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Bayecsian analysis of quasielastic neutron scattering data
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We consider the analysis of quasielastic neutron scattering data from a Bayesian point-of-view. This enables us to use
probability theory to assess how many quasielastic components there is most evidence for in the data. as well as providing
an optimal estimate of their parameters. We review the theory briefly, describe an cfficient algorithm for its implementa-
tion and illustrate its use with both simulated and real data.

1. Introduction

The analysis of quasiclastic neutron scattering
(QENS) data, in common with all data analysis,
is an exercise in scientific inference: given a finite
set of noisy measurements and a knowledge of
the experimental setup, we wish to learn about
some object of interest. In the case of QENS we
arc intcrested in the rotational and diffusive
motions of atoms and molecules.

If we have a physical model for the system
then the data analysis problem usually reduces to
a least-squarcs calculation for obtaining the best
estimate of its paramcters. In the absence of
such a model, QENS data (assumed to be) col-
lected at constant momentum transfer are often
analysed in terms of the sum of a fcw Lorent-
zians:

N
d(e) = [A‘,E(E) +% A ms "

+ b(e) + a(e), (n

—W—)] @ rte)

where d are the data, as a function of energy
transfer ¢, r 1s the instrumental resolution func-
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tion, b is the background signal and o is the
noise. The inferred values of the amplitudes and
widths { A .w,} indicate the time-scale and abun-
dance of the molecular motions; their variation
with momentum transfer suggests their geometri-
cal nature.

In section 2 we outline the theory for the
Bayesian analysis of the problem formulated in
eq. (1); this enables us to assess how many
quasiclastic components there 1s most evidence
for in the data, as well as providing an optimal
estimate of their parameters. An algorithm for
the practical implementation of the theoretical
results is described in scction 3 and its use is
illustrated in section 4. After a poignant anec-
dote in section 5, we conclude with section 6.

2. The method

In 1946, Cox [1] showed that any method of
inference which satisfies simple rules for logical
and consistent reasoning must be equivalent to
the use of ordinary probability theory, as origi-
nally developed by Bayes [2] and Laplace [3].
The use of probability theory in this way is now
called the Bayesian approach, to distinguish it
from its earlier rejection as a tool for scientific
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inference by the schools of conventional statis-
tics. For a good review of the Bayesian approach
and its historical development, the reader is
referred to the paper by Loredo [4]: it also
contains references to many excellent papers by
Jaynes (e.g. refs. [5-7]). Let us outline the
Baycsian approach for the analysis of the “sum
of Lorentzians™ problem in ¢q. (1).

2.1 Purameter estimuaiion

First consider the case when the number of
Lorentzian compaonents N 1s known; the problem
then reduces to one of estimating 2N + | param-
cters from the data (A, {A. w ). j=1.2.

.~). Our inference about the amplitudes
and widths of the lLorentzians is summarised by
the conditional probability distribution function
(PDIY)

prob(A,. {4, w | N d).

where | means “given”. The best estimate of
the parameters is given by the maximum of this
PDF; their reliability is given by its width or
spread.

In order 1o compute prob{ A, { A, w,} | N, d)
we need to use Bayes™ theorem; this relates the
PDF we require to one which we can calculate
and to another which encodes our prior
knowledge:

prob(A,. 1A, w.} [N d)
wprob{d | A, (A, w N

xprob(A, {A, w1 N). {2)

The term prob( A, {A w )| N} on the far right
is called the prior PDF and represents our state
of knowledge (or ignorance) about the parame-
ters before we have analysed the data. Our prior
stale ol knowledge is modified by the so-called
likelihvod function,

prob(d | A,. {A w} N).

which tells us how likely it is thut we would have
obtaincd our particular data set if we were given
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a scl of (irial) parameter values. The product of
the prior PDF and the likelihood function yields
the posterior PDF we require.

If we make the assumption that the data are
independent (so that onc mecasurcment docs not
affect another) and subject to additive Gaussian
noise, then the likelihood function reduces to the
familiar form exp(—1x 7). where x " is the usual
sum-of-squared-residuals misfit statistic. 1If we
also make the simplifying assumption that our
prior state of ignorance is best represented by
the assignment

problA . { A, w | | N)=constant .

then the maximum of the posterior PDF 1s given
by the maximum likelihood solution. In other
words, our best estimate of the amplitudes and
widths of the Lorentzians is given by that sct of
parameters which minimises y*. This, then, pro-
vides us with the justification for using the meth-
od of least-squares.

2.2. Model selection

Let us move on to consider the case when the
number of Lerentzian components is not known;
the problem now becomes one of model selec-
tion, For example. 1s there one quasielastc com-
poncnt or twoe? The proccdure for addressing
this problem skctched out below is essentially
the same as that found in ch. 5 of the book by
Jeffreys [R]: details can also be found in Gull [9],
Bretthorst {10] and Sivia and Carlile [11].

Basically. we need to compute the posterior
PDT for the number of Lorentzians: prob(N | d).
We begin by using Bayes’ theorem:

prob(N | d) = probid | N) x prob(N) . (3)

Assuming that wc have no a priori reason 1o
prefer a particular number of quasielastic com-
ponents, we can take the prior PDF prob(N) to
be uniform and absorb it into the proportionality
constant,  To  proceed [further, we  express
prob(d | M) as @ marginal distribution over the
joint PDF for the data and the amplitude and
width parameters:
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probi(N|d)e [ | -+ | prob(d, A,, {A,w,} | N)
7 i’
dA,d™4, d%w, . (4)

Finally, we expand the joint PDF in terms of a
conditional (likelihood) PDF and a prior PDF:

prob(N [ ) | [+ probid| A, {4,,). ¥
x prOb(Aﬂ" {A]’w]} | “\;)
dA,d™. d%w, . (5)

This is in fact just the normalisation constant for
Bayes’ theorem in ¢q. (2). There we ignored this
term because it was irrclevant for the parameter
estimation problem. For modcl selection, how-
ever, it turns out to be the crucial factor; it is
often referred to as the evidence.

If we make some simplifying assumptions,
similar to those nceded to justify the use of
least-squares. then the multiple integral of eq.
(5) can be approximated by (e.g. see ref. [11])

N _'\'ﬁun’j
prob(N | d) = M v X ML .
I fIVH'(Am‘dX] VDel(VVX‘.)

(6)

where y,,, is the best-fit value of x°, assuming N
Lorentzians, and Det(VVx®) is the determinant
of the Hessian matrix (evaluated at x.,. ). A ..
and w_ . are the estimates of the maximum
amplitude and width of any Lorentzian. Before
describing a simple algorithm for the evaluation
of prob(N|d) given by eq. (6), let us mention
how probability theory allows us to deal with
systematic uncertainties.

2.3. Dealing with systemaiic uncertainiies

In the preceding scctions, we have approxi-
mated the likelihood function as exp(—31x7). In
order to compute x°, we must be able to calcu-
late an 1deal data-set given trial parameter-values
for the amplitudes and widths. Equation (1} tells
us that, in order to do this, we need to know the
resolution function and the background signal.

Usually we try to obtain a fairly good estimate of
both by collecting data using a standard elastic
scatterer and an empty cell, but can we do
anything if we are not quite so fortunate?

The answer is yes, at least in principle: we just
integrate out the nuisance parameters, charac-
terising the systematic uncertainties, from the
joint PDF {(marginalisatior). Suppose that we
had an unknown flat background B; eq. (4), for
cxample, would then become

prob(N\d)xf---J prob(d, A, {A W}, B

N)
dAyd"4;d%w dB. (7)

The analysis would follow along the same lines
as before, leading to eq. (6), but with B now
contributing to both y’ . and the Hessian
mairix.

Although probability theory allows us to deal
with systematic uncertainties, we should not take
this to mean that there is no need or value in
trying to obtain a good estimate of the resolution
function and background. Even when we can use
the theoretical apparatus in practice. systematic
uncertaintics stitl lead to a (significant) reduction
in the reliability of the inferred Lorentzian pa-
rameters.

3. An algorithm

In order to make use of the analysis of section
2, we need an algorithm for its practical im-
plementation. A Monte Carlo procedure would
be the most robust, both in terms of finding the
optimal parameters and for evaluating the multi-
ple integral of cq. (5); unfortunately, it also
tends to be very intensive in computer time.
Instead, we outline an algorithm which uses
discrete 1-dimensional scarches and lincarised
multidimensional optimisation, in combination
with the approximation of eq. (6). We have used
this simple algorithm with considerable success
and found it to be fairly efficient.

First let us state our modclling assumptions.
We assume that the data are described, as in eq.
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(1), by a 8-function to represent elastic scatter-
ing plus a small number of Lorentzians 1o repre-
sent quasielastic scattering. The resolution funce-
tion is assumed to be known and stored on fincly
digitised grid (suitable for coraputer manipula-
tion). We take the background to be linear,
heing described by two (nuisance) parameters.
To compensate for any experimental misalign-
ment. we introduce a (nuisance) parameter for
an e-axis off-set.

The paramcters 4 and w . needed for eq.
(6). are estimated from a cursory look at the
data. A Is given by the integrated intensity in
the data, since no amplitude can exceed this
value (assuming that the resolution function has
been normalised to unity), w18 given by the
cocrgy-range of the data, since Lorentzians of
widths much greater than this cannot be dis-
tinguished from a flat background.

We start by refining the parameters of the
linear background. the s-axis off-set and the
amplitude of a #-function. This is done using a
Newton—Raphson algorithm (e.g. see ref. [12]),
which requires the computation of the first and
second derivatives of y° with respect to these
parameters. Having found )(fm” and the deter-
minant of VVx°, we can usc ¢q. (0) to caleulate
the posterior probability for their being no quasi-
elastic components: prob(N = 0}d).

Next. we conduct an explicit 1-dimensional
scarch for the optimal width ol a possible first
Lorenlzian component. If we keep the g-axis
off-set paramcter fixed, then the optimisation of
the amplitudes of the d-tunction and the frst
Lorentzian, for a given width, is just a sunple
linear problem. Having come close to the opti-
mal solution, we refine ali the parameters in the
one-Lorentzian  model  simultaneously  (using
Newron—Raphson). We can then calculate the
probability for there being just onc quasielastic
component: prob(N = 1| d).

We continue in this manner, adding on¢ more
Lorentzian at a time until a maximum in the
posterior PDF for the number of quasielastic
components is evident. For each additional com-
ponent, the optimisation of the parameters is
split into two parts. In the first stage there is an
explicit scarch for the best width of the new

Lorentzian: all other non-lincar parameters are
held fixed during this period. so that only the
amplitudes and lincar background arc refined. In
the second stage. all the parameters of the M-
Lorentzian model are refined simultancously.

Before we go on to illustrate the use of this
alporithm, we should make a couple of addition-
al remarks. It 1s helplul to use range-parameters
such as A and w10 scale the parameters to
be optimised. That 1s to say, if we work in
dimensionless units like A,/A4  the optimal pa-
rameters will all be of a similar order. Working
in these dimensionless units we can improve the
stabtlity of the matrix calculations, such as the
inversion of the Hessian matrix to obtain the
variance of the inferred parameters, by adding (a
few times) the identity matrix to the Hessian
malrix. Adding the identity matrix does not
change the eigenvectors of the Iessian matrix
and so does not alter the correlations between
the inferred parameters. It does, however. put a
lower bound on the eigenvalues, thereby encod-
ing, our cxpectation that the uncertainty of any
mferred paramcter should not exceed the order
of the range-paramcter (e.g. o(A)=A ) In
terms of the Newton—Raphson optimisation,
such a “beefing-up of the diaponals™ puts an
upper bound on the amount by which any pa-
rameter is allowed to change during an iteration:
such conservative control was found to be neces-
sary in order to stop the Newton—Raphson re-
finement from “blowing up”.

4. Examples

We begin our illustration of the uwse of the
theory and algorithms described in section 2 and
3 with the ad of data generated in a computer
simulation. These test data are shown in fig. 1(a)
and were generated according to the model of
ed. (1), the resolution function is given in fig.
1(b). For how muny quasiclastic components is
there most cvidence in these data, and what are
their inferred parameters and reliabilities?

Carrying out an analysis of these data as de-
scribed above we find most evidence for two
Lorentzians. The logarithm (to base 10) of the
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Fig. 1. Anillustration of the Bayesian analysis using data simulated by a computer. (a} The test data. (b) The resolution function.
(¢) The logarithm (to basc 1) of the posterior probability for the number of quasielastic components. (d) The inferred amplitude
and width parameters and their estimated 1 — o error-bars for the optimal number of Lorentzian components.

posterior PDF f{or the number of quasielastic
compenents, shown in fig. 1(c), indicates that the
data support a 2-Lorentzian model over a 1-
Lorentzian model by a factor of 10000 to 1.
Although the 2-Lorentzian model is favoured
over greater numbers by a factor of about 10, we
cannot rule out the possibility of there being
more components at the 95% confidence level.
The best estimate of the amplitude and width
parameters of the two Lorentzians and the elas-
tic line, along with their 1 - o error bars, is
shown in fig. 1(d). The underlying spectrum
which was used to generate the data of fig. 1(a)
did indeed have two quasiclastic components,
with widths 50 and 250 peV; the ratio of the
amplitudes used for the elastic line and for the
Lorentzians was 1:10:10.

The data of fig. 1 serve as a uscful demon-
stration against the naive use of the y” goodncss-
of-fit statistic as the sole criterion for model
selection. Figure 2(b) shows the normalised res-
iduals for the fit to the data in fig. 1(a) produced
by the l-Lorentzian model of fig. 2(a). Given
that there were 453 data-points, the correspond-
ing x” value of 462 would be considered very
respectablc; the residuals are also free of any
undue systematic variations. On the basis of the
x° statistic, therefore, we would consider it as
brave (or even foolhardy) to assume the exist-
ence of more than one quasiclastic component.
The full probabilistic calculation, on the other
hand, finds quite strong evidence far (at least) a
second component in the data! The point is that
while x” is an important ingredient in answering
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Fig. 2. (a) The best-lit paramcters given by the data in fig. 1(a) assuming the existence of only one Lorentzian component. (b)

The normalised residuals from the corresponding fit to the data

the model selection problem. the analysis of
section 2.2 tells us that there are other factors
which must also be taken into account.

We now illustrate the model selection analysis
procedure with data collected on IRIS at the
pulsed neutron scattering facility 1S1S; they are
part of a study of Konig ct al. [13] on the
dynamics of water molceules between lecithin
bilayers. In the first example, shown in fig. 3(a),
we find maost evidence for there being no quasi-
elastic components in the data. Although the
possibility of there being one Lorentzian cannot
be ruled out at the 95% confidence level for any
given value of the momentum transfer, the cvi-
dence for there only being an elastic linc be-
comes quite strong it we make the assumption
that the number of components 1s the same for
all scattering angles. Since the data were the
difference of measurements from low-hydration
samples of H,O and D,0, taken at 0°C, the
analysis confirms our expectation that we are
looking mainly at bound water. Figure 3(b)
shows the result obtained from corresponding
data taken at 65°C: there is most evidence [or
one quasielastic component. As the lecithin
bilayer exhibits a transition from a gel to a liquid
crystalline phase at 55°C, the motional degrees
of freedom of the lecithin, and thus bound
water, increase and broadening is to be expec-
ted. Finally, fig. 3(c) shows the resull from a
highly-hydrated H,O sample. taken in the liquid
crystal phase; there is very strong evidence for
(at least) two quasiclastic components. This is

also consistent with our physical intuition since
we are now looking at the motions of both free
and bound water as well as those of lecithin.

5. Interlude: what not to compute

Before fimishing with the conclusions, we take
the liberty of reeanting a humorous, but poig-
nant, ancedote from Forman Acton’s 1970 baok
“Numerical Methods That Work™ [14]. Hatf-way
through his wonderful book, he has a section
entitled “Interlude: what sor to compute™. In
this. he considers several case studies; one of
them comes under the heading of “exponential
fitting"".

He starts by saying that. despite the invention
of the printing press, computational wisdom
seems 10 be continually rediscovered rather than
being lcarned from past experience. As an exam-
ple, he uses the analysis of radioactive decay. In
the first case. the relative abundances of two
known substances A and B, with decay rates a
and b, are to be estimated from the data:

yiy=Ae “+Be ™, (8}

where v is proportional to the number of counts
at time ¢. The analysis reduces to a simple least-
squares fit, generally requiring only a pocket
calculator.

Unfortunately there 18 a companion problem
that looks anly slightly more complicated. until
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Fig. 3. Three examples showing the use of the probabilistic analysis for model selection with data taken by Kénig et al. [13] on
[RIS, at the pulsed neutron facility ISIS, using samples of H,O/D.O-hydrated lecithin bilayers as described in the text. The
posterior probabilities for the number of quasielastic components are plotted on a logarithmic axis, to base 10.

you try it! In this casc, the substances arc not
known; therefore, all four parameters (a, b, A
and B) must now be estimated from the data.
Acton states that the answer to this problem lies
in the chemical, rather than the computer, lab-
oratory because *“...it is well known that an
exponential equation of this type in which all
four parameters are to be fitted is extremelv ill
conditioned. That is, there are many combina-
tions of (a, &, A, B) that will fit most exact data
quite well indeed (will you believe four signifi-
cant figures?) and when experimental noise is
thrown into the pot, the entire operation be-
comes hopeless.” He concludes: “But those with
Faith in Science do not always read the Book —
and must be spanked or counselled.”

This humorous ancedote becomes rather less

amusing, however, when we realise that the
analysis of QENS data is essenlially equivalent
to exponential fitting of the latter kind. Taking
the Fourier transform of cq. (1), we find that

N

D{k) = {A(, + Z A e } x R(k)+ B(k) ,
- (%)

where D(k). R(k) and B(k) are the kth Fourier
components of the data, the resolution function
and the background signal. The analysis de-
scribed in section 2 awtomatically cautions us
about this difficulty since, as can be seen in fig.
1{c), the posterior PDF for the¢ number of Lor-
entzians becomes very flat after N = 2. This flat-
ness contrasts with the significant falloffs found
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in other applications of this tvpe of analysis
[9-11] so that probability theory is wamning us
that QENS data are relatively impoverished with
respect to distinguishing between two and many
quasiclastic components.

6. Conclusions

We have briefly reviewed the Bayesian ap-
proach for the analysis of QENS data. In a more
general context, the use of probability theory in
this way provides a unified and logical method
for data analysis: QENS is no exception. It
allows us to: (a) quantitatively assess the number
of components for which there is most evidence:
(b) make optimal ecstimates of the quasielastic
paramelers and their reliabilities; {¢) deal with
known systcmatic uncertainties.

The analysis of QENS data is similar to the
very ill-posed Laplace transform problem. This
means that it is extremely difficult to infer reli-
ably the paramecters of more than a couple of
quasielastic components. Such wisdom i3, of
course, already prevalent folklore. But then. to
Laplace. ““Probability theory is nothing but com-
mon sense reduced to calculation™.
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