pynoddy Documentation
Release

Florian Wellmann, Sam Thiele

October 12, 2015

CONTENTS

pynoddy

1.1 Howdoesit work? o . . e e e e e
1.2 Installation of the pynoddy package
1.3 Installation of Noddy o v i it i e e e e e e e e e e e e e
1.4 Documentation oot i e e e e e e e e e
1.5 How to get started: tutorial notebooks e
1.6 Dependencies v v it e e e e e e e e e e e e e e
1.7 3-D Visualisation o o e e e e e e e e e e e e
1.8 LACENSE o e e e e e e e e e e e e e e e
1.9 Whatis Noddy? e
1.10 References i i i i e e e e e e e e e e e e e
pynoddy.noddy module

pynoddy.topology module

Simulation of a Noddy history and visualisation of output

4.1 Computethemodel. e e e e
4.2 Loading Noddy outputfiles
4.3 Plotting sections through themodel o L.
44 Exportmodelto VTK e
Change Noddy input file and recompute model

5.1 Getbasic information on the model L L
5.2 Change model cube size and recompute model
5.3 Estimating computation time for a high-resolutionmodel
5.4 Simple convergence study L L e e e e e e e e e e e e

Geological events in pynoddy: organisation and adpatiation

6.1 Loading events from a Noddy history e
6.2 Changing aspects of geological events e
6.3 Changing the order of geologicalevents
6.4 Determining the stratigraphic difference between twomodels

Creating a model from scratch

7.1 Defining a stratigraphy L e
7.2 Addafaultevent e e e e e e e e e e
7.3 Complete Model Set-up e
Read and Visualise Geophysical Potential-Fields

8.1 Read history file from Virtual Explorer
8.2 Visualise calculated geophysical fields Lo
8.3 Change history and compare gravity v o v v i i e e e e e e e e e e e
8.4 Figure withallresults e e e

11
11
12
12
12

15
16
16
17
20

23
23
24
25
26

29
29
30
32

9 Reproducible Experiments with pynoddy
9.1 Defining an exXperimentt i e e e e e e e e e e e e e e e
9.2 Loading an example model from the Atlas of Structural Geophysics

10 Gippsland Basin Uncertainty Study
10.1 The Gippsland Basin Model e e e
10.2 Generate randomised model realisations oo
10.3 Exporting results to VTK for visualisation

11 Sensitivity Analysis
11.1 Theory: local sensitivity analysis e
11.2 Defining the 1esponses ot it e e e e e e
11.3 Settingupthebasemodel
11.4 Define parameter uncertainties ot et e e e e e e e
11.5 Calculate total stratigraphic distance o . e e e
11.6 Function to modify parameters e e e e
11.7 Full sensitivity analysis e

12 Simulation of a Noddy history and analysis of its voxel topology
12.1 Computethemodel e
12.2 Loading Topology output files e

13 Pynoddy modules, classes and functions
13.1 Basic modules (low-level access) e e e e e e e e e
13.2 Modules for Kinematic experiments i it e

Python Module Index

Index

45
45
46

51
51
52
53

55
55
55
56
57
58
58
59

63
63
64

67
67
79

83

85

pynoddy Documentation, Release

Contents:

CONTENTS 1

pynoddy Documentation, Release

2 CONTENTS

CHAPTER
ONE

PYNODDY

pynoddy is a python package to write, change, and analyse kinematic geological modelling simulations per-
formed with Noddy (see below for more information on Noddy).

1.1 How does it work?

pynoddy provides methods to define, load, modify, and safe kinematic models for simulation with Noddy. In
addition, the package contains an extensive range for postprocessing of results. One main aspect of pynoddy
is that it enables the encapsulation of full scientific kinematic modelling experiments for full reproducibility of
results.

A successful installation of pynoddy requires two steps:
1. An installation of the python modules in the package pynoddy

2. The existance of an executable Noddy (.exe) program

1.2 Installation of the pynoddy package

Installation of the first part is straight-forward:
For the best (and most complete) installation, we suggest to clone the pynoddy repository on:
https://github.com/flohorovicic/pynoddy

To install pynoddy simply run:

python setup.py install

sufficient privileges are required (i.e. run in sudo with MacOSX/ Linux and set permissions on Windows)

The pynoddy packages themselves can also be installed directly from the Python Package Index (pypi.org) via
pip:

pip install pynoddy

A Windows installer is also available on the Pypi page:

https://pypi.python.org/pypi/pynoddy/

1.3 Installation of Noddy

Noddy is a command line program, written in C, that performs the kinematic simulation itself. The program
compilation is platform dependent, and therefore several ways for installation are possible (see below information
for specific platforms).

The C-code for Noddy itself is also part of the pynoddy repository.

https://github.com/flohorovicic/pynoddy
https://pypi.python.org/pypi/pynoddy/

pynoddy Documentation, Release

Windows: An executeable version of the command line program is available for download .
MacOSX: Compile from source (using gcc):

* go to directory pynoddy/noddy (contains source files)

* run ./adjust_for_MacOSX.sh

* run ./compile.sh
Linux: Compile from source (using gcc):

* go to directory pynoddy/noddy (contains source files)

* run ./compile.sh

1.4 Documentation

Documentation is available within the pynoddy repository (pynoddy/docs).
In addition, an up-to-date online html version of the documentation is also hosted on readthedocs:

http://pynoddy.readthedocs.org

1.5 How to get started: tutorial notebooks

The best way to get started with pynoddy is to have a look at the [Python notebooks in pynoddy/docs/notebooks.
The numbered notebooks are those that are part of the documentation, and a good point to get started.

The notebooks require an installed Jupyter notebook. More information here:
https://jupyter.org

The notebook can be installed via pip or conda.

1.6 Dependencies

pynoddy depends on several standard Python packages that should be shipped with any standard distribution
(and are easy to install, otherwise):

* numpy
* matplotlib
* pickle

The uncertainty analysis, quantification, and visualisation methods based on information theory are implemented
in the python package pygeoinfo. This package is available on github and part of the python package index. It is
automatically installed with the setup script provided with this package.

In addition, to export model results for full 3-D visualisation with VTK, the pyevtk package is used, available on
bitbucket:

https://bitbucket.org/pauloh/pyevtk/src/9c19e3a54d1e?at=v0.1.0

The package is automatically downloaded and installed when running python setup.py install.

4 Chapter 1. pynoddy

http://pynoddy.readthedocs.org
https://jupyter.org
https://bitbucket.org/pauloh/pyevtk/src/9c19e3a54d1e?at=v0.1.0

pynoddy Documentation, Release

1.7 3-D Visualisation

At this stage, we do not supply methods for 3-D visualisation in python (although this may change in the future).
However, we provide methods to export results into a VTK format. Exported files can then be viewed with the
highly functional VTK viewers, and several free options are available, for example:

e Paraview: http://www.paraview.org
* Visit: https://wci.llnl.gov/simulation/computer-codes/visit/

* Mayavi: http://docs.enthought.com/mayavi/mayavi/

1.8 License

pynoddy is free software (see license file included in the repository). Please attribute the work when you use it
and cite the publication if you use it in a scientific context - feel free to change and adapt it otherwise!

1.9 What is Noddy?

Noddy itself is a kinematic modelling program written by Mark Jessell [1][2] to simulate the effect of subsequent
geological events (folding, unconformities, faulting, etc.) on a primary sedimentary pile. A typical example would
be:

1. Create a sedimentary pile with defined thicknesses for multiple formations
2. Add a folding event (for example simple sinoidal folding, but complex methods are possible!)
3. Add an unconformity and, above it, a new stratigraphy

4. Finally, add a sequence of late faults affecting the entire system.

The result could look something like this:

The software runs on Windows only, but the source files (written in C) are available for download to generate a
command line version of the modelling step alone:

1.7. 3-D Visualisation 5

http://www.paraview.org
https://wci.llnl.gov/simulation/computer-codes/visit/
http://docs.enthought.com/mayavi/mayavi/

pynoddy Documentation, Release

https://github.com/flohorovicic/pynoddy

It has been tested and compiled on MacOSX, Windows and Linux.

1.10 References

[1] Mark W. Jessell. Noddy, an interactive map creation package. Unpublished MSc Thesis, University of Lon-
don. 1981. [2] Mark W. Jessell, Rick K. Valenta, Structural geophysics: Integrated structural and geophysical
modelling, In: Declan G. De Paor, Editor(s), Computer Methods in the Geosciences, Pergamon, 1996, Volume 15,
Pages 303-324, ISSN 1874-561X, ISBN 9780080424309, http://dx.doi.org/10.1016/S1874-561X(96)80027-7.

6 Chapter 1. pynoddy

https://github.com/flohorovicic/pynoddy
http://dx.doi.org/10.1016/S1874-561X(96)80027-7

CHAPTER
TWO

PYNODDY.NODDY MODULE

This module contains the Noddy code that is actually used to compute the kinematic models defined in .his files.

Note that this code must be compiled before pynoddy . compute_model will function correctly. It should
compile easily (plus or minus a few thousand warnings) using the compile. sh script. Windows users will first
need to install the GCC library (e.g. through MinGW), but otherwise the code requires no non-standard libraries.

Usage

The compiled noddy code can be run directly from the command line to a realisation of a model defined in a .his
file, or called through pynoddy . compute_model.

If the binary is called from the command line it takes the following arguments:

noddy [history_file] [output_name] [calculation_mode]

Where:
* history_file is the filepath (including the extension) of the .his file defining the model
* output_name is the name that will be assigned to the noddy output files

The mode argument determines the type of output that noddy generates, and can be any one of:

* BLOCK - calculates the lithology block model

L]

GEOPHYSICS - calculates the geophysical expression (magnetics and gravity) of the model

SURFACES - calculates surfaces representing the lithological contacts

BLOCK_GEOPHYS - calculates the lithology block model and its geophysical expression
BLOCK_SURFACES - calculates the lithology block model and lithological surfaces

* TOPOLOGY - calculates the lithology block model and associated topology information

ANOM_FROM_BLOCK - calculates the geophysical expression of an existing lithology block (out-
put_name.g12)

* ALL - calculates the block, geophysics, topology and surfaces
Python Wrapper

As mentioned earlier, the executable can also be accessed from python via pynoddy. This is performed by calling
the pynoddy . compute_model function, as defined below:

pynoddy . compute_model (history, output_name, **kwds)
Call Noddy and compute the history file

Arguments:
* history = string : filename of history file
* output_name = string : basename for output files
Optional Keywords:
 sim_type = ‘BLOCK’, ‘GEOPHYSICS’, ‘SURFACES’, ‘BLOCK_GEOPHYS’,

pynoddy Documentation, Release

‘TOPOLOGY’, ‘BLOCK_SURFACES’, ‘ALL’: type of Noddy simulation (default: ‘BLOCK”)

e program_name = string [name of program] (default: noddy.exe or noddy, both checked)

* verbose = bool: verbose mode, print out information for debugging (default = False)

Returns: -Returns any text outputted by the noddy executable.

It is worth noting here that by default pynoddy looks for the compiled Noddy executable in the pynoddy.noddy
directory. However this can be changed by updating the pynoddy.noddyPath variable to point to a new
executable file (without any extension, .exe is added automatically to the path on windows machines).

8 Chapter 2. pynoddy.noddy module

CHAPTER
THREE

PYNODDY.TOPOLOGY MODULE

This module contains the ¢ code that constructs topology networks from the voxset
of topology codes generated when noddy is called in TOPOLOGY mode (ie. using
pynoddy.compute_model (‘my_history.his’,’output_name’, sim_type=’ TOPOLOGY').

Note that this code must be compiled before pynoddy . compute_topology will function correctly. topol-
0gy.c can be compiled on a machine with gcc installed using the following:

Windows:

‘gcc -Wl,--stack,1073741824 -03 -w —-g -o topology.exe topology.c

Unix:

’gcc gcc -03 -o topology topology.c

These compilation commands are bundled with the ¢ code in compile.bat (for windows) and compile.sh (for unix
based systems).

Usage

The compiled topology code can be run directly from the command line to generate topology network files (.g23),
or called through pynoddy . compute_topology.

If the binary is called directly from the command line it takes the following arguments:

topology [rootname] [discrete volumes flag] [null volume threshold]

Where:
* rootname is the filepath (without any extension) of the noddy output files

e discrete volumes flagis | (default) if the application should ensure that topology nodes rep-
resent discrete volumes (and have not been divided by erosive events, such as an unconformity dividing
a folded unit into two parts)

e null volume threshold isthe minimum number of voxels a volume must comprise for it to be
considered a valid topological volume. This is useful if thin units are decomposing into small groups
of voxels within the model (ie. voxelisation artefacts), as they will have a small volume and hence can
(and should) be ignored.

Python Wrapper

As mentioned earlier, the topology executable can also be called via pynoddy, in much the same way as the noddy
executable is. This is performed by calling the pynoddy . compute_topology function, as defined below:

pynoddy . compute_topology (rootname, **kwds)
Call the topology executable to compute a models topology.

Arguments:
* rootname = string : rootname of the noddy model to calculate topology for

Optional Keywords:

pynoddy Documentation, Release

* ensure_discrete_volumes = True if topological units are broken down into separate, spatially
continuous volumes. Otherwise some topological units may represent two separate rock vol-
umes (eg. if a folded unit has been truncated by an unconformity). Default is True, though this
is a global variable (pynoddy.ensure_discrete_volumes) so it can be changed during runtime.

e null_volume_threshold = The smallest non-null volume. volumes smaller than this are
ignored by the topology algorithm (as they represent pixelation artefacts). The de-
fault is 20 voxels, though this is a global variable and can be changed with pyn-
oddy.null_volume_threshold.

Returns -Returns any text outputted by the topology executable, including errors.

It is worth noting here that default values for the ensure_discrete_volumes and
null_volume_threshold options can be set by changing the pynoddy.ensure_discrete_volumes
and pynoddy .null_volume_threshold variables.

10 Chapter 3. pynoddy.topology module

CHAPTER
FOUR

SIMULATION OF A NODDY HISTORY AND VISUALISATION OF
OUTPUT

This example shows how the module pynoddy.history can be used to compute the model, and how simple visuali-
sations can be generated with pynoddy.output.

from IPython.core.display import HTML
css_file = 'pynoddy.css'
HTML (open (css_file, "r").read())

$matplotlib inline

Basic settings
import sys, os
import subprocess

Now import pynoddy
import pynoddy

reload (pynoddy)

import pynoddy.output
import pynoddy.history

determine path of repository to set paths corretly below
repo_path = os.path.realpath('../..")

4.1 Compute the model

The simplest way to perform the Noddy simulation through Python is simply to call the executable. One way that
should be fairly platform independent is to use Python’s own subprocess module:

Change to sandbox directory to store results
os.chdir (os.path. join (repo_path, 'sandbox'))

Path to exmaple directory in this repository
example_directory = os.path.join(repo_path, 'examples")
Compute noddy model for history file

history_file = 'simple_two_faults.his'
history = os.path.join(example_directory, history_file)
output_name = 'noddy_out'

call Noddy

NOTE: Make sure that the noddy executable is accessible in the system!!

print subprocess.Popen (['noddy.exe', history, output_name, 'BLOCK'],
shell=False, stderr=subprocess.PIPE,
stdout=subprocess.PIPE) .stdout.read()

#

For convenience, the model computation is wrapped into a Python function in pynoddy:

11

pynoddy Documentation, Release

‘pynoddy.compute_model(history, output_name)

l..

Note: The Noddy call from Python is, to date, calling Noddy through the subprocess function. In a future im-
plementation, this call could be substituted with a full wrapper for the C-functions written in Python. Therefore,
using the member function compute_model is not only easier, but also the more “future-proof” way to compute
the Noddy model.

4.2 Loading Noddy output files

Noddy simulations produce a variety of different output files, depending on the type of simulation. The basic
output is the geological model. Additional output files can contain geophysical responses, etc.

Loading the output files is simplified with a class class container that reads all relevant information and provides
simple methods for plotting, model analysis, and export. To load the output information into a Python object:

N1 = pynoddy.output.NoddyOutput (output_name)

The object contains the calculated geology blocks and some additional information on grid spacing, model extent,
etc. For example:

(N1l.extent_x, Nl.nx, Nl.delx))

print ("The model has an extent of ¢.0f m in x-direction, with $%d cells of width $%.0f

’The model has an extent of 12400 m in x-direction, with 124 cells of width 100 m

4.3 Plotting sections through the model

The NoddyOutput class has some basic methods for the visualisation of the generated models. To plot sections
through the model:

Nl.plot_section('y', figsize = (5,3))

Section in y-direction, pos=47

0 20 40 &0 80 100 120

Fig. 4.1: png

4.4 Export model to VTK

A simple possibility to visualise the modeled results in 3-D is to export the model to a VTK file and then to
visualise it with a VTK viewer, for example Paraview. To export the model, simply use:

12 Chapter 4. Simulation of a Noddy history and visualisation of output

o

pynoddy Documentation, Release

| Nl.export_to_vtk()

The exported VTK file can be visualised in any VTK viewer, for example in the (free) viewer Paraview
(www.paraview.org). An example visualisation of the model in 3-D is presented in the figure below.

Fig. 4.2: 3-D Visualisation generated with Paraview (top layer transparent)

4.4. Export model to VTK 13

pynoddy Documentation, Release

14 Chapter 4. Simulation of a Noddy history and visualisation of output

CHAPTER
FIVE

CHANGE NODDY INPUT FILE AND RECOMPUTE MODEL

In this section, we will briefly present possibilities to access the properties defined in the Noddy history input file
and show how simple adjustments can be performed, for example changing the cube size to obtain a model with a
higher resolution.

Also outlined here is the way that events are stored in the history file as single objects. For more information on
accessing and changing the events themselves, please be patient until we get to the next section.

from IPython.core.display import HTML
css_file = 'pynoddy.css'
HTML (open(css_file, "r").read())

’cd ../docs/notebooks/

’/Users/flow/qit/pynoddy/docs/notebooks

$matplotlib inline

import sys, os

import matplotlib.pyplot as plt
import numpy as np

adjust some settings for matplotlib
from matplotlib import rcParams

print rcParams

rcParams['font.size'] = 15
determine path of repository to set paths corretly below
repo_path = os.path.realpath('../..")

import pynoddy
import pynoddy.history
import pynoddy.output

First step: load the history file into a Python object:

Change to sandbox directory to store results
os.chdir (os.path. join (repo_path, 'sandbox'))

Path to exmaple directory in this repository
example_directory = os.path.join(repo_path, 'examples')
Compute noddy model for history file

history_file = 'simple_two_faults.his'
history = os.path.join(example_directory, history_file)
output_name = 'noddy_out'

H1 = pynoddy.history.NoddyHistory (history)

Technical note: the NoddyHistory class can be accessed on the level of pynoddy (as it is imported in the
__init__ .py module) with the shortcut:

H1 = pynoddy.NoddyHistory (history)

I am using the long version pynoddy.history.NoddyHistory here to ensure that the correct package is
loaded with the reload () function. If you don’t make changes to any of the pynoddy files, this is not required.
So for any practical cases, the shortcuts are absolutely fine!

15

pynoddy Documentation, Release

5.1 Get basic information on the model

The history file contains the entire information on the Noddy model. Some information can be accessed through
the NoddyHistory object (and more will be added soon!), for example the total number of events:

o

’print("The history contains events" % Hl.n_events)

’The history contains 3 events

Events are implemented as objects, the classes are defined in H1 . events. All events are accessible in a list on
the level of the history object:

Hl.events

{l: <pynoddy.events.Stratigraphy at 0x103ac2a50>,
2: <pynoddy.events.Fault at 0x103ac2a90>,
3: <pynoddy.events.Fault at 0x103ac2ad0>}

The properties of an event are stored in the event objects themselves. To date, only a subset of the properties
(deemed as relevant for the purpose of pynoddy so far) are parsed. The .his file contains a lot more information!
If access to this information is required, adjustments in pynoddy.events have to be made.

For example, the properties of a fault object are:

Hl.events[2] .properties
print Hl.events[5].properties.keys()

{'Amplitude': 2000.0,
'Blue': 254.0,

'Color Name': 'Custom Colour 8',
'Cyl Index': 0.0,

'Dip': 60.0,

'Dip Direction': 90.0,
'Geometry': 'Translation',
'Green': 0.0,

'Movement': 'Hanging Wall',

'Pitch': 90.0,
'Profile Pitch': 90.0,
'Radius': 1000.0,
'Red': 0.0,
'Rotation': 30.0,
'Slip': 1000.0,
'X': 5500.0,
'XAxis': 2000.0,
'Y': 3968.0,
'YAxis': 2000.0,
'Zz': 0.0,
'ZAxis': 2000.0}

5.2 Change model cube size and recompute model

The Noddy model itself is, once computed, a continuous model in 3-D space. However, for most visualisations
and further calculations (e.g. geophysics), a discretised version is suitable. The discretisation (or block size) can
be adapted in the history file. The according pynoddy function is change_cube_size.

A simple example to change the cube size and write a new history file:

We will first recompute the model and store results in an output file for comparis
NH1 = pynoddy.history.NoddyHistory (history)

pynoddy.compute_model (history, output_name)

NO1l = pynoddy.output.NoddyOutput (output_name)

pn

16 Chapter 5. Change Noddy input file and recompute model

pynoddy Documentation, Release

Now: change cubsize, write to new file and recompute

NH1.change_cube_size (50)

Save model to a new history file and recompute (Note: may take a while to compute |
new_history = "fault_model_changed_cubesize.his"

new_output_name = "noddy_out_changed_cube"

NH1.write_history(new_history)

pynoddy.compute_model (new_history, new_output_name)

NO2 = pynoddy.output.NoddyOutput (new_output_name)

The different cell sizes are also represented in the output files:

print ("Model 1 contains a total of %7d cells with a blocksize $.0f m" %
(NO1l.n_total, NOl.delx))
print ("Model 2 contains a total of ¢7d cells with a blocksize $.0f m" %

(NO2.n_total, NO2.delx))

Model 1 contains a total of 582800 cells with a blocksize 100 m
Model 2 contains a total of 4662400 cells with a blocksize 50 m

We can compare the effect of the different model discretisations in section plots, created with the plot_section
method described before. Let’s get a bit more fancy here and use the functionality to pass axes to the plot_section
method, and to create one figure as direct comparison:

create basic figure layout

fig = plt.figure(figsize = (15,5))

axl = fig.add_subplot (121)

ax2 = fig.add_subplot (122)

NOl.plot_section('y', position=0, ax = axl, colorbar=False, title="Low resolution")
NO2.plot_section('y', position=1, ax = ax2, colorbar=False, title="High resolution")

plt.show ()

Low resolution . . . High resolution

0 20 40 60 80 100 120 0 50 100 150 200

Fig. 5.1: png

Note: the following two subsections contain some slighly advanced examples on how to use the possibility to
adjust cell sizes through scripts directly to autmote processes that are infeasible using the GUI version of Noddy
- as a ‘peek preview’ of the automation for uncertainty estimation that follows in a later section. Feel free to skip
those two sections if you are only interested in the basic features so far.

5.3 Estimating computation time for a high-resolution model

You surely realised (if you ran these examples in an actual interactive ipython notebook) that the computation of
the high-resolution model takes siginificantly longer than the low-resolution model. In a practical case, this can
be very important.

We use here simply the time () function to evaulate the simualtion time.
This is not the best possible way to do it, but probably the simplest.
import time

start_time = time.time ()

5.3. Estimating computation time for a high-resolution model 17

ow)

pynoddy Documentation, Release

pynoddy.compute_model (history, output_name)

end_time = time.time ()

print ("Simulation time for low-resolution model: seconds" % (end_time - start_time))
start_time = time.time ()

pynoddy.compute_model (new_history, new_output_name)

end_time = time.time ()

print ("Simulation time for high-resolution model: seconds" % (end_time - start|/time))
Simulation time for low-resolution model: 0.73 seconds

Simulation time for high-resolution model: 5.78 seconds

For an estimation of required computing time for a given discretisation, let’s evaulate the time for a couple of
steps, plot, and extrapolate:

perform computation for a range of cube sizes

cube_sizes = np.arange (200,49,-5)

times = []

NH1 = pynoddy.history.NoddyHistory (history)
tmp_history = "tmp_history"

tmp_output = "tmp_output"

for cube_size in cube_sizes:
NH1.change_cube_size (cube_size)
NH1.write_history (tmp_history)
start_time = time.time ()
pynoddy.compute_model (tmp_history, tmp_output)
end_time = time.time ()
times.append(end_time - start_time)

times = np.array(times)

create plot

fig = plt.figure(figsize=(18,4))
axl = fig.add_subplot (131)

ax2 = fig.add_subplot (132)

ax3 = fig.add_subplot (133)

axl.plot (cube_sizes, np.array(times), 'ro-"')
axl.set_xlabel ('cubesize [m]")
axl.set_ylabel ('time [s]')
axl.set_title('Computation time')
axl.set_xlim(axl.get_xlim() [::-1])

ax2.plot (cube_sizes, timesxx(1/3.), 'bo-")
ax2.set_xlabel ('cubesize [m]")
ax2.set_ylabel (' (time [s])xx(1/3)")
ax2.set_title('Computation time (cuberoot)"')
ax2.set_xlim(ax2.get_xlim() [::-1])

ax3.semilogy (cube_sizes, times, 'go-'")
ax3.set_xlabel ('cubesize [m]")
ax3.set_ylabel ('time [s]')
ax3.set_title('Computation time (y-log)"')
ax3.set_xlim(ax3.get_xlim() [::-1])

(200.0, 40.0) ‘

It is actually quite interesting that the computation time does not scale with cubesize to the power of three (as
could be expected, given that we have a mesh in three dimensions). Or am I missing something?

Anyway, just because we can: let’s assume that the scaling is somehow exponential and try to fit a model for a
time prediction. Given the last plot, it looks like we could fit a logarithmic model with probably an additional

18 Chapter 5. Change Noddy input file and recompute model

pynoddy Documentation, Release

Computation time (cuberoot)

Computation time (y-log)

6 Computation time 2.0 10t
50 1.8 .
= 1.6
4 14]
) ¥)
v 3 =12 {a 10°
£ = =
=5 glﬂ =
.‘f £0.8
1
- 0.6
-
leseseseseneess? 04 107
00 180 160 140 120 100 80 60 40 00 180 160 140 120 100 80 60 40 200 180 160 140 120 100 80 60 40
cubesize [m] cubesize [m] cubesize [m]
Fig. 5.2: png

exponent (as the line is obviously not straight), so something like:
f(x) = a+ (blogyo(x))™*

Let’s try to fit the curve with scipy.optimize.curve_fit:

perform curve fitting with scipy.optimize
import scipy.optimize
define function to be fit
def func(x,a,b,c):
return a + (b*np.logl0(x)) ** (—c)

popt, pcov = scipy.optimize.curve_fit (func, cube_sizes, np.array(times), p0O = [-1, O
popt
array ([-0.05618538, 0.50990774, 12.45183398])

Interesting, it looks like Noody scales with something like:

f(x) = (0.5log;p(x)) "

Note: if you understand more about computational complexity than me, it might not be that interesting to you at
all - if this is the case, please contact me and tell me why this result could be expected...

a,b,c = popt

cube_range = np.arange (200,20,-1)
times_eval = func(cube_range, a,
fig = plt.figure()

ax = fig.add_subplot (111)
ax.semilogy (cube_range, times_eval,

b, ¢)

lil)

ax.semilogy (cube_sizes, times, 'ko')
reverse x-axis
ax.set_xlim(ax.get_xlim() [::-1])

(200.0, 20.0)

Not too bad... let’s evaluate the time for a cube size of 40 m:

cube_size = 40 # m
time_est = func (cube_size, b,
print ("Estimated time for a cube size of m:

a, c)

seconds"

% (cube_size,

time_est)

Estimated time for a cube size of 40 m: 12.4 seconds

Now let’s check the actual simulation time:

NH1.change_cube_size (cube_size)
NH1.write_history (tmp_history)
start_time = time.time ()

5.3. Estimating computation time for a high-resolution model

19

pynoddy Documentation, Release

10° - - - - - - - -

102
10°

10°

101

-2 ; ; ; ; ; ; ; ;
IGEDU 180 160 140 120 100 80 60 40 20

Fig. 5.3: png

pynoddy.compute_model (tmp_history, tmp_output)

end_time = time.time ()
time_comp = end_time - start_time
print ("Actual computation time for a cube size of m: seconds" % (cube_size,

Lime_comp))

Actual computation time for a cube size of 40 m: 11.6 seconds

Not too bad, probably in the range of the inherent variability... and if we check it in the plot:

fig = plt.figure()

ax = fig.add_subplot (111)

ax.semilogy (cube_range, times_eval, '-")
ax.semilogy (cube_sizes, times, 'ko')
ax.semilogy (cube_size, time_comp, 'ro')
reverse x—axis
ax.set_xlim(ax.get_xlim() [::-1])

(200.0, 20.0)

Anyway, the point of this excercise was not a precise evaluation of Noddy’s computational complexity, but to
provide a simple means of evaluating computation time for a high resolution model, using the flexibility of writing
simple scripts using pynoddy, and a couple of additional python modules.

For a realistic case, it should, of course, be sufficient to determine the time based on a lot less computed points. If
you like, test it with your favourite model and tell me if it proved useful (or not)!

5.4 Simple convergence study

So: why would we want to run a high-resolution model, anyway? Well, of course, it produces nicer pictures - but
on a scientific level, that’s completely irrelevant (haha, not true - so nice if it would be...).

Anyway, if we want to use the model in a scientific study, for example to evaluate volume of specific units, or to

20 Chapter 5. Change Noddy input file and recompute model

pynoddy Documentation, Release

10° —
107
10*
10°

101

102

Fig. 5.4: png

200 180 160 140 120 100 80 60 40 20

estimate the geological topology (Mark is working on this topic with some cool ideas - example to be implemented
here, “soon”), we want to know if the resolution of the model is actually high enough to produce meaningful

results.

As a simple example of the evaluation of model resolution, we will here inlcude a volume convergence study,
i.e. we will estimate at which level of increasing model resolution the estimated block volumes do not change

anymore.

The entire procedure is very similar to the computational time evaluation above, only that we now also analyse
the output and determine the rock volumes of each defined geological unit:

perform computation for a range of cube sizes

reload (pynoddy.output)

cube_sizes = np.arange (200,49,-5)

all_volumes = []

N_tmp = pynoddy.history.NoddyHistory (history)

tmp_history = "tmp_history"

tmp_output = "tmp_output"

for cube_size in cube_sizes:
adjust cube size
N_tmp.change_cube_size (cube_size)
N_tmp.write_history (tmp_history)
pynoddy.compute_model (tmp_history, tmp_output)
open simulated model and determine volumes
O_tmp = pynoddy.output.NoddyOutput (tmp_output)
O_tmp.determine_unit_volumes ()
all _volumes.append (O_tmp.unit_volumes)

all_volumes = np.array(all_volumes)
fig = plt.figure(figsize=(16,4))
axl = fig.add_subplot (121)

ax2 = fig.add_subplot (122)

separate into two plots for better visibility:
for i in range (np.shape(all_volumes) [1]):

5.4. Simple convergence study

21

pynoddy Documentation, Release

if 1 < 4:
axl.plot (cube_sizes, all_volumes([:,1i], 'o-', label='unit "%1)
else:
ax2.plot (cube_sizes, all_volumes[:,i], 'o-', label='unit %1
axl.legend(loc=2)
ax2.legend(loc=2)
reverse axes
axl.set_xlim(axl.get_xlim() [::-117)
ax2.set_xlim(ax2.get_xlim() [::-1])
axl.set_xlabel ("Block size [m]")
axl.set_ylabel ("Total unit volume [mxx3]")
ax2.set_xlabel ("Block size [m]")
ax2.set_ylabel ("Total unit volume [mx*3]")
<matplotlib.text.Text at 0x107eb7250>
lell 16 lell

— 1.2' *-— i —_ *-— i
& un!tO W & 14 un!t4 .. A et et
E *—s unit1l = [e—= unit>p, oo °¢ &
= 1.0} . =12} . .
w e—e unit2 @ e—e unit 6
E . E 1.0} .
2 pgl|®= unit3 = == unit?
(= o
> > 0.8f
= =
5 0.6 So06!l 3
El > S 0.6
5 \:\y S 5400
C0.4feddy o UAarfevy

200 180 160 140 120 100 80 60 40 0306 180 160 140 120 100 80 60 40

Block size [m] Block size [m]
Fig. 5.5: png

It looks like the volumes would start to converge from about a block size of 100 m. The example model is pretty
small and simple, probably not the best example for this study. Try it out with your own, highly complex, favourite

pet model :-)

22

Chapter 5. Change Noddy input file and recompute model

CHAPTER
SIX

GEOLOGICAL EVENTS IN PYNODDY: ORGANISATION AND
ADPATIATION

We will here describe how the single geological events of a Noddy history are organised within pynoddy. We will
then evaluate in some more detail how aspects of events can be adapted and their effect evaluated.

from IPython.core.display import HTML
css_file = 'pynoddy.css'
HTML (open (css_file, "r").read())

$matplotlib inline

6.1 Loading events from a Noddy history

In the current set-up of pynoddy, we always start with a pre-defined Noddy history loaded from a file, and then
change aspects of the history and the single events. The first step is therefore to load the history file and to extract
the single geological events. This is done automatically as default when loading the history file into the History
object:

import sys, os

import matplotlib.pyplot as plt

adjust some settings for matplotlib

from matplotlib import rcParams

print rcParams

rcParams|['font.size'] = 15

determine path of repository to set paths corretly below
repo_path os.path.realpath('../..")

import pynoddy

import pynoddy.history
import pynoddy.events
import pynoddy.output
reload (pynoddy)

<module 'pynoddy' from '/Users/flow/git/pynoddy/pynoddy/__init__ .pyc'>

Change to sandbox directory to store results
os.chdir (os.path. join (repo_path, 'sandbox'))

Path to exmaple directory in this repository

example_directory = os.path.join (repo_path, 'examples')
Compute noddy model for history file

history = 'simple_two_faults.his'

history_ori = os.path.join (example_directory, history)
output_name = 'noddy_out'

reload (pynoddy.history)
reload (pynoddy.events)
H1 = pynoddy.history.NoddyHistory (history_ori)

23

pynoddy Documentation, Release

Before we do anything else, let's actually define the cube size here to

adjust the resolution for all subsequent examples

H1l.change_cube_size (100)

compute model - note: not strictly required, here just to ensure changed cube size
Hl.write_history (history)

pynoddy.compute_model (history, output_name)

l..

Events are stored in the object dictionary “events” (who would have thought), where the key corresponds to the
position in the timeline:

Hl.events

{1l: <pynoddy.events.Stratigraphy at 0x10cf2b410>,
2: <pynoddy.events.Fault at 0x10cf2b450>,
3: <pynoddy.events.Fault at 0x10cf2b490>}

We can see here that three events are defined in the history. Events are organised as objects themselves, containing
all the relevant properties and information about the events. For example, the second fault event is defined as:

Hl.events[3].properties

{'Amplitude': 2000.0,
'Blue': 0.0,

'Color Name': 'Custom Colour 5',
'Cyl Index': 0.0,

'Dip': 60.0,

'Dip Direction': 270.0,
'Geometry': 'Translation',
'Green': 0.0,

'Movement': 'Hanging Wall',

'Pitch': 90.0,
'Profile Pitch': 90.0,
'Radius': 1000.0,
'Red': 254.0,
'Rotation': 30.0,
'Slip': 1000.0,
'X': 5500.0,
'XAxis': 2000.0,
'y': 7000.0,
'YAxis': 2000.0,
'z': 5000.0,
'ZAxis': 2000.0}

6.2 Changing aspects of geological events

So what we now want to do, of course, is to change aspects of these events and to evaluate the effect on the
resulting geological model. Parameters can directly be updated in the properties dictionary:

H1 = pynoddy.history.NoddyHistory (history_ori)
get the original dip of the fault
dip_ori = Hl.events[3].properties['Dip']

add 10 degrees to dip
add_dip = -10
dip_new = dip_ori + add_dip

and assign back to properties dictionary:
Hl.events[3] .properties['Dip'] = dip_new
Hl.events[2].properties['Dip'] = dip_newl

24 Chapter 6. Geological events in pynoddy: organisation and adpatiation

pynoddy Documentation, Release

new_history = "dip_changed"

new_output = "dip_changed_out"
Hl.write_history (new_history)
pynoddy.compute_model (new_history, new_output)
load output from both models

NO1 pynoddy.output .NoddyOutput (output_name)
NO2 pynoddy.output .NoddyOutput (new_output)

create basic figure layout

fig = plt.figure(figsize = (15,5))
axl = fig.add_subplot (121)

ax2 = fig.add_subplot (122)

NOl.plot_section('y', position=0, ax = axl, colorbar=False, title="Dip = 2.0f" % dip]ori,
NO2.plot_section('y', position=1, ax = ax2, colorbar=False, title="Dip = 2.0f" % dip|new)
plt.show ()
Dip = 60 Dip = 50
40 40

0 20 40 60 80 100 120 0 20 40 60 80 100 120

Fig. 6.1: png

6.3 Changing the order of geological events

The geological history is parameterised as single events in a timeline. Changing the order of events can be
performed with two basic methods:

1. Swapping two events with a simple command
2. Adjusting the entire timeline with a complete remapping of events

The first method is probably the most useful to test how a simple change in the order of events will effect the final
geological model. We will use it here with our example to test how the model would change if the timing of the
faults is swapped.

The method to swap two geological events is defined on the level of the history object:

H1 = pynoddy.history.NoddyHistory (history_ori)

The names of the two fault events defined in the history file are:
print Hl.events[2].name
print Hl.events[3].name

Fault2
Faultl

We now swap the position of two events in the kinematic history. For this purpose, a high-level function can
directly be used:

Now: swap the events:
H1l.swap_events (2, 3)

And let's check if this is correctly relfected in the events order now:
print Hl.events[2].name
print Hl.events[3].name

6.3. Changing the order of geological events 25

savefig

pynoddy Documentation, Release

Faultl
Fault2

Now let’s create a new history file and evaluate the effect of the changed order in a cross section view:

new_history = "faults_changed_order.his"
new_output = "faults_out"

Hl.write_history (new_history)
pynoddy.compute_model (new_history, new_output)

[}

reload (pynoddy.output)

Load and compare both models

NO1l = pynoddy.output.NoddyOutput (output_name)
NO2 = pynoddy.output.NoddyOutput (new_output)
create basic figure layout

fig = plt.figure(figsize = (15,5))

axl = fig.add_subplot (121
ax2 = fig.add_subplot (122
NOl.plot_section('y', ax axl, colorbar=False, title="Model 1")
NO2.plot_section('y', ax = ax2, colorbar=False, title="Model 2")

plt.show ()

Mo;lell Moqelz

30
20
10

Fig. 6.2: png

6.4 Determining the stratigraphic difference between two models

Just as another quick example of a possible application of pynoddy to evaluate aspects that are not simply possible
with, for example, the GUI version of Noddy itself. In the last example with the changed order of the faults, we
might be interested to determine where in space this change had an effect. We can test this quite simply using the
NoddyOutput objects.

The geology data is stored in the NoddyOutput .block attribute. To evaluate the difference between two
models, we can therefore simply compute:

diff = (NO2.block - NOl.block)

And create a simple visualisation of the difference in a slice plot with:

fig = plt.figure(figsize = (5,3))

ax = fig.add_subplot (111)

ax.imshow(diff[:,10,:].transpose(), interpolation='nearest',
cmap = "RdBu", origin = 'lower left')

’<matplotlib.image.AxesImage at 0x10cf3bell>

(Adding a meaningful title and axis labels to the plot is left to the reader as simple excercise :-) Future versions of
pynoddy might provide an automatic implementation for this step...)

26 Chapter 6. Geological events in pynoddy: organisation and adpatiation

pynoddy Documentation, Release

=

0| \(

10
0 . . .

0 20 40 60

Fig. 6.3: png

80 100 120

Again, we may want to visualise results in 3-D. We can use the export_to_vtk-function as before, but now
assing the data array to be exported as the calulcated differnce field:

NO1l.export_to_vtk(vtk_filename = "model diff", data = diff)

A 3-D view of the difference plot is presented below.

s |l

T,
ey | iy,

4 e, "

Ly
) S,

Stratigraphi ID Difference

[II]IHI_|.IIHOMJI|.IHIIIIII
-2 2

Fig. 6.4: 3-D visualisation of stratigraphic id difference

6.4. Determining the stratigraphic difference between two models 27

pynoddy Documentation, Release

28 Chapter 6. Geological events in pynoddy: organisation and adpatiation

CHAPTER
SEVEN

CREATING A MODEL FROM SCRATCH

We describe here how to generate a simple history file for computation with Noddy using the functionality of
pynoddy. If possible, it is advisable to generate the history files with the Windows GUI for Noddy as this method
provides, to date, a simpler and more complete interface to the entire functionality.

For completeness, pynoddy contains the functionality to generate simple models, for example to automate the
model construction process, or to enable the model construction for users who are not running Windows. Some
simple examlpes are shown in the following.

from matplotlib import rc_params

from IPython.core.display import HTML
css_file = 'pynoddy.css'
HTML (open(css_file, "r").read())

import sys, os

import matplotlib.pyplot as plt

adjust some settings for matplotlib

from matplotlib import rcParams

print rcParams

rcParams|['font.size'] = 15

determine path of repository to set paths corretly below
repo_path = os.path.realpath('../..")

import pynoddy.history

$matplotlib inline

rcParams.update ({ 'font.size': 20})

7.1 Defining a stratigraphy

We start with the definition of a (base) stratigraphy for the model.

Combined: model generation and output vis to test:
history = "simple_model.his"

output_name = "simple_out"

reload (pynoddy.history)

reload (pynoddy.events)

create pynoddy object
nm = pynoddy.history.NoddyHistory ()
add stratigraphy
strati_options = {'num_ layers' : 8,
'layer_names' : ['layer 1', 'layer 2', 'layer 3',
'layer 4', 'layer 5', 'layer 6',
'layer 7', 'layer 8'],
'layer_thickness' : [1500, 500, 500, 500, 500, 500, 500, 50071}
nm.add_event ('stratigraphy', strati_options)

29

pynoddy Documentation, Release

nm.write_history (history)

Compute the model
reload (pynoddy)
pynoddy.compute_model (history, output_name)

Plot output

import pynoddy.output

reload (pynoddy.output)

nout = pynoddy.output.NoddyOutput (output_name)

nout .plot_section('y', layer_labels = strati_options|['layer_names'][::-1],
colorbar = True, title="",
savefig = False, fig_filename = "ex0l_ strati.eps")

0 50 100 150
X

Fig. 7.1: png

7.2 Add a fault event

As a next step, let’s now add the faults to the model.

reload (pynoddy.history)

reload (pynoddy.events)

nm = pynoddy.history.NoddyHistory ()

add stratigraphy

strati_options = {'num_layers' : 8§,
'layer_names' : ['layer 1', 'layer 2', 'layer 3', 'layer 4', 'layel
'layer_thickness' : [1500, 500, 500, 500, 500, 500, 500, 50071}

nm.add_event ('stratigraphy', strati_options)

The following options define the fault geometry:

fault_options = {'name' : 'Fault_E',

30 Chapter 7. Creating a model from scratch

5",

'layer

pynoddy Documentation, Release

'pos' : (6000, 0, 5000),
'dip_dir' : 270,

'dip' : 60,

'slip' : 1000}

nm.add_event ('fault', fault_options)

‘nm.events

{1l: <pynoddy.events.Stratigraphy at 0x1073£fc590>,
2: <pynoddy.events.Fault at 0x107565f£d0>}

nm.write_history (history)

Compute the model
pynoddy.compute_model (history, output_name)

Plot output

reload (pynoddy.output)
nout = pynoddy.output.NoddyOutput (output_name)
nout.plot_section('y', layer_labels = strati_options['layer names'][::-1],
colorbar = True, title =

savefig = False, fig_filename = "ex01l_fault_E.eps")

nn
’

0 50 100 150
X

Fig. 7.2: png

The following options define the fault geometry:

fault_options = {'name' : 'Fault_1'",
'pos' : (5500, 3500, 0),
'dip_dir' : 270,
'dip' : 60,
'slip' : 1000}

nm.add_event ('fault', fault_options)

7.2. Add a fault event

31

pynoddy Documentation, Release

‘nm.write_history(history)

Compute the model
pynoddy.compute_model (history, output_name)

Plot output

reload (pynoddy.output)

nout = pynoddy.output.NoddyOutput (output_name)
nout.plot_section('y', layer_labels = strati_options['layer names'][::-1], colorbar =

Section in y-direction, pos=70

0 50 100 150
X

Fig. 7.3: png

‘nml = pynoddy.history.NoddyHistory (history)

‘nml.get_extent() ‘

[(10000.0, 7000.0, 5000.0) |

7.3 Complete Model Set-up

And here now, combining all the previous steps, the entire model set-up with base stratigraphy and two faults:

reload (pynoddy.history)
reload (pynoddy.events)
nm = pynoddy.history.NoddyHistory ()
add stratigraphy
strati_options = {'num_layers' : 8,
'layer_names' : ['layer 1', 'layer 2', 'layer 3',
'layer 4', 'layer 5', 'layer 6',
'layer 7', 'layer 8'],
'layer_thickness' : [1500, 500, 500, 500, 500,
500, 500, 5001}
nm.add_event ('stratigraphy', strati_options)

32 Chapter 7. Creating a model from scratch

True)

pynoddy Documentation, Release

The following options define the fault geometry:

fault_options = {'name' : 'Fault_W',
'pos' : (4000, 3500, 5000),
'dip_dir' : 90,
'dip' : 60,
'slip' : 1000}

nm.add_event ('fault', fault_options)
The following options define the fault geometry:

fault_options = {'name' : 'Fault_E',
'pos' : (6000, 3500, 5000),
'dip_dir' : 270,
'dip' : 60,
'slip' : 1000}

nm.add_event ('fault', fault_options)
nm.write_history (history)

Change cube size

nml = pynoddy.history.NoddyHistory (history)
nml.change_cube_size (50)

nml.write_history (history)

Compute the model
pynoddy.compute_model (history, output_name)

‘.v

Plot output
reload (pynoddy.output)
nout = pynoddy.output.NoddyOutput (output_name)

nout.plot_section('y', layer_labels = strati_options['layer names'][::-1],
colorbar = True, title="",
savefig = True, fig_filename = "ex01l_faults_combined.eps",
cmap = 'Y1OrRd') # note: Y1OrRd colourmap should be suitable for clorblindness
|
X
Fig. 7.4: png
7.3. Complete Model Set-up 33

pynoddy Documentation, Release

34 Chapter 7. Creating a model from scratch

CHAPTER
EIGHT

READ AND VISUALISE GEOPHYSICAL POTENTIAL-FIELDS

Geophysical potential fields (gravity and magnetics) can be calculated directly from the generated kinematic
model. A wide range of options also exists to consider effects of geological events on the relevant rock prop-
erties. We will here use pynoddy to simply and quickly test the effect of changing geological structures on the
calculated geophysical response.

$matplotlib inline

import sys, os

import matplotlib.pyplot as plt

adjust some settings for matplotlib
from matplotlib import rcParams

print rcParams

rcParams|['font.size'] = 15
determine path of repository to set paths corretly below
repo_path = os.path.realpath('../..")

import pynoddy

import matplotlib.pyplot as plt
import numpy as np

from IPython.core.display import HTML
css_file = 'pynoddy.css'
HTML (open (css_file, "r").read())

8.1 Read history file from Virtual Explorer

Many Noddy models are available on the site of the Virtual Explorer in the Structural Geophysics Atlas. We will
download and use one of these models here as the base model.

We start with the history file of a “Fold and Thrust Belt” setting stored on:
http://tectonique.net/asg/ch3/ch3_5/his/fold_thrust.his

The file can directly be downloaded and opened with pynoddy:

import pynoddy.history
reload (pynoddy.history)

his = pynoddy.history.NoddyHistory (url = \
"http://tectonique.net/asg/ch3/ch3_5/his/fold_thrust.his")

his.determine_model_stratigraphy ()

his.change_cube_size (50)

Save to (local) file to compute and visualise model
history_name = "fold thrust.his"

35

pynoddy Documentation, Release

his.write_history (history_name)
his = pynoddy.history.NoddyHistory (history_name)

output = "fold_thrust_out"
pynoddy.compute_model (history_name, output)

import pynoddy.output
load and visualise model
h_out = pynoddy.output.NoddyOutput (output)

his.determine_model_stratigraphy ()
h_out.plot_section('x"',
layer_labels = his.model_stratigraphy,

colorbar_orientation = 'horizontal',
colorbar=False,
title = "',
savefig=True, fig_filename = 'fold thrust_NS_section.eps’,
cmap = 'YI1OrRd')

0 50 100 150 200
y

Fig. 8.1: png

h_out.plot_section('y', layer_labels = his.model_stratigraphy,

colorbar_orientation = 'horizontal', title = '', cmap = 'Y1OrRd',
savefig=True, fig_filename = 'fold thrust_EW_section.eps’,
ve=1.5)

50

40

~n 30
20

10

0

0 50 100 150 200 250 300 350
X
Fig. 8.2: png
h_out.export_to_vtk (vtk_filename = "fold_thrust")

36 Chapter 8. Read and Visualise Geophysical Potential-Fields

pynoddy Documentation, Release

8.2 Visualise calculated geophysical fields

The first step is to recompute the model with the generation of the geophysical responses

|pynoddy.compute_model(history_name, output, sim_type = 'GEOPHYSICS'")

|lv

We now get two files for the caluclated fields: ‘.grv’ for gravity, and ‘.mag’ for the magnetic field. We can extract
the information of these files for visualisation and further processing in python:

reload (pynoddy.output)
geophys = pynoddy.output.NoddyGeophysics (output)

fig = plt.figure(figsize = (5,5))
ax = fig.add_subplot (111)
imshow (geophys.grv_data, cmap = 'jet')

define contour levels

levels = np.arange (322,344,1)

cf = ax.contourf (geophys.grv_data, levels, cmap = 'gray', vmin = 324, vmax = 342)
cbar = plt.colorbar(cf, orientation = 'horizontal')

print levels

200

150

100

50

ﬂ[} 50 100 150 200 250 300 350

e T
322 325 328 331 334 337 340 343

Fig. 8.3: png

8.3 Change history and compare gravity

As a next step, we will now change aspects of the geological history (paramtereised in as parameters of the
kinematic events) and calculate the effect on the gravity. Then, we will compare the changed gravity field to the
original field.

Let’s have a look at the properties of the defined faults in the original model:

8.2. Visualise calculated geophysical fields 37

pynoddy Documentation, Release

for i in range (4):

print ("\nEvent "S (142))

print "Event type:\t" + his.events[i+2].event_type

print "Fault slip:\t " % his.events[i+2] .properties['Slip']

print "Fault dip:\t " % his.events[i+2] .properties['Dip']

print "Dip direction:\t " % his.events[i+2] .properties['Dip Direction']
Event 2

Event type: FAULT
Fault slip: -5000.0
Fault dip: 0.0

Dip direction: 90.0

Event 3

Event type: FAULT
Fault slip: -3000.0
Fault dip: 0.0

Dip direction: 90.0

Event 4

Event type: FAULT
Fault slip: -3000.0
Fault dip: 0.0

Dip direction: 90.0

Event 5

Event type: FAULT
Fault slip: 12000.0
Fault dip: 80.0

Dip direction: 170.0

reload (pynoddy.history)
reload (pynoddy.events)
his2 = pynoddy.history.NoddyHistory ("fold_thrust.his")

print his2.events[6].properties

{'Dip': 130.0, 'Cylindricity': 0.0, 'Wavelength': 12000.0, 'Amplitude': 1000.0, 'Pit#h': 0.0, 'Y'

As a simple test, we are changing the fault slip for all the faults and simply add 1000 m to all defined slips. In
order to not mess up the original model, we are creating a copy of the history object first:

import copy

his = pynoddy.history.NoddyHistory (history_name)
his.all_events_end += 1

his_changed = copy.deepcopy (his)

change parameters of kinematic events

slip_change = 2000.

wavelength_change = 2000.

his_changed.events[3].properties['Slip'] += slip_change

his_changed.events[5].properties['Slip'] += slip_change

change fold wavelength

his_changed.events[6] .properties['Wavelength'] += wavelength_change
his_changed.events[6] .properties['X'] += wavelength_change/2.

We now write the adjusted history back to a new history file and then calculate the updated gravity field:

his_changed.write_history('fold thrust_ changed.his')

$%timeit
recompute block model
pynoddy.compute_model ('fold_thrust_changed.his', 'fold_thrust_changed_out")

38 Chapter 8. Read and Visualise Geophysical Potential-Fields

pynoddy Documentation, Release

|lv

%$%timeit

recompute geophysical response

pynoddy.compute_model ('fold_thrust_changed.his', 'fold thrust_changed_out',
sim_type = 'GEOPHYSICS')

|lv

load changed block model

geo_changed = pynoddy.output.NoddyOutput ('fold _thrust_changed_out")

load output and visualise geophysical field

geophys_changed = pynoddy.output.NoddyGeophysics ('fold_thrust_changed_out')

fig = plt.figure(figsize = (5,5))

ax = fig.add_subplot (111)

imshow (geophys_changed.grv_data, cmap = 'jet')

cf = ax.contourf (geophys_changed.grv_data, levels, cmap = 'gray', vmin = 324, vmax =
cbar = plt.colorbar(cf, orientation = 'horizontal')

200

150

100

50

[}[} 50 100 150 200 250 300 350

B 02000 |
322 325 328 331 334 337 340 343

Fig. 8.4: png
fig = plt.figure(figsize = (5,5))
ax = fig.add_subplot (111)
imshow (geophys.grv_data - geophys_changed.grv_data, cmap = 'jet')

maxval = np.ceil (np.max (np.abs(geophys.grv_data - geophys_changed.grv_data)))
comp_levels = np.arange (-maxval,1.01 * maxval, 0.05 * maxval)
cf = ax.contourf (geophys.grv_data - geophys_changed.grv_data, 20,
cmap = 'spectral')
cbar = plt.colorbar(cf, orientation = 'horizontal')

compare sections through model
geo_changed.plot_section('y', colorbar = False)
h_out.plot_section('y', colorbar = False)

8.3. Change history and compare gravity 39

342)

pynoddy Documentation, Release

200

150

100

50

0

0 50 100 150 200 250 300 350

_______ DL .
-9 -6 -3 0 3 3] 9

Fig. 8.5: png

Section in y-direction, pos=120

50
40
~ 30
20
3
0 50 100 150 200 250 300 350
X
Fig. 8.6: png

Section in y-direction, pos=120

50
40
~ 30
20
g
0 50 100 150 200 250 300 350
X
Fig. 8.7: png

40 Chapter 8. Read and Visualise Geophysical Potential-Fields

pynoddy Documentation, Release

for i in range (4):
print ("Event "
print his.events[i+2] .properties['Slip']
print his.events[i+2] .properties['Dip']
print his.events[i+2] .properties|['Dip Direction']

i+2))

Event 2
-5000.0
0.0
90.0
Event 3
-3000.0
0.0
90.0
Event 4
-3000.0
0.0
90.0
Event 5
12000.0
80.0
170.0

recompute the geology blocks for comparison:
pynoddy.compute_model ('fold_thrust_changed.his', 'fold_thrust_changed_out")

‘geology_changed = pynoddy.output .NoddyOutput ('fold_thrust_changed_out"')

geology_changed.plot_section('x",
layer_labels = his.model_stratigraphy,
colorbar_orientation = 'horizontal',
colorbar=False,
title = "',
savefig=True, fig_filename = 'fold thrust_NS_section.eps’,
cmap = 'Y1OrRd'")
50
40
~n 30
20
10
0
0 50 100 150 200
y
Fig. 8.8: png

geology_changed.plot_section('y',
layer labels = his.model_stratigraphy,

colorbar_orientation = 'horizontal', title = '', cmap = 'Y1OrRd',
savefig=True, fig_filename = 'fold thrust_EW_section.eps’,
ve=1.5)

Calculate block difference and export as VIK for 3-D visualisation:
import copy

8.3. Change history and compare gravity 41

pynoddy Documentation, Release

50

~ 30
20
10

0 20 100 150 200 250 300 350

Fig. 8.9: png

diff_model = copy.deepcopy (geology_changed)
diff_model.block —-= h_out.block

‘diff_model.export_to_vtk(vtk_filename = "diff model_fold_thrust_belt")

8.4 Figure with all results

We now create a figure with the gravity field of the original and the changed model, as well as a difference plot
to highlight areas with significant changes. This example also shows how additional equations can easily be
combined with pynoddy classes.

fig = plt.figure(figsize=(20,38))

axl = fig.add_subplot (131)

original plot

levels = np.arange(322,344,1)

cfl = axl.contourf (geophys.grv_data, levels, cmap = 'gray',6 vmin
cbarl = axl.colorbar(cfl, orientation = 'horizontal')
fig.colorbar (cfl, orientation='horizontal')
axl.set_title('Gravity of original model')

324, vmax = 342)

ax?2 fig.add_subplot (132)

cf2 = ax2.contourf (geophys_changed.grv_data, levels, cmap = 'gray', vmin = 324, vmax
ax2.set_title('Gravity of changed model')
fig.colorbar (cf2, orientation='horizontal')

ax3 = fig.add_subplot (133)

comp_levels = np.arange(-10.,10.1,0.25)
cf3 = ax3.contourf (geophys.grv_data - geophys_changed.grv_data, comp_levels, cmap =
ax3.set_title('Gravity difference')

fig.colorbar (cf3, orientation='horizontal')

plt.savefig("grav_ori_changed_compared.eps")

42 Chapter 8. Read and Visualise Geophysical Potential-Fields

= 342)

RdBu_r'")

pynoddy Documentation, Release

Gravity of original model Gravity of changed model

Gravity difference

200 200 200 -
150 150 150
100 100 100

50}

00 50 100 150 200 250 300 350 00 50 100 150 200 250 300 350 00 50 100 150 200 250 300 350

| I | HE =
322 325 328 331 334 337 340 343 322 325 328 331 334 337 340 343 -9.006.754.50.2.250.00 2.25 4.50 6.75 9.00

Fig. 8.10: png

8.4. Figure with all results 43

pynoddy Documentation, Release

44 Chapter 8. Read and Visualise Geophysical Potential-Fields

CHAPTER
NINE

REPRODUCIBLE EXPERIMENTS WITH PYNODDY

All pynoddy experiments can be defined in a Python script, and if all settings are appropriate, then this script can
be re-run to obtain a reproduction of the results. However, it is often more convenient to encapsulate all elements of
an experiment within one class. We show here how this is done in the pynoddy . experiment . Experiment
class and how this class can be used to define simple reproducible experiments with kinematic models.

from IPython.core.display import HTML
css_file = 'pynoddy.css'
HTML (open (css_file, "r").read())

$matplotlib inline

here the usual imports. If any of the imports fails,
make sure that pynoddy is installed

properly, ideally with 'python setup.py develop'

or 'python setup.py install'

import sys, os

import matplotlib.pyplot as plt

import numpy as np

adjust some settings for matplotlib

from matplotlib import rcParams

print rcParams

rcParams|['font.size'] = 15
determine path of repository to set paths corretly below
repo_path = os.path.realpath('../..")

import pynoddy.history

import pynoddy.experiment

reload (pynoddy.experiment)
rcParams.update ({'font.size': 15})

9.1 Defining an experiment

We are considering the following scenario: we defined a kinematic model of a prospective geological unit at depth.
As we know that the estimates of the (kinematic) model parameters contain a high degree of uncertainty, we would
like to represent this uncertainty with the model.

Our approach is here to perform a randomised uncertainty propagation analysis with a Monte Carlo sampling
method. Results should be presented in several figures (2-D slice plots and a VTK representation in 3-D).

To perform this analysis, we need to perform the following steps (see main paper for more details):
1. Define kinematic model parameters and construct the initial (base) model;
2. Assign probability distributions (and possible parameter correlations) to relevant uncertain input parameters;
3. Generate a set of n random realisations, repeating the following steps:
(a) Draw a randomised input parameter set from the parameter distribu- tion;

(b) Generate a model with this parameter set;

45

pynoddy Documentation, Release

(c) Analyse the generated model and store results;
4. Finally: perform postprocessing, generate figures of results

It would be possible to write a Python script to perform all of these steps in one go. However, we will here take
another path and use the implementation in a Pynoddy Experiment class. Initially, this requires more work and
a careful definition of the experiment - but, finally, it will enable a higher level of flexibility, extensibility, and
reproducibility.

9.2 Loading an example model from the Atlas of Structural Geo-
physics

As in the example for geophysical potential-field simulation, we will use a model from the Atlas of Structural
Geophysics as an examlpe model for this simulation. We use a model for a fold interference structure. A discre-
tised 3-D version of this model is presented in the figure below. The model represents a fold interference pattern
of “Type 1” according to the definition of Ramsey (1967).

Fig. 9.1: Fold interference pattern

Instead of loading the model into a history object, we are now directly creating an experiment object:

reload (pynoddy.history)
reload (pynoddy.experiment)

from pynoddy.experiment import monte_carlo
model_url = 'http://tectonique.net/asg/ch3/ch3_7/his/typeb.his'
ue = pynoddy.experiment.Experiment (url = model_url)

For simpler visualisation in this notebook, we will analyse the following steps in a section view of the model.

We consider a section in y-direction through the model:

46 Chapter 9. Reproducible Experiments with pynoddy

pynoddy Documentation, Release

‘ue.write_history("typebitmp3.his")

‘ue.write_history("typebitmpZ.his") ‘

ue.change_cube_size (100)
ue.plot_section('y")

Section in y-direction, pos=50

Fig. 9.2: png

Before we start to draw random realisations of the model, we should first store the base state of the model for
later reference. This is simply possibel with the freeze() method which stores the current state of the model as the
“base-state”:

ue.freeze () ‘

We now intialise the random generator. We can directly assign a random seed to simplify reproducibility (note
that this is not essential, as it would be for the definition in a script function: the random state is preserved within
the model and could be retrieved at a later stage, as well!):

ue.set_random_seed(12345) ‘

The next step is to define probability distributions to the relevant event parameters. Let’s first look at the different
events:

‘ue.info(events_only = True) ‘
This model consists of 3 events:

(1) - STRATIGRAPHY

(2) - FOLD

(3) - FOLD
’evZ = ue.events[2] ‘

‘evZ.properties ‘

{'"Amplitude': 1250.0,
'Cylindricity': 0.0,
'Dip': 90.0,

'Dip Direction': 90.0,
'Pitch': 0.0,
'Single Fold': 'FALSE',

9.2. Loading an example model from the Atlas of Structural Geophysics 47

pynoddy Documentation, Release

'Type': 'Sine',
'Wavelength': 5000.0,
'X': 1000.0,

'y': 0.0,

'z': 0.0}

Next, we define the probability distributions for the uncertain input parameters:

param_stats = [{'event' : 2,
'parameter': 'Amplitude',
'stdev': 100.0,

'type': 'normal'l,
{'event' : 2,

'parameter': 'Wavelength',
'stdev': 500.0,

'type': 'normal'},
{'event' : 2,

'parameter': 'X',

'stdev': 500.0,

'type': 'normal'l}]

ue.set_parameter_statistics (param_stats)

resolution = 100

ue.change_cube_size (resolution)

tmp = ue.get_section('y'")

prob_4 = np.zeros_like (tmp.block[:,:,:])
n_draws = 100

for i in range(n_draws) :
ue.random_draw ()
tmp = ue.get_section('y', resolution = resolution)
prob_4 += (tmp.block[:,:,:] == 4)

Normalise
prob_4 = prob_4 / float (n_draws)

fig = plt.figure(figsize = (12,8))

ax = fig.add_subplot (111)

ax.imshow (prob_4.transpose() [:,0,:1,
origin = 'lower left',
interpolation = 'none')

plt.title("Estimated probability of unit 4")
plt.xlabel ("x (E-W)")
plt.ylabel ("z")

<matplotlib.text.Text at 0x10ba80250>

This example shows how the base module for reproducible experiments with kinematics can be used. For further
specification, child classes of Experiment can be defined, and we show examples of this type of extension in
the next sections.

48 Chapter 9. Reproducible Experiments with pynoddy

pynoddy Documentation, Release

Estimated probability of unit 4

0 20 40 60
X (E-W)

Fig. 9.3: png

80

9.2. Loading an example model from the Atlas of Structural Geophysics

49

pynoddy Documentation, Release

50 Chapter 9. Reproducible Experiments with pynoddy

CHAPTER
TEN

GIPPSLAND BASIN UNCERTAINTY STUDY

from IPython.core.display import HTML
css_file = 'pynoddy.css'
HTML (open (css_file, "r").read())

$matplotlib inline

#import the ususal libraries + the pynoddy UncertaintyAnalysis class

import sys, os, pynoddy
from pynoddy.experiment.UncertaintyAnalysis import UncertaintyAnalysis

adjust some settings for matplotlib
from matplotlib import rcParams

print rcParams
rcParams|['font.size'] = 15

determine path of repository to set paths corretly below
repo_path = os.path.realpath('../..")

import pynoddy.history

import pynoddy.experiment.uncertainty analysis
rcParams.update ({'font.size': 20})

10.1 The Gippsland Basin Model

In this example we will apply the Uncertainty Analysis class we have been playing with in the previous exam-
ple to a ‘realistic’ (though highly simplified) geological model of the Gippsland Basin, a petroleum field south
of Victoria, Australia. The model has been included as part of the PyNoddy directory, and can be found at
pynoddy/examples/GBasin_Vel_V4.his

reload (pynoddy.history)

reload (pynoddy.output)

reload (pynoddy.experiment .uncertainty_analysis)
reload (pynoddy)

the model itself is now part of the repository, in the examples directory:
history_file = os.path.join(repo_path, "examples/GRBasin_Vel V4.his")

While we could hard-code parameter variations here, it is much easier to store our statistical information in a csv
file, so we load that instead. This file accompanies the GBasin_Vel_V4 model in the pynoddy directory.

params = os.path.join(repo_path, "examples/gipps_params.csv")

51

pynoddy Documentation, Release

10.2 Generate randomised model realisations

Now we have all the information required to perform a Monte-Carlo based uncertainty analysis. In this example we
will generate 100 model realisations and use them to estimate the information entropy of each voxel in the model,
and hence visualise uncertainty. It is worth noting that in reality we would need to produce several thousand
model realisations in order to adequately sample the model space, however for convinience we only generate a
small number of models here.

%%timeit # Uncomment to test execution time
ua = pynoddy.experiment.uncertainty_analysis.UncertaintyAnalysis (history_file, param
ua.estimate_uncertainty (100, verbose=False)

B

A few utility functions for visualising uncertainty have been included in the Uncertainty Analysis class, and can
be used to gain an understanding of the most uncertain parts of the Gippsland Basin. The probabability voxets
for each lithology can also be accessed using ua.p_block[lithology_id], and the information entropy
voxset accessed using ua.e_block.

Note that the Gippsland Basin model has been computed with a vertical exaggeration of 3, in order to highlight
vertical structure.

ua.plot_section(direction='x"',data=ua.block)
ua.plot_entropy(direction="x")

Section in x-direction, 145

40
30
N 20

0 50 100 150 200
y

Fig. 10.1: png

Section in x-direction, pos=145

40
30
N 20

0 50 100 150 200
y

Fig. 10.2: png

It is immediately apparent (and not particularly surprising) that uncertainty in the Gippsland Basin model is
concentrated around the thin (but economically interesting) formations comprising the La Trobe and Strzelecki
Groups. The faults in the model also contribute to this uncertainty, though not by a huge amount.

52 Chapter 10. Gippsland Basin Uncertainty Study

pynoddy Documentation, Release

10.3 Exporting results to VTK for visualisation

It is also possible (and useful!) to export the uncertainty information to .vtk format for 3D analysis in software
such as ParaView. This can be done as follows:

ua.extent_x = 29000
ua.extent_y = 21600
ua.extent_z = 4500

output_path = os.path.join (repo_path, "sandbox/GBasin_Uncertainty™)
ua.export_to_vtk (vtk_filename=output_path,data=ua.e_block)

The resulting vtr file can (in the sandbox directory) can now be loaded and properly analysed in a 3D visualisation
package such as ParaView.

‘\'. OHH\HH[]\ 2 3\
9.61e-16 3.23

Fig. 10.3: 3-D visualisation of cell information entropy

10.3. Exporting results to VTK for visualisation 53

pynoddy Documentation, Release

54 Chapter 10. Gippsland Basin Uncertainty Study

CHAPTER
ELEVEN

SENSITIVITY ANALYSIS

Test here: (local) sensitivity analysis of kinematic parameters with respect to a defined objective function. Aim:
test how sensitivity the resulting model is to uncertainties in kinematic parameters to:

1. Evaluate which the most important parameters are, and to

2. Determine which parameters could, in principle, be inverted with suitable information.

11.1 Theory: local sensitivity analysis

Basic considerations:
* parameter vector
* residual vector 7
* calculated values at observation points 2’
* Jacobian matrix J;; = 3%
J Jij = 35

Numerical estimation of Jacobian matrix with central difference scheme (see Finsterle):

0z _ 2zi(P;p; +0p;j) — 2(Psp; — pj)

3103‘ 2§pj

Jij =

where 0p; is a small perturbation of parameter j, often as a fraction of the value.

11.2 Defining the responses

A meaningful sensitivity analysis obviously depends on the definition of a suitable response vector Z. Ideally,
these responses are related to actual observations. In our case, we first want to determine how sensitive a kine-
matic structural geological model is with respect to uncertainties in the kinematic parameters. We therefore need
calculatable measures that describe variations of the model.

As a first-order assumption, we will use a notation of a stratigraphic distance for discrete subsections of the
model, for example in single voxets for the calculated model. We define distance d of a subset w as the (discrete)
difference between the (discrete) stratigraphic value of an ideal model, s, to the value of a model realisation s;:

dlw)=8§-s;

In the first example, we will consider only one response: the overall sum of stratigraphic distances for a model
realisation 7 of all subsets (= voxets, in the practical sense), scaled by the number of subsets (for a subsequent
comparison of model discretisations):

55

pynoddy Documentation, Release

Note: mistake before: not considering distances at single nodes but only the sum - this lead to “zero-difference”
for simple translation! Now: consider more realistic objective function, squared distance:

r= \/Z(Zicalc - ziref)2
7

from IPython.core.display import HTML
css_file = 'pynoddy.css'
HTML (open (css_file, "r").read())

$matplotlib inline

11.3 Setting up the base model

For a first test: use simple two-fault model from paper

import sys, os

import matplotlib.pyplot as plt
import numpy as np

adjust some settings for matplotlib
from matplotlib import rcParams

print rcParams

rcParams['font.size'] = 15
determine path of repository to set paths corretly below
repo_path = os.path.realpath('../..")

import pynoddy.history
import pynoddy.events
import pynoddy.output

reload (pynoddy.history)

reload (pynoddy.events)

nm = pynoddy.history.NoddyHistory ()
add stratigraphy

strati_options = {'num layers' : 8,
'layer_names' : ['layer 1', 'layer 2', 'layer 3', 'layer 4', 'layer
'layer_thickness' : [1500, 500, 500, 500, 500, 500, 500, 500]}

nm.add_event ('stratigraphy', strati_options)

The following options define the fault geometry:

fault_options = {'name' : 'Fault W',
'pos' : (4000, 3500, 5000),
'dip_dir' : 90,
'dip' : 60,

'slip' : 1000}

nm.add_event ('fault', fault_options)
The following options define the fault geometry:

fault_options = {'name' : 'Fault_E',
'pos' : (6000, 3500, 5000),
'dip_dir' : 270,
"dip' : 60,

'slip' : 1000}

nm.add_event ('fault', fault_options)
history = "two_faults_sensi.his"
nm.write_history (history)

output_name = "two_faults_sensi_out"
Compute the model

pynoddy.compute_model (history, output_name)

56 Chapter 11. Sensitivity Analysis

5',

'layer

pynoddy Documentation, Release

‘lv

Plot output

nout = pynoddy.output.NoddyOutput (output_name)

nout.plot_section('y', layer_labels = strati_options['layer names'][::-1],
colorbar = True, title="",
savefig = False)

80} 1

LS 1

0 50 100 150

Fig. 11.1: png

11.4 Define parameter uncertainties

We will start with a sensitivity analysis for the parameters of the fault events.

H1 = pynoddy.history.NoddyHistory (history)
get the original dip of the fault

dip_ori = Hl.events[3].properties['Dip']

dip _oril = Hl.events[Z2].properties['Dip']
add 10 degrees to dip

add_dip = -20

dip_new = dip_ori + add_dip

dip_newl = dip_oril + add_dip

and assign back to properties dictionary:
Hl.events[3].properties['Dip'] = dip_new

reload (pynoddy.output)

new_history = "sensi_test_dip_changed.his"
new_output = "sensi_test_dip_changed_out"
Hl.write_history (new_history)
pynoddy.compute_model (new_history, new_output)
load output from both models

NO1l = pynoddy.output.NoddyOutput (output_name)
NO2 = pynoddy.output.NoddyOutput (new_output)

create basic figure layout
fig = plt.figure(figsize = (15,5))

11.4. Define parameter uncertainties 57

pynoddy Documentation, Release

axl = fig.add_subplot (121)
ax2 = fig.add_subplot (122)

NOl.plot_section('y', position=0, ax = axl, colorbar=False, title="Dip = |lori)
NO2.plot_section('y', position=0, ax = ax2, colorbar=False, title="Dip = | new)
plt.show ()
Dip = 60 Dip = 40
80 80

Fig. 11.2: png

11.5 Calculate total stratigraphic distance

def determine_strati_diff (NO1, NOZ2) :
"""calculate total stratigraphic distance between two models"""
return np.sum(NOl.block - NOZ2.block) / float (len(NO1.block))

def determine_strati_diff (NO1l, NO2):
"""calculate total stratigraphic distance between two models"""
return np.sqrt (np.sum((NOl.block - NO2.block)*%2)) / float (len(NOl.block))

diff = determine_strati_diff (NO1l, NO2)
print (diff)

[5.56205897128

11.6 Function to modify parameters

Multiple event parameters can be changed directly with the function change_event_params, which takes
a dictionarly of events and parameters with according changes relative to the defined parameters. Here a brief
example:

set parameter changes in dictionary

changes_fault_1 = {'Dip' : -20}
changes_fault_2 = {'Dip' : -20}
param_changes = {2 : changes_fault_1,

3 : changes_fault_2}

reload (pynoddy.history)
H2 = pynoddy.history.NoddyHistory (history)
H2.change_event_params (param_changes)

58 Chapter 11. Sensitivity Analysis

pynoddy Documentation, Release

new_history = "param dict_changes.his"
new_output = "param_dict_changes_out"

H2 .write_history (new_history)
pynoddy.compute_model (new_history, new_output)
load output from both models

NO1 pynoddy.output .NoddyOutput (output_name)
NO2 pynoddy.output .NoddyOutput (new_output)

create basic figure layout

fig = plt.figure(figsize = (15,5))

axl = fig.add_subplot (121)

ax2 = fig.add_subplot (122)

NOl.plot_section('y', position=0, ax = axl, colorbar=False, title="Original Model")
NO2.plot_section('y', position=0, ax = ax2, colorbar=False, title="Changed Model")

plt.show ()

Original Model Changed Model

Fig. 11.3: png

11.7 Full sensitivity analysis

Perform now a full sensitivity analysis for all defined parameters and analyse the output matrix. For a better
overview, we first create a function to perform the sensitivity analysis:

import copy

new_history = "sensi_tmp.his"

new_output = "sensi_out"

def noddy_sensitivity(history_filename, param_change_vals) :
"""pPerform noddy sensitivity analysis for a model"""

param_list = [] # list to store parameters for later analysis

distances = [] # list to store calcualted distances

Step 1:

create new parameter list to change model

for event_id, event_dict in param_change_vals.items(): # iterate over events

for key, val in event_dict.items(): # iterate over all properties separately

changes_list = dict ()
changes_1list[event_id] = dict ()
param_list.append("event_$d_property_¢s" % (event_id, key))

for i in range(2):
calculate positive and negative values
his = pynoddy.history.NoddyHistory (history_filename)
if 1 ==
changes_1list[event_id] [key] = val
set changes
his.change_event_params (changes_list)
save and calculate model
his.write_history(new_history)

11.7. Full sensitivity analysis 59

pynoddy Documentation, Release

pynoddy.compute_model (new_history, new_output)
open output and calculate distance
NO_tmp = pynoddy.output.NoddyOutput (new_output)
dist_pos = determine_strati_diff (NO1l, NO_tmp)
NO_tmp.plot_section('y', position = 0, colorbar = False,
title = "Dist: " % dist_pos,
savefig = True,
fig_filename = "event_%d_property_%s_val

o

% (event_id, key,val))

if 1 == 1:
changes_1list[event_id] [key] = -val
his.change_event_params (changes_list)
save and calculate model
his.write_history(new_history)
pynoddy.compute_model (new_history, new_output)
open output and calculate distance
NO_tmp = pynoddy.output.NoddyOutput (new_output)
dist_neg = determine_strati_diff (NO1l, NO_tmp)
NO_tmp.plot_section('y', position=0, colorbar=False,
title="Dist: " % dist_neg,
savefig=True,
fig filename="event_%d_property_%s_val_ ¢d.pn
% (event_id, key,val))
calculate central difference
central_diff = (dist_pos + dist_neg) / (2.)
distances.append(central_ diff)
return param_list, distances

.png"

As a next step, we define the parameter ranges for the local sensitivity analysis (i.e. the dp; from the theoretical
description above):

changes_fault_1 = {'Dip' : 1.5,
'Dip Direction' : 10,
'Slip': 100.0,
'X': 500.0}
'Dip' : 1.5,
'Dip Direction' : 10,
'slip': 100.0,
'X': 500.0}
param_changes = {2 : changes_fault_1,

3 : changes_fault_2}

Il
—~—

changes_fault_2

And now, we perform the local sensitivity analysis:

param_list_1, distances = noddy_sensitivity (history, param_changes)

The function passes back a list of the changed parameters and the calculated distances according to this change.
Let’s have a look at the results:

for p,d in zip(param_list_1, distances):

print " \t\t "% (p, d)
event_2_property_X 2.716228
event_2_property_Dip 1.410039
event_2_property_Dip Direction 2.133553
event_2_property_Slip 1.824993
event_3_property_X 3.323528
event_3_property_Dip 1.644589
event_3_property_Dip Direction 2.606573
event_3_property_Slip 1.930455

Results of this local sensitivity analysis suggest that the model is most sensitive to the X-position of the fault,
when we evaluate distances as simple stratigraphic id differences. Here just a bar plot for better visualisation (feel
free to add proper labels):

60 Chapter 11. Sensitivity Analysis

\

pynoddy Documentation, Release

d = np.array([distances])

fig = plt.figure(figsize=(5,3))

ax = fig.add_subplot (111)

ax.bar (np.arange (0.6, len(distances),1.), np.array(distances([:]))

<Container object of 8 artists>

3.5 T
3.0
2.5
2.0
1.5
1.0
0.5
0.0

Fig. 11.4: png

The previous experiment showed how pynoddy can be used for simple scientific experiments. The sensitivity
analysis itself is purely local. A better way would be to use (more) global sensitivity analysis, for example
using the Morris or Sobol methods. These methods are implemented in the Python package SALib, and an
experimental implementation of this method into pynoddy exists, as well (see further notebooks on repository,
note: no guaranteed working, so far!).

11.7. Full sensitivity analysis 61

pynoddy Documentation, Release

62 Chapter 11. Sensitivity Analysis

CHAPTER
TWELVE

SIMULATION OF A NODDY HISTORY AND ANALYSIS OF ITS
VOXEL TOPOLOGY

Example of how the module can be used to run Noddy simulations and analyse the output.

from IPython.core.display import HTML
css_file = 'pynoddy.css'
HTML (open (css_file, "r").read())

Basic settings
import sys, os
import subprocess

Now import pynoddy
import pynoddy
$matplotlib inline

determine path of repository to set paths corretly below

repo_path = os.path.realpath('../..")

12.1 Compute the model

The simplest way to perform the Noddy simulation through Python is simply to call the executable. One way that
should be fairly platform independent is to use Python’s own subprocess module:

Change to sandbox directory to store results
os.chdir (os.path.join (repo_path, 'sandbox'))

Path to exmaple directory in this repository

example_directory = os.path.join (repo_path, 'examples')
Compute noddy model for history file

history_file = 'strike_slip.his'

history = os.path.join(example_directory, history_file)
nfiles = 1

files ' "+str(nfiles).zfill (4)

print "files", files

root_name = 'noddy_out'

output_name = root_name + files

print root_name
print output_name
call Noddy

NOTE: Make sure that the noddy executable is accessible in the system!!

sys

print subprocess.Popen (['noddy.exe', history, output_name, 'TOPOLOGY'],
shell=False, stderr=subprocess.PIPE,
stdout=subprocess.PIPE) .stdout.read()

63

pynoddy Documentation, Release

#

Sys

print subprocess.Popen(['topology.exe', root_name, files],
shell=False, stderr=subprocess.PIPE,
stdout=subprocess.PIPE) .stdout.read()

files _0001

noddy_out

noddy_out_0001

For convenience, the model computations are wrapped into a Python function in pynoddy:

pynoddy.compute_model (history, output_name)
pynoddy.compute_topology (root_name, files)

Note: The Noddy call from Python is, to date, calling Noddy through the subprocess function. In a future im-
plementation, this call could be subsituted with a full wrapper for the C-functions written in Python. Therefore,
using the member function compute_model is not only easier, but also the more “future-proof” way to compute
the Noddy model.

12.2 Loading Topology output files

Here we load the binary adjacency matrix for one topology calculation and display it as an image

from matplotlib import pyplot as plt
import matplotlib.image as mpimg
import numpy as np

N1 = pynoddy.NoddyOutput (output_name)
AM= pynoddy.NoddyTopology (output_name)

am_name=root_name +'_ uam.bin'
print am_name
print AM.maxlitho

image = np.empty ((int (AM.maxlitho),int (AM.maxlitho)), np.uint8)
image.data[:] = open (am_name) .read()
cmap=plt.get_cmap('Paired")

cmap.set_under ('white') # Color for values less than vmin
plt.imshow (image, interpolation="nearest", vmin=1, cmap=cmap)
plt.show ()

maxlitho = 7

noddy_out_uam.bin
5

64 Chapter 12. Simulation of a Noddy history and analysis of its voxel topology

pynoddy Documentation, Release

Fig. 12.1: png

12.2. Loading Topology output files

65

pynoddy Documentation, Release

66 Chapter 12. Simulation of a Noddy history and analysis of its voxel topology

CHAPTER
THIRTEEN

PYNODDY MODULES, CLASSES AND FUNCTIONS

13.1 Basic modules (low-level access)

The modules in this section provide low-level access to the functionality in Noddy. Basically, these modules
provide parsers for Noddy input and output files and class definitions for suitable Noddy elements.

13.1.1 Main module

Package initialization file for pynoddy

pynoddy . compute_model (history, output_name, **kwds)
Call Noddy and compute the history file

Arguments:
* history = string : filename of history file
* output_name = string : basename for output files
Optional Keywords:
* sim_type = ‘BLOCK’, ‘GEOPHYSICS’, ‘SURFACES’, ‘BLOCK_GEOPHYS’,

‘TOPOLOGY’, ‘BLOCK_SURFACES’, ‘ALL’: type of Noddy simulation (default: ‘BLOCK”)

» program_name = string [name of program] (default: noddy.exe or noddy, both checked)

* verbose = bool: verbose mode, print out information for debugging (default = False)

Returns: -Returns any text outputted by the noddy executable.

pynoddy . compute_topology (rootname, **kwds)
Call the topology executable to compute a models topology.

Arguments:
* rootname = string : rootname of the noddy model to calculate topology for
Optional Keywords:

* ensure_discrete_volumes = True if topological units are broken down into separate, spatially
continuous volumes. Otherwise some topological units may represent two separate rock vol-
umes (eg. if a folded unit has been truncated by an unconformity). Default is True, though this
is a global variable (pynoddy.ensure_discrete_volumes) so it can be changed during runtime.

* null_volume_threshold = The smallest non-null volume. volumes smaller than this are
ignored by the topology algorithm (as they represent pixelation artefacts). The de-
fault is 20 voxels, though this is a global variable and can be changed with pyn-
oddy.null_volume_threshold.

Returns -Returns any text outputted by the topology executable, including errors.

67

pynoddy Documentation, Release

13.1.2 History file parser: pynoddy.history

Noddy history file wrapper Created on 24/03/2014

@author: Florian Wellmann

class pynoddy .history.NoddyHistory (history=None, **kwds)

Bases: object
Class container for Noddy history files

add_event (event_type, event_options, **kwds)
Add an event type to history

Arguments:
* event_type = string : type of event, legal options to date are:

‘stratigraphy’, ‘fault’, ‘fold’, “‘unconformity’ - event_options = list : required options to create
event (event dependent)

Optional keywords:
* event_num = int : event number (default: implicitly defined with increasing counter)

change_cube_size (cube_size, **kwds)
Change the model cube size (isotropic)

Arguments:
e cube_size = float : new model cube size

change_event_params (changes_dict)
Change multiple event parameters according to settings in changes_dict

Arguments:
* changes_dict = dictionary : entries define relative changes for (multiple) parameters
Per default, the values in the dictionary are added to the event parameters.

copy_events ()
Create a copy of the current event state

create_footer_from template ()
Create model footer (with all settings) from template

create_new_history ()
Methods to create a Noddy model

determine_ events (**kwds)
Determine events and save line numbers

Note:

Parsing of the history file is based on a fixed Noddy output order. If this is, for some reason (e.g.
in a changed version of Noddy) not the case, then this parsing might fail!

Optional Keywords:

* verbose = True if this function is should write to the print bufffer, otherwise False. Default is
False.

determine_model_stratigraphy ()
Determine stratigraphy of entire model from all events

get_cube_size (**kwds)
Determine cube size for model export Optional Args

68

Chapter 13. Pynoddy modules, classes and functions

pynoddy Documentation, Release

-type: choose geology or geophysics cube size to return. Should be either ‘Geology’ (default)
or ‘Geophysics’

get_date_saved()
Determine the last savepoint of the file

get_drillhole_data (x, y, **kwds)
Get geology values along 1-D profile at position x,y with a 1 m resolution

The following steps are performed: 1. creates a copy of the entire object, 2. sets values of origin,
extent and geology cube size, 3. saves model to a temporary file, 4. runs Noddy on that file 5. opens

and analyses output 6. deletes temporary files

Note: this method only works if write access to current directory is enabled and noddy can be executed!
Arguments:

* x = float: x-position of drillhole

 y = float: y-position of drillhole

Optional Arguments:

* z_min = float : minimum depth of drillhole (default: model range)
* z_max = float : maximum depth of drillhole (default: model range)

* resolution = float : resolution along profile (default: 1 m)

get_ev_counter ()
Event counter for implicit and continuous definition of events

get_event_param (event_number, name)
Returns the value of a given parameter for a given event.

Arguments:

* event_number = the event to get a parameter for (integer)

* name = the name of the parameter to retreive (string)

Returns

* Returns the value of the request parameter, or None if it does not exists.
get_event_params (event_number)
Returns the parameter dictionary for a given event.

Arguments:

* event_number = the event to get a parameter for (integer)

Returns

* Returns the parameter dictionary for the requested event
get_extent ()
Get model extent and return and store in local variables
Returns: (extent_x, extent_y, extent_z)

get_filename ()
Determine model filename from history file/ header

get_footer_lines ()
Get the footer lines from self.history_lines

The footer contains everything below events (all settings, etc.)

get_info_string (**kwds)
Get model information as string

13.1. Basic modules (low-level access) 69

pynoddy Documentation, Release

Optional keywords:
* events_only = bool : only information on events

get_origin()
Get coordinates of model origin and return and store in local variables

Returns: (origin_x, origin_y, origin_z)

info (**kwds)
Print out model information

Optional keywords:
* events_only = bool : only information on events

load_history (history)
Load Noddy history

Arguments:
* history = string : Name of Noddy history file

load_history_from_url (url)
Directly load a Noddy history from a URL

This method is useful to load a model from the Structural Geophysics Atlas on the pages of the Virtual
Explorer. See: http://tectonique.net/asg

Arguments:
* yrl : url of history file

reorder events (reorder_dict)
Reorder events accoring to assignment in reorder_dict

Arguments:
* reorder_dict = dict : for example {1:2,2:3,3: 1}

set_event_params (params_dict)
set multiple event parameters according to settings in params_dict

Arguments:
* params_dict = dictionary : entries to set (multiple) parameters

set_extent (extent_x, extent_y, extent_z)
Set model extent and update local variables

Arguments:
e extent_x = float : extent in x-direction
* extent_y = float : extent in y-direction
e extent_z = float : extent in z-direction

set_origin (origin_x, origin_y, origin_z)
Set coordinates of model origin and update local variables

Arguments:
* origin_x = float : x-location of model origin
* origin_y = float : y-location of model origin
* origin_z = float : z-location of model origin

swap_events (event_num_I, event_num_2)
Swap two geological events in the timeline

Arguments:

70 Chapter 13. Pynoddy modules, classes and functions

http://tectonique.net/asg

pynoddy Documentation, Release

* event_num_I/2 = int : number of events to be swapped (“order”)

update_all_event_properties ()
Update properties of all events - in case changes were made

update_event_numbers ()
Update event numbers in ‘Event #* line in noddy history file

write_history (filename)
Write history to new file

Arguments:

* filename = string : filename of new history file

Hint: Just love it how easy it is to ‘write history’ with Noddy ;-)

13.1.3 Output file parser: pynoddy.output

Noddy output file analysis Created on 24/03/2014
@author: Florian Wellmann, Sam Thiele

class pynoddy . output . NoddyGeophysics (output_name)
Bases: object

Definition to read, analyse, and visualise calculated geophysical responses

read_gravity ()
Read calculated gravity response

read_magnetics ()
Read caluclated magnetic field response

class pynoddy . output . NoddyOutput (output_name)
Bases: object

Class definition for Noddy output analysis

compare_dimensions_to (other)
Compare model dimensions to another model

determine_unit_volumes ()
Determine volumes of geological units in the discretized block model

export_to_vtk (**kwds)
Export model to VTK

Export the geology blocks to VTK for visualisation of the entire 3-D model in an external VTK viewer,

e.g. Paraview.

..Note:: Requires pyevtk, available for free on: https://github.com/firedrakeproject/firedrake/tree/master/python/evtk

Optional keywords:

* vtk_filename = string : filename of VTK file (default: output_name)

* data = np.array : data array to export to VKT (default: entire block model)

get_section_lines (direction="y’, position="center’, **kwds)

Create and returns a list of lines representing a section block through the model

Arguments:

* direction = ‘x’, ‘y’, ‘z’ : coordinate direction of section plot (default: ‘y’)

* position = int or ‘center’ [cell position of section as integer value] or identifier (default:

‘center’)

13.1. Basic modules (low-level access)

7

https://github.com/firedrakeproject/firedrake/tree/master/python/evtk

pynoddy Documentation, Release

Returns: A tuple of lists of dictionaries.... ie: ([dictionary of x coordinates, with lithology pairs as
keys, separated by an underscore],

[dictionary of y coordinates, with lithology pairs as keys, separated by an underscore], [
dictionary of z coordinates, with lithology pairs as keys, separated by an underscore], [dic-
tionary of colours, with lithologies as keys])

For example: get_section_lines()[0]["1_2"] returns a list of all the x coordinates from the contact
between lithology 1 and lithology 2. Note that the smaller lithology index always comes first in the
code.

get_section_voxels (direction="y’, position="center’, **kwds)
Create and returns section block through the model
Arguments:

* direction = ‘xX’, ‘y’, ‘z’ : coordinate direction of section plot (default: ‘y’)

* position = int or ‘center’ [cell position of section as integer value] or identifier (default:
‘center’)

Optional Keywords:
* data = np.array : data to plot, if different to block data itself
* litho_filter = a list of lithologies to draw. All others will be ignored.

get_surface_grid (litholD, **kwds)
Returns a grid of lines that define a grid on the specified surface. Note that this cannot handle layers
that are repeated in the z direction...

Arguments:

* lithoID - the top surface of this lithology will be calculated. If a list is passed, the top
surface of each lithology in the list is calculated.

Keywords:
* res - the resolution to sample at. Default is 2 (ie. every second voxel is sampled).

Returns: a tuple containing lists of tuples of X, y and z coordinate dictionaries and colour dictionar-
ies, one containing the east-west lines and one the north-south lines: ((x,y,z,c),(X,y,z,c)). THe
dictionary keys are the lithoID’s passed in the lithoID parameter.

load_geology ()
Load block geology ids from .g12 output file

load _model_ info ()
Load information about model discretisation from .g00 file

plot_section (direction="y’, position="center’, **kwds)
Create a section block through the model
Arguments:

* direction = ‘xX’, ‘y’, ‘z’ : coordinate direction of section plot (default: ‘y’)

* position = int or ‘center’ [cell position of section as integer value] or identifier (default:
‘center’)

Optional Keywords:
* ax = matplotlib.axis : append plot to axis (default: create new plot)
* figsize = (x,y) : matplotlib figsize
* colorbar =bool : plot colorbar (default: True)

* colorbar_orientation = ‘horizontal’ or ‘vertical’ [orientation of colorbar] (default: ‘verti-
cal’)

* title = string : plot title

72 Chapter 13. Pynoddy modules, classes and functions

pynoddy Documentation, Release

* savefig = bool : save figure to file (default: show directly on screen)

* cmap = matplotlib.cmap : colormap (default: YIOrRd)

* fig_filename = string : figure filename

* ve = float : vertical exaggeration

* layer_labels = list of strings: labels for each unit in plot

* layers_from = noddy history file : get labels automatically from history file
* data = np.array : data to plot, if different to block data itself

* litho_filter = a list of lithologies to draw. All others will be ignored.

set_basename (name)
Set model basename

class pynoddy . output . NoddyTopology (noddy_model, **kwds)
Bases: object

Definition to read, analyse, and visualise calculated voxel topology

calculate_difference (G2, data=False)
Calculates the difference between this NoddyTopology and another NoddyTopology or networkX
graph

Arguments

* (G2 =avalid NoddyTopology object or NetworkX graph that this topology is to be compared
with

Returns A tuple containing: - The number of different edges - a list of these edges

calculate_overlap (G2)
Calculates the overlap between this NoddyTopology and another NoddyTopology or networkX graph

Arguments

* (G2 = a valid NoddyTopology object or NetworkX graph that this topology is to be compared
with

Returns
* The number of overlapping edges
* A list of these edges

static calculate_unique_topologies (topology_list, **kwds)
Calculates the number of unique topologies in a list of NoddyTopologies

Arguments:
* topology_list = The list of NoddyTopologies to search through.
Optional Keywords:

* output = A File or list to write cumulative observed topologies distribution. Default is None
(nothing written).

* ids = A list to write the unique topology id’s for each topology in the provided topology_list (in that
order). Default is None.

* frequency = A list to write frequency counts to.
Returns:

* Returns a list of unique topologies.

13.1. Basic modules (low-level access) 73

pynoddy Documentation, Release

collapse_stratigraphy ()
Collapses all stratigraphic edges in this network to produce a network that only contains structurally
bound rock volumes. Essentially this is a network built only with Topology codes and ignoring lithol-

ogy

Returns

* a new NoddyTopology object containing the collapsed graph. The original object is not
modified.

collapse_structure (verbose=False)
Collapses all topology codes down to the last (most recent) difference. Information regarding specific
model topology is generalised, eg. lithology A has a fault and stratigrappic contact with B (regardless
of how many different faults are involved).

Optional Arguments:
* verbose = True if this function should write to the print buffer. Default is False.
Returns

* a new NoddyTopology object containing the collapsed graph. The original object is not
modified.

static combine_topologies (topology_list)
Combines a list of topology networks into a weighted ‘super-network’. This is designed for estimating
the likelyhood of a given edge occuring using a series of networks generated in a Monte-Carlo type
analysis.

Arguments

* topology_list = A list of networkX graphs or NoddyTopology objects to build supernetwork
from.

Returns

* A NetworkX graph object containing all edges from the input graphs and weighted (‘weight’
parameter) according to their observed frequency.

draw_3d_network (**kwds)
Draws a 3D network using matplotlib.

Optional Keywords:

e show = If True, the 3D network is displayed immediatly on-screen in an interactive mat-
plotlib viewer. Default is True.

* output = If defined an image of the network is saved to this location.

e node_size = The size of the nodes. Default is 40.

* geology = a NoddyOutput object to draw with the network

* res = resolution to draw geology at. Default is 4 (ie 1/4 of all voxels are drawn)

* horizons = a list of geology surfaces to draw. Default is nothing (none drawn). Slow!
See NoddyOutput.get_surface_grid for details.

* sections = draw geology sections. Default is True.

draw_adjacency_matrix (**kwds)
Draws an adjacency matrix representing this topology object.

Keywords:
* path = The path to save this image to. If not provided, the image is drawn to the screen
* dpi = The resolution to save this image. Default is 300

* size = The size of the image to save (in inches). This value will be used as the width and the
height

74 Chapter 13. Pynoddy modules, classes and functions

pynoddy Documentation, Release

draw_difference matrix (G2, **kwds)
Draws an adjacency matrix containing the difference between this topology and the provided topology

Arguments:
* G2 = A different NoddyTopology or NetworkX Graph to compare to
Optional Keywords:

 strat = A dictionary linking node names to stratigraphic heights and names. Should be as
follows { node_name : (height,name) }.

* path = The path to save this image to. If not provided, the image is drawn to the screen
* dpi = The resolution to save this image. Default is 300

* size = The size of the image to save (in inches). This value will be used as the width and the
height

static draw_graph_matrix (G, **kwds)
Draws an adjacency matrix representing the specified graph object. Equivalent to NoddyTopol-
ogy.draw_matrix_image() but for a networkX graph object.

Keywords:

e strat = A dictionary linking node names to stratigraphic heights and names. Should be as
follows { node_name : (height,name) }.

* path = The path to save this image to. If not provided, the image is drawn to the screen
* dpi = The resolution to save this image. Default is 300

* size = The size of the image to save (in inches). This value will be used as the width and the
height

draw_mayavi (**kwds)
Draws this network with mayavi. This requires the Mayavi python library (mayavi.mlab)

Optional Keywords:
* node_size = The size of the nodes. Default is 40.
* edge_thickness = The thickness of the edges. Default is 4
* show = If true, the model is displayed in the mayavi viewer after exporting. Default is True
* path = A path to save the mayavi vtk file to after generating it.

static draw_mayavi_graph (G, **kwds)
Draws the provided network with mayavi. This requires the Mayavi python library (mayavi.mlab)

Optional Keywords:
* node_size = The size of the nodes. Default is 40.
* edge_thickness = The thickness of the edges. Default is 4
* show = If true, the model is displayed in the mayavi viewer after exporting. Default is True
* path = A path to save the mayavi vtk file to after generating it.

draw_network_hive (**kwds)
Draws a network hive plot (see https://github.com/ericmjl/hiveplot). The axes of the hive are: node
lithology, edge age & edge area.

ie. the top axis lists the nodes in stratigraphic order. The second axis lists edges in structural age &
thrid axis lists edges by surface area.

Nodes are joined to edge-nodes by lines on the graph if they are topologically linked (ie. if an edge
has that node as an end point).

Optional Keywords - path = the path to save this figure - dpi = the resolution of the figure -
bg = the background color. Default is black. - axes = The color of the axes and labels.

13.1. Basic modules (low-level access) 75

https://github.com/ericmjl/hiveplot

pynoddy Documentation, Release

draw_network_image (outputname="", **kwds)
Draws a network diagram of this NoddyTopology to the specified image

Arguments

* outputname = the path of the image being written. If left as ’ the image is written to the same
directory as the basename.

Optional Keywords

* dimension = ‘2D’ for a 2D network diagram or ‘3D’ for a 3D network diagram. Default is
2D’.

* axis = the axis to view on for 3D network diagrams

* perspective = True to use perspective projection, or False for orthographic projection. Default
is False.

* node_size = The size that nodes are drawn. Default is 1500.

¢ layout = The layout algorithm used in 2D. Options are ‘spring_layout’ (default), ‘shell_layout’, ‘circular.
and ‘spectral_layout’.

* verbose = True if this function is allowed to write to the print buffer, otherwise false. Default
is False.

filter node_ wvolumes (min_volume=50)
Removes all nodes with volumes less than the specified size

Arguments:

e min_volume = the threshold volume. Nodes with smaller volumes are deleted.
Returns

* returns the number of deleted nodes

find first_match (known)
Identical to is_unique, except that the index of the first match is returned if this matches, otherwise -1
is returned. Arguments:

-known = a list of valid NoddyTopology objects or NetworkX graphs to compare with.

Returns:
» Returns the index of the first matching topology object, or -1
find_matching (known)
Finds the first matching NoddyTopology (or NetworkX graph) in the specified list
Arguments: -known = a list of valid NoddyTopology objects or NetworkX graphs to compare with.
Returns:
* Returns the first matching object (jaccard coefficient = 1), or otherwise None

is_unique (known)
Returns True if the topology of this model is different (ie. forms a different network) to a list of
models.

Arguments: -known = a list of valid NoddyTopology objects or NetworkX graphs to compare with.
Returns:
* Returns true if this topology is unique, otherwise false

jaccard_coefficient (G2)
Calculates the Jaccard Coefficient (ratio between the intersection & union) of the graph representing
this NOddyTopology and G2.

Arguments

76 Chapter 13. Pynoddy modules, classes and functions

pynoddy Documentation, Release

* (G2 = a valid NoddyTopology object or NetworkX graph that this topology is to be compared
with

Returns
* The jaccard_coefficient

loadNetwork ()
Loads the topology network into a NetworkX datastructure

read_adjacency matrix()
DEPRECIATED Read max number of lithologies aross all models

read_properties ()

write_summary_ file (path, append=True)
Writes summary information about this network to a file

Optional Arguments

* append = True if summary information should be appended to the file. If so the file is written as a csv spi
Default is true. If False is passed, a single, detailed summary is written for this network.

13.1.4 Additional useful classes

pynoddy.events

Module for reading and manipulating geological events Created on Mar 26, 2014
@author: Florian Wellmann

class pynoddy .events.Dyke (**kwds)
Bases: pynoddy.events.Event

Dyke event

parse_event_lines (lines)
Read specific event lines from history file Arguments:

elines = list of lines : lines with event information (as stored in .his file)

class pynoddy.events.Event (**kwds)
Bases: object

Main class container for geological events

Include here all elements that events have in common (position, etc. - possibly even things like color and
other aspects that are defined in the history... Parse for equal settings and include here!)

set_event_1lines (lines)
Explicitly define event lines

set_event_ number (num)
Set number in ‘Event #° line to num

update_properties (**kwds)
Update properties (required if self.properties assignment changed!)

class pynoddy.events.Fault (**kwds)
Bases: pynoddy.events.Event

Fault event

parse_event_lines (lines)
Read specific event lines from history file

Arguments:

e [ines = list of lines : lines with event information (as stored in .his file)

13.1. Basic modules (low-level access) 77

pynoddy Documentation, Release

class pynoddy.events.Fold (**kwds)
Bases: pynoddy.events.Event

Folding event

parse_event_lines (lines)
Read specific event lines from history file

Arguments:
e lines = list of lines : lines with event information (as stored in .his file)

class pynoddy .events.Plug (**kwds)
Bases: pynoddy.events.Event

Plug event

parse_event_lines (lines)
Read specific event lines from history file Arguments:

elines = list of lines : lines with event information (as stored in .his file)

class pynoddy.events.Shear (**kwds)
Bases: pynoddy.events.Event

Shear zone event

parse_event_lines (lines)
Read specific event lines from history file

Arguments:
e lines = list of lines : lines with event information (as stored in .his file)

class pynoddy.events.Strain (**kwds)
Bases: pynoddy.events.Event

Strain event

parse_event_lines (lines)
Read specific event lines from history file Arguments:

elines = list of lines : lines with event information (as stored in .his file)

class pynoddy.events.Stratigraphy (**kwds)
Bases: pynoddy.events.Event

Sedimentary pile with defined stratigraphy

parse_event_lines (lines)
Read specific event lines from history file

Arguments:
e lines = list of lines : lines with event information (as stored in .his file)

class pynoddy.events.Tilt (**kwds)
Bases: pynoddy.events.Event

Tilt event

parse_event_lines (lines)
Read specific event lines from history file

Arguments:
e lines = list of lines : lines with event information (as stored in .his file)

class pynoddy .events.Unconformity (**kwds)
Bases: pynoddy.events.Event

Unconformity event

78 Chapter 13. Pynoddy modules, classes and functions

pynoddy Documentation, Release

change_height (val)
Change the vertical position (i.e. height) of the entire stratigraphic pile above the unconformity

Note: This is not identical to changing only the ‘Z’ property as the height of all layers has to be
adjusted for (geological) consistency

Arguments:
* val =float : value added to current z-values
parse_event_lines (lines)
Read specific event lines from history file
Arguments:

e lines = list of lines : lines with event information (as stored in .his file)

13.2 Modules for Kinematic experiments

The modules described in this section are designed to provide a high-level access to the kinematic modelling
functionality in Noddy. The modules encapsulate the required aspects of complete experiments, including input
file generation, adaptation of parameters, random number generation, model computation, and postprocessing.

13.2.1 Base classes for pynoddy experiments

The base class for any type of experiments is defined in the pynoddy.experiment module. Base class from which
PyNoddy experiments should inherit.

Much basic functionality (random perturbation, plotting etc. is defined here).

Thought: perhaps drawing functions etc. should be moved into NoddyOutput class?

@author: flohorovicic, samthiele

class pynoddy .experiment . Experiment (history=None, **kwds)
Bases: pynoddy.history.NoddyHistory, pynoddy.output .NoddyOutput

Noddy experiment container, inheriting from both noddy history and output methods

export_to_vtk (**kwds)
Export model to VTK

Export the geology blocks to VTK for visualisation of the entire 3-D model in an external VTK viewer,
e.g. Paraview.

..Note:: Requires pyevtk, available for free on: https://github.com/firedrakeproject/firedrake/tree/master/python/evtk
Optional keywords:

* vtk_filename = string : filename of VTK file (default: output_name)

* data = np.array : data array to export to VKT (default: entire block model)

* recompute = bool : recompute the block model (default: True)

* model_type = ‘current’, ‘base’ : model type (base “freezed” model can be plotted for com-
parison)

..Note:: If data is defined, the model is not recomputed and the data from this array is plotted

freeze (**kwds)
Freeze the current model state: store the event settings for later comparison

13.2. Modules for Kinematic experiments 79

https://github.com/firedrakeproject/firedrake/tree/master/python/evtk

pynoddy Documentation, Release

get_sampling line_data (xyz_from, xyz_to)
Get computed model along a line, for example as a drillhole position

Arguments:
* xyz_from = [X, y, z] : list of float values for starting position
* xyz_to=[X,Y, z] : list of float values for starting position

get_section (direction="y’, position="center’, **kwds)
Get geological section of the model (re-computed at required resolution) as noddy object
Arguments:

* direction = ‘’x’, y’, ‘z’ : coordinate direction of section plot (default: ‘y’)

* position = int or ‘center’ [cell position of section as integer value] or identifier (default:
‘center’)

Optional arguments:
* resolution = float : set resolution for section (default: self.cube_size)

* model_type = ‘current’, ‘base’ : model type (base “freezed” model can be plotted for com-
parison)

* compute_output = bool : provide output from command line call (default: True)

get_up_to_date()
Get model state

is_up_to_date
Model state

load_parameter_file (filename, **kwds)
Load parameter statistics from external csv file

The csv file should contain a header row with the relevant keywords identifying columns. In order to
be read in correctly, the header should contain the labels:

*‘event’ : event id

‘parameter’ : Noddy parameter (‘Dip’, ‘Dip Direction’, etc.)
*‘mean’ : mean parameter value

*‘type’ = ‘normal’, ‘vonmises’ or ‘uniform’.

In addition, it is necessary to define PDF type and parameters. For now, the following settings are
supported: - ‘+-° = Defines the 2.5th and 97.5th percentiles of the distribution,

similar to a 95% confidence interval.

*‘stdev’ = standard deviation. Only works if type="normal’.
*‘min’ = The minimum value of a uniform distribution (if type="uniform’)

*‘max’ = The maximum value of a uniform distribution (if type="uniform’)

Arguments:
* filename = string : filename
Optional arguments:
* delim = string : delimiter (default: °, or ‘;’, both checked)
plot_section (direction="y’, position="center’, **kwds)
Extended version of plot_section method from pynoddy.output class

Arguments:

80 Chapter 13. Pynoddy modules, classes and functions

pynoddy Documentation, Release

LRI R }

direction = ‘x’, ‘y’, ‘z’ : coordinate direction of section plot (default: ‘y’)

* position = int or ‘center’ [cell position of section as integer value] or identifier (default:

‘center’)

Optional Keywords:

ax = matplotlib.axis : append plot to axis (default: create new plot)

* figsize = (X,y) : matplotlib figsize

colorbar = bool : plot colorbar (default: True)

colorbar_orientation = ‘horizontal’ or ‘vertical’ [orientation of colorbar] (default: ‘verti-
cal’)

title = string : plot title
savefig = bool : save figure to file (default: show directly on screen)

cmap = matplotlib.cmap : colormap (default: YIOrRd)

* fig_filename = string : figure filename

ve = float : vertical exaggeration

layer_labels = list of strings: labels for each unit in plot

layers_from = noddy history file : get labels automatically from history file
resolution = float : set resolution for section (default: self.cube_size)

model_type = ‘current’, ‘base’ : model type (base “freezed” model can be plotted for com-
parison)

data = np.array : data to plot, if different to block data itself

random_draw (**kwds)
Perform a random draw for parameter distributions as defined, and calculate model

This method is based on the model “base-state”, and not the current state (as opposed to the
self.random_perturbation() method).

Optional Keywords:

verbose = bool: print out parameter changes as they happen (default: False)

store_params = bool : store random parameter set (default: True)

random_perturbation (**kwds)
Perform a random perturbation of the model according to parameter statistics defined in
self.param_stats.

Note that by default, this function is identical to random_draw. If model_type is set to ‘current’, then
parameters are varied according using the current values as distribution means - this allows ‘random
walk’ away from the initial model state, which is usually not desired.

Optional arguments:

store_params = bool : store random parameter set (default: True)
verbose = bool: print out parameter changes as they happen (default: False)

model_type = ‘base’, ‘current’ [perturb on basis of current model,] or use base model (de-
fault: ‘base’ model)

reset_base ()
Set events back to base model (stored in self.base_events)

reset_random_seed ()
Reset random seed to defined value (stored in self.seed, set with self.set_random_seed)

13.2. Modules for Kinematic experiments 81

pynoddy Documentation, Release

set_parameter_statistics (param_stats)
Define parameter statistics for uncertainty simulation and sensitivity analysis

param_stats = list : list with relevant statistics defined for event parameters list is organised as:
param_stats[event_id][parameter_name][stats_type] = value

Example: param_stats[2][’Dip”’]["’min”] = 200.
Possible statistics are:
* min = float : minimum bound
* max = float : maximum bound
* type = ‘normal’, ‘uniform’ : distribution type
* stdev = float : standard deviation (if normal distribution)

set_random_seed (random_seed)
Set random seed for reproducible experiments

Arguments:
* random_seed = int (or array-like) : define seed

set_up_to_date(()
Set boolean variable for valid object

shuffle_event_order (event_ids)
Randomly shuffle order of events

Arguments:
* event_ids = [list of event ids] : event ids to be randomly shuffeled

update ()
Update model computation

write_parameter_changes (filepath)

13.2.2 MonteCarlo class

This class provides the basic functionality to perform MonteCarlo error propagation experiments with Noddy.

13.2.3 SensitivityAnalysis class

82 Chapter 13. Pynoddy modules, classes and functions

P

pynoddy, 67

pynoddy.
pynoddy.
pynoddy.
pynoddy.

events, 77
experiment, 79
history, 68
output, 71

PYTHON MODULE INDEX

83

pynoddy Documentation, Release

84 Python Module Index

A

add_event() (pynoddy.history.NoddyHistory method),
68

C

calculate_difference() (pyn-
oddy.output.NoddyTopology method),
73

calculate_overlap() (pynoddy.output.NoddyTopology
method), 73

calculate_unique_topologies() (pyn-
oddy.output.NoddyTopology static method),
73

change_cube_size()
method), 68

change_event_params()
oddy.history.NoddyHistory method), 68

change_height() (pynoddy.events.Unconformity
method), 78

(pynoddy.history.NoddyHistory

(pyn-

collapse_stratigraphy() (pyn-
oddy.output.NoddyTopology method),
73

collapse_structure() (pynoddy.output.NoddyTopology
method), 74

combine_topologies() (pyn-

oddy.output.NoddyTopology static method),
74
compare_dimensions_to()
oddy.output.NoddyOutput method), 71
compute_model() (in module pynoddy), 7, 67
compute_topology() (in module pynoddy), 9, 67
copy_events() (pynoddy.history.NoddyHistory
method), 68
create_footer_from_template()
oddy.history.NoddyHistory method), 68
create_new_history() (pynoddy.history.NoddyHistory
method), 68

(pyn-

(pyn-

D

determine_events()
method), 68

determine_model_stratigraphy()
oddy.history.NoddyHistory method), 68

determine_unit_volumes()
oddy.output.NoddyOutput method), 71

draw_3d_network() (pynoddy.output.NoddyTopology
method), 74

(pynoddy.history.NoddyHistory
(pyn-

(pyn-

INDEX

draw_adjacency_matrix() (pyn-
oddy.output.NoddyTopology method),
74

draw_difference_matrix() (pyn-
oddy.output.NoddyTopology method),

74

draw_graph_matrix() (pynoddy.output.NoddyTopology
static method), 75

draw_mayavi() (pynoddy.output.NoddyTopology
method), 75

draw_mayavi_graph() (pyn-
oddy.output.NoddyTopology static method),
75

draw_network_hive() (pynoddy.output.NoddyTopology
method), 75

draw_network_image()
oddy.output.NoddyTopology
76

Dyke (class in pynoddy.events), 77

E

Event (class in pynoddy.events), 77

Experiment (class in pynoddy.experiment), 79

export_to_vtk() (pynoddy.experiment.Experiment
method), 79

export_to_vtk()
method), 71

(pyn-
method),

(pynoddy.output.NoddyOutput

F

Fault (class in pynoddy.events), 77

filter_node_volumes()
oddy.output.NoddyTopology
76

find_first_match()
method), 76

find_matching()
method), 76

Fold (class in pynoddy.events), 77

freeze() (pynoddy.experiment.Experiment method), 79

G

get_cube_size()
method), 68

get_date_saved()
method), 69

get_drillhole_data()
method), 69

(pyn-
method),

(pynoddy.output.NoddyTopology

(pynoddy.output.NoddyTopology

(pynoddy.history.NoddyHistory
(pynoddy.history.NoddyHistory

(pynoddy.history.NoddyHistory

85

pynoddy Documentation, Release

get_ev_counter()
method), 69
get_event_param()
method), 69
get_event_params()
method), 69
get_extent() (pynoddy.history.NoddyHistory method),
69
get_filename()
method), 69
get_footer_lines()
method), 69
get_info_string()
method), 69
get_origin() (pynoddy.history.NoddyHistory method),
70
get_sampling_line_data()
oddy.experiment.Experiment
79
get_section() (pynoddy.experiment.Experiment
method), 80
get_section_lines()
method), 71
get_section_voxels()
method), 72
get_surface_grid()
method), 72
get_up_to_date() (pynoddy.experiment.Experiment
method), 80

(pynoddy.history.NoddyHistory
(pynoddy.history.NoddyHistory

(pynoddy.history.NoddyHistory

(pynoddy.history.NoddyHistory
(pynoddy.history.NoddyHistory

(pynoddy.history.NoddyHistory

(pyn-
method),

(pynoddy.output.NoddyOutput
(pynoddy.output.NoddyOutput

(pynoddy.output.NoddyOutput

info() (pynoddy.history.NoddyHistory method), 70

is_unique() (pynoddy.output.NoddyTopology method),
76

is_up_to_date (pynoddy.experiment.Experiment
attribute), 80

J

jaccard_coefficient() (pynoddy.output.NoddyTopology
method), 76

L

load_geology()
method), 72

load_history()
method), 70

load_history_from_url()
oddy.history.NoddyHistory method), 70

load_model_info() (pynoddy.output.NoddyOutput
method), 72

(pynoddy.output.NoddyOutput

(pynoddy.history.NoddyHistory

(pyn-

load_parameter_file() (pyn-
oddy.experiment.Experiment method),
80

loadNetwork() (pynoddy.output.NoddyTopology
method), 77

N

NoddyGeophysics (class in pynoddy.output), 71

NoddyHistory (class in pynoddy.history), 68
NoddyOutput (class in pynoddy.output), 71
NoddyTopology (class in pynoddy.output), 73

P

parse_event_lines() (pynoddy.events.Dyke method), 77

parse_event_lines() (pynoddy.events.Fault method), 77

parse_event_lines() (pynoddy.events.Fold method), 78

parse_event_lines() (pynoddy.events.Plug method), 78

parse_event_lines() (pynoddy.events.Shear method), 78

parse_event_lines() (pynoddy.events.Strain method), 78

parse_event_lines() (pynoddy.events.Stratigraphy
method), 78

parse_event_lines() (pynoddy.events.Tilt method), 78

parse_event_lines() (pynoddy.events.Unconformity
method), 79

plot_section() (pynoddy.experiment.Experiment
method), 80

plot_section() (pynoddy.output.NoddyOutput method),
72

Plug (class in pynoddy.events), 78

pynoddy (module), 67

pynoddy.events (module), 77

pynoddy.experiment (module), 79

pynoddy.history (module), 68

pynoddy.output (module), 71

R

random_draw() (pynoddy.experiment.Experiment
method), 81

random_perturbation() (pyn-
oddy.experiment.Experiment method),
81

read_adjacency_matrix() (pyn-
oddy.output.NoddyTopology method),
77

read_gravity() (pynoddy.output.NoddyGeophysics
method), 71

read_magnetics() (pynoddy.output.NoddyGeophysics
method), 71

read_properties() (pynoddy.output.NoddyTopology
method), 77

reorder_events() (pynoddy.history.NoddyHistory
method), 70

reset_base() (pynoddy.experiment.Experiment
method), 81

reset_random_seed() (pynoddy.experiment.Experiment
method), 81

S

set_basename() (pynoddy.output.NoddyOutput
method), 73

set_event_lines() (pynoddy.events.Event method), 77

set_event_number() (pynoddy.events.Event method),
77

set_event_params()
method), 70

(pynoddy.history.NoddyHistory

86

Index

pynoddy Documentation, Release

set_extent() (pynoddy.history.NoddyHistory method),

70

set_origin() (pynoddy.history.NoddyHistory method),
70

set_parameter_statistics() (pyn-
oddy.experiment.Experiment method),
81

set_random_seed() (pynoddy.experiment.Experiment
method), 82

set_up_to_date() (pynoddy.experiment.Experiment
method), 82

Shear (class in pynoddy.events), 78

shuffle_event_order() (pyn-
oddy.experiment.Experiment method),
82

Strain (class in pynoddy.events), 78

Stratigraphy (class in pynoddy.events), 78

swap_events() (pynoddy.history.NoddyHistory
method), 70

T

Tilt (class in pynoddy.events), 78

U

Unconformity (class in pynoddy.events), 78
update() (pynoddy.experiment.Experiment method), 82

update_all_event_properties() (pyn-
oddy.history.NoddyHistory method), 71
update_event_numbers() (pyn-

oddy.history.NoddyHistory method), 71
update_properties() (pynoddy.events.Event method), 77

W

write_history() (pynoddy.history.NoddyHistory
method), 71

write_parameter_changes() (pyn-
oddy.experiment.Experiment method),
82

write_summary_file() (pyn-
oddy.output.NoddyTopology method),
77

Index

87

	pynoddy
	How does it work?
	Installation of the pynoddy package
	Installation of Noddy
	Documentation
	How to get started: tutorial notebooks
	Dependencies
	3-D Visualisation
	License
	What is Noddy?
	References

	pynoddy.noddy module
	pynoddy.topology module
	Simulation of a Noddy history and visualisation of output
	Compute the model
	Loading Noddy output files
	Plotting sections through the model
	Export model to VTK

	Change Noddy input file and recompute model
	Get basic information on the model
	Change model cube size and recompute model
	Estimating computation time for a high-resolution model
	Simple convergence study

	Geological events in pynoddy: organisation and adpatiation
	Loading events from a Noddy history
	Changing aspects of geological events
	Changing the order of geological events
	Determining the stratigraphic difference between two models

	Creating a model from scratch
	Defining a stratigraphy
	Add a fault event
	Complete Model Set-up

	Read and Visualise Geophysical Potential-Fields
	Read history file from Virtual Explorer
	Visualise calculated geophysical fields
	Change history and compare gravity
	Figure with all results

	Reproducible Experiments with pynoddy
	Defining an experiment
	Loading an example model from the Atlas of Structural Geophysics

	Gippsland Basin Uncertainty Study
	The Gippsland Basin Model
	Generate randomised model realisations
	Exporting results to VTK for visualisation

	Sensitivity Analysis
	Theory: local sensitivity analysis
	Defining the responses
	Setting up the base model
	Define parameter uncertainties
	Calculate total stratigraphic distance
	Function to modify parameters
	Full sensitivity analysis

	Simulation of a Noddy history and analysis of its voxel topology
	Compute the model
	Loading Topology output files

	Pynoddy modules, classes and functions
	Basic modules (low-level access)
	Modules for Kinematic experiments

	Python Module Index
	Index

