
Logistic Regression Goodness-Of-Fit using
Statsmodels and Scientistmetrics

version 0.0.3

Duvérier DJIFACK ZEBAZE

Table des matières

1 Logistic Regression 1

1.1 Dataset . 1

1.1.1 Examples . 1

1.1.2 Description of the data . 1

1.2 Goodness of fit . 3

1.2.1 Pseudo - 𝑅2 . 3

1.2.2 Others metrics . 6

1.2.3 Likelihood Ratio Test . 10

1.2.4 Hosmer & Lemeshow test . 12

1.2.5 Mann - Whitney 𝑈 test . 13

i

1
Logistic Regression

Sommaire
1.1 Dataset . 1
1.2 Goodness of fit . 3

Logistic regression, also called a logit model, is used to model dichotomous outcome
variables. In the logit model the log odds of the outcome is modeled as a linear combi-
nation of the predictor variables.

1.1 Dataset

1.1.1 Examples

Example 1. Suppose that we are interested in the factors that influence whether a
political candidate wins an election. The outcome (response) variable is binary (0/1) ;
win or lose. The predictor variables of interest are the amount of money spent on the
campaign, the amount of time spent campaigning negatively and whether or not the
candidate is an incumbent.

Example 2. A researcher is interested in how variables, such as GRE (Graduate Record
Exam scores), GPA (grade point average) and prestige of the undergraduate institution,
effect admission into graduate school. The response variable, admit/don’t admit, is a
binary variable.

1.1.2 Description of the data

For our data analysis below, we are going to expand on Example 2 about getting into
graduate school. We have generated hypothetical data, which can be obtained from
our website from within Python.

Load dataset
import pandas as pd
binarie = pd.read_csv("https://stats.idre.ucla.edu/stat/data/binary.csv")
view the first few rows of the data
binarie.head()

1

2 Chapitre 1. Logistic Regression

admit gre gpa rank
0 0 380 3.61 3
1 1 660 3.67 3
2 1 800 4.00 1
3 1 640 3.19 4
4 0 520 2.93 4

Informations about columns
binarie.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 4 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 admit 400 non-null int64
1 gre 400 non-null int64
2 gpa 400 non-null float64
3 rank 400 non-null int64
dtypes: float64(1), int64(3)
memory usage: 12.6 KB

Convert
binarie["rank"] = binarie["rank"].astype("category")
binarie.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 4 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 admit 400 non-null int64
1 gre 400 non-null int64
2 gpa 400 non-null float64
3 rank 400 non-null category
dtypes: category(1), float64(1), int64(2)
memory usage: 10.1 KB

Logistic model
import statsmodels.formula.api as smf
glm = smf.logit("admit~gre+gpa+rank", data = binarie).fit(disp=False)
print(glm.summary2())

Results: Logit
===
Model: Logit Method: MLE
Dependent Variable: admit Pseudo R-squared: 0.083
Date: 2024-04-28 16:55 AIC: 470.5175
No. Observations: 400 BIC: 494.4663
Df Model: 5 Log-Likelihood: -229.26

2

1.2. Goodness of fit 3

Df Residuals: 394 LL-Null: -249.99
Converged: 1.0000 LLR p-value: 7.5782e-08
No. Iterations: 6.0000 Scale: 1.0000
--
Coef. Std.Err. z P>|z| [0.025 0.975]
--
Intercept -3.9900 1.1400 -3.5001 0.0005 -6.2242 -1.7557
rank[T.2] -0.6754 0.3165 -2.1342 0.0328 -1.2958 -0.0551
rank[T.3] -1.3402 0.3453 -3.8812 0.0001 -2.0170 -0.6634
rank[T.4] -1.5515 0.4178 -3.7131 0.0002 -2.3704 -0.7325
gre 0.0023 0.0011 2.0699 0.0385 0.0001 0.0044
gpa 0.8040 0.3318 2.4231 0.0154 0.1537 1.4544
===

1.2 Goodness of fit

1.2.1 Pseudo - 𝑅2

For logistic regression, there have been many proposed pseudo - 𝑅2.

1.2.1.1 Efron’s 𝑅2

Efron’s R2 is calculated by taking the sum of the squared model residuals, divided by
the total variability in the dependent variable. This R2 equals the squared correlation
between the predicted values and actual values, however, note that model residuals
from generalized linear models are not generally comparable to those of OLS.

𝑅2
EFRON = 1 −

𝑖=𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝜋𝑖)
2

𝑖=𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑦)2

where 𝑦𝑖 is the 𝑖−th outcome label (e.g. 1 or 0), ̂𝜋𝑖 the 𝑖−th predicted outcome proba-
bility. 𝑦 is the expected value of the observed outcomes

Efron r2
from scientistmetrics import r2_efron
r2_efron(glm)

0.1014324863895315

1.2.1.2 McFadden’s 𝑅2

McFadden’s R squared measure is defined as

𝑅2
McFadden = 1 − ln ℒ̂full

ln ℒ̂null

3

4 Chapitre 1. Logistic Regression

where ℒ̂full is the estimated likelihood of the full model and ℒ̂null the estimated likeli-
hood of the null model (model with only intercept).

McFadden R2
from scientistmetrics import r2_mcfadden
r2_mcfadden(glm,adjust=False)

1.2.1.3 McFadden’s Adjusted 𝑅2

McFadden’s adjusted R squared measure is defined as

𝑅2
McFadden = 1 − ln ℒ̂full − 𝑘

ln ℒ̂null

where 𝑘 is the number of parameters (e.g. number of covariates associated with non -
zero coefficients).

McFadden Adjusted R2
r2_mcfadden(glm,adjust=True)

1.2.1.4 Cox & Snell 𝑅2

Cox and Snell R squared is defined as follow :

𝑅2
CS = 1 − (ℒ0

ℒ𝑛
)

2/𝑛

where ℒ𝑛 and ℒ0 are the likelihhods for the model being fitted and the null model,
respectively.

Cox & Snell R2
from scientistmetrics import r2_coxsnell
r2_coxsnell(glm)

1.2.1.5 McKelvey & Zavoina 𝑅2

McKelvey and Zavoina R2 is based on the explained variance, where the variance of
the predicted response is divided by the sum of the variance of the predicted response
and residual variance. For binomial models, the residual variance is either 𝜋2/3 for
logit-link and 1 for probit-link.

𝑅2
McKelvey =

𝜎2
̂𝑦

𝜎2
̂𝑦 + 𝜋2

3
where 𝜎2

̂𝑦 is the variance of the predicted probabilies.

4

1.2. Goodness of fit 5

McKelvey a Zavoina R2
from scientistmetrics import r2_mckelvey
r2_mckelvey(glm)

0.006682730898547062

1.2.1.6 Nagelkerke/Cragg & Uhler’s 𝑅2

The Nagelkerke 𝑅2 come from comparing the likelihood of your full specification to an
intercept only model. The formula is :

𝑅2
Nagelkerke =

1 − (lnℒ(0)
lnℒ(𝛽))

2/𝑛

1 − lnℒ(0)2/𝑛

Nagelkerke R2
from scientistmetrics import r2_nagelkerke
r2_nagelkerke(glm)

1.2.1.7 Tjur 𝑅2

This fit statistic applies only to logistic regression.

Also known as Tjur’s 𝐷 or Tjur’s coefficient of discrimination, the Tjur pseudo 𝑅2 value
compares the average fitted probability ̂𝜋 of the two response outcomes. In particular
it is the difference between the average fitted probability for the binary outcome coded
to 1 (success level) and the average fitted probability for the binary outcome coded to
0 (the failure level).

If the coded response 𝑦 has 𝑛1 1𝑠 and 𝑛0 0𝑠 then :

𝑅2
tjur = 1

𝑛1
∑ ̂𝜋 (𝑦 = 1) − 1

𝑛0
∑ ̂𝜋 (𝑦 = 0)

Note that 0 ≤ 𝑅2
tjur ≤ 1. If the model has no discriminating power, then 𝑅2

tjur = 0. If
the model has perfect discriminating power, then 𝑅2

tjur = 1.

Tjur R2
from scientistmetrics import r2_tjur
r2_tjur(glm)

0.10178650650542126

1.2.1.8 Count 𝑅2

Count R squared is the total number of correct predictions over the total number of
counts.

5

6 Chapitre 1. Logistic Regression

𝑅2
count = 𝐶

𝑇
where 𝐶 is the total number of correctly classified observations with treating a proba-
bility below 0.5 as a 0 and above as a 1 ; 𝑇 is the total number of observations

Count R2
from scientistmetrics import r2_count
r2_count(glm)

0.71

1.2.1.9 Adjust count 𝑅2

Adjusted count r2 is the correct number of counts minus the most frequent outcome
divided by the total count minus the most frequent outcome.

𝑅AdjCount = 𝐶 − 𝑛
𝑇 − 𝑛

where 𝐶 is the total number of correctly classified observations with treating a proba-
bility below 0.5 as a 0 and above as a 1 ; 𝑇 is the total number of observations and 𝑛
the count of the most frequent outcome.

Adjust count r2
from scientistmetrics import r2_count_adj
r2_count_adj(glm)

0.08661417322834646

1.2.2 Others metrics

1.2.2.1 Confusion Matrix

A confusionmatrix is a table with the distribution of classifier performance on the data.
It’s a 𝐾 × 𝐾 matrix used for evaluating the performance of a classification model. It
shows us how well the model is performing, what needs to be improved, and what
error it’s making.

Figure 1.1 – Example of confusion matrix

where :

6

1.2. Goodness of fit 7

— TP – true positive (the correctly predicted positive class outcome of the model),
— TN – true negative (the correctly predicted negative class outcome of the model),
— FP – false positive (the incorrectly predicted positive class outcome of the model),
— FN – false negative (the incorrectly predicted negative class outcome of the mo-

del).

Confusion Matrix
glm.pred_table()

array([[254., 19.],
[97., 30.]])

1.2.2.2 Accuracy score

An Accuracy score (or simply Accuracy) is a Classification measure in Machine Lear-
ning that represents a percentage of correct predictions made by a model. To get the
Accuracy score, take the number of right guesses and divide it by the total number of
predictions made.

Accuracy = Number of correct predictions
Total number of predictions

= 𝑇 𝑃 + 𝑇 𝑁
𝑇 𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇 𝑁

Accuracy score
from scientistmetrics import accuracy_score
accuracy_score(glm)

0.71

1.2.2.3 Error rate

Error rate refers to a measure of the degree of prediction error of a model made with
respect to the true model.

Error rate = Number of incorrect predictions
Total number of predictions

= 1 − Accuracy

Error rate
from scientistmetrics import error_rate
error_rate(glm)

0.29000000000000004

1.2.2.4 Recall

The recall is a metric that quantifies the number of correct positive predictions made
out of all positive predictions that could be made by the model.

7

8 Chapitre 1. Logistic Regression

Recall = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁

The recall is also called sensitivity in binary classification.

Recall score
from scientistmetrics import recall_score
recall_score(glm)

1.2.2.5 Precision

Precision quantifies the number of correct positive predictions made out of positive
predictions made by the model. Precision calculates the accuracy of the True Positive.

Precision = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑃

Precision score
from scientistmetrics import precision_score
precision_score(glm)

1.2.2.6 F1 - score

F1-score keeps the balance between precision and recall. It’s often used when class
distribution is uneven, but it can also be defined as a statistical measure of the accu-
racy of an individual test.

𝐹1 = 2 × precision × recall
precision + recall

F1 - score
from scientistmetrics import f1_score
f1_score(glm)

1.2.2.7 Balanced accuracy

Balanced Accuracy is used in both binary and multi-class classification. It’s the arith-
metic mean of sensitivity and specificity, its use case is when dealing with imbalanced
data, i.e. when one of the target classes appears a lot more than the other.

Balanced Accuracy = sensitivity + specificaty
2

Sensitivity : This is also known as true positive rate or recall, it measures the pro-
portion of real positives that are correctly predicted out of all positive predictions that
could be made by the model.

sensitivity = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁

8

1.2. Goodness of fit 9

Specificity : Also known as true negative rate, it measures the proportion of correctly
identified negatives over the total negative predictions that could bemade by themodel.

specificity = 𝑇 𝑁
𝑇 𝑁 + 𝐹𝑃

Balanced accuracy
from scientistmetrics import balanced_accuracy_score
balanced_accuracy_score(glm)

1.2.2.8 Average precision

AP summarizes a precision-recall curve as the weighted mean of precisions achieved
at each threshold, with the increase in recall from the previous threshold used as the
weight :

𝐴𝑃 = ∑
𝑛

(𝑅𝑛 − 𝑅𝑛−1) 𝑃𝑛

where 𝑃𝑛 and 𝑅𝑛 are the precision and recall at the nth threshold.

Average precision score
from scientistmetrics import average_precision_score
average_precision_score(glm)

1.2.2.9 Brier score loss

The Brier score is a proper score function that measures the accuracy of probabilistic
predictions. It is applicable to tasks in which predictions must assign probabilities
to a set of mutually exclusive discrete outcomes. The Brier score measures the mean
squared difference between the predicted probability and the actual outcome.

This function returns the mean squared error of the actual outcome 𝑦 ∈ {0, 1} and the
predicted probability estimated 𝑝 = ℙ (𝑦 = 1).

𝐵𝑆 = 1
𝑛

𝑖=𝑛−1
∑
𝑖=0

(𝑦𝑖 − 𝑝𝑖)
2

The Brier score loss is also between 0 to 1 and the lower the value (the mean square
difference is smaller), the more accurate the prediction is.

Brier score loss
from scientistmetrics import brier_score_loss
brier_score_loss(glm)

1.2.2.10 ROC - AUC

ROC_AUC stands for « Receiver Operator Characteristic_Area Under the Curve ». It
summarizes the trade-off between the true positive rates and the false-positive rates

9

10 Chapitre 1. Logistic Regression

for a predictive model. ROC yields good results when the observations are balanced
between each class.

This metric can’t be calculated from the summarized data in the confusion matrix.
Doing so might lead to inaccurate and misleading results. It can be viewed using the
ROC curve, this curve shows the variation at each possible point between the true
positive rate and the false positive rate.

ROC Curve
from scientistmetrics import ggroc
p = ggroc(glm)
print(p)

0 0.25 0.50 0.75 1
specificity

0

0.25

0.50

0.75

1

se
ns

iti
vi

ty

ROC Curve

Figure 1.2 – ROC Curve

1.2.3 Likelihood Ratio Test

The likelihood-ratio test in statistics compares the goodness of fit of two nested re-
gression models based on the ratio of their likelihoods, specifically one obtained by
maximization over the entire parameter space and another obtained after imposing
some constraint. A nested model is simply a subset of the predictor variables in the
overall regression model.

For instance, consider the following regression model with four predictor :

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4

The following model, with only two of the original predictor variables, is an example of
a nested model.

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2

To see if these two models differ significantly, we can use a likelihood ratio test with
the following null and alternative hypotheses.

Hypothèse 1.1 — 𝐻0 : Both the full and nested models fit the data equally well. As
a result, you should employ the nested model.

10

1.2. Goodness of fit 11

— 𝐻1 : The full model significantly outperforms the nested model in terms of data fit.
As a result, you should use the entire model.

The test statistics is giving by :

𝐿𝑅𝑇 = −2 (log(ℒ(𝛽nested)) − log(ℒ(𝛽full)))

If the p-value of the test is less than a certain threshold of significance (e.g., 0.05), we
can reject the null hypothesis and conclude that the full model provides a significantly
better fit.

Likelihood Ratio Test
from scientistmetrics import LikelihoodRatioTest

1.2.3.1 Full model versus null model

Lets compare the full model with null model.

Likelihood Ratio Test : Full model versus Null Model
lr_test = LikelihoodRatioTest(glm)
print(f"""Likelihood Ratio Test:

- statistic: {lr_test.statistic}
- pvalue : {lr_test.pvalue}

""")

Likelihood Ratio Test:
- statistic: 41.45902514596207
- pvalue : 7.578193995643944e-08

From the output we can see that the chi-squared statistic is 41.459 and the corres-
ponding p-value is 0. Since the p-value is less than 0.05, we reject the null hypothesis.

1.2.3.2 Full model versus nested model

We run a model removing the rank variable. We will compare the full model and the
the nested model which have always two predictors.

Likelihood Ratio Test : full model versus nested model
glm2 = smf.logit("admit~gre+gpa", data = binarie).fit(disp=False)
lr_test2 = LikelihoodRatioTest(glm,glm2)
print(f"""Likelihood Ratio Test:

- statistic: {lr_test2.statistic}
- df_denom : {lr_test2.df_denom}
- pvalue : {lr_test2.pvalue}

""")

Likelihood Ratio Test:
- statistic: 21.826489208929843
- df_denom : 3.0
- pvalue : 7.088456177668665e-05

11

12 Chapitre 1. Logistic Regression

1.2.4 Hosmer & Lemeshow test

The Hosmer-Lemeshow test (HL test) is a goodness of fit test for logistic regression,
especially for risk prediction models. A goodness of fit test tells you how well your data
fits the model. Specifically, the HL test calculates if the observed event rates match
the expected event rates in population subgroups.

The Hosmer - Lemeshow test statistic is given by :

𝐻 =
𝑔=𝐺
∑
𝑔=1

⎛⎜
⎝

(𝑂1𝑔 − 𝐸1𝑔)2

𝐸1𝑔
+ (𝑂0𝑔 − 𝐸0𝑔)2

𝐸0𝑔
⎞⎟
⎠

=
𝑔=𝐺
∑
𝑔=1

⎛⎜
⎝

(𝑂1𝑔 − 𝐸1𝑔)2

𝐸1𝑔
+ (𝑁𝑔 − 𝑂1𝑔 − (𝑁𝑔 − 𝐸1𝑔))2

𝑁𝑔 (1 − 𝜋𝑔)
⎞⎟
⎠

=
𝑔=𝐺
∑
𝑔=1

(𝑂1𝑔 − 𝐸1𝑔)2

𝑁𝑔𝜋𝑔 (1 − 𝜋𝑔)

Here 𝑂1𝑔, 𝐸1𝑔, 𝑂0𝑔, 𝐸0𝑔, 𝑁𝑔, and 𝜋𝑔 denote the observed 𝑌 = 1 events, expected 𝑌 = 1
events, observed 𝑌 = 0 events, expected 𝑌 = 0 events, total observations, predicted
risk for the 𝑔𝑡ℎ risk decile group, and 𝐺 is the number of groups. The test statistic
asymptotically follows a 𝜒2 distribution with 𝐺 − 2 degrees of freedom. The number of
risk groups may be adjusted depending on how many fitted risks are determined by
the model. This helps to avoid singular decile groups.

Hosmer - Lemeshow test
from scientistmetrics import HosmerLemeshowTest
hl_test = HosmerLemeshowTest(glm)
print(f"""Hosmer - Lemeshow Test

- statistic : {hl_test.statistic}
- df_denom : {hl_test.df_denom}
- pvalue : {hl_test.pvalue}

""")

Hosmer - Lemeshow Test
- statistic : 11.08547199669248
- df_denom : 8
- pvalue : 0.1969031159278586

It is possible to verifie our result using the hoslem.test function from the R package
ResourceSelection.

y = glm.model.endog
fit = glm.predict()

Hosmer Lemeshow Test in R
ResourceSelection::hoslem.test(pyy,pyfit,g=10)

##
Hosmer and Lemeshow goodness of fit (GOF) test

12

https://rdrr.io/cran/ResourceSelection/man/hoslem.test.html
https://cran.r-project.org/web/packages/ResourceSelection/index.html

1.2. Goodness of fit 13

##
data: pyy, pyfit
X-squared = 11.085, df = 8, p-value = 0.1969

1.2.5 Mann - Whitney 𝑈 test

In statistics, the Mann - Whitney 𝑈 test is a nonparametric test of the null hypothesis
tha, for randomly selected values 𝑋 and 𝑌 from two populations, the probability of 𝑋
being greater than 𝑌 is equal to the probability of 𝑌 being greater than 𝑋.

1.2.5.1 𝑈 statistic

Let 𝑋1, … , 𝑋𝑛 be an i.i.d. sample from 𝑋 and 𝑌1, … , 𝑌𝑚 an i.i.d. sample from 𝑌 , and
both sampls independent of each other. The corresponding Mann - Withney 𝑈 statistic
is defined as the smaller of :

⎧{
⎨{⎩

𝑈1 = 𝑛 × 𝑚 + 𝑛(𝑛 + 1)
2 − 𝑅1

𝑈2 = 𝑛 × 𝑚 + 𝑚(𝑚 + 1)
2 − 𝑅2

with 𝑅1, 𝑅2 being the sum of the ranks in groups 1 and 2, respectively.

1.2.5.2 Area - Under Curve (AUC) statistic for ROC curves

The 𝑈 statistic is related to the area under the receiver operating characteristic curve :

𝐴𝑈𝐶 = 𝑈1
𝑛 × 𝑚

1.2.5.3 Calculations

The test involves the calculation of a statistic, usually called 𝑈 , whose distribution
under the null hypothesis is known. In the case of small samples, the distribution is
tabulated, but for sample sizes above 20, approximation using the normal distribution
is fairly good. Some books tabulate statistics equivalent to 𝑈 , such as the sum of ranks
in one of the samples, rather than 𝑈 itself.

For larger samples :

1. Assign numeric ranks to all the observations (put the observations from both
groups to one set), beginning with 1 for the smallest value.

2. Now, add up the ranks for the observations which came from sample 1. The sum
of ranks in sample 2 is now determined, since the sum of all the ranks equals
𝑁(𝑁 + 1)/2 where 𝑁 is the total number of observations.

3. 𝑈 is then given by :

𝑈1 = 𝑅1 − 𝑛1(𝑛1 + 1)
2

13

14 Chapitre 1. Logistic Regression

where 𝑛1 is the sample size for sample 1, and 𝑅1 is the sum of the ranks in
sample 1. Note that it doesn’t matter which of the two samples is considered
sample 1. An equally valid formula for 𝑈 is

𝑈2 = 𝑅2 − 𝑛2(𝑛2 + 1)
2

The smaller value of 𝑈1 and 𝑈2 is the one used when consulting significance
tables. The sum of the two values is given by

𝑈1 + 𝑈2 = 𝑅1 − 𝑛1(𝑛1 + 1)
2 + 𝑅2 − 𝑛2(𝑛2 + 1)

2

Knowing than 𝑅1 + 𝑅2 = 𝑁(𝑁 + 1)
2 and 𝑁 = 𝑛1 + 𝑛2, and doing some algebra,

we find thant the sum is

𝑈1 + 𝑈1 = 𝑛1𝑛2

Mann - Whitney U test
from scientistmetrics import MannWhitneyTest
mn_test = MannWhitneyTest(glm)
print(f"""Mann - Whitney Test

- statistic : {mn_test.statistic}
- pvalue : {mn_test.pvalue}

""")

Mann - Whitney Test
- statistic : -0.6678622859927071
- pvalue : 0.747889248394069

14

	Logistic Regression
	Dataset
	Examples
	Description of the data

	Goodness of fit
	Pseudo - R2
	Others metrics
	Likelihood Ratio Test
	Hosmer & Lemeshow test
	Mann - Whitney U test

