100 lbf Engine

RocketIsp version 0.1.10 Sunday, Dec 13, 2020 at 10:35AM
      N2O4/N2H4
IspVac     = 317.326 sec
MRcore     = 1.26
MRthruster = 1.071
Rt         = 0.360216 in
At         = 0.40764 in**2
Pc         = 137 psia
Fvac       = 100 lbf
cham_freq  = 17954.9 Hz(82% 1T)
Nelements  = 596 (set by acoustics)
elemDens   = 75.8851 elem/in**2
DorfOx     = 0.0097 in
DorfFuel   = 0.0095 in
Plot
Plot
Plot
Geometry
Input
Parameter = Value Alt Value Description
cham_conv_deg = 30.00 deg half angle of conical convergent section
CR = 2.5 chamber contraction ratio (Ainj / Athroat)
eps = 75 nozzle area ratio (Aexit / Athroat)
LchamberInp = None in user input value of chamber length (will override all other entries)
LchmMin = 1.000 in 2.540 cm
0.083 ft
minimum chamber length (will override LchmOvrDt)
LchmOvrDt = 3 ratio of chamber length to throat diameter (Lcham / Dthrt)
LnozInp = None in user input nozzle length (will override pcentBell)
pcentBell = 80 nozzle percent bell (Lnoz / L_15deg_cone)
RchmConv = 1 radius of curvature at start of convergent section (Rconv / Rthrt)
RdwnThroat = 1 radius of curvature just downstream of throat (Rdownstream / Rthrt)
Rthrt = 0.360 in 0.915 cm
0.030 ft
throat radius
RupThroat = 1.5 radius of curvature just upstream of throat (Rupstream / Rthrt)
Output
Parameter = Value Alt Value Description
Ainj = 1.019 in**2 6.575 cm**2 area of injector
At = 0.408 in**2 2.630 cm**2 throat area
Dexit = 6.239 in 15.847 cm
0.520 ft
nozzle exit diameter
Dinj = 1.139 in 2.893 cm
0.095 ft
diameter of injector
Dthrt = 0.720 in 1.830 cm
0.060 ft
throat diameter
entrance_angle = 35.70 deg nozzle initial expansion angle
exit_angle = 7.63 deg nozzle exit angle
Lcham_conv = 0.604 in 1.534 cm
0.050 ft
length of convergent section of chamber
Lcham_cyl = 1.557 in 3.956 cm
0.130 ft
length of cylindrical section of chamber
Lnoz = 8.238 in 20.926 cm
0.687 ft
nozzle length
Ltotal = 10.400 in 26.415 cm
0.867 ft
nozzle + chamber length
Rinj = 0.570 in 1.447 cm
0.047 ft
radius of injector
Vcham = 2.0 in**3 32.8 cm**3 approximate chamber volume
N2O4/N2H4 Core Stream Tube
Input
Parameter = Value Alt Value Description
adjCstarODE = 1 multiplier on NASA CEA code value of cstar ODE (default is 1.0)
adjIspIdeal = 1 multiplier on NASA CEA code value of Isp ODE (default is 1.0)
CdThroat = 0.985313 Cd of throat (RocketThruster object may override)
(MLP fit)
fuelName = N2H4 name of fuel (e.g. MMH, LH2)
ignore_noz_sep = 0 flag to force nozzle flow separation to be ignored (USE WITH CAUTION)
MRcore = 1.26 mixture ratio of core flow (ox flow rate / fuel flow rate)
oxName = N2O4 name of oxidizer (e.g. N2O4, LOX)
Pamb = 0.00 psia 0.00 MPa
0.00 atm
0.00 bar
ambient pressure (for example sea level is 14.7 psia)
Pc = 137.0 psia 0.94 MPa
9.32 atm
9.45 bar
chamber pressure
Output
Parameter = Value Alt Value Description
CfAmbDel = 1.79062 delivered ambient thrust coefficient
CfVacDel = 1.79062 delivered vacuum thrust coefficient
CfVacIdeal = 1.938 ideal vacuum thrust coefficient
cstarERE = 5641.4 ft/s 1719.5 m/s delivered core cstar
cstarODE = 5787.6 ft/s 1764.1 m/s core ideal cstar
FvacBarrier = 26.6 lbf 118.2 N vacuum thrust due to barrier stream tube
FvacCore = 73.4 lbf 326.6 N vacuum thrust due to core stream tube
FvacTotal = 100.0 lbf 444.8 N total vacuum thrust
gammaChm = 1.13912 core gas ratio of specific heats (Cp/Cv)
IspDel = 317.33 sec 3111.90 N-sec/kg
3.11 km/sec
<=== thruster delivered vacuum Isp ===>
IspDel_core = 320.51 sec 3143.18 N-sec/kg
3.14 km/sec
delivered Isp of core stream tube
IspODE = 348.61 sec 3418.74 N-sec/kg
3.42 km/sec
core one dimensional equilibrium Isp
IspODF = 327.19 sec 3208.59 N-sec/kg
3.21 km/sec
core frozen Isp
IspODK = 335.20 sec 3287.20 N-sec/kg
3.29 km/sec
core one dimensional kinetic Isp
MRthruster = 1.071 total thruster mixture ratio')
MWchm = 20.222 g/gmole core gas molecular weight
Pexit = 0.1116 psia 0.00 MPa
0.01 atm
0.01 bar
nozzle exit pressure
TcODE = 5521.3 degR 3067.4 degK
2794.2 degC
5061.6 degF
ideal core gas temperature
wdotFl = 0.152 lbm/s 0.069 kg/s total fuel flow rate
wdotOx = 0.163 lbm/s 0.074 kg/s total oxidizer flow rate
wdotTot = 0.315 lbm/s 0.143 kg/s total propellant flow rate (ox+fuel)
At Injector Face
Parameter = Value Alt Value Description
wdotFl_cInit = 0.129 lbm/s 0.059 kg/s initial core fuel flow rate (before any entrainment)
wdotFlFFC = 0.023 lbm/s 0.010 kg/s fuel film coolant flow rate injected at perimeter
wdotTot_cInit = 0.292 lbm/s 0.133 kg/s initial core total flow rate (before any entrainment)
After Entrainment
Parameter = Value Alt Value Description
wdotFl_b = 0.051 lbm/s 0.023 kg/s barrier fuel flow rate (FFC + entrained)
wdotFl_c = 0.101 lbm/s 0.046 kg/s final core fuel flow rate (injected - entrained)
wdotOx_b = 0.035 lbm/s 0.016 kg/s barrier oxidizer flow rate (all entrained)
wdotOx_c = 0.128 lbm/s 0.058 kg/s final core oxidizer flow rate (injected - entrained)
wdotTot_b = 0.086 lbm/s 0.039 kg/s total barrier propellant flow rate (includes entrained)
wdotTot_c = 0.229 lbm/s 0.104 kg/s total final core propellant flow rate (injected - entrained)
Efficiencies
Output
Parameter = Value Description
Isp = 0.91025 Overall Isp Efficiency
Noz = 0.94322 Nozzle Efficiency
ERE = 0.97475 Energy Release Efficiency of Chamber
FFC = 0.99005 (barrier calc) Fuel Film Cooling Efficiency of Chamber
Nozzle
Parameter = Value Description
Div = 0.99334 (simple fit eps=75, %bell=80) Divergence Efficiency of Nozzle
Kin = 0.96153 (MLP fit) Kinetic Efficiency of Nozzle
BL = 0.98753 (MLP fit) Boundary Layer Efficiency of Nozzle
Chamber
Parameter = Value Description
Mix = 0.99823 (mixAngle=0.84 deg) Inter-Element Mixing Efficiency of Injector
Em = 0.98478 (Rupe elemEm=0.8) Intra-Element Mixing Efficiency of Injector
Vap = 0.99157 (gen vaporized length) Vaporization Efficiency of Injector
Ignored Efficiencies
        TP: Two Phase Efficiency of Nozzle
        HL: Heat Loss Efficiency of Chamber
Barrier Stream Tube
Input
Parameter = Value Description
ko = 0.035 entrainment constant (typical value is 0.035, range from 0.03 to 0.06)
pcentFFC = 15 percent fuel film cooling ( FFC flowrate / total fuel flowrate)
Output
Parameter = Value Alt Value Description
cstarERE_b = 5555.6 ft/s 1693.4 m/s delivered cstar
cstarODE_b = 5699.5 ft/s 1737.2 m/s ideal equilibrium cstar
fracKin_b = 0.27895 fraction of kinetic completion in barrier
IspDel_b = 308.83 sec 3028.60 N-sec/kg
3.03 km/sec
delivered vacuum barrier Isp
IspODE_b = 325.104 sec. ideal equilibrium barrier Isp
IspODF_b = 322.16 sec 3159.32 N-sec/kg
3.16 km/sec
ideal frozen barrier Isp
IspODK_b = 322.98 sec 3167.37 N-sec/kg
3.17 km/sec
vacuum kinetic Isp of barrier
MRbarrier = 0.693743 barrier mixture ratio
MRwall = 0.362649 mixture ratio at wall
TcODE_b = 4653.7 degR 2585.4 degK
2312.2 degC
4194.0 degF
average ideal ODE temperature of barrier gas
Twallgas = 3460.6 degR 1922.5 degK
1649.4 degC
3000.9 degF
temperature of gas at wall
WentrOvWcool = 2.76881 ratio of entrained flow rate to FFC flow rate
N2O4/N2H4 Injector
Assumptions
NOTE: Injector elements are designed by Initial Core Flow ONLY.
      Fuel Film Cooling orifices must be designed separately.
NOTE: number of elements set by acoustics
      Acoustic frequency set by 3T
Fuel Orifice Diameter Meets Stability Requirement of >= 9.5 mil
Chamber design frequency set by: acoustics to: 17955 Hz,(82% 1T)
Input
Parameter = Value Alt Value Description
desAcousMode = 3T driving acoustic mode of injector OR acoustic mode multiplier (setNelementsBy=="acoustics" and setAcousticFreqBy=="mode")
DorfMin = 0.0080 in 8.000 mil
0.203 mm
minimum orifice diameter (lower limit)
elemEm = 0.8 intra-element Rupe mixing factor (0.7 below ave, 0.8 ave, 0.9 above ave)
setAcousticFreqBy = mode flag indicating how to determine design frequency. (can be "mode" or "freq")
setNelementsBy = acoustics flag determines how to calculate number of elements ( "acoustics", "elem_density", "input")
Ox Properties
Parameter = Value Alt Value Description
CdOxOrf = 0.75 flow coefficient of oxidizer orifices
dropCorrOx = 0.33 oxidizer drop size multiplier (showerhead=3.0, like-doublet=1.0, vortex=0.5, unlike-doublet=0.33)
fdPinjOx = 0.25 fraction of Pc used as oxidizer injector pressure drop
LfanOvDorfOx = 20 fan length / oxidizer orifice diameter
OxOrfPerEl = 1 number of oxidizer orifices per element
Tox = 530.0 degR 294.4 degK
21.3 degC
70.3 degF
temperature of oxidizer
Fuel Properties
Parameter = Value Alt Value Description
CdFuelOrf = 0.75 flow coefficient of fuel orifices
dropCorrFuel = 0.33 fuel drop size multiplier (showerhead=3.0, like-doublet=1.0, vortex=0.5, unlike-doublet=0.33)
fdPinjFuel = 0.25 fraction of Pc used as fuel injector pressure drop
FuelOrfPerEl = 1 number of fuel orifices per element
LfanOvDorfFuel = 20 fan length / fuel orifice diameter
lolFuelElem = 0 flag for like-on-like fuel element (determines strouhal multiplier)
Tfuel = 530.0 degR 294.4 degK
21.3 degC
70.3 degF
temperature of fuel
Output
Parameter = Value Alt Value Description
des_freq = 17954.9 Hz chamber design acoustic frequency
DorfFlForHzLimit = 0.009 in 9.484 mil
0.241 mm
fuel orifice Diameter for frequency in Hewitt Correlation
elemDensCalc = 75.885 elem/in**2 11.762 elem/cm**2 element density on injector face
Nelements = 596 number of elements on injector face
NelemMakable = 838 maximum number of makable elements giving correct flow rate (diam=DorfMin)
Ox Properties
Parameter = Value Alt Value Description
AfloOx = 0.044 in**2 0.287 cm**2 total flow area of oxidizer
dHvapOx = 177.52 BTU/lbm 98.69 cal/g
412.91 J/g
oxidizer heat of vaporization
DorfOx = 0.0097 in 9.745 mil
0.248 mm
oxidizer orifice diameter
dpOx = 34.25 psid 0.24 MPa
2.33 atm
2.36 bar
oxidizer injector pressure drop
MolWtOx = 92.011 g/gmole oxidizer molecular weight
NOxOrf = 596 number of oxidizer orifices on injector face
sgOx = 1.439 g/ml 0.052 lbm/inch**3
89.825 lbm/ft**3
oxidizer density
surfOx = 1.483e-04 lbf/in 2.598e-02 N/m
2.598e+01 mN/m
2.598e+01 dyne/cm
oxidizer surface tension
velOx_fps = 59.4 ft/s 18.1 m/s velocity of injected oxidizer
viscOx = 2.777e-04 poise 2.777e-02 cpoise
2.777e-05 Pa*s
6.718e-02 lbm/hr/ft
oxidizer viscosity
Fuel Properties
Parameter = Value Alt Value Description
AfloFuel = 0.042 in**2 0.272 cm**2 total flow area of fuel
dHvapFuel = 582.19 BTU/lbm 323.66 cal/g
1354.18 J/g
fuel heat of vaporization
DorfFuel = 0.0095 in 9.487 mil
0.241 mm
fuel orifice diameter
dpFuel = 34.25 psid 0.24 MPa
2.33 atm
2.36 bar
fuel injector pressure drop
MolWtFuel = 32.045 g/gmole fuel molecular weight
NFuelOrf = 596 number of fuel orifices on injector face
sgFuel = 1.009 g/ml 0.036 lbm/inch**3
63.003 lbm/ft**3
fuel density
surfFuel = 3.846e-04 lbf/in 6.736e-02 N/m
6.736e+01 mN/m
6.736e+01 dyne/cm
fuel surface tension
velFuel_fps = 71.0 ft/s 21.6 m/s velocity of injected fuel
viscFuel = 6.764e-04 poise 6.764e-02 cpoise
6.764e-05 Pa*s
1.636e-01 lbm/hr/ft
fuel viscosity
Vaporization
Parameter = Value Alt Value Description
chamShapeFact = 0.6775 chamber shape factor
fracVapFuel = 0.9838 fraction of vaporized fuel
fracVapOx = 0.9999 fraction of vaporized oxidizer
genVapLenFuel = 32.12 Priem generalized vaporization length of fuel
genVapLenOx = 174.24 Priem generalized vaporization length of oxidizer
mrVap = 1.2806 vaporized mixture ratio
rDropFuel = 0.2150 mil 5.46 micron
0.01 mm
median fuel droplet radius
rDropOx = 0.1275 mil 3.24 micron
0.00 mm
median ox droplet radius
Combustion Stability
Parameter = Value Alt Value Description
cham sonicVel = 3539.1 ft/s 1078.7 m/s approximate gas sonic velocity in chamber
fdPinjFuelReqd = 0.107705 minimum required fuel dP/Pc
fdPinjOxReqd = 0.128634 minimum required oxidizer dP/Pc
tauFuel = 0.22278 ms fuel lag time (tau/tResid=0.459329)
tauOx = 0.273257 ms oxidizer lag time (tau/tResid=0.563402)
tResid = 0.4850 ms residual time in chamber
Acoustic Modes
Parameter = Value Alt Value Description
1L = 9825 Hz
80% of 1T = 17481 Hz no damping required here
=====> DESIGN = 17954 Hz <== DESIGN IS HERE
1T = 21851 Hz
2T = 36247 Hz
80% of 1R = 36378 Hz baffles-only work here
80% of 3T = 39886 Hz cavities-only work here
1R = 45473 Hz
3T = 49858 Hz baffles + cavities OR multi-tuned cavities
3T = 49858 Hz <== MAX FREQUENCY... KEEP Hz HERE OR BELOW
4T = 63106 Hz
1T1R = 63270 Hz
2T1R = 79584 Hz
2R = 83258 Hz
3T1R = 95120 Hz
1T2R = 101187 Hz