings to parse.
5726            If an Expression instance is passed, this is used as-is.
5727        dialect: the dialect used to parse the input expression.
5728        copy: whether or not to copy `expressions` (only applies to Expressions).
5729        **opts: other options to use to parse the input expressions.
5730
5731    Returns:
5732        Or: the new condition
5733    """
5734    return t.cast(Condition, _combine(expressions, Or, dialect, copy=copy, **opts))
5735
5736
5737def not_(expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts) -> Not:
5738    """
5739    Wrap a condition with a NOT operator.
5740
5741    Example:
5742        >>> not_("this_suit='black'").sql()
5743        "NOT this_suit = 'black'"
5744
5745    Args:
5746        expression: the SQL code string to parse.
5747            If an Expression instance is passed, this is used as-is.
5748        dialect: the dialect used to parse the input expression.
5749        copy: whether to copy the expression or not.
5750        **opts: other options to use to parse the input expressions.
5751
5752    Returns:
5753        The new condition.
5754    """
5755    this = condition(
5756        expression,
5757        dialect=dialect,
5758        copy=copy,
5759        **opts,
5760    )
5761    return Not(this=_wrap(this, Connector))
5762
5763
5764def paren(expression: ExpOrStr, copy: bool = True) -> Paren:
5765    """
5766    Wrap an expression in parentheses.
5767
5768    Example:
5769        >>> paren("5 + 3").sql()
5770        '(5 + 3)'
5771
5772    Args:
5773        expression: the SQL code string to parse.
5774            If an Expression instance is passed, this is used as-is.
5775        copy: whether to copy the expression or not.
5776
5777    Returns:
5778        The wrapped expression.
5779    """
5780    return Paren(this=maybe_parse(expression, copy=copy))
5781
5782
5783SAFE_IDENTIFIER_RE = re.compile(r"^[_a-zA-Z][\w]*$")
5784
5785
5786@t.overload
5787def to_identifier(name: None, quoted: t.Optional[bool] = None, copy: bool = True) -> None:
5788    ...
5789
5790
5791@t.overload
5792def to_identifier(
5793    name: str | Identifier, quoted: t.Optional[bool] = None, copy: bool = True
5794) -> Identifier:
5795    ...
5796
5797
5798def to_identifier(name, quoted=None, copy=True):
5799    """Builds an identifier.
5800
5801    Args:
5802        name: The name to turn into an identifier.
5803        quoted: Whether or not force quote the identifier.
5804        copy: Whether or not to copy a passed in Identefier node.
5805
5806    Returns:
5807        The identifier ast node.
5808    """
5809
5810    if name is None:
5811        return None
5812
5813    if isinstance(name, Identifier):
5814        identifier = maybe_copy(name, copy)
5815    elif isinstance(name, str):
5816        identifier = Identifier(
5817            this=name,
5818            quoted=not SAFE_IDENTIFIER_RE.match(name) if quoted is None else quoted,
5819        )
5820    else:
5821        raise ValueError(f"Name needs to be a string or an Identifier, got: {name.__class__}")
5822    return identifier
5823
5824
5825INTERVAL_STRING_RE = re.compile(r"\s*([0-9]+)\s*([a-zA-Z]+)\s*")
5826
5827
5828def to_interval(interval: str | Literal) -> Interval:
5829    """Builds an interval expression from a string like '1 day' or '5 months'."""
5830    if isinstance(interval, Literal):
5831        if not interval.is_string:
5832            raise ValueError("Invalid interval string.")
5833
5834        interval = interval.this
5835
5836    interval_parts = INTERVAL_STRING_RE.match(interval)  # type: ignore
5837
5838    if not interval_parts:
5839        raise ValueError("Invalid interval string.")
5840
5841    return Interval(
5842        this=Literal.string(interval_parts.group(1)),
5843        unit=Var(this=interval_parts.group(2)),
5844    )
5845
5846
5847@t.overload
5848def to_table(sql_path: str | Table, **kwargs) -> Table:
5849    ...
5850
5851
5852@t.overload
5853def to_table(sql_path: None, **kwargs) -> None:
5854    ...
5855
5856
5857def to_table(
5858    sql_path: t.Optional[str | Table], dialect: DialectType = None, **kwargs
5859) -> t.Optional[Table]:
5860    """
5861    Create a table expression from a `[catalog].[schema].[table]` sql path. Catalog and schema are optional.
5862    If a table is passed in then that table is returned.
5863
5864    Args:
5865        sql_path: a `[catalog].[schema].[table]` string.
5866        dialect: the source dialect according to which the table name will be parsed.
5867        kwargs: the kwargs to instantiate the resulting `Table` expression with.
5868
5869    Returns:
5870        A table expression.
5871    """
5872    if sql_path is None or isinstance(sql_path, Table):
5873        return sql_path
5874    if not isinstance(sql_path, str):
5875        raise ValueError(f"Invalid type provided for a table: {type(sql_path)}")
5876
5877    table = maybe_parse(sql_path, into=Table, dialect=dialect)
5878    if table:
5879        for k, v in kwargs.items():
5880            table.set(k, v)
5881
5882    return table
5883
5884
5885def to_column(sql_path: str | Column, **kwargs) -> Column:
5886    """
5887    Create a column from a `[table].[column]` sql path. Schema is optional.
5888
5889    If a column is passed in then that column is returned.
5890
5891    Args:
5892        sql_path: `[table].[column]` string
5893    Returns:
5894        Table: A column expression
5895    """
5896    if sql_path is None or isinstance(sql_path, Column):
5897        return sql_path
5898    if not isinstance(sql_path, str):
5899        raise ValueError(f"Invalid type provided for column: {type(sql_path)}")
5900    return column(*reversed(sql_path.split(".")), **kwargs)  # type: ignore
5901
5902
5903def alias_(
5904    expression: ExpOrStr,
5905    alias: str | Identifier,
5906    table: bool | t.Sequence[str | Identifier] = False,
5907    quoted: t.Optional[bool] = None,
5908    dialect: DialectType = None,
5909    copy: bool = True,
5910    **opts,
5911):
5912    """Create an Alias expression.
5913
5914    Example:
5915        >>> alias_('foo', 'bar').sql()
5916        'foo AS bar'
5917
5918        >>> alias_('(select 1, 2)', 'bar', table=['a', 'b']).sql()
5919        '(SELECT 1, 2) AS bar(a, b)'
5920
5921    Args:
5922        expression: the SQL code strings to parse.
5923            If an Expression instance is passed, this is used as-is.
5924        alias: the alias name to use. If the name has
5925            special characters it is quoted.
5926        table: Whether or not to create a table alias, can also be a list of columns.
5927        quoted: whether or not to quote the alias
5928        dialect: the dialect used to parse the input expression.
5929        copy: Whether or not to copy the expression.
5930        **opts: other options to use to parse the input expressions.
5931
5932    Returns:
5933        Alias: the aliased expression
5934    """
5935    exp = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
5936    alias = to_identifier(alias, quoted=quoted)
5937
5938    if table:
5939        table_alias = TableAlias(this=alias)
5940        exp.set("alias", table_alias)
5941
5942        if not isinstance(table, bool):
5943            for column in table:
5944                table_alias.append("columns", to_identifier(column, quoted=quoted))
5945
5946        return exp
5947
5948    # We don't set the "alias" arg for Window expressions, because that would add an IDENTIFIER node in
5949    # the AST, representing a "named_window" [1] construct (eg. bigquery). What we want is an ALIAS node
5950    # for the complete Window expression.
5951    #
5952    # [1]: https://cloud.google.com/bigquery/docs/reference/standard-sql/window-function-calls
5953
5954    if "alias" in exp.arg_types and not isinstance(exp, Window):
5955        exp.set("alias", alias)
5956        return exp
5957    return Alias(this=exp, alias=alias)
5958
5959
5960def subquery(
5961    expression: ExpOrStr,
5962    alias: t.Optional[Identifier | str] = None,
5963    dialect: DialectType = None,
5964    **opts,
5965) -> Select:
5966    """
5967    Build a subquery expression.
5968
5969    Example:
5970        >>> subquery('select x from tbl', 'bar').select('x').sql()
5971        'SELECT x FROM (SELECT x FROM tbl) AS bar'
5972
5973    Args:
5974        expression: the SQL code strings to parse.
5975            If an Expression instance is passed, this is used as-is.
5976        alias: the alias name to use.
5977        dialect: the dialect used to parse the input expression.
5978        **opts: other options to use to parse the input expressions.
5979
5980    Returns:
5981        A new Select instance with the subquery expression included.
5982    """
5983
5984    expression = maybe_parse(expression, dialect=dialect, **opts).subquery(alias)
5985    return Select().from_(expression, dialect=dialect, **opts)
5986
5987
5988def column(
5989    col: str | Identifier,
5990    table: t.Optional[str | Identifier] = None,
5991    db: t.Optional[str | Identifier] = None,
5992    catalog: t.Optional[str | Identifier] = None,
5993    quoted: t.Optional[bool] = None,
5994) -> Column:
5995    """
5996    Build a Column.
5997
5998    Args:
5999        col: Column name.
6000        table: Table name.
6001        db: Database name.
6002        catalog: Catalog name.
6003        quoted: Whether to force quotes on the column's identifiers.
6004
6005    Returns:
6006        The new Column instance.
6007    """
6008    return Column(
6009        this=to_identifier(col, quoted=quoted),
6010        table=to_identifier(table, quoted=quoted),
6011        db=to_identifier(db, quoted=quoted),
6012        catalog=to_identifier(catalog, quoted=quoted),
6013    )
6014
6015
6016def cast(expression: ExpOrStr, to: str | DataType | DataType.Type, **opts) -> Cast:
6017    """Cast an expression to a data type.
6018
6019    Example:
6020        >>> cast('x + 1', 'int').sql()
6021        'CAST(x + 1 AS INT)'
6022
6023    Args:
6024        expression: The expression to cast.
6025        to: The datatype to cast to.
6026
6027    Returns:
6028        The new Cast instance.
6029    """
6030    expression = maybe_parse(expression, **opts)
6031    data_type = DataType.build(to, **opts)
6032    expression = Cast(this=expression, to=data_type)
6033    expression.type = data_type
6034    return expression
6035
6036
6037def table_(
6038    table: Identifier | str,
6039    db: t.Optional[Identifier | str] = None,
6040    catalog: t.Optional[Identifier | str] = None,
6041    quoted: t.Optional[bool] = None,
6042    alias: t.Optional[Identifier | str] = None,
6043) -> Table:
6044    """Build a Table.
6045
6046    Args:
6047        table: Table name.
6048        db: Database name.
6049        catalog: Catalog name.
6050        quote: Whether to force quotes on the table's identifiers.
6051        alias: Table's alias.
6052
6053    Returns:
6054        The new Table instance.
6055    """
6056    return Table(
6057        this=to_identifier(table, quoted=quoted) if table else None,
6058        db=to_identifier(db, quoted=quoted) if db else None,
6059        catalog=to_identifier(catalog, quoted=quoted) if catalog else None,
6060        alias=TableAlias(this=to_identifier(alias)) if alias else None,
6061    )
6062
6063
6064def values(
6065    values: t.Iterable[t.Tuple[t.Any, ...]],
6066    alias: t.Optional[str] = None,
6067    columns: t.Optional[t.Iterable[str] | t.Dict[str, DataType]] = None,
6068) -> Values:
6069    """Build VALUES statement.
6070
6071    Example:
6072        >>> values([(1, '2')]).sql()
6073        "VALUES (1, '2')"
6074
6075    Args:
6076        values: values statements that will be converted to SQL
6077        alias: optional alias
6078        columns: Optional list of ordered column names or ordered dictionary of column names to types.
6079         If either are provided then an alias is also required.
6080
6081    Returns:
6082        Values: the Values expression object
6083    """
6084    if columns and not alias:
6085        raise ValueError("Alias is required when providing columns")
6086
6087    return Values(
6088        expressions=[convert(tup) for tup in values],
6089        alias=(
6090            TableAlias(this=to_identifier(alias), columns=[to_identifier(x) for x in columns])
6091            if columns
6092            else (TableAlias(this=to_identifier(alias)) if alias else None)
6093        ),
6094    )
6095
6096
6097def var(name: t.Optional[ExpOrStr]) -> Var:
6098    """Build a SQL variable.
6099
6100    Example:
6101        >>> repr(var('x'))
6102        '(VAR this: x)'
6103
6104        >>> repr(var(column('x', table='y')))
6105        '(VAR this: x)'
6106
6107    Args:
6108        name: The name of the var or an expression who's name will become the var.
6109
6110    Returns:
6111        The new variable node.
6112    """
6113    if not name:
6114        raise ValueError("Cannot convert empty name into var.")
6115
6116    if isinstance(name, Expression):
6117        name = name.name
6118    return Var(this=name)
6119
6120
6121def rename_table(old_name: str | Table, new_name: str | Table) -> AlterTable:
6122    """Build ALTER TABLE... RENAME... expression
6123
6124    Args:
6125        old_name: The old name of the table
6126        new_name: The new name of the table
6127
6128    Returns:
6129        Alter table expression
6130    """
6131    old_table = to_table(old_name)
6132    new_table = to_table(new_name)
6133    return AlterTable(
6134        this=old_table,
6135        actions=[
6136            RenameTable(this=new_table),
6137        ],
6138    )
6139
6140
6141def convert(value: t.Any, copy: bool = False) -> Expression:
6142    """Convert a python value into an expression object.
6143
6144    Raises an error if a conversion is not possible.
6145
6146    Args:
6147        value: A python object.
6148        copy: Whether or not to copy `value` (only applies to Expressions and collections).
6149
6150    Returns:
6151        Expression: the equivalent expression object.
6152    """
6153    if isinstance(value, Expression):
6154        return maybe_copy(value, copy)
6155    if isinstance(value, str):
6156        return Literal.string(value)
6157    if isinstance(value, bool):
6158        return Boolean(this=value)
6159    if value is None or (isinstance(value, float) and math.isnan(value)):
6160        return NULL
6161    if isinstance(value, numbers.Number):
6162        return Literal.number(value)
6163    if isinstance(value, datetime.datetime):
6164        datetime_literal = Literal.string(
6165            (value if value.tzinfo else value.replace(tzinfo=datetime.timezone.utc)).isoformat()
6166        )
6167        return TimeStrToTime(this=datetime_literal)
6168    if isinstance(value, datetime.date):
6169        date_literal = Literal.string(value.strftime("%Y-%m-%d"))
6170        return DateStrToDate(this=date_literal)
6171    if isinstance(value, tuple):
6172        return Tuple(expressions=[convert(v, copy=copy) for v in value])
6173    if isinstance(value, list):
6174        return Array(expressions=[convert(v, copy=copy) for v in value])
6175    if isinstance(value, dict):
6176        return Map(
6177            keys=Array(expressions=[convert(k, copy=copy) for k in value]),
6178            values=Array(expressions=[convert(v, copy=copy) for v in value.values()]),
6179        )
6180    raise ValueError(f"Cannot convert {value}")
6181
6182
6183def replace_children(expression: Expression, fun: t.Callable, *args, **kwargs) -> None:
6184    """
6185    Replace children of an expression with the result of a lambda fun(child) -> exp.
6186    """
6187    for k, v in expression.args.items():
6188        is_list_arg = type(v) is list
6189
6190        child_nodes = v if is_list_arg else [v]
6191        new_child_nodes = []
6192
6193        for cn in child_nodes:
6194            if isinstance(cn, Expression):
6195                for child_node in ensure_collection(fun(cn, *args, **kwargs)):
6196                    new_child_nodes.append(child_node)
6197                    child_node.parent = expression
6198                    child_node.arg_key = k
6199            else:
6200                new_child_nodes.append(cn)
6201
6202        expression.args[k] = new_child_nodes if is_list_arg else seq_get(new_child_nodes, 0)
6203
6204
6205def column_table_names(expression: Expression, exclude: str = "") -> t.Set[str]:
6206    """
6207    Return all table names referenced through columns in an expression.
6208
6209    Example:
6210        >>> import sqlglot
6211        >>> sorted(column_table_names(sqlglot.parse_one("a.b AND c.d AND c.e")))
6212        ['a', 'c']
6213
6214    Args:
6215        expression: expression to find table names.
6216        exclude: a table name to exclude
6217
6218    Returns:
6219        A list of unique names.
6220    """
6221    return {
6222        table
6223        for table in (column.table for column in expression.find_all(Column))
6224        if table and table != exclude
6225    }
6226
6227
6228def table_name(table: Table | str, dialect: DialectType = None) -> str:
6229    """Get the full name of a table as a string.
6230
6231    Args:
6232        table: Table expression node or string.
6233        dialect: The dialect to generate the table name for.
6234
6235    Examples:
6236        >>> from sqlglot import exp, parse_one
6237        >>> table_name(parse_one("select * from a.b.c").find(exp.Table))
6238        'a.b.c'
6239
6240    Returns:
6241        The table name.
6242    """
6243
6244    table = maybe_parse(table, into=Table, dialect=dialect)
6245
6246    if not table:
6247        raise ValueError(f"Cannot parse {table}")
6248
6249    return ".".join(
6250        part.sql(dialect=dialect, identify=True)
6251        if not SAFE_IDENTIFIER_RE.match(part.name)
6252        else part.name
6253        for part in table.parts
6254    )
6255
6256
6257def replace_tables(expression: E, mapping: t.Dict[str, str], copy: bool = True) -> E:
6258    """Replace all tables in expression according to the mapping.
6259
6260    Args:
6261        expression: expression node to be transformed and replaced.
6262        mapping: mapping of table names.
6263        copy: whether or not to copy the expression.
6264
6265    Examples:
6266        >>> from sqlglot import exp, parse_one
6267        >>> replace_tables(parse_one("select * from a.b"), {"a.b": "c"}).sql()
6268        'SELECT * FROM c'
6269
6270    Returns:
6271        The mapped expression.
6272    """
6273
6274    def _replace_tables(node: Expression) -> Expression:
6275        if isinstance(node, Table):
6276            new_name = mapping.get(table_name(node))
6277            if new_name:
6278                return to_table(
6279                    new_name,
6280                    **{k: v for k, v in node.args.items() if k not in ("this", "db", "catalog")},
6281                )
6282        return node
6283
6284    return expression.transform(_replace_tables, copy=copy)
6285
6286
6287def replace_placeholders(expression: Expression, *args, **kwargs) -> Expression:
6288    """Replace placeholders in an expression.
6289
6290    Args:
6291        expression: expression node to be transformed and replaced.
6292        args: positional names that will substitute unnamed placeholders in the given order.
6293        kwargs: keyword arguments that will substitute named placeholders.
6294
6295    Examples:
6296        >>> from sqlglot import exp, parse_one
6297        >>> replace_placeholders(
6298        ...     parse_one("select * from :tbl where ? = ?"),
6299        ...     exp.to_identifier("str_col"), "b", tbl=exp.to_identifier("foo")
6300        ... ).sql()
6301        "SELECT * FROM foo WHERE str_col = 'b'"
6302
6303    Returns:
6304        The mapped expression.
6305    """
6306
6307    def _replace_placeholders(node: Expression, args, **kwargs) -> Expression:
6308        if isinstance(node, Placeholder):
6309            if node.name:
6310                new_name = kwargs.get(node.name)
6311                if new_name:
6312                    return convert(new_name)
6313            else:
6314                try:
6315                    return convert(next(args))
6316                except StopIteration:
6317                    pass
6318        return node
6319
6320    return expression.transform(_replace_placeholders, iter(args), **kwargs)
6321
6322
6323def expand(
6324    expression: Expression, sources: t.Dict[str, Subqueryable], copy: bool = True
6325) -> Expression:
6326    """Transforms an expression by expanding all referenced sources into subqueries.
6327
6328    Examples:
6329        >>> from sqlglot import parse_one
6330        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y")}).sql()
6331        'SELECT * FROM (SELECT * FROM y) AS z /* source: x */'
6332
6333        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y"), "y": parse_one("select * from z")}).sql()
6334        'SELECT * FROM (SELECT * FROM (SELECT * FROM z) AS y /* source: y */) AS z /* source: x */'
6335
6336    Args:
6337        expression: The expression to expand.
6338        sources: A dictionary of name to Subqueryables.
6339        copy: Whether or not to copy the expression during transformation. Defaults to True.
6340
6341    Returns:
6342        The transformed expression.
6343    """
6344
6345    def _expand(node: Expression):
6346        if isinstance(node, Table):
6347            name = table_name(node)
6348            source = sources.get(name)
6349            if source:
6350                subquery = source.subquery(node.alias or name)
6351                subquery.comments = [f"source: {name}"]
6352                return subquery.transform(_expand, copy=False)
6353        return node
6354
6355    return expression.transform(_expand, copy=copy)
6356
6357
6358def func(name: str, *args, dialect: DialectType = None, **kwargs) -> Func:
6359    """
6360    Returns a Func expression.
6361
6362    Examples:
6363        >>> func("abs", 5).sql()
6364        'ABS(5)'
6365
6366        >>> func("cast", this=5, to=DataType.build("DOUBLE")).sql()
6367        'CAST(5 AS DOUBLE)'
6368
6369    Args:
6370        name: the name of the function to build.
6371        args: the args used to instantiate the function of interest.
6372        dialect: the source dialect.
6373        kwargs: the kwargs used to instantiate the function of interest.
6374
6375    Note:
6376        The arguments `args` and `kwargs` are mutually exclusive.
6377
6378    Returns:
6379        An instance of the function of interest, or an anonymous function, if `name` doesn't
6380        correspond to an existing `sqlglot.expressions.Func` class.
6381    """
6382    if args and kwargs:
6383        raise ValueError("Can't use both args and kwargs to instantiate a function.")
6384
6385    from sqlglot.dialects.dialect import Dialect
6386
6387    converted: t.List[Expression] = [maybe_parse(arg, dialect=dialect) for arg in args]
6388    kwargs = {key: maybe_parse(value, dialect=dialect) for key, value in kwargs.items()}
6389
6390    parser = Dialect.get_or_raise(dialect)().parser()
6391    from_args_list = parser.FUNCTIONS.get(name.upper())
6392
6393    if from_args_list:
6394        function = from_args_list(converted) if converted else from_args_list.__self__(**kwargs)  # type: ignore
6395    else:
6396        kwargs = kwargs or {"expressions": converted}
6397        function = Anonymous(this=name, **kwargs)
6398
6399    for error_message in function.error_messages(converted):
6400        raise ValueError(error_message)
6401
6402    return function
6403
6404
6405def true() -> Boolean:
6406    """
6407    Returns a true Boolean expression.
6408    """
6409    return Boolean(this=True)
6410
6411
6412def false() -> Boolean:
6413    """
6414    Returns a false Boolean expression.
6415    """
6416    return Boolean(this=False)
6417
6418
6419def null() -> Null:
6420    """
6421    Returns a Null expression.
6422    """
6423    return Null()
6424
6425
6426# TODO: deprecate this
6427TRUE = Boolean(this=True)
6428FALSE = Boolean(this=False)
6429NULL = Null()
SQLGLOT_META = 'sqlglot.meta'
class Expression:
 59class Expression(metaclass=_Expression):
 60    """
 61    The base class for all expressions in a syntax tree. Each Expression encapsulates any necessary
 62    context, such as its child expressions, their names (arg keys), and whether a given child expression
 63    is optional or not.
 64
 65    Attributes:
 66        key: a unique key for each class in the Expression hierarchy. This is useful for hashing
 67            and representing expressions as strings.
 68        arg_types: determines what arguments (child nodes) are supported by an expression. It
 69            maps arg keys to booleans that indicate whether the corresponding args are optional.
 70        parent: a reference to the parent expression (or None, in case of root expressions).
 71        arg_key: the arg key an expression is associated with, i.e. the name its parent expression
 72            uses to refer to it.
 73        comments: a list of comments that are associated with a given expression. This is used in
 74            order to preserve comments when transpiling SQL code.
 75        type: the `sqlglot.expressions.DataType` type of an expression. This is inferred by the
 76            optimizer, in order to enable some transformations that require type information.
 77        meta: a dictionary that can be used to store useful metadata for a given expression.
 78
 79    Example:
 80        >>> class Foo(Expression):
 81        ...     arg_types = {"this": True, "expression": False}
 82
 83        The above definition informs us that Foo is an Expression that requires an argument called
 84        "this" and may also optionally receive an argument called "expression".
 85
 86    Args:
 87        args: a mapping used for retrieving the arguments of an expression, given their arg keys.
 88    """
 89
 90    key = "expression"
 91    arg_types = {"this": True}
 92    __slots__ = ("args", "parent", "arg_key", "comments", "_type", "_meta", "_hash")
 93
 94    def __init__(self, **args: t.Any):
 95        self.args: t.Dict[str, t.Any] = args
 96        self.parent: t.Optional[Expression] = None
 97        self.arg_key: t.Optional[str] = None
 98        self.comments: t.Optional[t.List[str]] = None
 99        self._type: t.Optional[DataType] = None
100        self._meta: t.Optional[t.Dict[str, t.Any]] = None
101        self._hash: t.Optional[int] = None
102
103        for arg_key, value in self.args.items():
104            self._set_parent(arg_key, value)
105
106    def __eq__(self, other) -> bool:
107        return type(self) is type(other) and hash(self) == hash(other)
108
109    @property
110    def hashable_args(self) -> t.Any:
111        return frozenset(
112            (k, tuple(_norm_arg(a) for a in v) if type(v) is list else _norm_arg(v))
113            for k, v in self.args.items()
114            if not (v is None or v is False or (type(v) is list and not v))
115        )
116
117    def __hash__(self) -> int:
118        if self._hash is not None:
119            return self._hash
120
121        return hash((self.__class__, self.hashable_args))
122
123    @property
124    def this(self):
125        """
126        Retrieves the argument with key "this".
127        """
128        return self.args.get("this")
129
130    @property
131    def expression(self):
132        """
133        Retrieves the argument with key "expression".
134        """
135        return self.args.get("expression")
136
137    @property
138    def expressions(self):
139        """
140        Retrieves the argument with key "expressions".
141        """
142        return self.args.get("expressions") or []
143
144    def text(self, key) -> str:
145        """
146        Returns a textual representation of the argument corresponding to "key". This can only be used
147        for args that are strings or leaf Expression instances, such as identifiers and literals.
148        """
149        field = self.args.get(key)
150        if isinstance(field, str):
151            return field
152        if isinstance(field, (Identifier, Literal, Var)):
153            return field.this
154        if isinstance(field, (Star, Null)):
155            return field.name
156        return ""
157
158    @property
159    def is_string(self) -> bool:
160        """
161        Checks whether a Literal expression is a string.
162        """
163        return isinstance(self, Literal) and self.args["is_string"]
164
165    @property
166    def is_number(self) -> bool:
167        """
168        Checks whether a Literal expression is a number.
169        """
170        return isinstance(self, Literal) and not self.args["is_string"]
171
172    @property
173    def is_int(self) -> bool:
174        """
175        Checks whether a Literal expression is an integer.
176        """
177        if self.is_number:
178            try:
179                int(self.name)
180                return True
181            except ValueError:
182                pass
183        return False
184
185    @property
186    def is_star(self) -> bool:
187        """Checks whether an expression is a star."""
188        return isinstance(self, Star) or (isinstance(self, Column) and isinstance(self.this, Star))
189
190    @property
191    def alias(self) -> str:
192        """
193        Returns the alias of the expression, or an empty string if it's not aliased.
194        """
195        if isinstance(self.args.get("alias"), TableAlias):
196            return self.args["alias"].name
197        return self.text("alias")
198
199    @property
200    def alias_column_names(self) -> t.List[str]:
201        table_alias = self.args.get("alias")
202        if not table_alias:
203            return []
204        return [c.name for c in table_alias.args.get("columns") or []]
205
206    @property
207    def name(self) -> str:
208        return self.text("this")
209
210    @property
211    def alias_or_name(self) -> str:
212        return self.alias or self.name
213
214    @property
215    def output_name(self) -> str:
216        """
217        Name of the output column if this expression is a selection.
218
219        If the Expression has no output name, an empty string is returned.
220
221        Example:
222            >>> from sqlglot import parse_one
223            >>> parse_one("SELECT a").expressions[0].output_name
224            'a'
225            >>> parse_one("SELECT b AS c").expressions[0].output_name
226            'c'
227            >>> parse_one("SELECT 1 + 2").expressions[0].output_name
228            ''
229        """
230        return ""
231
232    @property
233    def type(self) -> t.Optional[DataType]:
234        return self._type
235
236    @type.setter
237    def type(self, dtype: t.Optional[DataType | DataType.Type | str]) -> None:
238        if dtype and not isinstance(dtype, DataType):
239            dtype = DataType.build(dtype)
240        self._type = dtype  # type: ignore
241
242    @property
243    def meta(self) -> t.Dict[str, t.Any]:
244        if self._meta is None:
245            self._meta = {}
246        return self._meta
247
248    def __deepcopy__(self, memo):
249        copy = self.__class__(**deepcopy(self.args))
250        if self.comments is not None:
251            copy.comments = deepcopy(self.comments)
252
253        if self._type is not None:
254            copy._type = self._type.copy()
255
256        if self._meta is not None:
257            copy._meta = deepcopy(self._meta)
258
259        return copy
260
261    def copy(self):
262        """
263        Returns a deep copy of the expression.
264        """
265        new = deepcopy(self)
266        new.parent = self.parent
267        return new
268
269    def add_comments(self, comments: t.Optional[t.List[str]]) -> None:
270        if self.comments is None:
271            self.comments = []
272        if comments:
273            for comment in comments:
274                _, *meta = comment.split(SQLGLOT_META)
275                if meta:
276                    for kv in "".join(meta).split(","):
277                        k, *v = kv.split("=")
278                        value = v[0].strip() if v else True
279                        self.meta[k.strip()] = value
280                self.comments.append(comment)
281
282    def append(self, arg_key: str, value: t.Any) -> None:
283        """
284        Appends value to arg_key if it's a list or sets it as a new list.
285
286        Args:
287            arg_key (str): name of the list expression arg
288            value (Any): value to append to the list
289        """
290        if not isinstance(self.args.get(arg_key), list):
291            self.args[arg_key] = []
292        self.args[arg_key].append(value)
293        self._set_parent(arg_key, value)
294
295    def set(self, arg_key: str, value: t.Any) -> None:
296        """
297        Sets arg_key to value.
298
299        Args:
300            arg_key: name of the expression arg.
301            value: value to set the arg to.
302        """
303        if value is None:
304            self.args.pop(arg_key, None)
305            return
306
307        self.args[arg_key] = value
308        self._set_parent(arg_key, value)
309
310    def _set_parent(self, arg_key: str, value: t.Any) -> None:
311        if hasattr(value, "parent"):
312            value.parent = self
313            value.arg_key = arg_key
314        elif type(value) is list:
315            for v in value:
316                if hasattr(v, "parent"):
317                    v.parent = self
318                    v.arg_key = arg_key
319
320    @property
321    def depth(self) -> int:
322        """
323        Returns the depth of this tree.
324        """
325        if self.parent:
326            return self.parent.depth + 1
327        return 0
328
329    def iter_expressions(self) -> t.Iterator[t.Tuple[str, Expression]]:
330        """Yields the key and expression for all arguments, exploding list args."""
331        for k, vs in self.args.items():
332            if type(vs) is list:
333                for v in vs:
334                    if hasattr(v, "parent"):
335                        yield k, v
336            else:
337                if hasattr(vs, "parent"):
338                    yield k, vs
339
340    def find(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Optional[E]:
341        """
342        Returns the first node in this tree which matches at least one of
343        the specified types.
344
345        Args:
346            expression_types: the expression type(s) to match.
347            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
348
349        Returns:
350            The node which matches the criteria or None if no such node was found.
351        """
352        return next(self.find_all(*expression_types, bfs=bfs), None)
353
354    def find_all(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Iterator[E]:
355        """
356        Returns a generator object which visits all nodes in this tree and only
357        yields those that match at least one of the specified expression types.
358
359        Args:
360            expression_types: the expression type(s) to match.
361            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
362
363        Returns:
364            The generator object.
365        """
366        for expression, *_ in self.walk(bfs=bfs):
367            if isinstance(expression, expression_types):
368                yield expression
369
370    def find_ancestor(self, *expression_types: t.Type[E]) -> t.Optional[E]:
371        """
372        Returns a nearest parent matching expression_types.
373
374        Args:
375            expression_types: the expression type(s) to match.
376
377        Returns:
378            The parent node.
379        """
380        ancestor = self.parent
381        while ancestor and not isinstance(ancestor, expression_types):
382            ancestor = ancestor.parent
383        return t.cast(E, ancestor)
384
385    @property
386    def parent_select(self) -> t.Optional[Select]:
387        """
388        Returns the parent select statement.
389        """
390        return self.find_ancestor(Select)
391
392    @property
393    def same_parent(self) -> bool:
394        """Returns if the parent is the same class as itself."""
395        return type(self.parent) is self.__class__
396
397    def root(self) -> Expression:
398        """
399        Returns the root expression of this tree.
400        """
401        expression = self
402        while expression.parent:
403            expression = expression.parent
404        return expression
405
406    def walk(self, bfs=True, prune=None):
407        """
408        Returns a generator object which visits all nodes in this tree.
409
410        Args:
411            bfs (bool): if set to True the BFS traversal order will be applied,
412                otherwise the DFS traversal will be used instead.
413            prune ((node, parent, arg_key) -> bool): callable that returns True if
414                the generator should stop traversing this branch of the tree.
415
416        Returns:
417            the generator object.
418        """
419        if bfs:
420            yield from self.bfs(prune=prune)
421        else:
422            yield from self.dfs(prune=prune)
423
424    def dfs(self, parent=None, key=None, prune=None):
425        """
426        Returns a generator object which visits all nodes in this tree in
427        the DFS (Depth-first) order.
428
429        Returns:
430            The generator object.
431        """
432        parent = parent or self.parent
433        yield self, parent, key
434        if prune and prune(self, parent, key):
435            return
436
437        for k, v in self.iter_expressions():
438            yield from v.dfs(self, k, prune)
439
440    def bfs(self, prune=None):
441        """
442        Returns a generator object which visits all nodes in this tree in
443        the BFS (Breadth-first) order.
444
445        Returns:
446            The generator object.
447        """
448        queue = deque([(self, self.parent, None)])
449
450        while queue:
451            item, parent, key = queue.popleft()
452
453            yield item, parent, key
454            if prune and prune(item, parent, key):
455                continue
456
457            for k, v in item.iter_expressions():
458                queue.append((v, item, k))
459
460    def unnest(self):
461        """
462        Returns the first non parenthesis child or self.
463        """
464        expression = self
465        while type(expression) is Paren:
466            expression = expression.this
467        return expression
468
469    def unalias(self):
470        """
471        Returns the inner expression if this is an Alias.
472        """
473        if isinstance(self, Alias):
474            return self.this
475        return self
476
477    def unnest_operands(self):
478        """
479        Returns unnested operands as a tuple.
480        """
481        return tuple(arg.unnest() for _, arg in self.iter_expressions())
482
483    def flatten(self, unnest=True):
484        """
485        Returns a generator which yields child nodes who's parents are the same class.
486
487        A AND B AND C -> [A, B, C]
488        """
489        for node, _, _ in self.dfs(prune=lambda n, p, *_: p and not type(n) is self.__class__):
490            if not type(node) is self.__class__:
491                yield node.unnest() if unnest and not isinstance(node, Subquery) else node
492
493    def __str__(self) -> str:
494        return self.sql()
495
496    def __repr__(self) -> str:
497        return self._to_s()
498
499    def sql(self, dialect: DialectType = None, **opts) -> str:
500        """
501        Returns SQL string representation of this tree.
502
503        Args:
504            dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
505            opts: other `sqlglot.generator.Generator` options.
506
507        Returns:
508            The SQL string.
509        """
510        from sqlglot.dialects import Dialect
511
512        return Dialect.get_or_raise(dialect)().generate(self, **opts)
513
514    def _to_s(self, hide_missing: bool = True, level: int = 0) -> str:
515        indent = "" if not level else "\n"
516        indent += "".join(["  "] * level)
517        left = f"({self.key.upper()} "
518
519        args: t.Dict[str, t.Any] = {
520            k: ", ".join(
521                v._to_s(hide_missing=hide_missing, level=level + 1)
522                if hasattr(v, "_to_s")
523                else str(v)
524                for v in ensure_list(vs)
525                if v is not None
526            )
527            for k, vs in self.args.items()
528        }
529        args["comments"] = self.comments
530        args["type"] = self.type
531        args = {k: v for k, v in args.items() if v or not hide_missing}
532
533        right = ", ".join(f"{k}: {v}" for k, v in args.items())
534        right += ")"
535
536        return indent + left + right
537
538    def transform(self, fun, *args, copy=True, **kwargs):
539        """
540        Recursively visits all tree nodes (excluding already transformed ones)
541        and applies the given transformation function to each node.
542
543        Args:
544            fun (function): a function which takes a node as an argument and returns a
545                new transformed node or the same node without modifications. If the function
546                returns None, then the corresponding node will be removed from the syntax tree.
547            copy (bool): if set to True a new tree instance is constructed, otherwise the tree is
548                modified in place.
549
550        Returns:
551            The transformed tree.
552        """
553        node = self.copy() if copy else self
554        new_node = fun(node, *args, **kwargs)
555
556        if new_node is None or not isinstance(new_node, Expression):
557            return new_node
558        if new_node is not node:
559            new_node.parent = node.parent
560            return new_node
561
562        replace_children(new_node, lambda child: child.transform(fun, *args, copy=False, **kwargs))
563        return new_node
564
565    @t.overload
566    def replace(self, expression: E) -> E:
567        ...
568
569    @t.overload
570    def replace(self, expression: None) -> None:
571        ...
572
573    def replace(self, expression):
574        """
575        Swap out this expression with a new expression.
576
577        For example::
578
579            >>> tree = Select().select("x").from_("tbl")
580            >>> tree.find(Column).replace(Column(this="y"))
581            (COLUMN this: y)
582            >>> tree.sql()
583            'SELECT y FROM tbl'
584
585        Args:
586            expression: new node
587
588        Returns:
589            The new expression or expressions.
590        """
591        if not self.parent:
592            return expression
593
594        parent = self.parent
595        self.parent = None
596
597        replace_children(parent, lambda child: expression if child is self else child)
598        return expression
599
600    def pop(self: E) -> E:
601        """
602        Remove this expression from its AST.
603
604        Returns:
605            The popped expression.
606        """
607        self.replace(None)
608        return self
609
610    def assert_is(self, type_: t.Type[E]) -> E:
611        """
612        Assert that this `Expression` is an instance of `type_`.
613
614        If it is NOT an instance of `type_`, this raises an assertion error.
615        Otherwise, this returns this expression.
616
617        Examples:
618            This is useful for type security in chained expressions:
619
620            >>> import sqlglot
621            >>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
622            'SELECT x, z FROM y'
623        """
624        assert isinstance(self, type_)
625        return self
626
627    def error_messages(self, args: t.Optional[t.Sequence] = None) -> t.List[str]:
628        """
629        Checks if this expression is valid (e.g. all mandatory args are set).
630
631        Args:
632            args: a sequence of values that were used to instantiate a Func expression. This is used
633                to check that the provided arguments don't exceed the function argument limit.
634
635        Returns:
636            A list of error messages for all possible errors that were found.
637        """
638        errors: t.List[str] = []
639
640        for k in self.args:
641            if k not in self.arg_types:
642                errors.append(f"Unexpected keyword: '{k}' for {self.__class__}")
643        for k, mandatory in self.arg_types.items():
644            v = self.args.get(k)
645            if mandatory and (v is None or (isinstance(v, list) and not v)):
646                errors.append(f"Required keyword: '{k}' missing for {self.__class__}")
647
648        if (
649            args
650            and isinstance(self, Func)
651            and len(args) > len(self.arg_types)
652            and not self.is_var_len_args
653        ):
654            errors.append(
655                f"The number of provided arguments ({len(args)}) is greater than "
656                f"the maximum number of supported arguments ({len(self.arg_types)})"
657            )
658
659        return errors
660
661    def dump(self):
662        """
663        Dump this Expression to a JSON-serializable dict.
664        """
665        from sqlglot.serde import dump
666
667        return dump(self)
668
669    @classmethod
670    def load(cls, obj):
671        """
672        Load a dict (as returned by `Expression.dump`) into an Expression instance.
673        """
674        from sqlglot.serde import load
675
676        return load(obj)
677
678    def and_(
679        self,
680        *expressions: t.Optional[ExpOrStr],
681        dialect: DialectType = None,
682        copy: bool = True,
683        **opts,
684    ) -> Condition:
685        """
686        AND this condition with one or multiple expressions.
687
688        Example:
689            >>> condition("x=1").and_("y=1").sql()
690            'x = 1 AND y = 1'
691
692        Args:
693            *expressions: the SQL code strings to parse.
694                If an `Expression` instance is passed, it will be used as-is.
695            dialect: the dialect used to parse the input expression.
696            copy: whether or not to copy the involved expressions (only applies to Expressions).
697            opts: other options to use to parse the input expressions.
698
699        Returns:
700            The new And condition.
701        """
702        return and_(self, *expressions, dialect=dialect, copy=copy, **opts)
703
704    def or_(
705        self,
706        *expressions: t.Optional[ExpOrStr],
707        dialect: DialectType = None,
708        copy: bool = True,
709        **opts,
710    ) -> Condition:
711        """
712        OR this condition with one or multiple expressions.
713
714        Example:
715            >>> condition("x=1").or_("y=1").sql()
716            'x = 1 OR y = 1'
717
718        Args:
719            *expressions: the SQL code strings to parse.
720                If an `Expression` instance is passed, it will be used as-is.
721            dialect: the dialect used to parse the input expression.
722            copy: whether or not to copy the involved expressions (only applies to Expressions).
723            opts: other options to use to parse the input expressions.
724
725        Returns:
726            The new Or condition.
727        """
728        return or_(self, *expressions, dialect=dialect, copy=copy, **opts)
729
730    def not_(self, copy: bool = True):
731        """
732        Wrap this condition with NOT.
733
734        Example:
735            >>> condition("x=1").not_().sql()
736            'NOT x = 1'
737
738        Args:
739            copy: whether or not to copy this object.
740
741        Returns:
742            The new Not instance.
743        """
744        return not_(self, copy=copy)
745
746    def as_(
747        self,
748        alias: str | Identifier,
749        quoted: t.Optional[bool] = None,
750        dialect: DialectType = None,
751        copy: bool = True,
752        **opts,
753    ) -> Alias:
754        return alias_(self, alias, quoted=quoted, dialect=dialect, copy=copy, **opts)
755
756    def _binop(self, klass: t.Type[E], other: t.Any, reverse: bool = False) -> E:
757        this = self.copy()
758        other = convert(other, copy=True)
759        if not isinstance(this, klass) and not isinstance(other, klass):
760            this = _wrap(this, Binary)
761            other = _wrap(other, Binary)
762        if reverse:
763            return klass(this=other, expression=this)
764        return klass(this=this, expression=other)
765
766    def __getitem__(self, other: ExpOrStr | t.Tuple[ExpOrStr]) -> Bracket:
767        return Bracket(
768            this=self.copy(), expressions=[convert(e, copy=True) for e in ensure_list(other)]
769        )
770
771    def __iter__(self) -> t.Iterator:
772        if "expressions" in self.arg_types:
773            return iter(self.args.get("expressions") or [])
774        # We define this because __getitem__ converts Expression into an iterable, which is
775        # problematic because one can hit infinite loops if they do "for x in some_expr: ..."
776        # See: https://peps.python.org/pep-0234/
777        raise TypeError(f"'{self.__class__.__name__}' object is not iterable")
778
779    def isin(
780        self,
781        *expressions: t.Any,
782        query: t.Optional[ExpOrStr] = None,
783        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
784        copy: bool = True,
785        **opts,
786    ) -> In:
787        return In(
788            this=maybe_copy(self, copy),
789            expressions=[convert(e, copy=copy) for e in expressions],
790            query=maybe_parse(query, copy=copy, **opts) if query else None,
791            unnest=Unnest(
792                expressions=[
793                    maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts) for e in ensure_list(unnest)
794                ]
795            )
796            if unnest
797            else None,
798        )
799
800    def between(self, low: t.Any, high: t.Any, copy: bool = True, **opts) -> Between:
801        return Between(
802            this=maybe_copy(self, copy),
803            low=convert(low, copy=copy, **opts),
804            high=convert(high, copy=copy, **opts),
805        )
806
807    def is_(self, other: ExpOrStr) -> Is:
808        return self._binop(Is, other)
809
810    def like(self, other: ExpOrStr) -> Like:
811        return self._binop(Like, other)
812
813    def ilike(self, other: ExpOrStr) -> ILike:
814        return self._binop(ILike, other)
815
816    def eq(self, other: t.Any) -> EQ:
817        return self._binop(EQ, other)
818
819    def neq(self, other: t.Any) -> NEQ:
820        return self._binop(NEQ, other)
821
822    def rlike(self, other: ExpOrStr) -> RegexpLike:
823        return self._binop(RegexpLike, other)
824
825    def __lt__(self, other: t.Any) -> LT:
826        return self._binop(LT, other)
827
828    def __le__(self, other: t.Any) -> LTE:
829        return self._binop(LTE, other)
830
831    def __gt__(self, other: t.Any) -> GT:
832        return self._binop(GT, other)
833
834    def __ge__(self, other: t.Any) -> GTE:
835        return self._binop(GTE, other)
836
837    def __add__(self, other: t.Any) -> Add:
838        return self._binop(Add, other)
839
840    def __radd__(self, other: t.Any) -> Add:
841        return self._binop(Add, other, reverse=True)
842
843    def __sub__(self, other: t.Any) -> Sub:
844        return self._binop(Sub, other)
845
846    def __rsub__(self, other: t.Any) -> Sub:
847        return self._binop(Sub, other, reverse=True)
848
849    def __mul__(self, other: t.Any) -> Mul:
850        return self._binop(Mul, other)
851
852    def __rmul__(self, other: t.Any) -> Mul:
853        return self._binop(Mul, other, reverse=True)
854
855    def __truediv__(self, other: t.Any) -> Div:
856        return self._binop(Div, other)
857
858    def __rtruediv__(self, other: t.Any) -> Div:
859        return self._binop(Div, other, reverse=True)
860
861    def __floordiv__(self, other: t.Any) -> IntDiv:
862        return self._binop(IntDiv, other)
863
864    def __rfloordiv__(self, other: t.Any) -> IntDiv:
865        return self._binop(IntDiv, other, reverse=True)
866
867    def __mod__(self, other: t.Any) -> Mod:
868        return self._binop(Mod, other)
869
870    def __rmod__(self, other: t.Any) -> Mod:
871        return self._binop(Mod, other, reverse=True)
872
873    def __pow__(self, other: t.Any) -> Pow:
874        return self._binop(Pow, other)
875
876    def __rpow__(self, other: t.Any) -> Pow:
877        return self._binop(Pow, other, reverse=True)
878
879    def __and__(self, other: t.Any) -> And:
880        return self._binop(And, other)
881
882    def __rand__(self, other: t.Any) -> And:
883        return self._binop(And, other, reverse=True)
884
885    def __or__(self, other: t.Any) -> Or:
886        return self._binop(Or, other)
887
888    def __ror__(self, other: t.Any) -> Or:
889        return self._binop(Or, other, reverse=True)
890
891    def __neg__(self) -> Neg:
892        return Neg(this=_wrap(self.copy(), Binary))
893
894    def __invert__(self) -> Not:
895        return not_(self.copy())

The base class for all expressions in a syntax tree. Each Expression encapsulates any necessary context, such as its child expressions, their names (arg keys), and whether a given child expression is optional or not.

Attributes:
  • key: a unique key for each class in the Expression hierarchy. This is useful for hashing and representing expressions as strings.
  • arg_types: determines what arguments (child nodes) are supported by an expression. It maps arg keys to booleans that indicate whether the corresponding args are optional.
  • parent: a reference to the parent expression (or None, in case of root expressions).
  • arg_key: the arg key an expression is associated with, i.e. the name its parent expression uses to refer to it.
  • comments: a list of comments that are associated with a given expression. This is used in order to preserve comments when transpiling SQL code.
  • type: the DataType type of an expression. This is inferred by the optimizer, in order to enable some transformations that require type information.
  • meta: a dictionary that can be used to store useful metadata for a given expression.
Example:
>>> class Foo(Expression):
...     arg_types = {"this": True, "expression": False}

The above definition informs us that Foo is an Expression that requires an argument called "this" and may also optionally receive an argument called "expression".

Arguments:
  • args: a mapping used for retrieving the arguments of an expression, given their arg keys.
Expression(**args: Any)
 94    def __init__(self, **args: t.Any):
 95        self.args: t.Dict[str, t.Any] = args
 96        self.parent: t.Optional[Expression] = None
 97        self.arg_key: t.Optional[str] = None
 98        self.comments: t.Optional[t.List[str]] = None
 99        self._type: t.Optional[DataType] = None
100        self._meta: t.Optional[t.Dict[str, t.Any]] = None
101        self._hash: t.Optional[int] = None
102
103        for arg_key, value in self.args.items():
104            self._set_parent(arg_key, value)
key = 'expression'
arg_types = {'this': True}
args: Dict[str, Any]
parent: Optional[Expression]
arg_key: Optional[str]
comments: Optional[List[str]]
hashable_args: Any
this

Retrieves the argument with key "this".

expression

Retrieves the argument with key "expression".

expressions

Retrieves the argument with key "expressions".

def text(self, key) -> str:
144    def text(self, key) -> str:
145        """
146        Returns a textual representation of the argument corresponding to "key". This can only be used
147        for args that are strings or leaf Expression instances, such as identifiers and literals.
148        """
149        field = self.args.get(key)
150        if isinstance(field, str):
151            return field
152        if isinstance(field, (Identifier, Literal, Var)):
153            return field.this
154        if isinstance(field, (Star, Null)):
155            return field.name
156        return ""

Returns a textual representation of the argument corresponding to "key". This can only be used for args that are strings or leaf Expression instances, such as identifiers and literals.

is_string: bool

Checks whether a Literal expression is a string.

is_number: bool

Checks whether a Literal expression is a number.

is_int: bool

Checks whether a Literal expression is an integer.

is_star: bool

Checks whether an expression is a star.

alias: str

Returns the alias of the expression, or an empty string if it's not aliased.

alias_column_names: List[str]
name: str
alias_or_name: str
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
type: Optional[DataType]
meta: Dict[str, Any]
def copy(self):
261    def copy(self):
262        """
263        Returns a deep copy of the expression.
264        """
265        new = deepcopy(self)
266        new.parent = self.parent
267        return new

Returns a deep copy of the expression.

def add_comments(self, comments: Optional[List[str]]) -> None:
269    def add_comments(self, comments: t.Optional[t.List[str]]) -> None:
270        if self.comments is None:
271            self.comments = []
272        if comments:
273            for comment in comments:
274                _, *meta = comment.split(SQLGLOT_META)
275                if meta:
276                    for kv in "".join(meta).split(","):
277                        k, *v = kv.split("=")
278                        value = v[0].strip() if v else True
279                        self.meta[k.strip()] = value
280                self.comments.append(comment)
def append(self, arg_key: str, value: Any) -> None:
282    def append(self, arg_key: str, value: t.Any) -> None:
283        """
284        Appends value to arg_key if it's a list or sets it as a new list.
285
286        Args:
287            arg_key (str): name of the list expression arg
288            value (Any): value to append to the list
289        """
290        if not isinstance(self.args.get(arg_key), list):
291            self.args[arg_key] = []
292        self.args[arg_key].append(value)
293        self._set_parent(arg_key, value)

Appends value to arg_key if it's a list or sets it as a new list.

Arguments:
  • arg_key (str): name of the list expression arg
  • value (Any): value to append to the list
def set(self, arg_key: str, value: Any) -> None:
295    def set(self, arg_key: str, value: t.Any) -> None:
296        """
297        Sets arg_key to value.
298
299        Args:
300            arg_key: name of the expression arg.
301            value: value to set the arg to.
302        """
303        if value is None:
304            self.args.pop(arg_key, None)
305            return
306
307        self.args[arg_key] = value
308        self._set_parent(arg_key, value)

Sets arg_key to value.

Arguments:
  • arg_key: name of the expression arg.
  • value: value to set the arg to.
depth: int

Returns the depth of this tree.

def iter_expressions(self) -> Iterator[Tuple[str, Expression]]:
329    def iter_expressions(self) -> t.Iterator[t.Tuple[str, Expression]]:
330        """Yields the key and expression for all arguments, exploding list args."""
331        for k, vs in self.args.items():
332            if type(vs) is list:
333                for v in vs:
334                    if hasattr(v, "parent"):
335                        yield k, v
336            else:
337                if hasattr(vs, "parent"):
338                    yield k, vs

Yields the key and expression for all arguments, exploding list args.

def find(self, *expression_types: Type[~E], bfs: bool = True) -> Optional[~E]:
340    def find(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Optional[E]:
341        """
342        Returns the first node in this tree which matches at least one of
343        the specified types.
344
345        Args:
346            expression_types: the expression type(s) to match.
347            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
348
349        Returns:
350            The node which matches the criteria or None if no such node was found.
351        """
352        return next(self.find_all(*expression_types, bfs=bfs), None)

Returns the first node in this tree which matches at least one of the specified types.

Arguments:
  • expression_types: the expression type(s) to match.
  • bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
Returns:

The node which matches the criteria or None if no such node was found.

def find_all(self, *expression_types: Type[~E], bfs: bool = True) -> Iterator[~E]:
354    def find_all(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Iterator[E]:
355        """
356        Returns a generator object which visits all nodes in this tree and only
357        yields those that match at least one of the specified expression types.
358
359        Args:
360            expression_types: the expression type(s) to match.
361            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
362
363        Returns:
364            The generator object.
365        """
366        for expression, *_ in self.walk(bfs=bfs):
367            if isinstance(expression, expression_types):
368                yield expression

Returns a generator object which visits all nodes in this tree and only yields those that match at least one of the specified expression types.

Arguments:
  • expression_types: the expression type(s) to match.
  • bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
Returns:

The generator object.

def find_ancestor(self, *expression_types: Type[~E]) -> Optional[~E]:
370    def find_ancestor(self, *expression_types: t.Type[E]) -> t.Optional[E]:
371        """
372        Returns a nearest parent matching expression_types.
373
374        Args:
375            expression_types: the expression type(s) to match.
376
377        Returns:
378            The parent node.
379        """
380        ancestor = self.parent
381        while ancestor and not isinstance(ancestor, expression_types):
382            ancestor = ancestor.parent
383        return t.cast(E, ancestor)

Returns a nearest parent matching expression_types.

Arguments:
  • expression_types: the expression type(s) to match.
Returns:

The parent node.

parent_select: Optional[Select]

Returns the parent select statement.

same_parent: bool

Returns if the parent is the same class as itself.

def root(self) -> Expression:
397    def root(self) -> Expression:
398        """
399        Returns the root expression of this tree.
400        """
401        expression = self
402        while expression.parent:
403            expression = expression.parent
404        return expression

Returns the root expression of this tree.

def walk(self, bfs=True, prune=None):
406    def walk(self, bfs=True, prune=None):
407        """
408        Returns a generator object which visits all nodes in this tree.
409
410        Args:
411            bfs (bool): if set to True the BFS traversal order will be applied,
412                otherwise the DFS traversal will be used instead.
413            prune ((node, parent, arg_key) -> bool): callable that returns True if
414                the generator should stop traversing this branch of the tree.
415
416        Returns:
417            the generator object.
418        """
419        if bfs:
420            yield from self.bfs(prune=prune)
421        else:
422            yield from self.dfs(prune=prune)

Returns a generator object which visits all nodes in this tree.

Arguments:
  • bfs (bool): if set to True the BFS traversal order will be applied, otherwise the DFS traversal will be used instead.
  • prune ((node, parent, arg_key) -> bool): callable that returns True if the generator should stop traversing this branch of the tree.
Returns:

the generator object.

def dfs(self, parent=None, key=None, prune=None):
424    def dfs(self, parent=None, key=None, prune=None):
425        """
426        Returns a generator object which visits all nodes in this tree in
427        the DFS (Depth-first) order.
428
429        Returns:
430            The generator object.
431        """
432        parent = parent or self.parent
433        yield self, parent, key
434        if prune and prune(self, parent, key):
435            return
436
437        for k, v in self.iter_expressions():
438            yield from v.dfs(self, k, prune)

Returns a generator object which visits all nodes in this tree in the DFS (Depth-first) order.

Returns:

The generator object.

def bfs(self, prune=None):
440    def bfs(self, prune=None):
441        """
442        Returns a generator object which visits all nodes in this tree in
443        the BFS (Breadth-first) order.
444
445        Returns:
446            The generator object.
447        """
448        queue = deque([(self, self.parent, None)])
449
450        while queue:
451            item, parent, key = queue.popleft()
452
453            yield item, parent, key
454            if prune and prune(item, parent, key):
455                continue
456
457            for k, v in item.iter_expressions():
458                queue.append((v, item, k))

Returns a generator object which visits all nodes in this tree in the BFS (Breadth-first) order.

Returns:

The generator object.

def unnest(self):
460    def unnest(self):
461        """
462        Returns the first non parenthesis child or self.
463        """
464        expression = self
465        while type(expression) is Paren:
466            expression = expression.this
467        return expression

Returns the first non parenthesis child or self.

def unalias(self):
469    def unalias(self):
470        """
471        Returns the inner expression if this is an Alias.
472        """
473        if isinstance(self, Alias):
474            return self.this
475        return self

Returns the inner expression if this is an Alias.

def unnest_operands(self):
477    def unnest_operands(self):
478        """
479        Returns unnested operands as a tuple.
480        """
481        return tuple(arg.unnest() for _, arg in self.iter_expressions())

Returns unnested operands as a tuple.

def flatten(self, unnest=True):
483    def flatten(self, unnest=True):
484        """
485        Returns a generator which yields child nodes who's parents are the same class.
486
487        A AND B AND C -> [A, B, C]
488        """
489        for node, _, _ in self.dfs(prune=lambda n, p, *_: p and not type(n) is self.__class__):
490            if not type(node) is self.__class__:
491                yield node.unnest() if unnest and not isinstance(node, Subquery) else node

Returns a generator which yields child nodes who's parents are the same class.

A AND B AND C -> [A, B, C]

def sql( self, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> str:
499    def sql(self, dialect: DialectType = None, **opts) -> str:
500        """
501        Returns SQL string representation of this tree.
502
503        Args:
504            dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
505            opts: other `sqlglot.generator.Generator` options.
506
507        Returns:
508            The SQL string.
509        """
510        from sqlglot.dialects import Dialect
511
512        return Dialect.get_or_raise(dialect)().generate(self, **opts)

Returns SQL string representation of this tree.

Arguments:
  • dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
  • opts: other sqlglot.generator.Generator options.
Returns:

The SQL string.

def transform(self, fun, *args, copy=True, **kwargs):
538    def transform(self, fun, *args, copy=True, **kwargs):
539        """
540        Recursively visits all tree nodes (excluding already transformed ones)
541        and applies the given transformation function to each node.
542
543        Args:
544            fun (function): a function which takes a node as an argument and returns a
545                new transformed node or the same node without modifications. If the function
546                returns None, then the corresponding node will be removed from the syntax tree.
547            copy (bool): if set to True a new tree instance is constructed, otherwise the tree is
548                modified in place.
549
550        Returns:
551            The transformed tree.
552        """
553        node = self.copy() if copy else self
554        new_node = fun(node, *args, **kwargs)
555
556        if new_node is None or not isinstance(new_node, Expression):
557            return new_node
558        if new_node is not node:
559            new_node.parent = node.parent
560            return new_node
561
562        replace_children(new_node, lambda child: child.transform(fun, *args, copy=False, **kwargs))
563        return new_node

Recursively visits all tree nodes (excluding already transformed ones) and applies the given transformation function to each node.

Arguments:
  • fun (function): a function which takes a node as an argument and returns a new transformed node or the same node without modifications. If the function returns None, then the corresponding node will be removed from the syntax tree.
  • copy (bool): if set to True a new tree instance is constructed, otherwise the tree is modified in place.
Returns:

The transformed tree.

def replace(self, expression):
573    def replace(self, expression):
574        """
575        Swap out this expression with a new expression.
576
577        For example::
578
579            >>> tree = Select().select("x").from_("tbl")
580            >>> tree.find(Column).replace(Column(this="y"))
581            (COLUMN this: y)
582            >>> tree.sql()
583            'SELECT y FROM tbl'
584
585        Args:
586            expression: new node
587
588        Returns:
589            The new expression or expressions.
590        """
591        if not self.parent:
592            return expression
593
594        parent = self.parent
595        self.parent = None
596
597        replace_children(parent, lambda child: expression if child is self else child)
598        return expression

Swap out this expression with a new expression.

For example::

>>> tree = Select().select("x").from_("tbl")
>>> tree.find(Column).replace(Column(this="y"))
(COLUMN this: y)
>>> tree.sql()
'SELECT y FROM tbl'
Arguments:
  • expression: new node
Returns:

The new expression or expressions.

def pop(self: ~E) -> ~E:
600    def pop(self: E) -> E:
601        """
602        Remove this expression from its AST.
603
604        Returns:
605            The popped expression.
606        """
607        self.replace(None)
608        return self

Remove this expression from its AST.

Returns:

The popped expression.

def assert_is(self, type_: Type[~E]) -> ~E:
610    def assert_is(self, type_: t.Type[E]) -> E:
611        """
612        Assert that this `Expression` is an instance of `type_`.
613
614        If it is NOT an instance of `type_`, this raises an assertion error.
615        Otherwise, this returns this expression.
616
617        Examples:
618            This is useful for type security in chained expressions:
619
620            >>> import sqlglot
621            >>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
622            'SELECT x, z FROM y'
623        """
624        assert isinstance(self, type_)
625        return self

Assert that this Expression is an instance of type_.

If it is NOT an instance of type_, this raises an assertion error. Otherwise, this returns this expression.

Examples:

This is useful for type security in chained expressions:

>>> import sqlglot
>>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
'SELECT x, z FROM y'
def error_messages(self, args: Optional[Sequence] = None) -> List[str]:
627    def error_messages(self, args: t.Optional[t.Sequence] = None) -> t.List[str]:
628        """
629        Checks if this expression is valid (e.g. all mandatory args are set).
630
631        Args:
632            args: a sequence of values that were used to instantiate a Func expression. This is used
633                to check that the provided arguments don't exceed the function argument limit.
634
635        Returns:
636            A list of error messages for all possible errors that were found.
637        """
638        errors: t.List[str] = []
639
640        for k in self.args:
641            if k not in self.arg_types:
642                errors.append(f"Unexpected keyword: '{k}' for {self.__class__}")
643        for k, mandatory in self.arg_types.items():
644            v = self.args.get(k)
645            if mandatory and (v is None or (isinstance(v, list) and not v)):
646                errors.append(f"Required keyword: '{k}' missing for {self.__class__}")
647
648        if (
649            args
650            and isinstance(self, Func)
651            and len(args) > len(self.arg_types)
652            and not self.is_var_len_args
653        ):
654            errors.append(
655                f"The number of provided arguments ({len(args)}) is greater than "
656                f"the maximum number of supported arguments ({len(self.arg_types)})"
657            )
658
659        return errors

Checks if this expression is valid (e.g. all mandatory args are set).

Arguments:
  • args: a sequence of values that were used to instantiate a Func expression. This is used to check that the provided arguments don't exceed the function argument limit.
Returns:

A list of error messages for all possible errors that were found.

def dump(self):
661    def dump(self):
662        """
663        Dump this Expression to a JSON-serializable dict.
664        """
665        from sqlglot.serde import dump
666
667        return dump(self)

Dump this Expression to a JSON-serializable dict.

@classmethod
def load(cls, obj):
669    @classmethod
670    def load(cls, obj):
671        """
672        Load a dict (as returned by `Expression.dump`) into an Expression instance.
673        """
674        from sqlglot.serde import load
675
676        return load(obj)

Load a dict (as returned by Expression.dump) into an Expression instance.

def and_( self, *expressions: Union[str, Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Condition:
678    def and_(
679        self,
680        *expressions: t.Optional[ExpOrStr],
681        dialect: DialectType = None,
682        copy: bool = True,
683        **opts,
684    ) -> Condition:
685        """
686        AND this condition with one or multiple expressions.
687
688        Example:
689            >>> condition("x=1").and_("y=1").sql()
690            'x = 1 AND y = 1'
691
692        Args:
693            *expressions: the SQL code strings to parse.
694                If an `Expression` instance is passed, it will be used as-is.
695            dialect: the dialect used to parse the input expression.
696            copy: whether or not to copy the involved expressions (only applies to Expressions).
697            opts: other options to use to parse the input expressions.
698
699        Returns:
700            The new And condition.
701        """
702        return and_(self, *expressions, dialect=dialect, copy=copy, **opts)

AND this condition with one or multiple expressions.

Example:
>>> condition("x=1").and_("y=1").sql()
'x = 1 AND y = 1'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether or not to copy the involved expressions (only applies to Expressions).
  • opts: other options to use to parse the input expressions.
Returns:

The new And condition.

def or_( self, *expressions: Union[str, Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Condition:
704    def or_(
705        self,
706        *expressions: t.Optional[ExpOrStr],
707        dialect: DialectType = None,
708        copy: bool = True,
709        **opts,
710    ) -> Condition:
711        """
712        OR this condition with one or multiple expressions.
713
714        Example:
715            >>> condition("x=1").or_("y=1").sql()
716            'x = 1 OR y = 1'
717
718        Args:
719            *expressions: the SQL code strings to parse.
720                If an `Expression` instance is passed, it will be used as-is.
721            dialect: the dialect used to parse the input expression.
722            copy: whether or not to copy the involved expressions (only applies to Expressions).
723            opts: other options to use to parse the input expressions.
724
725        Returns:
726            The new Or condition.
727        """
728        return or_(self, *expressions, dialect=dialect, copy=copy, **opts)

OR this condition with one or multiple expressions.

Example:
>>> condition("x=1").or_("y=1").sql()
'x = 1 OR y = 1'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether or not to copy the involved expressions (only applies to Expressions).
  • opts: other options to use to parse the input expressions.
Returns:

The new Or condition.

def not_(self, copy: bool = True):
730    def not_(self, copy: bool = True):
731        """
732        Wrap this condition with NOT.
733
734        Example:
735            >>> condition("x=1").not_().sql()
736            'NOT x = 1'
737
738        Args:
739            copy: whether or not to copy this object.
740
741        Returns:
742            The new Not instance.
743        """
744        return not_(self, copy=copy)

Wrap this condition with NOT.

Example:
>>> condition("x=1").not_().sql()
'NOT x = 1'
Arguments:
  • copy: whether or not to copy this object.
Returns:

The new Not instance.

def as_( self, alias: str | Identifier, quoted: Optional[bool] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Alias:
746    def as_(
747        self,
748        alias: str | Identifier,
749        quoted: t.Optional[bool] = None,
750        dialect: DialectType = None,
751        copy: bool = True,
752        **opts,
753    ) -> Alias:
754        return alias_(self, alias, quoted=quoted, dialect=dialect, copy=copy, **opts)
def isin( self, *expressions: Any, query: Union[str, Expression, NoneType] = None, unnest: Union[str, Expression, NoneType, Collection[Union[str, Expression]]] = None, copy: bool = True, **opts) -> In:
779    def isin(
780        self,
781        *expressions: t.Any,
782        query: t.Optional[ExpOrStr] = None,
783        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
784        copy: bool = True,
785        **opts,
786    ) -> In:
787        return In(
788            this=maybe_copy(self, copy),
789            expressions=[convert(e, copy=copy) for e in expressions],
790            query=maybe_parse(query, copy=copy, **opts) if query else None,
791            unnest=Unnest(
792                expressions=[
793                    maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts) for e in ensure_list(unnest)
794                ]
795            )
796            if unnest
797            else None,
798        )
def between( self, low: Any, high: Any, copy: bool = True, **opts) -> Between:
800    def between(self, low: t.Any, high: t.Any, copy: bool = True, **opts) -> Between:
801        return Between(
802            this=maybe_copy(self, copy),
803            low=convert(low, copy=copy, **opts),
804            high=convert(high, copy=copy, **opts),
805        )
def is_( self, other: Union[str, Expression]) -> Is:
807    def is_(self, other: ExpOrStr) -> Is:
808        return self._binop(Is, other)
def like( self, other: Union[str, Expression]) -> Like:
810    def like(self, other: ExpOrStr) -> Like:
811        return self._binop(Like, other)
def ilike( self, other: Union[str, Expression]) -> ILike:
813    def ilike(self, other: ExpOrStr) -> ILike:
814        return self._binop(ILike, other)
def eq(self, other: Any) -> EQ:
816    def eq(self, other: t.Any) -> EQ:
817        return self._binop(EQ, other)
def neq(self, other: Any) -> NEQ:
819    def neq(self, other: t.Any) -> NEQ:
820        return self._binop(NEQ, other)
def rlike( self, other: Union[str, Expression]) -> RegexpLike:
822    def rlike(self, other: ExpOrStr) -> RegexpLike:
823        return self._binop(RegexpLike, other)
IntoType = typing.Union[str, typing.Type[Expression], typing.Collection[typing.Union[str, typing.Type[Expression]]]]
ExpOrStr = typing.Union[str, Expression]
class Condition(Expression):
906class Condition(Expression):
907    """Logical conditions like x AND y, or simply x"""

Logical conditions like x AND y, or simply x

key = 'condition'
class Predicate(Condition):
910class Predicate(Condition):
911    """Relationships like x = y, x > 1, x >= y."""

Relationships like x = y, x > 1, x >= y.

key = 'predicate'
class DerivedTable(Expression):
914class DerivedTable(Expression):
915    @property
916    def selects(self) -> t.List[Expression]:
917        return self.this.selects if isinstance(self.this, Subqueryable) else []
918
919    @property
920    def named_selects(self) -> t.List[str]:
921        return [select.output_name for select in self.selects]
selects: List[Expression]
named_selects: List[str]
key = 'derivedtable'
class Unionable(Expression):
924class Unionable(Expression):
925    def union(
926        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
927    ) -> Unionable:
928        """
929        Builds a UNION expression.
930
931        Example:
932            >>> import sqlglot
933            >>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
934            'SELECT * FROM foo UNION SELECT * FROM bla'
935
936        Args:
937            expression: the SQL code string.
938                If an `Expression` instance is passed, it will be used as-is.
939            distinct: set the DISTINCT flag if and only if this is true.
940            dialect: the dialect used to parse the input expression.
941            opts: other options to use to parse the input expressions.
942
943        Returns:
944            The new Union expression.
945        """
946        return union(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
947
948    def intersect(
949        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
950    ) -> Unionable:
951        """
952        Builds an INTERSECT expression.
953
954        Example:
955            >>> import sqlglot
956            >>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
957            'SELECT * FROM foo INTERSECT SELECT * FROM bla'
958
959        Args:
960            expression: the SQL code string.
961                If an `Expression` instance is passed, it will be used as-is.
962            distinct: set the DISTINCT flag if and only if this is true.
963            dialect: the dialect used to parse the input expression.
964            opts: other options to use to parse the input expressions.
965
966        Returns:
967            The new Intersect expression.
968        """
969        return intersect(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
970
971    def except_(
972        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
973    ) -> Unionable:
974        """
975        Builds an EXCEPT expression.
976
977        Example:
978            >>> import sqlglot
979            >>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
980            'SELECT * FROM foo EXCEPT SELECT * FROM bla'
981
982        Args:
983            expression: the SQL code string.
984                If an `Expression` instance is passed, it will be used as-is.
985            distinct: set the DISTINCT flag if and only if this is true.
986            dialect: the dialect used to parse the input expression.
987            opts: other options to use to parse the input expressions.
988
989        Returns:
990            The new Except expression.
991        """
992        return except_(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
def union( self, expression: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Unionable:
925    def union(
926        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
927    ) -> Unionable:
928        """
929        Builds a UNION expression.
930
931        Example:
932            >>> import sqlglot
933            >>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
934            'SELECT * FROM foo UNION SELECT * FROM bla'
935
936        Args:
937            expression: the SQL code string.
938                If an `Expression` instance is passed, it will be used as-is.
939            distinct: set the DISTINCT flag if and only if this is true.
940            dialect: the dialect used to parse the input expression.
941            opts: other options to use to parse the input expressions.
942
943        Returns:
944            The new Union expression.
945        """
946        return union(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)

Builds a UNION expression.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
'SELECT * FROM foo UNION SELECT * FROM bla'
Arguments:
  • expression: the SQL code string. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Union expression.

def intersect( self, expression: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Unionable:
948    def intersect(
949        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
950    ) -> Unionable:
951        """
952        Builds an INTERSECT expression.
953
954        Example:
955            >>> import sqlglot
956            >>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
957            'SELECT * FROM foo INTERSECT SELECT * FROM bla'
958
959        Args:
960            expression: the SQL code string.
961                If an `Expression` instance is passed, it will be used as-is.
962            distinct: set the DISTINCT flag if and only if this is true.
963            dialect: the dialect used to parse the input expression.
964            opts: other options to use to parse the input expressions.
965
966        Returns:
967            The new Intersect expression.
968        """
969        return intersect(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)

Builds an INTERSECT expression.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
'SELECT * FROM foo INTERSECT SELECT * FROM bla'
Arguments:
  • expression: the SQL code string. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Intersect expression.

def except_( self, expression: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Unionable:
971    def except_(
972        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
973    ) -> Unionable:
974        """
975        Builds an EXCEPT expression.
976
977        Example:
978            >>> import sqlglot
979            >>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
980            'SELECT * FROM foo EXCEPT SELECT * FROM bla'
981
982        Args:
983            expression: the SQL code string.
984                If an `Expression` instance is passed, it will be used as-is.
985            distinct: set the DISTINCT flag if and only if this is true.
986            dialect: the dialect used to parse the input expression.
987            opts: other options to use to parse the input expressions.
988
989        Returns:
990            The new Except expression.
991        """
992        return except_(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)

Builds an EXCEPT expression.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
'SELECT * FROM foo EXCEPT SELECT * FROM bla'
Arguments:
  • expression: the SQL code string. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Except expression.

key = 'unionable'
class UDTF(DerivedTable, Unionable):
995class UDTF(DerivedTable, Unionable):
996    @property
997    def selects(self) -> t.List[Expression]:
998        alias = self.args.get("alias")
999        return alias.columns if alias else []
selects: List[Expression]
key = 'udtf'
class Cache(Expression):
1002class Cache(Expression):
1003    arg_types = {
1004        "with": False,
1005        "this": True,
1006        "lazy": False,
1007        "options": False,
1008        "expression": False,
1009    }
arg_types = {'with': False, 'this': True, 'lazy': False, 'options': False, 'expression': False}
key = 'cache'
class Uncache(Expression):
1012class Uncache(Expression):
1013    arg_types = {"this": True, "exists": False}
arg_types = {'this': True, 'exists': False}
key = 'uncache'
class DDL(Expression):
1016class DDL(Expression):
1017    @property
1018    def ctes(self):
1019        with_ = self.args.get("with")
1020        if not with_:
1021            return []
1022        return with_.expressions
1023
1024    @property
1025    def named_selects(self) -> t.List[str]:
1026        if isinstance(self.expression, Subqueryable):
1027            return self.expression.named_selects
1028        return []
1029
1030    @property
1031    def selects(self) -> t.List[Expression]:
1032        if isinstance(self.expression, Subqueryable):
1033            return self.expression.selects
1034        return []
ctes
named_selects: List[str]
selects: List[Expression]
key = 'ddl'
class Create(DDL):
1037class Create(DDL):
1038    arg_types = {
1039        "with": False,
1040        "this": True,
1041        "kind": True,
1042        "expression": False,
1043        "exists": False,
1044        "properties": False,
1045        "replace": False,
1046        "unique": False,
1047        "indexes": False,
1048        "no_schema_binding": False,
1049        "begin": False,
1050        "end": False,
1051        "clone": False,
1052    }
arg_types = {'with': False, 'this': True, 'kind': True, 'expression': False, 'exists': False, 'properties': False, 'replace': False, 'unique': False, 'indexes': False, 'no_schema_binding': False, 'begin': False, 'end': False, 'clone': False}
key = 'create'
class Clone(Expression):
1058class Clone(Expression):
1059    arg_types = {
1060        "this": True,
1061        "when": False,
1062        "kind": False,
1063        "shallow": False,
1064        "expression": False,
1065        "copy": False,
1066    }
arg_types = {'this': True, 'when': False, 'kind': False, 'shallow': False, 'expression': False, 'copy': False}
key = 'clone'
class Describe(Expression):
1069class Describe(Expression):
1070    arg_types = {"this": True, "kind": False, "expressions": False}
arg_types = {'this': True, 'kind': False, 'expressions': False}
key = 'describe'
class Kill(Expression):
1073class Kill(Expression):
1074    arg_types = {"this": True, "kind": False}
arg_types = {'this': True, 'kind': False}
key = 'kill'
class Pragma(Expression):
1077class Pragma(Expression):
1078    pass
key = 'pragma'
class Set(Expression):
1081class Set(Expression):
1082    arg_types = {"expressions": False, "unset": False, "tag": False}
arg_types = {'expressions': False, 'unset': False, 'tag': False}
key = 'set'
class SetItem(Expression):
1085class SetItem(Expression):
1086    arg_types = {
1087        "this": False,
1088        "expressions": False,
1089        "kind": False,
1090        "collate": False,  # MySQL SET NAMES statement
1091        "global": False,
1092    }
arg_types = {'this': False, 'expressions': False, 'kind': False, 'collate': False, 'global': False}
key = 'setitem'
class Show(Expression):
1095class Show(Expression):
1096    arg_types = {
1097        "this": True,
1098        "target": False,
1099        "offset": False,
1100        "limit": False,
1101        "like": False,
1102        "where": False,
1103        "db": False,
1104        "scope": False,
1105        "scope_kind": False,
1106        "full": False,
1107        "mutex": False,
1108        "query": False,
1109        "channel": False,
1110        "global": False,
1111        "log": False,
1112        "position": False,
1113        "types": False,
1114    }
arg_types = {'this': True, 'target': False, 'offset': False, 'limit': False, 'like': False, 'where': False, 'db': False, 'scope': False, 'scope_kind': False, 'full': False, 'mutex': False, 'query': False, 'channel': False, 'global': False, 'log': False, 'position': False, 'types': False}
key = 'show'
class UserDefinedFunction(Expression):
1117class UserDefinedFunction(Expression):
1118    arg_types = {"this": True, "expressions": False, "wrapped": False}
arg_types = {'this': True, 'expressions': False, 'wrapped': False}
key = 'userdefinedfunction'
class CharacterSet(Expression):
1121class CharacterSet(Expression):
1122    arg_types = {"this": True, "default": False}
arg_types = {'this': True, 'default': False}
key = 'characterset'
class With(Expression):
1125class With(Expression):
1126    arg_types = {"expressions": True, "recursive": False}
1127
1128    @property
1129    def recursive(self) -> bool:
1130        return bool(self.args.get("recursive"))
arg_types = {'expressions': True, 'recursive': False}
recursive: bool
key = 'with'
class WithinGroup(Expression):
1133class WithinGroup(Expression):
1134    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'withingroup'
class CTE(DerivedTable):
1137class CTE(DerivedTable):
1138    arg_types = {"this": True, "alias": True}
arg_types = {'this': True, 'alias': True}
key = 'cte'
class TableAlias(Expression):
1141class TableAlias(Expression):
1142    arg_types = {"this": False, "columns": False}
1143
1144    @property
1145    def columns(self):
1146        return self.args.get("columns") or []
arg_types = {'this': False, 'columns': False}
columns
key = 'tablealias'
class BitString(Condition):
1149class BitString(Condition):
1150    pass
key = 'bitstring'
class HexString(Condition):
1153class HexString(Condition):
1154    pass
key = 'hexstring'
class ByteString(Condition):
1157class ByteString(Condition):
1158    pass
key = 'bytestring'
class RawString(Condition):
1161class RawString(Condition):
1162    pass
key = 'rawstring'
class Column(Condition):
1165class Column(Condition):
1166    arg_types = {"this": True, "table": False, "db": False, "catalog": False, "join_mark": False}
1167
1168    @property
1169    def table(self) -> str:
1170        return self.text("table")
1171
1172    @property
1173    def db(self) -> str:
1174        return self.text("db")
1175
1176    @property
1177    def catalog(self) -> str:
1178        return self.text("catalog")
1179
1180    @property
1181    def output_name(self) -> str:
1182        return self.name
1183
1184    @property
1185    def parts(self) -> t.List[Identifier]:
1186        """Return the parts of a column in order catalog, db, table, name."""
1187        return [
1188            t.cast(Identifier, self.args[part])
1189            for part in ("catalog", "db", "table", "this")
1190            if self.args.get(part)
1191        ]
1192
1193    def to_dot(self) -> Dot | Identifier:
1194        """Converts the column into a dot expression."""
1195        parts = self.parts
1196        parent = self.parent
1197
1198        while parent:
1199            if isinstance(parent, Dot):
1200                parts.append(parent.expression)
1201            parent = parent.parent
1202
1203        return Dot.build(deepcopy(parts)) if len(parts) > 1 else parts[0]
arg_types = {'this': True, 'table': False, 'db': False, 'catalog': False, 'join_mark': False}
table: str
db: str
catalog: str
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
parts: List[Identifier]

Return the parts of a column in order catalog, db, table, name.

def to_dot(self) -> Dot | Identifier:
1193    def to_dot(self) -> Dot | Identifier:
1194        """Converts the column into a dot expression."""
1195        parts = self.parts
1196        parent = self.parent
1197
1198        while parent:
1199            if isinstance(parent, Dot):
1200                parts.append(parent.expression)
1201            parent = parent.parent
1202
1203        return Dot.build(deepcopy(parts)) if len(parts) > 1 else parts[0]

Converts the column into a dot expression.

key = 'column'
class ColumnPosition(Expression):
1206class ColumnPosition(Expression):
1207    arg_types = {"this": False, "position": True}
arg_types = {'this': False, 'position': True}
key = 'columnposition'
class ColumnDef(Expression):
1210class ColumnDef(Expression):
1211    arg_types = {
1212        "this": True,
1213        "kind": False,
1214        "constraints": False,
1215        "exists": False,
1216        "position": False,
1217    }
1218
1219    @property
1220    def constraints(self) -> t.List[ColumnConstraint]:
1221        return self.args.get("constraints") or []
arg_types = {'this': True, 'kind': False, 'constraints': False, 'exists': False, 'position': False}
constraints: List[ColumnConstraint]
key = 'columndef'
class AlterColumn(Expression):
1224class AlterColumn(Expression):
1225    arg_types = {
1226        "this": True,
1227        "dtype": False,
1228        "collate": False,
1229        "using": False,
1230        "default": False,
1231        "drop": False,
1232    }
arg_types = {'this': True, 'dtype': False, 'collate': False, 'using': False, 'default': False, 'drop': False}
key = 'altercolumn'
class RenameTable(Expression):
1235class RenameTable(Expression):
1236    pass
key = 'renametable'
class Comment(Expression):
1239class Comment(Expression):
1240    arg_types = {"this": True, "kind": True, "expression": True, "exists": False}
arg_types = {'this': True, 'kind': True, 'expression': True, 'exists': False}
key = 'comment'
class Comprehension(Expression):
1243class Comprehension(Expression):
1244    arg_types = {"this": True, "expression": True, "iterator": True, "condition": False}
arg_types = {'this': True, 'expression': True, 'iterator': True, 'condition': False}
key = 'comprehension'
class MergeTreeTTLAction(Expression):
1248class MergeTreeTTLAction(Expression):
1249    arg_types = {
1250        "this": True,
1251        "delete": False,
1252        "recompress": False,
1253        "to_disk": False,
1254        "to_volume": False,
1255    }
arg_types = {'this': True, 'delete': False, 'recompress': False, 'to_disk': False, 'to_volume': False}
key = 'mergetreettlaction'
class MergeTreeTTL(Expression):
1259class MergeTreeTTL(Expression):
1260    arg_types = {
1261        "expressions": True,
1262        "where": False,
1263        "group": False,
1264        "aggregates": False,
1265    }
arg_types = {'expressions': True, 'where': False, 'group': False, 'aggregates': False}
key = 'mergetreettl'
class IndexConstraintOption(Expression):
1269class IndexConstraintOption(Expression):
1270    arg_types = {
1271        "key_block_size": False,
1272        "using": False,
1273        "parser": False,
1274        "comment": False,
1275        "visible": False,
1276        "engine_attr": False,
1277        "secondary_engine_attr": False,
1278    }
arg_types = {'key_block_size': False, 'using': False, 'parser': False, 'comment': False, 'visible': False, 'engine_attr': False, 'secondary_engine_attr': False}
key = 'indexconstraintoption'
class ColumnConstraint(Expression):
1281class ColumnConstraint(Expression):
1282    arg_types = {"this": False, "kind": True}
1283
1284    @property
1285    def kind(self) -> ColumnConstraintKind:
1286        return self.args["kind"]
arg_types = {'this': False, 'kind': True}
key = 'columnconstraint'
class ColumnConstraintKind(Expression):
1289class ColumnConstraintKind(Expression):
1290    pass
key = 'columnconstraintkind'
class AutoIncrementColumnConstraint(ColumnConstraintKind):
1293class AutoIncrementColumnConstraint(ColumnConstraintKind):
1294    pass
key = 'autoincrementcolumnconstraint'
class CaseSpecificColumnConstraint(ColumnConstraintKind):
1297class CaseSpecificColumnConstraint(ColumnConstraintKind):
1298    arg_types = {"not_": True}
arg_types = {'not_': True}
key = 'casespecificcolumnconstraint'
class CharacterSetColumnConstraint(ColumnConstraintKind):
1301class CharacterSetColumnConstraint(ColumnConstraintKind):
1302    arg_types = {"this": True}
arg_types = {'this': True}
key = 'charactersetcolumnconstraint'
class CheckColumnConstraint(ColumnConstraintKind):
1305class CheckColumnConstraint(ColumnConstraintKind):
1306    pass
key = 'checkcolumnconstraint'
class ClusteredColumnConstraint(ColumnConstraintKind):
1309class ClusteredColumnConstraint(ColumnConstraintKind):
1310    pass
key = 'clusteredcolumnconstraint'
class CollateColumnConstraint(ColumnConstraintKind):
1313class CollateColumnConstraint(ColumnConstraintKind):
1314    pass
key = 'collatecolumnconstraint'
class CommentColumnConstraint(ColumnConstraintKind):
1317class CommentColumnConstraint(ColumnConstraintKind):
1318    pass
key = 'commentcolumnconstraint'
class CompressColumnConstraint(ColumnConstraintKind):
1321class CompressColumnConstraint(ColumnConstraintKind):
1322    pass
key = 'compresscolumnconstraint'
class DateFormatColumnConstraint(ColumnConstraintKind):
1325class DateFormatColumnConstraint(ColumnConstraintKind):
1326    arg_types = {"this": True}
arg_types = {'this': True}
key = 'dateformatcolumnconstraint'
class DefaultColumnConstraint(ColumnConstraintKind):
1329class DefaultColumnConstraint(ColumnConstraintKind):
1330    pass
key = 'defaultcolumnconstraint'
class EncodeColumnConstraint(ColumnConstraintKind):
1333class EncodeColumnConstraint(ColumnConstraintKind):
1334    pass
key = 'encodecolumnconstraint'
class GeneratedAsIdentityColumnConstraint(ColumnConstraintKind):
1337class GeneratedAsIdentityColumnConstraint(ColumnConstraintKind):
1338    # this: True -> ALWAYS, this: False -> BY DEFAULT
1339    arg_types = {
1340        "this": False,
1341        "expression": False,
1342        "on_null": False,
1343        "start": False,
1344        "increment": False,
1345        "minvalue": False,
1346        "maxvalue": False,
1347        "cycle": False,
1348    }
arg_types = {'this': False, 'expression': False, 'on_null': False, 'start': False, 'increment': False, 'minvalue': False, 'maxvalue': False, 'cycle': False}
key = 'generatedasidentitycolumnconstraint'
class IndexColumnConstraint(ColumnConstraintKind):
1352class IndexColumnConstraint(ColumnConstraintKind):
1353    arg_types = {
1354        "this": False,
1355        "schema": True,
1356        "kind": False,
1357        "index_type": False,
1358        "options": False,
1359    }
arg_types = {'this': False, 'schema': True, 'kind': False, 'index_type': False, 'options': False}
key = 'indexcolumnconstraint'
class InlineLengthColumnConstraint(ColumnConstraintKind):
1362class InlineLengthColumnConstraint(ColumnConstraintKind):
1363    pass
key = 'inlinelengthcolumnconstraint'
class NonClusteredColumnConstraint(ColumnConstraintKind):
1366class NonClusteredColumnConstraint(ColumnConstraintKind):
1367    pass
key = 'nonclusteredcolumnconstraint'
class NotForReplicationColumnConstraint(ColumnConstraintKind):
1370class NotForReplicationColumnConstraint(ColumnConstraintKind):
1371    arg_types = {}
arg_types = {}
key = 'notforreplicationcolumnconstraint'
class NotNullColumnConstraint(ColumnConstraintKind):
1374class NotNullColumnConstraint(ColumnConstraintKind):
1375    arg_types = {"allow_null": False}
arg_types = {'allow_null': False}
key = 'notnullcolumnconstraint'
class OnUpdateColumnConstraint(ColumnConstraintKind):
1379class OnUpdateColumnConstraint(ColumnConstraintKind):
1380    pass
key = 'onupdatecolumnconstraint'
class PrimaryKeyColumnConstraint(ColumnConstraintKind):
1383class PrimaryKeyColumnConstraint(ColumnConstraintKind):
1384    arg_types = {"desc": False}
arg_types = {'desc': False}
key = 'primarykeycolumnconstraint'
class TitleColumnConstraint(ColumnConstraintKind):
1387class TitleColumnConstraint(ColumnConstraintKind):
1388    pass
key = 'titlecolumnconstraint'
class UniqueColumnConstraint(ColumnConstraintKind):
1391class UniqueColumnConstraint(ColumnConstraintKind):
1392    arg_types = {"this": False, "index_type": False}
arg_types = {'this': False, 'index_type': False}
key = 'uniquecolumnconstraint'
class UppercaseColumnConstraint(ColumnConstraintKind):
1395class UppercaseColumnConstraint(ColumnConstraintKind):
1396    arg_types: t.Dict[str, t.Any] = {}
arg_types: Dict[str, Any] = {}
key = 'uppercasecolumnconstraint'
class PathColumnConstraint(ColumnConstraintKind):
1399class PathColumnConstraint(ColumnConstraintKind):
1400    pass
key = 'pathcolumnconstraint'
class ComputedColumnConstraint(ColumnConstraintKind):
1405class ComputedColumnConstraint(ColumnConstraintKind):
1406    arg_types = {"this": True, "persisted": False, "not_null": False}
arg_types = {'this': True, 'persisted': False, 'not_null': False}
key = 'computedcolumnconstraint'
class Constraint(Expression):
1409class Constraint(Expression):
1410    arg_types = {"this": True, "expressions": True}
arg_types = {'this': True, 'expressions': True}
key = 'constraint'
class Delete(Expression):
1413class Delete(Expression):
1414    arg_types = {
1415        "with": False,
1416        "this": False,
1417        "using": False,
1418        "where": False,
1419        "returning": False,
1420        "limit": False,
1421        "tables": False,  # Multiple-Table Syntax (MySQL)
1422    }
1423
1424    def delete(
1425        self,
1426        table: ExpOrStr,
1427        dialect: DialectType = None,
1428        copy: bool = True,
1429        **opts,
1430    ) -> Delete:
1431        """
1432        Create a DELETE expression or replace the table on an existing DELETE expression.
1433
1434        Example:
1435            >>> delete("tbl").sql()
1436            'DELETE FROM tbl'
1437
1438        Args:
1439            table: the table from which to delete.
1440            dialect: the dialect used to parse the input expression.
1441            copy: if `False`, modify this expression instance in-place.
1442            opts: other options to use to parse the input expressions.
1443
1444        Returns:
1445            Delete: the modified expression.
1446        """
1447        return _apply_builder(
1448            expression=table,
1449            instance=self,
1450            arg="this",
1451            dialect=dialect,
1452            into=Table,
1453            copy=copy,
1454            **opts,
1455        )
1456
1457    def where(
1458        self,
1459        *expressions: t.Optional[ExpOrStr],
1460        append: bool = True,
1461        dialect: DialectType = None,
1462        copy: bool = True,
1463        **opts,
1464    ) -> Delete:
1465        """
1466        Append to or set the WHERE expressions.
1467
1468        Example:
1469            >>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
1470            "DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
1471
1472        Args:
1473            *expressions: the SQL code strings to parse.
1474                If an `Expression` instance is passed, it will be used as-is.
1475                Multiple expressions are combined with an AND operator.
1476            append: if `True`, AND the new expressions to any existing expression.
1477                Otherwise, this resets the expression.
1478            dialect: the dialect used to parse the input expressions.
1479            copy: if `False`, modify this expression instance in-place.
1480            opts: other options to use to parse the input expressions.
1481
1482        Returns:
1483            Delete: the modified expression.
1484        """
1485        return _apply_conjunction_builder(
1486            *expressions,
1487            instance=self,
1488            arg="where",
1489            append=append,
1490            into=Where,
1491            dialect=dialect,
1492            copy=copy,
1493            **opts,
1494        )
1495
1496    def returning(
1497        self,
1498        expression: ExpOrStr,
1499        dialect: DialectType = None,
1500        copy: bool = True,
1501        **opts,
1502    ) -> Delete:
1503        """
1504        Set the RETURNING expression. Not supported by all dialects.
1505
1506        Example:
1507            >>> delete("tbl").returning("*", dialect="postgres").sql()
1508            'DELETE FROM tbl RETURNING *'
1509
1510        Args:
1511            expression: the SQL code strings to parse.
1512                If an `Expression` instance is passed, it will be used as-is.
1513            dialect: the dialect used to parse the input expressions.
1514            copy: if `False`, modify this expression instance in-place.
1515            opts: other options to use to parse the input expressions.
1516
1517        Returns:
1518            Delete: the modified expression.
1519        """
1520        return _apply_builder(
1521            expression=expression,
1522            instance=self,
1523            arg="returning",
1524            prefix="RETURNING",
1525            dialect=dialect,
1526            copy=copy,
1527            into=Returning,
1528            **opts,
1529        )
arg_types = {'with': False, 'this': False, 'using': False, 'where': False, 'returning': False, 'limit': False, 'tables': False}
def delete( self, table: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Delete:
1424    def delete(
1425        self,
1426        table: ExpOrStr,
1427        dialect: DialectType = None,
1428        copy: bool = True,
1429        **opts,
1430    ) -> Delete:
1431        """
1432        Create a DELETE expression or replace the table on an existing DELETE expression.
1433
1434        Example:
1435            >>> delete("tbl").sql()
1436            'DELETE FROM tbl'
1437
1438        Args:
1439            table: the table from which to delete.
1440            dialect: the dialect used to parse the input expression.
1441            copy: if `False`, modify this expression instance in-place.
1442            opts: other options to use to parse the input expressions.
1443
1444        Returns:
1445            Delete: the modified expression.
1446        """
1447        return _apply_builder(
1448            expression=table,
1449            instance=self,
1450            arg="this",
1451            dialect=dialect,
1452            into=Table,
1453            copy=copy,
1454            **opts,
1455        )

Create a DELETE expression or replace the table on an existing DELETE expression.

Example:
>>> delete("tbl").sql()
'DELETE FROM tbl'
Arguments:
  • table: the table from which to delete.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Delete: the modified expression.

def where( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Delete:
1457    def where(
1458        self,
1459        *expressions: t.Optional[ExpOrStr],
1460        append: bool = True,
1461        dialect: DialectType = None,
1462        copy: bool = True,
1463        **opts,
1464    ) -> Delete:
1465        """
1466        Append to or set the WHERE expressions.
1467
1468        Example:
1469            >>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
1470            "DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
1471
1472        Args:
1473            *expressions: the SQL code strings to parse.
1474                If an `Expression` instance is passed, it will be used as-is.
1475                Multiple expressions are combined with an AND operator.
1476            append: if `True`, AND the new expressions to any existing expression.
1477                Otherwise, this resets the expression.
1478            dialect: the dialect used to parse the input expressions.
1479            copy: if `False`, modify this expression instance in-place.
1480            opts: other options to use to parse the input expressions.
1481
1482        Returns:
1483            Delete: the modified expression.
1484        """
1485        return _apply_conjunction_builder(
1486            *expressions,
1487            instance=self,
1488            arg="where",
1489            append=append,
1490            into=Where,
1491            dialect=dialect,
1492            copy=copy,
1493            **opts,
1494        )

Append to or set the WHERE expressions.

Example:
>>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
"DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Delete: the modified expression.

def returning( self, expression: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Delete:
1496    def returning(
1497        self,
1498        expression: ExpOrStr,
1499        dialect: DialectType = None,
1500        copy: bool = True,
1501        **opts,
1502    ) -> Delete:
1503        """
1504        Set the RETURNING expression. Not supported by all dialects.
1505
1506        Example:
1507            >>> delete("tbl").returning("*", dialect="postgres").sql()
1508            'DELETE FROM tbl RETURNING *'
1509
1510        Args:
1511            expression: the SQL code strings to parse.
1512                If an `Expression` instance is passed, it will be used as-is.
1513            dialect: the dialect used to parse the input expressions.
1514            copy: if `False`, modify this expression instance in-place.
1515            opts: other options to use to parse the input expressions.
1516
1517        Returns:
1518            Delete: the modified expression.
1519        """
1520        return _apply_builder(
1521            expression=expression,
1522            instance=self,
1523            arg="returning",
1524            prefix="RETURNING",
1525            dialect=dialect,
1526            copy=copy,
1527            into=Returning,
1528            **opts,
1529        )

Set the RETURNING expression. Not supported by all dialects.

Example:
>>> delete("tbl").returning("*", dialect="postgres").sql()
'DELETE FROM tbl RETURNING *'
Arguments:
  • expression: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Delete: the modified expression.

key = 'delete'
class Drop(Expression):
1532class Drop(Expression):
1533    arg_types = {
1534        "this": False,
1535        "kind": False,
1536        "exists": False,
1537        "temporary": False,
1538        "materialized": False,
1539        "cascade": False,
1540        "constraints": False,
1541        "purge": False,
1542    }
arg_types = {'this': False, 'kind': False, 'exists': False, 'temporary': False, 'materialized': False, 'cascade': False, 'constraints': False, 'purge': False}
key = 'drop'
class Filter(Expression):
1545class Filter(Expression):
1546    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'filter'
class Check(Expression):
1549class Check(Expression):
1550    pass
key = 'check'
class Connect(Expression):
1554class Connect(Expression):
1555    arg_types = {"start": False, "connect": True}
arg_types = {'start': False, 'connect': True}
key = 'connect'
class Prior(Expression):
1558class Prior(Expression):
1559    pass
key = 'prior'
class Directory(Expression):
1562class Directory(Expression):
1563    # https://spark.apache.org/docs/3.0.0-preview/sql-ref-syntax-dml-insert-overwrite-directory-hive.html
1564    arg_types = {"this": True, "local": False, "row_format": False}
arg_types = {'this': True, 'local': False, 'row_format': False}
key = 'directory'
class ForeignKey(Expression):
1567class ForeignKey(Expression):
1568    arg_types = {
1569        "expressions": True,
1570        "reference": False,
1571        "delete": False,
1572        "update": False,
1573    }
arg_types = {'expressions': True, 'reference': False, 'delete': False, 'update': False}
key = 'foreignkey'
class ColumnPrefix(Expression):
1576class ColumnPrefix(Expression):
1577    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'columnprefix'
class PrimaryKey(Expression):
1580class PrimaryKey(Expression):
1581    arg_types = {"expressions": True, "options": False}
arg_types = {'expressions': True, 'options': False}
key = 'primarykey'
class Into(Expression):
1586class Into(Expression):
1587    arg_types = {"this": True, "temporary": False, "unlogged": False}
arg_types = {'this': True, 'temporary': False, 'unlogged': False}
key = 'into'
class From(Expression):
1590class From(Expression):
1591    @property
1592    def name(self) -> str:
1593        return self.this.name
1594
1595    @property
1596    def alias_or_name(self) -> str:
1597        return self.this.alias_or_name
name: str
alias_or_name: str
key = 'from'
class Having(Expression):
1600class Having(Expression):
1601    pass
key = 'having'
class Hint(Expression):
1604class Hint(Expression):
1605    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'hint'
class JoinHint(Expression):
1608class JoinHint(Expression):
1609    arg_types = {"this": True, "expressions": True}
arg_types = {'this': True, 'expressions': True}
key = 'joinhint'
class Identifier(Expression):
1612class Identifier(Expression):
1613    arg_types = {"this": True, "quoted": False, "global": False, "temporary": False}
1614
1615    @property
1616    def quoted(self) -> bool:
1617        return bool(self.args.get("quoted"))
1618
1619    @property
1620    def hashable_args(self) -> t.Any:
1621        return (self.this, self.quoted)
1622
1623    @property
1624    def output_name(self) -> str:
1625        return self.name
arg_types = {'this': True, 'quoted': False, 'global': False, 'temporary': False}
quoted: bool
hashable_args: Any
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'identifier'
class Opclass(Expression):
1629class Opclass(Expression):
1630    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'opclass'
class Index(Expression):
1633class Index(Expression):
1634    arg_types = {
1635        "this": False,
1636        "table": False,
1637        "using": False,
1638        "where": False,
1639        "columns": False,
1640        "unique": False,
1641        "primary": False,
1642        "amp": False,  # teradata
1643        "partition_by": False,  # teradata
1644        "where": False,  # postgres partial indexes
1645    }
arg_types = {'this': False, 'table': False, 'using': False, 'where': False, 'columns': False, 'unique': False, 'primary': False, 'amp': False, 'partition_by': False}
key = 'index'
class Insert(DDL):
1648class Insert(DDL):
1649    arg_types = {
1650        "with": False,
1651        "this": True,
1652        "expression": False,
1653        "conflict": False,
1654        "returning": False,
1655        "overwrite": False,
1656        "exists": False,
1657        "partition": False,
1658        "alternative": False,
1659        "where": False,
1660        "ignore": False,
1661        "by_name": False,
1662    }
1663
1664    def with_(
1665        self,
1666        alias: ExpOrStr,
1667        as_: ExpOrStr,
1668        recursive: t.Optional[bool] = None,
1669        append: bool = True,
1670        dialect: DialectType = None,
1671        copy: bool = True,
1672        **opts,
1673    ) -> Insert:
1674        """
1675        Append to or set the common table expressions.
1676
1677        Example:
1678            >>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
1679            'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
1680
1681        Args:
1682            alias: the SQL code string to parse as the table name.
1683                If an `Expression` instance is passed, this is used as-is.
1684            as_: the SQL code string to parse as the table expression.
1685                If an `Expression` instance is passed, it will be used as-is.
1686            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
1687            append: if `True`, add to any existing expressions.
1688                Otherwise, this resets the expressions.
1689            dialect: the dialect used to parse the input expression.
1690            copy: if `False`, modify this expression instance in-place.
1691            opts: other options to use to parse the input expressions.
1692
1693        Returns:
1694            The modified expression.
1695        """
1696        return _apply_cte_builder(
1697            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
1698        )
arg_types = {'with': False, 'this': True, 'expression': False, 'conflict': False, 'returning': False, 'overwrite': False, 'exists': False, 'partition': False, 'alternative': False, 'where': False, 'ignore': False, 'by_name': False}
def with_( self, alias: Union[str, Expression], as_: Union[str, Expression], recursive: Optional[bool] = None, append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Insert:
1664    def with_(
1665        self,
1666        alias: ExpOrStr,
1667        as_: ExpOrStr,
1668        recursive: t.Optional[bool] = None,
1669        append: bool = True,
1670        dialect: DialectType = None,
1671        copy: bool = True,
1672        **opts,
1673    ) -> Insert:
1674        """
1675        Append to or set the common table expressions.
1676
1677        Example:
1678            >>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
1679            'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
1680
1681        Args:
1682            alias: the SQL code string to parse as the table name.
1683                If an `Expression` instance is passed, this is used as-is.
1684            as_: the SQL code string to parse as the table expression.
1685                If an `Expression` instance is passed, it will be used as-is.
1686            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
1687            append: if `True`, add to any existing expressions.
1688                Otherwise, this resets the expressions.
1689            dialect: the dialect used to parse the input expression.
1690            copy: if `False`, modify this expression instance in-place.
1691            opts: other options to use to parse the input expressions.
1692
1693        Returns:
1694            The modified expression.
1695        """
1696        return _apply_cte_builder(
1697            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
1698        )

Append to or set the common table expressions.

Example:
>>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
Arguments:
  • alias: the SQL code string to parse as the table name. If an Expression instance is passed, this is used as-is.
  • as_: the SQL code string to parse as the table expression. If an Expression instance is passed, it will be used as-is.
  • recursive: set the RECURSIVE part of the expression. Defaults to False.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified expression.

key = 'insert'
class OnConflict(Expression):
1701class OnConflict(Expression):
1702    arg_types = {
1703        "duplicate": False,
1704        "expressions": False,
1705        "nothing": False,
1706        "key": False,
1707        "constraint": False,
1708    }
arg_types = {'duplicate': False, 'expressions': False, 'nothing': False, 'key': False, 'constraint': False}
key = 'onconflict'
class Returning(Expression):
1711class Returning(Expression):
1712    arg_types = {"expressions": True, "into": False}
arg_types = {'expressions': True, 'into': False}
key = 'returning'
class Introducer(Expression):
1716class Introducer(Expression):
1717    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'introducer'
class National(Expression):
1721class National(Expression):
1722    pass
key = 'national'
class LoadData(Expression):
1725class LoadData(Expression):
1726    arg_types = {
1727        "this": True,
1728        "local": False,
1729        "overwrite": False,
1730        "inpath": True,
1731        "partition": False,
1732        "input_format": False,
1733        "serde": False,
1734    }
arg_types = {'this': True, 'local': False, 'overwrite': False, 'inpath': True, 'partition': False, 'input_format': False, 'serde': False}
key = 'loaddata'
class Partition(Expression):
1737class Partition(Expression):
1738    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'partition'
class Fetch(Expression):
1741class Fetch(Expression):
1742    arg_types = {
1743        "direction": False,
1744        "count": False,
1745        "percent": False,
1746        "with_ties": False,
1747    }
arg_types = {'direction': False, 'count': False, 'percent': False, 'with_ties': False}
key = 'fetch'
class Group(Expression):
1750class Group(Expression):
1751    arg_types = {
1752        "expressions": False,
1753        "grouping_sets": False,
1754        "cube": False,
1755        "rollup": False,
1756        "totals": False,
1757        "all": False,
1758    }
arg_types = {'expressions': False, 'grouping_sets': False, 'cube': False, 'rollup': False, 'totals': False, 'all': False}
key = 'group'
class Lambda(Expression):
1761class Lambda(Expression):
1762    arg_types = {"this": True, "expressions": True}
arg_types = {'this': True, 'expressions': True}
key = 'lambda'
class Limit(Expression):
1765class Limit(Expression):
1766    arg_types = {"this": False, "expression": True, "offset": False}
arg_types = {'this': False, 'expression': True, 'offset': False}
key = 'limit'
class Literal(Condition):
1769class Literal(Condition):
1770    arg_types = {"this": True, "is_string": True}
1771
1772    @property
1773    def hashable_args(self) -> t.Any:
1774        return (self.this, self.args.get("is_string"))
1775
1776    @classmethod
1777    def number(cls, number) -> Literal:
1778        return cls(this=str(number), is_string=False)
1779
1780    @classmethod
1781    def string(cls, string) -> Literal:
1782        return cls(this=str(string), is_string=True)
1783
1784    @property
1785    def output_name(self) -> str:
1786        return self.name
arg_types = {'this': True, 'is_string': True}
hashable_args: Any
@classmethod
def number(cls, number) -> Literal:
1776    @classmethod
1777    def number(cls, number) -> Literal:
1778        return cls(this=str(number), is_string=False)
@classmethod
def string(cls, string) -> Literal:
1780    @classmethod
1781    def string(cls, string) -> Literal:
1782        return cls(this=str(string), is_string=True)
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'literal'
class Join(Expression):
1789class Join(Expression):
1790    arg_types = {
1791        "this": True,
1792        "on": False,
1793        "side": False,
1794        "kind": False,
1795        "using": False,
1796        "method": False,
1797        "global": False,
1798        "hint": False,
1799    }
1800
1801    @property
1802    def method(self) -> str:
1803        return self.text("method").upper()
1804
1805    @property
1806    def kind(self) -> str:
1807        return self.text("kind").upper()
1808
1809    @property
1810    def side(self) -> str:
1811        return self.text("side").upper()
1812
1813    @property
1814    def hint(self) -> str:
1815        return self.text("hint").upper()
1816
1817    @property
1818    def alias_or_name(self) -> str:
1819        return self.this.alias_or_name
1820
1821    def on(
1822        self,
1823        *expressions: t.Optional[ExpOrStr],
1824        append: bool = True,
1825        dialect: DialectType = None,
1826        copy: bool = True,
1827        **opts,
1828    ) -> Join:
1829        """
1830        Append to or set the ON expressions.
1831
1832        Example:
1833            >>> import sqlglot
1834            >>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
1835            'JOIN x ON y = 1'
1836
1837        Args:
1838            *expressions: the SQL code strings to parse.
1839                If an `Expression` instance is passed, it will be used as-is.
1840                Multiple expressions are combined with an AND operator.
1841            append: if `True`, AND the new expressions to any existing expression.
1842                Otherwise, this resets the expression.
1843            dialect: the dialect used to parse the input expressions.
1844            copy: if `False`, modify this expression instance in-place.
1845            opts: other options to use to parse the input expressions.
1846
1847        Returns:
1848            The modified Join expression.
1849        """
1850        join = _apply_conjunction_builder(
1851            *expressions,
1852            instance=self,
1853            arg="on",
1854            append=append,
1855            dialect=dialect,
1856            copy=copy,
1857            **opts,
1858        )
1859
1860        if join.kind == "CROSS":
1861            join.set("kind", None)
1862
1863        return join
1864
1865    def using(
1866        self,
1867        *expressions: t.Optional[ExpOrStr],
1868        append: bool = True,
1869        dialect: DialectType = None,
1870        copy: bool = True,
1871        **opts,
1872    ) -> Join:
1873        """
1874        Append to or set the USING expressions.
1875
1876        Example:
1877            >>> import sqlglot
1878            >>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
1879            'JOIN x USING (foo, bla)'
1880
1881        Args:
1882            *expressions: the SQL code strings to parse.
1883                If an `Expression` instance is passed, it will be used as-is.
1884            append: if `True`, concatenate the new expressions to the existing "using" list.
1885                Otherwise, this resets the expression.
1886            dialect: the dialect used to parse the input expressions.
1887            copy: if `False`, modify this expression instance in-place.
1888            opts: other options to use to parse the input expressions.
1889
1890        Returns:
1891            The modified Join expression.
1892        """
1893        join = _apply_list_builder(
1894            *expressions,
1895            instance=self,
1896            arg="using",
1897            append=append,
1898            dialect=dialect,
1899            copy=copy,
1900            **opts,
1901        )
1902
1903        if join.kind == "CROSS":
1904            join.set("kind", None)
1905
1906        return join
arg_types = {'this': True, 'on': False, 'side': False, 'kind': False, 'using': False, 'method': False, 'global': False, 'hint': False}
method: str
kind: str
side: str
hint: str
alias_or_name: str
def on( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Join:
1821    def on(
1822        self,
1823        *expressions: t.Optional[ExpOrStr],
1824        append: bool = True,
1825        dialect: DialectType = None,
1826        copy: bool = True,
1827        **opts,
1828    ) -> Join:
1829        """
1830        Append to or set the ON expressions.
1831
1832        Example:
1833            >>> import sqlglot
1834            >>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
1835            'JOIN x ON y = 1'
1836
1837        Args:
1838            *expressions: the SQL code strings to parse.
1839                If an `Expression` instance is passed, it will be used as-is.
1840                Multiple expressions are combined with an AND operator.
1841            append: if `True`, AND the new expressions to any existing expression.
1842                Otherwise, this resets the expression.
1843            dialect: the dialect used to parse the input expressions.
1844            copy: if `False`, modify this expression instance in-place.
1845            opts: other options to use to parse the input expressions.
1846
1847        Returns:
1848            The modified Join expression.
1849        """
1850        join = _apply_conjunction_builder(
1851            *expressions,
1852            instance=self,
1853            arg="on",
1854            append=append,
1855            dialect=dialect,
1856            copy=copy,
1857            **opts,
1858        )
1859
1860        if join.kind == "CROSS":
1861            join.set("kind", None)
1862
1863        return join

Append to or set the ON expressions.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
'JOIN x ON y = 1'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Join expression.

def using( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Join:
1865    def using(
1866        self,
1867        *expressions: t.Optional[ExpOrStr],
1868        append: bool = True,
1869        dialect: DialectType = None,
1870        copy: bool = True,
1871        **opts,
1872    ) -> Join:
1873        """
1874        Append to or set the USING expressions.
1875
1876        Example:
1877            >>> import sqlglot
1878            >>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
1879            'JOIN x USING (foo, bla)'
1880
1881        Args:
1882            *expressions: the SQL code strings to parse.
1883                If an `Expression` instance is passed, it will be used as-is.
1884            append: if `True`, concatenate the new expressions to the existing "using" list.
1885                Otherwise, this resets the expression.
1886            dialect: the dialect used to parse the input expressions.
1887            copy: if `False`, modify this expression instance in-place.
1888            opts: other options to use to parse the input expressions.
1889
1890        Returns:
1891            The modified Join expression.
1892        """
1893        join = _apply_list_builder(
1894            *expressions,
1895            instance=self,
1896            arg="using",
1897            append=append,
1898            dialect=dialect,
1899            copy=copy,
1900            **opts,
1901        )
1902
1903        if join.kind == "CROSS":
1904            join.set("kind", None)
1905
1906        return join

Append to or set the USING expressions.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
'JOIN x USING (foo, bla)'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, concatenate the new expressions to the existing "using" list. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Join expression.

key = 'join'
class Lateral(UDTF):
1909class Lateral(UDTF):
1910    arg_types = {"this": True, "view": False, "outer": False, "alias": False}
arg_types = {'this': True, 'view': False, 'outer': False, 'alias': False}
key = 'lateral'
class MatchRecognize(Expression):
1913class MatchRecognize(Expression):
1914    arg_types = {
1915        "partition_by": False,
1916        "order": False,
1917        "measures": False,
1918        "rows": False,
1919        "after": False,
1920        "pattern": False,
1921        "define": False,
1922        "alias": False,
1923    }
arg_types = {'partition_by': False, 'order': False, 'measures': False, 'rows': False, 'after': False, 'pattern': False, 'define': False, 'alias': False}
key = 'matchrecognize'
class Final(Expression):
1928class Final(Expression):
1929    pass
key = 'final'
class Offset(Expression):
1932class Offset(Expression):
1933    arg_types = {"this": False, "expression": True}
arg_types = {'this': False, 'expression': True}
key = 'offset'
class Order(Expression):
1936class Order(Expression):
1937    arg_types = {"this": False, "expressions": True}
arg_types = {'this': False, 'expressions': True}
key = 'order'
class Cluster(Order):
1942class Cluster(Order):
1943    pass
key = 'cluster'
class Distribute(Order):
1946class Distribute(Order):
1947    pass
key = 'distribute'
class Sort(Order):
1950class Sort(Order):
1951    pass
key = 'sort'
class Ordered(Expression):
1954class Ordered(Expression):
1955    arg_types = {"this": True, "desc": False, "nulls_first": True}
arg_types = {'this': True, 'desc': False, 'nulls_first': True}
key = 'ordered'
class Property(Expression):
1958class Property(Expression):
1959    arg_types = {"this": True, "value": True}
arg_types = {'this': True, 'value': True}
key = 'property'
class AlgorithmProperty(Property):
1962class AlgorithmProperty(Property):
1963    arg_types = {"this": True}
arg_types = {'this': True}
key = 'algorithmproperty'
class AutoIncrementProperty(Property):
1966class AutoIncrementProperty(Property):
1967    arg_types = {"this": True}
arg_types = {'this': True}
key = 'autoincrementproperty'
class BlockCompressionProperty(Property):
1970class BlockCompressionProperty(Property):
1971    arg_types = {"autotemp": False, "always": False, "default": True, "manual": True, "never": True}
arg_types = {'autotemp': False, 'always': False, 'default': True, 'manual': True, 'never': True}
key = 'blockcompressionproperty'
class CharacterSetProperty(Property):
1974class CharacterSetProperty(Property):
1975    arg_types = {"this": True, "default": True}
arg_types = {'this': True, 'default': True}
key = 'charactersetproperty'
class ChecksumProperty(Property):
1978class ChecksumProperty(Property):
1979    arg_types = {"on": False, "default": False}
arg_types = {'on': False, 'default': False}
key = 'checksumproperty'
class CollateProperty(Property):
1982class CollateProperty(Property):
1983    arg_types = {"this": True}
arg_types = {'this': True}
key = 'collateproperty'
class CopyGrantsProperty(Property):
1986class CopyGrantsProperty(Property):
1987    arg_types = {}
arg_types = {}
key = 'copygrantsproperty'
class DataBlocksizeProperty(Property):
1990class DataBlocksizeProperty(Property):
1991    arg_types = {
1992        "size": False,
1993        "units": False,
1994        "minimum": False,
1995        "maximum": False,
1996        "default": False,
1997    }
arg_types = {'size': False, 'units': False, 'minimum': False, 'maximum': False, 'default': False}
key = 'datablocksizeproperty'
class DefinerProperty(Property):
2000class DefinerProperty(Property):
2001    arg_types = {"this": True}
arg_types = {'this': True}
key = 'definerproperty'
class DistKeyProperty(Property):
2004class DistKeyProperty(Property):
2005    arg_types = {"this": True}
arg_types = {'this': True}
key = 'distkeyproperty'
class DistStyleProperty(Property):
2008class DistStyleProperty(Property):
2009    arg_types = {"this": True}
arg_types = {'this': True}
key = 'diststyleproperty'
class EngineProperty(Property):
2012class EngineProperty(Property):
2013    arg_types = {"this": True}
arg_types = {'this': True}
key = 'engineproperty'
class HeapProperty(Property):
2016class HeapProperty(Property):
2017    arg_types = {}
arg_types = {}
key = 'heapproperty'
class ToTableProperty(Property):
2020class ToTableProperty(Property):
2021    arg_types = {"this": True}
arg_types = {'this': True}
key = 'totableproperty'
class ExecuteAsProperty(Property):
2024class ExecuteAsProperty(Property):
2025    arg_types = {"this": True}
arg_types = {'this': True}
key = 'executeasproperty'
class ExternalProperty(Property):
2028class ExternalProperty(Property):
2029    arg_types = {"this": False}
arg_types = {'this': False}
key = 'externalproperty'
class FallbackProperty(Property):
2032class FallbackProperty(Property):
2033    arg_types = {"no": True, "protection": False}
arg_types = {'no': True, 'protection': False}
key = 'fallbackproperty'
class FileFormatProperty(Property):
2036class FileFormatProperty(Property):
2037    arg_types = {"this": True}
arg_types = {'this': True}
key = 'fileformatproperty'
class FreespaceProperty(Property):
2040class FreespaceProperty(Property):
2041    arg_types = {"this": True, "percent": False}
arg_types = {'this': True, 'percent': False}
key = 'freespaceproperty'
class InputModelProperty(Property):
2044class InputModelProperty(Property):
2045    arg_types = {"this": True}
arg_types = {'this': True}
key = 'inputmodelproperty'
class OutputModelProperty(Property):
2048class OutputModelProperty(Property):
2049    arg_types = {"this": True}
arg_types = {'this': True}
key = 'outputmodelproperty'
class IsolatedLoadingProperty(Property):
2052class IsolatedLoadingProperty(Property):
2053    arg_types = {
2054        "no": True,
2055        "concurrent": True,
2056        "for_all": True,
2057        "for_insert": True,
2058        "for_none": True,
2059    }
arg_types = {'no': True, 'concurrent': True, 'for_all': True, 'for_insert': True, 'for_none': True}
key = 'isolatedloadingproperty'
class JournalProperty(Property):
2062class JournalProperty(Property):
2063    arg_types = {
2064        "no": False,
2065        "dual": False,
2066        "before": False,
2067        "local": False,
2068        "after": False,
2069    }
arg_types = {'no': False, 'dual': False, 'before': False, 'local': False, 'after': False}
key = 'journalproperty'
class LanguageProperty(Property):
2072class LanguageProperty(Property):
2073    arg_types = {"this": True}
arg_types = {'this': True}
key = 'languageproperty'
class ClusteredByProperty(Property):
2077class ClusteredByProperty(Property):
2078    arg_types = {"expressions": True, "sorted_by": False, "buckets": True}
arg_types = {'expressions': True, 'sorted_by': False, 'buckets': True}
key = 'clusteredbyproperty'
class DictProperty(Property):
2081class DictProperty(Property):
2082    arg_types = {"this": True, "kind": True, "settings": False}
arg_types = {'this': True, 'kind': True, 'settings': False}
key = 'dictproperty'
class DictSubProperty(Property):
2085class DictSubProperty(Property):
2086    pass
key = 'dictsubproperty'
class DictRange(Property):
2089class DictRange(Property):
2090    arg_types = {"this": True, "min": True, "max": True}
arg_types = {'this': True, 'min': True, 'max': True}
key = 'dictrange'
class OnCluster(Property):
2095class OnCluster(Property):
2096    arg_types = {"this": True}
arg_types = {'this': True}
key = 'oncluster'
class LikeProperty(Property):
2099class LikeProperty(Property):
2100    arg_types = {"this": True, "expressions": False}
arg_types = {'this': True, 'expressions': False}
key = 'likeproperty'
class LocationProperty(Property):
2103class LocationProperty(Property):
2104    arg_types = {"this": True}
arg_types = {'this': True}
key = 'locationproperty'
class LockingProperty(Property):
2107class LockingProperty(Property):
2108    arg_types = {
2109        "this": False,
2110        "kind": True,
2111        "for_or_in": True,
2112        "lock_type": True,
2113        "override": False,
2114    }
arg_types = {'this': False, 'kind': True, 'for_or_in': True, 'lock_type': True, 'override': False}
key = 'lockingproperty'
class LogProperty(Property):
2117class LogProperty(Property):
2118    arg_types = {"no": True}
arg_types = {'no': True}
key = 'logproperty'
class MaterializedProperty(Property):
2121class MaterializedProperty(Property):
2122    arg_types = {"this": False}
arg_types = {'this': False}
key = 'materializedproperty'
class MergeBlockRatioProperty(Property):
2125class MergeBlockRatioProperty(Property):
2126    arg_types = {"this": False, "no": False, "default": False, "percent": False}
arg_types = {'this': False, 'no': False, 'default': False, 'percent': False}
key = 'mergeblockratioproperty'
class NoPrimaryIndexProperty(Property):
2129class NoPrimaryIndexProperty(Property):
2130    arg_types = {}
arg_types = {}
key = 'noprimaryindexproperty'
class OnProperty(Property):
2133class OnProperty(Property):
2134    arg_types = {"this": True}
arg_types = {'this': True}
key = 'onproperty'
class OnCommitProperty(Property):
2137class OnCommitProperty(Property):
2138    arg_types = {"delete": False}
arg_types = {'delete': False}
key = 'oncommitproperty'
class PartitionedByProperty(Property):
2141class PartitionedByProperty(Property):
2142    arg_types = {"this": True}
arg_types = {'this': True}
key = 'partitionedbyproperty'
class RemoteWithConnectionModelProperty(Property):
2145class RemoteWithConnectionModelProperty(Property):
2146    arg_types = {"this": True}
arg_types = {'this': True}
key = 'remotewithconnectionmodelproperty'
class ReturnsProperty(Property):
2149class ReturnsProperty(Property):
2150    arg_types = {"this": True, "is_table": False, "table": False}
arg_types = {'this': True, 'is_table': False, 'table': False}
key = 'returnsproperty'
class RowFormatProperty(Property):
2153class RowFormatProperty(Property):
2154    arg_types = {"this": True}
arg_types = {'this': True}
key = 'rowformatproperty'
class RowFormatDelimitedProperty(Property):
2157class RowFormatDelimitedProperty(Property):
2158    # https://cwiki.apache.org/confluence/display/hive/languagemanual+dml
2159    arg_types = {
2160        "fields": False,
2161        "escaped": False,
2162        "collection_items": False,
2163        "map_keys": False,
2164        "lines": False,
2165        "null": False,
2166        "serde": False,
2167    }
arg_types = {'fields': False, 'escaped': False, 'collection_items': False, 'map_keys': False, 'lines': False, 'null': False, 'serde': False}
key = 'rowformatdelimitedproperty'
class RowFormatSerdeProperty(Property):
2170class RowFormatSerdeProperty(Property):
2171    arg_types = {"this": True, "serde_properties": False}
arg_types = {'this': True, 'serde_properties': False}
key = 'rowformatserdeproperty'
class QueryTransform(Expression):
2175class QueryTransform(Expression):
2176    arg_types = {
2177        "expressions": True,
2178        "command_script": True,
2179        "schema": False,
2180        "row_format_before": False,
2181        "record_writer": False,
2182        "row_format_after": False,
2183        "record_reader": False,
2184    }
arg_types = {'expressions': True, 'command_script': True, 'schema': False, 'row_format_before': False, 'record_writer': False, 'row_format_after': False, 'record_reader': False}
key = 'querytransform'
class SampleProperty(Property):
2187class SampleProperty(Property):
2188    arg_types = {"this": True}
arg_types = {'this': True}
key = 'sampleproperty'
class SchemaCommentProperty(Property):
2191class SchemaCommentProperty(Property):
2192    arg_types = {"this": True}
arg_types = {'this': True}
key = 'schemacommentproperty'
class SerdeProperties(Property):
2195class SerdeProperties(Property):
2196    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'serdeproperties'
class SetProperty(Property):
2199class SetProperty(Property):
2200    arg_types = {"multi": True}
arg_types = {'multi': True}
key = 'setproperty'
class SettingsProperty(Property):
2203class SettingsProperty(Property):
2204    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'settingsproperty'
class SortKeyProperty(Property):
2207class SortKeyProperty(Property):
2208    arg_types = {"this": True, "compound": False}
arg_types = {'this': True, 'compound': False}
key = 'sortkeyproperty'
class SqlSecurityProperty(Property):
2211class SqlSecurityProperty(Property):
2212    arg_types = {"definer": True}
arg_types = {'definer': True}
key = 'sqlsecurityproperty'
class StabilityProperty(Property):
2215class StabilityProperty(Property):
2216    arg_types = {"this": True}
arg_types = {'this': True}
key = 'stabilityproperty'
class TemporaryProperty(Property):
2219class TemporaryProperty(Property):
2220    arg_types = {}
arg_types = {}
key = 'temporaryproperty'
class TransformModelProperty(Property):
2223class TransformModelProperty(Property):
2224    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'transformmodelproperty'
class TransientProperty(Property):
2227class TransientProperty(Property):
2228    arg_types = {"this": False}
arg_types = {'this': False}
key = 'transientproperty'
class VolatileProperty(Property):
2231class VolatileProperty(Property):
2232    arg_types = {"this": False}
arg_types = {'this': False}
key = 'volatileproperty'
class WithDataProperty(Property):
2235class WithDataProperty(Property):
2236    arg_types = {"no": True, "statistics": False}
arg_types = {'no': True, 'statistics': False}
key = 'withdataproperty'
class WithJournalTableProperty(Property):
2239class WithJournalTableProperty(Property):
2240    arg_types = {"this": True}
arg_types = {'this': True}
key = 'withjournaltableproperty'
class Properties(Expression):
2243class Properties(Expression):
2244    arg_types = {"expressions": True}
2245
2246    NAME_TO_PROPERTY = {
2247        "ALGORITHM": AlgorithmProperty,
2248        "AUTO_INCREMENT": AutoIncrementProperty,
2249        "CHARACTER SET": CharacterSetProperty,
2250        "CLUSTERED_BY": ClusteredByProperty,
2251        "COLLATE": CollateProperty,
2252        "COMMENT": SchemaCommentProperty,
2253        "DEFINER": DefinerProperty,
2254        "DISTKEY": DistKeyProperty,
2255        "DISTSTYLE": DistStyleProperty,
2256        "ENGINE": EngineProperty,
2257        "EXECUTE AS": ExecuteAsProperty,
2258        "FORMAT": FileFormatProperty,
2259        "LANGUAGE": LanguageProperty,
2260        "LOCATION": LocationProperty,
2261        "PARTITIONED_BY": PartitionedByProperty,
2262        "RETURNS": ReturnsProperty,
2263        "ROW_FORMAT": RowFormatProperty,
2264        "SORTKEY": SortKeyProperty,
2265    }
2266
2267    PROPERTY_TO_NAME = {v: k for k, v in NAME_TO_PROPERTY.items()}
2268
2269    # CREATE property locations
2270    # Form: schema specified
2271    #   create [POST_CREATE]
2272    #     table a [POST_NAME]
2273    #     (b int) [POST_SCHEMA]
2274    #     with ([POST_WITH])
2275    #     index (b) [POST_INDEX]
2276    #
2277    # Form: alias selection
2278    #   create [POST_CREATE]
2279    #     table a [POST_NAME]
2280    #     as [POST_ALIAS] (select * from b) [POST_EXPRESSION]
2281    #     index (c) [POST_INDEX]
2282    class Location(AutoName):
2283        POST_CREATE = auto()
2284        POST_NAME = auto()
2285        POST_SCHEMA = auto()
2286        POST_WITH = auto()
2287        POST_ALIAS = auto()
2288        POST_EXPRESSION = auto()
2289        POST_INDEX = auto()
2290        UNSUPPORTED = auto()
2291
2292    @classmethod
2293    def from_dict(cls, properties_dict: t.Dict) -> Properties:
2294        expressions = []
2295        for key, value in properties_dict.items():
2296            property_cls = cls.NAME_TO_PROPERTY.get(key.upper())
2297            if property_cls:
2298                expressions.append(property_cls(this=convert(value)))
2299            else:
2300                expressions.append(Property(this=Literal.string(key), value=convert(value)))
2301
2302        return cls(expressions=expressions)
arg_types = {'expressions': True}
NAME_TO_PROPERTY = {'ALGORITHM': <class 'AlgorithmProperty'>, 'AUTO_INCREMENT': <class 'AutoIncrementProperty'>, 'CHARACTER SET': <class 'CharacterSetProperty'>, 'CLUSTERED_BY': <class 'ClusteredByProperty'>, 'COLLATE': <class 'CollateProperty'>, 'COMMENT': <class 'SchemaCommentProperty'>, 'DEFINER': <class 'DefinerProperty'>, 'DISTKEY': <class 'DistKeyProperty'>, 'DISTSTYLE': <class 'DistStyleProperty'>, 'ENGINE': <class 'EngineProperty'>, 'EXECUTE AS': <class 'ExecuteAsProperty'>, 'FORMAT': <class 'FileFormatProperty'>, 'LANGUAGE': <class 'LanguageProperty'>, 'LOCATION': <class 'LocationProperty'>, 'PARTITIONED_BY': <class 'PartitionedByProperty'>, 'RETURNS': <class 'ReturnsProperty'>, 'ROW_FORMAT': <class 'RowFormatProperty'>, 'SORTKEY': <class 'SortKeyProperty'>}
PROPERTY_TO_NAME = {<class 'AlgorithmProperty'>: 'ALGORITHM', <class 'AutoIncrementProperty'>: 'AUTO_INCREMENT', <class 'CharacterSetProperty'>: 'CHARACTER SET', <class 'ClusteredByProperty'>: 'CLUSTERED_BY', <class 'CollateProperty'>: 'COLLATE', <class 'SchemaCommentProperty'>: 'COMMENT', <class 'DefinerProperty'>: 'DEFINER', <class 'DistKeyProperty'>: 'DISTKEY', <class 'DistStyleProperty'>: 'DISTSTYLE', <class 'EngineProperty'>: 'ENGINE', <class 'ExecuteAsProperty'>: 'EXECUTE AS', <class 'FileFormatProperty'>: 'FORMAT', <class 'LanguageProperty'>: 'LANGUAGE', <class 'LocationProperty'>: 'LOCATION', <class 'PartitionedByProperty'>: 'PARTITIONED_BY', <class 'ReturnsProperty'>: 'RETURNS', <class 'RowFormatProperty'>: 'ROW_FORMAT', <class 'SortKeyProperty'>: 'SORTKEY'}
@classmethod
def from_dict(cls, properties_dict: Dict) -> Properties:
2292    @classmethod
2293    def from_dict(cls, properties_dict: t.Dict) -> Properties:
2294        expressions = []
2295        for key, value in properties_dict.items():
2296            property_cls = cls.NAME_TO_PROPERTY.get(key.upper())
2297            if property_cls:
2298                expressions.append(property_cls(this=convert(value)))
2299            else:
2300                expressions.append(Property(this=Literal.string(key), value=convert(value)))
2301
2302        return cls(expressions=expressions)
key = 'properties'
class Properties.Location(sqlglot.helper.AutoName):
2282    class Location(AutoName):
2283        POST_CREATE = auto()
2284        POST_NAME = auto()
2285        POST_SCHEMA = auto()
2286        POST_WITH = auto()
2287        POST_ALIAS = auto()
2288        POST_EXPRESSION = auto()
2289        POST_INDEX = auto()
2290        UNSUPPORTED = auto()

An enumeration.

POST_CREATE = <Location.POST_CREATE: 'POST_CREATE'>
POST_NAME = <Location.POST_NAME: 'POST_NAME'>
POST_SCHEMA = <Location.POST_SCHEMA: 'POST_SCHEMA'>
POST_WITH = <Location.POST_WITH: 'POST_WITH'>
POST_ALIAS = <Location.POST_ALIAS: 'POST_ALIAS'>
POST_EXPRESSION = <Location.POST_EXPRESSION: 'POST_EXPRESSION'>
POST_INDEX = <Location.POST_INDEX: 'POST_INDEX'>
UNSUPPORTED = <Location.UNSUPPORTED: 'UNSUPPORTED'>
Inherited Members
enum.Enum
name
value
class Qualify(Expression):
2305class Qualify(Expression):
2306    pass
key = 'qualify'
class InputOutputFormat(Expression):
2309class InputOutputFormat(Expression):
2310    arg_types = {"input_format": False, "output_format": False}
arg_types = {'input_format': False, 'output_format': False}
key = 'inputoutputformat'
class Return(Expression):
2314class Return(Expression):
2315    pass
key = 'return'
class Reference(Expression):
2318class Reference(Expression):
2319    arg_types = {"this": True, "expressions": False, "options": False}
arg_types = {'this': True, 'expressions': False, 'options': False}
key = 'reference'
class Tuple(Expression):
2322class Tuple(Expression):
2323    arg_types = {"expressions": False}
2324
2325    def isin(
2326        self,
2327        *expressions: t.Any,
2328        query: t.Optional[ExpOrStr] = None,
2329        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
2330        copy: bool = True,
2331        **opts,
2332    ) -> In:
2333        return In(
2334            this=maybe_copy(self, copy),
2335            expressions=[convert(e, copy=copy) for e in expressions],
2336            query=maybe_parse(query, copy=copy, **opts) if query else None,
2337            unnest=Unnest(
2338                expressions=[
2339                    maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts) for e in ensure_list(unnest)
2340                ]
2341            )
2342            if unnest
2343            else None,
2344        )
arg_types = {'expressions': False}
def isin( self, *expressions: Any, query: Union[str, Expression, NoneType] = None, unnest: Union[str, Expression, NoneType, Collection[Union[str, Expression]]] = None, copy: bool = True, **opts) -> In:
2325    def isin(
2326        self,
2327        *expressions: t.Any,
2328        query: t.Optional[ExpOrStr] = None,
2329        unnest: t.Optional[ExpOrStr] | t.Collection[ExpOrStr] = None,
2330        copy: bool = True,
2331        **opts,
2332    ) -> In:
2333        return In(
2334            this=maybe_copy(self, copy),
2335            expressions=[convert(e, copy=copy) for e in expressions],
2336            query=maybe_parse(query, copy=copy, **opts) if query else None,
2337            unnest=Unnest(
2338                expressions=[
2339                    maybe_parse(t.cast(ExpOrStr, e), copy=copy, **opts) for e in ensure_list(unnest)
2340                ]
2341            )
2342            if unnest
2343            else None,
2344        )
key = 'tuple'
class Subqueryable(Unionable):
2347class Subqueryable(Unionable):
2348    def subquery(self, alias: t.Optional[ExpOrStr] = None, copy: bool = True) -> Subquery:
2349        """
2350        Convert this expression to an aliased expression that can be used as a Subquery.
2351
2352        Example:
2353            >>> subquery = Select().select("x").from_("tbl").subquery()
2354            >>> Select().select("x").from_(subquery).sql()
2355            'SELECT x FROM (SELECT x FROM tbl)'
2356
2357        Args:
2358            alias (str | Identifier): an optional alias for the subquery
2359            copy (bool): if `False`, modify this expression instance in-place.
2360
2361        Returns:
2362            Alias: the subquery
2363        """
2364        instance = maybe_copy(self, copy)
2365        if not isinstance(alias, Expression):
2366            alias = TableAlias(this=to_identifier(alias)) if alias else None
2367
2368        return Subquery(this=instance, alias=alias)
2369
2370    def limit(
2371        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2372    ) -> Select:
2373        raise NotImplementedError
2374
2375    @property
2376    def ctes(self):
2377        with_ = self.args.get("with")
2378        if not with_:
2379            return []
2380        return with_.expressions
2381
2382    @property
2383    def selects(self) -> t.List[Expression]:
2384        raise NotImplementedError("Subqueryable objects must implement `selects`")
2385
2386    @property
2387    def named_selects(self) -> t.List[str]:
2388        raise NotImplementedError("Subqueryable objects must implement `named_selects`")
2389
2390    def select(
2391        self,
2392        *expressions: t.Optional[ExpOrStr],
2393        append: bool = True,
2394        dialect: DialectType = None,
2395        copy: bool = True,
2396        **opts,
2397    ) -> Subqueryable:
2398        raise NotImplementedError("Subqueryable objects must implement `select`")
2399
2400    def with_(
2401        self,
2402        alias: ExpOrStr,
2403        as_: ExpOrStr,
2404        recursive: t.Optional[bool] = None,
2405        append: bool = True,
2406        dialect: DialectType = None,
2407        copy: bool = True,
2408        **opts,
2409    ) -> Subqueryable:
2410        """
2411        Append to or set the common table expressions.
2412
2413        Example:
2414            >>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
2415            'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
2416
2417        Args:
2418            alias: the SQL code string to parse as the table name.
2419                If an `Expression` instance is passed, this is used as-is.
2420            as_: the SQL code string to parse as the table expression.
2421                If an `Expression` instance is passed, it will be used as-is.
2422            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
2423            append: if `True`, add to any existing expressions.
2424                Otherwise, this resets the expressions.
2425            dialect: the dialect used to parse the input expression.
2426            copy: if `False`, modify this expression instance in-place.
2427            opts: other options to use to parse the input expressions.
2428
2429        Returns:
2430            The modified expression.
2431        """
2432        return _apply_cte_builder(
2433            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
2434        )
def subquery( self, alias: Union[str, Expression, NoneType] = None, copy: bool = True) -> Subquery:
2348    def subquery(self, alias: t.Optional[ExpOrStr] = None, copy: bool = True) -> Subquery:
2349        """
2350        Convert this expression to an aliased expression that can be used as a Subquery.
2351
2352        Example:
2353            >>> subquery = Select().select("x").from_("tbl").subquery()
2354            >>> Select().select("x").from_(subquery).sql()
2355            'SELECT x FROM (SELECT x FROM tbl)'
2356
2357        Args:
2358            alias (str | Identifier): an optional alias for the subquery
2359            copy (bool): if `False`, modify this expression instance in-place.
2360
2361        Returns:
2362            Alias: the subquery
2363        """
2364        instance = maybe_copy(self, copy)
2365        if not isinstance(alias, Expression):
2366            alias = TableAlias(this=to_identifier(alias)) if alias else None
2367
2368        return Subquery(this=instance, alias=alias)

Convert this expression to an aliased expression that can be used as a Subquery.

Example:
>>> subquery = Select().select("x").from_("tbl").subquery()
>>> Select().select("x").from_(subquery).sql()
'SELECT x FROM (SELECT x FROM tbl)'
Arguments:
  • alias (str | Identifier): an optional alias for the subquery
  • copy (bool): if False, modify this expression instance in-place.
Returns:

Alias: the subquery

def limit( self, expression: Union[str, Expression, int], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
2370    def limit(
2371        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2372    ) -> Select:
2373        raise NotImplementedError
ctes
selects: List[Expression]
named_selects: List[str]
def select( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Subqueryable:
2390    def select(
2391        self,
2392        *expressions: t.Optional[ExpOrStr],
2393        append: bool = True,
2394        dialect: DialectType = None,
2395        copy: bool = True,
2396        **opts,
2397    ) -> Subqueryable:
2398        raise NotImplementedError("Subqueryable objects must implement `select`")
def with_( self, alias: Union[str, Expression], as_: Union[str, Expression], recursive: Optional[bool] = None, append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Subqueryable:
2400    def with_(
2401        self,
2402        alias: ExpOrStr,
2403        as_: ExpOrStr,
2404        recursive: t.Optional[bool] = None,
2405        append: bool = True,
2406        dialect: DialectType = None,
2407        copy: bool = True,
2408        **opts,
2409    ) -> Subqueryable:
2410        """
2411        Append to or set the common table expressions.
2412
2413        Example:
2414            >>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
2415            'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
2416
2417        Args:
2418            alias: the SQL code string to parse as the table name.
2419                If an `Expression` instance is passed, this is used as-is.
2420            as_: the SQL code string to parse as the table expression.
2421                If an `Expression` instance is passed, it will be used as-is.
2422            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
2423            append: if `True`, add to any existing expressions.
2424                Otherwise, this resets the expressions.
2425            dialect: the dialect used to parse the input expression.
2426            copy: if `False`, modify this expression instance in-place.
2427            opts: other options to use to parse the input expressions.
2428
2429        Returns:
2430            The modified expression.
2431        """
2432        return _apply_cte_builder(
2433            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
2434        )

Append to or set the common table expressions.

Example:
>>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
Arguments:
  • alias: the SQL code string to parse as the table name. If an Expression instance is passed, this is used as-is.
  • as_: the SQL code string to parse as the table expression. If an Expression instance is passed, it will be used as-is.
  • recursive: set the RECURSIVE part of the expression. Defaults to False.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified expression.

key = 'subqueryable'
QUERY_MODIFIERS = {'match': False, 'laterals': False, 'joins': False, 'connect': False, 'pivots': False, 'where': False, 'group': False, 'having': False, 'qualify': False, 'windows': False, 'distribute': False, 'sort': False, 'cluster': False, 'order': False, 'limit': False, 'offset': False, 'locks': False, 'sample': False, 'settings': False, 'format': False}
class WithTableHint(Expression):
2462class WithTableHint(Expression):
2463    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'withtablehint'
class IndexTableHint(Expression):
2467class IndexTableHint(Expression):
2468    arg_types = {"this": True, "expressions": False, "target": False}
arg_types = {'this': True, 'expressions': False, 'target': False}
key = 'indextablehint'
class Table(Expression):
2471class Table(Expression):
2472    arg_types = {
2473        "this": True,
2474        "alias": False,
2475        "db": False,
2476        "catalog": False,
2477        "laterals": False,
2478        "joins": False,
2479        "pivots": False,
2480        "hints": False,
2481        "system_time": False,
2482        "version": False,
2483        "format": False,
2484        "pattern": False,
2485        "index": False,
2486    }
2487
2488    @property
2489    def name(self) -> str:
2490        if isinstance(self.this, Func):
2491            return ""
2492        return self.this.name
2493
2494    @property
2495    def db(self) -> str:
2496        return self.text("db")
2497
2498    @property
2499    def catalog(self) -> str:
2500        return self.text("catalog")
2501
2502    @property
2503    def selects(self) -> t.List[Expression]:
2504        return []
2505
2506    @property
2507    def named_selects(self) -> t.List[str]:
2508        return []
2509
2510    @property
2511    def parts(self) -> t.List[Expression]:
2512        """Return the parts of a table in order catalog, db, table."""
2513        parts: t.List[Expression] = []
2514
2515        for arg in ("catalog", "db", "this"):
2516            part = self.args.get(arg)
2517
2518            if isinstance(part, Dot):
2519                parts.extend(part.flatten())
2520            elif isinstance(part, Expression):
2521                parts.append(part)
2522
2523        return parts
arg_types = {'this': True, 'alias': False, 'db': False, 'catalog': False, 'laterals': False, 'joins': False, 'pivots': False, 'hints': False, 'system_time': False, 'version': False, 'format': False, 'pattern': False, 'index': False}
name: str
db: str
catalog: str
selects: List[Expression]
named_selects: List[str]
parts: List[Expression]

Return the parts of a table in order catalog, db, table.

key = 'table'
class Union(Subqueryable):
2526class Union(Subqueryable):
2527    arg_types = {
2528        "with": False,
2529        "this": True,
2530        "expression": True,
2531        "distinct": False,
2532        "by_name": False,
2533        **QUERY_MODIFIERS,
2534    }
2535
2536    def limit(
2537        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2538    ) -> Select:
2539        """
2540        Set the LIMIT expression.
2541
2542        Example:
2543            >>> select("1").union(select("1")).limit(1).sql()
2544            'SELECT * FROM (SELECT 1 UNION SELECT 1) AS _l_0 LIMIT 1'
2545
2546        Args:
2547            expression: the SQL code string to parse.
2548                This can also be an integer.
2549                If a `Limit` instance is passed, this is used as-is.
2550                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2551            dialect: the dialect used to parse the input expression.
2552            copy: if `False`, modify this expression instance in-place.
2553            opts: other options to use to parse the input expressions.
2554
2555        Returns:
2556            The limited subqueryable.
2557        """
2558        return (
2559            select("*")
2560            .from_(self.subquery(alias="_l_0", copy=copy))
2561            .limit(expression, dialect=dialect, copy=False, **opts)
2562        )
2563
2564    def select(
2565        self,
2566        *expressions: t.Optional[ExpOrStr],
2567        append: bool = True,
2568        dialect: DialectType = None,
2569        copy: bool = True,
2570        **opts,
2571    ) -> Union:
2572        """Append to or set the SELECT of the union recursively.
2573
2574        Example:
2575            >>> from sqlglot import parse_one
2576            >>> parse_one("select a from x union select a from y union select a from z").select("b").sql()
2577            'SELECT a, b FROM x UNION SELECT a, b FROM y UNION SELECT a, b FROM z'
2578
2579        Args:
2580            *expressions: the SQL code strings to parse.
2581                If an `Expression` instance is passed, it will be used as-is.
2582            append: if `True`, add to any existing expressions.
2583                Otherwise, this resets the expressions.
2584            dialect: the dialect used to parse the input expressions.
2585            copy: if `False`, modify this expression instance in-place.
2586            opts: other options to use to parse the input expressions.
2587
2588        Returns:
2589            Union: the modified expression.
2590        """
2591        this = self.copy() if copy else self
2592        this.this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
2593        this.expression.unnest().select(
2594            *expressions, append=append, dialect=dialect, copy=False, **opts
2595        )
2596        return this
2597
2598    @property
2599    def named_selects(self) -> t.List[str]:
2600        return self.this.unnest().named_selects
2601
2602    @property
2603    def is_star(self) -> bool:
2604        return self.this.is_star or self.expression.is_star
2605
2606    @property
2607    def selects(self) -> t.List[Expression]:
2608        return self.this.unnest().selects
2609
2610    @property
2611    def left(self):
2612        return self.this
2613
2614    @property
2615    def right(self):
2616        return self.expression
arg_types = {'with': False, 'this': True, 'expression': True, 'distinct': False, 'by_name': False, 'match': False, 'laterals': False, 'joins': False, 'connect': False, 'pivots': False, 'where': False, 'group': False, 'having': False, 'qualify': False, 'windows': False, 'distribute': False, 'sort': False, 'cluster': False, 'order': False, 'limit': False, 'offset': False, 'locks': False, 'sample': False, 'settings': False, 'format': False}
def limit( self, expression: Union[str, Expression, int], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
2536    def limit(
2537        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2538    ) -> Select:
2539        """
2540        Set the LIMIT expression.
2541
2542        Example:
2543            >>> select("1").union(select("1")).limit(1).sql()
2544            'SELECT * FROM (SELECT 1 UNION SELECT 1) AS _l_0 LIMIT 1'
2545
2546        Args:
2547            expression: the SQL code string to parse.
2548                This can also be an integer.
2549                If a `Limit` instance is passed, this is used as-is.
2550                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2551            dialect: the dialect used to parse the input expression.
2552            copy: if `False`, modify this expression instance in-place.
2553            opts: other options to use to parse the input expressions.
2554
2555        Returns:
2556            The limited subqueryable.
2557        """
2558        return (
2559            select("*")
2560            .from_(self.subquery(alias="_l_0", copy=copy))
2561            .limit(expression, dialect=dialect, copy=False, **opts)
2562        )

Set the LIMIT expression.

Example:
>>> select("1").union(select("1")).limit(1).sql()
'SELECT * FROM (SELECT 1 UNION SELECT 1) AS _l_0 LIMIT 1'
Arguments:
  • expression: the SQL code string to parse. This can also be an integer. If a Limit instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Limit.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The limited subqueryable.

def select( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Union:
2564    def select(
2565        self,
2566        *expressions: t.Optional[ExpOrStr],
2567        append: bool = True,
2568        dialect: DialectType = None,
2569        copy: bool = True,
2570        **opts,
2571    ) -> Union:
2572        """Append to or set the SELECT of the union recursively.
2573
2574        Example:
2575            >>> from sqlglot import parse_one
2576            >>> parse_one("select a from x union select a from y union select a from z").select("b").sql()
2577            'SELECT a, b FROM x UNION SELECT a, b FROM y UNION SELECT a, b FROM z'
2578
2579        Args:
2580            *expressions: the SQL code strings to parse.
2581                If an `Expression` instance is passed, it will be used as-is.
2582            append: if `True`, add to any existing expressions.
2583                Otherwise, this resets the expressions.
2584            dialect: the dialect used to parse the input expressions.
2585            copy: if `False`, modify this expression instance in-place.
2586            opts: other options to use to parse the input expressions.
2587
2588        Returns:
2589            Union: the modified expression.
2590        """
2591        this = self.copy() if copy else self
2592        this.this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
2593        this.expression.unnest().select(
2594            *expressions, append=append, dialect=dialect, copy=False, **opts
2595        )
2596        return this

Append to or set the SELECT of the union recursively.

Example:
>>> from sqlglot import parse_one
>>> parse_one("select a from x union select a from y union select a from z").select("b").sql()
'SELECT a, b FROM x UNION SELECT a, b FROM y UNION SELECT a, b FROM z'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Union: the modified expression.

named_selects: List[str]
is_star: bool

Checks whether an expression is a star.

selects: List[Expression]
left
right
key = 'union'
class Except(Union):
2619class Except(Union):
2620    pass
key = 'except'
class Intersect(Union):
2623class Intersect(Union):
2624    pass
key = 'intersect'
class Unnest(UDTF):
2627class Unnest(UDTF):
2628    arg_types = {
2629        "expressions": True,
2630        "alias": False,
2631        "offset": False,
2632    }
arg_types = {'expressions': True, 'alias': False, 'offset': False}
key = 'unnest'
class Update(Expression):
2635class Update(Expression):
2636    arg_types = {
2637        "with": False,
2638        "this": False,
2639        "expressions": True,
2640        "from": False,
2641        "where": False,
2642        "returning": False,
2643        "order": False,
2644        "limit": False,
2645    }
arg_types = {'with': False, 'this': False, 'expressions': True, 'from': False, 'where': False, 'returning': False, 'order': False, 'limit': False}
key = 'update'
class Values(UDTF):
2648class Values(UDTF):
2649    arg_types = {
2650        "expressions": True,
2651        "ordinality": False,
2652        "alias": False,
2653    }
arg_types = {'expressions': True, 'ordinality': False, 'alias': False}
key = 'values'
class Var(Expression):
2656class Var(Expression):
2657    pass
key = 'var'
class Version(Expression):
2660class Version(Expression):
2661    """
2662    Time travel, iceberg, bigquery etc
2663    https://trino.io/docs/current/connector/iceberg.html?highlight=snapshot#using-snapshots
2664    https://www.databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
2665    https://cloud.google.com/bigquery/docs/reference/standard-sql/query-syntax#for_system_time_as_of
2666    https://learn.microsoft.com/en-us/sql/relational-databases/tables/querying-data-in-a-system-versioned-temporal-table?view=sql-server-ver16
2667    this is either TIMESTAMP or VERSION
2668    kind is ("AS OF", "BETWEEN")
2669    """
2670
2671    arg_types = {"this": True, "kind": True, "expression": False}
arg_types = {'this': True, 'kind': True, 'expression': False}
key = 'version'
class Schema(Expression):
2674class Schema(Expression):
2675    arg_types = {"this": False, "expressions": False}
arg_types = {'this': False, 'expressions': False}
key = 'schema'
class Lock(Expression):
2680class Lock(Expression):
2681    arg_types = {"update": True, "expressions": False, "wait": False}
arg_types = {'update': True, 'expressions': False, 'wait': False}
key = 'lock'
class Select(Subqueryable):
2684class Select(Subqueryable):
2685    arg_types = {
2686        "with": False,
2687        "kind": False,
2688        "expressions": False,
2689        "hint": False,
2690        "distinct": False,
2691        "into": False,
2692        "from": False,
2693        **QUERY_MODIFIERS,
2694    }
2695
2696    def from_(
2697        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
2698    ) -> Select:
2699        """
2700        Set the FROM expression.
2701
2702        Example:
2703            >>> Select().from_("tbl").select("x").sql()
2704            'SELECT x FROM tbl'
2705
2706        Args:
2707            expression : the SQL code strings to parse.
2708                If a `From` instance is passed, this is used as-is.
2709                If another `Expression` instance is passed, it will be wrapped in a `From`.
2710            dialect: the dialect used to parse the input expression.
2711            copy: if `False`, modify this expression instance in-place.
2712            opts: other options to use to parse the input expressions.
2713
2714        Returns:
2715            The modified Select expression.
2716        """
2717        return _apply_builder(
2718            expression=expression,
2719            instance=self,
2720            arg="from",
2721            into=From,
2722            prefix="FROM",
2723            dialect=dialect,
2724            copy=copy,
2725            **opts,
2726        )
2727
2728    def group_by(
2729        self,
2730        *expressions: t.Optional[ExpOrStr],
2731        append: bool = True,
2732        dialect: DialectType = None,
2733        copy: bool = True,
2734        **opts,
2735    ) -> Select:
2736        """
2737        Set the GROUP BY expression.
2738
2739        Example:
2740            >>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
2741            'SELECT x, COUNT(1) FROM tbl GROUP BY x'
2742
2743        Args:
2744            *expressions: the SQL code strings to parse.
2745                If a `Group` instance is passed, this is used as-is.
2746                If another `Expression` instance is passed, it will be wrapped in a `Group`.
2747                If nothing is passed in then a group by is not applied to the expression
2748            append: if `True`, add to any existing expressions.
2749                Otherwise, this flattens all the `Group` expression into a single expression.
2750            dialect: the dialect used to parse the input expression.
2751            copy: if `False`, modify this expression instance in-place.
2752            opts: other options to use to parse the input expressions.
2753
2754        Returns:
2755            The modified Select expression.
2756        """
2757        if not expressions:
2758            return self if not copy else self.copy()
2759
2760        return _apply_child_list_builder(
2761            *expressions,
2762            instance=self,
2763            arg="group",
2764            append=append,
2765            copy=copy,
2766            prefix="GROUP BY",
2767            into=Group,
2768            dialect=dialect,
2769            **opts,
2770        )
2771
2772    def order_by(
2773        self,
2774        *expressions: t.Optional[ExpOrStr],
2775        append: bool = True,
2776        dialect: DialectType = None,
2777        copy: bool = True,
2778        **opts,
2779    ) -> Select:
2780        """
2781        Set the ORDER BY expression.
2782
2783        Example:
2784            >>> Select().from_("tbl").select("x").order_by("x DESC").sql()
2785            'SELECT x FROM tbl ORDER BY x DESC'
2786
2787        Args:
2788            *expressions: the SQL code strings to parse.
2789                If a `Group` instance is passed, this is used as-is.
2790                If another `Expression` instance is passed, it will be wrapped in a `Order`.
2791            append: if `True`, add to any existing expressions.
2792                Otherwise, this flattens all the `Order` expression into a single expression.
2793            dialect: the dialect used to parse the input expression.
2794            copy: if `False`, modify this expression instance in-place.
2795            opts: other options to use to parse the input expressions.
2796
2797        Returns:
2798            The modified Select expression.
2799        """
2800        return _apply_child_list_builder(
2801            *expressions,
2802            instance=self,
2803            arg="order",
2804            append=append,
2805            copy=copy,
2806            prefix="ORDER BY",
2807            into=Order,
2808            dialect=dialect,
2809            **opts,
2810        )
2811
2812    def sort_by(
2813        self,
2814        *expressions: t.Optional[ExpOrStr],
2815        append: bool = True,
2816        dialect: DialectType = None,
2817        copy: bool = True,
2818        **opts,
2819    ) -> Select:
2820        """
2821        Set the SORT BY expression.
2822
2823        Example:
2824            >>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
2825            'SELECT x FROM tbl SORT BY x DESC'
2826
2827        Args:
2828            *expressions: the SQL code strings to parse.
2829                If a `Group` instance is passed, this is used as-is.
2830                If another `Expression` instance is passed, it will be wrapped in a `SORT`.
2831            append: if `True`, add to any existing expressions.
2832                Otherwise, this flattens all the `Order` expression into a single expression.
2833            dialect: the dialect used to parse the input expression.
2834            copy: if `False`, modify this expression instance in-place.
2835            opts: other options to use to parse the input expressions.
2836
2837        Returns:
2838            The modified Select expression.
2839        """
2840        return _apply_child_list_builder(
2841            *expressions,
2842            instance=self,
2843            arg="sort",
2844            append=append,
2845            copy=copy,
2846            prefix="SORT BY",
2847            into=Sort,
2848            dialect=dialect,
2849            **opts,
2850        )
2851
2852    def cluster_by(
2853        self,
2854        *expressions: t.Optional[ExpOrStr],
2855        append: bool = True,
2856        dialect: DialectType = None,
2857        copy: bool = True,
2858        **opts,
2859    ) -> Select:
2860        """
2861        Set the CLUSTER BY expression.
2862
2863        Example:
2864            >>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
2865            'SELECT x FROM tbl CLUSTER BY x DESC'
2866
2867        Args:
2868            *expressions: the SQL code strings to parse.
2869                If a `Group` instance is passed, this is used as-is.
2870                If another `Expression` instance is passed, it will be wrapped in a `Cluster`.
2871            append: if `True`, add to any existing expressions.
2872                Otherwise, this flattens all the `Order` expression into a single expression.
2873            dialect: the dialect used to parse the input expression.
2874            copy: if `False`, modify this expression instance in-place.
2875            opts: other options to use to parse the input expressions.
2876
2877        Returns:
2878            The modified Select expression.
2879        """
2880        return _apply_child_list_builder(
2881            *expressions,
2882            instance=self,
2883            arg="cluster",
2884            append=append,
2885            copy=copy,
2886            prefix="CLUSTER BY",
2887            into=Cluster,
2888            dialect=dialect,
2889            **opts,
2890        )
2891
2892    def limit(
2893        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2894    ) -> Select:
2895        """
2896        Set the LIMIT expression.
2897
2898        Example:
2899            >>> Select().from_("tbl").select("x").limit(10).sql()
2900            'SELECT x FROM tbl LIMIT 10'
2901
2902        Args:
2903            expression: the SQL code string to parse.
2904                This can also be an integer.
2905                If a `Limit` instance is passed, this is used as-is.
2906                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2907            dialect: the dialect used to parse the input expression.
2908            copy: if `False`, modify this expression instance in-place.
2909            opts: other options to use to parse the input expressions.
2910
2911        Returns:
2912            Select: the modified expression.
2913        """
2914        return _apply_builder(
2915            expression=expression,
2916            instance=self,
2917            arg="limit",
2918            into=Limit,
2919            prefix="LIMIT",
2920            dialect=dialect,
2921            copy=copy,
2922            into_arg="expression",
2923            **opts,
2924        )
2925
2926    def offset(
2927        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2928    ) -> Select:
2929        """
2930        Set the OFFSET expression.
2931
2932        Example:
2933            >>> Select().from_("tbl").select("x").offset(10).sql()
2934            'SELECT x FROM tbl OFFSET 10'
2935
2936        Args:
2937            expression: the SQL code string to parse.
2938                This can also be an integer.
2939                If a `Offset` instance is passed, this is used as-is.
2940                If another `Expression` instance is passed, it will be wrapped in a `Offset`.
2941            dialect: the dialect used to parse the input expression.
2942            copy: if `False`, modify this expression instance in-place.
2943            opts: other options to use to parse the input expressions.
2944
2945        Returns:
2946            The modified Select expression.
2947        """
2948        return _apply_builder(
2949            expression=expression,
2950            instance=self,
2951            arg="offset",
2952            into=Offset,
2953            prefix="OFFSET",
2954            dialect=dialect,
2955            copy=copy,
2956            into_arg="expression",
2957            **opts,
2958        )
2959
2960    def select(
2961        self,
2962        *expressions: t.Optional[ExpOrStr],
2963        append: bool = True,
2964        dialect: DialectType = None,
2965        copy: bool = True,
2966        **opts,
2967    ) -> Select:
2968        """
2969        Append to or set the SELECT expressions.
2970
2971        Example:
2972            >>> Select().select("x", "y").sql()
2973            'SELECT x, y'
2974
2975        Args:
2976            *expressions: the SQL code strings to parse.
2977                If an `Expression` instance is passed, it will be used as-is.
2978            append: if `True`, add to any existing expressions.
2979                Otherwise, this resets the expressions.
2980            dialect: the dialect used to parse the input expressions.
2981            copy: if `False`, modify this expression instance in-place.
2982            opts: other options to use to parse the input expressions.
2983
2984        Returns:
2985            The modified Select expression.
2986        """
2987        return _apply_list_builder(
2988            *expressions,
2989            instance=self,
2990            arg="expressions",
2991            append=append,
2992            dialect=dialect,
2993            copy=copy,
2994            **opts,
2995        )
2996
2997    def lateral(
2998        self,
2999        *expressions: t.Optional[ExpOrStr],
3000        append: bool = True,
3001        dialect: DialectType = None,
3002        copy: bool = True,
3003        **opts,
3004    ) -> Select:
3005        """
3006        Append to or set the LATERAL expressions.
3007
3008        Example:
3009            >>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
3010            'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
3011
3012        Args:
3013            *expressions: the SQL code strings to parse.
3014                If an `Expression` instance is passed, it will be used as-is.
3015            append: if `True`, add to any existing expressions.
3016                Otherwise, this resets the expressions.
3017            dialect: the dialect used to parse the input expressions.
3018            copy: if `False`, modify this expression instance in-place.
3019            opts: other options to use to parse the input expressions.
3020
3021        Returns:
3022            The modified Select expression.
3023        """
3024        return _apply_list_builder(
3025            *expressions,
3026            instance=self,
3027            arg="laterals",
3028            append=append,
3029            into=Lateral,
3030            prefix="LATERAL VIEW",
3031            dialect=dialect,
3032            copy=copy,
3033            **opts,
3034        )
3035
3036    def join(
3037        self,
3038        expression: ExpOrStr,
3039        on: t.Optional[ExpOrStr] = None,
3040        using: t.Optional[ExpOrStr | t.Collection[ExpOrStr]] = None,
3041        append: bool = True,
3042        join_type: t.Optional[str] = None,
3043        join_alias: t.Optional[Identifier | str] = None,
3044        dialect: DialectType = None,
3045        copy: bool = True,
3046        **opts,
3047    ) -> Select:
3048        """
3049        Append to or set the JOIN expressions.
3050
3051        Example:
3052            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
3053            'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
3054
3055            >>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
3056            'SELECT 1 FROM a JOIN b USING (x, y, z)'
3057
3058            Use `join_type` to change the type of join:
3059
3060            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
3061            'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
3062
3063        Args:
3064            expression: the SQL code string to parse.
3065                If an `Expression` instance is passed, it will be used as-is.
3066            on: optionally specify the join "on" criteria as a SQL string.
3067                If an `Expression` instance is passed, it will be used as-is.
3068            using: optionally specify the join "using" criteria as a SQL string.
3069                If an `Expression` instance is passed, it will be used as-is.
3070            append: if `True`, add to any existing expressions.
3071                Otherwise, this resets the expressions.
3072            join_type: if set, alter the parsed join type.
3073            join_alias: an optional alias for the joined source.
3074            dialect: the dialect used to parse the input expressions.
3075            copy: if `False`, modify this expression instance in-place.
3076            opts: other options to use to parse the input expressions.
3077
3078        Returns:
3079            Select: the modified expression.
3080        """
3081        parse_args: t.Dict[str, t.Any] = {"dialect": dialect, **opts}
3082
3083        try:
3084            expression = maybe_parse(expression, into=Join, prefix="JOIN", **parse_args)
3085        except ParseError:
3086            expression = maybe_parse(expression, into=(Join, Expression), **parse_args)
3087
3088        join = expression if isinstance(expression, Join) else Join(this=expression)
3089
3090        if isinstance(join.this, Select):
3091            join.this.replace(join.this.subquery())
3092
3093        if join_type:
3094            method: t.Optional[Token]
3095            side: t.Optional[Token]
3096            kind: t.Optional[Token]
3097
3098            method, side, kind = maybe_parse(join_type, into="JOIN_TYPE", **parse_args)  # type: ignore
3099
3100            if method:
3101                join.set("method", method.text)
3102            if side:
3103                join.set("side", side.text)
3104            if kind:
3105                join.set("kind", kind.text)
3106
3107        if on:
3108            on = and_(*ensure_list(on), dialect=dialect, copy=copy, **opts)
3109            join.set("on", on)
3110
3111        if using:
3112            join = _apply_list_builder(
3113                *ensure_list(using),
3114                instance=join,
3115                arg="using",
3116                append=append,
3117                copy=copy,
3118                into=Identifier,
3119                **opts,
3120            )
3121
3122        if join_alias:
3123            join.set("this", alias_(join.this, join_alias, table=True))
3124
3125        return _apply_list_builder(
3126            join,
3127            instance=self,
3128            arg="joins",
3129            append=append,
3130            copy=copy,
3131            **opts,
3132        )
3133
3134    def where(
3135        self,
3136        *expressions: t.Optional[ExpOrStr],
3137        append: bool = True,
3138        dialect: DialectType = None,
3139        copy: bool = True,
3140        **opts,
3141    ) -> Select:
3142        """
3143        Append to or set the WHERE expressions.
3144
3145        Example:
3146            >>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
3147            "SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
3148
3149        Args:
3150            *expressions: the SQL code strings to parse.
3151                If an `Expression` instance is passed, it will be used as-is.
3152                Multiple expressions are combined with an AND operator.
3153            append: if `True`, AND the new expressions to any existing expression.
3154                Otherwise, this resets the expression.
3155            dialect: the dialect used to parse the input expressions.
3156            copy: if `False`, modify this expression instance in-place.
3157            opts: other options to use to parse the input expressions.
3158
3159        Returns:
3160            Select: the modified expression.
3161        """
3162        return _apply_conjunction_builder(
3163            *expressions,
3164            instance=self,
3165            arg="where",
3166            append=append,
3167            into=Where,
3168            dialect=dialect,
3169            copy=copy,
3170            **opts,
3171        )
3172
3173    def having(
3174        self,
3175        *expressions: t.Optional[ExpOrStr],
3176        append: bool = True,
3177        dialect: DialectType = None,
3178        copy: bool = True,
3179        **opts,
3180    ) -> Select:
3181        """
3182        Append to or set the HAVING expressions.
3183
3184        Example:
3185            >>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
3186            'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
3187
3188        Args:
3189            *expressions: the SQL code strings to parse.
3190                If an `Expression` instance is passed, it will be used as-is.
3191                Multiple expressions are combined with an AND operator.
3192            append: if `True`, AND the new expressions to any existing expression.
3193                Otherwise, this resets the expression.
3194            dialect: the dialect used to parse the input expressions.
3195            copy: if `False`, modify this expression instance in-place.
3196            opts: other options to use to parse the input expressions.
3197
3198        Returns:
3199            The modified Select expression.
3200        """
3201        return _apply_conjunction_builder(
3202            *expressions,
3203            instance=self,
3204            arg="having",
3205            append=append,
3206            into=Having,
3207            dialect=dialect,
3208            copy=copy,
3209            **opts,
3210        )
3211
3212    def window(
3213        self,
3214        *expressions: t.Optional[ExpOrStr],
3215        append: bool = True,
3216        dialect: DialectType = None,
3217        copy: bool = True,
3218        **opts,
3219    ) -> Select:
3220        return _apply_list_builder(
3221            *expressions,
3222            instance=self,
3223            arg="windows",
3224            append=append,
3225            into=Window,
3226            dialect=dialect,
3227            copy=copy,
3228            **opts,
3229        )
3230
3231    def qualify(
3232        self,
3233        *expressions: t.Optional[ExpOrStr],
3234        append: bool = True,
3235        dialect: DialectType = None,
3236        copy: bool = True,
3237        **opts,
3238    ) -> Select:
3239        return _apply_conjunction_builder(
3240            *expressions,
3241            instance=self,
3242            arg="qualify",
3243            append=append,
3244            into=Qualify,
3245            dialect=dialect,
3246            copy=copy,
3247            **opts,
3248        )
3249
3250    def distinct(
3251        self, *ons: t.Optional[ExpOrStr], distinct: bool = True, copy: bool = True
3252    ) -> Select:
3253        """
3254        Set the OFFSET expression.
3255
3256        Example:
3257            >>> Select().from_("tbl").select("x").distinct().sql()
3258            'SELECT DISTINCT x FROM tbl'
3259
3260        Args:
3261            ons: the expressions to distinct on
3262            distinct: whether the Select should be distinct
3263            copy: if `False`, modify this expression instance in-place.
3264
3265        Returns:
3266            Select: the modified expression.
3267        """
3268        instance = maybe_copy(self, copy)
3269        on = Tuple(expressions=[maybe_parse(on, copy=copy) for on in ons if on]) if ons else None
3270        instance.set("distinct", Distinct(on=on) if distinct else None)
3271        return instance
3272
3273    def ctas(
3274        self,
3275        table: ExpOrStr,
3276        properties: t.Optional[t.Dict] = None,
3277        dialect: DialectType = None,
3278        copy: bool = True,
3279        **opts,
3280    ) -> Create:
3281        """
3282        Convert this expression to a CREATE TABLE AS statement.
3283
3284        Example:
3285            >>> Select().select("*").from_("tbl").ctas("x").sql()
3286            'CREATE TABLE x AS SELECT * FROM tbl'
3287
3288        Args:
3289            table: the SQL code string to parse as the table name.
3290                If another `Expression` instance is passed, it will be used as-is.
3291            properties: an optional mapping of table properties
3292            dialect: the dialect used to parse the input table.
3293            copy: if `False`, modify this expression instance in-place.
3294            opts: other options to use to parse the input table.
3295
3296        Returns:
3297            The new Create expression.
3298        """
3299        instance = maybe_copy(self, copy)
3300        table_expression = maybe_parse(
3301            table,
3302            into=Table,
3303            dialect=dialect,
3304            **opts,
3305        )
3306        properties_expression = None
3307        if properties:
3308            properties_expression = Properties.from_dict(properties)
3309
3310        return Create(
3311            this=table_expression,
3312            kind="table",
3313            expression=instance,
3314            properties=properties_expression,
3315        )
3316
3317    def lock(self, update: bool = True, copy: bool = True) -> Select:
3318        """
3319        Set the locking read mode for this expression.
3320
3321        Examples:
3322            >>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
3323            "SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
3324
3325            >>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
3326            "SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
3327
3328        Args:
3329            update: if `True`, the locking type will be `FOR UPDATE`, else it will be `FOR SHARE`.
3330            copy: if `False`, modify this expression instance in-place.
3331
3332        Returns:
3333            The modified expression.
3334        """
3335        inst = maybe_copy(self, copy)
3336        inst.set("locks", [Lock(update=update)])
3337
3338        return inst
3339
3340    def hint(self, *hints: ExpOrStr, dialect: DialectType = None, copy: bool = True) -> Select:
3341        """
3342        Set hints for this expression.
3343
3344        Examples:
3345            >>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
3346            'SELECT /*+ BROADCAST(y) */ x FROM tbl'
3347
3348        Args:
3349            hints: The SQL code strings to parse as the hints.
3350                If an `Expression` instance is passed, it will be used as-is.
3351            dialect: The dialect used to parse the hints.
3352            copy: If `False`, modify this expression instance in-place.
3353
3354        Returns:
3355            The modified expression.
3356        """
3357        inst = maybe_copy(self, copy)
3358        inst.set(
3359            "hint", Hint(expressions=[maybe_parse(h, copy=copy, dialect=dialect) for h in hints])
3360        )
3361
3362        return inst
3363
3364    @property
3365    def named_selects(self) -> t.List[str]:
3366        return [e.output_name for e in self.expressions if e.alias_or_name]
3367
3368    @property
3369    def is_star(self) -> bool:
3370        return any(expression.is_star for expression in self.expressions)
3371
3372    @property
3373    def selects(self) -> t.List[Expression]:
3374        return self.expressions
arg_types = {'with': False, 'kind': False, 'expressions': False, 'hint': False, 'distinct': False, 'into': False, 'from': False, 'match': False, 'laterals': False, 'joins': False, 'connect': False, 'pivots': False, 'where': False, 'group': False, 'having': False, 'qualify': False, 'windows': False, 'distribute': False, 'sort': False, 'cluster': False, 'order': False, 'limit': False, 'offset': False, 'locks': False, 'sample': False, 'settings': False, 'format': False}
def from_( self, expression: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
2696    def from_(
2697        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
2698    ) -> Select:
2699        """
2700        Set the FROM expression.
2701
2702        Example:
2703            >>> Select().from_("tbl").select("x").sql()
2704            'SELECT x FROM tbl'
2705
2706        Args:
2707            expression : the SQL code strings to parse.
2708                If a `From` instance is passed, this is used as-is.
2709                If another `Expression` instance is passed, it will be wrapped in a `From`.
2710            dialect: the dialect used to parse the input expression.
2711            copy: if `False`, modify this expression instance in-place.
2712            opts: other options to use to parse the input expressions.
2713
2714        Returns:
2715            The modified Select expression.
2716        """
2717        return _apply_builder(
2718            expression=expression,
2719            instance=self,
2720            arg="from",
2721            into=From,
2722            prefix="FROM",
2723            dialect=dialect,
2724            copy=copy,
2725            **opts,
2726        )

Set the FROM expression.

Example:
>>> Select().from_("tbl").select("x").sql()
'SELECT x FROM tbl'
Arguments:
  • expression : the SQL code strings to parse. If a From instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a From.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def group_by( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
2728    def group_by(
2729        self,
2730        *expressions: t.Optional[ExpOrStr],
2731        append: bool = True,
2732        dialect: DialectType = None,
2733        copy: bool = True,
2734        **opts,
2735    ) -> Select:
2736        """
2737        Set the GROUP BY expression.
2738
2739        Example:
2740            >>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
2741            'SELECT x, COUNT(1) FROM tbl GROUP BY x'
2742
2743        Args:
2744            *expressions: the SQL code strings to parse.
2745                If a `Group` instance is passed, this is used as-is.
2746                If another `Expression` instance is passed, it will be wrapped in a `Group`.
2747                If nothing is passed in then a group by is not applied to the expression
2748            append: if `True`, add to any existing expressions.
2749                Otherwise, this flattens all the `Group` expression into a single expression.
2750            dialect: the dialect used to parse the input expression.
2751            copy: if `False`, modify this expression instance in-place.
2752            opts: other options to use to parse the input expressions.
2753
2754        Returns:
2755            The modified Select expression.
2756        """
2757        if not expressions:
2758            return self if not copy else self.copy()
2759
2760        return _apply_child_list_builder(
2761            *expressions,
2762            instance=self,
2763            arg="group",
2764            append=append,
2765            copy=copy,
2766            prefix="GROUP BY",
2767            into=Group,
2768            dialect=dialect,
2769            **opts,
2770        )

Set the GROUP BY expression.

Example:
>>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
'SELECT x, COUNT(1) FROM tbl GROUP BY x'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Group. If nothing is passed in then a group by is not applied to the expression
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Group expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def order_by( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
2772    def order_by(
2773        self,
2774        *expressions: t.Optional[ExpOrStr],
2775        append: bool = True,
2776        dialect: DialectType = None,
2777        copy: bool = True,
2778        **opts,
2779    ) -> Select:
2780        """
2781        Set the ORDER BY expression.
2782
2783        Example:
2784            >>> Select().from_("tbl").select("x").order_by("x DESC").sql()
2785            'SELECT x FROM tbl ORDER BY x DESC'
2786
2787        Args:
2788            *expressions: the SQL code strings to parse.
2789                If a `Group` instance is passed, this is used as-is.
2790                If another `Expression` instance is passed, it will be wrapped in a `Order`.
2791            append: if `True`, add to any existing expressions.
2792                Otherwise, this flattens all the `Order` expression into a single expression.
2793            dialect: the dialect used to parse the input expression.
2794            copy: if `False`, modify this expression instance in-place.
2795            opts: other options to use to parse the input expressions.
2796
2797        Returns:
2798            The modified Select expression.
2799        """
2800        return _apply_child_list_builder(
2801            *expressions,
2802            instance=self,
2803            arg="order",
2804            append=append,
2805            copy=copy,
2806            prefix="ORDER BY",
2807            into=Order,
2808            dialect=dialect,
2809            **opts,
2810        )

Set the ORDER BY expression.

Example:
>>> Select().from_("tbl").select("x").order_by("x DESC").sql()
'SELECT x FROM tbl ORDER BY x DESC'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Order.
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Order expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def sort_by( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
2812    def sort_by(
2813        self,
2814        *expressions: t.Optional[ExpOrStr],
2815        append: bool = True,
2816        dialect: DialectType = None,
2817        copy: bool = True,
2818        **opts,
2819    ) -> Select:
2820        """
2821        Set the SORT BY expression.
2822
2823        Example:
2824            >>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
2825            'SELECT x FROM tbl SORT BY x DESC'
2826
2827        Args:
2828            *expressions: the SQL code strings to parse.
2829                If a `Group` instance is passed, this is used as-is.
2830                If another `Expression` instance is passed, it will be wrapped in a `SORT`.
2831            append: if `True`, add to any existing expressions.
2832                Otherwise, this flattens all the `Order` expression into a single expression.
2833            dialect: the dialect used to parse the input expression.
2834            copy: if `False`, modify this expression instance in-place.
2835            opts: other options to use to parse the input expressions.
2836
2837        Returns:
2838            The modified Select expression.
2839        """
2840        return _apply_child_list_builder(
2841            *expressions,
2842            instance=self,
2843            arg="sort",
2844            append=append,
2845            copy=copy,
2846            prefix="SORT BY",
2847            into=Sort,
2848            dialect=dialect,
2849            **opts,
2850        )

Set the SORT BY expression.

Example:
>>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
'SELECT x FROM tbl SORT BY x DESC'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a SORT.
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Order expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def cluster_by( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
2852    def cluster_by(
2853        self,
2854        *expressions: t.Optional[ExpOrStr],
2855        append: bool = True,
2856        dialect: DialectType = None,
2857        copy: bool = True,
2858        **opts,
2859    ) -> Select:
2860        """
2861        Set the CLUSTER BY expression.
2862
2863        Example:
2864            >>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
2865            'SELECT x FROM tbl CLUSTER BY x DESC'
2866
2867        Args:
2868            *expressions: the SQL code strings to parse.
2869                If a `Group` instance is passed, this is used as-is.
2870                If another `Expression` instance is passed, it will be wrapped in a `Cluster`.
2871            append: if `True`, add to any existing expressions.
2872                Otherwise, this flattens all the `Order` expression into a single expression.
2873            dialect: the dialect used to parse the input expression.
2874            copy: if `False`, modify this expression instance in-place.
2875            opts: other options to use to parse the input expressions.
2876
2877        Returns:
2878            The modified Select expression.
2879        """
2880        return _apply_child_list_builder(
2881            *expressions,
2882            instance=self,
2883            arg="cluster",
2884            append=append,
2885            copy=copy,
2886            prefix="CLUSTER BY",
2887            into=Cluster,
2888            dialect=dialect,
2889            **opts,
2890        )

Set the CLUSTER BY expression.

Example:
>>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
'SELECT x FROM tbl CLUSTER BY x DESC'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Cluster.
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Order expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def limit( self, expression: Union[str, Expression, int], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
2892    def limit(
2893        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2894    ) -> Select:
2895        """
2896        Set the LIMIT expression.
2897
2898        Example:
2899            >>> Select().from_("tbl").select("x").limit(10).sql()
2900            'SELECT x FROM tbl LIMIT 10'
2901
2902        Args:
2903            expression: the SQL code string to parse.
2904                This can also be an integer.
2905                If a `Limit` instance is passed, this is used as-is.
2906                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2907            dialect: the dialect used to parse the input expression.
2908            copy: if `False`, modify this expression instance in-place.
2909            opts: other options to use to parse the input expressions.
2910
2911        Returns:
2912            Select: the modified expression.
2913        """
2914        return _apply_builder(
2915            expression=expression,
2916            instance=self,
2917            arg="limit",
2918            into=Limit,
2919            prefix="LIMIT",
2920            dialect=dialect,
2921            copy=copy,
2922            into_arg="expression",
2923            **opts,
2924        )

Set the LIMIT expression.

Example:
>>> Select().from_("tbl").select("x").limit(10).sql()
'SELECT x FROM tbl LIMIT 10'
Arguments:
  • expression: the SQL code string to parse. This can also be an integer. If a Limit instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Limit.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Select: the modified expression.

def offset( self, expression: Union[str, Expression, int], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
2926    def offset(
2927        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2928    ) -> Select:
2929        """
2930        Set the OFFSET expression.
2931
2932        Example:
2933            >>> Select().from_("tbl").select("x").offset(10).sql()
2934            'SELECT x FROM tbl OFFSET 10'
2935
2936        Args:
2937            expression: the SQL code string to parse.
2938                This can also be an integer.
2939                If a `Offset` instance is passed, this is used as-is.
2940                If another `Expression` instance is passed, it will be wrapped in a `Offset`.
2941            dialect: the dialect used to parse the input expression.
2942            copy: if `False`, modify this expression instance in-place.
2943            opts: other options to use to parse the input expressions.
2944
2945        Returns:
2946            The modified Select expression.
2947        """
2948        return _apply_builder(
2949            expression=expression,
2950            instance=self,
2951            arg="offset",
2952            into=Offset,
2953            prefix="OFFSET",
2954            dialect=dialect,
2955            copy=copy,
2956            into_arg="expression",
2957            **opts,
2958        )

Set the OFFSET expression.

Example:
>>> Select().from_("tbl").select("x").offset(10).sql()
'SELECT x FROM tbl OFFSET 10'
Arguments:
  • expression: the SQL code string to parse. This can also be an integer. If a Offset instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Offset.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def select( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
2960    def select(
2961        self,
2962        *expressions: t.Optional[ExpOrStr],
2963        append: bool = True,
2964        dialect: DialectType = None,
2965        copy: bool = True,
2966        **opts,
2967    ) -> Select:
2968        """
2969        Append to or set the SELECT expressions.
2970
2971        Example:
2972            >>> Select().select("x", "y").sql()
2973            'SELECT x, y'
2974
2975        Args:
2976            *expressions: the SQL code strings to parse.
2977                If an `Expression` instance is passed, it will be used as-is.
2978            append: if `True`, add to any existing expressions.
2979                Otherwise, this resets the expressions.
2980            dialect: the dialect used to parse the input expressions.
2981            copy: if `False`, modify this expression instance in-place.
2982            opts: other options to use to parse the input expressions.
2983
2984        Returns:
2985            The modified Select expression.
2986        """
2987        return _apply_list_builder(
2988            *expressions,
2989            instance=self,
2990            arg="expressions",
2991            append=append,
2992            dialect=dialect,
2993            copy=copy,
2994            **opts,
2995        )

Append to or set the SELECT expressions.

Example:
>>> Select().select("x", "y").sql()
'SELECT x, y'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def lateral( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
2997    def lateral(
2998        self,
2999        *expressions: t.Optional[ExpOrStr],
3000        append: bool = True,
3001        dialect: DialectType = None,
3002        copy: bool = True,
3003        **opts,
3004    ) -> Select:
3005        """
3006        Append to or set the LATERAL expressions.
3007
3008        Example:
3009            >>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
3010            'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
3011
3012        Args:
3013            *expressions: the SQL code strings to parse.
3014                If an `Expression` instance is passed, it will be used as-is.
3015            append: if `True`, add to any existing expressions.
3016                Otherwise, this resets the expressions.
3017            dialect: the dialect used to parse the input expressions.
3018            copy: if `False`, modify this expression instance in-place.
3019            opts: other options to use to parse the input expressions.
3020
3021        Returns:
3022            The modified Select expression.
3023        """
3024        return _apply_list_builder(
3025            *expressions,
3026            instance=self,
3027            arg="laterals",
3028            append=append,
3029            into=Lateral,
3030            prefix="LATERAL VIEW",
3031            dialect=dialect,
3032            copy=copy,
3033            **opts,
3034        )

Append to or set the LATERAL expressions.

Example:
>>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def join( self, expression: Union[str, Expression], on: Union[str, Expression, NoneType] = None, using: Union[str, Expression, Collection[Union[str, Expression]], NoneType] = None, append: bool = True, join_type: Optional[str] = None, join_alias: Union[Identifier, str, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3036    def join(
3037        self,
3038        expression: ExpOrStr,
3039        on: t.Optional[ExpOrStr] = None,
3040        using: t.Optional[ExpOrStr | t.Collection[ExpOrStr]] = None,
3041        append: bool = True,
3042        join_type: t.Optional[str] = None,
3043        join_alias: t.Optional[Identifier | str] = None,
3044        dialect: DialectType = None,
3045        copy: bool = True,
3046        **opts,
3047    ) -> Select:
3048        """
3049        Append to or set the JOIN expressions.
3050
3051        Example:
3052            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
3053            'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
3054
3055            >>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
3056            'SELECT 1 FROM a JOIN b USING (x, y, z)'
3057
3058            Use `join_type` to change the type of join:
3059
3060            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
3061            'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
3062
3063        Args:
3064            expression: the SQL code string to parse.
3065                If an `Expression` instance is passed, it will be used as-is.
3066            on: optionally specify the join "on" criteria as a SQL string.
3067                If an `Expression` instance is passed, it will be used as-is.
3068            using: optionally specify the join "using" criteria as a SQL string.
3069                If an `Expression` instance is passed, it will be used as-is.
3070            append: if `True`, add to any existing expressions.
3071                Otherwise, this resets the expressions.
3072            join_type: if set, alter the parsed join type.
3073            join_alias: an optional alias for the joined source.
3074            dialect: the dialect used to parse the input expressions.
3075            copy: if `False`, modify this expression instance in-place.
3076            opts: other options to use to parse the input expressions.
3077
3078        Returns:
3079            Select: the modified expression.
3080        """
3081        parse_args: t.Dict[str, t.Any] = {"dialect": dialect, **opts}
3082
3083        try:
3084            expression = maybe_parse(expression, into=Join, prefix="JOIN", **parse_args)
3085        except ParseError:
3086            expression = maybe_parse(expression, into=(Join, Expression), **parse_args)
3087
3088        join = expression if isinstance(expression, Join) else Join(this=expression)
3089
3090        if isinstance(join.this, Select):
3091            join.this.replace(join.this.subquery())
3092
3093        if join_type:
3094            method: t.Optional[Token]
3095            side: t.Optional[Token]
3096            kind: t.Optional[Token]
3097
3098            method, side, kind = maybe_parse(join_type, into="JOIN_TYPE", **parse_args)  # type: ignore
3099
3100            if method:
3101                join.set("method", method.text)
3102            if side:
3103                join.set("side", side.text)
3104            if kind:
3105                join.set("kind", kind.text)
3106
3107        if on:
3108            on = and_(*ensure_list(on), dialect=dialect, copy=copy, **opts)
3109            join.set("on", on)
3110
3111        if using:
3112            join = _apply_list_builder(
3113                *ensure_list(using),
3114                instance=join,
3115                arg="using",
3116                append=append,
3117                copy=copy,
3118                into=Identifier,
3119                **opts,
3120            )
3121
3122        if join_alias:
3123            join.set("this", alias_(join.this, join_alias, table=True))
3124
3125        return _apply_list_builder(
3126            join,
3127            instance=self,
3128            arg="joins",
3129            append=append,
3130            copy=copy,
3131            **opts,
3132        )

Append to or set the JOIN expressions.

Example:
>>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
>>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
'SELECT 1 FROM a JOIN b USING (x, y, z)'

Use join_type to change the type of join:

>>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
Arguments:
  • expression: the SQL code string to parse. If an Expression instance is passed, it will be used as-is.
  • on: optionally specify the join "on" criteria as a SQL string. If an Expression instance is passed, it will be used as-is.
  • using: optionally specify the join "using" criteria as a SQL string. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • join_type: if set, alter the parsed join type.
  • join_alias: an optional alias for the joined source.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Select: the modified expression.

def where( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3134    def where(
3135        self,
3136        *expressions: t.Optional[ExpOrStr],
3137        append: bool = True,
3138        dialect: DialectType = None,
3139        copy: bool = True,
3140        **opts,
3141    ) -> Select:
3142        """
3143        Append to or set the WHERE expressions.
3144
3145        Example:
3146            >>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
3147            "SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
3148
3149        Args:
3150            *expressions: the SQL code strings to parse.
3151                If an `Expression` instance is passed, it will be used as-is.
3152                Multiple expressions are combined with an AND operator.
3153            append: if `True`, AND the new expressions to any existing expression.
3154                Otherwise, this resets the expression.
3155            dialect: the dialect used to parse the input expressions.
3156            copy: if `False`, modify this expression instance in-place.
3157            opts: other options to use to parse the input expressions.
3158
3159        Returns:
3160            Select: the modified expression.
3161        """
3162        return _apply_conjunction_builder(
3163            *expressions,
3164            instance=self,
3165            arg="where",
3166            append=append,
3167            into=Where,
3168            dialect=dialect,
3169            copy=copy,
3170            **opts,
3171        )

Append to or set the WHERE expressions.

Example:
>>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
"SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Select: the modified expression.

def having( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3173    def having(
3174        self,
3175        *expressions: t.Optional[ExpOrStr],
3176        append: bool = True,
3177        dialect: DialectType = None,
3178        copy: bool = True,
3179        **opts,
3180    ) -> Select:
3181        """
3182        Append to or set the HAVING expressions.
3183
3184        Example:
3185            >>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
3186            'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
3187
3188        Args:
3189            *expressions: the SQL code strings to parse.
3190                If an `Expression` instance is passed, it will be used as-is.
3191                Multiple expressions are combined with an AND operator.
3192            append: if `True`, AND the new expressions to any existing expression.
3193                Otherwise, this resets the expression.
3194            dialect: the dialect used to parse the input expressions.
3195            copy: if `False`, modify this expression instance in-place.
3196            opts: other options to use to parse the input expressions.
3197
3198        Returns:
3199            The modified Select expression.
3200        """
3201        return _apply_conjunction_builder(
3202            *expressions,
3203            instance=self,
3204            arg="having",
3205            append=append,
3206            into=Having,
3207            dialect=dialect,
3208            copy=copy,
3209            **opts,
3210        )

Append to or set the HAVING expressions.

Example:
>>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def window( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3212    def window(
3213        self,
3214        *expressions: t.Optional[ExpOrStr],
3215        append: bool = True,
3216        dialect: DialectType = None,
3217        copy: bool = True,
3218        **opts,
3219    ) -> Select:
3220        return _apply_list_builder(
3221            *expressions,
3222            instance=self,
3223            arg="windows",
3224            append=append,
3225            into=Window,
3226            dialect=dialect,
3227            copy=copy,
3228            **opts,
3229        )
def qualify( self, *expressions: Union[str, Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Select:
3231    def qualify(
3232        self,
3233        *expressions: t.Optional[ExpOrStr],
3234        append: bool = True,
3235        dialect: DialectType = None,
3236        copy: bool = True,
3237        **opts,
3238    ) -> Select:
3239        return _apply_conjunction_builder(
3240            *expressions,
3241            instance=self,
3242            arg="qualify",
3243            append=append,
3244            into=Qualify,
3245            dialect=dialect,
3246            copy=copy,
3247            **opts,
3248        )
def distinct( self, *ons: Union[str, Expression, NoneType], distinct: bool = True, copy: bool = True) -> Select:
3250    def distinct(
3251        self, *ons: t.Optional[ExpOrStr], distinct: bool = True, copy: bool = True
3252    ) -> Select:
3253        """
3254        Set the OFFSET expression.
3255
3256        Example:
3257            >>> Select().from_("tbl").select("x").distinct().sql()
3258            'SELECT DISTINCT x FROM tbl'
3259
3260        Args:
3261            ons: the expressions to distinct on
3262            distinct: whether the Select should be distinct
3263            copy: if `False`, modify this expression instance in-place.
3264
3265        Returns:
3266            Select: the modified expression.
3267        """
3268        instance = maybe_copy(self, copy)
3269        on = Tuple(expressions=[maybe_parse(on, copy=copy) for on in ons if on]) if ons else None
3270        instance.set("distinct", Distinct(on=on) if distinct else None)
3271        return instance

Set the OFFSET expression.

Example:
>>> Select().from_("tbl").select("x").distinct().sql()
'SELECT DISTINCT x FROM tbl'
Arguments:
  • ons: the expressions to distinct on
  • distinct: whether the Select should be distinct
  • copy: if False, modify this expression instance in-place.
Returns:

Select: the modified expression.

def ctas( self, table: Union[str, Expression], properties: Optional[Dict] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Create:
3273    def ctas(
3274        self,
3275        table: ExpOrStr,
3276        properties: t.Optional[t.Dict] = None,
3277        dialect: DialectType = None,
3278        copy: bool = True,
3279        **opts,
3280    ) -> Create:
3281        """
3282        Convert this expression to a CREATE TABLE AS statement.
3283
3284        Example:
3285            >>> Select().select("*").from_("tbl").ctas("x").sql()
3286            'CREATE TABLE x AS SELECT * FROM tbl'
3287
3288        Args:
3289            table: the SQL code string to parse as the table name.
3290                If another `Expression` instance is passed, it will be used as-is.
3291            properties: an optional mapping of table properties
3292            dialect: the dialect used to parse the input table.
3293            copy: if `False`, modify this expression instance in-place.
3294            opts: other options to use to parse the input table.
3295
3296        Returns:
3297            The new Create expression.
3298        """
3299        instance = maybe_copy(self, copy)
3300        table_expression = maybe_parse(
3301            table,
3302            into=Table,
3303            dialect=dialect,
3304            **opts,
3305        )
3306        properties_expression = None
3307        if properties:
3308            properties_expression = Properties.from_dict(properties)
3309
3310        return Create(
3311            this=table_expression,
3312            kind="table",
3313            expression=instance,
3314            properties=properties_expression,
3315        )

Convert this expression to a CREATE TABLE AS statement.

Example:
>>> Select().select("*").from_("tbl").ctas("x").sql()
'CREATE TABLE x AS SELECT * FROM tbl'
Arguments:
  • table: the SQL code string to parse as the table name. If another Expression instance is passed, it will be used as-is.
  • properties: an optional mapping of table properties
  • dialect: the dialect used to parse the input table.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input table.
Returns:

The new Create expression.

def lock( self, update: bool = True, copy: bool = True) -> Select:
3317    def lock(self, update: bool = True, copy: bool = True) -> Select:
3318        """
3319        Set the locking read mode for this expression.
3320
3321        Examples:
3322            >>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
3323            "SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
3324
3325            >>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
3326            "SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
3327
3328        Args:
3329            update: if `True`, the locking type will be `FOR UPDATE`, else it will be `FOR SHARE`.
3330            copy: if `False`, modify this expression instance in-place.
3331
3332        Returns:
3333            The modified expression.
3334        """
3335        inst = maybe_copy(self, copy)
3336        inst.set("locks", [Lock(update=update)])
3337
3338        return inst

Set the locking read mode for this expression.

Examples:
>>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
"SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
>>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
"SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
Arguments:
  • update: if True, the locking type will be FOR UPDATE, else it will be FOR SHARE.
  • copy: if False, modify this expression instance in-place.
Returns:

The modified expression.

def hint( self, *hints: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True) -> Select:
3340    def hint(self, *hints: ExpOrStr, dialect: DialectType = None, copy: bool = True) -> Select:
3341        """
3342        Set hints for this expression.
3343
3344        Examples:
3345            >>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
3346            'SELECT /*+ BROADCAST(y) */ x FROM tbl'
3347
3348        Args:
3349            hints: The SQL code strings to parse as the hints.
3350                If an `Expression` instance is passed, it will be used as-is.
3351            dialect: The dialect used to parse the hints.
3352            copy: If `False`, modify this expression instance in-place.
3353
3354        Returns:
3355            The modified expression.
3356        """
3357        inst = maybe_copy(self, copy)
3358        inst.set(
3359            "hint", Hint(expressions=[maybe_parse(h, copy=copy, dialect=dialect) for h in hints])
3360        )
3361
3362        return inst

Set hints for this expression.

Examples:
>>> Select().select("x").from_("tbl").hint("BROADCAST(y)").sql(dialect="spark")
'SELECT /*+ BROADCAST(y) */ x FROM tbl'
Arguments:
  • hints: The SQL code strings to parse as the hints. If an Expression instance is passed, it will be used as-is.
  • dialect: The dialect used to parse the hints.
  • copy: If False, modify this expression instance in-place.
Returns:

The modified expression.

named_selects: List[str]
is_star: bool

Checks whether an expression is a star.

selects: List[Expression]
key = 'select'
class Subquery(DerivedTable, Unionable):
3377class Subquery(DerivedTable, Unionable):
3378    arg_types = {
3379        "this": True,
3380        "alias": False,
3381        "with": False,
3382        **QUERY_MODIFIERS,
3383    }
3384
3385    def unnest(self):
3386        """
3387        Returns the first non subquery.
3388        """
3389        expression = self
3390        while isinstance(expression, Subquery):
3391            expression = expression.this
3392        return expression
3393
3394    def unwrap(self) -> Subquery:
3395        expression = self
3396        while expression.same_parent and expression.is_wrapper:
3397            expression = t.cast(Subquery, expression.parent)
3398        return expression
3399
3400    @property
3401    def is_wrapper(self) -> bool:
3402        """
3403        Whether this Subquery acts as a simple wrapper around another expression.
3404
3405        SELECT * FROM (((SELECT * FROM t)))
3406                      ^
3407                      This corresponds to a "wrapper" Subquery node
3408        """
3409        return all(v is None for k, v in self.args.items() if k != "this")
3410
3411    @property
3412    def is_star(self) -> bool:
3413        return self.this.is_star
3414
3415    @property
3416    def output_name(self) -> str:
3417        return self.alias
arg_types = {'this': True, 'alias': False, 'with': False, 'match': False, 'laterals': False, 'joins': False, 'connect': False, 'pivots': False, 'where': False, 'group': False, 'having': False, 'qualify': False, 'windows': False, 'distribute': False, 'sort': False, 'cluster': False, 'order': False, 'limit': False, 'offset': False, 'locks': False, 'sample': False, 'settings': False, 'format': False}
def unnest(self):
3385    def unnest(self):
3386        """
3387        Returns the first non subquery.
3388        """
3389        expression = self
3390        while isinstance(expression, Subquery):
3391            expression = expression.this
3392        return expression

Returns the first non subquery.

def unwrap(self) -> Subquery:
3394    def unwrap(self) -> Subquery:
3395        expression = self
3396        while expression.same_parent and expression.is_wrapper:
3397            expression = t.cast(Subquery, expression.parent)
3398        return expression
is_wrapper: bool

Whether this Subquery acts as a simple wrapper around another expression.

SELECT * FROM (((SELECT * FROM t))) ^ This corresponds to a "wrapper" Subquery node

is_star: bool

Checks whether an expression is a star.

output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'subquery'
class TableSample(Expression):
3420class TableSample(Expression):
3421    arg_types = {
3422        "this": False,
3423        "expressions": False,
3424        "method": False,
3425        "bucket_numerator": False,
3426        "bucket_denominator": False,
3427        "bucket_field": False,
3428        "percent": False,
3429        "rows": False,
3430        "size": False,
3431        "seed": False,
3432        "kind": False,
3433    }
arg_types = {'this': False, 'expressions': False, 'method': False, 'bucket_numerator': False, 'bucket_denominator': False, 'bucket_field': False, 'percent': False, 'rows': False, 'size': False, 'seed': False, 'kind': False}
key = 'tablesample'
class Tag(Expression):
3436class Tag(Expression):
3437    """Tags are used for generating arbitrary sql like SELECT <span>x</span>."""
3438
3439    arg_types = {
3440        "this": False,
3441        "prefix": False,
3442        "postfix": False,
3443    }

Tags are used for generating arbitrary sql like SELECT x.

arg_types = {'this': False, 'prefix': False, 'postfix': False}
key = 'tag'
class Pivot(Expression):
3448class Pivot(Expression):
3449    arg_types = {
3450        "this": False,
3451        "alias": False,
3452        "expressions": False,
3453        "field": False,
3454        "unpivot": False,
3455        "using": False,
3456        "group": False,
3457        "columns": False,
3458        "include_nulls": False,
3459    }
arg_types = {'this': False, 'alias': False, 'expressions': False, 'field': False, 'unpivot': False, 'using': False, 'group': False, 'columns': False, 'include_nulls': False}
key = 'pivot'
class Window(Condition):
3462class Window(Condition):
3463    arg_types = {
3464        "this": True,
3465        "partition_by": False,
3466        "order": False,
3467        "spec": False,
3468        "alias": False,
3469        "over": False,
3470        "first": False,
3471    }
arg_types = {'this': True, 'partition_by': False, 'order': False, 'spec': False, 'alias': False, 'over': False, 'first': False}
key = 'window'
class WindowSpec(Expression):
3474class WindowSpec(Expression):
3475    arg_types = {
3476        "kind": False,
3477        "start": False,
3478        "start_side": False,
3479        "end": False,
3480        "end_side": False,
3481    }
arg_types = {'kind': False, 'start': False, 'start_side': False, 'end': False, 'end_side': False}
key = 'windowspec'
class Where(Expression):
3484class Where(Expression):
3485    pass
key = 'where'
class Star(Expression):
3488class Star(Expression):
3489    arg_types = {"except": False, "replace": False}
3490
3491    @property
3492    def name(self) -> str:
3493        return "*"
3494
3495    @property
3496    def output_name(self) -> str:
3497        return self.name
arg_types = {'except': False, 'replace': False}
name: str
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'star'
class Parameter(Condition):
3500class Parameter(Condition):
3501    arg_types = {"this": True, "wrapped": False}
arg_types = {'this': True, 'wrapped': False}
key = 'parameter'
class SessionParameter(Condition):
3504class SessionParameter(Condition):
3505    arg_types = {"this": True, "kind": False}
arg_types = {'this': True, 'kind': False}
key = 'sessionparameter'
class Placeholder(Condition):
3508class Placeholder(Condition):
3509    arg_types = {"this": False, "kind": False}
arg_types = {'this': False, 'kind': False}
key = 'placeholder'
class Null(Condition):
3512class Null(Condition):
3513    arg_types: t.Dict[str, t.Any] = {}
3514
3515    @property
3516    def name(self) -> str:
3517        return "NULL"
arg_types: Dict[str, Any] = {}
name: str
key = 'null'
class Boolean(Condition):
3520class Boolean(Condition):
3521    pass
key = 'boolean'
class DataTypeParam(Expression):
3524class DataTypeParam(Expression):
3525    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'datatypeparam'
class DataType(Expression):
3528class DataType(Expression):
3529    arg_types = {
3530        "this": True,
3531        "expressions": False,
3532        "nested": False,
3533        "values": False,
3534        "prefix": False,
3535        "kind": False,
3536    }
3537
3538    class Type(AutoName):
3539        ARRAY = auto()
3540        BIGDECIMAL = auto()
3541        BIGINT = auto()
3542        BIGSERIAL = auto()
3543        BINARY = auto()
3544        BIT = auto()
3545        BOOLEAN = auto()
3546        CHAR = auto()
3547        DATE = auto()
3548        DATEMULTIRANGE = auto()
3549        DATERANGE = auto()
3550        DATETIME = auto()
3551        DATETIME64 = auto()
3552        DECIMAL = auto()
3553        DOUBLE = auto()
3554        ENUM = auto()
3555        ENUM8 = auto()
3556        ENUM16 = auto()
3557        FIXEDSTRING = auto()
3558        FLOAT = auto()
3559        GEOGRAPHY = auto()
3560        GEOMETRY = auto()
3561        HLLSKETCH = auto()
3562        HSTORE = auto()
3563        IMAGE = auto()
3564        INET = auto()
3565        INT = auto()
3566        INT128 = auto()
3567        INT256 = auto()
3568        INT4MULTIRANGE = auto()
3569        INT4RANGE = auto()
3570        INT8MULTIRANGE = auto()
3571        INT8RANGE = auto()
3572        INTERVAL = auto()
3573        IPADDRESS = auto()
3574        IPPREFIX = auto()
3575        JSON = auto()
3576        JSONB = auto()
3577        LONGBLOB = auto()
3578        LONGTEXT = auto()
3579        LOWCARDINALITY = auto()
3580        MAP = auto()
3581        MEDIUMBLOB = auto()
3582        MEDIUMINT = auto()
3583        MEDIUMTEXT = auto()
3584        MONEY = auto()
3585        NCHAR = auto()
3586        NESTED = auto()
3587        NULL = auto()
3588        NULLABLE = auto()
3589        NUMMULTIRANGE = auto()
3590        NUMRANGE = auto()
3591        NVARCHAR = auto()
3592        OBJECT = auto()
3593        ROWVERSION = auto()
3594        SERIAL = auto()
3595        SET = auto()
3596        SMALLINT = auto()
3597        SMALLMONEY = auto()
3598        SMALLSERIAL = auto()
3599        STRUCT = auto()
3600        SUPER = auto()
3601        TEXT = auto()
3602        TINYBLOB = auto()
3603        TINYTEXT = auto()
3604        TIME = auto()
3605        TIMETZ = auto()
3606        TIMESTAMP = auto()
3607        TIMESTAMPLTZ = auto()
3608        TIMESTAMPTZ = auto()
3609        TINYINT = auto()
3610        TSMULTIRANGE = auto()
3611        TSRANGE = auto()
3612        TSTZMULTIRANGE = auto()
3613        TSTZRANGE = auto()
3614        UBIGINT = auto()
3615        UINT = auto()
3616        UINT128 = auto()
3617        UINT256 = auto()
3618        UMEDIUMINT = auto()
3619        UDECIMAL = auto()
3620        UNIQUEIDENTIFIER = auto()
3621        UNKNOWN = auto()  # Sentinel value, useful for type annotation
3622        USERDEFINED = "USER-DEFINED"
3623        USMALLINT = auto()
3624        UTINYINT = auto()
3625        UUID = auto()
3626        VARBINARY = auto()
3627        VARCHAR = auto()
3628        VARIANT = auto()
3629        XML = auto()
3630        YEAR = auto()
3631
3632    TEXT_TYPES = {
3633        Type.CHAR,
3634        Type.NCHAR,
3635        Type.VARCHAR,
3636        Type.NVARCHAR,
3637        Type.TEXT,
3638    }
3639
3640    INTEGER_TYPES = {
3641        Type.INT,
3642        Type.TINYINT,
3643        Type.SMALLINT,
3644        Type.BIGINT,
3645        Type.INT128,
3646        Type.INT256,
3647    }
3648
3649    FLOAT_TYPES = {
3650        Type.FLOAT,
3651        Type.DOUBLE,
3652    }
3653
3654    NUMERIC_TYPES = {
3655        *INTEGER_TYPES,
3656        *FLOAT_TYPES,
3657    }
3658
3659    TEMPORAL_TYPES = {
3660        Type.TIME,
3661        Type.TIMETZ,
3662        Type.TIMESTAMP,
3663        Type.TIMESTAMPTZ,
3664        Type.TIMESTAMPLTZ,
3665        Type.DATE,
3666        Type.DATETIME,
3667        Type.DATETIME64,
3668    }
3669
3670    @classmethod
3671    def build(
3672        cls,
3673        dtype: str | DataType | DataType.Type,
3674        dialect: DialectType = None,
3675        udt: bool = False,
3676        **kwargs,
3677    ) -> DataType:
3678        """
3679        Constructs a DataType object.
3680
3681        Args:
3682            dtype: the data type of interest.
3683            dialect: the dialect to use for parsing `dtype`, in case it's a string.
3684            udt: when set to True, `dtype` will be used as-is if it can't be parsed into a
3685                DataType, thus creating a user-defined type.
3686            kawrgs: additional arguments to pass in the constructor of DataType.
3687
3688        Returns:
3689            The constructed DataType object.
3690        """
3691        from sqlglot import parse_one
3692
3693        if isinstance(dtype, str):
3694            if dtype.upper() == "UNKNOWN":
3695                return DataType(this=DataType.Type.UNKNOWN, **kwargs)
3696
3697            try:
3698                data_type_exp = parse_one(dtype, read=dialect, into=DataType)
3699            except ParseError:
3700                if udt:
3701                    return DataType(this=DataType.Type.USERDEFINED, kind=dtype, **kwargs)
3702                raise
3703        elif isinstance(dtype, DataType.Type):
3704            data_type_exp = DataType(this=dtype)
3705        elif isinstance(dtype, DataType):
3706            return dtype
3707        else:
3708            raise ValueError(f"Invalid data type: {type(dtype)}. Expected str or DataType.Type")
3709
3710        return DataType(**{**data_type_exp.args, **kwargs})
3711
3712    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3713        """
3714        Checks whether this DataType matches one of the provided data types. Nested types or precision
3715        will be compared using "structural equivalence" semantics, so e.g. array<int> != array<float>.
3716
3717        Args:
3718            dtypes: the data types to compare this DataType to.
3719
3720        Returns:
3721            True, if and only if there is a type in `dtypes` which is equal to this DataType.
3722        """
3723        for dtype in dtypes:
3724            other = DataType.build(dtype, udt=True)
3725
3726            if (
3727                other.expressions
3728                or self.this == DataType.Type.USERDEFINED
3729                or other.this == DataType.Type.USERDEFINED
3730            ):
3731                matches = self == other
3732            else:
3733                matches = self.this == other.this
3734
3735            if matches:
3736                return True
3737        return False
arg_types = {'this': True, 'expressions': False, 'nested': False, 'values': False, 'prefix': False, 'kind': False}
TEXT_TYPES = {<Type.NVARCHAR: 'NVARCHAR'>, <Type.TEXT: 'TEXT'>, <Type.CHAR: 'CHAR'>, <Type.NCHAR: 'NCHAR'>, <Type.VARCHAR: 'VARCHAR'>}
INTEGER_TYPES = {<Type.TINYINT: 'TINYINT'>, <Type.INT256: 'INT256'>, <Type.SMALLINT: 'SMALLINT'>, <Type.BIGINT: 'BIGINT'>, <Type.INT128: 'INT128'>, <Type.INT: 'INT'>}
FLOAT_TYPES = {<Type.FLOAT: 'FLOAT'>, <Type.DOUBLE: 'DOUBLE'>}
NUMERIC_TYPES = {<Type.BIGINT: 'BIGINT'>, <Type.TINYINT: 'TINYINT'>, <Type.SMALLINT: 'SMALLINT'>, <Type.FLOAT: 'FLOAT'>, <Type.INT256: 'INT256'>, <Type.INT128: 'INT128'>, <Type.INT: 'INT'>, <Type.DOUBLE: 'DOUBLE'>}
TEMPORAL_TYPES = {<Type.TIMESTAMP: 'TIMESTAMP'>, <Type.DATETIME: 'DATETIME'>, <Type.TIMESTAMPTZ: 'TIMESTAMPTZ'>, <Type.DATETIME64: 'DATETIME64'>, <Type.TIMETZ: 'TIMETZ'>, <Type.DATE: 'DATE'>, <Type.TIME: 'TIME'>, <Type.TIMESTAMPLTZ: 'TIMESTAMPLTZ'>}
@classmethod
def build( cls, dtype: str | DataType | DataType.Type, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, udt: bool = False, **kwargs) -> DataType:
3670    @classmethod
3671    def build(
3672        cls,
3673        dtype: str | DataType | DataType.Type,
3674        dialect: DialectType = None,
3675        udt: bool = False,
3676        **kwargs,
3677    ) -> DataType:
3678        """
3679        Constructs a DataType object.
3680
3681        Args:
3682            dtype: the data type of interest.
3683            dialect: the dialect to use for parsing `dtype`, in case it's a string.
3684            udt: when set to True, `dtype` will be used as-is if it can't be parsed into a
3685                DataType, thus creating a user-defined type.
3686            kawrgs: additional arguments to pass in the constructor of DataType.
3687
3688        Returns:
3689            The constructed DataType object.
3690        """
3691        from sqlglot import parse_one
3692
3693        if isinstance(dtype, str):
3694            if dtype.upper() == "UNKNOWN":
3695                return DataType(this=DataType.Type.UNKNOWN, **kwargs)
3696
3697            try:
3698                data_type_exp = parse_one(dtype, read=dialect, into=DataType)
3699            except ParseError:
3700                if udt:
3701                    return DataType(this=DataType.Type.USERDEFINED, kind=dtype, **kwargs)
3702                raise
3703        elif isinstance(dtype, DataType.Type):
3704            data_type_exp = DataType(this=dtype)
3705        elif isinstance(dtype, DataType):
3706            return dtype
3707        else:
3708            raise ValueError(f"Invalid data type: {type(dtype)}. Expected str or DataType.Type")
3709
3710        return DataType(**{**data_type_exp.args, **kwargs})

Constructs a DataType object.

Arguments:
  • dtype: the data type of interest.
  • dialect: the dialect to use for parsing dtype, in case it's a string.
  • udt: when set to True, dtype will be used as-is if it can't be parsed into a DataType, thus creating a user-defined type.
  • kawrgs: additional arguments to pass in the constructor of DataType.
Returns:

The constructed DataType object.

def is_type( self, *dtypes: str | DataType | DataType.Type) -> bool:
3712    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3713        """
3714        Checks whether this DataType matches one of the provided data types. Nested types or precision
3715        will be compared using "structural equivalence" semantics, so e.g. array<int> != array<float>.
3716
3717        Args:
3718            dtypes: the data types to compare this DataType to.
3719
3720        Returns:
3721            True, if and only if there is a type in `dtypes` which is equal to this DataType.
3722        """
3723        for dtype in dtypes:
3724            other = DataType.build(dtype, udt=True)
3725
3726            if (
3727                other.expressions
3728                or self.this == DataType.Type.USERDEFINED
3729                or other.this == DataType.Type.USERDEFINED
3730            ):
3731                matches = self == other
3732            else:
3733                matches = self.this == other.this
3734
3735            if matches:
3736                return True
3737        return False

Checks whether this DataType matches one of the provided data types. Nested types or precision will be compared using "structural equivalence" semantics, so e.g. array != array.

Arguments:
  • dtypes: the data types to compare this DataType to.
Returns:

True, if and only if there is a type in dtypes which is equal to this DataType.

key = 'datatype'
class DataType.Type(sqlglot.helper.AutoName):
3538    class Type(AutoName):
3539        ARRAY = auto()
3540        BIGDECIMAL = auto()
3541        BIGINT = auto()
3542        BIGSERIAL = auto()
3543        BINARY = auto()
3544        BIT = auto()
3545        BOOLEAN = auto()
3546        CHAR = auto()
3547        DATE = auto()
3548        DATEMULTIRANGE = auto()
3549        DATERANGE = auto()
3550        DATETIME = auto()
3551        DATETIME64 = auto()
3552        DECIMAL = auto()
3553        DOUBLE = auto()
3554        ENUM = auto()
3555        ENUM8 = auto()
3556        ENUM16 = auto()
3557        FIXEDSTRING = auto()
3558        FLOAT = auto()
3559        GEOGRAPHY = auto()
3560        GEOMETRY = auto()
3561        HLLSKETCH = auto()
3562        HSTORE = auto()
3563        IMAGE = auto()
3564        INET = auto()
3565        INT = auto()
3566        INT128 = auto()
3567        INT256 = auto()
3568        INT4MULTIRANGE = auto()
3569        INT4RANGE = auto()
3570        INT8MULTIRANGE = auto()
3571        INT8RANGE = auto()
3572        INTERVAL = auto()
3573        IPADDRESS = auto()
3574        IPPREFIX = auto()
3575        JSON = auto()
3576        JSONB = auto()
3577        LONGBLOB = auto()
3578        LONGTEXT = auto()
3579        LOWCARDINALITY = auto()
3580        MAP = auto()
3581        MEDIUMBLOB = auto()
3582        MEDIUMINT = auto()
3583        MEDIUMTEXT = auto()
3584        MONEY = auto()
3585        NCHAR = auto()
3586        NESTED = auto()
3587        NULL = auto()
3588        NULLABLE = auto()
3589        NUMMULTIRANGE = auto()
3590        NUMRANGE = auto()
3591        NVARCHAR = auto()
3592        OBJECT = auto()
3593        ROWVERSION = auto()
3594        SERIAL = auto()
3595        SET = auto()
3596        SMALLINT = auto()
3597        SMALLMONEY = auto()
3598        SMALLSERIAL = auto()
3599        STRUCT = auto()
3600        SUPER = auto()
3601        TEXT = auto()
3602        TINYBLOB = auto()
3603        TINYTEXT = auto()
3604        TIME = auto()
3605        TIMETZ = auto()
3606        TIMESTAMP = auto()
3607        TIMESTAMPLTZ = auto()
3608        TIMESTAMPTZ = auto()
3609        TINYINT = auto()
3610        TSMULTIRANGE = auto()
3611        TSRANGE = auto()
3612        TSTZMULTIRANGE = auto()
3613        TSTZRANGE = auto()
3614        UBIGINT = auto()
3615        UINT = auto()
3616        UINT128 = auto()
3617        UINT256 = auto()
3618        UMEDIUMINT = auto()
3619        UDECIMAL = auto()
3620        UNIQUEIDENTIFIER = auto()
3621        UNKNOWN = auto()  # Sentinel value, useful for type annotation
3622        USERDEFINED = "USER-DEFINED"
3623        USMALLINT = auto()
3624        UTINYINT = auto()
3625        UUID = auto()
3626        VARBINARY = auto()
3627        VARCHAR = auto()
3628        VARIANT = auto()
3629        XML = auto()
3630        YEAR = auto()

An enumeration.

ARRAY = <Type.ARRAY: 'ARRAY'>
BIGDECIMAL = <Type.BIGDECIMAL: 'BIGDECIMAL'>
BIGINT = <Type.BIGINT: 'BIGINT'>
BIGSERIAL = <Type.BIGSERIAL: 'BIGSERIAL'>
BINARY = <Type.BINARY: 'BINARY'>
BIT = <Type.BIT: 'BIT'>
BOOLEAN = <Type.BOOLEAN: 'BOOLEAN'>
CHAR = <Type.CHAR: 'CHAR'>
DATE = <Type.DATE: 'DATE'>
DATEMULTIRANGE = <Type.DATEMULTIRANGE: 'DATEMULTIRANGE'>
DATERANGE = <Type.DATERANGE: 'DATERANGE'>
DATETIME = <Type.DATETIME: 'DATETIME'>
DATETIME64 = <Type.DATETIME64: 'DATETIME64'>
DECIMAL = <Type.DECIMAL: 'DECIMAL'>
DOUBLE = <Type.DOUBLE: 'DOUBLE'>
ENUM = <Type.ENUM: 'ENUM'>
ENUM8 = <Type.ENUM8: 'ENUM8'>
ENUM16 = <Type.ENUM16: 'ENUM16'>
FIXEDSTRING = <Type.FIXEDSTRING: 'FIXEDSTRING'>
FLOAT = <Type.FLOAT: 'FLOAT'>
GEOGRAPHY = <Type.GEOGRAPHY: 'GEOGRAPHY'>
GEOMETRY = <Type.GEOMETRY: 'GEOMETRY'>
HLLSKETCH = <Type.HLLSKETCH: 'HLLSKETCH'>
HSTORE = <Type.HSTORE: 'HSTORE'>
IMAGE = <Type.IMAGE: 'IMAGE'>
INET = <Type.INET: 'INET'>
INT = <Type.INT: 'INT'>
INT128 = <Type.INT128: 'INT128'>
INT256 = <Type.INT256: 'INT256'>
INT4MULTIRANGE = <Type.INT4MULTIRANGE: 'INT4MULTIRANGE'>
INT4RANGE = <Type.INT4RANGE: 'INT4RANGE'>
INT8MULTIRANGE = <Type.INT8MULTIRANGE: 'INT8MULTIRANGE'>
INT8RANGE = <Type.INT8RANGE: 'INT8RANGE'>
INTERVAL = <Type.INTERVAL: 'INTERVAL'>
IPADDRESS = <Type.IPADDRESS: 'IPADDRESS'>
IPPREFIX = <Type.IPPREFIX: 'IPPREFIX'>
JSON = <Type.JSON: 'JSON'>
JSONB = <Type.JSONB: 'JSONB'>
LONGBLOB = <Type.LONGBLOB: 'LONGBLOB'>
LONGTEXT = <Type.LONGTEXT: 'LONGTEXT'>
LOWCARDINALITY = <Type.LOWCARDINALITY: 'LOWCARDINALITY'>
MAP = <Type.MAP: 'MAP'>
MEDIUMBLOB = <Type.MEDIUMBLOB: 'MEDIUMBLOB'>
MEDIUMINT = <Type.MEDIUMINT: 'MEDIUMINT'>
MEDIUMTEXT = <Type.MEDIUMTEXT: 'MEDIUMTEXT'>
MONEY = <Type.MONEY: 'MONEY'>
NCHAR = <Type.NCHAR: 'NCHAR'>
NESTED = <Type.NESTED: 'NESTED'>
NULL = <Type.NULL: 'NULL'>
NULLABLE = <Type.NULLABLE: 'NULLABLE'>
NUMMULTIRANGE = <Type.NUMMULTIRANGE: 'NUMMULTIRANGE'>
NUMRANGE = <Type.NUMRANGE: 'NUMRANGE'>
NVARCHAR = <Type.NVARCHAR: 'NVARCHAR'>
OBJECT = <Type.OBJECT: 'OBJECT'>
ROWVERSION = <Type.ROWVERSION: 'ROWVERSION'>
SERIAL = <Type.SERIAL: 'SERIAL'>
SET = <Type.SET: 'SET'>
SMALLINT = <Type.SMALLINT: 'SMALLINT'>
SMALLMONEY = <Type.SMALLMONEY: 'SMALLMONEY'>
SMALLSERIAL = <Type.SMALLSERIAL: 'SMALLSERIAL'>
STRUCT = <Type.STRUCT: 'STRUCT'>
SUPER = <Type.SUPER: 'SUPER'>
TEXT = <Type.TEXT: 'TEXT'>
TINYBLOB = <Type.TINYBLOB: 'TINYBLOB'>
TINYTEXT = <Type.TINYTEXT: 'TINYTEXT'>
TIME = <Type.TIME: 'TIME'>
TIMETZ = <Type.TIMETZ: 'TIMETZ'>
TIMESTAMP = <Type.TIMESTAMP: 'TIMESTAMP'>
TIMESTAMPLTZ = <Type.TIMESTAMPLTZ: 'TIMESTAMPLTZ'>
TIMESTAMPTZ = <Type.TIMESTAMPTZ: 'TIMESTAMPTZ'>
TINYINT = <Type.TINYINT: 'TINYINT'>
TSMULTIRANGE = <Type.TSMULTIRANGE: 'TSMULTIRANGE'>
TSRANGE = <Type.TSRANGE: 'TSRANGE'>
TSTZMULTIRANGE = <Type.TSTZMULTIRANGE: 'TSTZMULTIRANGE'>
TSTZRANGE = <Type.TSTZRANGE: 'TSTZRANGE'>
UBIGINT = <Type.UBIGINT: 'UBIGINT'>
UINT = <Type.UINT: 'UINT'>
UINT128 = <Type.UINT128: 'UINT128'>
UINT256 = <Type.UINT256: 'UINT256'>
UMEDIUMINT = <Type.UMEDIUMINT: 'UMEDIUMINT'>
UDECIMAL = <Type.UDECIMAL: 'UDECIMAL'>
UNIQUEIDENTIFIER = <Type.UNIQUEIDENTIFIER: 'UNIQUEIDENTIFIER'>
UNKNOWN = <Type.UNKNOWN: 'UNKNOWN'>
USERDEFINED = <Type.USERDEFINED: 'USER-DEFINED'>
USMALLINT = <Type.USMALLINT: 'USMALLINT'>
UTINYINT = <Type.UTINYINT: 'UTINYINT'>
UUID = <Type.UUID: 'UUID'>
VARBINARY = <Type.VARBINARY: 'VARBINARY'>
VARCHAR = <Type.VARCHAR: 'VARCHAR'>
VARIANT = <Type.VARIANT: 'VARIANT'>
XML = <Type.XML: 'XML'>
YEAR = <Type.YEAR: 'YEAR'>
Inherited Members
enum.Enum
name
value
class PseudoType(DataType):
3741class PseudoType(DataType):
3742    arg_types = {"this": True}
arg_types = {'this': True}
key = 'pseudotype'
class ObjectIdentifier(DataType):
3746class ObjectIdentifier(DataType):
3747    arg_types = {"this": True}
arg_types = {'this': True}
key = 'objectidentifier'
class SubqueryPredicate(Predicate):
3751class SubqueryPredicate(Predicate):
3752    pass
key = 'subquerypredicate'
class All(SubqueryPredicate):
3755class All(SubqueryPredicate):
3756    pass
key = 'all'
class Any(SubqueryPredicate):
3759class Any(SubqueryPredicate):
3760    pass
key = 'any'
class Exists(SubqueryPredicate):
3763class Exists(SubqueryPredicate):
3764    pass
key = 'exists'
class Command(Expression):
3769class Command(Expression):
3770    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'command'
class Transaction(Expression):
3773class Transaction(Expression):
3774    arg_types = {"this": False, "modes": False, "mark": False}
arg_types = {'this': False, 'modes': False, 'mark': False}
key = 'transaction'
class Commit(Expression):
3777class Commit(Expression):
3778    arg_types = {"chain": False, "this": False, "durability": False}
arg_types = {'chain': False, 'this': False, 'durability': False}
key = 'commit'
class Rollback(Expression):
3781class Rollback(Expression):
3782    arg_types = {"savepoint": False, "this": False}
arg_types = {'savepoint': False, 'this': False}
key = 'rollback'
class AlterTable(Expression):
3785class AlterTable(Expression):
3786    arg_types = {"this": True, "actions": True, "exists": False, "only": False}
arg_types = {'this': True, 'actions': True, 'exists': False, 'only': False}
key = 'altertable'
class AddConstraint(Expression):
3789class AddConstraint(Expression):
3790    arg_types = {"this": False, "expression": False, "enforced": False}
arg_types = {'this': False, 'expression': False, 'enforced': False}
key = 'addconstraint'
class DropPartition(Expression):
3793class DropPartition(Expression):
3794    arg_types = {"expressions": True, "exists": False}
arg_types = {'expressions': True, 'exists': False}
key = 'droppartition'
class Binary(Condition):
3798class Binary(Condition):
3799    arg_types = {"this": True, "expression": True}
3800
3801    @property
3802    def left(self):
3803        return self.this
3804
3805    @property
3806    def right(self):
3807        return self.expression
arg_types = {'this': True, 'expression': True}
left
right
key = 'binary'
class Add(Binary):
3810class Add(Binary):
3811    pass
key = 'add'
class Connector(Binary):
3814class Connector(Binary):
3815    pass
key = 'connector'
class And(Connector):
3818class And(Connector):
3819    pass
key = 'and'
class Or(Connector):
3822class Or(Connector):
3823    pass
key = 'or'
class BitwiseAnd(Binary):
3826class BitwiseAnd(Binary):
3827    pass
key = 'bitwiseand'
class BitwiseLeftShift(Binary):
3830class BitwiseLeftShift(Binary):
3831    pass
key = 'bitwiseleftshift'
class BitwiseOr(Binary):
3834class BitwiseOr(Binary):
3835    pass
key = 'bitwiseor'
class BitwiseRightShift(Binary):
3838class BitwiseRightShift(Binary):
3839    pass
key = 'bitwiserightshift'
class BitwiseXor(Binary):
3842class BitwiseXor(Binary):
3843    pass
key = 'bitwisexor'
class Div(Binary):
3846class Div(Binary):
3847    pass
key = 'div'
class Overlaps(Binary):
3850class Overlaps(Binary):
3851    pass
key = 'overlaps'
class Dot(Binary):
3854class Dot(Binary):
3855    @property
3856    def name(self) -> str:
3857        return self.expression.name
3858
3859    @property
3860    def output_name(self) -> str:
3861        return self.name
3862
3863    @classmethod
3864    def build(self, expressions: t.Sequence[Expression]) -> Dot:
3865        """Build a Dot object with a sequence of expressions."""
3866        if len(expressions) < 2:
3867            raise ValueError(f"Dot requires >= 2 expressions.")
3868
3869        return t.cast(Dot, reduce(lambda x, y: Dot(this=x, expression=y), expressions))
name: str
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
@classmethod
def build( self, expressions: Sequence[Expression]) -> Dot:
3863    @classmethod
3864    def build(self, expressions: t.Sequence[Expression]) -> Dot:
3865        """Build a Dot object with a sequence of expressions."""
3866        if len(expressions) < 2:
3867            raise ValueError(f"Dot requires >= 2 expressions.")
3868
3869        return t.cast(Dot, reduce(lambda x, y: Dot(this=x, expression=y), expressions))

Build a Dot object with a sequence of expressions.

key = 'dot'
class DPipe(Binary):
3872class DPipe(Binary):
3873    pass
key = 'dpipe'
class SafeDPipe(DPipe):
3876class SafeDPipe(DPipe):
3877    pass
key = 'safedpipe'
class EQ(Binary, Predicate):
3880class EQ(Binary, Predicate):
3881    pass
key = 'eq'
class NullSafeEQ(Binary, Predicate):
3884class NullSafeEQ(Binary, Predicate):
3885    pass
key = 'nullsafeeq'
class NullSafeNEQ(Binary, Predicate):
3888class NullSafeNEQ(Binary, Predicate):
3889    pass
key = 'nullsafeneq'
class Distance(Binary):
3892class Distance(Binary):
3893    pass
key = 'distance'
class Escape(Binary):
3896class Escape(Binary):
3897    pass
key = 'escape'
class Glob(Binary, Predicate):
3900class Glob(Binary, Predicate):
3901    pass
key = 'glob'
class GT(Binary, Predicate):
3904class GT(Binary, Predicate):
3905    pass
key = 'gt'
class GTE(Binary, Predicate):
3908class GTE(Binary, Predicate):
3909    pass
key = 'gte'
class ILike(Binary, Predicate):
3912class ILike(Binary, Predicate):
3913    pass
key = 'ilike'
class ILikeAny(Binary, Predicate):
3916class ILikeAny(Binary, Predicate):
3917    pass
key = 'ilikeany'
class IntDiv(Binary):
3920class IntDiv(Binary):
3921    pass
key = 'intdiv'
class Is(Binary, Predicate):
3924class Is(Binary, Predicate):
3925    pass
key = 'is'
class Kwarg(Binary):
3928class Kwarg(Binary):
3929    """Kwarg in special functions like func(kwarg => y)."""

Kwarg in special functions like func(kwarg => y).

key = 'kwarg'
class Like(Binary, Predicate):
3932class Like(Binary, Predicate):
3933    pass
key = 'like'
class LikeAny(Binary, Predicate):
3936class LikeAny(Binary, Predicate):
3937    pass
key = 'likeany'
class LT(Binary, Predicate):
3940class LT(Binary, Predicate):
3941    pass
key = 'lt'
class LTE(Binary, Predicate):
3944class LTE(Binary, Predicate):
3945    pass
key = 'lte'
class Mod(Binary):
3948class Mod(Binary):
3949    pass
key = 'mod'
class Mul(Binary):
3952class Mul(Binary):
3953    pass
key = 'mul'
class NEQ(Binary, Predicate):
3956class NEQ(Binary, Predicate):
3957    pass
key = 'neq'
class SimilarTo(Binary, Predicate):
3960class SimilarTo(Binary, Predicate):
3961    pass
key = 'similarto'
class Slice(Binary):
3964class Slice(Binary):
3965    arg_types = {"this": False, "expression": False}
arg_types = {'this': False, 'expression': False}
key = 'slice'
class Sub(Binary):
3968class Sub(Binary):
3969    pass
key = 'sub'
class ArrayOverlaps(Binary):
3972class ArrayOverlaps(Binary):
3973    pass
key = 'arrayoverlaps'
class Unary(Condition):
3978class Unary(Condition):
3979    pass
key = 'unary'
class BitwiseNot(Unary):
3982class BitwiseNot(Unary):
3983    pass
key = 'bitwisenot'
class Not(Unary):
3986class Not(Unary):
3987    pass
key = 'not'
class Paren(Unary):
3990class Paren(Unary):
3991    arg_types = {"this": True, "with": False}
3992
3993    @property
3994    def output_name(self) -> str:
3995        return self.this.name
arg_types = {'this': True, 'with': False}
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'paren'
class Neg(Unary):
3998class Neg(Unary):
3999    pass
key = 'neg'
class Alias(Expression):
4002class Alias(Expression):
4003    arg_types = {"this": True, "alias": False}
4004
4005    @property
4006    def output_name(self) -> str:
4007        return self.alias
arg_types = {'this': True, 'alias': False}
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'alias'
class Aliases(Expression):
4010class Aliases(Expression):
4011    arg_types = {"this": True, "expressions": True}
4012
4013    @property
4014    def aliases(self):
4015        return self.expressions
arg_types = {'this': True, 'expressions': True}
aliases
key = 'aliases'
class AtTimeZone(Expression):
4018class AtTimeZone(Expression):
4019    arg_types = {"this": True, "zone": True}
arg_types = {'this': True, 'zone': True}
key = 'attimezone'
class Between(Predicate):
4022class Between(Predicate):
4023    arg_types = {"this": True, "low": True, "high": True}
arg_types = {'this': True, 'low': True, 'high': True}
key = 'between'
class Bracket(Condition):
4026class Bracket(Condition):
4027    arg_types = {"this": True, "expressions": True}
4028
4029    @property
4030    def output_name(self) -> str:
4031        if len(self.expressions) == 1:
4032            return self.expressions[0].output_name
4033
4034        return super().output_name
arg_types = {'this': True, 'expressions': True}
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
key = 'bracket'
class SafeBracket(Bracket):
4037class SafeBracket(Bracket):
4038    """Represents array lookup where OOB index yields NULL instead of causing a failure."""

Represents array lookup where OOB index yields NULL instead of causing a failure.

key = 'safebracket'
class Distinct(Expression):
4041class Distinct(Expression):
4042    arg_types = {"expressions": False, "on": False}
arg_types = {'expressions': False, 'on': False}
key = 'distinct'
class In(Predicate):
4045class In(Predicate):
4046    arg_types = {
4047        "this": True,
4048        "expressions": False,
4049        "query": False,
4050        "unnest": False,
4051        "field": False,
4052        "is_global": False,
4053    }
arg_types = {'this': True, 'expressions': False, 'query': False, 'unnest': False, 'field': False, 'is_global': False}
key = 'in'
class TimeUnit(Expression):
4056class TimeUnit(Expression):
4057    """Automatically converts unit arg into a var."""
4058
4059    arg_types = {"unit": False}
4060
4061    def __init__(self, **args):
4062        unit = args.get("unit")
4063        if isinstance(unit, (Column, Literal)):
4064            args["unit"] = Var(this=unit.name)
4065        elif isinstance(unit, Week):
4066            unit.set("this", Var(this=unit.this.name))
4067
4068        super().__init__(**args)
4069
4070    @property
4071    def unit(self) -> t.Optional[Var]:
4072        return self.args.get("unit")

Automatically converts unit arg into a var.

TimeUnit(**args)
4061    def __init__(self, **args):
4062        unit = args.get("unit")
4063        if isinstance(unit, (Column, Literal)):
4064            args["unit"] = Var(this=unit.name)
4065        elif isinstance(unit, Week):
4066            unit.set("this", Var(this=unit.this.name))
4067
4068        super().__init__(**args)
arg_types = {'unit': False}
unit: Optional[Var]
key = 'timeunit'
class IntervalOp(TimeUnit):
4075class IntervalOp(TimeUnit):
4076    arg_types = {"unit": True, "expression": True}
4077
4078    def interval(self):
4079        return Interval(
4080            this=self.expression.copy(),
4081            unit=self.unit.copy(),
4082        )
arg_types = {'unit': True, 'expression': True}
def interval(self):
4078    def interval(self):
4079        return Interval(
4080            this=self.expression.copy(),
4081            unit=self.unit.copy(),
4082        )
key = 'intervalop'
class IntervalSpan(DataType):
4088class IntervalSpan(DataType):
4089    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'intervalspan'
class Interval(TimeUnit):
4092class Interval(TimeUnit):
4093    arg_types = {"this": False, "unit": False}
arg_types = {'this': False, 'unit': False}
key = 'interval'
class IgnoreNulls(Expression):
4096class IgnoreNulls(Expression):
4097    pass
key = 'ignorenulls'
class RespectNulls(Expression):
4100class RespectNulls(Expression):
4101    pass
key = 'respectnulls'
class Func(Condition):
4105class Func(Condition):
4106    """
4107    The base class for all function expressions.
4108
4109    Attributes:
4110        is_var_len_args (bool): if set to True the last argument defined in arg_types will be
4111            treated as a variable length argument and the argument's value will be stored as a list.
4112        _sql_names (list): determines the SQL name (1st item in the list) and aliases (subsequent items)
4113            for this function expression. These values are used to map this node to a name during parsing
4114            as well as to provide the function's name during SQL string generation. By default the SQL
4115            name is set to the expression's class name transformed to snake case.
4116    """
4117
4118    is_var_len_args = False
4119
4120    @classmethod
4121    def from_arg_list(cls, args):
4122        if cls.is_var_len_args:
4123            all_arg_keys = list(cls.arg_types)
4124            # If this function supports variable length argument treat the last argument as such.
4125            non_var_len_arg_keys = all_arg_keys[:-1] if cls.is_var_len_args else all_arg_keys
4126            num_non_var = len(non_var_len_arg_keys)
4127
4128            args_dict = {arg_key: arg for arg, arg_key in zip(args, non_var_len_arg_keys)}
4129            args_dict[all_arg_keys[-1]] = args[num_non_var:]
4130        else:
4131            args_dict = {arg_key: arg for arg, arg_key in zip(args, cls.arg_types)}
4132
4133        return cls(**args_dict)
4134
4135    @classmethod
4136    def sql_names(cls):
4137        if cls is Func:
4138            raise NotImplementedError(
4139                "SQL name is only supported by concrete function implementations"
4140            )
4141        if "_sql_names" not in cls.__dict__:
4142            cls._sql_names = [camel_to_snake_case(cls.__name__)]
4143        return cls._sql_names
4144
4145    @classmethod
4146    def sql_name(cls):
4147        return cls.sql_names()[0]
4148
4149    @classmethod
4150    def default_parser_mappings(cls):
4151        return {name: cls.from_arg_list for name in cls.sql_names()}

The base class for all function expressions.

Attributes:
  • is_var_len_args (bool): if set to True the last argument defined in arg_types will be treated as a variable length argument and the argument's value will be stored as a list.
  • _sql_names (list): determines the SQL name (1st item in the list) and aliases (subsequent items) for this function expression. These values are used to map this node to a name during parsing as well as to provide the function's name during SQL string generation. By default the SQL name is set to the expression's class name transformed to snake case.
is_var_len_args = False
@classmethod
def from_arg_list(cls, args):
4120    @classmethod
4121    def from_arg_list(cls, args):
4122        if cls.is_var_len_args:
4123            all_arg_keys = list(cls.arg_types)
4124            # If this function supports variable length argument treat the last argument as such.
4125            non_var_len_arg_keys = all_arg_keys[:-1] if cls.is_var_len_args else all_arg_keys
4126            num_non_var = len(non_var_len_arg_keys)
4127
4128            args_dict = {arg_key: arg for arg, arg_key in zip(args, non_var_len_arg_keys)}
4129            args_dict[all_arg_keys[-1]] = args[num_non_var:]
4130        else:
4131            args_dict = {arg_key: arg for arg, arg_key in zip(args, cls.arg_types)}
4132
4133        return cls(**args_dict)
@classmethod
def sql_names(cls):
4135    @classmethod
4136    def sql_names(cls):
4137        if cls is Func:
4138            raise NotImplementedError(
4139                "SQL name is only supported by concrete function implementations"
4140            )
4141        if "_sql_names" not in cls.__dict__:
4142            cls._sql_names = [camel_to_snake_case(cls.__name__)]
4143        return cls._sql_names
@classmethod
def sql_name(cls):
4145    @classmethod
4146    def sql_name(cls):
4147        return cls.sql_names()[0]
@classmethod
def default_parser_mappings(cls):
4149    @classmethod
4150    def default_parser_mappings(cls):
4151        return {name: cls.from_arg_list for name in cls.sql_names()}
key = 'func'
class AggFunc(Func):
4154class AggFunc(Func):
4155    pass
key = 'aggfunc'
class ParameterizedAgg(AggFunc):
4158class ParameterizedAgg(AggFunc):
4159    arg_types = {"this": True, "expressions": True, "params": True}
arg_types = {'this': True, 'expressions': True, 'params': True}
key = 'parameterizedagg'
class Abs(Func):
4162class Abs(Func):
4163    pass
key = 'abs'
class Transform(Func):
4167class Transform(Func):
4168    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'transform'
class Anonymous(Func):
4171class Anonymous(Func):
4172    arg_types = {"this": True, "expressions": False}
4173    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'anonymous'
class Hll(AggFunc):
4178class Hll(AggFunc):
4179    arg_types = {"this": True, "expressions": False}
4180    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'hll'
class ApproxDistinct(AggFunc):
4183class ApproxDistinct(AggFunc):
4184    arg_types = {"this": True, "accuracy": False}
4185    _sql_names = ["APPROX_DISTINCT", "APPROX_COUNT_DISTINCT"]
arg_types = {'this': True, 'accuracy': False}
key = 'approxdistinct'
class Array(Func):
4188class Array(Func):
4189    arg_types = {"expressions": False}
4190    is_var_len_args = True
arg_types = {'expressions': False}
is_var_len_args = True
key = 'array'
class ToChar(Func):
4194class ToChar(Func):
4195    arg_types = {"this": True, "format": False}
arg_types = {'this': True, 'format': False}
key = 'tochar'
class GenerateSeries(Func):
4198class GenerateSeries(Func):
4199    arg_types = {"start": True, "end": True, "step": False}
arg_types = {'start': True, 'end': True, 'step': False}
key = 'generateseries'
class ArrayAgg(AggFunc):
4202class ArrayAgg(AggFunc):
4203    pass
key = 'arrayagg'
class ArrayAll(Func):
4206class ArrayAll(Func):
4207    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'arrayall'
class ArrayAny(Func):
4210class ArrayAny(Func):
4211    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'arrayany'
class ArrayConcat(Func):
4214class ArrayConcat(Func):
4215    _sql_names = ["ARRAY_CONCAT", "ARRAY_CAT"]
4216    arg_types = {"this": True, "expressions": False}
4217    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'arrayconcat'
class ArrayContains(Binary, Func):
4220class ArrayContains(Binary, Func):
4221    pass
key = 'arraycontains'
class ArrayContained(Binary):
4224class ArrayContained(Binary):
4225    pass
key = 'arraycontained'
class ArrayFilter(Func):
4228class ArrayFilter(Func):
4229    arg_types = {"this": True, "expression": True}
4230    _sql_names = ["FILTER", "ARRAY_FILTER"]
arg_types = {'this': True, 'expression': True}
key = 'arrayfilter'
class ArrayJoin(Func):
4233class ArrayJoin(Func):
4234    arg_types = {"this": True, "expression": True, "null": False}
arg_types = {'this': True, 'expression': True, 'null': False}
key = 'arrayjoin'
class ArraySize(Func):
4237class ArraySize(Func):
4238    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'arraysize'
class ArraySort(Func):
4241class ArraySort(Func):
4242    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'arraysort'
class ArraySum(Func):
4245class ArraySum(Func):
4246    pass
key = 'arraysum'
class ArrayUnionAgg(AggFunc):
4249class ArrayUnionAgg(AggFunc):
4250    pass
key = 'arrayunionagg'
class Avg(AggFunc):
4253class Avg(AggFunc):
4254    pass
key = 'avg'
class AnyValue(AggFunc):
4257class AnyValue(AggFunc):
4258    arg_types = {"this": True, "having": False, "max": False, "ignore_nulls": False}
arg_types = {'this': True, 'having': False, 'max': False, 'ignore_nulls': False}
key = 'anyvalue'
class First(Func):
4261class First(Func):
4262    arg_types = {"this": True, "ignore_nulls": False}
arg_types = {'this': True, 'ignore_nulls': False}
key = 'first'
class Last(Func):
4265class Last(Func):
4266    arg_types = {"this": True, "ignore_nulls": False}
arg_types = {'this': True, 'ignore_nulls': False}
key = 'last'
class Case(Func):
4269class Case(Func):
4270    arg_types = {"this": False, "ifs": True, "default": False}
4271
4272    def when(self, condition: ExpOrStr, then: ExpOrStr, copy: bool = True, **opts) -> Case:
4273        instance = maybe_copy(self, copy)
4274        instance.append(
4275            "ifs",
4276            If(
4277                this=maybe_parse(condition, copy=copy, **opts),
4278                true=maybe_parse(then, copy=copy, **opts),
4279            ),
4280        )
4281        return instance
4282
4283    def else_(self, condition: ExpOrStr, copy: bool = True, **opts) -> Case:
4284        instance = maybe_copy(self, copy)
4285        instance.set("default", maybe_parse(condition, copy=copy, **opts))
4286        return instance
arg_types = {'this': False, 'ifs': True, 'default': False}
def when( self, condition: Union[str, Expression], then: Union[str, Expression], copy: bool = True, **opts) -> Case:
4272    def when(self, condition: ExpOrStr, then: ExpOrStr, copy: bool = True, **opts) -> Case:
4273        instance = maybe_copy(self, copy)
4274        instance.append(
4275            "ifs",
4276            If(
4277                this=maybe_parse(condition, copy=copy, **opts),
4278                true=maybe_parse(then, copy=copy, **opts),
4279            ),
4280        )
4281        return instance
def else_( self, condition: Union[str, Expression], copy: bool = True, **opts) -> Case:
4283    def else_(self, condition: ExpOrStr, copy: bool = True, **opts) -> Case:
4284        instance = maybe_copy(self, copy)
4285        instance.set("default", maybe_parse(condition, copy=copy, **opts))
4286        return instance
key = 'case'
class Cast(Func):
4289class Cast(Func):
4290    arg_types = {"this": True, "to": True, "format": False, "safe": False}
4291
4292    @property
4293    def name(self) -> str:
4294        return self.this.name
4295
4296    @property
4297    def to(self) -> DataType:
4298        return self.args["to"]
4299
4300    @property
4301    def output_name(self) -> str:
4302        return self.name
4303
4304    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
4305        """
4306        Checks whether this Cast's DataType matches one of the provided data types. Nested types
4307        like arrays or structs will be compared using "structural equivalence" semantics, so e.g.
4308        array<int> != array<float>.
4309
4310        Args:
4311            dtypes: the data types to compare this Cast's DataType to.
4312
4313        Returns:
4314            True, if and only if there is a type in `dtypes` which is equal to this Cast's DataType.
4315        """
4316        return self.to.is_type(*dtypes)
arg_types = {'this': True, 'to': True, 'format': False, 'safe': False}
name: str
to: DataType
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a")sqlglot.expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c")sqlglot.expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2")sqlglot.expressions[0].output_name
''
def is_type( self, *dtypes: str | DataType | DataType.Type) -> bool:
4304    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
4305        """
4306        Checks whether this Cast's DataType matches one of the provided data types. Nested types
4307        like arrays or structs will be compared using "structural equivalence" semantics, so e.g.
4308        array<int> != array<float>.
4309
4310        Args:
4311            dtypes: the data types to compare this Cast's DataType to.
4312
4313        Returns:
4314            True, if and only if there is a type in `dtypes` which is equal to this Cast's DataType.
4315        """
4316        return self.to.is_type(*dtypes)

Checks whether this Cast's DataType matches one of the provided data types. Nested types like arrays or structs will be compared using "structural equivalence" semantics, so e.g. array != array.

Arguments:
  • dtypes: the data types to compare this Cast's DataType to.
Returns:

True, if and only if there is a type in dtypes which is equal to this Cast's DataType.

key = 'cast'
class TryCast(Cast):
4319class TryCast(Cast):
4320    pass
key = 'trycast'
class CastToStrType(Func):
4323class CastToStrType(Func):
4324    arg_types = {"this": True, "to": True}
arg_types = {'this': True, 'to': True}
key = 'casttostrtype'
class Collate(Binary, Func):
4327class Collate(Binary, Func):
4328    pass
key = 'collate'
class Ceil(Func):
4331class Ceil(Func):
4332    arg_types = {"this": True, "decimals": False}
4333    _sql_names = ["CEIL", "CEILING"]
arg_types = {'this': True, 'decimals': False}
key = 'ceil'
class Coalesce(Func):
4336class Coalesce(Func):
4337    arg_types = {"this": True, "expressions": False}
4338    is_var_len_args = True
4339    _sql_names = ["COALESCE", "IFNULL", "NVL"]
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'coalesce'
class Chr(Func):
4342class Chr(Func):
4343    arg_types = {"this": True, "charset": False, "expressions": False}
4344    is_var_len_args = True
4345    _sql_names = ["CHR", "CHAR"]
arg_types = {'this': True, 'charset': False, 'expressions': False}
is_var_len_args = True
key = 'chr'
class Concat(Func):
4348class Concat(Func):
4349    arg_types = {"expressions": True}
4350    is_var_len_args = True
arg_types = {'expressions': True}
is_var_len_args = True
key = 'concat'
class SafeConcat(Concat):
4353class SafeConcat(Concat):
4354    pass
key = 'safeconcat'
class ConcatWs(Concat):
4357class ConcatWs(Concat):
4358    _sql_names = ["CONCAT_WS"]
key = 'concatws'
class Count(AggFunc):
4361class Count(AggFunc):
4362    arg_types = {"this": False, "expressions": False}
4363    is_var_len_args = True
arg_types = {'this': False, 'expressions': False}
is_var_len_args = True
key = 'count'
class CountIf(AggFunc):
4366class CountIf(AggFunc):
4367    pass
key = 'countif'
class CurrentDate(Func):
4370class CurrentDate(Func):
4371    arg_types = {"this": False}
arg_types = {'this': False}
key = 'currentdate'
class CurrentDatetime(Func):
4374class CurrentDatetime(Func):
4375    arg_types = {"this": False}
arg_types = {'this': False}
key = 'currentdatetime'
class CurrentTime(Func):
4378class CurrentTime(Func):
4379    arg_types = {"this": False}
arg_types = {'this': False}
key = 'currenttime'
class CurrentTimestamp(Func):
4382class CurrentTimestamp(Func):
4383    arg_types = {"this": False}
arg_types = {'this': False}
key = 'currenttimestamp'
class CurrentUser(Func):
4386class CurrentUser(Func):
4387    arg_types = {"this": False}
arg_types = {'this': False}
key = 'currentuser'
class DateAdd(Func, IntervalOp):
4390class DateAdd(Func, IntervalOp):
4391    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'dateadd'
class DateSub(Func, IntervalOp):
4394class DateSub(Func, IntervalOp):
4395    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'datesub'
class DateDiff(Func, TimeUnit):
4398class DateDiff(Func, TimeUnit):
4399    _sql_names = ["DATEDIFF", "DATE_DIFF"]
4400    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'datediff'
class DateTrunc(Func):
4403class DateTrunc(Func):
4404    arg_types = {"unit": True, "this": True, "zone": False}
4405
4406    @property
4407    def unit(self) -> Expression:
4408        return self.args["unit"]
arg_types = {'unit': True, 'this': True, 'zone': False}
unit: Expression
key = 'datetrunc'
class DatetimeAdd(Func, IntervalOp):
4411class DatetimeAdd(Func, IntervalOp):
4412    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'datetimeadd'
class DatetimeSub(Func, IntervalOp):
4415class DatetimeSub(Func, IntervalOp):
4416    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'datetimesub'
class DatetimeDiff(Func, TimeUnit):
4419class DatetimeDiff(Func, TimeUnit):
4420    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'datetimediff'
class DatetimeTrunc(Func, TimeUnit):
4423class DatetimeTrunc(Func, TimeUnit):
4424    arg_types = {"this": True, "unit": True, "zone": False}
arg_types = {'this': True, 'unit': True, 'zone': False}
key = 'datetimetrunc'
class DayOfWeek(Func):
4427class DayOfWeek(Func):
4428    _sql_names = ["DAY_OF_WEEK", "DAYOFWEEK"]
key = 'dayofweek'
class DayOfMonth(Func):
4431class DayOfMonth(Func):
4432    _sql_names = ["DAY_OF_MONTH", "DAYOFMONTH"]
key = 'dayofmonth'
class DayOfYear(Func):
4435class DayOfYear(Func):
4436    _sql_names = ["DAY_OF_YEAR", "DAYOFYEAR"]
key = 'dayofyear'
class ToDays(Func):
4439class ToDays(Func):
4440    pass
key = 'todays'
class WeekOfYear(Func):
4443class WeekOfYear(Func):
4444    _sql_names = ["WEEK_OF_YEAR", "WEEKOFYEAR"]
key = 'weekofyear'
class MonthsBetween(Func):
4447class MonthsBetween(Func):
4448    arg_types = {"this": True, "expression": True, "roundoff": False}
arg_types = {'this': True, 'expression': True, 'roundoff': False}
key = 'monthsbetween'
class LastDateOfMonth(Func):
4451class LastDateOfMonth(Func):
4452    pass
key = 'lastdateofmonth'
class Extract(Func):
4455class Extract(Func):
4456    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'extract'
class Timestamp(Func):
4459class Timestamp(Func):
4460    arg_types = {"this": False, "expression": False}
arg_types = {'this': False, 'expression': False}
key = 'timestamp'
class TimestampAdd(Func, TimeUnit):
4463class TimestampAdd(Func, TimeUnit):
4464    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timestampadd'
class TimestampSub(Func, TimeUnit):
4467class TimestampSub(Func, TimeUnit):
4468    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timestampsub'
class TimestampDiff(Func, TimeUnit):
4471class TimestampDiff(Func, TimeUnit):
4472    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timestampdiff'
class TimestampTrunc(Func, TimeUnit):
4475class TimestampTrunc(Func, TimeUnit):
4476    arg_types = {"this": True, "unit": True, "zone": False}
arg_types = {'this': True, 'unit': True, 'zone': False}
key = 'timestamptrunc'
class TimeAdd(Func, TimeUnit):
4479class TimeAdd(Func, TimeUnit):
4480    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timeadd'
class TimeSub(Func, TimeUnit):
4483class TimeSub(Func, TimeUnit):
4484    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timesub'
class TimeDiff(Func, TimeUnit):
4487class TimeDiff(Func, TimeUnit):
4488    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'timediff'
class TimeTrunc(Func, TimeUnit):
4491class TimeTrunc(Func, TimeUnit):
4492    arg_types = {"this": True, "unit": True, "zone": False}
arg_types = {'this': True, 'unit': True, 'zone': False}
key = 'timetrunc'
class DateFromParts(Func):
4495class DateFromParts(Func):
4496    _sql_names = ["DATEFROMPARTS"]
4497    arg_types = {"year": True, "month": True, "day": True}
arg_types = {'year': True, 'month': True, 'day': True}
key = 'datefromparts'
class DateStrToDate(Func):
4500class DateStrToDate(Func):
4501    pass
key = 'datestrtodate'
class DateToDateStr(Func):
4504class DateToDateStr(Func):
4505    pass
key = 'datetodatestr'
class DateToDi(Func):
4508class DateToDi(Func):
4509    pass
key = 'datetodi'
class Date(Func):
4513class Date(Func):
4514    arg_types = {"this": False, "zone": False, "expressions": False}
4515    is_var_len_args = True
arg_types = {'this': False, 'zone': False, 'expressions': False}
is_var_len_args = True
key = 'date'
class Day(Func):
4518class Day(Func):
4519    pass
key = 'day'
class Decode(Func):
4522class Decode(Func):
4523    arg_types = {"this": True, "charset": True, "replace": False}
arg_types = {'this': True, 'charset': True, 'replace': False}
key = 'decode'
class DiToDate(Func):
4526class DiToDate(Func):
4527    pass
key = 'ditodate'
class Encode(Func):
4530class Encode(Func):
4531    arg_types = {"this": True, "charset": True}
arg_types = {'this': True, 'charset': True}
key = 'encode'
class Exp(Func):
4534class Exp(Func):
4535    pass
key = 'exp'
class Explode(Func):
4538class Explode(Func):
4539    pass
key = 'explode'
class ExplodeOuter(Explode):
4542class ExplodeOuter(Explode):
4543    pass
key = 'explodeouter'
class Posexplode(Explode):
4546class Posexplode(Explode):
4547    pass
key = 'posexplode'
class PosexplodeOuter(Posexplode):
4550class PosexplodeOuter(Posexplode):
4551    pass
key = 'posexplodeouter'
class Floor(Func):
4554class Floor(Func):
4555    arg_types = {"this": True, "decimals": False}
arg_types = {'this': True, 'decimals': False}
key = 'floor'
class FromBase64(Func):
4558class FromBase64(Func):
4559    pass
key = 'frombase64'
class ToBase64(Func):
4562class ToBase64(Func):
4563    pass
key = 'tobase64'
class Greatest(Func):
4566class Greatest(Func):
4567    arg_types = {"this": True, "expressions": False}
4568    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'greatest'
class GroupConcat(AggFunc):
4571class GroupConcat(AggFunc):
4572    arg_types = {"this": True, "separator": False}
arg_types = {'this': True, 'separator': False}
key = 'groupconcat'
class Hex(Func):
4575class Hex(Func):
4576    pass
key = 'hex'
class Xor(Connector, Func):
4579class Xor(Connector, Func):
4580    arg_types = {"this": False, "expression": False, "expressions": False}
arg_types = {'this': False, 'expression': False, 'expressions': False}
key = 'xor'
class If(Func):
4583class If(Func):
4584    arg_types = {"this": True, "true": True, "false": False}
arg_types = {'this': True, 'true': True, 'false': False}
key = 'if'
class Initcap(Func):
4587class Initcap(Func):
4588    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'initcap'
class IsNan(Func):
4591class IsNan(Func):
4592    _sql_names = ["IS_NAN", "ISNAN"]
key = 'isnan'
class FormatJson(Expression):
4595class FormatJson(Expression):
4596    pass
key = 'formatjson'
class JSONKeyValue(Expression):
4599class JSONKeyValue(Expression):
4600    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'jsonkeyvalue'
class JSONObject(Func):
4603class JSONObject(Func):
4604    arg_types = {
4605        "expressions": False,
4606        "null_handling": False,
4607        "unique_keys": False,
4608        "return_type": False,
4609        "encoding": False,
4610    }
arg_types = {'expressions': False, 'null_handling': False, 'unique_keys': False, 'return_type': False, 'encoding': False}
key = 'jsonobject'
class JSONArray(Func):
4614class JSONArray(Func):
4615    arg_types = {
4616        "expressions": True,
4617        "null_handling": False,
4618        "return_type": False,
4619        "strict": False,
4620    }
arg_types = {'expressions': True, 'null_handling': False, 'return_type': False, 'strict': False}
key = 'jsonarray'
class JSONArrayAgg(Func):
4624class JSONArrayAgg(Func):
4625    arg_types = {
4626        "this": True,
4627        "order": False,
4628        "null_handling": False,
4629        "return_type": False,
4630        "strict": False,
4631    }
arg_types = {'this': True, 'order': False, 'null_handling': False, 'return_type': False, 'strict': False}
key = 'jsonarrayagg'
class JSONColumnDef(Expression):
4636class JSONColumnDef(Expression):
4637    arg_types = {"this": False, "kind": False, "path": False, "nested_schema": False}
arg_types = {'this': False, 'kind': False, 'path': False, 'nested_schema': False}
key = 'jsoncolumndef'
class JSONSchema(Expression):
4640class JSONSchema(Expression):
4641    arg_types = {"expressions": True}
arg_types = {'expressions': True}
key = 'jsonschema'
class JSONTable(Func):
4645class JSONTable(Func):
4646    arg_types = {
4647        "this": True,
4648        "schema": True,
4649        "path": False,
4650        "error_handling": False,
4651        "empty_handling": False,
4652    }
arg_types = {'this': True, 'schema': True, 'path': False, 'error_handling': False, 'empty_handling': False}
key = 'jsontable'
class OpenJSONColumnDef(Expression):
4655class OpenJSONColumnDef(Expression):
4656    arg_types = {"this": True, "kind": True, "path": False, "as_json": False}
arg_types = {'this': True, 'kind': True, 'path': False, 'as_json': False}
key = 'openjsoncolumndef'
class OpenJSON(Func):
4659class OpenJSON(Func):
4660    arg_types = {"this": True, "path": False, "expressions": False}
arg_types = {'this': True, 'path': False, 'expressions': False}
key = 'openjson'
class JSONBContains(Binary):
4663class JSONBContains(Binary):
4664    _sql_names = ["JSONB_CONTAINS"]
key = 'jsonbcontains'
class JSONExtract(Binary, Func):
4667class JSONExtract(Binary, Func):
4668    _sql_names = ["JSON_EXTRACT"]
key = 'jsonextract'
class JSONExtractScalar(JSONExtract):
4671class JSONExtractScalar(JSONExtract):
4672    _sql_names = ["JSON_EXTRACT_SCALAR"]
key = 'jsonextractscalar'
class JSONBExtract(JSONExtract):
4675class JSONBExtract(JSONExtract):
4676    _sql_names = ["JSONB_EXTRACT"]
key = 'jsonbextract'
class JSONBExtractScalar(JSONExtract):
4679class JSONBExtractScalar(JSONExtract):
4680    _sql_names = ["JSONB_EXTRACT_SCALAR"]
key = 'jsonbextractscalar'
class JSONFormat(Func):
4683class JSONFormat(Func):
4684    arg_types = {"this": False, "options": False}
4685    _sql_names = ["JSON_FORMAT"]
arg_types = {'this': False, 'options': False}
key = 'jsonformat'
class JSONArrayContains(Binary, Predicate, Func):
4689class JSONArrayContains(Binary, Predicate, Func):
4690    _sql_names = ["JSON_ARRAY_CONTAINS"]
key = 'jsonarraycontains'
class ParseJSON(Func):
4693class ParseJSON(Func):
4694    # BigQuery, Snowflake have PARSE_JSON, Presto has JSON_PARSE
4695    _sql_names = ["PARSE_JSON", "JSON_PARSE"]
key = 'parsejson'
class Least(Func):
4698class Least(Func):
4699    arg_types = {"this": True, "expressions": False}
4700    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'least'
class Left(Func):
4703class Left(Func):
4704    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'left'
class Length(Func):
4711class Length(Func):
4712    _sql_names = ["LENGTH", "LEN"]
key = 'length'
class Levenshtein(Func):
4715class Levenshtein(Func):
4716    arg_types = {
4717        "this": True,
4718        "expression": False,
4719        "ins_cost": False,
4720        "del_cost": False,
4721        "sub_cost": False,
4722    }
arg_types = {'this': True, 'expression': False, 'ins_cost': False, 'del_cost': False, 'sub_cost': False}
key = 'levenshtein'
class Ln(Func):
4725class Ln(Func):
4726    pass
key = 'ln'
class Log(Func):
4729class Log(Func):
4730    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'log'
class Log2(Func):
4733class Log2(Func):
4734    pass
key = 'log2'
class Log10(Func):
4737class Log10(Func):
4738    pass
key = 'log10'
class LogicalOr(AggFunc):
4741class LogicalOr(AggFunc):
4742    _sql_names = ["LOGICAL_OR", "BOOL_OR", "BOOLOR_AGG"]
key = 'logicalor'
class LogicalAnd(AggFunc):
4745class LogicalAnd(AggFunc):
4746    _sql_names = ["LOGICAL_AND", "BOOL_AND", "BOOLAND_AGG"]
key = 'logicaland'
class Lower(Func):
4749class Lower(Func):
4750    _sql_names = ["LOWER", "LCASE"]
key = 'lower'
class Map(Func):
4753class Map(Func):
4754    arg_types = {"keys": False, "values": False}
arg_types = {'keys': False, 'values': False}
key = 'map'
class MapFromEntries(Func):
4757class MapFromEntries(Func):
4758    pass
key = 'mapfromentries'
class StarMap(Func):
4761class StarMap(Func):
4762    pass
key = 'starmap'
class VarMap(Func):
4765class VarMap(Func):
4766    arg_types = {"keys": True, "values": True}
4767    is_var_len_args = True
4768
4769    @property
4770    def keys(self) -> t.List[Expression]:
4771        return self.args["keys"].expressions
4772
4773    @property
4774    def values(self) -> t.List[Expression]:
4775        return self.args["values"].expressions
arg_types = {'keys': True, 'values': True}
is_var_len_args = True
keys: List[Expression]
values: List[Expression]
key = 'varmap'
class MatchAgainst(Func):
4779class MatchAgainst(Func):
4780    arg_types = {"this": True, "expressions": True, "modifier": False}
arg_types = {'this': True, 'expressions': True, 'modifier': False}
key = 'matchagainst'
class Max(AggFunc):
4783class Max(AggFunc):
4784    arg_types = {"this": True, "expressions": False}
4785    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'max'
class MD5(Func):
4788class MD5(Func):
4789    _sql_names = ["MD5"]
key = 'md5'
class MD5Digest(Func):
4793class MD5Digest(Func):
4794    _sql_names = ["MD5_DIGEST"]
key = 'md5digest'
class Min(AggFunc):
4797class Min(AggFunc):
4798    arg_types = {"this": True, "expressions": False}
4799    is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
is_var_len_args = True
key = 'min'
class Month(Func):
4802class Month(Func):
4803    pass
key = 'month'
class Nvl2(Func):
4806class Nvl2(Func):
4807    arg_types = {"this": True, "true": True, "false": False}
arg_types = {'this': True, 'true': True, 'false': False}
key = 'nvl2'
class Predict(Func):
4811class Predict(Func):
4812    arg_types = {"this": True, "expression": True, "params_struct": False}
arg_types = {'this': True, 'expression': True, 'params_struct': False}
key = 'predict'
class Pow(Binary, Func):
4815class Pow(Binary, Func):
4816    _sql_names = ["POWER", "POW"]
key = 'pow'
class PercentileCont(AggFunc):
4819class PercentileCont(AggFunc):
4820    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'percentilecont'
class PercentileDisc(AggFunc):
4823class PercentileDisc(AggFunc):
4824    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'percentiledisc'
class Quantile(AggFunc):
4827class Quantile(AggFunc):
4828    arg_types = {"this": True, "quantile": True}
arg_types = {'this': True, 'quantile': True}
key = 'quantile'
class ApproxQuantile(Quantile):
4831class ApproxQuantile(Quantile):
4832    arg_types = {"this": True, "quantile": True, "accuracy": False, "weight": False}
arg_types = {'this': True, 'quantile': True, 'accuracy': False, 'weight': False}
key = 'approxquantile'
class RangeN(Func):
4835class RangeN(Func):
4836    arg_types = {"this": True, "expressions": True, "each": False}
arg_types = {'this': True, 'expressions': True, 'each': False}
key = 'rangen'
class ReadCSV(Func):
4839class ReadCSV(Func):
4840    _sql_names = ["READ_CSV"]
4841    is_var_len_args = True
4842    arg_types = {"this": True, "expressions": False}
is_var_len_args = True
arg_types = {'this': True, 'expressions': False}
key = 'readcsv'
class Reduce(Func):
4845class Reduce(Func):
4846    arg_types = {"this": True, "initial": True, "merge": True, "finish": False}
arg_types = {'this': True, 'initial': True, 'merge': True, 'finish': False}
key = 'reduce'
class RegexpExtract(Func):
4849class RegexpExtract(Func):
4850    arg_types = {
4851        "this": True,
4852        "expression": True,
4853        "position": False,
4854        "occurrence": False,
4855        "parameters": False,
4856        "group": False,
4857    }
arg_types = {'this': True, 'expression': True, 'position': False, 'occurrence': False, 'parameters': False, 'group': False}
key = 'regexpextract'
class RegexpReplace(Func):
4860class RegexpReplace(Func):
4861    arg_types = {
4862        "this": True,
4863        "expression": True,
4864        "replacement": True,
4865        "position": False,
4866        "occurrence": False,
4867        "parameters": False,
4868    }
arg_types = {'this': True, 'expression': True, 'replacement': True, 'position': False, 'occurrence': False, 'parameters': False}
key = 'regexpreplace'
class RegexpLike(Binary, Func):
4871class RegexpLike(Binary, Func):
4872    arg_types = {"this": True, "expression": True, "flag": False}
arg_types = {'this': True, 'expression': True, 'flag': False}
key = 'regexplike'
class RegexpILike(Func):
4875class RegexpILike(Func):
4876    arg_types = {"this": True, "expression": True, "flag": False}
arg_types = {'this': True, 'expression': True, 'flag': False}
key = 'regexpilike'
class RegexpSplit(Func):
4881class RegexpSplit(Func):
4882    arg_types = {"this": True, "expression": True, "limit": False}
arg_types = {'this': True, 'expression': True, 'limit': False}
key = 'regexpsplit'
class Repeat(Func):
4885class Repeat(Func):
4886    arg_types = {"this": True, "times": True}
arg_types = {'this': True, 'times': True}
key = 'repeat'
class Round(Func):
4889class Round(Func):
4890    arg_types = {"this": True, "decimals": False}
arg_types = {'this': True, 'decimals': False}
key = 'round'
class RowNumber(Func):
4893class RowNumber(Func):
4894    arg_types: t.Dict[str, t.Any] = {}
arg_types: Dict[str, Any] = {}
key = 'rownumber'
class SafeDivide(Func):
4897class SafeDivide(Func):
4898    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'safedivide'
class SetAgg(AggFunc):
4901class SetAgg(AggFunc):
4902    pass
key = 'setagg'
class SHA(Func):
4905class SHA(Func):
4906    _sql_names = ["SHA", "SHA1"]
key = 'sha'
class SHA2(Func):
4909class SHA2(Func):
4910    _sql_names = ["SHA2"]
4911    arg_types = {"this": True, "length": False}
arg_types = {'this': True, 'length': False}
key = 'sha2'
class SortArray(Func):
4914class SortArray(Func):
4915    arg_types = {"this": True, "asc": False}
arg_types = {'this': True, 'asc': False}
key = 'sortarray'
class Split(Func):
4918class Split(Func):
4919    arg_types = {"this": True, "expression": True, "limit": False}
arg_types = {'this': True, 'expression': True, 'limit': False}
key = 'split'
class Substring(Func):
4924class Substring(Func):
4925    arg_types = {"this": True, "start": False, "length": False}
arg_types = {'this': True, 'start': False, 'length': False}
key = 'substring'
class StandardHash(Func):
4928class StandardHash(Func):
4929    arg_types = {"this": True, "expression": False}
arg_types = {'this': True, 'expression': False}
key = 'standardhash'
class StartsWith(Func):
4932class StartsWith(Func):
4933    _sql_names = ["STARTS_WITH", "STARTSWITH"]
4934    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'startswith'
class StrPosition(Func):
4937class StrPosition(Func):
4938    arg_types = {
4939        "this": True,
4940        "substr": True,
4941        "position": False,
4942        "instance": False,
4943    }
arg_types = {'this': True, 'substr': True, 'position': False, 'instance': False}
key = 'strposition'
class StrToDate(Func):
4946class StrToDate(Func):
4947    arg_types = {"this": True, "format": True}
arg_types = {'this': True, 'format': True}
key = 'strtodate'
class StrToTime(Func):
4950class StrToTime(Func):
4951    arg_types = {"this": True, "format": True, "zone": False}
arg_types = {'this': True, 'format': True, 'zone': False}
key = 'strtotime'
class StrToUnix(Func):
4956class StrToUnix(Func):
4957    arg_types = {"this": False, "format": False}
arg_types = {'this': False, 'format': False}
key = 'strtounix'
class StrToMap(Func):
4962class StrToMap(Func):
4963    arg_types = {
4964        "this": True,
4965        "pair_delim": False,
4966        "key_value_delim": False,
4967        "duplicate_resolution_callback": False,
4968    }
arg_types = {'this': True, 'pair_delim': False, 'key_value_delim': False, 'duplicate_resolution_callback': False}
key = 'strtomap'
class NumberToStr(Func):
4971class NumberToStr(Func):
4972    arg_types = {"this": True, "format": True, "culture": False}
arg_types = {'this': True, 'format': True, 'culture': False}
key = 'numbertostr'
class FromBase(Func):
4975class FromBase(Func):
4976    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'frombase'
class Struct(Func):
4979class Struct(Func):
4980    arg_types = {"expressions": True}
4981    is_var_len_args = True
arg_types = {'expressions': True}
is_var_len_args = True
key = 'struct'
class StructExtract(Func):
4984class StructExtract(Func):
4985    arg_types = {"this": True, "expression": True}
arg_types = {'this': True, 'expression': True}
key = 'structextract'
class Stuff(Func):
4990class Stuff(Func):
4991    _sql_names = ["STUFF", "INSERT"]
4992    arg_types = {"this": True, "start": True, "length": True, "expression": True}
arg_types = {'this': True, 'start': True, 'length': True, 'expression': True}
key = 'stuff'
class Sum(AggFunc):
4995class Sum(AggFunc):
4996    pass
key = 'sum'
class Sqrt(Func):
4999class Sqrt(Func):
5000    pass
key = 'sqrt'
class Stddev(AggFunc):
5003class Stddev(AggFunc):
5004    pass
key = 'stddev'
class StddevPop(AggFunc):
5007class StddevPop(AggFunc):
5008    pass
key = 'stddevpop'
class StddevSamp(AggFunc):
5011class StddevSamp(AggFunc):
5012    pass
key = 'stddevsamp'
class TimeToStr(Func):
5015class TimeToStr(Func):
5016    arg_types = {"this": True, "format": True, "culture": False}
arg_types = {'this': True, 'format': True, 'culture': False}
key = 'timetostr'
class TimeToTimeStr(Func):
5019class TimeToTimeStr(Func):
5020    pass
key = 'timetotimestr'
class TimeToUnix(Func):
5023class TimeToUnix(Func):
5024    pass
key = 'timetounix'
class TimeStrToDate(Func):
5027class TimeStrToDate(Func):
5028    pass
key = 'timestrtodate'
class TimeStrToTime(Func):
5031class TimeStrToTime(Func):
5032    pass
key = 'timestrtotime'
class TimeStrToUnix(Func):
5035class TimeStrToUnix(Func):
5036    pass
key = 'timestrtounix'
class Trim(Func):
5039class Trim(Func):
5040    arg_types = {
5041        "this": True,
5042        "expression": False,
5043        "position": False,
5044        "collation": False,
5045    }
arg_types = {'this': True, 'expression': False, 'position': False, 'collation': False}
key = 'trim'
class TsOrDsAdd(Func, TimeUnit):
5048class TsOrDsAdd(Func, TimeUnit):
5049    arg_types = {"this": True, "expression": True, "unit": False}
arg_types = {'this': True, 'expression': True, 'unit': False}
key = 'tsordsadd'
class TsOrDsToDateStr(Func):
5052class TsOrDsToDateStr(Func):
5053    pass
key = 'tsordstodatestr'
class TsOrDsToDate(Func):
5056class TsOrDsToDate(Func):
5057    arg_types = {"this": True, "format": False}
arg_types = {'this': True, 'format': False}
key = 'tsordstodate'
class TsOrDiToDi(Func):
5060class TsOrDiToDi(Func):
5061    pass
key = 'tsorditodi'
class Unhex(Func):
5064class Unhex(Func):
5065    pass
key = 'unhex'
class UnixToStr(Func):
5068class UnixToStr(Func):
5069    arg_types = {"this": True, "format": False}
arg_types = {'this': True, 'format': False}
key = 'unixtostr'
class UnixToTime(Func):
5074class UnixToTime(Func):
5075    arg_types = {"this": True, "scale": False, "zone": False, "hours": False, "minutes": False}
5076
5077    SECONDS = Literal.string("seconds")
5078    MILLIS = Literal.string("millis")
5079    MICROS = Literal.string("micros")
arg_types = {'this': True, 'scale': False, 'zone': False, 'hours': False, 'minutes': False}
SECONDS = (LITERAL this: seconds, is_string: True)
MILLIS = (LITERAL this: millis, is_string: True)
MICROS = (LITERAL this: micros, is_string: True)
key = 'unixtotime'
class UnixToTimeStr(Func):
5082class UnixToTimeStr(Func):
5083    pass
key = 'unixtotimestr'
class Upper(Func):
5086class Upper(Func):
5087    _sql_names = ["UPPER", "UCASE"]
key = 'upper'
class Variance(AggFunc):
5090class Variance(AggFunc):
5091    _sql_names = ["VARIANCE", "VARIANCE_SAMP", "VAR_SAMP"]
key = 'variance'
class VariancePop(AggFunc):
5094class VariancePop(AggFunc):
5095    _sql_names = ["VARIANCE_POP", "VAR_POP"]
key = 'variancepop'
class Week(Func):
5098class Week(Func):
5099    arg_types = {"this": True, "mode": False}
arg_types = {'this': True, 'mode': False}
key = 'week'
class XMLTable(Func):
5102class XMLTable(Func):
5103    arg_types = {"this": True, "passing": False, "columns": False, "by_ref": False}
arg_types = {'this': True, 'passing': False, 'columns': False, 'by_ref': False}
key = 'xmltable'
class Year(Func):
5106class Year(Func):
5107    pass
key = 'year'
class Use(Expression):
5110class Use(Expression):
5111    arg_types = {"this": True, "kind": False}
arg_types = {'this': True, 'kind': False}
key = 'use'
class Merge(Expression):
5114class Merge(Expression):
5115    arg_types = {"this": True, "using": True, "on": True, "expressions": True}
arg_types = {'this': True, 'using': True, 'on': True, 'expressions': True}
key = 'merge'
class When(Func):
5118class When(Func):
5119    arg_types = {"matched": True, "source": False, "condition": False, "then": True}
arg_types = {'matched': True, 'source': False, 'condition': False, 'then': True}
key = 'when'
class NextValueFor(Func):
5124class NextValueFor(Func):
5125    arg_types = {"this": True, "order": False}
arg_types = {'this': True, 'order': False}
key = 'nextvaluefor'
ALL_FUNCTIONS = [<class 'Abs'>, <class 'AnyValue'>, <class 'ApproxDistinct'>, <class 'ApproxQuantile'>, <class 'Array'>, <class 'ArrayAgg'>, <class 'ArrayAll'>, <class 'ArrayAny'>, <class 'ArrayConcat'>, <class 'ArrayContains'>, <class 'ArrayFilter'>, <class 'ArrayJoin'>, <class 'ArraySize'>, <class 'ArraySort'>, <class 'ArraySum'>, <class 'ArrayUnionAgg'>, <class 'Avg'>, <class 'Case'>, <class 'Cast'>, <class 'CastToStrType'>, <class 'Ceil'>, <class 'Chr'>, <class 'Coalesce'>, <class 'Collate'>, <class 'Concat'>, <class 'ConcatWs'>, <class 'Count'>, <class 'CountIf'>, <class 'CurrentDate'>, <class 'CurrentDatetime'>, <class 'CurrentTime'>, <class 'CurrentTimestamp'>, <class 'CurrentUser'>, <class 'Date'>, <class 'DateAdd'>, <class 'DateDiff'>, <class 'DateFromParts'>, <class 'DateStrToDate'>, <class 'DateSub'>, <class 'DateToDateStr'>, <class 'DateToDi'>, <class 'DateTrunc'>, <class 'DatetimeAdd'>, <class 'DatetimeDiff'>, <class 'DatetimeSub'>, <class 'DatetimeTrunc'>, <class 'Day'>, <class 'DayOfMonth'>, <class 'DayOfWeek'>, <class 'DayOfYear'>, <class 'Decode'>, <class 'DiToDate'>, <class 'Encode'>, <class 'Exp'>, <class 'Explode'>, <class 'ExplodeOuter'>, <class 'Extract'>, <class 'First'>, <class 'Floor'>, <class 'FromBase'>, <class 'FromBase64'>, <class 'GenerateSeries'>, <class 'Greatest'>, <class 'GroupConcat'>, <class 'Hex'>, <class 'Hll'>, <class 'If'>, <class 'Initcap'>, <class 'IsNan'>, <class 'JSONArray'>, <class 'JSONArrayAgg'>, <class 'JSONArrayContains'>, <class 'JSONBExtract'>, <class 'JSONBExtractScalar'>, <class 'JSONExtract'>, <class 'JSONExtractScalar'>, <class 'JSONFormat'>, <class 'JSONObject'>, <class 'JSONTable'>, <class 'Last'>, <class 'LastDateOfMonth'>, <class 'Least'>, <class 'Left'>, <class 'Length'>, <class 'Levenshtein'>, <class 'Ln'>, <class 'Log'>, <class 'Log10'>, <class 'Log2'>, <class 'LogicalAnd'>, <class 'LogicalOr'>, <class 'Lower'>, <class 'MD5'>, <class 'MD5Digest'>, <class 'Map'>, <class 'MapFromEntries'>, <class 'MatchAgainst'>, <class 'Max'>, <class 'Min'>, <class 'Month'>, <class 'MonthsBetween'>, <class 'NextValueFor'>, <class 'NumberToStr'>, <class 'Nvl2'>, <class 'OpenJSON'>, <class 'ParameterizedAgg'>, <class 'ParseJSON'>, <class 'PercentileCont'>, <class 'PercentileDisc'>, <class 'Posexplode'>, <class 'PosexplodeOuter'>, <class 'Pow'>, <class 'Predict'>, <class 'Quantile'>, <class 'RangeN'>, <class 'ReadCSV'>, <class 'Reduce'>, <class 'RegexpExtract'>, <class 'RegexpILike'>, <class 'RegexpLike'>, <class 'RegexpReplace'>, <class 'RegexpSplit'>, <class 'Repeat'>, <class 'Right'>, <class 'Round'>, <class 'RowNumber'>, <class 'SHA'>, <class 'SHA2'>, <class 'SafeConcat'>, <class 'SafeDivide'>, <class 'SetAgg'>, <class 'SortArray'>, <class 'Split'>, <class 'Sqrt'>, <class 'StandardHash'>, <class 'StarMap'>, <class 'StartsWith'>, <class 'Stddev'>, <class 'StddevPop'>, <class 'StddevSamp'>, <class 'StrPosition'>, <class 'StrToDate'>, <class 'StrToMap'>, <class 'StrToTime'>, <class 'StrToUnix'>, <class 'Struct'>, <class 'StructExtract'>, <class 'Stuff'>, <class 'Substring'>, <class 'Sum'>, <class 'TimeAdd'>, <class 'TimeDiff'>, <class 'TimeStrToDate'>, <class 'TimeStrToTime'>, <class 'TimeStrToUnix'>, <class 'TimeSub'>, <class 'TimeToStr'>, <class 'TimeToTimeStr'>, <class 'TimeToUnix'>, <class 'TimeTrunc'>, <class 'Timestamp'>, <class 'TimestampAdd'>, <class 'TimestampDiff'>, <class 'TimestampSub'>, <class 'TimestampTrunc'>, <class 'ToBase64'>, <class 'ToChar'>, <class 'ToDays'>, <class 'Transform'>, <class 'Trim'>, <class 'TryCast'>, <class 'TsOrDiToDi'>, <class 'TsOrDsAdd'>, <class 'TsOrDsToDate'>, <class 'TsOrDsToDateStr'>, <class 'Unhex'>, <class 'UnixToStr'>, <class 'UnixToTime'>, <class 'UnixToTimeStr'>, <class 'Upper'>, <class 'VarMap'>, <class 'Variance'>, <class 'VariancePop'>, <class 'Week'>, <class 'WeekOfYear'>, <class 'When'>, <class 'XMLTable'>, <class 'Xor'>, <class 'Year'>]
def maybe_parse( sql_or_expression: Union[str, Expression], *, into: Union[str, Type[Expression], Collection[Union[str, Type[Expression]]], NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, prefix: Optional[str] = None, copy: bool = False, **opts) -> Expression:
5162def maybe_parse(
5163    sql_or_expression: ExpOrStr,
5164    *,
5165    into: t.Optional[IntoType] = None,
5166    dialect: DialectType = None,
5167    prefix: t.Optional[str] = None,
5168    copy: bool = False,
5169    **opts,
5170) -> Expression:
5171    """Gracefully handle a possible string or expression.
5172
5173    Example:
5174        >>> maybe_parse("1")
5175        (LITERAL this: 1, is_string: False)
5176        >>> maybe_parse(to_identifier("x"))
5177        (IDENTIFIER this: x, quoted: False)
5178
5179    Args:
5180        sql_or_expression: the SQL code string or an expression
5181        into: the SQLGlot Expression to parse into
5182        dialect: the dialect used to parse the input expressions (in the case that an
5183            input expression is a SQL string).
5184        prefix: a string to prefix the sql with before it gets parsed
5185            (automatically includes a space)
5186        copy: whether or not to copy the expression.
5187        **opts: other options to use to parse the input expressions (again, in the case
5188            that an input expression is a SQL string).
5189
5190    Returns:
5191        Expression: the parsed or given expression.
5192    """
5193    if isinstance(sql_or_expression, Expression):
5194        if copy:
5195            return sql_or_expression.copy()
5196        return sql_or_expression
5197
5198    if sql_or_expression is None:
5199        raise ParseError(f"SQL cannot be None")
5200
5201    import sqlglot
5202
5203    sql = str(sql_or_expression)
5204    if prefix:
5205        sql = f"{prefix} {sql}"
5206
5207    return sqlglot.parse_one(sql, read=dialect, into=into, **opts)

Gracefully handle a possible string or expression.

Example:
>>> maybe_parse("1")
(LITERAL this: 1, is_string: False)
>>> maybe_parse(to_identifier("x"))
(IDENTIFIER this: x, quoted: False)
Arguments:
  • sql_or_expression: the SQL code string or an expression
  • into: the SQLGlot Expression to parse into
  • dialect: the dialect used to parse the input expressions (in the case that an input expression is a SQL string).
  • prefix: a string to prefix the sql with before it gets parsed (automatically includes a space)
  • copy: whether or not to copy the expression.
  • **opts: other options to use to parse the input expressions (again, in the case that an input expression is a SQL string).
Returns:

Expression: the parsed or given expression.

def maybe_copy(instance, copy=True):
5220def maybe_copy(instance, copy=True):
5221    return instance.copy() if copy and instance else instance
def union( left: Union[str, Expression], right: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Union:
5402def union(
5403    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
5404) -> Union:
5405    """
5406    Initializes a syntax tree from one UNION expression.
5407
5408    Example:
5409        >>> union("SELECT * FROM foo", "SELECT * FROM bla").sql()
5410        'SELECT * FROM foo UNION SELECT * FROM bla'
5411
5412    Args:
5413        left: the SQL code string corresponding to the left-hand side.
5414            If an `Expression` instance is passed, it will be used as-is.
5415        right: the SQL code string corresponding to the right-hand side.
5416            If an `Expression` instance is passed, it will be used as-is.
5417        distinct: set the DISTINCT flag if and only if this is true.
5418        dialect: the dialect used to parse the input expression.
5419        opts: other options to use to parse the input expressions.
5420
5421    Returns:
5422        The new Union instance.
5423    """
5424    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
5425    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
5426
5427    return Union(this=left, expression=right, distinct=distinct)

Initializes a syntax tree from one UNION expression.

Example:
>>> union("SELECT * FROM foo", "SELECT * FROM bla").sql()
'SELECT * FROM foo UNION SELECT * FROM bla'
Arguments:
  • left: the SQL code string corresponding to the left-hand side. If an Expression instance is passed, it will be used as-is.
  • right: the SQL code string corresponding to the right-hand side. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Union instance.

def intersect( left: Union[str, Expression], right: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Intersect:
5430def intersect(
5431    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
5432) -> Intersect:
5433    """
5434    Initializes a syntax tree from one INTERSECT expression.
5435
5436    Example:
5437        >>> intersect("SELECT * FROM foo", "SELECT * FROM bla").sql()
5438        'SELECT * FROM foo INTERSECT SELECT * FROM bla'
5439
5440    Args:
5441        left: the SQL code string corresponding to the left-hand side.
5442            If an `Expression` instance is passed, it will be used as-is.
5443        right: the SQL code string corresponding to the right-hand side.
5444            If an `Expression` instance is passed, it will be used as-is.
5445        distinct: set the DISTINCT flag if and only if this is true.
5446        dialect: the dialect used to parse the input expression.
5447        opts: other options to use to parse the input expressions.
5448
5449    Returns:
5450        The new Intersect instance.
5451    """
5452    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
5453    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
5454
5455    return Intersect(this=left, expression=right, distinct=distinct)

Initializes a syntax tree from one INTERSECT expression.

Example:
>>> intersect("SELECT * FROM foo", "SELECT * FROM bla").sql()
'SELECT * FROM foo INTERSECT SELECT * FROM bla'
Arguments:
  • left: the SQL code string corresponding to the left-hand side. If an Expression instance is passed, it will be used as-is.
  • right: the SQL code string corresponding to the right-hand side. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Intersect instance.

def except_( left: Union[str, Expression], right: Union[str, Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Except:
5458def except_(
5459    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
5460) -> Except:
5461    """
5462    Initializes a syntax tree from one EXCEPT expression.
5463
5464    Example:
5465        >>> except_("SELECT * FROM foo", "SELECT * FROM bla").sql()
5466        'SELECT * FROM foo EXCEPT SELECT * FROM bla'
5467
5468    Args:
5469        left: the SQL code string corresponding to the left-hand side.
5470            If an `Expression` instance is passed, it will be used as-is.
5471        right: the SQL code string corresponding to the right-hand side.
5472            If an `Expression` instance is passed, it will be used as-is.
5473        distinct: set the DISTINCT flag if and only if this is true.
5474        dialect: the dialect used to parse the input expression.
5475        opts: other options to use to parse the input expressions.
5476
5477    Returns:
5478        The new Except instance.
5479    """
5480    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
5481    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
5482
5483    return Except(this=left, expression=right, distinct=distinct)

Initializes a syntax tree from one EXCEPT expression.

Example:
>>> except_("SELECT * FROM foo", "SELECT * FROM bla").sql()
'SELECT * FROM foo EXCEPT SELECT * FROM bla'
Arguments:
  • left: the SQL code string corresponding to the left-hand side. If an Expression instance is passed, it will be used as-is.
  • right: the SQL code string corresponding to the right-hand side. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Except instance.

def select( *expressions: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Select:
5486def select(*expressions: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
5487    """
5488    Initializes a syntax tree from one or multiple SELECT expressions.
5489
5490    Example:
5491        >>> select("col1", "col2").from_("tbl").sql()
5492        'SELECT col1, col2 FROM tbl'
5493
5494    Args:
5495        *expressions: the SQL code string to parse as the expressions of a
5496            SELECT statement. If an Expression instance is passed, this is used as-is.
5497        dialect: the dialect used to parse the input expressions (in the case that an
5498            input expression is a SQL string).
5499        **opts: other options to use to parse the input expressions (again, in the case
5500            that an input expression is a SQL string).
5501
5502    Returns:
5503        Select: the syntax tree for the SELECT statement.
5504    """
5505    return Select().select(*expressions, dialect=dialect, **opts)

Initializes a syntax tree from one or multiple SELECT expressions.

Example:
>>> select("col1", "col2").from_("tbl").sql()
'SELECT col1, col2 FROM tbl'
Arguments:
  • *expressions: the SQL code string to parse as the expressions of a SELECT statement. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expressions (in the case that an input expression is a SQL string).
  • **opts: other options to use to parse the input expressions (again, in the case that an input expression is a SQL string).
Returns:

Select: the syntax tree for the SELECT statement.

def from_( expression: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Select:
5508def from_(expression: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
5509    """
5510    Initializes a syntax tree from a FROM expression.
5511
5512    Example:
5513        >>> from_("tbl").select("col1", "col2").sql()
5514        'SELECT col1, col2 FROM tbl'
5515
5516    Args:
5517        *expression: the SQL code string to parse as the FROM expressions of a
5518            SELECT statement. If an Expression instance is passed, this is used as-is.
5519        dialect: the dialect used to parse the input expression (in the case that the
5520            input expression is a SQL string).
5521        **opts: other options to use to parse the input expressions (again, in the case
5522            that the input expression is a SQL string).
5523
5524    Returns:
5525        Select: the syntax tree for the SELECT statement.
5526    """
5527    return Select().from_(expression, dialect=dialect, **opts)

Initializes a syntax tree from a FROM expression.

Example:
>>> from_("tbl").select("col1", "col2").sql()
'SELECT col1, col2 FROM tbl'
Arguments:
  • *expression: the SQL code string to parse as the FROM expressions of a SELECT statement. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression (in the case that the input expression is a SQL string).
  • **opts: other options to use to parse the input expressions (again, in the case that the input expression is a SQL string).
Returns:

Select: the syntax tree for the SELECT statement.

def update( table: str | Table, properties: dict, where: Union[str, Expression, NoneType] = None, from_: Union[str, Expression, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Update:
5530def update(
5531    table: str | Table,
5532    properties: dict,
5533    where: t.Optional[ExpOrStr] = None,
5534    from_: t.Optional[ExpOrStr] = None,
5535    dialect: DialectType = None,
5536    **opts,
5537) -> Update:
5538    """
5539    Creates an update statement.
5540
5541    Example:
5542        >>> update("my_table", {"x": 1, "y": "2", "z": None}, from_="baz", where="id > 1").sql()
5543        "UPDATE my_table SET x = 1, y = '2', z = NULL FROM baz WHERE id > 1"
5544
5545    Args:
5546        *properties: dictionary of properties to set which are
5547            auto converted to sql objects eg None -> NULL
5548        where: sql conditional parsed into a WHERE statement
5549        from_: sql statement parsed into a FROM statement
5550        dialect: the dialect used to parse the input expressions.
5551        **opts: other options to use to parse the input expressions.
5552
5553    Returns:
5554        Update: the syntax tree for the UPDATE statement.
5555    """
5556    update_expr = Update(this=maybe_parse(table, into=Table, dialect=dialect))
5557    update_expr.set(
5558        "expressions",
5559        [
5560            EQ(this=maybe_parse(k, dialect=dialect, **opts), expression=convert(v))
5561            for k, v in properties.items()
5562        ],
5563    )
5564    if from_:
5565        update_expr.set(
5566            "from",
5567            maybe_parse(from_, into=From, dialect=dialect, prefix="FROM", **opts),
5568        )
5569    if isinstance(where, Condition):
5570        where = Where(this=where)
5571    if where:
5572        update_expr.set(
5573            "where",
5574            maybe_parse(where, into=Where, dialect=dialect, prefix="WHERE", **opts),
5575        )
5576    return update_expr

Creates an update statement.

Example:
>>> update("my_table", {"x": 1, "y": "2", "z": None}, from_="baz", where="id > 1").sql()
"UPDATE my_table SET x = 1, y = '2', z = NULL FROM baz WHERE id > 1"
Arguments:
  • *properties: dictionary of properties to set which are auto converted to sql objects eg None -> NULL
  • where: sql conditional parsed into a WHERE statement
  • from_: sql statement parsed into a FROM statement
  • dialect: the dialect used to parse the input expressions.
  • **opts: other options to use to parse the input expressions.
Returns:

Update: the syntax tree for the UPDATE statement.

def delete( table: Union[str, Expression], where: Union[str, Expression, NoneType] = None, returning: Union[str, Expression, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Delete:
5579def delete(
5580    table: ExpOrStr,
5581    where: t.Optional[ExpOrStr] = None,
5582    returning: t.Optional[ExpOrStr] = None,
5583    dialect: DialectType = None,
5584    **opts,
5585) -> Delete:
5586    """
5587    Builds a delete statement.
5588
5589    Example:
5590        >>> delete("my_table", where="id > 1").sql()
5591        'DELETE FROM my_table WHERE id > 1'
5592
5593    Args:
5594        where: sql conditional parsed into a WHERE statement
5595        returning: sql conditional parsed into a RETURNING statement
5596        dialect: the dialect used to parse the input expressions.
5597        **opts: other options to use to parse the input expressions.
5598
5599    Returns:
5600        Delete: the syntax tree for the DELETE statement.
5601    """
5602    delete_expr = Delete().delete(table, dialect=dialect, copy=False, **opts)
5603    if where:
5604        delete_expr = delete_expr.where(where, dialect=dialect, copy=False, **opts)
5605    if returning:
5606        delete_expr = delete_expr.returning(returning, dialect=dialect, copy=False, **opts)
5607    return delete_expr

Builds a delete statement.

Example:
>>> delete("my_table", where="id > 1").sql()
'DELETE FROM my_table WHERE id > 1'
Arguments:
  • where: sql conditional parsed into a WHERE statement
  • returning: sql conditional parsed into a RETURNING statement
  • dialect: the dialect used to parse the input expressions.
  • **opts: other options to use to parse the input expressions.
Returns:

Delete: the syntax tree for the DELETE statement.

def insert( expression: Union[str, Expression], into: Union[str, Expression], columns: Optional[Sequence[Union[str, Expression]]] = None, overwrite: Optional[bool] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Insert:
5610def insert(
5611    expression: ExpOrStr,
5612    into: ExpOrStr,
5613    columns: t.Optional[t.Sequence[ExpOrStr]] = None,
5614    overwrite: t.Optional[bool] = None,
5615    dialect: DialectType = None,
5616    copy: bool = True,
5617    **opts,
5618) -> Insert:
5619    """
5620    Builds an INSERT statement.
5621
5622    Example:
5623        >>> insert("VALUES (1, 2, 3)", "tbl").sql()
5624        'INSERT INTO tbl VALUES (1, 2, 3)'
5625
5626    Args:
5627        expression: the sql string or expression of the INSERT statement
5628        into: the tbl to insert data to.
5629        columns: optionally the table's column names.
5630        overwrite: whether to INSERT OVERWRITE or not.
5631        dialect: the dialect used to parse the input expressions.
5632        copy: whether or not to copy the expression.
5633        **opts: other options to use to parse the input expressions.
5634
5635    Returns:
5636        Insert: the syntax tree for the INSERT statement.
5637    """
5638    expr = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
5639    this: Table | Schema = maybe_parse(into, into=Table, dialect=dialect, copy=copy, **opts)
5640
5641    if columns:
5642        this = _apply_list_builder(
5643            *columns,
5644            instance=Schema(this=this),
5645            arg="expressions",
5646            into=Identifier,
5647            copy=False,
5648            dialect=dialect,
5649            **opts,
5650        )
5651
5652    return Insert(this=this, expression=expr, overwrite=overwrite)

Builds an INSERT statement.

Example:
>>> insert("VALUES (1, 2, 3)", "tbl").sql()
'INSERT INTO tbl VALUES (1, 2, 3)'
Arguments:
  • expression: the sql string or expression of the INSERT statement
  • into: the tbl to insert data to.
  • columns: optionally the table's column names.
  • overwrite: whether to INSERT OVERWRITE or not.
  • dialect: the dialect used to parse the input expressions.
  • copy: whether or not to copy the expression.
  • **opts: other options to use to parse the input expressions.
Returns:

Insert: the syntax tree for the INSERT statement.

def condition( expression: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Condition:
5655def condition(
5656    expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
5657) -> Condition:
5658    """
5659    Initialize a logical condition expression.
5660
5661    Example:
5662        >>> condition("x=1").sql()
5663        'x = 1'
5664
5665        This is helpful for composing larger logical syntax trees:
5666        >>> where = condition("x=1")
5667        >>> where = where.and_("y=1")
5668        >>> Select().from_("tbl").select("*").where(where).sql()
5669        'SELECT * FROM tbl WHERE x = 1 AND y = 1'
5670
5671    Args:
5672        *expression: the SQL code string to parse.
5673            If an Expression instance is passed, this is used as-is.
5674        dialect: the dialect used to parse the input expression (in the case that the
5675            input expression is a SQL string).
5676        copy: Whether or not to copy `expression` (only applies to expressions).
5677        **opts: other options to use to parse the input expressions (again, in the case
5678            that the input expression is a SQL string).
5679
5680    Returns:
5681        The new Condition instance
5682    """
5683    return maybe_parse(
5684        expression,
5685        into=Condition,
5686        dialect=dialect,
5687        copy=copy,
5688        **opts,
5689    )

Initialize a logical condition expression.

Example:
>>> condition("x=1").sql()
'x = 1'

This is helpful for composing larger logical syntax trees:

>>> where = condition("x=1")
>>> where = where.and_("y=1")
>>> Select().from_("tbl").select("*").where(where).sql()
'SELECT * FROM tbl WHERE x = 1 AND y = 1'
Arguments:
  • *expression: the SQL code string to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression (in the case that the input expression is a SQL string).
  • copy: Whether or not to copy expression (only applies to expressions).
  • **opts: other options to use to parse the input expressions (again, in the case that the input expression is a SQL string).
Returns:

The new Condition instance

def and_( *expressions: Union[str, Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Condition:
5692def and_(
5693    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
5694) -> Condition:
5695    """
5696    Combine multiple conditions with an AND logical operator.
5697
5698    Example:
5699        >>> and_("x=1", and_("y=1", "z=1")).sql()
5700        'x = 1 AND (y = 1 AND z = 1)'
5701
5702    Args:
5703        *expressions: the SQL code strings to parse.
5704            If an Expression instance is passed, this is used as-is.
5705        dialect: the dialect used to parse the input expression.
5706        copy: whether or not to copy `expressions` (only applies to Expressions).
5707        **opts: other options to use to parse the input expressions.
5708
5709    Returns:
5710        And: the new condition
5711    """
5712    return t.cast(Condition, _combine(expressions, And, dialect, copy=copy, **opts))

Combine multiple conditions with an AND logical operator.

Example:
>>> and_("x=1", and_("y=1", "z=1")).sql()
'x = 1 AND (y = 1 AND z = 1)'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether or not to copy expressions (only applies to Expressions).
  • **opts: other options to use to parse the input expressions.
Returns:

And: the new condition

def or_( *expressions: Union[str, Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Condition:
5715def or_(
5716    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
5717) -> Condition:
5718    """
5719    Combine multiple conditions with an OR logical operator.
5720
5721    Example:
5722        >>> or_("x=1", or_("y=1", "z=1")).sql()
5723        'x = 1 OR (y = 1 OR z = 1)'
5724
5725    Args:
5726        *expressions: the SQL code strings to parse.
5727            If an Expression instance is passed, this is used as-is.
5728        dialect: the dialect used to parse the input expression.
5729        copy: whether or not to copy `expressions` (only applies to Expressions).
5730        **opts: other options to use to parse the input expressions.
5731
5732    Returns:
5733        Or: the new condition
5734    """
5735    return t.cast(Condition, _combine(expressions, Or, dialect, copy=copy, **opts))

Combine multiple conditions with an OR logical operator.

Example:
>>> or_("x=1", or_("y=1", "z=1")).sql()
'x = 1 OR (y = 1 OR z = 1)'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether or not to copy expressions (only applies to Expressions).
  • **opts: other options to use to parse the input expressions.
Returns:

Or: the new condition

def not_( expression: Union[str, Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> Not:
5738def not_(expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts) -> Not:
5739    """
5740    Wrap a condition with a NOT operator.
5741
5742    Example:
5743        >>> not_("this_suit='black'").sql()
5744        "NOT this_suit = 'black'"
5745
5746    Args:
5747        expression: the SQL code string to parse.
5748            If an Expression instance is passed, this is used as-is.
5749        dialect: the dialect used to parse the input expression.
5750        copy: whether to copy the expression or not.
5751        **opts: other options to use to parse the input expressions.
5752
5753    Returns:
5754        The new condition.
5755    """
5756    this = condition(
5757        expression,
5758        dialect=dialect,
5759        copy=copy,
5760        **opts,
5761    )
5762    return Not(this=_wrap(this, Connector))

Wrap a condition with a NOT operator.

Example:
>>> not_("this_suit='black'").sql()
"NOT this_suit = 'black'"
Arguments:
  • expression: the SQL code string to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether to copy the expression or not.
  • **opts: other options to use to parse the input expressions.
Returns:

The new condition.

def paren( expression: Union[str, Expression], copy: bool = True) -> Paren:
5765def paren(expression: ExpOrStr, copy: bool = True) -> Paren:
5766    """
5767    Wrap an expression in parentheses.
5768
5769    Example:
5770        >>> paren("5 + 3").sql()
5771        '(5 + 3)'
5772
5773    Args:
5774        expression: the SQL code string to parse.
5775            If an Expression instance is passed, this is used as-is.
5776        copy: whether to copy the expression or not.
5777
5778    Returns:
5779        The wrapped expression.
5780    """
5781    return Paren(this=maybe_parse(expression, copy=copy))

Wrap an expression in parentheses.

Example:
>>> paren("5 + 3").sql()
'(5 + 3)'
Arguments:
  • expression: the SQL code string to parse. If an Expression instance is passed, this is used as-is.
  • copy: whether to copy the expression or not.
Returns:

The wrapped expression.

SAFE_IDENTIFIER_RE = re.compile('^[_a-zA-Z][\\w]*$')
def to_identifier(name, quoted=None, copy=True):
5799def to_identifier(name, quoted=None, copy=True):
5800    """Builds an identifier.
5801
5802    Args:
5803        name: The name to turn into an identifier.
5804        quoted: Whether or not force quote the identifier.
5805        copy: Whether or not to copy a passed in Identefier node.
5806
5807    Returns:
5808        The identifier ast node.
5809    """
5810
5811    if name is None:
5812        return None
5813
5814    if isinstance(name, Identifier):
5815        identifier = maybe_copy(name, copy)
5816    elif isinstance(name, str):
5817        identifier = Identifier(
5818            this=name,
5819            quoted=not SAFE_IDENTIFIER_RE.match(name) if quoted is None else quoted,
5820        )
5821    else:
5822        raise ValueError(f"Name needs to be a string or an Identifier, got: {name.__class__}")
5823    return identifier

Builds an identifier.

Arguments:
  • name: The name to turn into an identifier.
  • quoted: Whether or not force quote the identifier.
  • copy: Whether or not to copy a passed in Identefier node.
Returns:

The identifier ast node.

INTERVAL_STRING_RE = re.compile('\\s*([0-9]+)\\s*([a-zA-Z]+)\\s*')
def to_interval( interval: str | Literal) -> Interval:
5829def to_interval(interval: str | Literal) -> Interval:
5830    """Builds an interval expression from a string like '1 day' or '5 months'."""
5831    if isinstance(interval, Literal):
5832        if not interval.is_string:
5833            raise ValueError("Invalid interval string.")
5834
5835        interval = interval.this
5836
5837    interval_parts = INTERVAL_STRING_RE.match(interval)  # type: ignore
5838
5839    if not interval_parts:
5840        raise ValueError("Invalid interval string.")
5841
5842    return Interval(
5843        this=Literal.string(interval_parts.group(1)),
5844        unit=Var(this=interval_parts.group(2)),
5845    )

Builds an interval expression from a string like '1 day' or '5 months'.

def to_table( sql_path: Union[str, Table, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **kwargs) -> Optional[Table]:
5858def to_table(
5859    sql_path: t.Optional[str | Table], dialect: DialectType = None, **kwargs
5860) -> t.Optional[Table]:
5861    """
5862    Create a table expression from a `[catalog].[schema].[table]` sql path. Catalog and schema are optional.
5863    If a table is passed in then that table is returned.
5864
5865    Args:
5866        sql_path: a `[catalog].[schema].[table]` string.
5867        dialect: the source dialect according to which the table name will be parsed.
5868        kwargs: the kwargs to instantiate the resulting `Table` expression with.
5869
5870    Returns:
5871        A table expression.
5872    """
5873    if sql_path is None or isinstance(sql_path, Table):
5874        return sql_path
5875    if not isinstance(sql_path, str):
5876        raise ValueError(f"Invalid type provided for a table: {type(sql_path)}")
5877
5878    table = maybe_parse(sql_path, into=Table, dialect=dialect)
5879    if table:
5880        for k, v in kwargs.items():
5881            table.set(k, v)
5882
5883    return table

Create a table expression from a [catalog].[schema].[table] sql path. Catalog and schema are optional. If a table is passed in then that table is returned.

Arguments:
  • sql_path: a [catalog].[schema].[table] string.
  • dialect: the source dialect according to which the table name will be parsed.
  • kwargs: the kwargs to instantiate the resulting Table expression with.
Returns:

A table expression.

def to_column( sql_path: str | Column, **kwargs) -> Column:
5886def to_column(sql_path: str | Column, **kwargs) -> Column:
5887    """
5888    Create a column from a `[table].[column]` sql path. Schema is optional.
5889
5890    If a column is passed in then that column is returned.
5891
5892    Args:
5893        sql_path: `[table].[column]` string
5894    Returns:
5895        Table: A column expression
5896    """
5897    if sql_path is None or isinstance(sql_path, Column):
5898        return sql_path
5899    if not isinstance(sql_path, str):
5900        raise ValueError(f"Invalid type provided for column: {type(sql_path)}")
5901    return column(*reversed(sql_path.split(".")), **kwargs)  # type: ignore

Create a column from a [table].[column] sql path. Schema is optional.

If a column is passed in then that column is returned.

Arguments:
  • sql_path: [table].[column] string
Returns:

Table: A column expression

def alias_( expression: Union[str, Expression], alias: str | Identifier, table: Union[bool, Sequence[str | Identifier]] = False, quoted: Optional[bool] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts):
5904def alias_(
5905    expression: ExpOrStr,
5906    alias: str | Identifier,
5907    table: bool | t.Sequence[str | Identifier] = False,
5908    quoted: t.Optional[bool] = None,
5909    dialect: DialectType = None,
5910    copy: bool = True,
5911    **opts,
5912):
5913    """Create an Alias expression.
5914
5915    Example:
5916        >>> alias_('foo', 'bar').sql()
5917        'foo AS bar'
5918
5919        >>> alias_('(select 1, 2)', 'bar', table=['a', 'b']).sql()
5920        '(SELECT 1, 2) AS bar(a, b)'
5921
5922    Args:
5923        expression: the SQL code strings to parse.
5924            If an Expression instance is passed, this is used as-is.
5925        alias: the alias name to use. If the name has
5926            special characters it is quoted.
5927        table: Whether or not to create a table alias, can also be a list of columns.
5928        quoted: whether or not to quote the alias
5929        dialect: the dialect used to parse the input expression.
5930        copy: Whether or not to copy the expression.
5931        **opts: other options to use to parse the input expressions.
5932
5933    Returns:
5934        Alias: the aliased expression
5935    """
5936    exp = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
5937    alias = to_identifier(alias, quoted=quoted)
5938
5939    if table:
5940        table_alias = TableAlias(this=alias)
5941        exp.set("alias", table_alias)
5942
5943        if not isinstance(table, bool):
5944            for column in table:
5945                table_alias.append("columns", to_identifier(column, quoted=quoted))
5946
5947        return exp
5948
5949    # We don't set the "alias" arg for Window expressions, because that would add an IDENTIFIER node in
5950    # the AST, representing a "named_window" [1] construct (eg. bigquery). What we want is an ALIAS node
5951    # for the complete Window expression.
5952    #
5953    # [1]: https://cloud.google.com/bigquery/docs/reference/standard-sql/window-function-calls
5954
5955    if "alias" in exp.arg_types and not isinstance(exp, Window):
5956        exp.set("alias", alias)
5957        return exp
5958    return Alias(this=exp, alias=alias)

Create an Alias expression.

Example:
>>> alias_('foo', 'bar').sql()
'foo AS bar'
>>> alias_('(select 1, 2)', 'bar', table=['a', 'b']).sql()
'(SELECT 1, 2) AS bar(a, b)'
Arguments:
  • expression: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • alias: the alias name to use. If the name has special characters it is quoted.
  • table: Whether or not to create a table alias, can also be a list of columns.
  • quoted: whether or not to quote the alias
  • dialect: the dialect used to parse the input expression.
  • copy: Whether or not to copy the expression.
  • **opts: other options to use to parse the input expressions.
Returns:

Alias: the aliased expression

def subquery( expression: Union[str, Expression], alias: Union[Identifier, str, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> Select:
5961def subquery(
5962    expression: ExpOrStr,
5963    alias: t.Optional[Identifier | str] = None,
5964    dialect: DialectType = None,
5965    **opts,
5966) -> Select:
5967    """
5968    Build a subquery expression.
5969
5970    Example:
5971        >>> subquery('select x from tbl', 'bar').select('x').sql()
5972        'SELECT x FROM (SELECT x FROM tbl) AS bar'
5973
5974    Args:
5975        expression: the SQL code strings to parse.
5976            If an Expression instance is passed, this is used as-is.
5977        alias: the alias name to use.
5978        dialect: the dialect used to parse the input expression.
5979        **opts: other options to use to parse the input expressions.
5980
5981    Returns:
5982        A new Select instance with the subquery expression included.
5983    """
5984
5985    expression = maybe_parse(expression, dialect=dialect, **opts).subquery(alias)
5986    return Select().from_(expression, dialect=dialect, **opts)

Build a subquery expression.

Example:
>>> subquery('select x from tbl', 'bar').select('x').sql()
'SELECT x FROM (SELECT x FROM tbl) AS bar'
Arguments:
  • expression: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • alias: the alias name to use.
  • dialect: the dialect used to parse the input expression.
  • **opts: other options to use to parse the input expressions.
Returns:

A new Select instance with the subquery expression included.

def column( col: str | Identifier, table: Union[Identifier, str, NoneType] = None, db: Union[Identifier, str, NoneType] = None, catalog: Union[Identifier, str, NoneType] = None, quoted: Optional[bool] = None) -> Column:
5989def column(
5990    col: str | Identifier,
5991    table: t.Optional[str | Identifier] = None,
5992    db: t.Optional[str | Identifier] = None,
5993    catalog: t.Optional[str | Identifier] = None,
5994    quoted: t.Optional[bool] = None,
5995) -> Column:
5996    """
5997    Build a Column.
5998
5999    Args:
6000        col: Column name.
6001        table: Table name.
6002        db: Database name.
6003        catalog: Catalog name.
6004        quoted: Whether to force quotes on the column's identifiers.
6005
6006    Returns:
6007        The new Column instance.
6008    """
6009    return Column(
6010        this=to_identifier(col, quoted=quoted),
6011        table=to_identifier(table, quoted=quoted),
6012        db=to_identifier(db, quoted=quoted),
6013        catalog=to_identifier(catalog, quoted=quoted),
6014    )

Build a Column.

Arguments:
  • col: Column name.
  • table: Table name.
  • db: Database name.
  • catalog: Catalog name.
  • quoted: Whether to force quotes on the column's identifiers.
Returns:

The new Column instance.

def cast( expression: Union[str, Expression], to: str | DataType | DataType.Type, **opts) -> Cast:
6017def cast(expression: ExpOrStr, to: str | DataType | DataType.Type, **opts) -> Cast:
6018    """Cast an expression to a data type.
6019
6020    Example:
6021        >>> cast('x + 1', 'int').sql()
6022        'CAST(x + 1 AS INT)'
6023
6024    Args:
6025        expression: The expression to cast.
6026        to: The datatype to cast to.
6027
6028    Returns:
6029        The new Cast instance.
6030    """
6031    expression = maybe_parse(expression, **opts)
6032    data_type = DataType.build(to, **opts)
6033    expression = Cast(this=expression, to=data_type)
6034    expression.type = data_type
6035    return expression

Cast an expression to a data type.

Example:
>>> cast('x + 1', 'int').sql()
'CAST(x + 1 AS INT)'
Arguments:
  • expression: The expression to cast.
  • to: The datatype to cast to.
Returns:

The new Cast instance.

def table_( table: Identifier | str, db: Union[Identifier, str, NoneType] = None, catalog: Union[Identifier, str, NoneType] = None, quoted: Optional[bool] = None, alias: Union[Identifier, str, NoneType] = None) -> Table:
6038def table_(
6039    table: Identifier | str,
6040    db: t.Optional[Identifier | str] = None,
6041    catalog: t.Optional[Identifier | str] = None,
6042    quoted: t.Optional[bool] = None,
6043    alias: t.Optional[Identifier | str] = None,
6044) -> Table:
6045    """Build a Table.
6046
6047    Args:
6048        table: Table name.
6049        db: Database name.
6050        catalog: Catalog name.
6051        quote: Whether to force quotes on the table's identifiers.
6052        alias: Table's alias.
6053
6054    Returns:
6055        The new Table instance.
6056    """
6057    return Table(
6058        this=to_identifier(table, quoted=quoted) if table else None,
6059        db=to_identifier(db, quoted=quoted) if db else None,
6060        catalog=to_identifier(catalog, quoted=quoted) if catalog else None,
6061        alias=TableAlias(this=to_identifier(alias)) if alias else None,
6062    )

Build a Table.

Arguments:
  • table: Table name.
  • db: Database name.
  • catalog: Catalog name.
  • quote: Whether to force quotes on the table's identifiers.
  • alias: Table's alias.
Returns:

The new Table instance.

def values( values: Iterable[Tuple[Any, ...]], alias: Optional[str] = None, columns: Union[Iterable[str], Dict[str, DataType], NoneType] = None) -> Values:
6065def values(
6066    values: t.Iterable[t.Tuple[t.Any, ...]],
6067    alias: t.Optional[str] = None,
6068    columns: t.Optional[t.Iterable[str] | t.Dict[str, DataType]] = None,
6069) -> Values:
6070    """Build VALUES statement.
6071
6072    Example:
6073        >>> values([(1, '2')]).sql()
6074        "VALUES (1, '2')"
6075
6076    Args:
6077        values: values statements that will be converted to SQL
6078        alias: optional alias
6079        columns: Optional list of ordered column names or ordered dictionary of column names to types.
6080         If either are provided then an alias is also required.
6081
6082    Returns:
6083        Values: the Values expression object
6084    """
6085    if columns and not alias:
6086        raise ValueError("Alias is required when providing columns")
6087
6088    return Values(
6089        expressions=[convert(tup) for tup in values],
6090        alias=(
6091            TableAlias(this=to_identifier(alias), columns=[to_identifier(x) for x in columns])
6092            if columns
6093            else (TableAlias(this=to_identifier(alias)) if alias else None)
6094        ),
6095    )

Build VALUES statement.

Example:
>>> values([(1, '2')]).sql()
"VALUES (1, '2')"
Arguments:
  • values: values statements that will be converted to SQL
  • alias: optional alias
  • columns: Optional list of ordered column names or ordered dictionary of column names to types. If either are provided then an alias is also required.
Returns:

Values: the Values expression object

def var( name: Union[str, Expression, NoneType]) -> Var:
6098def var(name: t.Optional[ExpOrStr]) -> Var:
6099    """Build a SQL variable.
6100
6101    Example:
6102        >>> repr(var('x'))
6103        '(VAR this: x)'
6104
6105        >>> repr(var(column('x', table='y')))
6106        '(VAR this: x)'
6107
6108    Args:
6109        name: The name of the var or an expression who's name will become the var.
6110
6111    Returns:
6112        The new variable node.
6113    """
6114    if not name:
6115        raise ValueError("Cannot convert empty name into var.")
6116
6117    if isinstance(name, Expression):
6118        name = name.name
6119    return Var(this=name)

Build a SQL variable.

Example:
>>> repr(var('x'))
'(VAR this: x)'
>>> repr(var(column('x', table='y')))
'(VAR this: x)'
Arguments:
  • name: The name of the var or an expression who's name will become the var.
Returns:

The new variable node.

def rename_table( old_name: str | Table, new_name: str | Table) -> AlterTable:
6122def rename_table(old_name: str | Table, new_name: str | Table) -> AlterTable:
6123    """Build ALTER TABLE... RENAME... expression
6124
6125    Args:
6126        old_name: The old name of the table
6127        new_name: The new name of the table
6128
6129    Returns:
6130        Alter table expression
6131    """
6132    old_table = to_table(old_name)
6133    new_table = to_table(new_name)
6134    return AlterTable(
6135        this=old_table,
6136        actions=[
6137            RenameTable(this=new_table),
6138        ],
6139    )

Build ALTER TABLE... RENAME... expression

Arguments:
  • old_name: The old name of the table
  • new_name: The new name of the table
Returns:

Alter table expression

def convert(value: Any, copy: bool = False) -> Expression:
6142def convert(value: t.Any, copy: bool = False) -> Expression:
6143    """Convert a python value into an expression object.
6144
6145    Raises an error if a conversion is not possible.
6146
6147    Args:
6148        value: A python object.
6149        copy: Whether or not to copy `value` (only applies to Expressions and collections).
6150
6151    Returns:
6152        Expression: the equivalent expression object.
6153    """
6154    if isinstance(value, Expression):
6155        return maybe_copy(value, copy)
6156    if isinstance(value, str):
6157        return Literal.string(value)
6158    if isinstance(value, bool):
6159        return Boolean(this=value)
6160    if value is None or (isinstance(value, float) and math.isnan(value)):
6161        return NULL
6162    if isinstance(value, numbers.Number):
6163        return Literal.number(value)
6164    if isinstance(value, datetime.datetime):
6165        datetime_literal = Literal.string(
6166            (value if value.tzinfo else value.replace(tzinfo=datetime.timezone.utc)).isoformat()
6167        )
6168        return TimeStrToTime(this=datetime_literal)
6169    if isinstance(value, datetime.date):
6170        date_literal = Literal.string(value.strftime("%Y-%m-%d"))
6171        return DateStrToDate(this=date_literal)
6172    if isinstance(value, tuple):
6173        return Tuple(expressions=[convert(v, copy=copy) for v in value])
6174    if isinstance(value, list):
6175        return Array(expressions=[convert(v, copy=copy) for v in value])
6176    if isinstance(value, dict):
6177        return Map(
6178            keys=Array(expressions=[convert(k, copy=copy) for k in value]),
6179            values=Array(expressions=[convert(v, copy=copy) for v in value.values()]),
6180        )
6181    raise ValueError(f"Cannot convert {value}")

Convert a python value into an expression object.

Raises an error if a conversion is not possible.

Arguments:
  • value: A python object.
  • copy: Whether or not to copy value (only applies to Expressions and collections).
Returns:

Expression: the equivalent expression object.

def replace_children( expression: Expression, fun: Callable, *args, **kwargs) -> None:
6184def replace_children(expression: Expression, fun: t.Callable, *args, **kwargs) -> None:
6185    """
6186    Replace children of an expression with the result of a lambda fun(child) -> exp.
6187    """
6188    for k, v in expression.args.items():
6189        is_list_arg = type(v) is list
6190
6191        child_nodes = v if is_list_arg else [v]
6192        new_child_nodes = []
6193
6194        for cn in child_nodes:
6195            if isinstance(cn, Expression):
6196                for child_node in ensure_collection(fun(cn, *args, **kwargs)):
6197                    new_child_nodes.append(child_node)
6198                    child_node.parent = expression
6199                    child_node.arg_key = k
6200            else:
6201                new_child_nodes.append(cn)
6202
6203        expression.args[k] = new_child_nodes if is_list_arg else seq_get(new_child_nodes, 0)

Replace children of an expression with the result of a lambda fun(child) -> exp.

def column_table_names( expression: Expression, exclude: str = '') -> Set[str]:
6206def column_table_names(expression: Expression, exclude: str = "") -> t.Set[str]:
6207    """
6208    Return all table names referenced through columns in an expression.
6209
6210    Example:
6211        >>> import sqlglot
6212        >>> sorted(column_table_names(sqlglot.parse_one("a.b AND c.d AND c.e")))
6213        ['a', 'c']
6214
6215    Args:
6216        expression: expression to find table names.
6217        exclude: a table name to exclude
6218
6219    Returns:
6220        A list of unique names.
6221    """
6222    return {
6223        table
6224        for table in (column.table for column in expression.find_all(Column))
6225        if table and table != exclude
6226    }

Return all table names referenced through columns in an expression.

Example:
>>> import sqlglot
>>> sorted(column_table_names(sqlglot.parse_one("a.b AND c.d AND c.e")))
['a', 'c']
Arguments:
  • expression: expression to find table names.
  • exclude: a table name to exclude
Returns:

A list of unique names.

def table_name( table: Table | str, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None) -> str:
6229def table_name(table: Table | str, dialect: DialectType = None) -> str:
6230    """Get the full name of a table as a string.
6231
6232    Args:
6233        table: Table expression node or string.
6234        dialect: The dialect to generate the table name for.
6235
6236    Examples:
6237        >>> from sqlglot import exp, parse_one
6238        >>> table_name(parse_one("select * from a.b.c").find(exp.Table))
6239        'a.b.c'
6240
6241    Returns:
6242        The table name.
6243    """
6244
6245    table = maybe_parse(table, into=Table, dialect=dialect)
6246
6247    if not table:
6248        raise ValueError(f"Cannot parse {table}")
6249
6250    return ".".join(
6251        part.sql(dialect=dialect, identify=True)
6252        if not SAFE_IDENTIFIER_RE.match(part.name)
6253        else part.name
6254        for part in table.parts
6255    )

Get the full name of a table as a string.

Arguments:
  • table: Table expression node or string.
  • dialect: The dialect to generate the table name for.
Examples:
>>> from sqlglot import exp, parse_one
>>> table_name(parse_one("select * from a.b.c").find(exp.Table))
'a.b.c'
Returns:

The table name.

def replace_tables(expression: ~E, mapping: Dict[str, str], copy: bool = True) -> ~E:
6258def replace_tables(expression: E, mapping: t.Dict[str, str], copy: bool = True) -> E:
6259    """Replace all tables in expression according to the mapping.
6260
6261    Args:
6262        expression: expression node to be transformed and replaced.
6263        mapping: mapping of table names.
6264        copy: whether or not to copy the expression.
6265
6266    Examples:
6267        >>> from sqlglot import exp, parse_one
6268        >>> replace_tables(parse_one("select * from a.b"), {"a.b": "c"}).sql()
6269        'SELECT * FROM c'
6270
6271    Returns:
6272        The mapped expression.
6273    """
6274
6275    def _replace_tables(node: Expression) -> Expression:
6276        if isinstance(node, Table):
6277            new_name = mapping.get(table_name(node))
6278            if new_name:
6279                return to_table(
6280                    new_name,
6281                    **{k: v for k, v in node.args.items() if k not in ("this", "db", "catalog")},
6282                )
6283        return node
6284
6285    return expression.transform(_replace_tables, copy=copy)

Replace all tables in expression according to the mapping.

Arguments:
  • expression: expression node to be transformed and replaced.
  • mapping: mapping of table names.
  • copy: whether or not to copy the expression.
Examples:
>>> from sqlglot import exp, parse_one
>>> replace_tables(parse_one("select * from a.b"), {"a.b": "c"}).sql()
'SELECT * FROM c'
Returns:

The mapped expression.

def replace_placeholders( expression: Expression, *args, **kwargs) -> Expression:
6288def replace_placeholders(expression: Expression, *args, **kwargs) -> Expression:
6289    """Replace placeholders in an expression.
6290
6291    Args:
6292        expression: expression node to be transformed and replaced.
6293        args: positional names that will substitute unnamed placeholders in the given order.
6294        kwargs: keyword arguments that will substitute named placeholders.
6295
6296    Examples:
6297        >>> from sqlglot import exp, parse_one
6298        >>> replace_placeholders(
6299        ...     parse_one("select * from :tbl where ? = ?"),
6300        ...     exp.to_identifier("str_col"), "b", tbl=exp.to_identifier("foo")
6301        ... ).sql()
6302        "SELECT * FROM foo WHERE str_col = 'b'"
6303
6304    Returns:
6305        The mapped expression.
6306    """
6307
6308    def _replace_placeholders(node: Expression, args, **kwargs) -> Expression:
6309        if isinstance(node, Placeholder):
6310            if node.name:
6311                new_name = kwargs.get(node.name)
6312                if new_name:
6313                    return convert(new_name)
6314            else:
6315                try:
6316                    return convert(next(args))
6317                except StopIteration:
6318                    pass
6319        return node
6320
6321    return expression.transform(_replace_placeholders, iter(args), **kwargs)

Replace placeholders in an expression.

Arguments:
  • expression: expression node to be transformed and replaced.
  • args: positional names that will substitute unnamed placeholders in the given order.
  • kwargs: keyword arguments that will substitute named placeholders.
Examples:
>>> from sqlglot import exp, parse_one
>>> replace_placeholders(
...     parse_one("select * from :tbl where ? = ?"),
...     exp.to_identifier("str_col"), "b", tbl=exp.to_identifier("foo")
... ).sql()
"SELECT * FROM foo WHERE str_col = 'b'"
Returns:

The mapped expression.

def expand( expression: Expression, sources: Dict[str, Subqueryable], copy: bool = True) -> Expression:
6324def expand(
6325    expression: Expression, sources: t.Dict[str, Subqueryable], copy: bool = True
6326) -> Expression:
6327    """Transforms an expression by expanding all referenced sources into subqueries.
6328
6329    Examples:
6330        >>> from sqlglot import parse_one
6331        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y")}).sql()
6332        'SELECT * FROM (SELECT * FROM y) AS z /* source: x */'
6333
6334        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y"), "y": parse_one("select * from z")}).sql()
6335        'SELECT * FROM (SELECT * FROM (SELECT * FROM z) AS y /* source: y */) AS z /* source: x */'
6336
6337    Args:
6338        expression: The expression to expand.
6339        sources: A dictionary of name to Subqueryables.
6340        copy: Whether or not to copy the expression during transformation. Defaults to True.
6341
6342    Returns:
6343        The transformed expression.
6344    """
6345
6346    def _expand(node: Expression):
6347        if isinstance(node, Table):
6348            name = table_name(node)
6349            source = sources.get(name)
6350            if source:
6351                subquery = source.subquery(node.alias or name)
6352                subquery.comments = [f"source: {name}"]
6353                return subquery.transform(_expand, copy=False)
6354        return node
6355
6356    return expression.transform(_expand, copy=copy)

Transforms an expression by expanding all referenced sources into subqueries.

Examples:
>>> from sqlglot import parse_one
>>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y")}).sql()
'SELECT * FROM (SELECT * FROM y) AS z /* source: x */'
>>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y"), "y": parse_one("select * from z")}).sql()
'SELECT * FROM (SELECT * FROM (SELECT * FROM z) AS y /* source: y */) AS z /* source: x */'
Arguments:
  • expression: The expression to expand.
  • sources: A dictionary of name to Subqueryables.
  • copy: Whether or not to copy the expression during transformation. Defaults to True.
Returns:

The transformed expression.

def func( name: str, *args, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **kwargs) -> Func:
6359def func(name: str, *args, dialect: DialectType = None, **kwargs) -> Func:
6360    """
6361    Returns a Func expression.
6362
6363    Examples:
6364        >>> func("abs", 5).sql()
6365        'ABS(5)'
6366
6367        >>> func("cast", this=5, to=DataType.build("DOUBLE")).sql()
6368        'CAST(5 AS DOUBLE)'
6369
6370    Args:
6371        name: the name of the function to build.
6372        args: the args used to instantiate the function of interest.
6373        dialect: the source dialect.
6374        kwargs: the kwargs used to instantiate the function of interest.
6375
6376    Note:
6377        The arguments `args` and `kwargs` are mutually exclusive.
6378
6379    Returns:
6380        An instance of the function of interest, or an anonymous function, if `name` doesn't
6381        correspond to an existing `sqlglot.expressions.Func` class.
6382    """
6383    if args and kwargs:
6384        raise ValueError("Can't use both args and kwargs to instantiate a function.")
6385
6386    from sqlglot.dialects.dialect import Dialect
6387
6388    converted: t.List[Expression] = [maybe_parse(arg, dialect=dialect) for arg in args]
6389    kwargs = {key: maybe_parse(value, dialect=dialect) for key, value in kwargs.items()}
6390
6391    parser = Dialect.get_or_raise(dialect)().parser()
6392    from_args_list = parser.FUNCTIONS.get(name.upper())
6393
6394    if from_args_list:
6395        function = from_args_list(converted) if converted else from_args_list.__self__(**kwargs)  # type: ignore
6396    else:
6397        kwargs = kwargs or {"expressions": converted}
6398        function = Anonymous(this=name, **kwargs)
6399
6400    for error_message in function.error_messages(converted):
6401        raise ValueError(error_message)
6402
6403    return function

Returns a Func expression.

Examples:
>>> func("abs", 5).sql()
'ABS(5)'
>>> func("cast", this=5, to=DataType.build("DOUBLE")).sql()
'CAST(5 AS DOUBLE)'
Arguments:
  • name: the name of the function to build.
  • args: the args used to instantiate the function of interest.
  • dialect: the source dialect.
  • kwargs: the kwargs used to instantiate the function of interest.
Note:

The arguments args and kwargs are mutually exclusive.

Returns:

An instance of the function of interest, or an anonymous function, if name doesn't correspond to an existing Func class.

def true() -> Boolean:
6406def true() -> Boolean:
6407    """
6408    Returns a true Boolean expression.
6409    """
6410    return Boolean(this=True)

Returns a true Boolean expression.

def false() -> Boolean:
6413def false() -> Boolean:
6414    """
6415    Returns a false Boolean expression.
6416    """
6417    return Boolean(this=False)

Returns a false Boolean expression.

def null() -> Null:
6420def null() -> Null:
6421    """
6422    Returns a Null expression.
6423    """
6424    return Null()

Returns a Null expression.

TRUE = (BOOLEAN this: True)
FALSE = (BOOLEAN this: False)
NULL = (NULL )