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Bayesian analysis of quasielastic neutron scattering data 
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We consider the analysis of quasielastic neutron scattering data from a Bayesian point-of-view. This enables us to use 
probability theory to assess how many quasielastic components  there is most evidence for in the data,  as well as providing 
an optimal est imate of  their parameters .  We review the theory briefly, describe an efficient algorithm for its implementa-  
tion and illustrate its use with both simulated and real data. 

1. Introduction 

The analysis of quasielastic neutron scattering 
( Q E N S )  data, in common with all data analysis, 
is an exercise in scientific inference: given a finite 
set of noisy measurements  and a knowledge of 
the exper imental  setup, we wish to learn about  
some object  of interest. In the case of QENS we 
are interested in the rotational and diffusive 
mot ions  of atoms and molecules. 

If we have a physical model for the system 
then the data analysis problem usually reduces to 
a least-squares calculation for obtaining the best 
est imate of its parameters .  In the absence of 
such a model ,  QENS data (assumed to be) col- 
lected at constant m om en t um  transfer are often 
analysed in terms of the sum of a few Lorent-  
zians: 

d(e) = A,,8(e) + = Aj rc(e ~ + w~) @r(e) 

+ b(e) + o ' (e) ,  (1) 

where d are the data, as a function of energy 
transfer  e, r is the instrumental resolution func- 
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tion, b is the background signal and o- is the 
noise. The inferred values of the amplitudes and 
widths {Aj,wj} indicate the time-scale and abun- 
dance of the molecular motions; their variation 
with momen tum transfer suggests their geometri-  
cal nature.  

In section 2 we outline the theory for the 
Bayesian analysis of the problem formulated in 
eq. (1); this enables us to assess how many 
quasielastic components  there is most evidence 
for in the data,  as well as providing an optimal 
est imate of their parameters .  An algorithm for 
the practical implementat ion of the theoretical 
results is described in section 3 and its use is 
illustrated in section 4. After  a poignant anec- 
dote in section 5, we conclude with section 6. 

2. The method 

In 1946, Cox [1] showed that any method of 
inference which satisfies simple rules for logical 
and consistent reasoning must be equivalent to 
the use of ordinary probabili ty theory,  as origi- 
nally developed by Bayes [2] and Laplace [3]. 
The use of probabil i ty theory in this way is now 
called the Bayesian approach,  to distinguish it 
f rom its earlier rejection as a tool for scientific 
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inference by the schools of conventional statis- 
tics. For a good review of the Bayesian approach 
and its historical development ,  the reader is 
referred t o  the paper  by Loredo [4]: it also 
contains references to many excellent papers by 
Jaynes (e.g. refs. [5-7]).  Let us outline the 
Bayesian approach for the analysis of the "sum 
of Lorentzians"  problem in eq. (1). 

2. I. Parameter estimation 

First consider the case when the number  of 
Lorentzian components  N is known; the problem 
then reduces to one of estimating 2N + 1 param- 
eters from the data (A0; {Ai,wj},  / " - 1 , 2 .  
. . . .  N).  Our  inference about the amplitudes 
and widths of the Lorentzians is summarised by 
the conditional probabili ty distribution function 
(PDF)  

prob(A o, { A i ,w i }  l N, d) , 

where "'1" means "given".  The best estimate of 
the paramete rs  is given by the maximum of this 
PDF; their reliability is given by its width or 
spread.  

In order  to compute  prob(A 0 , { A j , % }  N , d )  
we need to use Bayes" theorem; this relates the 
PDF we require to one which we can calculate 
and to another  which encodes our prior 
knowledge: 

p r o b ( A , ,  { A i , w i } I N ,  d) 

:( prob(d l A{,, { A i ,w /}. N)  

x prob(A,~, { A i , w , }  I N ) .  (2) 

The term p rob (A . ,  {Ai,B'i} ] N) on the far right 
is called the prior PDF and represents our state 
of knowledge (or ignorance) about the parame-  
ters before we have analysed the data. Our  prior 
state of knowledge is modified by the so-called 
l ikelihood function,  

prob(d l  A ,,  {A  ,w,} ,  N )  , 

which tells us how likely it is that we would have 
obtained our particular data set if we were given 

a set of (trial) parameter  values. The product of 
the prior PDF and the likelihood function yields 
the posterior PDF we require. 

If we make the assumption that the data are 
independent  (so that one measurement  does not 
affect another) and subject to additive Gaussian 
noise, then the likelihood function reduces to the 
familiar form exp( ~X2), where X-' is the usual 
sum-of-squared-residuals misfit statistic. If we 
also make the simplifying assumption that our 
prior state of ignorance is best represented by 
the assignment 

prob(A,, .  {Ai,wl} I N ) = constant , 

then the maximum of the posterior PDF is given 
by the maximum likelihood solution. In other 
words, our best estimate of the amplitudes and 
widths of the Lorentzians is given by that set of 
parameters  which minimises X -~. This, then, pro- 
vides us with the justification for using the meth- 
od of least-squares. 

2.2. Model  selection 

Let us move on to consider the case when the 
number  of Lorcntzian components  is not known; 
the problem now becomes one of model selec- 
tion. For example,  is there one quasielastic com- 
ponent  or two'? The procedure for addressing 
this problem sketched out below is essentially 
the same as that found in ch. 5 of the book by 
Jeffreys [8]; details can also be found in Gull [9], 
Bretthorst  [10] and Sivia and Carlile [11]. 

Basically, we need to compute the posterior 
PDF for the number  of Lorentzians: p rob(N ] d). 
We begin by using Bayes'  theorem: 

p rob (N ] d) ~ prob(d  ] N) × prob(N)  . (3) 

Assuming that we have no a priori reason to 
prefer  a particular number  of quasielastic com- 
ponents,  we can take the prior PDF prob(N)  to 
be uniform and absorb it into the proportionality 
constant.  To proceed further, we express 
p r o b ( d [ N )  as a marginal distribution over the 
joint PDF for the data and the amplitude and 
width parameters:  



D.S. Sivia et al. / Bayesian analysis of QENS data 343 

prob(Nl d)o~ f f . .. f prob(d, Ao, {Aj,w~} l N) 

dA o dUAj dNwj . (4) 

Finally, we expand the joint PDF in terms of a 
conditional (likelihood) PDF and a prior PDF: 

prob(NId)~ f f " " f  prob(d[A~,,{A~,w~},N) 

x prob(A0, {Aj,wj}lN ) 

dA 0 d~[Aj d N w j  . (5) 

This is in fact just the normalisation constant for 
Bayes'  theorem in eq. (2). There we ignored this 
term because it was irrelevant for the parameter  
estimation problem. For model selection, how- 
ever, it turns out to be the crucial factor; it is 
often referred to as the evidence. 

If we make some simplifying assumptions, 
similar to those needed to justify the use of 
least-squares, then the multiple integral of eq. 
(5) can be approximated by (e.g. see ref. [11]) 

N! (4"rr) N e -~i" '2 
p r o b ( U i d )  ~ [w ..... A . . . .  ]N × ~/Det(VVg2 ) , 

(6) 

where X~m is the best-fit value of X 2, assuming N 
Lorentzians,  and Det(VVX 2) is the determinant 
of the Hessian matrix (evaluated at X~i,). A .... 
and w ..... are the estimates of the maximum 
amplitude and width of any Lorentzian. Before 
describing a simple algorithm for the evaluation 
of prob(NI  d ) given by eq. (6), let us mention 
how probability theory allows us to deal with 
systematic uncertainties. 

2.3. Dealing with systematic uncertainties 

In the preceding sections, we have approxi- 
mated the likelihood function as exp(-1/1(2). In 
order  to compute X 2, we must be able to calcu- 
late an ideal data-set given trial parameter-values 
for the amplitudes and widths. Equation (1) tells 
us that, in order  to do this, we need to know the 
resolution function and the background signal. 

Usually we try to obtain a fairly good estimate of 
both by collecting data using a standard elastic 
scatterer and an empty cell, but can we do 
anything if we are not quite so fortunate? 

The answer is yes, at least in principle: we just 
integrate out the nuisance parameters,  charac- 
terising the systematic uncertainties, from the 
joint PDF (marginalisation). Suppose that we 
had an unknown fiat background B; eq. (4), for 
example,  would then become 

prob(NId)  ~ f - . - f  prob(d, A. ,  {A,,Wj}, BIN ) 

dA 0 d'~Aj dXwi dB . (7) 

The analysis would follow along the same lines 
as before,  leading to eq. (6), but with B now 
contributing to both X2mm and the Hessian 
matrix. 

Although probability theory allows us to deal 
with systematic uncertainties, we should not take 
this to mean that there is no need or value in 
trying to obtain a good estimate of the resolution 
function and background. Even when we can use 
the theoretical apparatus in practice, systematic 
uncertainties still lead to a (significant) reduction 
in the reliability of the inferred Lorentzian pa- 
rameters.  

3. An algorithm 

In order  to make use of the analysis of section 
2, we need an algorithm for its practical im- 
plementation.  A Monte Carlo procedure would 
be the most robust, both in terms of finding the 
optimal parameters  and for evaluating the multi- 
ple integral of eq. (5); unfortunately,  it also 
tends to be very intensive in computer  time. 
Instead, we outline an algorithm which uses 
discrete 1-dimensional searches and linearised 
multidimensional optimisation, in combination 
with the approximation of eq. (6). We have used 
this simple algorithm with considerable success 
and found it to be fairly efficient. 

First let us state our modelling assumptions. 
We assume that the data are described, as in eq. 



344 D.S. Sivia et al. Bayesian ana@si.s ° f  (_)ENS dala 

1), by a B-function to represent elastic scatter- 
mg plus a small number of Lorentzians to repre- 
sent quasielastic scattering. The resolution func- 
tion is assumed to be known and stored on finely 
digitised grid (suitable for computer manipula- 
tion). We take the background to be linear, 
being described by two (nuisance) parameters. 
To compensate for any experimental misalign- 
ment, we introduce a (nuisance) parameter for 
an e-axis off-sct. 

The parameters A ...... and w ...... , needed for cq. 
(6), are estimated from a cursory look at the 
data. A ...... is given by the integrated intensity in 
the data, since no amplitude can exceed this 
value (assuming that the resolution function has 
been normalised to unity), w, ..... is given by thc 
energy-range of the data, since Lorentzians of 
widths much greater than this cannot be dis- 
tinguished from a fiat background. 

We start by refining the parameters of the 
linear background, the e-axis off-set and the 
amplitude of a B-function. This is done using a 
Newton-Raphson  algorithm (e.g. see ref. [12]), 
which requires the computation of the first and 
second derivatives of X 2 with respect to these 
parameters. Having found X~,m and thc deter- 
minant of VV)¢ e, we can use cq. (C~) to calculate 
the posterior probability for their being no quasi- 
elastic components:  prob(N = (I I d). 

Next, we conduct an explicit l-dimensional 
search for the optimal width of a possible litst 
Lorentzian component.  If we keep the s-axis 
off-set parameter  fixed, then the optimisation of 
the amplitudes of the B-function and the first 
Lorentzian, for a given width, is just a simple 
linear problem. Having come close to the opti- 
mal solution, we refine all the parameters in the 
one-Lorentzian model simultaneously (using 
Newton-Raphson) .  We can then calculate the 
probability for there being just one quasielastic 
component :  prob(N - 1 I d). 

We continue in this manner, adding one morc 
Lorentzian at a time until a maximum in the 
posterior PDF for the number of quasielastic 
components  is evident. For each additional com- 
ponent,  the optimisation of the parameters is 
split into two parts. In the first stage there is an 
explicit search for the best width of the new 

Lorentzian; all other non-linear parameters arc 
held fixed during this period, so that only the 
amplitudes and linear background are refined. In 
the second stage, all the parameters of the N- 
Lorentzian model are refined simultaneously. 

Before wc go on to illustrate the use of this 
algorithm, we should make a couple of addition- 
al remarks. It is helpful to use range-parameters 
such as A ....... and w ..... to scale the parameters to 
be optimised. That is to say, if we work in 
dimensionless units like A ; / A  ...... the optimal pa- 
rameters will all bc of a similar ordcr. Working 
in thcsc dimensionless units we can improve the 
stability of the matrix calculations, such as the 
inversion of the Hessian matrix to obtain the 
variance of the inferred parameters, by adding (a 
few times) thc identity matrix to the Hessian 
matrix. Adding the identity matrix does not 
change the eigenvectors of the Hessian matrix 
and so does not alter the correlations between 
the inferred parameters. It does, however, put a 
lower bound on the eigenvalues, thcrcby encod- 
ing our expectation that the uncertainty of any 
inferred parameter should not exceed the order 
of the range-parameter (e.g. ~r(A])< A ...... ). In 
terms ot' the Ncwton-Raphson  optimisation, 
such a "beefing-up of the diagonals" puts an 
upper bound on the amount by which any pa- 
rameter is allowed to change during an iteration: 
such conservative control was found to be neces- 
sary in order to stop the Newton-Raphson  re- 
finement from "bk)wing up". 

4. Examples 

We begin our illustration of the use of the 
theory and algorithms described in section 2 and 
3 with thc aid of data generated in a computer 
simulation. These test data are shown in fig. l(a) 
and were generated according to the model of 
eq. (1); the resolution function is given in fig. 
l(b). For how many quasielastic components is 
there most evidence in these data, and what are 
their inferred parameters and reliabilities? 

Carrying out an analysis of these data as de- 
scribed above we find most evidence k)r two 
Lorentzians. The logarithm (to base 10) of the 
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Fig. 1. An illustration of the Bayesian analysis using data simulated by a computer. (a) The test data. (b) The resolution function. 
(c) The logarithm (to base 10) of the posterior probability for the number of quasielastic components. (d) The inferred amplitude 
and width parameters and their estimated 1 ~r error-bars for the optimal number of Lorentzian components. 

pos te r ior  P D F  for the n u m b e r  of  quasielastic 
c o m p o n e n t s ,  shown in fig. 1 (c), indicates that  the 
da ta  suppor t  a 2-Lorentz ian  model  over  a 1- 
Loren tz i an  model  by a factor  of  10000 to 1. 
A l t h o u g h  the 2-Lorentz ian  model  is favoured  
over  grea ter  numbers  by a factor  of  about  10, we 
canno t  rule out  the possibility of  there  being 
m o r e  c o m p o n e n t s  at the 95% confidence level. 
The  best est imate o f  the ampli tude and width 
pa rame te r s  of  the two Lorentz ians  and the elas- 
tic line, a long with their l - o -  er ror  bars,  is 
shown in fig. l (d) .  The  under lying spect rum 
which was used to genera te  the data  of  fig. l(a) 
did indeed  have two quasielastic componen t s ,  
with widths 50 and 250 ~eV; the ratio of  the 
ampl i tudes  used for the elastic line and for  the 
Loren tz ians  was 1 : 10: 10. 

The  data  of  fig. 1 serve as a useful demon-  
s trat ion against the naive use of  the X ~ goodness-  
of-fit statistic as the sole cri terion for model  
selection.  Figure 2(b) shows the normalised res- 
iduals for the fit to the data in fig. l(a) p roduced  
by the 1-Lorentzian model  of  fig. 2(a). Given 
that  there  were 453 data-points ,  the correspond-  
ing X 2 value of  462 would be considered very 
respectable ;  the residuals are also free of  any 
undue  systematic  variations.  On  the basis of  the 

2 
X statistic, therefore ,  we would consider  it as 
brave  (or even foolhardy)  to assume the exist- 
ence of  more  than one quasielastic componen t .  
The  full probabil ist ic calculation, on the o ther  
hand,  finds quite s t rong evidence for (at least) a 
second  c o m p o n e n t  in the data! The  point  is that  
while X 2 is an impor tan t  ingredient  in answering 
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Fig. 2. (a) The best-lit parameters given by the data in fig. l(a) assuming the existence of only one Lorcntzian componcnl.  (b) 
The normalised residuals from the corresponding tit Io the data. 

the model selection problem,  the analysis of 
section 2.2 tells us that there are other factors 
which must also be taken into account. 

We now illustrate the model selection analysis 
procedure  with data collected on IRIS at the 
pulsed neutron scattering facility ISIS; they are 
part  of a study of K6nig et al. [13] on the 
dynamics of water  molecules between lecithin 
bilayers. In the first example,  shown in fig. 3(a), 
we find most  evidence for there being no quasi- 
elastic components  in the data. Although the 
possibility of there being one Lorentzian cannot 
be ruled out at the 95% confidence level for any 
given value of the m om en t um  transfer, the evi- 
dence for there only being an elastic line be- 
comes quite strong if wc make the assumption 
that the number  of components  is the same for 
all scattering angles. Since the data were the 
difference of measurements  from low-hydration 
samples of H~O and D , O ,  taken at 0°C, the 
analysis confirms our expectation that we are 
looking mainly at bound water. Figure 3(b) 
shows the result obtained from corresponding 
data taken at 65°C; there is most evidence for 
one quasielastic component .  As the lecithin 
bilayer exhibits a transition from a gel to a liquid 

S o crystalline phase at 5, C, the motional degrees 
of f reedom of the lecithin, and thus bound 
water ,  increase and broadening is to be expec- 
ted. Finally, fig. 3(c) shows the result from a 
highly-hydrated H 2 0  sample,  taken in the liquid 
crystal phase; there is very s t rong 'evidence for 
(at least) two quasielastic components .  This is 

also consistent with our physical intuition since 
we are now looking at the motions of both free 
and bound water  as well as those of lecithin. 

5. Interlude: what  not  to compute  

Before finishing with the conclusions, we take 
the liberty of recanting a humorous,  but poig- 
nant,  anecdote from Forman Acton 's  1970 book 
"Numerical  Methods That Work"  [141 . Half-way 
through his wonderful book,  he has a section 
entitled "Interlude:  what n o t  to compute" .  In 
this, he considers several case studies; one of 
them comes under the heading of "exponential  
fitting". 

He starts by saying that, despite the invention 
of the printing press, computational  wisdom 
seems to be continually rediscovered rather than 
being learned from past experience. As an exam- 
ple, he uses the analysis of radioactive decay. In 
the first case, the relative abundances of two 
known substances A and B, with decay rates a 
and b, are to be estimated from the data: 

y ( t )  = A e "' + B e " ' ,  ( 8 )  

where y is proport ional  to the number  of counts 
at time t. The analysis reduces to a simple least- 
squares fit, generally requiring only a pocket 
calculator. 

Unfor tunate ly  there is a companion problem 
that looks only slightly more complicated, until 
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Fig. 3. Three examples showing the use of the probabilistic analysis for model selection with data taken by K6nig et al. [13] on 
IRIS, at the pulsed neutron facility ISIS, using samples of H20 /D20-hydra ted  lecithin bilayers as described in the text. The 
posterior probabilities for the number of quasielastic components  are plotted on a logarithmic axis, to base 10. 

you try it? In this case, the substances are not 
known; therefore,  all four parameters  (a, b, A 
and B) must now be estimated from the data. 
Acton states that the answer to this problem lies 
in the chemical, rather  than the computer ,  lab- 
ora tory  because " . . . i t  is well known that an 
exponential  equation of this type in which all 
four pa ramete rs  are to be fitted is extremely ill 
conditioned. That  is, there are many combina- 
tions of (a, b, A, B) that will fit most exact data 
quite well indeed (will you believe four signifi- 
cant figures?) and when experimental  noise is 
thrown into the pot,  the entire operat ion be- 
comes hopeless ."  He  concludes: "But  those with 
Faith in Science do not always read the B o o k -  
and must be spanked or counselled."  

This humorous  anecdote becomes rather less 

amusing, however,  when we realise that the 
analysis of QENS data is essentially equivalent 
to exponential  fitting of the latter kind. Taking 
the Fourier  t ransform of eq. (1), we find that 

" -=.l~l.j] R(k)+ B(k) D(k)= A, ,+  ~] A j e  × , 
i : ,  (9) 

where D(k) ,  R(k) and B(k) are the kth Fourier 
components  of the data, the resolution function 
and the background signal. The analysis de- 
scribed in section 2 automatically cautions us 
about  this difficulty since, as can be seen in fig. 
l(c), the posterior  PDF for the number  of Lor- 
entzians becomes very flat after N = 2. This flat- 
ness contrasts with the significant falloffs found 
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in other applications of this type of analysis 
[9-11] so that probability theory is warning us 
that Q ENS data are relatively impoverished with 
respect to distinguishing between two and many 
quasielastic components.  

6. Conclusions 

We have briefly reviewed the Bayesian ap- 
proach for the analysis of QENS data. In a more 
general context,  the use of probability theory in 
this way provides a unified and logical method 
for data analysis; QENS is no exception. It 
allows us to: (a) quantitatively assess the number 
of components  for which there is most evidence; 
(b) make optimal estimates of the quasielastic 
parameters and their reliabilities; (c) deal with 
known systematic uncertainties. 

The analysis of QENS data is similar to the 
very ill-posed Laplace transform problem. This 
means that it is extremely difficult to infer reli- 
ably the parameters of more than a couple of 
quasielastic components.  Such wisdom is, of 
course, already prevalent folklore. But then, to 
Laplace, "Probability theory is nothing but com- 
mon sense reduced to calculation". 
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