SpacePy Documentation
Release 0.4.0

The SpacePy Team

Sep 07, 2022

1 Getting Started

2 SpacePy Documents

3 Developer Guide

4 SpacePy Module Reference
Python Module Index

Index

CONTENTS

27
55
75
345

347

SpacePy Documentation, Release 0.4.0

SpacePy is a package for Python, targeted at the space sciences, that aims to make basic data analysis, modeling and
visualization easier. It builds on the capabilities of the well-known NumPy and MatPlotLib packages. Publication
quality output direct from analyses is emphasized among other goals:

* Quickly obtain data

* Create publications quality plots
 Perform complicated analysis easily
* Run common empirical models

* Change coordinates effortlessly

* Harness the power of Python

The SpacePy project seeks to promote accurate and open research standards by providing an open environment for
code development. In the space physics community there has long been a significant reliance on proprietary languages
that restrict free transfer of data and reproducibility of results. By providing a comprehensive, open-source library of
widely-used analysis and visualization tools in a free, modern and intuitive language, we hope that this reliance will be
diminished.

When publishing research which used SpacePy, please provide appropriate credit to the SpacePy team via citation or
acknowledgment.

To cite SpacePy in publications, use (BibTeX code):
@INPROCEEDINGS{spacepyl1, author = {{Morley}, S.~K. and {Koller}, J. and {Welling}, D.~T. and
{Larsen}, B.~A. and {Henderson}, M.~G. and {Niehof}, J.~T.}, title = “{Spacepy - A Python-based library
of tools for the space sciences}”, booktitle = “{Proceedings of the 9th Python in science conference (SciPy
2010)}”, year = 2011, address = { Austin, TX} }

Or to cite the code itself:
@software{SpacePy, author = {{Larsen}, B.~A. and {Morley}, S.~K. and {Niehof}, J.~T. and {Welling},
D.~T.}, title = {SpacePy}, publisher = {Zenodo}, doi = {10.5281/zenod0.3252523}, url = {https://doi.org/10.
5281/zenodo.3252523} }

Certain modules may provide additional citations in the __citation__ attribute. Contact a module’s author (details
in the __citation__ attribute) before publication or public presentation of analysis performed by that module, or in
case of questions about the module. This allows the author to validate the analysis and receive appropriate credit for
his or her work.

CONTENTS 1

https://doi.org/10.5281/zenodo.3252523
https://doi.org/10.5281/zenodo.3252523

SpacePy Documentation, Release 0.4.0

2 CONTENTS

CHAPTER
ONE

GETTING STARTED

First steps in SpacePy and scientific Python.

1.1 Installing SpacePy

The simplest way from zero (no Python) to a working SpacePy setup is:
1. Install the Anaconda Python environment. Python 3 is strongly recommended (64-bit is recommended).
2. pip install --upgrade spacepy
If you already have a working Python setup, install SpacePy by:
1. pip install --upgrade numpy
2. pip install --upgrade spacepy

This will install a binary build of SpacePy if available (currently only on Windows), otherwise it will attempt to compile.
It will also install most dependencies.

If you are familiar with installing Python packages, have particular preferences for managing an installation, or if the
above doesn’t work, refer to platform-specific instructions and the details below.

For installing the NASA CDF library to support pycdf, see the platform-specific instructions linked below.
The first time a user imports SpacePy, it automatically creates the configuration directory.

If you need further assistance, you can open an issue.

1.1.1 SpacePy Dependencies
SpacePy relies on several other pieces of software for complete functionality. Installing SpacePy links to details on
installing the required software for each platform.

Unless otherwise noted, a dependency may be installed after SpacePy, and the new functionality will be available the
next time SpacePy is imported.

Currently required versions are documented here. Dependency version support describes future support.

https://docs.anaconda.com/anaconda/
https://github.com/spacepy/spacepy/issues

SpacePy Documentation, Release 0.4.0

Hard Dependencies

Without these packages installed, SpacePy will not function.

Python 2.7+

Python is the core language for SpacePy. Python 3 is strongly recommended and will be required soon. See Python 2
End of Support.

Required to install SpacePy.

NumPy 1.10+

NumPy provides the high-performance array data structure used throughout SpacePy. Version 1.10 or later is required.

Required to install SpacePy. f2py is part of NumPy, but is sometimes packaged separately; it is required (at installation
time) if irbempy is to be used.

Due to a numpy bug, numpy 1.15.0 is not supported. Use 1.15.1 or later.
On Python 3.9, numpy 1.18 or later is required.

dateutil

If you choose not to install matplotlib, dateutil 1.4 or later is required. (Installing matplotlib will fulfill this dependency.)

C compiler

If you are installing SpacePy from source, a working C compiler is required. (Not necessary for the Windows binary
installer.)

Soft Dependencies
Without these packages, SpacePy will install, but certain features may not be available. Usually an ImportError means
a dependency is missing.

These are simply marked as dependencies in SpacePy metadata and thus will be automatically installed when using
dependency-resolving methods such as pip.

SciPy 0.11+

SciPy provides several useful scientific and numerical functions build on top of NumPy. It is highly recommended.
The following modules may have limited functionality without SciPy:

e coordinates
e ctrans

e empiricals
e seapy

e toolbox

4 Chapter 1. Getting Started

http://www.python.org/
http://numpy.scipy.org/
http://labix.org/python-dateutil
http://www.scipy.org/

SpacePy Documentation, Release 0.4.0

matplotlib 1.5.0+

matplotlib is the preferred plotting package for Python. It is highly recommended. Without it, you will not be able to
effectively visualize data, and the following modules may have limited functionality or fail entirely:

e plot

* pboppy

e pybats
e radbelt

e seapy

e toolbox

h5py 2.6+

hS5py provides a Python interface to HDFS files. It is required for the HDF import/export capability of datamodel and
for use of the omni module.

CDF 2.7+

NASA’s CDF library provides access to Common Data Format files. It is required for pycdf, and thus for the CDF
import/export capability of datamodel.

Warning: Unlike the Python-based dependencies, the CDF library must be installed if pycdf support is needed; it
will not be automatically installed.

Fortran compiler

If installing from source, irbempy requires a Fortran compiler. (This is not required for the Windows binary installer).
Supported compilers are the GNU compiler gfortran, the older GNU compiler g77, and the Portland Group PGI
compiler.

If irbempy is to be used, the Fortran compiler (and f2py) must be installed before SpacePy.

coordinates requires irbempy to use the IRBEM-based backend, but the new CTrans-based backend can be used
without Fortran. See the coordinates documentation for the use_irbem option.

Astropy 1.0+

time requires Astropy if conversion to/from Astropy Time is desired.

coordinates requires Astropy if conversion to/from Astropy SkyCoord is desired.

1.1. Installing SpacePy 5

http://matplotlib.sourceforge.net/
http://code.google.com/p/h5py/
http://cdf.gsfc.nasa.gov/
https://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.astropy.org/en/stable/api/astropy.coordinates.SkyCoord.html#astropy.coordinates.SkyCoord

SpacePy Documentation, Release 0.4.0

Soft Dependency Summary

The following table summarizes, by SpacePy module, the functionality that is [ost if a soft dependency is not installed.
If there is nothing for a given dependency/module combination, the module is unaffected by that dependency.

6 Chapter 1. Getting Started

SpacePy Documentation, Release 0.4.0

Table 1: SpacePy functionality lost without soft dependencies

CDF Fortran h5py matplotlib SciPy AstroPy
compiler
coordinates Coords Entire .
IRBEM module from_sk
backend .
(e)?cep t to_skyq
Windows
binaries)
ctrans Entire
module
datamodel R .
toCDF () toHDF5 ()
fromCDE () fromHDR5 ()
toCDF (toHDF5 ()
empiricals .
vampoldPA()
omniFrgmDirectionall
irbempy Entire
module
(except
Windows
binaries)
LANLstar
omni Entire
module
plot Entire
module
boppy o
assoc(
plot(O
plot_mult()
plot_two_ppro()
pybats R
regrid()
e dgcpm
interadt
e kyoto
e pwom
e ram
e rim
All plotting
functions:
1.1. Installing SpacePy . 7
add_body ()
add_planet()

ycoord()

oord()

Flux()

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

SpacePy Documentation, Release 0.4.0

1.1.2 Linux Installation

Installation on Linux requires both a C and a Fortran compiler; a recent GCC is recommended (the C compiler is likely
included with your distribution). On Debian and Ubuntu:

sudo apt-get install gfortran

Once this is set up, pip install spacepy should Just Work. If you’re installing as a single user (not in a virtual
environment) then add the --user flag.

You will also need the NASA CDF library to use pycdf.

Our recommended (but not required) Python distribution is Anaconda running 64-bit Python 3. Anaconda includes
much of the scientific Python stack. Another excellent distribution is Canopy.

You may need to install the dependencies some way other than pip; for example, if you are running an earlier version
of Python. The latest version of many dependencies requires Python 3.6 and pip will not install older versions to get
around this. See Dependencies via conda and Dependencies via system packages.

* Dependencies via conda

* Dependencies via system packages
* CDF

* Compiling

* Raspberry Pi

Dependencies via conda

Installation via pip will automatically install most Python dependencies (but not the NASA CDF library). They can
also be installed from conda:

conda install numpy scipy matplotlib h5py

Dependencies via system packages

SpacePy usually works with the system Python on Linux. To install dependencies via the package manager on Debian
or Ubuntu:

sudo apt-get install python-dev python-h5py python-matplotlib python-numpy python-scipy

For Python 3, use:

sudo apt-get install python3-dev python3-h5py python3-matplotlib python3-numpy python3-
—scipy

For other distributions, check SpacePy Dependencies and install by hand or via your package manager.

8 Chapter 1. Getting Started

https://docs.anaconda.com/anaconda/
https://www.enthought.com/product/canopy/

SpacePy Documentation, Release 0.4.0

CDF

It is recommended to install the ncurses library; on Ubuntu and Debian:

sudo apt-get install ncurses-dev

Download the latest CDF library. Choose the file ending in -dist-all. tar.gz from the 1inux directory. Untar and
cd into the resulting directory. Then build:

make O0S=linux ENV=gnu CURSES=yes FORTRAN=no UCOPTIONS=-02 SHARED=yes all

Use CURSES=no if the curses library is not installed. (The distribution-specific directions above will install curses.)

Install:

sudo make install

This will install the library into the default location /usr/local/cdf, where SpacePy can find it. If you choose
to install elsewhere, see the CDF documentation, particularly the notes on the CDF_BASE and CDF_LIB environment
variables. SpacePy uses these variables to find the library.

Compiling

With the dependencies installed, SpacePy can be built from source. This uses standard Python distutils. You can always
get the latest source code for SpacePy from our github repository and the latest release from PyPI

Build:

python setup.py build

If this fails, specify a Fortran compiler:

python setup.py build --fcompiler=gnu95

python setup.py build --help-fcompiler will list options for Fortran compilers. Currently available com-
pilers are pg, gnu95, gnu, intelem, intel or none (to skip all Fortran); gnu95 (the GNU gfortran compiler) is
recommended.

Install for one user:

python setup.py install --user

If you’re using conda, installation as user isn’t recommended:

python setup.py install

Or install for all users on the system:

sudo python setup.py install

If you want to build the documentation yourself (rather than using the documentation shipped with SpacePy), install
sphinx and numpydoc. The easiest way is via pip:

pip install sphinx numpydoc

They are also available via conda:

1.1. Installing SpacePy 9

http://cdf.gsfc.nasa.gov/
https://github.com/spacepy/spacepy
https://pypi.org/project/SpacePy/#files

SpacePy Documentation, Release 0.4.0

conda install sphinx numpydoc

Or the package manager:

sudo apt-get install python-sphinx python-numpydoc
For Python 3:

sudo apt-get install python3-sphinx python3-numpydoc

Raspberry Pi

SpacePy works on Raspberry Pi, using Raspberry Pi OS in 32-bit or 64-bit flavors. A few tips:

e It is highly recommended to install all dependencies (numpy, etc.) via the system package manager apt-get
rather than pip, as prebuilt wheels are not generally available and compiling dependencies on the Pi can take a
very long time:

sudo apt-get install gfortran python3-numpy python3-scipy python3-h5py python3-
—matplotlib

 Similarly, if installing SpacePy via pip, use the --no-build-isolation flag to use the system numpy.

1.1.3 MacOS Installation

Unless otherwise noted, the commands in these instructions are run from the MacOS terminal (command line).

Installation requires a working Python environment and compilers. The two common ways to achieve this are via conda
or via MacPorts. As a weak recommendation for choosing between them, conda may be better if your main focus is
running Python and you need conda’s easy support for multiple Python environments; MacPorts may be better if you
want to use many of the other open source tools provided in MacPorts.

Binary installers for SpacePy on Mac are in preparation for a future release.

Conda installation

MacPorts installation
CDF

Xcode installation

Conda installation

Our recommendation for Anaconda is to use Python 3 and 64-bit binaries. Follow the directions to install conda and
set up an environment; a minimal setup can be had by downloading the latest miniconda. Double-click the miniconda
pkg and run through the installation process, choosing “install for me only”. Then, at the terminal:

source ~/opt/miniconda3/bin/activate

You will now be in an active conda environment. (Note: the installation will modify your .zprofile file.)

Compiling under conda requires the MacOS 10.9 SDK on Intel (x86_64) Macs and 11.0 on Apple Silicon
(ARM/M1/M2). It can be downloaded here (choose “MacOSX10.9.sdk.tar.xz” or “MacOSX11.0.sdk.tar.xz”). Un-
compress it into opt, e.g.:

10 Chapter 1. Getting Started

https://docs.anaconda.com/anaconda/
https://docs.conda.io/en/latest/miniconda.html
https://stackoverflow.com/questions/69236331/conda-macos-big-sur-ld-unsupported-tapi-file-type-tapi-tbd-in-yaml-file/
https://conda-forge.org/blog/posts/2020-10-29-macos-arm64/
https://github.com/phracker/MacOSX-SDKs/releases

SpacePy Documentation, Release 0.4.0

sudo tar xf ~/Downloads/Mac0SX10.9.sdk.tar.xz -C /opt

Install the Fortran compiler:

conda install gfortran

If you do not have Xcode installed, you will be prompted with a message like “The xcrun command requires the
command line developer tools.” Accept the installation and allow it to finish before continuing.

You may optionally install SpacePy dependencies via conda (otherwise they will be installed via pip):

conda install numpy scipy matplotlib hS5py

Finally, install SpacePy:

SDKROOT=/0opt/Mac0SX10.9.sdk pip install spacepy # Intel
SDKROOT=/0pt/Mac0SX11.0.sdk pip install spacepy # ARM

If you’re installing as a single user (not in a virtual environment) then add the --user flag.

You will also need the NASA CDF library to use pycdf.

MacPorts installation

You may install the full Xcode suite and follow the MacPorts guide; however, these directions should suffice to install
a working Python and SpacePy.

Installing the Xcode command line tools is recommended before proceeding:

xcode-select --install

Download the MacPorts installer and double-click the pkg to perform the installation. (Note this modifies your .
zprofile environment file.)

Install Python and the needed compilers. You need to specify a version; at this time, Python 3.9 and gcc 11 are
reasonable choices:

sudo port install gccll # Includes gfortran

sudo port install python39

sudo port install py39-pip

Installing the following is optional; pip will automatically install
sudo port install py39-numpy py39-scipy py39-h5py py39-matplotlib

If you have not already installed the Xcode command line tools, you will be prompted to do so. In that case, it is
suggested to accept the tools installation, and then quit the port command and restart once the tools are installed.

To install via pip, default versions of Python and gcc must be set:

sudo port select --set python python39

rehash #recalculate the pathing to not get system python
sudo port select --set python3 python39

sudo port select --set pip pip39

sudo port select --set gcc mp-gccll

Then you can install SpacePy:

1.1. Installing SpacePy 11

https://guide.macports.org/
https://www.macports.org/install.php

SpacePy Documentation, Release 0.4.0

pip install spacepy

If you’re installing as a single user (not in a virtual environment) then add the --user flag.
You will also need the NASA CDF library to use pycdf.

If you are installing from a source distribution, you can specify the compiler at install time instead of using port
select:

python3.9 setup.py install --fcompiler=gnu95 --f90exec=/opt/local/bin/gfortran-mp-11

CDF

NASA provides Mac binaries of the CDF library. Download the file ending in binary_signed.pkg (e.g.
CDF3_8_1-binary_signed.pkg), double-click, and install per the defaults.

Xcode installation

Installation of the full Xcode package is not required simply for SpacePy; however, if you are interested in regular
compiler use, it may be useful. If you choose to install the full Xcode package, perform these steps before installing
conda or macports via the directions above.

* Create and log in to an Apple developer account at https://developer.apple.com/

 Check the Xcode release notes to find the latest version of Xcode supported on your version of MacOS.

* From the more downloads section of the Apple Developer site, search for and download that version of Xcode.
* Double-click on the downloaded .xip file to open with the archive utility and extract the Xcode app.

* Drag the resulting Xcode icon into Applications

* From the more downloads section of the Apple Developer site, search for the Xcode command line tools for the
same version of Xcode

* Open the dmg file with the command line tools, open the resulting mounted disk image, and double-click the
pkg file to install.

Proceed with the installation of conda or MacPorts and SpacePy

1.1.4 Windows Installation

The SpacePy team currently provides binary “wheels” via PyPI so it can be installed on Windows without a compiler.
Binaries are provided for Python 3.6 through 3.10 in 64-bit and 32-bit variants for each. pip install spacepy
should find and install these binaries.

Our recommended (but not required) Python distribution is Anaconda running 64-bit Python 3. Anaconda includes
much of the scientific Python stack. Another excellent distribution is Canopy.

You may need to install the dependencies some way other than pip; for example, if you are running an earlier version
of Python. The latest version of many dependencies requires Python 3.6 and pip will not install older versions to get
around this. See Dependencies via conda.

* Compiling

* NASA CDF

12 Chapter 1. Getting Started

https://spdf.gsfc.nasa.gov/pub/software/cdf/dist/latest-release/macosx/
https://developer.apple.com/
https://developer.apple.com/documentation/xcode-release-notes/
https://developer.apple.com/download/all/
https://developer.apple.com/download/all/
https://docs.anaconda.com/anaconda/
https://www.enthought.com/product/canopy/

SpacePy Documentation, Release 0.4.0

* Dependencies via conda

* Standalone dependencies

* Developers

Compiling

If a binary wheel is not available for your version of Python, pip will try to compile SpacePy. The only supported
compiler is mingw32. Install it with:

conda install m2w64-gcc-fortran libpython

This is also required if installing from a source distribution or git checkout.

irbempy requires Fortran to compile and the only supported compiler is gnu95; this is the default and provided by
m2w64-gcc-fortran.

If you have difficulties, it may be useful to reference the build scripts the SpacePy developers use.
NASA CDF
pycdf requires the NASA CDF library . Binary installers are available for Windows; be sure to pick the version that

matches your Python installation. The current 32-bit version is cdf37_1_0-setup-32.exe; for 64-bit, cdf37_1_0-setup-
64.exe.

This is a simple self-extracting installer that can be installed either before or after installing SpacePy.
Dependencies via conda

Installation via pip will automatically install most Python dependencies (but not the NASA CDF library). They can
also be installed from conda:

conda install numpy scipy matplotlib hS5py

Standalone dependencies

Most of the SpacePy Dependencies have Windows installers available via their pages, but pip or conda are recom-
mended instead.

Developers

If you want to build the documentation yourself (rather than using the documentation shipped with SpacePy), install
sphinx and numpydoc. The easiest way is via pip:

pip install sphinx numpydoc

They are also available via conda:

conda install sphinx numpydoc

1.1. Installing SpacePy 13

https://github.com/spacepy/spacepy/tree/master/developer/scripts
https://cdf.gsfc.nasa.gov/html/sw_and_docs.html
https://spdf.gsfc.nasa.gov/pub/software/cdf/dist/cdf37_1/windows/cdf37_1_0-setup-32.exe
https://spdf.gsfc.nasa.gov/pub/software/cdf/dist/cdf37_1/windows/cdf37_1_0-setup-64.exe
https://spdf.gsfc.nasa.gov/pub/software/cdf/dist/cdf37_1/windows/cdf37_1_0-setup-64.exe

SpacePy Documentation, Release 0.4.0

* Troubleshooting

— pip failures

— irbempy

SpacePy installs with the common Python distutils and pip.

The latest stable release is provided via PyPI To install from PyPI, make sure you have pip installed:

pip install --upgrade spacepy

If you are installing for a single user, and are not working in a virtual environment, add the --user flag when installing
with pip.

Source releases are available from PyPI and our github. Development versions are on github. In addition to download-
ing tarballs, the development version can be directly installed with:

pip install git+https://github.com/spacepy/spacepy

For source releases, after downloading and unpacking, run (a virtual environment, such as a conda environment, is
recommended):

python setup.py install

or, to install for all users (not in a virtual environment):

sudo python setup.py install

or, to install for a single user (not in a virtual environment):

python setup.py install --user

If you do not have administrative privileges, or you will be developing for SpacePy, we strongly recommend using
virtual environments.

To install in custom location, e.g.:

python setup.py install --home=/n/packages/lib/python

Installs using setup.py do not require setuptools.

1.1.5 Troubleshooting
pip failures

If pip completely fails to build, a common issue is a failure in the isolated build environment that pip sets up. Usually
this can be addressed by installing numpy first and eschewing the separate build environment:

pip install numpy
pip install spacepy --no-build-isolation

Manually installing all dependencies (via pip, conda, or other means) and then installing the source release via setup.
py is also an option.

14 Chapter 1. Getting Started

https://pypi.org/project/SpacePy/
https://pypi.org/project/SpacePy/#files
https://github.com/spacepy/spacepy/releases
https://github.com/spacepy/spacepy

SpacePy Documentation, Release 0.4.0

pip will also cache packages; unfortunately sometimes it will use a cached package which is incompatible with the
current environment. In that case, try clearing the cache first, so all locally-compiled packages are rebuilt:

pip cache purge

irbempy
The most common failures relate to compilation of the IRBEM library. Unfortunately pip will hide these warnings, so
they manifest when running import spacepy.irbempy (or some other component of SpacePy that uses irbempy).

The error ImportError: cannot import name 'irbempylib' from partially initialized module
'spacepy.irbempy' (most likely due to a circular import) means the IRBEM library did not compile
at all. This is most likely a compiler issue: either there is no Fortran compiler, or, when using conda on Mac, the
correct SDK version has not been installed. This may also result from pip caching.

The error RuntimeError: module compiled against API version 0x10 but this version of numpy
is Oxe followed by ImportError: numpy.core.multiarray failed to import means that the version of
numpy used at installation of SpacePy does not match that used at runtime. Check that there is only one version
of numpy installed. In some cases pip will install another version of numpy to support the build; try installing numpy
separately first, and then using the --no-build-isolation flag to pip.

1.2 SpacePy - A Quick Start Documentation

The SpacePy Team (Steve Morley, Josef Koller, Dan Welling, Brian Larsen, Jon Niehof, Mike Henderson)

1.2.1 Installation

See Installing SpacePy.

1.2.2 Toolbox - A Box Full of Tools

Contains tools that don’t fit anywhere else but are, in general, quite useful. The following functions are a selection of
those implemented:

» windowMean(): windowing mean with variable window size and overlap

e dictree(): pretty prints the contents of dictionaries (recursively)

* loadpickle(): single line convenience routine for loading Python pickles
* savepickle(): same as loadpickle, but for saving

* update(): updates the OMNI database and the leap seconds database (internet connection required)
e tOverlap(): find interval of overlap between two time series

e tCommon(): find times common to two time series

e binHisto(): calculate number of bins for a histogram

» medAbsDev(): find the median absolute deviation of a data series

e normalize(): normalize a data series

» feq(): floating point equals

Import this module as:

1.2. SpacePy - A Quick Start Documentation 15

SpacePy Documentation, Release 0.4.0

>>> import spacepy.toolbox as tb

Examples:

>>> import spacepy.toolbox as tb
>>> a = {'entryl':'vall', 'entry2':2, 'recursel':{'one':1, 'two':2}}
>>> tb.dictree(a)
+
entryl
entry?2
recursel
one
| ____two
>>> import numpy as np
>>> dat = np.random.random_sample(100)
>>> tb.binHisto(dat)
(0.19151723370512266, 5.0)

1.2.3 Time and Coordinate Transformations

Import the modules as:

>>> import spacepy.time as spt
>>> import spacepy.coords as spc

Ticktock Class
The Ticktock class provides a number of time conversion routines and is implemented as a container class built on the
functionality of the Python datetime module. The following time coordinates are provided

* UTC: Coordinated Universal Time implemented as a datetime.datetime

¢ ISO: standard ISO 8601 format like 2002-10-25T14:33:59

e TAI: International Atomic Time in units of seconds since Jan 1, 1958 (midnight) and includes leap seconds, i.e.
every second has the same length

 JD: Julian Day

* MID: Modified Julian Day

e UNX: UNIX time in seconds since Jan 1, 1970

e RDT: Rata Die Time (Gregorian Ordinal Time) in days since Jan 1, 1 AD midnight
* CDF: CDF Epoch time in milliseconds since Jan 1, year 0

e DOY: Day of Year including fractions

* leaps: Leap seconds according to ftp://maia.usno.navy.mil/ser7/tai-utc.dat

To access these time coordinates, you’ll create an instance of a Ticktock class, e.g.:

>>> t = spt.Ticktock('2002-10-25T12:30:00', "ISO")

Instead of ISO you may use any of the formats listed above. You can also use numpy arrays or lists of time points. t
has now the class attributes:

16 Chapter 1. Getting Started

https://docs.python.org/3/library/datetime.html#datetime.datetime
ftp://maia.usno.navy.mil/ser7/tai-utc.dat

SpacePy Documentation, Release 0.4.0

>>> t.dtype = 'ISO'
>>> t.data = '2002-10-25T12:30:00'

FYI t.UTC is added automatically.

If you want to convert/add a class attribute from the list above, simply type e.g.:

>>> t.RTD

You can replace RTD with any from the list above.

You can find out how many leap seconds were used by issuing the command:

>>> t.getleapsecs()

Timedelta Class

You can add/subtract time from a Ticktock class instance by using an instance of datetime.timedelta:

>>> dt = datetime.timedelta(days=2.3)

Then you can add by e.g.:

>>> t+dt

Coords Class

The spatial coordinate class includes the following coordinate systems in Cartesian and spherical forms.
* GZD: (altitude, latitude, longitude) in km, deg, deg
¢ GEO: cartesian, Re
¢ GSM: cartesian, Re
¢ GSE: cartesian, Re
e SM: cartesian, Re
¢ GEI: cartesian, Re
* MAG: cartesian, Re
» SPH: same as GEO but in spherical
* RLL: radial distance, latitude, longitude, Re, deg, deg.

Create a Coords instance with spherical="sph’ or cartesian="car’ coordinates:

>>> spaco = spc.Coords([[1,2,4],[1,2,2]], '"GEO', 'car')

This will let you request, for example, all y-coordinates by spaco.y or if given in spherical coordinates by
spaco.lati. One can transform the coordinates by newcoord = spaco.convert('GSM', 'sph'). This will
return GSM coordinates in a spherical system. Since GSM coordinates depend on time, you’ll have to add
first a Ticktock vector with the name ticks like spaco.ticks = spt.Ticktock(['2002-02-02T12:00:00"',
'2002-02-02T12:00:00'], 'ISO0')

Unit conversion will be implemented in the future.

1.2. SpacePy - A Quick Start Documentation 17

https://docs.python.org/3/library/datetime.html#datetime.timedelta

SpacePy Documentation, Release 0.4.0

1.2.4 The radbelt Module

The radiation belt module currently includes a simple radial diffusion code as a class. Import the module and instatiate
a radbelt object:

>>> import spacepy.radbelt as sprb
>>> rb = sprb.RBmodel ()

Add a time grid for a particular period that you are interested in:

>>> rb.setup_ticks('2002-02-01T00:00:00", '2002-02-10T00:00:00', 0.25)

This will automatically lookup required geomagnetic/solar wind conditions for that period. Run the diffusion solver
for that setup and plot the results:

>>> rb.evolve()
>>> rb.plot()

1.2.5 The Data Assimilation Module

This module includes data assimilation capabilities, through the assimilation class. The class assimilates data for the
radiation belt model using the Ensemble Kalman Filter. The algorithm used is the SVD method presented by Evensen
in 2003 (Evensen, G., Ocean dynamics, 53, pp.343-367, 2003). To compensate for model errors, three inflation algo-
rithms are implemented. The inflation methodology is specified by the inflation argument, where the options are the
following:

* inflation = 0: Add model error (perturbation for the ensemble) around model state values only where observations
are available (DEFAULT).

* inflation = 1: Add model error (perturbation for the ensemble) around observation values only where observations
are available.

* inflation = 2: Inflate around ensemble average for EnKF.

Prior to assimilation, a set of data values has to be specified by setting the start and end dates, and time step, using the
setup_ticks function of the radiation belt model:

>>> import spacepy
>>> import datetime
>>> from spacepy import radbelt

>>> start = datetime.datetime(2002,10,23)

>>> end = datetime.datetime(2002,11,4)

>>> delta = datetime.timedeltaChours=0.5)

>>> rmod.setup_ticks(start, end, delta, dtype='UTC')

Once the dates and time step are specified, the data is added using the add_PSD function (NOTE: This requires a
database available from the SpacePy team):

>>> rmod.add_PSD()

The observations are averaged over the time windows, whose interval is give by the time step. Once the dates and data
are set, the assimilation is performed using the assimilate function:

18 Chapter 1. Getting Started

SpacePy Documentation, Release 0.4.0

>>> rmod.assimilate(inflation=1)

This function will add the PSDa values, which are the analysis state of the radiation belt using the observations within
the dates. To plot the analysis simply use the plot function:

>>> rmod.plot(values=rmod.PSDa,clims=[-10,-6],Lmax=False,Kp=False,Dst=False)

Additionally, to create a summary plot of the observations use the plot_obs function within the radbelt module.
For reference, the last closed drift shell, Dst, and Kp are all included. These can be disabled individually using the
corresponding Boolean kwargs.

The clims kwarg can be used to manually set the color bar range. To use, set it equal to a two-element list containing
minimum and maximum log o value to plot. Default action is to use [0,10] as the log |9 of the color range. This is
good enough for most applications. The title of the top most plot defaults to ‘Summary Plot’ but can be customized
using the title kwarg.

The figure object and all three axis objects (PSD axis, Dst axis, and Kp axis) are all returned to allow the user to further
customize the plots as necessary. If any of the plots are excluded, None is returned in their stead.

Example:

>>> rmod.plot_obs(clims=[-10,-6],Lmax=False,Kp=False,Dst=False,title='0Observations Plot')

This command would create the summary plot with a color bar range of 10 '° to 10 ¢, The Lmax line, Kp and Dst
values would be excluded. The title of the topmost plot (phase space density) would be set to ‘Observations Plot’.

1.2.6 OMNI Module

The OMNI database is an hourly resolution, multi-source data set with coverage from November 1963; higher temporal
resolution versions of the OMNI database exist, but with coverage from 1995. The primary data are near-Earth solar
wind, magnetic field and plasma parameters. However, a number of modern magnetic field models require derived
input parameters, and Qin and Denton (2007) have used the publicly-available OMNI database to provide a modified
version of this database containing all parameters necessary for these magnetic field models. These data are available
through ViRBO - the Virtual Radiation Belt Observatory.

In SpacePy this data is made available, at 1-hourly resolution, on request on first import; if not downloaded when
SpacePy is first used then any attempt to import the omni module will ask the user whether they wish to download
the data. Should the user require the latest data, the toolbox.update function can be used to fetch the latest files from
ViRBO.

The following example fetches the OMNI data for the storms of October and November, 2003.:

>>> import spacepy.time as spt

>>> import spacepy.omni as om

>>> import datetime as dt

>>> st = dt.datetime(2003,10,20)

>>> en = dt.datetime(2003,12,5)

>>> delta = dt.timedelta(days=1)

>>> ticks = spt.tickrange(st, en, delta, 'UTC')
>>> data = om.get_omni(ticks)

data is a dictionary containing all the OMNI data, by variable, for the timestamps contained within the Ticktock
object ticks. Now it is simple to plot Dst values for instance:

1.2. SpacePy - A Quick Start Documentation 19

SpacePy Documentation, Release 0.4.0

>>> import pyplot as p
>>> p.plot(ticks.eDOY, data['Dst'])

1.2.7 The irbempy Module

ONERA (Office National d’Etudes et Recherches Aerospatiales) initiated a well-known FORTRAN library that pro-
vides routines to compute magnetic coordinates for any location in the Earth’s magnetic field, to perform coordinate
conversions, to compute magnetic field vectors in geospace for a number of external field models, and to propagate
satellite orbits in time. Older versions of this library were called ONERA-DESP-LIB. Recently the library has changed
its name to IRBEM-LIB and is maintained by a number of different institutions.

A number of key routines in IRBEM-LIB have been made available through the module irbempy. Current functionality
includes calls to calculate the local magnetic field vectors at any point in geospace, calculation of the magnetic mirror
point for a particle of a given pitch angle (the angle between a particle’s velocity vector and the magnetic field line that
it immediately orbits such that a pitch angle of 90 degrees signifies gyration perpendicular to the local field) anywhere
in geospace, and calculation of electron drift shells in the inner magnetosphere.:

>>> import spacepy.time as spt

>>> import spacepy.coordinates as spc

>>> import spacepy.irbempy as ib

>>> t = spt.Ticktock(['2002-02-02T12:00:00', '2002-02-02T12:10:00'], 'IS0')

>>> y = spc.Coords([[3,0,0],[2,0,0]], 'GEO', 'car')

>>> ib.get_Bfield(t,y)

>>> # {Blocal': array([976.42565251, 3396.25991675]),

>>> # ‘Bvec': array([[-5.01738885e-01, -1.65104338e+02, 9.62365503e+02], [3.
33497974e+02, -5.42111173e+02, 3.33608693e+03]])}

One can also calculate the drift shell L* for a 90 degree pitch angle value by using:

>>> ib.get_Lstar(t,y, [90])

>>> # {Bmin': array([975.59122652, 3388.2476667]),

>>> # Bmirr': array([[976.42565251], [3396.25991675]]),
>>> # 'Lm': array([[3.13508015], [2.07013638]]),

>>> # 'Lstar': array([[2.86958324], [1.95259007]]),

>>> # MLT': array([11.97222034, 12.13378624]),

>>> # 'Xj': array([[0.00081949], [0.00270321]])}

Other function wrapped with the IRBEM library include:
e find_Bmirror()
e find_magequator()

e coord_trans()

20 Chapter 1. Getting Started

SpacePy Documentation, Release 0.4.0

1.2.8 pyCDF - Python Access to NASA CDF Library

pycdf provides a “pythonic” interface to the NASA CDF library. It requires that the NASA CDF C-library is properly
installed. The module can then be imported, e.g.:

>>> import spacepy.pycdf as cdf

To open and close a CDF file, we use the CDF class:

>>> cdf_file = cdf.CDF('filename.cdf")
>>> cdf_file.close()

CDF files, like standard Python files, act as context managers:

>>> with cdf.CDF('filename.cdf') as cdf_file:
>>> #do brilliant things with cdf_file
>>> #cdf_file is automatically closed here

CDF files act as Python dictionaries, holding CDF variables keyed by the variable name:

>>> var_names = keys(cdf_file) #list of all variables

>>> for var_name in cdf_file:

>>> print(len(cdf_file[var_name])) #number of records in each variable
>>> #list comprehensions work, too

>>> lengths = [len(cdf_file[var_name]) for var_name in cdf_file]

Each CDF variable acts like a numpy array, where the first dimension is the record number. Multidimensional CDF
variables can be subscripted using numpy’s multidimensional slice notation. Many common list operations are also
implemented, where each record acts as one element of the list and can be independently deleted, inserted, etc. Creating
a Python Var object does not read the data from disc; data are only read as they are accessed:

>>> epoch = cdf_file['Epoch'] #Python object created, nothing read from disc
>>> epoch[0] #time of first record in CDF (datetime object)

>>> a = epoch[...] #copy all times to list a

>>> a = epoch[-5:] #copy last five times to list a

>>> b_gse = cdf_file['B_GSE'] #B_GSE is a 1D, three-element array

>>> bz = b_gse[0,2] #Z component of first record

>>> bx = b_gse[:,0] #copy X component of all records to bx

>>> bx cdf_file['B_GSE'][:,0] #same as above

1.2.9 The datamodel Module

The SpacePy datamodel module implements classes that are designed to make implementing a standard data model
easy. The concepts are very similar to those used in standards like HDF5, netCDF and NASA CDF.

The basic container type is analogous to a folder (on a filesystem; HDF5 calls this a group): Here we implement this
as a dictionary-like object, a datamodel.SpaceData object, which also carries attributes. These attributes can be
considered to be global, i.e. relevant for the entire folder. The next container type is for storing data and is based on
a numpy array, this class is datamodel.dmarray and also carries attributes. The dmarray class is analogous to an
HDFS5 dataset.

1.2. SpacePy - A Quick Start Documentation 21

SpacePy Documentation, Release 0.4.0

Guide for NASA CDF users

By definition, a NASA CDF only has a single ‘layer’. That is, a CDF contains a series of records (stored variables
of various types) and a set of attributes that are either global or local in scope. Thus to use SpacePy’s datamodel
to capture the functionality of CDF the two basic data types are all that is required, and the main constraint is that
datamodel.SpaceData objects cannot be nested (more on this later, if conversion from a nested datamodel to a flat
datamodel is required).

This is best illustrated with an example. Imagine representing some satellite data within a CDF — the global attributes
might be the mission name and the instrument PI, the variables might be the instrument counts [n-dimensional array],
timestamps[1-dimensional array and an orbit number [scalar]. Each variable will have one attribute (for this example).

>>> import spacepy.datamodel as dm

>>> mydata = dm.SpaceData(attrs={'MissionName': 'BigSatl'})

>>> mydata['Counts'] = dm.dmarray([[42, 69, 77], [100, 200, 250]], attrs={'Units': 'cnts/
~s'P

>>> mydata['Epoch'] = dm.dmarray([1, 2, 3], attrs={'units': 'minutes'})

>>> mydata['OrbitNumber'] = dm.dmarray(16, attrs={'StartsFrom': 1})

>>> mydata.attrs['PI'] 'Prof. Big Shot'

This has now populated a structure that can map directly to a NASA CDF. To visualize our datamodel, we can use the
tree () method, which is equivalent to toolbox.dictree() (which works for any dictionary-like object, including
PyCDF file objects).

>>> mydata.tree(attrs=True)
4

MissionName

|____PI

Counts

Units

[J—
)
| ____Epoch
|____units
OrbitNumber
:|____StartsFrom
>>> import spacepy.toolbox as tb
>>> tb.dictree(mydata, attrs=True)
"

MissionName
|l____PI

Counts

Units

[
[—
| ____Epoch
|____units
OrbitNumber

StartsFrom

Attributes are denoted by a leading colon. The global attributes are those in the base level, and the local attributes are
attached to each variable.

If we have data that has nested ‘folders’, allowed by HDF5 but not by NASA CDF, then how can this be represented
such that the data structure can be mapped directly to a NASA CDF? The data will need to be flattened so that it is
single layered. Let us now store some ephemerides in our data structure:

>>> mydatal['Ephemeris'] = dm.SpaceData()
>>> mydata['Ephemeris']J['GSM'] = dm.dmarray([[1,3,3], [1.2,4,2.5], [1.4,5,1.91])

(continues on next page)

22 Chapter 1. Getting Started

SpacePy Documentation, Release 0.4.0

(continued from previous page)

>>> tb.dictree(mydata, attrs=True)
+

MissionName

|____PI

Counts

|____Units

Ephemeris

|____GSM

Epoch

|____units
OrbitNumber
StartsFrom

Nested dictionary-like objects is not uncommon in Python (and can be exceptionally useful for representing data, so to
make this compatible with NASA CDF we call the f1atten() method .

>>> mydata.flatten()

>>> tb.dictree(mydata, attrs=True)
+

MissionName

|____PI

Counts

|____Units

Ephemeris<--GSM

Epoch

|____units
OrbitNumber
StartsFrom

Note that the nested SpaceData has been moved to a variable with a new name reflecting its origin. The data structure
is now flat again and can be mapped directly to NASA CDF.

Converters to/from datamodel

Currently converters exist to read HDF5 and NASA CDF files directly to a SpacePy datamodel. This capability also
exists for JSON-headed ASCII files (RBSP/AutoPlot-compatible). A converter from the datamodel to HDFS is now
available and a converter to NASA CDF is under development. Also under development is the reverse of the Space-
Data.flatten method, so that flattened objects can be restored to their former glory.

1.2.10 Empiricals Module
The empiricals module provides access to some useful empirical models. As of SpacePy 0.1.2, the models available
are:

e getLmax() An empirical parametrization of the L* of the last closed drift shell (Lmax)

e getPlasmaPause () The plasmapause location, following either Carpenter and Anderson (1992) or Moldwin et
al. (2002)

* getMPstandoff () The magnetopause standoff location (i.e. the sub-solar point), using the Shue et al. (1997)
model

1.2. SpacePy - A Quick Start Documentation 23

SpacePy Documentation, Release 0.4.0

* vampolaPA() A conversion of omnidirectional electron flux to pitch-angle dependent flux, using the sin " model
of Vampola (1996)

Each of the first three models is called by passing it a Ticktock object (see above) which then calculates the model
output using the 1-hour Qin-Denton OMNI data (from the OMNI module; see above). For example:

>>> import spacepy.time as spt
>>> import spacepy.empiricals as emp
>>> ticks = spt.tickrange('2002-01-01T12:00:00', '2002-01-04T00:00:00",.25)

calls tickrange () and makes a Ticktock object with times from midday on January 1st 2002 to midnight January 4th
2002, incremented 6-hourly:

>>> Lpp = emp.getPlasmaPause(ticks)

then returns the model plasmapause location using the default setting of the Moldwin et al. (2002) model. The Car-
penter and Anderson model can be used by setting the Lpp_model keyword to ‘CA1992’.

The magnetopause standoff location can be called using this syntax, or can be called for specific solar wind parameters
(ram pressure, P, and IMF Bz) passed through in a Python dictionary:

>>> data = {'P': [2,4], 'Bz': [-2.4, -2.4]%}
>>> emp.getMPstandoff(data)
>>> # array([10.29156018, 8.96790412])

1.2.11 SeaPy - Superposed Epoch Analysis in Python

Superposed epoch analysis is a technique used to reveal consistent responses, relative to some repeatable phenomenon,
in noisy data . Time series of the variables under investigation are extracted from a window around the epoch and all
data at a given time relative to epoch forms the sample of events at that lag. The data at each time lag are then averaged
so that fluctuations not consistent about the epoch cancel. In many superposed epoch analyses the mean of the data
at each time u relative to epoch, is used to represent the central tendency. In SeaPy we calculate both the mean and
the median, since the median is a more robust measure of central tendency and is less affected by departures from
normality. SeaPy also calculates a measure of spread at each time relative to epoch when performing the superposed
epoch analysis; the interquartile range is the default, but the median absolute deviation and bootstrapped confidence
intervals of the median (or mean) are also available.

As an example we fetch OMNI data for 4 years and perform a superposed epoch analysis of the solar wind radial
velocity, with a set of epoch times read from a text file:

>>> import datetime as dt

>>> import spacepy.seapy as sea

>>> import spacepy.omni as om

>>> import spacepy.toolbox as tb

>>> import spacepy.time as spt

>>> # now read the epochs for the analysis (the path specified is the default

>>> # install location on linux, different 0S will have this elsewhere)

>>> epochs = sea.readepochs('~/.local/lib/python2.7/site-packages/spacepy/data/SEA_
—epochs_OMNI.txt"')

The readepochs function can handle multiple formats by a user-specified format code. ISO 8601 format is directly
supported though it is not used here. The the readepochs docstring for more information. As above, we use the
get_omni function to retrieve the hourly data from the OMNI module:

24 Chapter 1. Getting Started

SpacePy Documentation, Release 0.4.0

>>> ticks = spt.tickrange(dt.datetime(2005,1,1), dt.datetime(2009,1,1), dt.
—timedeltaChours=1))

>>> omnilhr = om.get_omni(ticks)

>>> omnilhr.tree(levels=1, verbose=True)

+
| ____ByIMF (spacepy.datamodel.dmarray (35065,))
Bzl (spacepy.datamodel.dmarray (35065,))
Bz2 (spacepy.datamodel.dmarray (35065,))
Bz3 (spacepy.datamodel.dmarray (35065,))
Bz4 (spacepy.datamodel.dmarray (35065,))
Bz5 (spacepy.datamodel.dmarray (35065,))
Bz6 (spacepy.datamodel.dmarray (35065,))
BzIMF (spacepy.datamodel.dmarray (35065,))
|____DOY (spacepy.datamodel.dmarray (35065,))
|____Dst (spacepy.datamodel.dmarray (35065,))
|____G (spacepy.datamodel.dmarray (35065, 3))
|____Hr (spacepy.datamodel.dmarray (35065,))
Kp (spacepy.datamodel.dmarray (35065,))
|____Pdyn (spacepy.datamodel.dmarray (35065,))
|____Qbits (spacepy.datamodel.SpaceData [7])
|____RDT (spacepy.datamodel.dmarray (35065,))
| ____UTC (spacepy.datamodel.dmarray (35065,))
W (spacepy.datamodel.dmarray (35065, 6))
Year (spacepy.datamodel.dmarray (35065,))
|____akp3 (spacepy.datamodel.dmarray (35065,))
|____dens (spacepy.datamodel.dmarray (35065,))

and these data are used for the superposed epoch analysis. the temporal resolution is 1 hr and the window is +/- 3 days

>>> delta = dt.timedeltachours=1)
>>> window= dt.timedelta(days=3)
>>> sevx = sea.Sea(omnilhr['velo'], omnilhr['UTC'], epochs, window, delta)
#rather than quartiles, we calculate the 95% confidence interval on the median
>>> sevx.sea(ci=True)
>>> sevx.plot()

1.3 SpacePy Help

The best way to get help is to open an issue. Searching existing issues may find other people who have had similar
questions. Try changing the filters (at the top) to include closed issues, as they may have been addressed.

Most modules also have a contact person listed in the docstring. These are built into in the main SpacePy 0.4.0 docu-
mentation, or you can view it from within Python/IPython:

>>> import spacepy.pycdf
>>> help(spacepy.pycdf)
>>> print(spacepy.pycdf.__contact__)

A web version of this documentation is currently hosted at spacepy.github.io.

1.3. SpacePy Help 25

https://github.com/spacepy/spacepy/issues
https://spacepy.github.io/

SpacePy Documentation, Release 0.4.0

1.3.1 Contributing

Contributions to SpacePy are welcome! Development is managed via our github. If you’re interesting in contributing
a new feature or bugfix, it is recommended to open an issue to discuss your plans. Once your code is ready, you can
open a pull request. Thanks for helping to improve SpacePy!

26 Chapter 1. Getting Started

https://github.com/spacepy/spacepy
https://github.com/spacepy/spacepy/pulls

CHAPTER
TWO

SPACEPY DOCUMENTS

Further reference material on how to use SpacePy, and examples.

2.1 SpacePy Capabilities

This page lists some capabilities of SpacePy and, in some cases, of other packages that might be of interest to SpacePy
users. It is organized by topic; searching within this page is recommended. See the module reference for every
class/function available in SpacePy, organized by module.

Array manipulation

Coordinate Transforms

» File I/O

Modeling

Statistics
e Time conversions

* Time series analysis and correlations

e Visualization

2.1.1 Array manipulation

Various toolbox functions are useful in manipulating NumPy arrays. datamanager also contains many functions for
indexing arrays and manipulating them in ways that do not depend on the interpretation of their contents.

2.1.2 Coordinate Transforms

coordinates provides a class for transforming among most coordinate systems used in Earth magnetospheric and
ionospheric physics.

It also provides generalized coordinate transforms via quaternions.

27

SpacePy Documentation, Release 0.4.0

2.1.3 File l/O
pycdf provides reading and writing of NASA CDF files, with additional functionality for those with ISTP-compliant
metadata.

datamodel provides easy reading and writing of HDF5 and most netCDF files. It also supports reading and writing
ASCII-based data files with rich JSON metadata, supported by tools such as Autoplot.

numpy . loadtxt () and related functions are helpful for reading various “plain-text” files into numerical arrays.
scipy.io.readsav() reads IDL savesets.

astropy.io.fits supports FITS files.

2.1.4 Modeling

ae9ap9 supports import and visualization of data from the AE9/AP9 empirical radiation belt model.

empiricals implements several simple empirical and/or analytic models for magnetospheric and solar wind phenom-
ena, including the plasmapause location, the Shue magnetopause model, and solar wind temperature.

pybats supports output analysis and visualization of many models compatible with the Space Weather Modeling
Framework, including the BATS-R-US global MHD model and the RAM-SCB ring current model.

omni provides ready access to the OMNI near-Earth solar wind dataset, useful for model inputs.

2.1.5 Statistics

poppy supports determining confidence intervals on
population metrics using the non-parametric bootstrap method.

2.1.6 Time conversions

time contains a class that easily allows time to be represented in, and converted among, many representations, including
Python datetimes, ISO time strings, GPS time, TAI, etc.

2.1.7 Time series analysis and correlations

poppy implements association analysis to determine the relationship between point-in-time events.

seapy implements superposed epoch analysis, the statistical evaluation of the time evolution of a system relative to a
set of starting epochs.

2.1.8 Visualization

plot provides tools useful in making publication-quality plots with the matplotlib toolkit.

28 Chapter 2. SpacePy Documents

http://autoplot.org
https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html#numpy.loadtxt
https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.readsav.html#scipy.io.readsav
https://docs.astropy.org/en/stable/io/fits/index.html#module-astropy.io.fits
https://omniweb.gsfc.nasa.gov/
https://matplotlib.org/

SpacePy Documentation, Release 0.4.0

2.2 Release Notes

This document presents user-visible changes in each release of SpacePy.

* 0.4 Series

- 0.4.0(2022-09-07)
* 0.3 Series

- 0.3.0(2022-04-27)
* 0.2 Series

0.2.3 (2021-10-30)
0.2.2 (2020-12-29)
0.2.1 (2019-10-02)
0.2.0 (2019-06-22)

e 0.1 Series

- 0.1.6 (2016-09-08)
0.1.5(2014-12-23)
0.1.4(2013-05-21)
0.1.3 (2012-06-22)
0.1.2 (2012-05-25)
0.1.1(2011-10-31)
0.1(2011-08-24)

2.2.1 0.4 Series

0.4.0 (2022-09-07)

This release marks the end of support and/or fixes for bugs that cannot be reproduced on Python 3. As with the previous
release series, SpacePy 0.4.0 can still be built and installed “by hand” on Python 2, but no Python 2 binaries are provided
and this version will not install on Python 2 using pip.

New features

The LANLstar module has been rewritten to use numpy to evaluate the neural networks instead of relying on ffnet.
The temporary removal of support for this module in SpacePy 0.3.0 has therefore been lifted. The new implementation
provides a slight performance increase with no change in results or accuracy.

VarBundle now supports output to and input from SpaceData objects as well as CDF.

Both coordinates backends now provide access to the TEME coordinate system (as used by the SGP4 orbit propa-
gator).

2.2. Release Notes 29

SpacePy Documentation, Release 0.4.0

Deprecations and removals

The _nelems method of Var has been removed; use the public interface nelems (). (Deprecated in 0.2.2).

irbempy get_sysaxes, sph2car and car2sph were deprecated in SpacePy 0.2.2 and have been removed. In place
of the latter functions, sph2car () and car2sph() should be used.

Major bugfixes

The installer has been updated to address certain build issues, particularly on Mac. The Mac installation directions
have been completely rewritten.

pycdf has been updated for Apple Silicon (ARM/M1); Python 3.8 is required for this support.

pycdf contains a time conversion workaround for versions of the NASA CDF library before 3.8.0.1. Non-integral
epoch values close to midnight would erroneously return the following day; epoch_to_datetime () now returns the
correct value on all CDF library versions.

The IRBEM backend for coordinate transformations has been updated to correct the specification of transformations
through the J2000 and TOD systems, including correctly setting the GEI and TOD systems to be equivalent. This may
change results by a small amount. The IRBEM update also traps a singularity at the South pole in the conversion to
geodetic (GDZ) coordinates.

Dependency requirements

LANLstar now uses a numpy-based implementation (based on contributions from Aaron Hendry) so neither ffnet or
networkx are required to use it. These dependencies were removed in SpacePy 0.3.0, but were still required for use of
LANLstar. Support for LANLstar is reinstated in SpacePy 0.4.0.

Other changes

pycdf no longer warns when defaulting to version 3 CDFs and TIME_TT2000 time type if not specified; the warning
was added in 0.2.2 and the default changed in 0.3.0. Use set_backward() to create version 2 CDFs and explicitly
specify a time type (e.g. with new()) if TT2000 is not desired.

The IRBEM library bundled with SpacePy has been updated to reflect recent updates and bugfixes, and reflects the
upstream repository as of 2022-08-29 (commit dfb9d26).

2.2.2 0.3 Series
0.3.0 (2022-04-27)
This release continues the phaseout of Python 2 support. No Python 2 binaries are provided, and 0.3.0 will not install

on Python 2 with pip. Installation via setup.py from a source distribution is still available.

This is the last release with Python 2 bugfix support. SpacePy 0.4.0 will make no attempt to maintain functionality for
Python 2 and SpacePy 0.5.0 will not function without Python 3.

Windows binaries are only provided as 64-bit wheels, installable with pip, for Python 3.6 and later. Windows exe-
cutable installers and 32-bit binaries are no longer provided.

30 Chapter 2. SpacePy Documents

SpacePy Documentation, Release 0.4.0

New features

The coordinates module has been overhauled with a new, Python-based backend. This provides comparable per-
formance to the existing irbempy backend with higher precision and reduces the dependence on Fortran. By default,
irbemlib will still be built at installation time. The default backend remains IRBEM; in 0.4.0, this will switch to the
new ctrans based backend. The new igrf module is part of this support but may be of interest on its own.

In accordance with a change from NASA, pycdf now assumes strings in CDFs are UTF-8. It will no longer raise
errors on reading non-ASCII data from a CDF. See String handling in the pycdf documentation for details.

ae9ap9 now supports the new ephem model file format (>=1.50.001) via parseHeader (). The old file format is
deprecated.

Deprecations and removals

HTML documentation is no longer installed with SpacePy. help () now opens the latest online documentation. Offline
documentation are available separately (files named like spacepy-x.y.z-doc.zip and spacepy-x.y.z-doc.pdf)
and as part of the source distribution (spacepy-x.y.z.tar.gz or spacepy-x.y.z.zip). These files can be down-
loaded from SpacePy’s releases on GitHub; the source can also be found on PyPI.

LANLstar requires ffnet, which does not install properly with current setuptools (version 58). The SpacePy team
is working on replacing this dependency, but in the meantime LANLstar is unsupported and will require manually
installing ffnet and networkx.

As mentioned above, ae9ap9 support for the old ephem model file format is deprecated.

Colourmaps have been removed from plot. The same colourmaps (plasma and viridis) have been available in
matplotlib since at least 1.5. (Deprecated in 0.2.3.)

The old name spectrogram for Spectrogram has been removed. (Deprecated in 0.2.2.)

The read_ram_dst function has been removed from ram, as it operates on files that are no longer written by RAM-
SCB. (Deprecated in 0.1.6.)

The fix_format function has been removed from rim; Iono can now read these files directly. (Deprecated in 0.2.2.)

The from_dict method of CDF attribute lists (gAttrList (), zAttrList ())has beenremoved. Use clone (), which
supports cloning from dictionaries. (Deprecated in 0.1.5.)

The feq function has been removed from toolbox; use numpy.isclose(). (Deprecated in 0.2.2.)

Quaternion math functions have been removed from toolbox; they are available in coordinates. (Deprecated in
0.2.2.)

Dependency requirements

Due to the new backend, scipy is now required for coordinates (even if using the old backend). 0.11 remains the
minimum version.

Since LANLstar is not currently supported, ffnet and networkx are no longer treated as SpacePy dependencies.

2.2. Release Notes 31

https://spacepy.github.io/
https://github.com/spacepy/spacepy/releases
https://pypi.org/project/spacepy/#files
http://ffnet.sourceforge.net/
https://github.com/pypa/setuptools
http://networkx.lanl.gov/
https://numpy.org/doc/stable/reference/generated/numpy.isclose.html#numpy.isclose

SpacePy Documentation, Release 0.4.0

Other changes

pycdf now defaults to creating version 3 (not backward-compatible) CDFs if the backward compatible mode is not
explicitly set (set_backward()). It still issues a warning when creating a CDF if this is not set; this warning will be
removed in 0.4.0. (Warning added in 0.2.2.)

Similarly, pycdf defaults to TIME_TT2000 when creating a time variable or attribute without specifying a type
(EPOCH or EPOCHI16 are used if TT2000 isn’t available). A warning is issued when doing so; this warning will
be removed in 0.4.0. (Warning added in 0.2.2.)

On Windows, pycdf now looks in more locations for the NASA CDF library. Newer versions of the library by default
install to a different location (Program Files). The DLL is also now placed in the bin directory instead of 1ib, so
bin is searched and the value of environment variable CDF_BIN in addition to 1ib and CDF_LIB. The net effect should
be to increase the chance of successfully loading the library, with a small chance of accidentally loading the wrong one.

The default data source for leapsecond files has been reverted from NASA/MODIS to the USNO, as USNO data services
are back online. If present, entries in the configuration file will still be used instead of the default.

2.2.3 0.2 Series

0.2.3 (2021-10-30)

This is the last release of the 0.2 series and the last with full support for Python 2. Binary installers (including wheels)
for 32-bit Windows will also end after the 0.2 series, as will Windows installers. The only binaries for Windows will
be 64-bit wheels, installable with pip.

New features

pycdf now supports variables with sparse records, including enabling/disabling sparse records (sparse ()) and setting
the pad value (pad()). Thanks Antoine Brunet.

Deprecations and removals

The colourmaps provided in the plot module have been deprecated. The same colourmaps have been available in
matplotlib since at least 1.5, and users who do not directly import the colourmaps should see no impact.

Major bugfixes

The passing of keyword arguments from bootHisto() to numpy.histogram() and matplotlib.pyplot.bar()
has been fixed.

The check for out-of-date leapseconds in time has been fixed (previously warned even when the file was up to date.)
Fixed installation on new versions of setuptools, which removed bdist_wininst support (#530).

The handling of library paths on Windows has been updated. This should fix situations where irbempy would not
import on Windows with Python 3.8 or later. This did not seem to be a problem with Anaconda, but would sometimes
manifest with Python from the app store or from http://python.org/ (#507)

32 Chapter 2. SpacePy Documents

https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.bar.html#matplotlib.pyplot.bar
https://github.com/spacepy/spacepy/issues/530
http://python.org/
https://github.com/spacepy/spacepy/issues/507

SpacePy Documentation, Release 0.4.0

Other changes

Modern leapsecond rules are applied from 1958-1972 rather than rounding fractional leapseconds. See time for full
discussion of leap seconds and other conversion considerations.

The handling of the . spacepy directory (see SpacePy Configuration) has been improved. If the SPACEPY environment
variable is used, the directory will be created. The import process also is less fragile in the case of a partially-created
. spacepy directory or an invalid (e.g. empty) spacepy.rc.

0.2.2 (2020-12-29)

The 0.2 series will be the last with full support for Python 2; 0.2.3 will likely be the last release. Binary installers for
32-bit Windows will also end after the 0.2 series.

New features

irbempy incorporates upstream IRBEMIib rev620. This adds IGRF13 coefficients. coordinates and irbempy now
also support using all supported coordinate systems as inputs to routines; if a routine does not support an input system,
it will be automatically converted.

Ticktock supports conversions to and from astropy.time.Time.

The following classes, functions, and methods are new:

quaternionFromMatrix(matrix[, scalarPos]) Given an input rotation matrix, return the equivalent
quaternion

quaternionToMatrix(Qin[, scalarPos, normalize]) Given an input quaternion, return the equivalent rotation
matrix.

rebin(data, bindata, bins[, axis, bintype, ...]) Rebin one axis of input data based on values of another
array

add_arrows(lines|, n, size, style, ...]) Add directional arrows along a plotted line.

concatCDF(cdfs[, varnames, raw]) Concatenate data from multiple CDFs

nanfill(v) Set fill values to NaN

empty_entry(f) Check for attributes with empty string

VarBundle(source[, name]) Collective handling of ISTP-compliant variable and its
dependencies.

deltas(v) Check DELTA variables

empty_entry(v) Check for attributes with empty string

Deprecations and removals

pycdf now warns if creating a new CDF file without explicitly setting backward compatible or not backward compatible
(set_backward()). The default is still to make backward-compatible CDFs, but this will change in 0.3.0. Similarly
it now warns if creating a time variable without specifying a time type; the default is still to use EPOCH or EPOCH16,
but this will change to TIME_TT2000 in 0.3.0.

fix_format() is now deprecated, as Tono can now read these files directly.
Quaternion math functions have been moved to coordinates; using the functions in toolbox is deprecated.
feq() is deprecated; numpy 1.7 added the equivalent isclose().

The spectrogram class is now capitalized (Spectrogram); the old, lower-case variant is kept for compatibility but
will be removed.

2.2. Release Notes 33

https://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://numpy.org/doc/stable/reference/generated/numpy.isclose.html#numpy.isclose

SpacePy Documentation, Release 0.4.0

Dependency requirements

Not all dependencies are required for all functionality; see SpacePy Dependencies for full details, including what
functionality is lost if a dependency is not installed.

numpy 1.10 is now required. (Many functions erroneously required it from 0.2.1, but this was not adequately docu-
mented.)

scipy 0.11 is now the minimum supported version of SciPy. (Again, this was erroneously required in 0.2.0 without
appropriate documentation.)

Several dependencies without an established minimum version were tested.
As of 0.2.2, minimum supported versions of dependencies are:

e CPython 2 2.7 or CPython 3 3.2

e AstroPy 1.0

e CDF 2.7

* dateutil 1.4 (earlier may work)

e ffnet 0.7 (earlier may work)

* h5py 2.6 (earlier may work)

» matplotlib 1.5

* networkx 1.0 (earlier may work)

e numpy 1.10

e scipy 0.11

Major bugfixes

Time conversions between time systems before 1961 now use the proper number of leapseconds (0).

Many minor bugfixes.

Other changes

Data sources for leapsecond files and omni Qin-Denton files have been updated to provide current sources. If present,
entries in the configuration file will still be used instead. A (configurable) warning is issued for out-of-date leapsecond
files.

The representation of leap second intervals in time systems which cannot directly represent them has been changed.
Formerly times such as 2008-12-31T23:59:60 were represented in e.g. UTC datetime as the the beginning of the next
day, e.g. 2009-01-01T00:00:00. They are now represented by the last possible moment of the same day, e.g. 2008-12-
31T23:59:59.999999. Fractional leapsecond counts are now rounded to the integer instead of truncated; this rounding
is applied to the total TAI - UTC quantity not the individual increments of leap seconds. E.g successive 0.2, 0.2, 0.2
leap seconds will result in 0, 0, and 1 new leap seconds.

Similarly, leap seconds are now included in the fractional day calculation of MJD, so MJD values around a leap second
may be different than in previous versions of SpacePy.

Most time systems are now converted to/from TAI rather than using datetime. This may cause small differences with
previous versions of SpacePy, on order of a double precision. RDT and JD are particularly affected for dates in the
modern era. Time conversions around leapseconds may also be different; in many cases they were undefined in previous
versions.

34 Chapter 2. SpacePy Documents

SpacePy Documentation, Release 0.4.0

now() and today () return times in UTC; in previous versions the value returned was local, but was treated as UTC
for all conversions (and thus inaccurate.)

See time for full discussion of leap seconds, time resolution, and other conversion considerations.

0.2.1 (2019-10-02)

New features

The following module is new:

istp Support for ISTP-compliant CDFs

Deprecations and removals

None

Dependency requirements

No changes to minimum dependency versions.
As of 0.2.1, the minimum versions of dependencies are:
e CPython 2 2.7 or CPython 3 3.2
* CDF 2.7
» matplotlib 1.5
e numpy 1.4
* scipy 0.10

Other dependencies have no established minimum. See SpacePy Dependencies for full details.

Major bugfixes

Fixed compliation of irbempy on several systems.

Other changes

None of note.

2.2. Release Notes 35

SpacePy Documentation, Release 0.4.0

0.2.0 (2019-06-22)

New features
Deprecations and removals

None

Dependency requirements

Support for Python 2.6 was removed; 2.7 is the only supported version of Python 2.
As of 0.2.0, the minimum versions of dependencies are:

e CPython 2 2.6 or CPython 3 3.2

* CDF 2.7

* matplotlib 1.5

* numpy 1.4

* scipy 0.10

Other dependencies have no established minimum. See SpacePy Dependencies for full details.

Major bugfixes

human_sort () was fixed for non-numeric inputs (the normal case.) This had been broken since 0.1.6.

Many minor bugfixes as well.

Other changes

Many updates to improve ease of installation, including Windows binary wheels.

2.2.4 0.1 Series

See the CHANGELOG file in the source distribution for changes in the 0.1 release series.

0.1.6 (2016-09-08)
0.1.5 (2014-12-23)
0.1.4 (2013-05-21)
0.1.3 (2012-06-22)
0.1.2 (2012-05-25)

0.1.1 (2011-10-31)

36 Chapter 2. SpacePy Documents

SpacePy Documentation, Release 0.4.0

0.1 (2011-08-24)
2.3 SpacePy Case Studies

The SpacePy team has prepared case studies showing how to reproduce the results from published papers using Python-
based tools, including SpacePy. It is hoped that these extensively-documented examples will ease the transition to
Python for space scientists.

Basic familiarity with programming and general computing tasks in your chosen environment is assumed, including
editing text files, copying and deleting files, etc. No Python-specific knowledge is assumed, although it is recommended
to at least skim the excellent Python tutorial.

2.3.1 Paulikas and Blake revisited (Reeves et al. 2011)

This case study reproduces the figures of Reeves et al. (2011), “On the relationship between relativistic electron flux
and solar wind velocity: Paulikas and Blake revisited” (doi:10.1029/2010JA015735).

Setup

Create a directory to hold files for this case study. Within this directory, create subdirectories code, data, and plots.
(Using version control on the code directory is recommended; the SpacePy team uses git.)

Obtaining energetic particle data

We require the 1.8-3.5 MeV electron flux from the LANL-GEO ESP detector, available in the paper’s auxiliary material
(scroll down to “Supporting information” on the paper’s page. The ESP data are in Data Set S1. Save this file to the
data directory; the filename is assumed to be jgra20797-sup-0003-ds01. txt.

The data file was corrupted on upload to AGU, and the code to fix it is non-trivial, so this is a good chance to learn
how to run someone else’s code. (Appendix: Fixing the ESP data file has step-by-step information on each portion of
this process.) Copy all of the following and paste it into a file called fix_esp_data.py in the code directory.

import os.path

datadir = os.path.join('..', 'data')

in_name = os.path.join(datadir, 'jgra20797-sup-0003-ds0O1.txt")
out_name = os.path.join(datadir, 'jgra20797-sup-0003-dsO@1_FIXED.txt')
infile = open(in_name, 'r'")

outfile = open(out_name, 'w')

data = infile.read()

infile.close()

data = data.replace('\r', '\n')
data = data.replace('\n\n', '\n')
data = data.split('\n")

for i in range(15):
outfile.write(data.pop(®) + '\n')

oldline = None

for line in data:

(continues on next page)

2.3. SpacePy Case Studies 37

http://docs.python.org/tutorial/index.html
http://dx.doi.org/10.1029/2010JA015735
http://git-scm.com/documentation
http://dx.doi.org/10.1029/2010JA015735

SpacePy Documentation, Release 0.4.0

(continued from previous page)

if line[®:2] in ['19', '20', '2']:
if not oldline is None:
outfile.write(oldline + '\n')
oldline = line
else:
oldline += line
outfile.write(oldline + '\n')
outfile.close()

Now this script can be run with python fix_esp_data.py. It should create a file called
jgra20797-sup-0003-ds@1_FIXED. txt in the data directory.

File fixed, we can load and begin examining the data. Change to the code directory and start your Python interpreter.
(IPython is recommended, but not required.)

In the following examples, do not type the leading >>>; this is the Python interpreter prompt. IPython has a different
prompt that looks like In [1].

>>> import os.path

>>> datadir = os.path.join('..', 'data')
>>> print(datadir)
../data

The first line imports the os.path module from the Python standard library. Python has a huge standard library. To
keep this code organized, it is divided into many modules, and a module must be imported before it can be used. (The
Python module of the week is a great way to explore the standard library.)

The second line makes a variable, datadir, which will contain the path of the data directory. The os.path. join()
function provides a portable way of “gluing” together directories in a path, and will use backslashes on Windows and
forward slashes on Unix. The third line then prints out the value of this variable for confirmation; note this is a Unix
system.

Note that string constants in Python can use single or double quotes; we could just as well have written:

>>> datadir = os.path.join("..", "data")
or even:
>>> datadir = os.path.join('..', "data")

The full path can also be used (and this is a better case for using a variable.) For example, I am preparing this example
in a directory reeves_morley_friedel_2011 in my home directory, so I could use:

>>> datadir = os.path.join('home', 'jniehof', 'reeves_morley_friedel_2011",
'data')

This very long line can be typed across two lines in Python, and because the line break happens within parentheses, a
line continuation character is not required.

Returning to reading the ESP data file:

>>> fname = os.path.join(datadir, 'jgra20797-sup-0003-dsO1_FIXED.txt')

creates a variable holding the full path to the fixed file.

38 Chapter 2. SpacePy Documents

http://ipython.org/
https://docs.python.org/3/library/os.path.html#module-os.path
http://docs.python.org/library/index.html
http://www.doughellmann.com/PyMOTW/
https://docs.python.org/3/library/os.path.html#os.path.join

SpacePy Documentation, Release 0.4.0

>>> import numpy

The import statement imports any installed module, just as if it were in the standard library. Here we import the very
useful numpy module, which is a prerequisite for SpacePy and useful in its own right.

>>> esp_fluxes = numpy.loadtxt(fname, skiprows=14, usecols=[1])

loadtxt () makes it easy to load data from a file into a numpy ndarray, a very useful data container. skiprows
skips the header information, and specifying only column 1 (first column is column 0) with usecols will only load
the fluxes for 1.8-3.5MeV. We only load the fluxes at this point because they can be represented as floats, which numpy
arrays store very efficiently.

>>> import datetime

The datetime module provides Python objects which can manipulate dates and times and have some understanding
of the meanings of dates, making for easy comparisons between dates, date arithmetic, and other useful features.

>>> convert = lambda x: datetime.datetime.strptime(x, '%Y-%m-%d"')

This line sets up a converter to be used later. strptime() creates a datetime from a string, given a format definition
(here specified as year-month-day). So:

>>> print(datetime.datetime.strptime('2010-01-02"', "%Y-%m-%d'))
2010-01-02 00:00:00

lambda is a simple shortcut for a one-liner function; wherever convert (x) is used after the definition, it functions like
datetime.datetime.strptime(x, '%Y-%m-%d'). This makes it easier to parse a date string without specifying
the format all the time:

>>> print(convert('2010-01-02"))

This converter can be used with loadtxt():

>>> esp_times = numpy.loadtxt(fname, skiprows=14, usecols=[0],
converters={0: convert}, dtype=numpy.object)

The converters option takes a Python dictionary. The default dtype is float, which cannot store datetimes; using
numpy .object allows storage of any Python object.

Since it would be useful to be able to load the data without typing so many lines, create a file called common. py in the
code directory with the following contents:

import datetime
import os.path

import numpy

datadir = os.path.join('..', 'data')

def load_esp(Q):
fname = os.path.join(datadir, 'jgra20797-sup-0003-ds®1_FIXED.txt')
esp_fluxes = numpy.loadtxt(fname, skiprows=14, usecols=[1])
convert = lambda x: datetime.datetime.strptime(x, '%Y-%m-%d"')

(continues on next page)

2.3. SpacePy Case Studies 39

http://docs.python.org/tutorial/modules.html
https://numpy.org/doc/stable/reference/index.html#module-numpy
https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html#numpy.loadtxt
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime.strptime
https://docs.python.org/3/library/datetime.html#datetime.datetime
http://docs.python.org/tutorial/controlflow.html#lambda-forms
https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html#numpy.loadtxt
http://docs.python.org/tutorial/datastructures.html#dictionaries
http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html

SpacePy Documentation, Release 0.4.0

(continued from previous page)

esp_times = numpy.loadtxt(fname, skiprows=14, usecols=[0],
converters={0: convert}, dtype=numpy.object)
return (esp_times, esp_fluxes)

All needed imports are at the top of the file, with one blank line between standard library imports and other imports
and two blank lines after them. datadir is defined as a global variable, outside of the function (but notice that it is
available to the 1oad_esp function.)

The rest of the file defines a function which returns the dates and fluxes in a tuple. The next section shows how to use
this function.

Solar Wind data and averaging

The top panel of figure 1 shows the ESP fluxes overplotted with the solar wind velocity. Fortunately, the omni module
of SpacePy provides an interface to the hourly solar wind dataset, OMNI. get_omni () returns data for a particular set
of times. In this case, we want hourly data, covering 1989 through 2010 (we’ll cut it down to size later). tickrange ()
allows us to specify a start time, stop time, and time step.

>>> import spacepy.omni

>>> import spacepy.time

>>> times = spacepy.time.tickrange('1989-01-01', '2011-01-01",
A datetime.timedelta(hours=1))
>>> d = spacepy.omni.get_omni(times)
>>> vsw = d['velo']

>>> vsw_times = d['UTC']

We’ll also load the esp data:

>>> import common
>>> esp_times, esp_flux = common.load_esp()

Even though we have not installed common. py, the import statement finds it because it is in the current directory.
load_esp returns a tuple, which can be unpacked into separate variables.

Now we need to produce 27-day running averages of both the flux and the solar wind speed. Fortunately there are no
gaps in the time series:

>>> import numpy

>>> d = numpy.diff(vsw_times)
>>> print(d.min())

1:00:00

>>> print(d.max())

1:00:00

>>> d = numpy.diff(esp_times)
>>> print(d.min())

1 day, 0:00:00

>>> print(d.max())

1 day, 0:00:00

numpy . diff() returns the difference between every element of an array and the previous element. min() and max ()
do exactly what they sound like. So this code confirms that every time in the vsw data is on a continuous one hour
cadence, and the ESP data is on a continuous one day cadence.

40 Chapter 2. SpacePy Documents

http://docs.python.org/tutorial/controlflow.html#defining-functions
http://docs.python.org/tutorial/datastructures.html#tuples-and-sequences
http://docs.python.org/tutorial/datastructures.html#tuples-and-sequences
https://numpy.org/doc/stable/reference/generated/numpy.diff.html#numpy.diff
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.min.html#numpy.ndarray.min
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.max.html#numpy.ndarray.max

SpacePy Documentation, Release 0.4.0

>>> import scipy.stats
>>> esp_flux_av = numpy.empty(shape=esp_flux.shape, dtype=esp_flux.dtype)
>>> for i in range(len(esp_flux_av)):

esp_flux_av[i] = scipy.stats.nanmean(esp_flux[max(i - 13, 0):i + 14])

numpy .empty () creates an empty array, taking the shape and dtype from the esp_flux array. empty does not
initialize the data in the array, so it is essentially random junk; use zeros() to create an array filled with zeros.

len() returns the length of an array, and range () then iterates over each number from O to length minus 1, i.e. the
entire array. Each element is then set to a 27-day average: from 13 days before a day’s measurement through 13 days
after. (Python slices do not include the last element listed; they are half-open). Note that these slices can happily run
off the end of the esp_flux array, but we use max () to ensure the first index does not go negative. (Negative indices
have special meaning in Python.)

nanmean() takes the mean of a numpy array, but skips any elements with a value of “not a number” (nan), which is
often used for fill. (This is our first exposure to the scipy module.)

For the solar wind averaging, the times need to cover the 24 * 13.5 = 324 hours previous, and 324 hours following
(non-inclusive). There is also a more efficient way than using an explicit loop:

>>> vsw_av = numpy. fromiter((scipy.stats.nanmean(vsw[max(®, i - 324):1i + 324])
for i in range(len(vsw))),
count=len(vsw), dtype=vsw.dtype)

fromiter () makes a numpy array from an iterator, which is like a list except that it holds information on generating
each element in a sequence rather than creating the entire sequence. count provides numpy with the number of elements
in the output (so it can make the entire array at once); dtype here is just copied from the input.

The type of iterator used here is a generator expression, closely related to a list comprehension. These are among the
most powerful and most difficult to understand concepts in Python. An illustrative, although not useful, example:

>>> for i in (x + 1 for x in range(10)):
print(i)

Here (x + 1 for x in range(10)) is a generator expression that creates an iterator, which will return the numbers
1 through 10. At no point is the complete list of all numbers constructed, saving memory.

In our calculation of esp_flux_av, we created an explicit loop in Python. The generator expression used to compute
vsw_av has no explicit loop, and the actual looping is handled in (much faster) compiled C code.

Making Figure 1

To actually plot, we need access to the pyplot module:

>>> import matplotlib.pyplot as plt
>>> plt.ion(Q)

This alternate form of the import statement shouldn’t be overused (it can make code harder to read by masking the
origin of functions), but is conventional for matplotlib.

ion() turns on interactive mode so plots appear and are updated as they’re created.

>>> plt.semilogy(esp_times, 10 ** esp_flux_av, 'b')
>>> plt.draw()
>>> plt.draw()

2.3. SpacePy Case Studies 41

https://numpy.org/doc/stable/reference/generated/numpy.empty.html#numpy.empty
https://numpy.org/doc/stable/reference/generated/numpy.zeros.html#numpy.zeros
https://docs.python.org/3/library/functions.html#len
https://docs.python.org/3/library/functions.html#max
https://docs.scipy.org/doc/scipy/index.html#module-scipy
https://numpy.org/doc/stable/reference/generated/numpy.fromiter.html#numpy.fromiter
http://docs.python.org/library/stdtypes.html#iterator-types
http://www.python.org/dev/peps/pep-0289/
http://docs.python.org/tutorial/datastructures.html#list-comprehensions
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.html#module-matplotlib.pyplot
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.ion.html#matplotlib.pyplot.ion

SpacePy Documentation, Release 0.4.0

semilogy () creates a semilog plot, log on the Y axis. The first two arguments are a list of X and Y values; after that
there are many options to specify formatting (such as the color, used here.)

The ESP fluxes are stored as the log of the flux; ** is the exponentiation operator so the (geometric!) average is plotted
properly.

draw() draws the updated plot; sometimes it needs to be called repeatedly. Use it whenever you want the plot updated;
it will not be included from here on.

>>> plt.xlabel('Year', weight="bold")

>>> plt.ylabel('Electron Flux\nl.8-3.5 MeV', color='blue', weight="bold")
>>> plt.ylim(le-2, 10)

(0.01, 10)

xlabel () and ylabel () set the labels for the axes. Note the newline (\n) in the string for the Y label. y1lim() sets
the lower and upper limits for the Y axis; there is, of course, x1im() as well.

These are the simplest, although not most flexible, ways to work with plots. To produce the full Figure 1, we’ll move
out of interactive mode:

>>> plt.ioff()
>>> plt.show()

ioff () turns off interactive mode. Once interactive mode is off, show () displays the full plot, including controls for
panning, zooming, etc. Until the plot is closed, nothing further can happen in the Python window.

>>> fig = plt.figure(figsize=[11, 8.5])

figure() creates a new Figure; the size specified here is US-letter paper, landscape orientation.

>>> ax = fig.add_subplot(111)

add_subplot () creates an Axes object, which can contain an actual plot. 111 here means that the figure will have 1
subplot and the new subplot should be in position (1, 1); more on this later.

>>> fluxline = ax.plot(esp_times, 10 ** esp_flux_av, 'b')

plot () puts the relevant data into the plot; again specifying a blue line. It returns a list of Line2D objects, which we
save for later use.

>>> ax.set_yscale('log"')

set_yscale() switches the Y axis between log and linear (set_xscale() for the X axis).

>>> ax.set_ylim(le-2, 10)
>>> ax.set_xlabel('Year', weight='bold")
>>> ax.set_ylabel('Electron Flux\nl.8-3.5 MeV', color='b', weight="bold")

set_ylim(Q) (and set_x1im()), set_xlabel(), and set_ylabel () function much as above, but operate on a par-
ticular Axes object.

>>> ax2 = ax.twinx()

twinx () establishes a second Y axis (two values twinned on one X axis) on the same plot.

42 Chapter 2. SpacePy Documents

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.semilogy.html#matplotlib.pyplot.semilogy
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.draw.html#matplotlib.pyplot.draw
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.xlabel.html#matplotlib.pyplot.xlabel
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.ylabel.html#matplotlib.pyplot.ylabel
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.ylim.html#matplotlib.pyplot.ylim
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.xlim.html#matplotlib.pyplot.xlim
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.ioff.html#matplotlib.pyplot.ioff
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.figure.html#matplotlib.pyplot.figure
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.add_subplot
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.plot.html#matplotlib.axes.Axes.plot
https://matplotlib.org/stable/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_yscale.html#matplotlib.axes.Axes.set_yscale
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_xscale.html#matplotlib.axes.Axes.set_xscale
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_ylim.html#matplotlib.axes.Axes.set_ylim
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_xlim.html#matplotlib.axes.Axes.set_xlim
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_xlabel.html#matplotlib.axes.Axes.set_xlabel
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_ylabel.html#matplotlib.axes.Axes.set_ylabel
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.twinx.html#matplotlib.axes.Axes.twinx

SpacePy Documentation, Release 0.4.0

>>> vswline = ax2.plot(vsw_times, vsw_av, 'r')
>>> ax2.set_ylim(300, 650)
>>> ax2.set_ylabel('Solar Wind Speed', color='r', rotation=270, weight='bold")

The resulting Axes object has all the methods that we’ve used before. Note rotation on set_ylabel() to make the
text run top-to-bottom rather than bottom-to-top.

>>> ax.set_xlim(esp_times[0], esp_times[-1])

Since the solar wind data extends beyond the ESP data, this sets the X axis to match the ESP data. Note -1 to refer to
the last element of the array.

>>> leg = ax.legend([fluxline[0®], vswline[®]], ['Flux', 'Vsw'],
loc="upper left', frameon=False)

legend(), as may be expected, creates a Legend on the axes. The first parameter is a list of the matplotlib objects
to make a legend for; since the plotting commands return these, we can pass them back in. Each plotting command
returns a [isz. In this case we just take the Oth element of each list since we know there’s only one line from each plotting
command. The second parameter is the text used to annotate each line.

>>> fluxtext, vswtext = leg.get_texts()
>>> fluxtext.set_color(fluxline[0].get_color())
>>> vswtext.set_color(vswline[0].get_color())

The default text color is black, so we use get_texts() to get the Text objects for the annotations. Again, we know
there are two (we just created the legend). Then set_color () sets the color based on the the existing color for each
line (get_color()).

To see the results:

>>> plt.show()

Close the window when done. Now we want to save the output:

>>> fig_fname = os.path.join('..', 'plots', 'figla.eps')
>>> fig.savefig(fig_fname)

savefig() saves the figure, in this case as an encapsulated PostScript file (to the plots directory).

Let’s tweak a few things. For one, there’s a lot of padding around the figure, which can make it difficult to properly scale
for publication. The way around this is to specify a Bbox (bounding box), basically the lower left and upper right corners
(in inches) to include in the saved figure. Getting this right tends to be a matter of trial and error. (get_tightbbox()
is supposed to help with this, but it doesn’t quite work yet.)

>>> import matplotlib.transforms
>>> bob = matplotlib.transforms.Bbox([[0.52, 0.35], [10.5, 7.95]]1)
>>> fig.savefig(fig_fname, bbox_inches=bob, pad_inches=0.0)

Better, but all the text is awfully small. Once the figure is fit in the paper it’ll be really small. And the font isn’t that
great.

>>> import matplotlib

>>> matplotlib.rcParams['axes.unicode_minus'] = False
>>> matplotlib.rcParams['text.usetex']= True

>>> matplotlib.rcParams['font.family'] = 'serif'

(continues on next page)

2.3. SpacePy Case Studies 43

https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_ylabel.html#matplotlib.axes.Axes.set_ylabel
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.legend.html#matplotlib.axes.Axes.legend
https://matplotlib.org/stable/api/legend_api.html#matplotlib.legend.Legend
https://matplotlib.org/stable/api/legend_api.html#matplotlib.legend.Legend.get_texts
https://matplotlib.org/stable/api/text_api.html#matplotlib.text.Text
https://matplotlib.org/stable/api/text_api.html#matplotlib.text.Text.set_color
https://matplotlib.org/stable/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D.get_color
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.savefig
https://matplotlib.org/stable/api/transformations.html#matplotlib.transforms.Bbox
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.get_tightbbox

SpacePy Documentation, Release 0.4.0

(continued from previous page)

>>> matplotlib.rcParams['font.size'] = 14
>>> bob = matplotlib.transforms.Bbox([[0.4, ©.35], [10.7, 7.95]11)
>>> fig.savefig(fig_fname, bbox_inches=bob, pad_inches=0.0)

Now the font is bigger and it’s rendered using TeX, which should match the body of the paper better (assuming the
paper is in LaTeX). The larger font means tweaking the bounding box. unicode_minus fixes a problem where negative
numbers on the axis don’t render properly in TeX. Matplotlib has many more options for customization.

The end result is a nice figure that can be printed full-size, put in a PDF, or included directly in a paper.

Now we need the bottom half of Figure 1. From SIDC, download the “Monthly mean total sunspot number”
(monthssn.dat). Put it in the data directory.

>>> import bisect

>>> import datetime

>>> monthfile = os.path.join(common.datadir, 'monthssn.dat')

>>> convert = lambda x: datetime.datetime.strptime(x, '%Y%m')

>>> ssn_data = numpy.genfromtxt(monthfile, skip_header=2400, usecols=[0, 2, 3],
converters={0: convert}, dtype=numpy.object,

ces skip_footer=24)

>>> idx = bisect.bisect_left(ssn_datal[:, 0], datetime.datetime(1989, 1, 1))

>>> ssn_data = ssn_datal[idx:]

>>> ssn_times = ssn_datal[:, 0]

>>> ssn = numpy.asarray(ssn_data[:, 1], dtype=numpy.float64)

>>> smooth_ssn = numpy.asarray(ssn_datal[:, 2], dtype=numpy.float64)

>>> ssn_times += datetime.timedelta(days=15)

Much of this should be familiar. genfromtxt() is a little more flexible than loadtxt (); here it allows the skipping
of lines at the end as well as the beginning (skipping 200 years at the start, 2 at the end, where data are provisional.)
Here we load both times and the sunspot numbers in the same command so that if any lines don’t load, they will not
wind up in any of the arrays.

bisect provides fast functions for searching in sorted data; bisect_left () is roughly a find-the-position-of function.
Having found the position of the start of 1989, we then keep times from then on (specifying a start index without a stop
index in Python means “from start to end of the list.”) Note that, although bisect is meant to work on lists, it also
works fine on numpy arrays; this is a common feature of Python known as duck typing.

We then use asarray() to convert the ssn and smooth_ssn columns to float arrays. Note the slice notation: [:,
0] means take all indices of the first dimension (line number) and only the Oth index of the second dimension (column
in the line). Finally, we use timedelta to shift the date associated with a month from the beginning to roughly the
middle of the month. Adding a scalar to an array does an element-wise addition.

>>> import matplotlib.figure

>>> fig = plt.figure(figsize=[11, 8.5],

- subplotpars=matplotlib. figure.SubplotParams (hspace=0.1))
>>> ax = fig.add_subplot(211)

When creating the figure this time, we use SubplotParams to choose a slightly smaller vertical spacing between
adjacent subplots. Tweaking SubplotParams also provides an alternative to tweaking bounding boxes.

Then we create a subplot with the information that there will be 2 rows, 1 column, and this is the first subplot. Now
everything acting on ax, above, can be repeated, although we skip setting the xlabel since only the bottom axis will be
labeled.

44 Chapter 2. SpacePy Documents

http://matplotlib.sourceforge.net/users/customizing.html
http://www.sidc.be/silso/versionarchive
https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html#numpy.genfromtxt
https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html#numpy.loadtxt
https://docs.python.org/3/library/bisect.html#module-bisect
https://docs.python.org/3/library/bisect.html#bisect.bisect_left
http://en.wikipedia.org/wiki/Duck_typing#In_Python
https://numpy.org/doc/stable/reference/generated/numpy.asarray.html#numpy.asarray
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.SubplotParams

SpacePy Documentation, Release 0.4.0

>>> fluxline = ax.plot(esp_times, 10 ** esp_flux_av, 'b')

>>> ax.set_yscale('log')

>>> ax.set_ylim(le-2, 10)

>>> ax.set_ylabel('Electron Flux\nl.8-3.5 MeV', color='b', weight="bold')
>>> ax2 = ax.twinx(Q)

>>> vswline = ax2.plot(vsw_times, vsw_av, 'r')

>>> ax2.set_ylim(300, 650)

>>> ax2.set_ylabel('Solar Wind Speed', color='r', rotation=270, weight='bold")
>>> ax.set_xlim(esp_times[0], esp_times[-1])

>>> leg = ax.legend([fluxline[®], vswline[®]], ['Flux', 'Vsw'],

- loc="upper left', frameon=False)

>>> fluxtext, vswtext = leg.get_texts()

>>> fluxtext.set_color(fluxline[0].get_color())

>>> vswtext.set_color(vswline[0].get_color())

Then we move on to adding the solar wind:

>>> ax3 = fig.add_subplot(212, sharex=ax)

This adds another subplot, the second in the 2x1 array. Its x axis is shared with the existing ax. (This is poorly
documented; see this example)

>>> plt.setp(ax.get_xticklabels(), visible=False)
>>> plt.setp(ax2.get_xticklabels(), visible=False)

setp() sets a property. get_xticklabels() returns all the tick labels (Text) for the x axis; setp then sets visible
to False for all of them. This hides the labeling on the axis for the upper subfigure.

>>> ax3.set_xlabel('Year', weight="bold")

>>> ax3.set_ylabel('Sunspot Number', weight='bold")

>>> smoothline = ax3.plot(ssn_times, smooth_ssn, 1lw=2.0, color='k")
>>> ssnline = ax3.plot(ssn_times, ssn, color='k', linestyle='dotted')

There is nothing new here except for the specifications of 1inewidth and linestyle; see plot () for details. Note k
as the abbreviation for black (to avoid confusion with blue.)

>>> leg2 = ax3.legend([ssnline[0®], smoothline[0]],
['Sunspot Number', 'Smoothed SSN'],
B loc="upper right', frameon=False)
>>> ax3.set_ylim(0®, 200)
>>> ax3.set_xlim(esp_times[0], esp_times[-1])

>>> fig_fname = os.path.join('..', 'plots', 'figl.eps')
>>> fig.savefig(fig_fname, bbox_inches=bob, pad_inches=0.0)

All of this has been seen for the top half of figure 1.

Following is the complete code to reproduce Figure 1.

import bisect
import datetime
import os.path

import common

(continues on next page)

2.3. SpacePy Case Studies 45

http://matplotlib.sourceforge.net/examples/pylab_examples/shared_axis_demo.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.setp.html#matplotlib.pyplot.setp
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.get_xticklabels.html#matplotlib.axes.Axes.get_xticklabels
https://matplotlib.org/stable/api/text_api.html#matplotlib.text.Text
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.plot.html#matplotlib.axes.Axes.plot

SpacePy Documentation, Release 0.4.0

(continued from previous page)

import matplotlib

import matplotlib. figure

import matplotlib.pyplot as plt
import matplotlib.transforms
import numpy

import scipy

import scipy.stats

import spacepy.omni

import spacepy.time

matplotlib.rcParams['axes.unicode_minus'] = False
matplotlib.rcParams['text.usetex']= True
matplotlib.rcParams['font.family'] = 'serif'
matplotlib.rcParams['font.size'] = 14

bob = matplotlib.transforms.Bbox([[0.4, 0.35], [10.7, 7.95]1])

times = spacepy.time.tickrange('1989-01-01"', '2011-01-01",
datetime.timedeltaChours=1))
d = spacepy.omni.get_omni(times)
vsw = d['velo']
vsw_times = d['UTC']
esp_times, esp_flux = common.load_esp()
esp_flux_av = numpy.empty(shape=esp_flux.shape, dtype=esp_flux.dtype)
for i in range(len(esp_flux_av)):
esp_flux_av[i] = scipy.stats.nanmean(esp_flux[max(i - 13, 0):i + 14])
vsw_av = numpy.fromiter((scipy.stats.nanmean(vsw[max(0®, i - 324):i + 324])
for i in range(len(vsw))),
count=len(vsw), dtype=vsw.dtype)
monthfile = os.path.join(common.datadir, 'monthssn.dat')
convert = lambda x: datetime.datetime.strptime(x, '%Y%m')
ssn_data = numpy.genfromtxt(monthfile, skip_header=2400, usecols=[0, 2, 3],
converters={0: convert}, dtype=numpy.object,
skip_footer=24)
idx = bisect.bisect_left(ssn_data[:, 0], datetime.datetime(1989, 1, 1))
ssn_data = ssn_data[idx:]
ssn_times = ssn_datal[:, 0]
ssn = numpy.asarray(ssn_datal[:, 1], dtype=numpy.float64)
smooth_ssn = numpy.asarray(ssn_datal[:, 2], dtype=numpy.float64)
ssn_times += datetime.timedelta(days=15)

fig = plt.figure(figsize=[11, 8.5],
subplotpars=matplotlib.figure.SubplotParams (hspace=0.1))

ax = fig.add_subplot(211)

fluxline = ax.plot(esp_times, 10 ** esp_flux_av, 'b')

ax.set_yscale('log')

ax.set_ylim(le-2, 10)

ax.set_ylabel('Electron Flux\nl.8-3.5 MeV', color='b', weight="bold')

ax2 = ax.twinx(Q)

vswline = ax2.plot(vsw_times, vsw_av, 'r')

ax2.set_ylim(300, 650)

ax2.set_ylabel('Solar Wind Speed', color='r', rotation=270, weight='bold")

(continues on next page)

46 Chapter 2. SpacePy Documents

SpacePy Documentation, Release 0.4.0

(continued from previous page)

ax.set_xlim(esp_times[0], esp_times[-1])

leg = ax.legend([fluxline[0], vswline[®]], ['Flux', 'Vsw'],
loc="upper left', frameon=False)

fluxtext, vswtext = leg.get_texts()

fluxtext.set_color(fluxline[0].get_color())

vswtext.set_color(vswline[0].get_color())

ax3 = fig.add_subplot(212, sharex=ax)
plt.setp(ax.get_xticklabels(), visible=False)
plt.setp(ax2.get_xticklabels(), visible=False)
ax3.set_xlabel('Year', weight="bold")
ax3.set_ylabel('Sunspot Number', weight='bold')
smoothline = ax3.plot(ssn_times, smooth_ssn, lw=2.0, color='k'")
ssnline = ax3.plot(ssn_times, ssn, color='k', linestyle='dotted')
leg2 = ax3.legend([ssnline[0®], smoothline[0]],
['Sunspot Number', 'Smoothed SSN'],
loc="upper right', frameon=False)
ax3.set_ylim(0, 200)
ax3.set_xlim(esp_times[0], esp_times[-1])
fig_fname = os.path.join('..', 'plots', 'figl.eps')
fig.savefig(fig_fname, bbox_inches=bob, pad_inches=0.0)

Appendix: Fixing the ESP data file

This appendix provides a detailed explanation of the script that fixes the ESP data file.

First set up a variable to hold the location of the data, as above:

>>> import os.path
>>> datadir = os.path.join('..', 'data')

Examining the data file, it is clear that something is odd: lines appear to have been broken inappropriately; for example,
the data for 1989-10-12 are split across two lines. So the first task is to fix this file, first opening the original (broken)
file and an output (fixed) file:

>>> in_name = os.path.join(datadir, 'jgra20797-sup-0003-ds01.txt")

>>> out_name = os.path.join(datadir, 'jgra20797-sup-0003-dsO1_FIXED.txt')
>>> infile = open(in_name, 'r')

>>> outfile = open(out_name, 'w')

These lines open() the original file for reading (r), and a new file for writing (w). Note that opening a file for writing
will destroy any existing contents.

The file happens to contain a mixture of carriage returns and proper newlines, so to begin all the carriage returns need
to be rewritten as newlines:

>>> data = infile.read(Q)

>>> infile.close()

>>> data = data.replace('\r', '\n')
>>> data = data.replace('\n\n', '\n')

2.3. SpacePy Case Studies 47

https://docs.python.org/3/library/functions.html#open

SpacePy Documentation, Release 0.4.0

read() reads all data from the file at once, so this is not recommended for large files. In this case it makes things
easier. Once the data are read, close() the file. Calling the replace () method on data replaces all instances of the
first parameter (' \r") with the second ('\n"). \r is the special code indicating a carriage return; \n, a newline. For a
literal backslash, use \\. Once the carriage returns have been replaced with newlines, a second round of replacement
eliminates duplicates.

Now that the line endings have been cleaned up, it’s time to rejoin the erroneously split lines. First copy over the 15
lines of header verbatim:

>>> data = data.split('\n")
>>> for i in range(15):
outfile.write(data.pop(®) + '\n')

split() splits a string into a list, with the split between elements happening wherever the provided parameter occurs.
A simple example:

>>> foo = 'a.b.c'.split('.")
>>> print(foo)
[lal’ lbl’ lcl]

The splitting character is not present in the output.
The advantage of a list is that it makes it easy to access individual elements: >>> print(foo[1]) b
The first element of a Python list is numbered zero.

range () returns a list of numbers, starting from 0, with the parameter specifying how many elements are in the list:

>>> print(range(5))
[0, 1, 2, 3, 4]

The last number is 4 (not 5 as might be expected), but there are 5 elements in the list.

The for executes the following indented statement once for every element in the in list:

>>> for i in ['a', 'b', 'c']:
print i

a

b

C

Indentation is significant in Python! Normally indents are four spaces and the tab key will do the job. (In the above
example, you may need to hit enter twice after the print statement, the second to terminate the indentation.)

pop returns one element from a list, and deletes it from the list. Using ® pops off the first element, and write () writes
a string to a file. + can be used to concatenate two strings together. Since split () removed the newlines, they need to
be readded.

So this little block of code splits the data into a list on newlines and, repeating fifteen times, takes the first element of
that list and writes it, with a newline, to the output. Now data contains only the actual lines of data.

>>> oldline = None
>>> for line in data:
if line[0:2] in ['19', "20', '2']:
if not oldline is None:
outfile.write(oldline + '\n'")
oldline = line
else:

(continues on next page)

48 Chapter 2. SpacePy Documents

https://docs.python.org/3/library/stdtypes.html#str.replace
https://docs.python.org/3/library/stdtypes.html#str.split
http://docs.python.org/tutorial/introduction.html#lists
http://docs.python.org/tutorial/controlflow.html#for-statements
http://docs.python.org/tutorial/datastructures.html#more-on-lists
https://docs.python.org/3/library/stdtypes.html#str.split

SpacePy Documentation, Release 0.4.0

(continued from previous page)

e oldline += line
>>> outfile.write(oldline + '\n')
>>> outfile.close()

None is a special Python value specifically indicating nothing; it’s used here to mark the first time around the loop.

line[0:2] gets the first two characters in the string line, and the in operator compares the resulting string to see if
it is present in the following list. This will return True if the line begins with 19 or 20. The if statement executes the
following indented block if the condition is True. So, if this is True, the previous line probably ended properly and it
can be written out. First there is an additional check that this isn’t the first time around the loop, and then the previous
line (which we know ended cleanly) is written out. The currently-read line then becomes the new “previous” line.

The 2 is a special case: if the line is less than two characters long, 1ine[0:2] will return the entire line, and it so
happens that these cases always correspond to the previous line being whole.

If this test fails, everything under else is executed. Here the assumption is that the previous line didn’t end cleanly and
the current line is actually a continuation of it, so the current line is appended to the previous. a += b is a shortcut for
a=a+h

Once the loop terminates, the last line is written out, and the file closed.

2.4 Publication List

The following publications have been prepared using SpacePy. If you have published a paper using SpacePy, contact
the SpacePy team to be added to this list. Please also provide a citation or acknowledgment, as appropriate, in your

paper.

2.4.1 Papers using SpacePy

Peer-reviewed papers

Gieseler, J., P. Oleynik, H. Hietala, R. Vainio, H.-P. Hedman, J. Peltonen, A. Punkkinen, R. Punkkinen, T. Santti,
E. Heggstrom, J. Praks, P. Niemeld, B. Riwanto, N. Jovanovic, and M. R. Mughal (2020), Radiation monitor
RADMON aboard Aalto-1 CubeSat: First results, Adv. Space Res., 66 (1), 52-65, doi:10.1016/j.asr.2019.11.023.

Jordanova, V. K., Y. Yu, J. T. Niehof, R. M. Skoug, G. D. Reeves, C. A. Kletzing, J. F. Fennell, and H. E. Spence
(2014), Simulations of inner magnetosphere dynamics with an expanded RAM-SCB model and comparisons
with Van Allen Probes observations, Geopys. Res. Lett., 41 (8), 2687-2695, doi:10.1002/2014GL059533.

Niehof, J. T., S. K. Morley, and R. H. W. Friedel (2012), Association of cusp energetic ions with geomagnetic
storms and substorms, Ann. Geophys., 30 (12), 1633-1643, doi:10.5194/angeo-30-1633-2012.

Turner, D. L., V. Angelopoulos, Y. Shprits, A. Kellerman, P. Cruce and D. Larson (2012), Radial distribu-
tions of equatorial phase space density for outer radiation belt electrons, Geophys. Res. Lett., 39, L09101,
doi:10.1029/2012GL051722.

Welling, D. T. and A. J. Ridley (2010), Exploring sources of magnetospheric plasma using multispecies MHD,
Journal of Geophysical Research, 115, 4201, doi:10.1029/2009JA014596.

Morley, S. K., R. H. W. Friedel, E. L. Spanswick, G. D. Reeves, J. T. Steinberg, J. Koller, T. Cayton and E.
Noveroske (2010), Dropouts of the outer electron radiation belt in response to solar wind stream interfaces:
Global Positioning System observations, Proceedings of the Royal Society A, doi:10.1098/rspa.2010.0078.

2.4. Publication List 49

http://docs.python.org/tutorial/controlflow.html#if-statements
https://doi.org/10.1016/j.asr.2019.11.023
https://doi.org/10.1002/2014GL059533
http://dx.doi.org/10.5194/angeo-30-1633-2012
http://dx.doi.org/10.1029/2012GL051722
http://dx.doi.org/10.1029/2009JA014596
http://dx.doi.org/10.1098/rspa.2010.0078

SpacePy Documentation, Release 0.4.0

Other publications and presentations

* Niehof, J. T. and S. K. Morley (2012), Determining the significance of associations between two series of dis-
crete events: bootstrap methods, Tech Report LA-14453, Los Alamos National Laboratory, Los Alamos, NM,
doi:10.2172/1035497.

2.4.2 Papers about SpacePy

Peer-reviewed papers

* Morley, S. K., D. T. Welling, J. Koller, B. A. Larsen, M. G. Henderson and J. Niehof (2010), SpacePy - A Python-
based library of tools for the space sciences, Proceedings of the 9th Python in Science Conference (SciPy 2010),
presented in Austin, TX, June 30 - July 1, 2010 pdf. full proceedings

Other publications and presentations

* Niehof, J. T., M. G. Henderson, J. Koller, B. A. Larsen, S. Morley, D. T. Welling, Y. Yu (2012), Space Science
with the SpacePy Toolkit, Abstract INS3C-1746 presented at 2012 Fall Meeting, AGU, San Francisco, Calif.,
3-7 Dec. (pdf)

¢ The SpacePy Developer Team (2010), SpacePy - Python-Based of Tools for the Space Science Community, A
Tri-Fold pdf.

* Morley, S. K., D. T. Welling, J. Koller, B. A. Larsen, M. G. Henderson (2010), SpacePy - Data Analysis and
Visualization Tools for the Space Sciences, presented at GEM 2010 Summer Workshop, Snowmass, CO, June
20-25. (pdf)

2.5 Python 2 End of Support

Python 3 is fully supported by SpacePy and used in daily work by the SpacePy team.

On January 1, 2020, Python 2 reached end of life. Most of the scientific Python stack has committed to ending Python
2 support by 2020. This includes numpy.

As a result, the SpacePy team will phase out Python 2 support over the course of 2020 and early 2021. This process is
managed through SpacePy issue 26.

2.5.1 0.2 series: full support

The last release of the SpacePy 0.2 series will be 0.2.3, by the end of 2020. This will be the last release where all
functionality works with Python 2 and that has binary installers provided for Python 2. 0.2 will not be supported past
this release (this will not be a “long-term support” release.)

50 Chapter 2. SpacePy Documents

http://dx.doi.org/10.2172/1035497
http://conference.scipy.org/proceedings/scipy2010/pdfs/morley.pdf
http://conference.scipy.org/proceedings/scipy2010/
http://spacepy.lanl.gov/publications/spacepy_agu_2012.pdf
http://spacepy.lanl.gov/publications/spacepy_trifold.pdf
http://spacepy.lanl.gov/publications/spacepy.poster.final.pdf
https://www.python.org/doc/sunset-python-2/
https://python3statement.org/
https://numpy.org/neps/nep-0014-dropping-python2.7-proposal.html
https://github.com/spacepy/spacepy/issues/26

SpacePy Documentation, Release 0.4.0

2.5.2 0.3 series: no feature support

Starting with 0.3.0 in early 2021, the SpacePy team will:

* Provide no prebuilt packages for Python 2. We will attempt to ensure the last 0.2.x version will still install from
pip on Python 2.

* Allow new features that do not support Python 2 as long as they do not break existing functionality.
* Provide no workarounds for dependencies that no longer support Python 2.

SpacePy 0.3.x will still function on Python 2 for those who install “by hand”.

2.5.3 0.4 series: no bugfix support

Starting with 0.4.0, no later than mid-2021, the SpacePy team will provide no fixes for bugs that cannot be reproduced
on Python 3.

SpacePy 0.4.x will still function on Python 2 for those who install “by hand”.

2.5.4 0.5 series: remove support

Starting with 0.5.0, mid-2021, SpacePy developers will begin removing code that exists only to support Python 2.
SpacePy 0.5.x will not function on Python 2.

Release
0.4.0

Doc generation date
Sep 07, 2022

2.6 SpacePy Configuration

SpacePy has a few tunable options that can be altered through the spacepy.rc configuration file. All options have
defaults which will be used if not specified in the configuration file. These defaults are usually fine for most people and
may change between SpacePy releases, so we do not recommend changing the configuration file without substantial
reason.

spacepy . rc lives in the per-user SpacePy directory, called . spacepy. You can find this directory by:

>>> import spacepy
>>> spacepy.DOT_FLN
' /home/username/.spacepy"’

On Unix-like operating systems, it is in a user’s home directory; on Windows, in the user’s Documents and Settings
folder. If it doesn’t exist, this directory (and spacepy.rc) is automatically created when SpacePy is imported.

spacepy.rc has an INI-style format, parsed by ConfigParser. It contains a single section, [spacepy].
» The spacepy directory
* Available configuration options

* Developer documentation

2.6. SpacePy Configuration 51

SpacePy Documentation, Release 0.4.0

2.6.1 The spacepy directory

If you prefer a different location for the SpacePy directory, set the environment variable $SPACEPY to a location of your
choice. For example, with a csh, or tcsh you would:

setenv SPACEPY /a/different/dir

for the bash shell you would:

export SPACEPY=/a/different/dir

If $SPACEPY is not an absolute path, it is treated as relative to the working directory at the time of import. In particular,
that means if it is defined as an empty string (rather than an undefined variable), . spacepy is made directly in the
current directory. Home directory references (~) are expanded via expanduser ().

If you change the default location, make sure you add the environment variable $ SPACEPY to your .cshrc, .tcshrc,
or .bashrc script. If this directory does not exist, it will be created.

The actual . spacepy directory is made inside the directory specified by $SPACEPY.

This directory contains the configuration file and also SpacePy-related data, which can be updated with update ().

2.6.2 Available configuration options

enable_deprecation_warning
SpacePy raises DeprecationWarning when deprecated functions are called. Starting in Python 2.7, these are
ignored. SpacePy adds a warnings filter to force display of deprecation warnings from SpacePy the first time
a deprecated function is called. Set this option to False to retain the default Python behavior. (See warnings
module for details on custom warning filters.)

enable_old_data_warning
SpacePy maintains certain databases from external sources, notably the leapsecond database used by time. By
default UserWarning is issued if the leap second database is out of date. Set this option to False to suppress this
warning (and warnings about out-of-date data which may be added in the future.)

keepalive
True to attempt to use HTTP keepalives when downloading data in update () (default). This is faster when
downloading many small files but may be fragile (e.g. if a proxy server is required). Set to False for a more
robust and flexible, but slower, codepath.

leapsec_url
URL of the leapsecond database used by time conversions. update () will download from the URL. The default
should almost always be acceptable.

ncpus
Number of CPUs to use for computations that can be multithreaded/multiprocessed. By default, they will use the
number of CPUs reported by multiprocessing.cpu_count (). You may wish to set this to a lower number if
you need to reserve other processors on your machine.

notice
True to display the SpacePy license and other information on import (default); False to omit.

omni2_url
URL containing the OMNI2 data. update () will download from the URL. The default should almost always
be acceptable.

52 Chapter 2. SpacePy Documents

https://docs.python.org/3/library/os.path.html#os.path.expanduser
https://docs.python.org/3/library/warnings.html#module-warnings
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.cpu_count

SpacePy Documentation, Release 0.4.0

gindenton_url
URL containing Qin-Denton packaging of OMNI data as as single file. update () will download from the URL.
The default should almost always be acceptable.

qd_daily_url
URL containing Qin-Denton packaging of OMNI data in daily files, supplemental to gqindenton_url.
update () will download from the URL. The default should almost always be acceptable.

psddata_url
URL containing PSD data. update () will download from the URL if requested. The default should almost
always be acceptable.

support_notice
True to display a notice on import if not a release version of SpacePy (default); False to omit. Those regularly
installing from git instead of a release may want to set this to False.

user_agent
User Agent for network access. If this is set, update () will use this User Agent string on all HTTP requests.
Normally leaving this unset should be fine.

2.6.3 Developer documentation

spacepy.rc is loaded into a dictionary (spacepy.config) by SpacePy’s main __init__.py. All options from the
[spacepy] section are loaded, with no developer intervention needed. Each key is the option’s name; the associated
value is the option’s value. To specify a default, add to the defaults dictionary at the top of _read_config; each
default, if not overridden by the config file, will be included in the config dict. Values are assumed to be strings. The
caster dictionary is keyed by option name; the value for each key is a function to be applied to the value with the
same key to produce a different type from a string.

Release
0.4.0

Doc generation date
Sep 07, 2022

For additions or fixes to this page, contact the SpacePy Team at Los Alamos.

2.7 SpacePy Scripts

Some scripts using SpacePy are included in the scripts directory of the source distribution. At the moment they are
not installed by the installer.

2.7.1 istp_checks.py

Checks for various ISTP compliance issues in a file and prints any issues found. This script is supplemental to the
checker included with the ISTP skeleton editor; it primarily checks for errors that the skeleton editor does not.

Badly noncompliant files generally result in the error “Test x did not complete”. This means the test crashed due to
some failure in the assumptions about the CDF structure. Please run the individual test to get a traceback and open an
issue.

This is just a thin wrapper to spacepy.pycdf.istp.FileChecks.all(); that documentation (plus other methods
in the class) describes the actual checks.

2.7. SpacePy Scripts 53

https://spdf.gsfc.nasa.gov/skteditor/
https://github.com/spacepy/spacepy/issues
https://github.com/spacepy/spacepy/issues

SpacePy Documentation, Release 0.4.0

cdffile
Name of the CDF file to check (required)

54 Chapter 2. SpacePy Documents

CHAPTER
THREE

DEVELOPER GUIDE

For those developing SpacePy, plus tips for all Python developers.

3.1 Writing Pythonic Code

Code is often described as “Pythonic” or “not Pythonic” (with the implication that “Pythonic” is better.) The description
is often applied to refer to code that reflects best practices which have emerged from the Python community and have
become almost second nature to experienced programmers.

Reading lots of Python code (particularly from well-respected long maintained community projects) is the best way to
develop this sense, but some principles are described here.

3.1.1 Good coding practice

Familiarity with modern coding practices that apply across most languages is a good start:
* Compact but descriptive names for variables, functions, etc.
* Succinct comments where necessary
* Encapsulation of data and abstraction through functions and classes

 Use of existing libraries rather than reimplementing

3.1.2 Using language features

Where Python or its standard library provides a means of accomplishing a task, it is generally preferred to use that
means rather than reimplementing the wheel. The canonical example is using list comprehensions rather than for loops
to transform a list:

>>> newlist = [1 + 1 for i in oldlist]

not:

>>> newlist = []
>>> for i in range(len(oldlist)):
newlist.append(oldlist[i] + 1)

Note there are several non-Pythonic ways to perform this task.

55

SpacePy Documentation, Release 0.4.0

For those not familiar with the features of the lanaguage and the standard library, this does represent a barrier to entry.
However once that knowledge is built, using the features of the language makes one’s intention much more clear. It
often also results in shorter code that is easier to comprehend.

See several examples in SpacePy Python Programming Tips.

3.1.3 Idiom and communication

Because “code is more often read than written,” anything that improves clarity is beneficial. A list comprehension and
a for loop may have the same result, but the use of a list comprehension immediately makes it apparent to the reader
that the code is intended to create a new list based on some element-by-element translation of the input list. It is a
pattern with a common solution, and sticking to the common solution helps make the pattern apparent so the reader of
the code understands the underlying problem.

Generally this choice of the common way is referred to as “idiomatic Python.” This can be expanded to conventions
such as the use of “self” as the first argument in instance methods, even though such choice is generally free.

3.1.4 Further Reading

A web search for “pythonic” will give a wealth of opinions. These references are a good starting point.
* Python Style Guide (PEP 8)
¢ Zen of Python (PEP 20)
e What is Pythonic?
* Examples of idiomatic and nonidiomatic Python

* Idomatic Python from Wikibooks

Release
0.4.0

Doc generation date
Sep 07, 2022

3.2 SpacePy Python Programming Tips

One often hears that interpreted languages are too slow for whatever task someone needs to do. In many cases this
belief is unfounded. As the time spent programming and debugging in an interpreted language is of far less than for a
compiled language, the programmer has more time to identify bottlenecks in the code and optimize it where necessary.
This page is dedicated to that idea, providing examples of code speedup and best practices.

One often neglected way to speed up development time is to use established libraries, and the time spent finding
existing code that does what you want can be more productive than trying to write and optimize your own algorithms.
We recommend exploring the SpacePy documentation, as well as taking the time to learn some of the vast functionality
already in numpy and the Python standard library.

* Basic examples
* Lists, for loops, and arrays
e Zip

o External links

56 Chapter 3. Developer Guide

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0020/
https://blog.startifact.com/posts/older/what-is-pythonic.html
https://medium.com/the-andela-way/idiomatic-python-coding-the-smart-way-cc560fa5f1d6
https://en.wikibooks.org/wiki/Python_Programming/Idioms
http://docs.scipy.org/doc/numpy/reference/

SpacePy Documentation, Release 0.4.0

3.2.1 Basic examples

Though there are some similarities, Python does not look like (or work like) Matlab or IDL. As (most of us) are, or
have been, Matlab or IDL programmers, we have to rethink how we do things — what is efficient in one language may
not be the most efficient in another. One truth that Python shares with these other languages, however, is that if you are
using a for loop there is likely to be a faster way. ..

Take the simple case of a large data array where you want to add one to each element. Here wa show four of the
possible ways to do this, and by using a profiling tool, we can show that the speeds of the different methods can vary
substantially.

Create the data

>>> data = range(10000000)

The most C-like way is just a straight up for loop

>>> for i in range(len(data)):
>>> data[i] += 1

This is 6 function calls in 2.590 CPU seconds (from cProfile)

The next, more Pythonic, way is with a list comprehension

>>> data = [val+l for val in data]

This is 4 function calls in 1.643 CPU seconds (~1.6x)

Next we introduce numpy and change our list to an array then add one

>>> data = np.asarray(data)
>>> data += 1

This is 6 function calls in 1.959 CPU seconds (~1.3x), better than the for loop but worse than the list comprehension

Next we do this the right way and just create it in numpy and never leave

>>> data = np.arange(10000000)
>>> data += 1

this is 4 function calls in 0.049 CPU seconds (~53x).

While this is a really simple example it shows the basic premise, if you need to work with numpy, start in numpy and
stay in numpy. This will usually be true for array-based manipulations.

If in doubt, and speed is not a major consideration, use the most human-readable form. This will make your code more
maintainable and encourage its use by others.

3.2.2 Lists, for loops, and arrays

This example teaches the lesson that most advanced IDL or Matlab programmers already know; do everything in arrays
and never use a for loop if there is another choice. The language has optimized array manipulation and it is unlikely
that you will find a faster way with your own code.

The following bit of code takes in a series of coordinates, computes their displacement, and drops the largest 100 of
them.

This is how the code started out, Shell_x0_y0_z0 is an Nx3 numpy array, ShellCenter is a 3 element list or array, and
Num_Pts_Removed is the number of points to drop:

3.2. SpacePy Python Programming Tips 57

https://docs.python.org/3/library/profile.html#module-cProfile
http://docs.scipy.org/doc/numpy/reference/
http://docs.scipy.org/doc/numpy/reference/
http://docs.scipy.org/doc/numpy/reference/
http://docs.scipy.org/doc/numpy/reference/
http://docs.scipy.org/doc/numpy/reference/
http://www.ittvis.com/language/en-us/productsservices/idl.aspx
http://www.mathworks.com/products/matlab/

SpacePy Documentation, Release 0.4.0

import numpy as np
def SortRemove_HighFluxPts_(Shell_x®_y0_z0, ShellCenter, Num_Pts_Removed):
#Sort the Shell Points based on radial distance (Flux prop to 1/R*2) and remove Num_
—Pts_Removed points with the highest flux
Num_Pts_Removed = np.abs(Num_Pts_Removed) #make sure the number is positive
#Generate an array of radial distances of points from origin
R =11
for xyz in Shell_x0_y0_z0:
R.append(1l/np.linalg.norm(xyz + ShellCenter)) #Flux prop to 1/r*2, but don't need.
—the 42
R = np.asarray(R)
ARG = np.argsort(R) # array of sorted indies based on flux in 1st column
Shell_x0_y®_z0 = np.take(Shell_x0_y®_z0, ARG, axis = 0) # sort based on index order
return Shell_x0_y0®_zO0[:-Num_Pts_Removed, :] #remove last points that have the
— "anomalously" high flux

A cProfile of this yields a lot of time spent just in the function itself; this is the for loop (list comprehension is a little
faster but not much in this case):

Tue Jun 14 10:10:56 2011 SortRemove_HighFluxPts_.prof
700009 function calls in 4.209 seconds

Ordered by: cumulative time
List reduced from 14 to 10 due to restriction <10>

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.002 0.002 4.209 4.209 <string>:1(<module>)
1 2.638 2.638 4.207 4.207 testl.py:235(SortRemove_HighFluxPts_)
100000 0.952 0.000 1.529 0.000 /opt/local/Library/Frameworks/Python.
- framework/Versions/2.7/1ib/python2.7/site-packages/numpy/linalg/linalg.py: 1840 (norm)
100001 0.099 0.000 0.240 0.000 /opt/local/Library/Frameworks/Python.
- framework/Versions/2.7/1ib/python2.7/site-packages/numpy/core/numeric.py: 167 (asarray)

100000 0.229 0.000 0.229 0.000 {method 'reduce' of 'numpy.ufunc' objects}
100001 0.141 0.000 0.141 0.000 {numpy.core.multiarray.array}
100000 0.082 0.000 0.082 0.000 {method 'ravel' of 'numpy.ndarray' objects}
100000 0.042 0.000 0.042 0.000 {method 'conj' of 'numpy.ndarray' objects}
100000 0.016 0.000 0.016 0.000 {method 'append' of 'list' objects}

1 0.000 0.000 0.005 0.005 /opt/local/Library/Frameworks/Python.

— framework/Versions/2.7/1ib/python2.7/site-packages/numpy/core/fromnumeric.py:45(take)

Simply moving the addition outside the for-loop gives a factor of 2.3 speedup. We believe that the difference arising
from moving the addition lets numpy (which works primarily in C) operate once only. This massively reduces the
calling overhead as array operations are done as for loops in C, and not in element-wise in python:

def SortRemove_HighFluxPts_(Shell_x0_y0_z0, ShellCenter, Num_Pts_Removed):

#Sort the Shell Points based on radial distance (Flux prop to 1/R*2) and remove Num_
—Pts_Removed points with the highest flux

Num_Pts_Removed = np.abs(Num_Pts_Removed) #make sure the number is positive

#Generate an array of radial distances of points from origin

R =[]

Shell_xyz = Shell_x0_y0®_z0 + ShellCenter

for xyz in Shell_xyz:

(continues on next page)

58 Chapter 3. Developer Guide

SpacePy Documentation, Release 0.4.0

(continued from previous page)

R.append(1l/np.linalg.norm(xyz)) #Flux prop to 1/r*2, but don't need the "2
R = np.asarray(R)
ARG = np.argsort(R) # array of sorted indies based on flux in 1st column
Shell_x0_y®_z0 = np.take(Shell_x0_y®_z0, ARG, axis = 0) # sort based on index order
return Shell_x0_y0®_zO0[:-Num_Pts_Removed, :] #remove last points that have the
— "anomalously" high flux

A quick profile:

Tue Jun 14 10:18:39 2011 SortRemove_HighFluxPts_.prof
700009 function calls in 1.802 seconds

Ordered by: cumulative time
List reduced from 14 to 10 due to restriction <10>

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.001 0.001 1.802 1.802 <string>:1(<module>)

1 0.402 0.402 1.801 1.801 testl.py:235(SortRemove_HighFluxPts_)
100000 0.862 0.000 1.361 0.000 /opt/local/Library/Frameworks/Python.

— framework/Versions/2.7/1ib/python2.7/site-packages/numpy/linalg/linalg.py: 1840 (norm)
100000 0.207 0.000 0.207 0.000 {method 'reduce' of 'numpy.ufunc' objects}
100001 0.080 0.000 0.199 0.000 /opt/local/Library/Frameworks/Python.

- framework/Versions/2.7/1ib/python2.7/site-packages/numpy/core/numeric.py: 167 (asarray)
100001 0.120 0.000 0.120 0.000 {numpy.core.multiarray.array}

100000 0.067 0.000 0.067 0.000 {method 'ravel' of 'numpy.ndarray' objects}
100000 0.041 0.000 0.041 0.000 {method 'conj' of 'numpy.ndarray' objects}
100000 0.014 0.000 0.014 0.000 {method 'append' of 'list' objects}
1 0.000 0.000 0.005 0.005 /opt/local/Library/Frameworks/Python.
- framework/Versions/2.7/1ib/python2.7/site-packages/numpy/core/fromnumeric.py:45(take)

A closer look here reveals that all of this can be done on the arrays without the for loop (or list comprehension):

def SortRemove_HighFluxPts_(Shell_x®_y0_z0, ShellCenter, Num_Pts_Removed):
#Sort the Shell Points based on radial distance (Flux prop to 1/R*2) and remove #.
—points with the highest flux
Num_Pts_Removed = np.abs(Num_Pts_Removed) #make sure the number is positive
#Generate an array of radial distances of points from origin
R =1/ np.sum((Shell_x0_y0_z0 + ShellCenter) ** 2, 1)
ARG = np.argsort(R) # array of sorted indies based on flux in 1st column
Shell_x0_y®_z0 = np.take(Shell_x0_y®_z0, ARG, axis = 0) # sort based on index order
return Shell_x0_y0®_zO0[:-Num_Pts_Removed, :] #remove last points that have the
— "anomalously" high flux

The answer is exactly the same and comparing to the initial version of this code we have managed a speedup of 382x:

Tue Jun 14 10:21:54 2011 SortRemove_HighFluxPts_.prof
10 function calls in 0.011 seconds
Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)

(continues on next page)

3.2. SpacePy Python Programming Tips 59

SpacePy Documentation, Release 0.4.0

(continued from previous page)

1 0.000 0.000 0.011 0.011 <string>:1(<module>)
1 0.002 0.002 0.011 0.011 testl.py:236(SortRemove_HighFluxPts_)
1 0.000 0.000 0.004 0.004 /opt/local/Library/Frameworks/Python.
- framework/Versions/2.7/1ib/python2.7/site-packages/numpy/core/fromnumeric.
~py:598(argsort)
1 0.004 0.004 0.004 0.004 {method 'argsort' of 'numpy.ndarray'.
—objects}
1 0.000 0.000 0.003 0.003 /opt/local/Library/Frameworks/Python.
- framework/Versions/2.7/1ib/python2.7/site-packages/numpy/core/fromnumeric.py:45(take)
1 0.003 0.003 0.003 0.003 {method 'take' of 'numpy.ndarray' objects}
1 0.000 0.000 0.002 0.002 /opt/local/Library/Frameworks/Python.
- framework/Versions/2.7/1ib/python2.7/site-packages/numpy/core/fromnumeric.py:1379(sum)
1 0.002 0.002 0.002 0.002 {method 'sum' of 'numpy.ndarray' objects}
1 0.000 0.000 0.000 0.000 {isinstance}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler',
—objects}

In summary, when working on arrays it’s worth taking the time to think about whether you can get the results you need
without for-loops or list comprehensions. The small amount of development time will likely be recouped very quickly.

3.2.3 Zip

The zip () function is extremely useful, but it is really slow. If you find yourself using it on large amounts of data then
significant time-savings might be achieved by re-writing your code to make the zip () operation unnecessary. A good
alternative, if you do need the functionality of zip (), is in itertools.izip(). This is far more efficient as it builds
an interator.

This example generates N points, evenly distributed on the unit sphere centered at (0,0,0) using the “Golden Spiral”
method.

The original code:

import numpy as np
def PointsOnSphere(N):
Generate evenly distributed N points on the unit sphere centered at (0,0,0)
Uses "Golden Spiral" method
x0 np.array((N,), dtype= float)
y0® = np.array((N,), dtype= float)
z0 np.array((N,), dtype= float)
phi = (1 + np.sqrt(5)) / 2. # the golden ratio
long_incr = 2.0"np.pi / phi # how much to increment the longitude
dz = 2.0 / float(N) # a unit sphere has diameter 2
bands = np.arange(®, N, 1) # each band will have one point placed on it
z0 = bands * dz - 1 + (dz/2) # the z location of each band/point
r = np.sqrt(l - z0%z0) # the radius can be directly determined from height
az = bands * long_incr # the azimuth where to place the point
x0 = r * np.cos(az)
yO® = r * np.sin(az)
x0_y0_z0 = np.array(zip(x0,y0,z0)) #combine into 3 column (x,y,z) file
return (x0_y0_z0)

Profiling this with cProfile shows that a lot of time is spent in zip():

60 Chapter 3. Developer Guide

https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/profile.html#module-cProfile
https://docs.python.org/3/library/functions.html#zip

SpacePy Documentation, Release 0.4.0

Tue Jun 14 09:54:41 2011 PointsOnSphere.prof
9 function calls in 8.132 seconds
Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.010 0.010 8.132 8.132 <string>:1(<module>)

1 0.470 0.470 8.122 8.122 testl.py:192(PointsOnSphere)

4 6.993 1.748 6.993 1.748 {numpy.core.multiarray.array}

1 0.654 0.654 0.654 0.654 {zip}

1 0.005 0.005 0.005 0.005 {numpy.core.multiarray.arange}

1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler'.
—objects}

So lets try and do a few simple rewrites to make this faster. Using numpy.vstack is the first one that came to mind. The
change here is to replace building up the array from the elements made by zip () to just concatenating the arrays we
already have:

def PointsOnSphere(N):
Generate evenly distributed N points on the unit sphere centered at (0,0,0)
Uses "Golden Spiral" method
x0 = np.array((N,), dtype= float)
y0® = np.array((N,), dtype= float)
z0® = np.array((N,), dtype= float)
phi = (1 + np.sqrt(5)) / 2. # the golden ratio
long_incr = 2.0*np.pi / phi # how much to increment the longitude
dz = 2.0 / float(N) # a unit sphere has diameter 2
bands = np.arange(0, N, 1) # each band will have one point placed on it
z0® = bands * dz - 1 + (dz/2) # the z location of each band/point
r = np.sqrt(l - z0*z0) # the radius can be directly determined from height
az = bands * long_incr # the azimuth where to place the point
x0 r * np.cos(az)
yO® = r * np.sin(az)
x0_y0_z0 = np.vstack((x0, y0®, z0)).transpose()
return (x0_y0_z0)

Profiling this with cProfile one can see that this is now fast enough for me, no more work to do. We picked up a
48x speed increase, I'm sure this can still be made better and let the SpacePy team know if you rewrite it and it will be
included:

Tue Jun 14 09:57:41 2011 PointsOnSphere.prof
32 function calls in 0.168 seconds

Ordered by: cumulative time
List reduced from 13 to 10 due to restriction <10>

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.010 0.010 0.168 0.168 <string>:1(<module>)
1 0.123 0.123 0.159 0.159 testl.py:217(PointsOnSphere)
1 0.000 0.000 0.034 0.034 /opt/local/Library/Frameworks/Python.
- framework/Versions/2.7/1ib/python2.7/site-packages/numpy/core/shape_base.py:177 (vstack)

(continues on next page)

3.2. SpacePy Python Programming Tips 61

https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/profile.html#module-cProfile

SpacePy Documentation, Release 0.4.0

(continued from previous page)

0.034 0.034 0.034 0.034 {numpy.core.multiarray.concatenate}
0.002 0.002 0.002 0.002 {numpy.core.multiarray.arange}
0.000 0.000 0.000 0.000 {map}
3 0.000 0.000 0.000 0.000 /opt/local/Library/Frameworks/Python.
- framework/Versions/2.7/1ib/python2.7/site-packages/numpy/core/shape_base.py:58(atleast_
—2d)

=

6 0.000 0.000 0.000 0.000 {numpy.core.multiarray.array}

3 0.000 0.000 0.000 0.000 /opt/local/Library/Frameworks/Python.
- framework/Versions/2.7/1ib/python2.7/site-packages/numpy/core/numeric.
—py:237(asanyarray)

1 0.000 0.000 0.000 0.000 {method 'transpose' of 'numpy.ndarray'.
—objects}

3.2.4 External links

To learn about NumPy from a MatLab user’s perspective
* NumPy for MatLab users
¢ Mathesaurus
And if you’re coming from an IDL, or R, background
* Mathesaurus
Here is a collection of links that serve as a decent reference for Python and speed
¢ PythonSpeed PerformanceTips
* scipy array tip sheet

* Python Tips, Tricks, and Hacks

Release
0.4.0

Doc generation date
Sep 07, 2022

For additions or fixes to this page contact the SpacePy team at Los Alamos.

3.3 Dependency version support

SpacePy will occasionally drop support for old versions of dependencies. Failures with older versions will not be
treated as SpacePy bugs. Dependency support is based on these principles:

1. SpacePy supports released versions of a dependency that meet a minimum version requirement; there is no
maximum supported version.

2. Support for old versions of dependencies will be dropped only for reason, e.g. if a new version is required to
support a new feature or fix a bug. Maintenance of convoluted workarounds is included in this category.

3. Support will be maintained for versions included in the second-most-recent Ubuntu Long Term Support (LTS)
release, e.g. upon release of Ubuntu 20.04 LTS, support will be maintained for at least the versions in 18.04 LTS

62 Chapter 3. Developer Guide

http://www.scipy.org/NumPy_for_Matlab_Users
http://mathesaurus.sourceforge.net/
http://mathesaurus.sourceforge.net/
http://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://pages.physics.cornell.edu/~myers/teaching/ComputationalMethods/python/arrays.html
http://www.siafoo.net/article/52

SpacePy Documentation, Release 0.4.0

4. Support will also be maintained for Python and NumPy versions in the spirit of NEP 29.

1. A SpacePy release will support at least all minor versions of Python released in the prior 42 months, and
at least the two latest minor versions.

2. SpacePy will support all minor versions of NumPy and, where possible, other Python dependencies released
in the prior 24 months, and at least the three latest minor versions.

3. Non-Python dependencies that use a similar versioning system will be supported similarly where possible.

4. This support is based on minor releases (x.y.0), not subsequent subminor releases (x.y.z for the same x.y).
Where x.y.0 is supported, so is x.y.z for all z.

5. All versions of all dependencies and all combinations thereof will not necessarily be tested in continuous
integration.

5. No support will be provided for conflicting versions of dependencies. E.g. SciPy 1.4 requires NumPy 1.13.
Although SpacePy supports SciPy 1.4 and Numpy 1.6, it contains no workarounds for using them in that com-
bination.

6. Support for a particular version of a dependency does not imply a commitment to work around bugs in that
version.

7. Support for even earlier versions will be maintained as necessary for Python 2 compatibility as long as Python 2
support is maintained.

8. A release of SpacePy that requires new dependency versions will always have a subminor version of 0, e.g. if
the release that follows 0.5.2 requires updated dependencies, it will be numbered 0.6.0.

9. The commit that requires a newer version of a dependency must also update the requirements. txt, SpacePy
Dependencies, and the table below. The commit message must include the reason for the dependency require-
ment.

Regardless of minimum requirements, using the latest stable version of a package is generally preferred. The mini-
mum supported version for SpacePy may not be recommended for other reasons (e.g. bug fixes or improved features
elsewhere in the package.)

This table summarizes the versions to be supported according to the above policy, as well as the minimum version
currently supported by SpacePy. Where available, the dependency name links to its version history. The oldest version
supported according to this policy is in bold.

3.3. Dependency version support 63

https://numpy.org/neps/nep-0029-deprecation_policy.html

SpacePy Documentation, Release 0.4.0

Table 1: SpacePy dependency versions (2021/9/16)

Depen- Current Re- | Ubuntu Ubuntu NEP 29 | NEP 29 | SpacePy
dency lease 18.04LTS 20.04LTS (42/24 mo.) | (2/3 minor | current
versions) minimum
CPython 3.9.7 3.6.5 3.8.2 3.7.0 3.8.0 320
(2021/8/30) (2018/2/5) (2020/2/24) (2018/6/27) (2019/10/14) | (2011/2/20)
or 2.7.0
(2010/7/3)
AstroPy 4.3.1 2.04 4.0 32 4.1 1.0
(2021/8/11) (2018/2/6) (2019/2/16) (2019/6/14) (2020/10/21) | (2015/2/18)
CDF 3.8.0.1 N/A N/A 3.8.0 3.6.0 2.7.0
(2020/7/7) (2019/10/27) | (2015/2/5) (1999/9/27)
dateutil 2.8.2 2.6.1 2.7.3 2.8.0 2.6.0 tested
(2021/7/8) (2017/7/10) (2018/5/9) (2019/2/5) (2016/11/8) from 1.4
(2008/2/27)
h5py 3.4.0 2.7.1 2.10.0 3.0.0 3.2.0 tested
(2021/8/3) (2017/9/1) (2019/9/6) (2020/10/30) | (2021/3/3) from 2.6
(2017/3/18)
matplotlib 343 2.1.1 3.1.2 3.2.0 3.2.0 1.5.0
(2021/8/12) | (2017/12/9) | (2019/12/4) | (2020/3/3) (2020/3/3) (2015/10/29)
numpy 1.21.2 1.13.3 1.16.5 1.18.0 1.19.0 1.10.0
(2021/8/15) (2017/7/6) (2019/8/27) (2019/12/22) | (2020/1/20) (2015/10/5)
scipy 1.7.1 0.19.1 1.3.3 1.4.0 1.5.0 0.11.0
(2021/8/1) (2017/6/23) (2019/11/23) | (2019/12/16) | (2020/6/21) (2012/9/24)

3.4 Documentation Standard

SpacePy aims to be a high quality product, and as such we (the SpacePy Team) encourage a a high degree of uniformity
in the documentation across included modules. If you are contributing to SpacePy, or hope to, please take the time to
make your code compliant with the documentation standard.

SpacePy uses Sphinx to generate its documentation. This allows most of the documentation to be built from docstrings
in the code, with additional information being provided in reStructured Text files. This allows easy generation of

high-quality, searchable HTML documentation.

In addition to Sphinx, SpacePy uses the following extensions:

¢ ‘sphinx.ext.autodoc’

‘sphinx.ext.doctest”

‘sphinx.ext.intersphinx’

‘sphinx.ext.todo’

‘sphinx.ext.imgmath’ (falls back to ‘sphinx.ext.pngmath’ if imgmath is not available)

‘sphinx.ext.ifconfig’

‘sphinx.ext.viewcode’

‘numpydoc’

‘sphinx.ext.inheritance_diagram’

‘sphinx.ext.autosummary’

64

Chapter 3. Developer Guide

https://www.python.org/downloads/
https://docs.astropy.org/en/stable/changelog.html#changelog
https://spdf.gsfc.nasa.gov/pub/software/cdf/dist/latest-release/unix/CHANGES.txt
https://github.com/dateutil/dateutil/releases
https://github.com/h5py/h5py/releases
https://github.com/matplotlib/matplotlib/releases
https://github.com/numpy/numpy/releases
https://github.com/scipy/scipy/releases
http://sphinx.pocoo.org/

SpacePy Documentation, Release 0.4.0

* ‘sphinx.ext.extlinks’

3.4.1 So what do | need to do in my code?

Since we are using the ‘numpydoc’ extension there are fixed headings that may appear in your documentation block.
There are a few things to note: * No other headings can appear in your docstrings * Most reStructuredText commands
cannot appear in your docstrings either (e.g. .. Note:) * Since ‘numpydoc’ is not well documented, the best way of
finding out what you can do in your docstrings is to look at the source for the SpacePy documentation or the numpy
documentation.

Allowed headings

Always use
* Parameters
* Returns
Use as needed
 Attributes
* Raises
e Warns
¢ Other Parameters
* See Also
* Notes
* Warnings
* References
e Examples
* Methods
No need to use
e Summary
¢ Extended Summary
¢ index
Do not use
* Signature
Examples

» Use them, but they must be fully stand alone; the user should be able to type the exact code in the example
and it should work as shown (doctest can help with this)

3.4. Documentation Standard 65

SpacePy Documentation, Release 0.4.0

3.4.2 Function Example

This code from toolbox shows what a function should look like in your code

def logspace(min, max, num, **kwargs):
Returns log spaced bins.
—are the ,min and max
not logl®(min) and logl®(max)

Parameters

min : float
minimum value
max : float
maximum value
num :@ integer
number of log spaced bins

Other Parameters

kwargs : dict

Returns

out : array
log spaced bins from min to max in a numpy array

Examples

>>> import spacepy.toolbox as tb
>>> tb.logspace(l, 100, 5)
array([1. s 3.16227766, 10. s
- D
from numpy import logspace, logl®
if isinstance(min, datetime.datetime):
from matplotlib.dates import date2num, num2date

—num, **kwargs))
else:

Same as numpy logspace except the min and max.

additional keywords passed into matplotlib.dates.num2date

This function works on both numbers and datetime objects

return num2date(logspace(logl®(date2num(min)), logl®(date2num(max)),..

return logspace(logl®(min), logl®(max), num, **kwargs)

31.6227766 , 100. .

‘Which then renders as:

spacepy . toolbox.logspace (min, max, num, **kwargs)

Returns log-spaced bins. Same as numpy.logspace except the min and max are the min and max not

log10(min) and log10(max)

Parameters

66

Chapter 3. Developer Guide

SpacePy Documentation, Release 0.4.0

min
[float] minimum value

max
[float] maximum value

num
[integer] number of log spaced bins

Returns

out
[array] log-spaced bins from min to max in a numpy array

Other Parameters

kwargs
[dict] additional keywords passed into matplotlib.dates.num2date

See also:

geomspace
linspace

Notes

This function works on both numbers and datetime objects

Examples

>>> import spacepy.toolbox as tb

>>> tb.logspace(l, 100, 5)

array([1. , 3.16227766, 10. , 31.6227766 , 100.
— D

3.5 Unit tests

o The spacepy_testing module

— Classes
— Functions

— Data

3.5. Unit tests 67

SpacePy Documentation, Release 0.4.0

3.5.1 The spacepy_testing module

The spacepy_testing module contains utilities for assistance with testing SpacePy. It is not installed as part of
SpacePy and is thus only importable from the unit test scripts themselves (which are in the same directory). All unit
test scripts import this module, and should do so before importing any spacepy modules to ensure pathing is correct.

On import, add_build_to_path() is run so that the build directory is added to the Python search path. This means
the tests run against the latest build, not the installed version. Remove the build directory to run against the installed
version instead. The build directory does not completely separate out Python versions, so removing the build directory
(and rebuilding) is recommended when switching Python versions.

Build the package before running the tests:

python setup.py build

e Classes

e Functions

e Data

Classes
assertlarns(test[, action, message, ...]) Tests that a warning is raised.
assertDoesntlWarn(test[, action, message, ...]) Tests that a warning is not raised.

spacepy_testing.assertWarns

class spacepy_testing.assertWarns (fest, action="always', message=", category=<class 'Warning'>,
module="", lineno=0)

Tests that a warning is raised.

Use as a context manager. Code within the context manager block will be executed and, on exit from the block,
all warnings issued during execution of the block will be checked to see if the warning specified was issued.

assertlarns requires that the matched warning be issued exactly once within the context manager, or the test
function will fail (whether the warning was issued not at all, or multiple times). assertDoesntWarn requires
that matched warnings are not issued at all.

All other warnings are issued as normal, although the warning will not be shown (e.g. printed) until the exit of
the context manager. If code within the context manager issues an exception, the test for warnings will be skipped
(test failure will not be issued), and all warnings shown before the exception propagates up the stack.

The parameters determining which warning to match are for the code referenced in the warning, not neces-
sarily the code being warned. E.g. if code calls a deprecated function, and the deprecated function issues a
DeprecationWarning, what is matched may be the code in the deprecated function, not the caller; see the
stacklevel parameter to warn() for how this may be changed.

Parameters

68 Chapter 3. Developer Guide

https://docs.python.org/3/library/warnings.html#warnings.warn

SpacePy Documentation, Release 0.4.0

test
[unittest. TestCase] The test case from which this is being called, almost always self (so the
fail () method is available).

action
[{ ‘always’, None, ‘default’, ‘error’, ‘ignore’, ‘module’,]

‘once’ }

Unless None, a warning filter matching the specified warning will be added to the filter before
executing the block. ‘always’ (default) is generally recommended to make sure the tested
warning will be raised. If ‘always’ is specified, on Python 2 the log of previously-issued
warnings will be edited to work around a Python bug. In this case using module is strongly
recommended to minimize the impact of this editing. This filter will be removed on comple-
tion of the block.

message
[str, optional] Regular expression to match the start of warning message. Default is to match
all.

category
[type, optional] Matches if the warning is an instance of this type or a subclass. Default is
the base Warning type (matches all warnings).

module
[str, optional] Regular expression to match the start of the name of the module from which
the warning is issued. This is primarily used in setting up the warnings filter; matching the
module to determine if the desired warning was issued is based on filename and may not
work for modules built into the interpreter. Default is to match all.

lineno
[int, optional] Line number from which the warning was issued. This is rarely useful since
it will change from version to version. Default (0) will match all lines.

See also:

warnings.filterwarnings
The action, message, category, module, and 1ineno parameters are based on the filter specifications.

Examples

This class is primarily useful as part of a test suite, and cannot be easily demonstrated through interactive exam-
ples. See the tests of it in test_testing.py and its usage throughout the test suite.

spacepy_testing.assertDoesntWarn

class spacepy_testing.assertDoesntWarn (fest, action="always', message=", category=<class 'Warning">,
module="", lineno=0)

Tests that a warning is not raised.

Use as a context manager. Code within the context manager block will be executed and, on exit from the block,
all warnings issued during execution of the block will be checked to see if the warning specified was issued.

assertliarns requires that the matched warning be issued exactly once within the context manager, or the test
function will fail (whether the warning was issued not at all, or multiple times). assertDoesntliarn requires
that matched warnings are not issued at all.

3.5. Unit tests 69

https://docs.python.org/3/library/unittest.html#unittest.TestCase.fail
https://stackoverflow.com/questions/56821539/
https://docs.python.org/3/library/warnings.html#warnings.filterwarnings

SpacePy Documentation, Release 0.4.0

All other warnings are issued as normal, although the warning will not be shown (e.g. printed) until the exit of
the context manager. If code within the context manager issues an exception, the test for warnings will be skipped
(test failure will not be issued), and all warnings shown before the exception propagates up the stack.

The parameters determining which warning to match are for the code referenced in the warning, not neces-
sarily the code being warned. E.g. if code calls a deprecated function, and the deprecated function issues a
DeprecationWarning, what is matched may be the code in the deprecated function, not the caller; see the
stacklevel parameter to warn() for how this may be changed.

Parameters

test
[unittest. TestCase] The test case from which this is being called, almost always self (so the
fail () method is available).

action
[{‘always’, None, ‘default’, ‘error’, ‘ignore’, ‘module’,]

‘once’ }

Unless None, a warning filter matching the specified warning will be added to the filter before
executing the block. ‘always’ (default) is generally recommended to make sure the tested
warning will be raised. If ‘always’ is specified, on Python 2 the log of previously-issued
warnings will be edited to work around a Python bug. In this case using module is strongly
recommended to minimize the impact of this editing. This filter will be removed on comple-
tion of the block.

message
[str, optional] Regular expression to match the start of warning message. Default is to match
all.

category
[type, optional] Matches if the warning is an instance of this type or a subclass. Default is
the base Warning type (matches all warnings).

module
[str, optional] Regular expression to match the start of the name of the module from which
the warning is issued. This is primarily used in setting up the warnings filter; matching the
module to determine if the desired warning was issued is based on filename and may not
work for modules built into the interpreter. Default is to match all.

lineno
[int, optional] Line number from which the warning was issued. This is rarely useful since
it will change from version to version. Default (0) will match all lines.

See also:

warnings.filterwarnings
The action, message, category, module, and 1ineno parameters are based on the filter specifications.

70

Chapter 3. Developer Guide

https://docs.python.org/3/library/warnings.html#warnings.warn
https://docs.python.org/3/library/unittest.html#unittest.TestCase.fail
https://stackoverflow.com/questions/56821539/
https://docs.python.org/3/library/warnings.html#warnings.filterwarnings

SpacePy Documentation, Release 0.4.0

Examples

This class is primarily useful as part of a test suite, and cannot be easily demonstrated through interactive exam-
ples. See the tests of it in test_testing.py and its usage throughout the test suite.

Functions

add_build_to_path() Adds the python build directory to the search path.

spacepy_testing.add_build_to_path

spacepy_testing.add_build_to_path()
Adds the python build directory to the search path.

Locates the build directory in the same repository as this test module and adds the (version-specific) library
directories to the Python module search path, so the unit tests can be run against the built instead of installed
version.

This is run on import of this module.

Data
datadir Directory containing unit test data
testsdir Directory containing the unit test scripts

spacepy_testing.datadir

spacepy_testing.datadir = '/home/jtniehof/scm/spacepy/tests/data’
Directory containing unit test data

spacepy_testing.testsdir

spacepy_testing.testsdir = '/home/jtniehof/scm/spacepy/tests’

Directory containing the unit test scripts

Release
0.4.0

Doc generation date
Sep 07, 2022

3.5. Unit tests 71

SpacePy Documentation, Release 0.4.0

3.6 Continuous Integration

SpacePy uses GitHub Actions for continuous integration. Most of the relevant information is checked into the reposi-
tory: the configuration file CI.yml manages the CI process, which ultimately runs the unit tests. However a few elements
of the setup are not in the repository and are documented here. This may be useful if this ever has to be set up in the
future, or if you want to run SpacePy CI tests on your fork before opening a pull request.

* Initial run
* Merging rules
* Rerunning CI on a PR

* Cacheing

* Usage

3.6.1 Initial run

A workflow cannot be run until it has been run once against the default branch (master). This makes it somewhat hard
to test the workflow before merging; in SpacePy this was handled by merging a tiny workflow first (PR 496).

Once this first run has been made, updated versions of the workflow can be run from topic branches. It will show up
under the Actions tab of a repository and the branch to use can be selected. It is also possible to specify a branch by
using the REST API; you will need an access token with workflow scope.

3.6.2 Merging rules

PRs require CI to pass before merging; this is managed with a branch protection rule (Settings from the tab at the top
of a repository, Branches from the left menu.) The relevant choices is “Require status checks to pass before merging.”
Every variant of the unit testing job (test (2.7, ubuntu-18.04... etc.) will be in the list of checks; leave these
alone and select only the A11 tests job. The name of this won’t change and it will always depend on all the jobs
in the workflow. “Require branches to be up to date” should not be selected; this encourages merging rather than our
preferred rebase, and the tests will run against a (temporary) merge regardless.

3.6.3 Rerunning Cl on a PR

There is no way to manually trigger a workflow run on a pull request. SpacePy’s CI workflow is set up to trigger the
workflow when a PR is marked ready for review, so one way to force a run is to mark the PR as a draft, and then as
ready again.

Note that a PR will not trigger the CI if there is a merge conflict.

72 Chapter 3. Developer Guide

https://docs.github.com/en/actions
https://github.com/spacepy/spacepy/blob/master/.github/workflows/ci.yml
https://github.com/spacepy/spacepy/blob/master/tests/test_all.py
https://github.community/t/workflow-dispatch-event-not-working/128856/2
https://github.com/spacepy/spacepy/pull/496
https://github.community/t/workflow-dispatch-workflow-not-showing-in-actions-tab/130088/15
https://github.community/t/workflow-dispatch-workflow-not-showing-in-actions-tab/130088/15
https://docs.github.com/engithub/authenticating-to-github/creating-a-personal-access-token
https://docs.github.com/en/github/administering-a-repository/managing-a-branch-protection-rule
https://docs.github.com/en/actions/reference/events-that-trigger-workflows#pull_request
https://docs.github.com/en/actions/reference/events-that-trigger-workflows#pull_request
https://github.community/t/run-actions-on-pull-requests-with-merge-conflicts/17104

SpacePy Documentation, Release 0.4.0

3.6.4 Cacheing

Dependencies for CI are stored in two caches: one for all pip dependencies, and one for the NASA CDF library. This
minimizes CI time use for building dependencies.

Caches expire weekly (the week begins at 00 Monday, UTC). Caches can also be force-expired by incrementing the
versions in ci.yml for the pip and/or CDF cache. Unfortunately this does require pushing a commit.

3.6.5 Usage

SpacePy administrators can view the usage minutes, storage (for caches), etc. on our billing page.

Release
0.4.0

Doc generation date
Sep 07, 2022

3.6. Continuous Integration 73

https://github.com/organizations/spacepy/settings/billing

SpacePy Documentation, Release 0.4.0

74 Chapter 3. Developer Guide

CHAPTER
FOUR

SPACEPY MODULE REFERENCE

Description of all functions within SpacePy, by module.

4.1 spacepy - main SpacePy module

SpacePy: Space Science Tools for Python
SpacePy is a package of tools primarily aimed at the space science community. This __init__.py file sets the parameters

for import statements.

>

If running the ipython shell, simply type ‘?’ after any command for help. ipython also offers tab completion, so hitting
tab after ‘<module name>.” will list all available functions, classes and variables.

Detailed HTML documentation is available online by typing:

>>> spacepy.help(Q

Most functionality is in spacepy’s submodules. Each module has specific help available:

75

SpacePy Documentation, Release 0.4.0

Submodules

coordinates Implementation of Coords class functions for coordinate
transformations

data_assimilation

datamodel The datamodel classes constitute a data model imple-
mentation meant to mirror the functionality of the data
model output from pycdf, though implemented slightly

differently.

empiricals Module with some useful empirical models (plasma-
pause, magnetopause, Lmax)

irbempy module wrapper for irbem_lib Reference for this library
https://sourceforge.net/projects/irbem/ D.

LANLstar Lstar and Lmax calculation using artificial neural net-
work (ANN) technique.

omni Tools to read and process omni data (Qin-Denton, etc.)

poppy PoPPy -- Point Processes in Python.

pybats PyBats! An open source Python-based interface for
reading, manipulating, and visualizing BATS-R-US and
SWMF output.

pycdf This package provides a Python interface to the Com-

mon Data Format (CDF) library used for many NASA
missions, available at http://cdf.gsfc.nasa.gov/.

radbelt Functions supporting radiation belt diffusion codes

seapy SeaPy -- Superposed Epoch in Python.

time Time conversion, manipulation and implementation of

Ticktock class

toolbox Toolbox of various functions and generic utilities.

ae9ap9 Module for reading and dealing with AE9AP9 data files.
Functions

deprecated(version, message[, docstring]) Decorator to deprecate a function/method

help() Launches web browser with SpacePy documentation

spacepy .deprecated (version, message, docstring=None)
Decorator to deprecate a function/method

Modifies a function so that calls to it raise DeprecationWarning and the docstring has a deprecation note added
in accordance with numpydoc format

Parameters

version
[str] What is the first version where this was deprecated?

message
[str] Message to include in the deprecation warning and in the docstring.

Other Parameters

docstring
[str] New in version 0.2.2.

76 Chapter 4. SpacePy Module Reference

https://sourceforge.net/projects/irbem/
http://cdf.gsfc.nasa.gov/
https://numpydoc.readthedocs.io/en/latest/format.html#sections

SpacePy Documentation, Release 0.4.0

If specified, docstring will be added to the modified function’s docstring instead of
message (which will only be used in the deprecation warning.) It can be a multi-line string
(separated with \n). It will be indented to match the existing docstring.

Notes

On Python 2, the deprecated function’s signature won’t be preserved. The function will work but will not have
proper argument names listed in e.g. help.

This warning will show as coming from SpacePy, not the deprecated function.

Examples

>>> import spacepy
>>> @spacepy.deprecated('0.2.1', 'Use a different function instead',
docstring='A different function is better\n'
.. 'because of reasons xyz')
. def foo(x):

"This is a test function

It may do many useful things.
. return x + 1
>>> help(foo)
Help on function foo in module __main__:
foo(x)
This is a test function
. deprecated:: 0.2.1
A different function is better
because of reasons xyz
It may do many useful things.
>>> foo(2)
DeprecationWWarning: Use a different function instead
3

spacepy.help()
Launches web browser with SpacePy documentation

Online help is always for the latest release of SpacePy.
Copyright 2010-2016 Los Alamos National Security, LLC.

4.2 ae9ap9 - Handle AE9/AP9 data files

Module for reading and dealing with AE9AP9 data files.

See https://www.vdl.afrl.af.mil/programs/ae9ap9/ to download the model. This is not a AE9AP9 runner.
Authors: Brian Larsen, Steve Morley Institution: Los Alamos National Laboratory Contact: balarsen@lanl.gov
Copyright 2015 Los Alamos National Security, LLC.

This module provides a convenient class for handling data from AE9/AP9 (and legacy models provided by the software).

4.2. ae9ap9 - Handle AE9/AP9 data files 77

https://www.vdl.afrl.af.mil/programs/ae9ap9/
mailto:balarsen@lanl.gov

SpacePy Documentation, Release 0.4.0

Class

Ae9Data(*args, **kwargs) Dictionary-like container for AE9/AP9/SPM data, de-

rived from SpacePy's datamodel

4.2.1 spacepy.ae9ap9.Ae9Data

class spacepy.ae9ap9.Ae9Data(*args, **kwargs)

Dictionary-like container for AE9/AP9/SPM data, derived from SpacePy’s datamodel

To inspect the variables within this class, use the tree method. To export the data to a CDF, HDF5 or JSON-
headed ASCII file use the relevant “to” method (toCDF, toHDF5, toJSONheaded ASCII).

getLm([alpha, model]) Calculate Mcllwain L for the imported AE9/AP9 run
and add to object

plotOrbit([timerange, coord_sys, landscape, ...]) Plot X-Y and X-Z projections of satellite orbit in re-
quested coordinate system

plotSummary([timerange, coord_sys, ...]) Generate summary plot of AE9/AP9/SPM data
loaded

plotSpectrogram([ecol, pvars]) Plot a spectrogram of the flux along the requested or-
bit, as a function of Lm and time

setUnits([per]) Set units of energy and flux/fluence

getlm(alpha=[90], model="T89")
Calculate Mcllwain L for the imported AE9/AP9 run and add to object
plotOrbit (timerange=None, coord_sys=None, landscape=True, fig_target=None)

Plot X-Y and X-Z projections of satellite orbit in requested coordinate system

plotSummary (timerange=None, coord_sys=None, fig_target=None, spec=False, orbit_params=(False, True),
**kwargs)

Generate summary plot of AE9/AP9/SPM data loaded
spec : if True, plot spectrogram instead of flux/fluence lineplot, requires ‘ecol’ keyword

plotSpectrogram(ecol=0, pvars=None, **kwargs)

Plot a spectrogram of the flux along the requested orbit, as a function of Lm and time
Other Parameters

zlim
[list] 2-element list with upper and lower bounds for color scale

colorbar_label
[string] text to appear next to colorbar (default is ‘Flux’ plus the units)

ylabel
[string] text to label y-axis (default is ‘Lm’ plus the field model name)

title
[string] text to appear above spectrogram (default is climatology model name, data type
and energy)

pvars
[list] list of plotting variable names in order [Epoch-like (X axis), Flux-like (Z axis), Energy
(Index var for Flux-like)]

78

Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

ylim
[list] 2-element list with upper and lower bounds for y axis
setUnits (per=None)
Set units of energy and flux/fluence

If keyword ‘per’ is set to None, this method reports the units currently set. To set energy in MeV and
flux/fluence in ‘per MeV’, set ‘per=MeV’. Valid options are ‘eV’, ‘keV’, ‘Mev’ and ‘GeV".

Other Parameters

per
[string (optional)] Energy units for both energy and flux/fluence

Though the class is derived from SpacePy’s SpaceData, the class also provides several methods targeted at the AE9/AP9
output. Additional functions for working with the data are provided.

Functions

readFile(fname[, comments]) read a model generated file into a datamodel.SpaceData
object

given an AE9AP9 output test file parse the header and
return the information in a dictionary

parseHeader(fname)

4.2.2 spacepy.ae9ap9.readFile

spacepy.ae9ap9.readFile (fname, comments="#")
read a model generated file into a datamodel.SpaceData object
Parameters
fname
[str] filename of the file
Returns
out
[SpaceData] Data contained in the file
Other Parameters
comments
[str (optional)] String that is the comments in the data file

Examples

>>> from spacepy import ae9ap9

>>> ae9ap9.readFile('ephem_sat.dat').tree(verbose=1)
+

| ____Epoch (spacepy.datamodel.dmarray (121,))

| ____Coords (spacepy.datamodel.dmarray (121, 3))
|____MID (spacepy.datamodel.dmarray (121,))

| ____posComp (spacepy.datamodel.dmarray (3,))

4.2. ae9ap9 - Handle AE9/AP9 data files 79

SpacePy Documentation, Release 0.4.0

4.2.3 spacepy.ae9ap9.parseHeader

spacepy.ae9ap9.parseHeader (fname)

given an AE9AP9 output test file parse the header and return the information in a dictionary

Changed in version 0.3.0.

The underlying AE9AP9 model changed the ephem file format and this reader was updated to match.
Reading the old format will issue DeprecationWarning.

Parameters

fname
[str] filename of the file

Returns

out
[dict] Dictionary of the header information in the file

4.3 coordinates - module for coordinate transforms

Implementation of Coords class functions for coordinate transformations

The coordinate systems supported by this module cover the most commonly used geophysical and magnetospheric
systems. The naming conventions can follow the names used by the popular IRBEM library, but for inertial systems
we use a more consistent, fine-grained naming convention that clarifies the different systems.

ECI2000 Earth-centered Inertial, J2000 epoch

ECIMOD Earth-centered Inertial, mean-of-date

ECITOD Earth-centered Inertial, true-of-date

GEI Geocentric Equatorial Inertial (IRBEM approximation of TOD)
GSM Geocentric Solar Magnetospheric

GSE Geocentric Solar Ecliptic

SM Solar Magnetic

MAG Geomagnetic Coordinate System (aka CDMAG)

GEO Geocentric geographic, aka Earth-centered Earth-fixed

GDZ Geodetic coordinates

By convention all systems are treated as natively Cartesian except geodetic (GDZ), which is defined in [altitude, latitude,
longitude] where altitude is relative to a reference ellipsoid. Similarly, distance units are assumed to be Earth radii (Re)
in all systems except GDZ, where altitude is given in km. Conversions to GDZ will output altitude in km regardless of
the input distance units and conversions from GDZ will output in Re regardless of input units. In all other cases, the
distance units will be preserved.

Changed in version 0.3.0.

The new CTrans backend was added, which includes support for the names ECI2000, ECIMOD, ECITOD,
and CDMAG. With the exception of ECIMOD, these can be used with the existing IRBEM backend, and will
be converted to their closest equivalents.

Changed in version 0.4.0.

80

Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

The default backend for coordinate transformations was changed from IRBEM to the CTrans-based
SpacePy backend.

4.3.1 Notes on differences between representations

IRBEM’s coordinate transformations are low-accuracy and were written for a library with a driving philosophy of
speed and robustness as priorities. The coordinate transformations are therefore approximate. Further, most of the
geophysical systems (e.g., GSE, SM) are derived from an inertial system. It is standard practice to use ECIMOD as this
system. However, IRBEM does not currently make ECIMOD available as one of its inertial systems. IRBEM’s default
inertial system (called GEI) is consistent with an approximation of ECITOD. Hence there will be small differences
between IRBEM’s transformations and those using SpacePy’s CTrans backend. Further sources of difference include:
IRBEM uses a low-order approximation to the sidereal time and other parameters; the calculation of the Earth-Sun
vector differs between the representations; the definitions of an Earth radius differ (SpacePy = 6378.137km; IRBEM
= 6371.2 km). SpacePy’s in-built representation is higher accuracy and is comprehensively tested, including tests for
consistency with other high accuracy packages such as LANLGeoMag and AstroPy. However, for use cases where the
required precision is of order 1 percent the output can be considered equivalent.

4.3.2 Setting options for coordinate transformation

The backend for coordinate transformations can be provided at instantiation of a Coords object using a keyword argu-
ment. However, for convenience and flexibility the options can be set at the module level. Configurable options include
the backend used (irbempy or SpacePy’s ctrans) and the reference ellipsoid (only configurable for the SpacePy back-
end). A warning will be raised if the backend is not set (either through the defaults or the keyword argument). The final
configurable option (itol) is the maximum separation, in seconds, for which the coordinate transformations will not be
recalculated. To force all transformations to use an exact transform for the time, set itol to zero. Values between 10s
and 60s are recommended for speed while also preserving accuracy, though different applications will require different
accuracies. For example, assuming this module has been imported as spc, to set the SpacePy backend as the default
and set itol to 5 seconds:

>>> spc.DEFAULTS.set_values(use_irbem=False, itol=5)

Authors: Steven Morley and Josef Koller Institution: Los ALamos National Laboratory Contact: smorley @lanl.gov

Copyright 2010-2016 Los Alamos National Security, LLC.

Classes

Coords(data, dtype, carsph, [units, ticks, ...) A class holding spatial coordinates and enabling trans-
formation between coordinate systems.

4.3.3 spacepy.coordinates.Coords

class spacepy.coordinates.Coords (data, dtype, carsph[, units, ticks, use_irbem])

A class holding spatial coordinates and enabling transformation between coordinate systems. Coordinates can
be stored as Cartesian or spherical and units are assumed to be Re (distance) and degrees (angle)

Note: Although other units may be specified and will be carried through, most functions throughout SpacePy
assume distances in Re and angles in degrees, regardless of specified units.

4.3. coordinates - module for coordinate transforms 81

mailto:smorley@lanl.gov

SpacePy Documentation, Release 0.4.0

By default, coordinate transforms are based on the SpacePy library’s high-accuracy coordinates backend. The
legacy transforms provided by the IRBEM library can also be used by setting the use_irbem flag to True; its
manual <http://svn.code.sf.net/p/irbem/code/trunk/manual/user_guide.html>"_ may prove useful. For a good
reference on heliospheric and magnetospheric coordinate systems, see Franz & Harper, “Heliospheric Coordinate
Systems”, Planet. Space Sci., 50, pp 217-233, 2002 (https://doi.org/10.1016/S0032-0633(01)00119-2).

Parameters

data
[list or ndarray, dim = (n,3)] coordinate points [X,Y,Z] or [rad, lat, lon]

dtype
[string] coordinate system; supported systems are defined in module-level documentation.
Common systems include GEO, GSE, GSM, SM, MAG, ECIMOD

carsph
[string] Cartesian or spherical, ‘car’ or ‘sph’

units
[list of strings, optional] standard are [‘Re’, ‘Re’, ‘Re’] or [‘Re’, ‘deg’, ‘deg’] depending on
the carsph content. See note.

ticks
[Ticktock instance, optional] used for coordinate transformations (see a.convert)

use_irbem
[bool] New in version 0.3.0.

Set to True to use IRBEM for coordinate transforms. Otherwise use SpacePy’s coordinate
transform library.

Returns

out
[Coords instance] instance with a.data, a.carsph, etc.

See also:

spacepy.coordinates.DEFAULTS
spacepy.time.Ticktock

Examples

>>> from spacepy import coordinates as coord

>>> cvals = coord.Coords([[1,2,4],[1,2,2]], 'GEO', 'car')

>>> cvals.x # returns all x coordinates

array([1, 11)

>>> from spacepy.time import Ticktock

>>> cvals.ticks = Ticktock(['2002-02-02T12:00:00', '2002-02-02T12:00:00'], 'IS0") #.
—add ticks

>>> newcoord = cvals.convert('GSM', 'sph')

>>> newcoord

append (other) Append another Coords instance to the current one

convert(returntype, returncarsph) Create a new Coords instance with new coordinate
types

from_skycoord(skycoord[, use_irbem]) Create a Coords instance from an Astropy SkyCoord
instance

82

Chapter 4. SpacePy Module Reference

http://svn.code.sf.net/p/irbem/code/trunk/manual/user_guide.html
https://doi.org/10.1016/S0032-0633(01)00119-2

SpacePy Documentation, Release 0.4.0

append (other)

Append another Coords instance to the current one
Parameters

other
[Coords instance] Coords instance to append

convert (returntype, returncarsph)

Create a new Coords instance with new coordinate types
Parameters

returntype
[string] coordinate system, see module level documentation for supported systems

returncarsph
[string] coordinate type, possible ‘car’ for Cartesian and ‘sph’ for spherical

Returns

out
[Coords object] Coords object in the new coordinate system

Examples

>>> from spacepy.coordinates import Coords
>>> y = Coords([[1,2,4],[1,2,2]], '"GEO', 'car')
>>> from spacepy.time import Ticktock
>>> y.ticks = Ticktock(['2002-02-02T12:00:00"', '2002-02-02T12:00:00'], 'IS0")
>>> x = y.convert('SM', 'car")
>>> X
Coords([[0.81134097 2.6493305 3.6500375]
[0.92060408 2.30678864 1.68262126]]), dtype=SM,car, units=['Re', 'Re', 'Re
~"]

classmethod from_skycoord (skycoord, use_irbem=None)
Create a Coords instance from an Astropy SkyCoord instance

Parameters

skycoord
[astropy.coordinates.SkyCoord] The coordinate to be converted

Returns

out
[Coords instance] The converted coordinate

4.3. coordinates - module for coordinate transforms 83

SpacePy Documentation, Release 0.4.0

Notes

This method requires Astropy to be installed.
This method uses the GEO coordinate frame as the common frame between the two libraries.

to_skycoord()

Create an Astropy SkyCoord instance based on this instance
Returns

out
[astropy.coordinates.SkyCoord] This coordinate as an Astropy SkyCoord

Notes

This method requires Astropy to be installed.

This method uses the GEO coordinate frame as the common frame between the two libraries.

Functions

car2sph(car_in) Coordinate transformation from Cartesian to spherical

sph2car(sph_in) Coordinate transformation from spherical to Cartesian

quaternionRotateVector(Qin, Vin[, ...]) Given quaternions and vectors, return the vectors rotated
by the quaternions

quaternionNormalize(Qin[, scalarPos]) Given an input quaternion (or array of quaternions), re-
turn the unit quaternion

quaternionMultiply(Qinl, Qin2[, scalarPos]) Given quaternions, return the product, i.e. Qin1*Qin2.

quaternionConjugate(Qin[, scalarPos]) Given an input quaternion (or array of quaternions), re-
turn the conjugate

quaternionFromMatrix(matrix[, scalarPos]) Given an input rotation matrix, return the equivalent
quaternion

quaternionToMatrix(Qin[, scalarPos, normalize]) Given an input quaternion, return the equivalent rotation
matrix.

4.3.4 spacepy.coordinates.car2sph

spacepy.coordinates.car2sph(car_in)

Coordinate transformation from Cartesian to spherical
Parameters

- car_in (list or ndarray)
[coordinate points in (n,3) shape with n coordinate points in] units of [Re, Re, Re] = [x,y,z]

Returns

- results (ndarray)
[values after conversion to spherical coordinates in] radius, latitude, longitude in units of
[Re, deg, deg]

See also:

sph2car

84 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Examples

>>> sph2car([1,45,0])
array([0.70710678, 0. , 0.707106781)

4.3.5 spacepy.coordinates.sph2car

spacepy.coordinates.sph2car (sph_in)

Coordinate transformation from spherical to Cartesian
Parameters

- sph_in (list or ndarray)
[coordinate points in (n,3) shape with n coordinate points in] units of [Re, deg, deg] = [r,
latitude, longitude]

Returns

- results (ndarray)
[values after conversion to cartesian coordinates x,y,z]

See also:

car2sph

Examples

>>> sph2car([1,45,45])
array([0.5 , 0.5 , 0.70710678]1)

4.3.6 spacepy.coordinates.quaternionRotateVector

spacepy.coordinates.quaternionRotateVector (Qin, Vin, scalarPos='last', normalize=True)
Given quaternions and vectors, return the vectors rotated by the quaternions
Parameters
Qin
[array_like] input quaternion to rotate by
Vin
[array-like] input vector to rotate

Returns

out
[array_like] rotated vector

See also:

quaternionMultiply

4.3. coordinates - module for coordinate transforms 85

SpacePy Documentation, Release 0.4.0

Examples

>>> import spacepy.coordinates

>>> import numpy as np

>>> vec = [1, 0, 0]

>>> quat_wijk = [np.sin(np.pi/4), 0, np.sin(np.pi/4), 0.0]

>>> quat_ijkw = [0.0, np.sin(np.pi/4), 0, np.sin(np.pi/4)]

>>> spacepy.coordinates.quaternionRotateVector(quat_ijkw, vec)
array([0., 0., -1.]1)

>>> spacepy.coordinates.quaternionRotateVector(

. quat_wijk, vec, scalarPos='first')

array([0., 0., -1.1)

4.3.7 spacepy.coordinates.quaternionNormalize

spacepy.coordinates.quaternionNormalize (Qin, scalarPos='"last")

Given an input quaternion (or array of quaternions), return the unit quaternion
Parameters

vec
[array_like] input quaternion to normalize

Returns

out
[array_like] normalized quaternion

Examples

>>> import spacepy.coordinates
>>> spacepy.coordinates.quaternionNormalize([0.707, 0, 0.707, 0.2])
array([0.69337122, 0. , 0.69337122, 0.19614462])

4.3.8 spacepy.coordinates.quaternionMultiply

spacepy.coordinates.quaternionMultiply(Qinl, Qin2, scalarPos='"last")
Given quaternions, return the product, i.e. Qin1*Qin2
Parameters
Qinl
[array_like] input quaternion, first position
Qin2
[array-like] input quaternion, second position
Returns

out
[array_like] quaternion product

86 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Examples

>>> import spacepy.coordinates

>>> import numpy as np

>>> vecX = [1, 0, 0] #shared X-axis

>>> vecZ = [0, O, 1] #unshared, but similar, Z-axis

>>> quat_eci_to_gsm = [-0.05395384, 0.07589845, -0.15172533, 0.98402634]

>>> quat_eci_to_gse = [0.20016056, 0.03445775, -0.16611386, 0.96496352]

>>> quat_gsm_to_eci = spacepy.coordinates.quaternionConjugate(

B quat_eci_to_gsm)

>>> quat_gse_to_gsm = spacepy.coordinates.quaternionMultiply(
quat_gsm_to_eci, quat_eci_to_gse)

>>> spacepy.coordinates.quaternionRotateVector(quat_gse_to_gsm, vecX)

array([1.00000000e+00, 1.06536725e-09, -1.16892107e-08])

>>> spacepy.coordinates.quaternionRotateVector(quat_gse_to_gsm, vecZ)

array([1.06802834e-08, -4.95669027e-01, 8.68511494e-01])

4.3.9 spacepy.coordinates.quaternionConjugate

spacepy.coordinates.quaternionConjugate(Qin, scalarPos='"last")

Given an input quaternion (or array of quaternions), return the conjugate
Parameters
Qin
[array_like] input quaternion to conjugate
Returns

out
[array_like] conjugate quaternion

See also:

quaternionMultiply

Examples

>>> import spacepy.coordinates

>>> spacepy.coordinates.quaternionConjugate(

.. [60.707, 0, 0.707, 0.2], scalarPos='last')
array([-0.707, -0. , -0.707, 0.2 1)

4.3. coordinates - module for coordinate transforms 87

SpacePy Documentation, Release 0.4.0

4.3.10 spacepy.coordinates.quaternionFromMatrix

spacepy.coordinates.quaternionFromMatrix (matrix, scalarPos="last")

Given an input rotation matrix, return the equivalent quaternion

The output has one fewer axis than the input (the last axis) and the shape is otherwise unchanged, allowing
multi-dimensional matrix input.

Parameters

matrix
[array_like] input rotation matrix or array of matrices

Returns

out
[array_like] Quaternions representing the same rotation as the input rotation matrices.

Other Parameters

scalarPos
[str] Location of the scalar component of the output quaternion, either ‘last’ (default) or
“first’.

Raises

NotImplementedError
for invalid values of scalarPos

ValueError
for inputs which are obviously not valid 3D rotation matrices or arrays thereof: if the size
doesn’t end in (3, 3), if the matrix is not orthogonal, or not a proper rotation.

See also:

quaternionToMatrix

Notes

New in version 0.2.2.

No attempt is made to resolve the sign ambiguity; in particular, conversions of very similar matrices may result
in equivalent quaternions with the opposite sign. This may have implications for interpolating a sequence of
quaternions.

The conversion of a rotation matrix to a quaternion suffers from some of the same disadvantages inherent to
rotation matrices, such as potential numerical instabilities. Working in quaternion space as much as possible is
recommended.

There are several algorithms; the most well-known algorithm for this conversion is Shepperd’s', although the
many “rediscoveries” indicate it is not sufficiently well-known. This function uses the method of Bar-Itzhack”
(version 3), which should be resistant to small errors in the rotation matrix. As a result, the input checking is
quite coarse and will likely accept many matrices that do not represent valid rotations.

Also potentially of interest, although not implemented here, is Sarabandi and Thomas>.

Isw. Shepperd, “Quaternion from rotation matrix,” Journal of Guidance and Control, Vol. 1, No. 3, pp. 223-224, 1978, doi:10.2514/3.55767b

2 1. Y. Bar-Itzhack, “New method for extracting the quaternion from a rotation matrix”, ATAA Journal of Guidance, Control and Dynamics, 23
(6): 1085-1087, doi:10.2514/2.4654

3'S. Sarabandi and F. Thomas, “Accurate Computation of Quaternions from Rotation Matrices”, In: Lenarcic J., Parenti-Castelli V. (eds) Advances
in Robot Kinematics 2018, Springer. doi:10.1007/978-3-319-93188-3_5

88 Chapter 4. SpacePy Module Reference

https://doi.org/10.2514/3.55767b
https://doi.org/10.2514/2.4654
https://doi.org/10.1007/978-3-319-93188-3_5

SpacePy Documentation, Release 0.4.0

References

Examples

>>> import spacepy.coordinates

>>> spacepy.coordinates.quaternionFromMatrix
[l 0., 0., 1.7,
[1., 0., 0.],

. [0., 1., 0.1D

array([0.5, 0.5, 0.5, 0.5])

4.3.11 spacepy.coordinates.quaternionToMatrix

spacepy.coordinates.quaternionToMatrix (Qin, scalarPos='"last', normalize=True)

Given an input quaternion, return the equivalent rotation matrix.

The output has one more axis than the input (the last axis) and the shape is otherwise unchanged, allowing

multi-dimensional quaternion input.
Parameters

Qin

[array_like] input quaternion or array of quaternions, must be normalized.
Returns

out
[array_like] Rotation matrix

Other Parameters

scalarPos
[str] Location of the scalar component of the input quaternion, either ‘last’ (default) or ‘first’.

normalize
[True] Normalize input quaternions before conversion (default). If False, raises error for

non-normalized.
Raises

NotImplementedError
for invalid values of scalarPos.

ValueError
for inputs which are not valid normalized quaternions or arrays thereof: if the size doesn’t
end in (4), if the quaternion is not normalized and normalize is False.

See also:

quaternionFromMatrix

4.3. coordinates - module for coordinate transforms

89

SpacePy Documentation, Release 0.4.0

Notes

New in version 0.2.2.

Implementation of the Euler—Rodrigues formula.

Examples

>>> import spacepy.coordinates
>>> spacepy.coordinates.quaternionToMatrix([0.5, 0.5, 0.5, 0.5])
array([[0., 0., 1.7,

[1., 0., 0.],

[6., 1., 0.]11)

4.4 ctrans - Coordinate transformation backend

CTrans: Module for backend coordinate transformations in SpacePy

This module is primarily intended to provide a backend for the standard Coords class rather than direct use, and the
interface is subject to change.

The CTrans class calculates all of the necessary information to convert between different coordinate systems at a single
time. By using Coords the handling of multiple times is built in, and the calling syntax is backwards compatible with
the legacy IRBEM-backed coordinate transforms.

Coordinate systems supported by this module can broadly be described by two categories. The first category is a broad
set of Earth-centered coordinate systems that are specified by astronomical parameters. If we consider the International
Celestial Reference Frame to be our starting point, then taking the origin as the center of the Earth instead of the solar
barycenter gives us the Geocentric Celestial Reference Frame (GCRF). All coordinate systems described here are right-
handed Cartesian systems, except geodetic.

Systems and their relationships:

¢ ECI2000: Earth-Centered Inertial, J2000 epoch
This system can be considered equivalent to the GCRF, to within 10s of milliarcseconds. The z-axis is
aligned with the mean celestial pole at the J2000 epoch. The x-axis is aligned with the mean equinox at the
J2000 epoch. The y-axis completes and lies in the plane of the celestial equator.

ECIMOD: Earth-Centered Inertial, Mean-of-Date
This system accounts for precession between the J2000 epoch and the date of interest: The coordinate
system is time-dependent. The system is defined similarly to ECI2000, but uses the mean equinox and
mean equator of the date of interest.

ECITOD: Earth-Centered Inertial, True-of-Date
This system builds on ECIMOD and accounts for the nutation (the short- period perturbations on the pre-
cession). This system is therefore considered to use the true equator and true equinox of date.

* TEME: Earth-Centered Inertial, True Equator Mean Equinox
This system is poorly defined in the literature, despite being used in the SGP4 orbital propagator (note that
multiple versions of SGP4 exist, see e.g. Vallado et al. 2006; ATAA 2006-6753-Rev2). The mean equinox
here is not the same as the mean equinox used in, e.g., ECIMOD, but lies along the true equator between the
origin of the Pseudo Earth Fixed and ECITOD frames. It is highly recommended that TEME coordinates
are converted to a standard system (e.g., ECI2000) before passing to other users or to different software.

GSE: Geocentric Solar Ecliptic
This system is not inertial. It is Earth-centered, with the x-axis pointing towards the Sun. The y-axis lies

90 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

in the mean ecliptic plane of date, pointing in the anti-orbit direction. The z-axis is parallel to the mean
ecliptic pole.

* GEO: Geocentric Geographic
This system is not inertial. It is Earth-Centered and Earth-Fixed (also called ECEF), so that the coordinates
of a point fixed on (or relative to) the surface of the Earth do not change. The x-axis lies in the Earth’s
equatorial plane (zero latitude) and intersects the Prime Meridian (zero longitude; Greenwich, UK). The
z-axis points to True North (which is roughly aligned with the instantaneous rotation axis).

* GDZ: Geodetic
This system is not inertial and is defined in terms of altitude above a reference ellipsoid, the geodetic
latitude, and geodetic longitude. Geodetic longitude is identical to GEO longitude. Both the altitude and
latitude depend on the ellipsoid used. While geodetic latitude is close to geographic latitude, they are not
the same. The default here is to use the WGS84 reference ellipsoid.

The remaining coordinate systems are also reference to Earth’s magnetic field. Different versions of these systems
exist, but the most common (and those given here) use a centered dipole axis.

* GSM: Geocentric Solar Magnetospheric
This system is similar to GSE, but is defined such that the centered dipole lies in the x-z plane. As in all of
these systems, z is positive northward. The y-axis is thus perpendicular to both the Sun-Earth line and the
centered dipole axis (of date, defined using the first 3 coefficients of the IGRF/DGRF). GSM is therefore a
rotation about the x-axis from the GSE system.

* SM: Solar Magnetic
The z-axis is aligned with the centered dipole axis of date (positive northward), and the y-axis is perpen-
dicular to both the Sun-Earth line and the dipole axis. As with GSE and GSM, y is positive in the anti-orbit
direction. The x-axis therefore is not aligned with the Sun-Earth line and SM is a rotation about the y-axis
from the GSM system.

* CDMAG: Geomagnetic
This is a geomagnetic analog of the GEO system. The z-axis is aligned with the centered dipole axis of
date. The y-axis is perpendicular to to both the dipole axis and True North, i.e., y is the cross product of
the z-axis of the GEO system with the dipole axis. The x-axis completes.

4.4.1 Classes

CTrans(ctime[, ephmodel, pnmodel, eop]) Coordinate transformation class for a single instance in
time
Ellipsoid([name, A, iFlat]) Ellipsoid definition class for geodetic coordinates

spacepy.ctrans.CTrans

class spacepy.ctrans.CTrans(ctime, ephmodel=None, pnmodel=None, eop=False)

Coordinate transformation class for a single instance in time

A general coordinate conversion routine, which takes a numpy array (Nx3) of Cartesian vectors along with the
names of the input and output coordinate systems and returns an array of the converted coordinates.

Parameters

ctime
[(spacepy.time.Ticktock, datetime, float, string)] Input time stamp. Must have one time only.
Accepted input formats

Returns

4.4. ctrans - Coordinate transformation backend 91

SpacePy Documentation, Release 0.4.0

out
[CTrans] instance with self.convert, etc.

Other Parameters

ephmodel
[str, optional] Select ephemerides model (e.g., for determining Sun direction). Currently
only ‘LGMDEFAULT"’ is supported, for consistency with LANLGeoMag implementation.

pnmodel
[str, optional] Select precession/nutation model set. Options are: ‘TAU82’ (default), and
‘TAUO00’.

eop
[bool, optional] Use Earth Orientation Parameters

See also:

spacepy.coordinates. Coords

Notes

New in version 0.3.0.

Methods

calcTimes([recalc]) Calculate time in systems required to set up coordi-
nate transforms

calcOrbitParams([recalc]) Calculate Earth orbit parameters needed for coordi-
nate transforms

calcCoreTransforms([recalc]) Calculate core coordinate transform matrices

calcMagTransforms([recalc]) Calculate geophysical coordinate systems

convert(vec, sys_in, sys_out[, defaults]) Convert an input vector between two coordinate sys-
tems

getEOP([useEOP]) Get/set Earth Orientation Parameters

gmst() Calculate Greenwich Mean Sidereal Time

calcTimes (recalc=Fualse, **kwargs)

Calculate time in systems required to set up coordinate transforms
Sets Julian Date and Julian centuries in UTC, TAI, UT]1, and TT systems.
Parameters

recalc
[bool, optional] If True, recalculate the times for coordinate transformation. Default is
False.

calcOrbitParams (recalc=False)

Calculate Earth orbit parameters needed for coordinate transforms

Calculates Earth’s orbital parameters required for defining coordinate system transformations, such as or-
bital eccentricity, the obliquity of the ecliptic, anomalies, and precession angles.

Parameters

92 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

recalc
[bool, optional] If True, recalculate the orbital parameters for coordinate transformation.
Default is False.
calcCoreTransforms (recalc=False)

Calculate core coordinate transform matrices

These coordinate systems do not require information about Earth’s magnetic field. The systems are: Earth-
Centered Inertial, J2000 (ECI2000) Earth-Centered Inertial, Mean-of-date (ECIMOD) Earth-Centered In-
ertial, True-of-date (ECITOD) Geocentric Solar Ecliptic (GSE) Geocentric Geographic (GEO)

Parameters

recalc
[bool, optional] If True, recalculate the core (non-magnetic) coordinate transformations.
Default is False.
calcMagTransforms (recalc=False)
Calculate geophysical coordinate systems

Calculate transforms for coordinate systems requiring magnetic field information.

These are: Solar Magnetic (SM) Geocentric Solar Magnetospheric (GSM) Geomagnetic, centered dipole
(CDMAG)

Parameters

recalc
[bool, optional] If True, recalculate the core (non-magnetic) coordinate transformations.
Default is False.
convert (vec, sys_in, sys_out, defaults=None)

Convert an input vector between two coordinate systems
Parameters

vec
[array-like] Input 3-vector (can be an array of input 3-vectors) to convert. E.g., for 2D input
the array must be like [[x1, y1, z1], [x2, y2, z2]]

sys_in
[str] String name for initial coordinate system. For supported systems, see module level
documentation.

sys_out
[str] String name for target coordinate system. For supported systems, see module level
documentation.

Other Parameters

defaults
[namedtuple or None] Named tuple containing default settings passed from Coordinates
module

getEOP (useEOP=Fualse)

Get/set Earth Orientation Parameters
Parameters

useEOP
[bool] If True, use Earth Orientation Parameters. Default False.

4.4.

ctrans - Coordinate transformation backend 93

SpacePy Documentation, Release 0.4.0

Notes

Currently Earth Orientation Parameters are all set to zero. Use is not yet supported.

gmst ()
Calculate Greenwich Mean Sidereal Time

Notes

The formulation used to calculate GMST is selected using the status of the ‘pnmodel’ variable in the CTrans
object attributes.

spacepy.ctrans.Ellipsoid

class spacepy.ctrans.Ellipsoid(name="WGS84', A=6378.137, iFlat=298.257223563)

Ellipsoid definition class for geodetic coordinates
Returns

out
[Ellipsoid] Ellipsoid instance storing all relevant paramters for geodetic conversion

Other Parameters

name
[str] Name for ellipsoid, stored in attrs of returned Ellipsoid instance. Default is “WGS84’

A
[float] Semi-major axis (equatorial radius) of ellipsoid in km. Default is 6378.137km
(WGS84_A)

iFlat

[float] Inverse flattening of ellipsoid. Default is WGS84 value of 298.257223563.

Notes

New in version 0.3.0.

4.4.2 Functions

convert_multitime(coords, ticks, sys_in, sys_out) Convert coordinates for N times, where N >= 1

gdz_to_geo(gdzvec], units, geoid]) Convert geodetic (GDZ) coordinates to geocentric geo-
graphic

geo_to_gdz(geovec[, units, geoid]) Convert geocentric geographic (cartesian GEO) to
geodetic (spherical GDZ)

geo_to_rlI(geovec|, units, geoid]) Calculate RLL from geocentric geographic (GEO) coor-
dinates

rl1l_to_geo(rllvec[, units, geoid]) Calculate geocentric geographic (GEO) from RLL coor-
dinates

94 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

spacepy.ctrans.convert_multitime

spacepy.ctrans.convert_multitime(coords, ticks, sys_in, sys_out, defaults=None, itol=None)

Convert coordinates for N times, where N >= 1
Parameters

coords
[array-like] Coordinates as Nx3 array. Cartesian assumed unless input system is geodetic.

ticks
[spacepy.time.Ticktock] Times for each element of coords. Must contain either N times or 1
time.

sys_in
[str] Name of input coordinate system.

Sys_out
[str] Name of output coordinate system.

Other Parameters

defaults
[namedtuple or None] Named tuple with parameters from coordinates module

itol
[float] Time tolerance, in seconds, for using a unique set of conversions. Defaultis 1. Supply-
ing a defaults namedtuple (i.e., if routine is called by spacepy.cooordinates.Coords.convert)
will override this value.

spacepy.ctrans.gdz_to_geo

spacepy.ctrans.gdz_to_geo(gdzvec, units="km', geoid={'1mE2": 0.9933056200098587, 'A’: 6378.137, 'A2'":
40680631.59076899, 'A2mB2'": 272331.60610755533, 'B': 6356.752314245179,
'B2': 40408299.98466144, 'E2': 0.0066943799901413165, 'E4':
4.481472345240445¢-05, 'EP2": 0.0067394967422764514, 'Flat':
0.0033528106647474805, 'iFlat': 298.257223563})

Convert geodetic (GDZ) coordinates to geocentric geographic
Parameters

gdzvec
[array-like] Nx3 array of geodetic altitude, latitude, longitude (in specified units)

Returns

out
[numpy.ndarray] Nx3 array of geocentric geographic X, y, z coordinates

Other Parameters

units
[str] Units for input geodetic altitude. Options are ‘km’ or ‘Re’. Defaultis ‘km’. Output units
will be the same as input units.

geoid

[spacepy.ctrans.Ellipsoid] Instance of a reference ellipsoid to use for geodetic conversion.
Default is WGS84.

4.4. ctrans - Coordinate transformation backend 95

SpacePy Documentation, Release 0.4.0

Notes

New in version 0.3.0.

spacepy.ctrans.geo_to_gdz

spacepy.ctrans.geo_to_gdz(geovec, units="km', geoid={'ImE2': 0.9933056200098587, 'A": 6378.137, 'A2":
40680631.59076899, 'A2mB2': 272331.60610755533, 'B': 6356.752314245179,
'‘B2': 40408299.98466144, 'E2': 0.0066943799901413165, 'E4'":
4.481472345240445¢-05, 'EP2": 0.0067394967422764514, 'Flat':
0.0033528106647474805, 'iFlat': 298.257223563})

Convert geocentric geographic (cartesian GEO) to geodetic (spherical GDZ)
Uses Heikkinen’s exact solution', see Zhu et al. [#Zhu] for details.
Parameters

geovec
[array-like] Nx3 array (or array-like) of geocentric geographic [Xx, y, z] coordinates

Returns

out
[numpy.ndarray] Nx3 array of geodetic altitude, latitude, and longitude

Notes

New in version 0.3.0.

References
spacepy.ctrans.geo_to_rll

spacepy.ctrans.geo_to_rll (geovec, units="km', geoid={'ImE2': 0.9933056200098587, 'A": 6378.137, 'A2":
40680631.59076899, 'A2mB2': 272331.60610755533, 'B': 6356.752314245179,
'‘B2': 40408299.98466144, 'E2': 0.0066943799901413165, 'E4':
4.481472345240445¢-05, 'EP2": 0.0067394967422764514, 'Flat':
0.0033528106647474805, 'iFlat': 298.257223563})

Calculate RLL from geocentric geographic (GEO) coordinates
Parameters

geovec
[array-like] Nx3 array of geographic radius, latitude, longitude (in specified units)

Returns

rllvec

[numpy.ndarray] Nx3 array of [distance from Earth’s center, geodetic latitude, geodetic lon-
gitude]

Other Parameters

! Heikkinen, M., “Geschlossene formeln zur berechnung raumlicher geodatischer koordinaten aus rechtwinkligen koordinaten”, Z. Vermess.,
vol. 107, pp. 207-211, 1982.

96 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

units
[str] Units for input geodetic altitude. Options are ‘km’ or ‘Re’. Defaultis ‘km’. Output units
will be the same as input units.

geoid
[spacepy.ctrans.Ellipsoid] Instance of a reference ellipsoid to use for geodetic conversion.
Default is WGS84.

Notes

New in version 0.3.0.

spacepy.ctrans.rll_to_geo

spacepy.ctrans.rll_to_geo(rilvec, units="'km', geoid={'ImE2": 0.9933056200098587, 'A': 6378.137, 'A2'":
40680631.59076899, 'A2mB2': 272331.60610755533, 'B': 6356.752314245179,
'B2': 40408299.98466144, 'E2': 0.0066943799901413165, 'E4':
4.481472345240445e-05, 'EP2": 0.0067394967422764514, 'Flat':
0.0033528106647474805, 'iFlat': 298.257223563})

Calculate geocentric geographic (GEO) from RLL coordinates
Parameters

rllvec
[array-like] Nx3 array of geocentric radius, geodetic latitude, geodetic longitude (in specified
units)

Returns

geoarr
[numpy.ndarray] Nx3 array of [altitude, geodetic latitude, geodetic longitude]

Other Parameters

units
[str] Units for input geocentric radii. Options are ‘km’ or ‘Re’. Default is ‘km’. Output units
will be the same as input units.

geoid
[spacepy.ctrans.Ellipsoid] Instance of a reference ellipsoid to use for geodetic conversion.
Default is WGS84.

Notes

New in version 0.3.0.

4.4. ctrans - Coordinate transformation backend 97

SpacePy Documentation, Release 0.4.0

4.4.3 Submodules

iau80n TAU 1980 Nutation model

spacepy.ctrans.iau80n

TAU 1980 Nutation model

Functions

nutation(TT_JC, const[, nTerms]) Calculate dPsi and dEps for TAU8O nutation model

spacepy.ctrans.iau80n.nutation

spacepy.ctrans.iau8®n.nutation(77_JC, const, nTerms=106)
Calculate dPsi and dEps for TAU8O nutation model

Data
coeff80 IAU 1980 nutation coefficients
98 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

spacepy.ctrans.iau80n.coeff80

4.4. ctrans - Coordinate transformation backend 99

SpacePy Documentation, Release 0.4.0

spacepy.ctrans.iau80n.coeff80 = array([[0.00000e+00, 0.00000e+00, 0.00000e+00,
.00000e+00, 1.00000e+00, -1.71996e+05, -1.74200e+02, 9.20250e+04, 8.90000e+00], [
.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 2.00000e+00, 2.06200e+03,
.00000e-01, -8.95000e+02, 5.00000e-01], [-2.00000e+00, 0.00000e+00, 2.00000e+00,
.00000e+00, 1.00000e+00, 4.60000e+01, 0.00000e+00, -2.40000e+01, 0.00000e+00], [
.00000e+00, 0.00000e+00, -2.00000e+00, 0.00000e+00, 0.00000e+00, 1.10000e+01,
.00000e+00, 0.00000e+00, 0.00000e+00], [-2.00000e+00, 0.00000e+00, 2.00000e+00,
.00000e+00, 2.00000e+00, -3.00000e+00, 0.00000e+00, 1.00000e+00, 0.00000e+00], [
.00000e+00, -1.00000e+00, 0.00000e+00, -1.00000e+00, 0.00000e+00, -3.00000e+00,
.00000e+00, 0.00000e+00, 0.00000e+00]1, [0.00000e+00, -2.00000e+00, 2.00000e+00,
-2.00000e+00, 1.00000e+00, -2.00000e+00, 0.00000e+00, 1.00000e+00, 0.00000e+00]1, [
2.00000e+00, 0.00000e+00, -2.00000e+00, 0.00000e+00, 1.00000e+00, 1.00000e+00,
0.00000e+00, 0.00000e+00, 0.00000e+00], [0.00000e+00, 0.00000e+00, 2.00000e+00,
-2.00000e+00, 2.00000e+00, -1.31870e+04, -1.60000e+00, 5.73600e+03, -3.10000e+00], [
0.00000e+00, 1.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 1.42600e+03,
-3.40000e+00, 5.40000e+01, -1.00000e-01], [0.00000e+00, 1.00000e+00, 2.00000e+00,
-2.00000e+00, 2.00000e+00, -5.17000e+02, 1.20000e+00, 2.24000e+02, -6.00000e-01], [
0.00000e+00, -1.00000e+00, 2.00000e+00, -2.00000e+00, 2.00000e+00, 2.17000e+02,
-5.00000e-01, -9.50000e+01, 3.00000e-01], [0.00000e+00, 0.00000e+00, 2.00000e+00,
-2.00000e+00, 1.00000e+00, 1.29000e+02, 1.00000e-01, -7.00000e+01, 0.00000e+00], [
2.00000e+00, 0.00000e+00, 0.00000e+00, -2.00000e+00, 0.00000e+00, 4.80000e+01,
0.00000e+00, 1.00000e+00, 0.00000e+00], [0.00000e+00, 0.00000e+00, 2.00000e+00),
-2.00000e+00, 0.00000e+00, -2.20000e+01, 0.00000e+00, 0.00000e+00, 0.00000e+00], [
0.00000e+00, 2.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 1.70000e+01,
-1.00000e-01, 0.00000e+00, 0.00000e+00], [0.00000e+00, 1.00000e+00, 0.00000e+00,
0.00000e+00, 1.00000e+00, -1.50000e+01, 0.00000e+00, 9.00000e+00, 0.00000e+00]1, [
0.00000e+00, 2.00000e+00, 2.00000e+00, -2.00000e+00, 2.00000e+00, -1.60000e+01,
1.00000e-01, 7.00000e+00, 0.00000e+00], [0.00000e+00, -1.00000e+00, 0.00000e+00,
0.00000e+00, 1.00000e+00, -1.20000e+01, 0.00000e+00, 6.00000e+00, 0.00000e+00],
[-2.00000e+00, 0.00000e+00, 0.00000e+00, 2.00000e+00, 1.00000e+00, -6.00000e+00,
0.00000e+00, 3.00000e+00, 0.00000e+00], [0.00000e+00, -1.00000e+00, 2.00000e+00,
-2.00000e+00, 1.00000e+00, -5.00000e+00, 0.00000e+00, 3.00000e+00, 0.00000e+00]1, [
2.00000e+00, 0.00000e+00, 0.00000e+00, -2.00000e+00, 1.00000e+00, 4.00000e+00,
0.00000e+00, -2.00000e+00, 0.00000e+00], [0.00000e+00, 1.00000e+00, 2.00000e+00,
-2.00000e+00, 1.00000e+00, 4.00000e+00, 0.00000e+00, -2.00000e+00, 0.00000e+00]1, [
1.00000e+00, 0.00000e+00, 0.00000e+00, -1.00000e+00, 0.00000e+00, -4.00000e+00,
0.00000e+00, 0.00000e+00, 0.00000e+00], [2.00000e+00, 1.00000e+00, 0.00000e+00),
-2.00000e+00, 0.00000e+00, 1.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00], [

e Rr@de v e

0.00000e+00, 0.00000e+00, -2.00000e+00, 2.00000e+00, 1.00000e+00, 1.00000e+00,
0.00000e+00, 0.00000e+00, 0.00000e+00], [0.00000e+00, 1.00000e+00, -2.00000e+00,
2.00000e+00, 0.00000e+00, -1.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00], [
0.00000e+00, 1.00000e+00, 0.00000e+00, 0.00000e+00, 2.00000e+00, 1.00000e+00,
0.00000e+00, 0.00000e+00, 0.00000e+00], [-1.00000e+00, 0.00000e+00, 0.00000e+00,
1.00000e+00, 1.00000e+00, 1.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00]1, [
0.00000e+00, 1.00000e+00, 2.00000e+00, -2.00000e+00, 0.00000e+00, -1.00000e+00,
0.00000e+00, 0.00000e+00, 0.00000e+00], [0.00000e+00, 0.00000e+00, 2.00000e+00,
0.00000e+00, 2.00000e+00, -2.27400e+03, -2.00000e-01, 9.77000e+02, -5.00000e-01], [
1.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 7.12000e+02,
1.00000e-01, -7.00000e+00, 0.00000e+00]1, [0.00000e+00, 0.00000e+00, 2.00000e+00,
0.00000e+00, 1.00000e+00, -3.86000e+02, -4.00000e-01, 2.00000e+02, 0.00000e+00], [
1.00000e+00, 0.00000e+00, 2.00000e+00, 0.00000e+00, 2.00000e+00, -3.01000e+02,
0.00000e+00, 1.29000e+02, -1.00000e-01]1, [1.00000e+00, 0.00000e+00, 0.00000e+00,

-2.00000e+00, 0.00000e+00, -1.58000e+02, 0.00000e+00, -1.00000e+00, 0.00000e+00],
[-1.00000e+00, 0.00000e+00, 2.00000e+00, 0.00000e+00, 2.00000e+00, 1.23000e+02,
0.00000e+00, -5.30000e+01, 0. @00@@e+0@], [0.00000e+00, 0 @00@@e+00 0 @@@0@e+00

1000@@0e+@0 0 000@@e+@@ 0 0@000e+@0 0. 00@0@e+@0 1. mm %pammqule Reference
1.00000e-01, -3.30000e+01, 0.00000e+00], [-1.00000e+00, 0.00000e+00, 0.00000e+00,
0.00000e+00, 1.00000e+00, -5.80000e+01, -1.00000e-01, 3.20000e+01, 0.00000e+00],
[-1.00000e+00, 0.00000e+00, 2.00000e+00, 2.00000e+00, 2.00000e+00, -5.90000e+01,

SpacePy Documentation, Release 0.4.0

TAU 1980 nutation coeflicients

4.5 datamanager - easy access to and manipulation of data

The datamanager classes and functions are useful for locating the correct data file for a particular day and manipulating

data and subsets in a generic way.
Authors: Jon Niehof

Institution: University of New Hampshire
Contact: Jonathan.Niehof @unh.edu
Copyright 2015-2020 contributors

4.5.1 About datamanager

4.5.2 Examples

Examples go here

Classes

DataManager(directories, file_fmt[, ...])

THIS CLASS IS NOT YET COMPLETE, doesn't do
much useful.

Functions

apply_index(data, idx)

Apply an array of indices to data.

array_interleave(arrayl, array2, idx)

Create an array containing all elements of both arrayl
and array2

axis_index(shape[, axis])

Returns array of indices along axis, for all other axes

flatten_idx(idx[, axis])

Convert multidimensional index into index on flattened
array.

insert_f£ill(times, data[, fillval, tol, ...])

Populate gaps in data with fill.

rebin(data, bindata, bins[, axis, bintype, ...])

Rebin one axis of input data based on values of another
array

rev_index(idx[, axis])

From an index, return an index that reverses the action
of that index

values_to_steps(arrayl[, axis])

Transform values along an axis to their order in a unique
sequence.

class spacepy.datamanager.DataManager (directories, file_fmt, descend=False, period=None)
THIS CLASS IS NOT YET COMPLETE, doesn’t do much useful.

Will have to do something that allows the config file to specify regex and other things, and then just the directory

to be changed (since regex, etc.

Parameters

4.5. datamanager - easy access to and manipulation of data 101

mailto:Jonathan.Niehof@unh.edu

SpacePy Documentation, Release 0.4.0

directories
[list] A list of directories that might contain the data

file_fmt
[string] Regular expression that matches the files desired. Will also recognize strftime param-
eters %ow %od Jom %oy %Y %H %M %s %j %U %W, all zero-pad. https://docs.python.org/2/
library/datetime.html#strftime-strptime-behavior Can have subdirectory reference, but sep-
arator should be unix-style, with no leading slash.

period
[string] Size of file; can be a number followed by one of d, m, y, H, M, s. Anything else
is assumed to be “irregular” and files treated as if there are neither gaps nor overlaps in the
sequence. If not specified, will be assumed to match one count of the smallest unit in the
format string.
files_matching (dr=None)
Return all the files matching this file format

Parameters

dt
[datetime] Optional; if specified, match only files for this date.

Returns

out
[generator] Iterates over every file matching the format specified at creation. Note this is

specified in native path format!
get_£filename (dt)
Returns the filename corresponding to a particular point in time

spacepy.datamanager.apply_index (data, idx)
Apply an array of indices to data.

Most useful in dealing with the output from numpy . argsort (), and best explained by the example.
Parameters

data
[array] Input data, at least two dimensional. The Oth dimension is treated as a “time” or
“record” dimension.

idx
[sequence] 2D index to apply to the import data. The Oth dimension must be the same size
as data’s Oth dimension. Dimension 1 must be the same size as one other dimension in data
(the first match found is used); this is referred to as the “index dimension.”

Returns

data
[sequence] View of data, with index applied. For each index of the Oth dimension, the values

along the index dimension are obtained by applying the value of idx at the same index in
the Oth dimension. This is repeated across any other dimensions in data.

Warning: No guarantee is made whether the returned data is a copy of the input data.
Modifying values in the input may change the values of the input. Call copy () if a copy
is required.

102 Chapter 4. SpacePy Module Reference

https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
https://numpy.org/doc/stable/reference/generated/numpy.argsort.html#numpy.argsort
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.copy.html#numpy.ndarray.copy

SpacePy Documentation, Release 0.4.0

Raises

ValueError
[if can’t match the shape of data and indices]

Examples

Assume flux is a 3D array of fluxes, with a value for each of time, pitch angle, and energy. Assume energy is
not necessarily constant in time, nor is ordered in the energy dimension. If energy is a 2D array of the energies
as a function of energy step for each time, then the following will sort the flux at each time and pitch angle in
energy order.

>>> idx = numpy.argsort(energy, axis=1)
>>> flux_sorted = spacepy.datamanager.apply_index(flux, idx)

spacepy.datamanager.array_interleave (arrayl, array2, idx)

Create an array containing all elements of both array1 and array2

idx is an index on the output array which indicates which elements will be populated from arrayl, i.e.,
out[idx] == arrayl (in order.) The other elements of out will be filled, in order, from array2.

Parameters

arrayl
[array] Input data.

array2
[array] Input data. Must have same number of dimensions as arrayl, and all dimensions
except the zeroth must also have the same length.
idx
[array] A 1D array of indices on the zeroth dimension of the output array. Must have the
same length as the zeroth dimension of array1l.
Returns

out
[array] All elements from arrayl and array2, interleaved according to idx.

Examples

>>> import numpy

>>> import spacepy.datamanager

>>> a = numpy.array([10, 20, 30])

>>> b = numpy.array([1, 2])

>>> idx = numpy.array([1l, 2, 4])

>>> spacepy.datamanager.array_interleave(a, b, idx)
array([1, 10, 20, 2, 30])

spacepy.datamanager.axis_index (shape, axis=- 1)
Returns array of indices along axis, for all other axes

Parameters

shape
[tuple] Shape of the output array

4.5. datamanager - easy access to and manipulation of data 103

SpacePy Documentation, Release 0.4.0

Returns
idx
[array] An array of indices. The value of each element is that element’s index along axis.

Other Parameters

axis
[int] Axis along which to return indices, defaults to the last axis.

See also:

numpy .mgrid
This function is a special case

Examples

For a shape of (i, j, k, 1) and axis =-1, idx[i, j, k, :] = range(l) forall i, j, k.

Similarly, for the same shape and axis = 1,idx[i, :, k, 1] = range(j) forall i,k, 1.

>>> import numpy
>>> import spacepy.datamanager
>>> spacepy.datamanager.axis_index((5, 3))

array([[0®, 1, 2],
[0, 1, 2],
[e, 1, 21,
[e, 1, 21,
[0, 1, 21D

>>> spacepy.datamanager.axis_index((5, 3), 0)
array([[0, 0, 0],

[1, 1, 17,
[2, 2, 2],
[3, 3, 31,
(4, 4, 41D

spacepy.datamanager. flatten_idx (idx, axis=- 1)

Convert multidimensional index into index on flattened array.

Convert a multidimensional index, that is values along a particular axis, so that it can derefence the flattened
array properly. Note this is not the same as ravel_multi_index().

Parameters
idx
[array] Input index, i.e. a list of elements along a particular axis, in the style of argsort ().
Returns

flat
[array] A 1D array of indices suitable for indexing the flat version of the array

Other Parameters

axis
[int] Axis along which idx operates, defaults to the last axis.

See also:

apply_index

104 Chapter 4. SpacePy Module Reference

https://numpy.org/doc/stable/reference/generated/numpy.mgrid.html#numpy.mgrid
https://numpy.org/doc/stable/reference/generated/numpy.ravel_multi_index.html#numpy.ravel_multi_index
https://numpy.org/doc/stable/reference/generated/numpy.argsort.html#numpy.argsort

SpacePy Documentation, Release 0.4.0

Examples

>>> import numpy

>>> import spacepy.datamanager

>>> data = numpy.array([[3, 1, 2], [3, 2, 111)

>>> idx = numpy.argsort(data, -1)

>>> idx_flat = spacepy.datamanager.flatten_idx(idx)
>>> data.ravel() #flat array

array([3, 1, 2, 3, 2, 1)

>>> idx_flat #indices into the flat array

array([1, 2, 0, 5, 4, 3])

>>> data.ravel()[idx_flat] #index applied to the flat array
array([1, 2, 3, 1, 2, 31)

spacepy.datamanager.insert_f£ill (times, data, fillval=nan, tol=1.5, absolute=None, doTimes=True)
Populate gaps in data with fill.
Continuous data are often treated differently from discontinuous data, e.g., matplotlib will draw lines connecting
data points but break the line at fill. Often data will be irregularly sampled but also contain large gaps that are not

explicitly marked as fill. This function adds a single record of explicit fill to each gap, defined as places where
the spacing between input times is a certain multiple of the median spacing.

Parameters

times
[sequence] Values representing when the data were taken. Must be one-dimensional, i.e.,
each value must be scalar. Not modified

data
[sequence] Input data.

Returns

times, data
[tuple of sequence] Copies of input times and data, fill added in gaps (doTimes True)

data
[sequence] Copy of input data, with fill added in gaps (doTimes False)

Other Parameters

fillval

Fill value, same type as data. Default is numpy.nan. If scalar, will be repeated to match
the shape of data (minus the time axis).

Note: The default value of nan will not produce good results with integer input.

tol
[float] Tolerance. A single fill value is inserted between adjacent values where the spacing
in times is strictly greater than tol times the median of the spacing across all times. The
inserted time for fill is halfway between the time on each side. (Default 1.5)

absolute
An absolute value for maximum spacing, of a type that would result from a difference in
times. If specified, tol is ignored and any gap strictly larger than absolute will have fill
inserted.

4.5. datamanager - easy access to and manipulation of data 105

SpacePy Documentation, Release 0.4.0

doTimes
[boolean] If True (default), will return a tuple of the times (with new values inserted for the
fill records) and the data with new fill values. If False, will only return the data — useful for
applying fill to multiple arrays of data on the same timebase.

Raises

ValueError
[if can’t identify the time axis of data] Try using numpy.rollaxis() to put the time axis
first in both data and times.

Examples

This example shows simple hourly data with a gap, populated with fill. Note that only a single fill value is
inserted, to break the sequence of valid data rather than trying to match the existing cadence.

>>> import datetime
>>> import numpy
>>> import spacepy.datamanager

>>> t = [datetime.datetime(2012, 1, 1, 0),
datetime.datetime(2012, 1, 1, 1),
datetime.datetime (2012, 1, 1, 2),
datetime.datetime(2012, 1, 1, 5),
datetime.datetime (2012, 1, 1, 6)]

>>> temp = [30.0, 28, 27, 32, 35]
>>> filled_t, filled_temp = spacepy.
>>> filled_t

datamanager.insert_fill(t, temp)

array([datetime.datetime(2012, 1, 1, 0, 0),
datetime.datetime(2012, 1, 1, 1, 0),
datetime.datetime(2012, 1, 1, 2, 0),
datetime.datetime(2012, 1, 1, 3, 30),
datetime.datetime(2012, 1, 1, 5, 0),
datetime.datetime(2012, 1, 1, 6, 0)], dtype=object)

>>> filled_temp

array([30., 28., 27., nan, 32. 35.1)

This example plots “gappy” data with and without explicit fill values.

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

import numpy

X

y
xf,

fig

numpy . sin(x)
= plt.figure(Q)
ax0.plot(x, y)

axl.plot(xf, yf)
plt.show()

import spacepy.datamanager
numpy . append (numpy . arange (0, 6, 0.1), numpy.arange(12, 18, 0.1))

ax0®0 = fig.add_subplot(211)

axl = fig.add_subplot(212)

import matplotlib.pyplot as plt

yf = spacepy.datamanager.insert_£fill(x, y)

spacepy .datamanager.rebin(data, bindata, bins, axis=- 1, bintype="mean’, weights=None, clip=False,
bindatadelta=None)

Rebin one axis of input data based on values of another array

106

Chapter 4. SpacePy Module Reference

https://numpy.org/doc/stable/reference/generated/numpy.rollaxis.html#numpy.rollaxis

SpacePy Documentation, Release 0.4.0

1.0 A

0.5

0.0 A

—0.5 A

—1.0 A

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

1.0 A

0.5 1

0.0

—0.5 A

—1.0 A

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

. datamanager - easy access to and manipulation of data 107

SpacePy Documentation, Release 0.4.0

This is clearest with an example. Consider a flux as a function of time, energy, and the look direction of a detector
(could be multiple detectors, or spin sectors.) The flux is then 3-D, dimensioned Nt x Ne x NI. Now consider
that each look direction has an associated pitch angle that is a function of time and thus stored in an array Nt x
NI. Then this function will redimension the flux into pitch angle bins (rather than tags.)

So consider the PA bins to have dimension Np + 1 (because it represents the edges, the number of bins is one
less than the dimension.) Then the output will be dimensioned Nt x Ne x Np.

bindata must be same or lesser dimensionality than data. Any axes which are present must be either of size
1, or the same size as data. So for data 100x5x20, bindata may be 100x5x20, or 100, or 100x1x20, but not
100x20x5. This function will insert axes of size 1 as needed to match dimensionality.

Parameters

data
[ndarray] N-dimensional array of data to be rebinned. nan are ignored.

bindata
[ndarray] M-dimensional (M<=N) array of values to be compared to the bins.

bins
[ndarray] 1-D array of bin edges. Output dimension will be this size minus 1. Any values
in bindata that don’t fall in the bins will be omitted from the output. (See clip to change
this behavior).

Returns

ndarray
data with one axis redimensioned, from its original dimension to the bin dimension.

Other Parameters

axis
[int] Axis of data to rebin. This axis will disappear in the output and be replaced with an
axis of the size of bins less one. (Default -1, last axis)

bintype
[str]

Type of rebinning to perform:

mean
Return the mean of all values in the bin (default)

unc
Return the quadrature mean of all values in the bin, for propagating uncertainty

count
Return the count of values that fall in each bin.

weights
[ndarray] Relative weight of each sample in bindata. Must be same shape as bindata.
Purely relative, i.e. the output is only affected based on the total of weights if bintype is
count. Note if weights is specified, count returns the sum of the weights, not the count
of individual samples.

clip
[boolean] Clip data to the bins. If true, all input data will be assigned a bin and data outside
the range of the bin edges will be assigned to the extreme bins. If false (default), input data
outside the bin ranges will be ignored.

108

Chapter 4. SpacePy Module Reference

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

SpacePy Documentation, Release 0.4.0

bindatadelta
[ndarray] By default, the bindata are treated as point values. If bindatadelta is spec-
ified, it is treated as the half-width of the bindata, allowing a single input value to be split
between output bins. Must be scalar, or same shape as bindata. Note that input values are
not weighted by the bin width, but by number of input values or by weights. (Combining
weights with bindatadelta is not comprehensively tested.)

Examples

Consider a particle flux distribution that’s a function of energy and pitch angle. For simplicity, assume that the
energy dependence is a simple power law and the pitch angle dependence is Gaussian, with a peak whose position
oscillates in time over a period of about one hour. This is fairly non-physical but illustrative.

First making the relevant imports:

>>> import matplotlib.pyplot
>>> import numpy

>>> import spacepy.datamanager
>>> import spacepy.plot

The functional form of the flux is then:

>>> def j(e, t, a):
return e ** -2 * (1 / (90 * numpy.sqrt(2 * numpy.pi))) \
* numpy . exp (
-0.5 * ((a - 90 + 90 * numpy.sin(t / 573.)) / 90.) ** 2)

Ilustrating the flux at one energy as a function of pitch angle:

>>> times = numpy.arange(0., 7200, 5)

>>> alpha = numpy.arange(0, 181., 2)

Add a dimension so the flux is a 2D array

>>> flux = j(1., numpy.expand_dims(times, 1),

cee numpy . expand_dims (alpha, 0))

>>> spacepy.plot.simpleSpectrogram(times, alpha, flux, cb=False,
B ylog=False)

>>> matplotlib.pyplot.ylabel('Pitch angle (deg)')

>>> matplotlib.pyplot.xlabel('Time (sec)')

>>> matplotlib.pyplot.title('Flux at 1 MeV')

Or the flux at one pitch angle as a function of energy:

>>> energies = numpy.logspace(0, 3, 50)

>>> flux = j(numpy.expand_dims(energies, 0),

- numpy . expand_dims(times, 1), 90.)

>>> spacepy.plot.simpleSpectrogram(times, energies, flux, cb=False)
>>> matplotlib.pyplot.ylabel('Energy (MeV)')

>>> matplotlib.pyplot.xlabel('Time (sec)')

>>> matplotlib.pyplot.title('Flux at 90 degrees')

The measurement is usually not aligned with a pitch angle grid, and the detector pointing in pitch angle space
usually varies with time. Taking a very simple case of eight detectors that sweep through pitch angle space in an
organized fashion at ten degrees per minute, the measured pitch angle as a function of detector and time is:

4.5. datamanager - easy access to and manipulation of data 109

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

SpacePy Documentation, Release 0.4.0

Flux at 1 MeV

7000

6000

5000

2000 3000 4000

1000

(bap) a1bue ysud

Time (sec)

Chapter 4. SpacePy Module Reference

110

SpacePy Documentation, Release 0.4.0

Flux at 90 degrees

103

102
S
(0]
=
>
D
(O]
C
[N]
10t
100 T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000
Time (sec)

4.5. datamanager - easy access to and manipulation of data 111

SpacePy Documentation, Release 0.4.0

>>> def pa(d, t):
. return (d * 22.5 + t * (2 * (d % 2) - 1)) % 180
>>> lines = matplotlib.pyplot.plot(
times, pa(numpy.arange(8).reshape(l, -1), times.reshape(-1, 1)),
- marker="'o', ms=1, linestyle='")
>>> matplotlib.pyplot.legend(lines,
- ['Detector {}'.format(i) for i in range(4)], loc='best')
>>> matplotlib.pyplot.xlabel('Time (sec)')
>>> matplotlib.pyplot.ylabel('Pitch angle (deg)')
>>> matplotlib.pyplot.title('Measured pitch angle by detector')

Measured pitch angle by detector

- =

|
i

Pitch angle (deg

Time (sec)

Assuming a coarser measurement in time and energy than used to illustrate the distribution above, the measured
flux as a function of time, detector, and energy is constructed:

>>> times = numpy.arange(0., 7200, 300) #5 min cadence
>>> alpha = pa(numpy.arange(8).reshape(l, -1), times.reshape(-1, 1))
>>> energies = numpy.logspace(0®, 3, 10) #10 energy channels (3/decade)
Every dimension (t, detector, e) gets its own numpy axis
>>> flux = j(numpy.reshape(energies, (1, 1, -1)),
numpy .reshape(times, (-1, 1, 1)),
numpy . expand_dims(alpha, -1))
>>> flux.shape
(24, 8, 10

112

Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

The flux at an energy as a function of detector is not very useful:

>>> spacepy.plot.simpleSpectrogram(times, numpy.arange(8),

- flux[..., 0], cb=False, ylog=False)
>>> matplotlib.pyplot.ylabel('Detector')

>>> matplotlib.pyplot.xlabel('Time (sec)')

>>> matplotlib.pyplot.title('Flux at 1 MeV')

Flux at 1 MeV

Detector

1_ I

0 1000 2000 3000 4000 5000 6000 7000
Time (sec)

As a function of energy for one detector, the energy dependence is apparent but time and pitch angle effects are
confounded:

>>> spacepy.plot.simpleSpectrogram(times, energies, flux[:, O, :],
I cb=False)

>>> matplotlib.pyplot.ylabel('Energy (MeV)')

>>> matplotlib.pyplot.xlabel('Time (sec)')

>>> matplotlib.pyplot.title('Flux in detector 0')

What is needed is to recover the array of flux dimensioned by time, pitch angle, and energy, with appropriate
pitch angle bins. The assumption is that the pitch angle as a function of time and detector is measured and thus
the alpha array is available. Using that array, rebin can change flux from time, detector, energy bins to time,
pitch angle, energy bins. The axis 1 changes from a detector dimension to pitch angle:

>>> pa_bins = numpy.arange(®, 181, 36)
>>> flux_by_pa = spacepy.datamanager.rebin(

(continues on next page)

4.5. datamanager - easy access to and manipulation of data 113

SpacePy Documentation, Release 0.4.0

Flux in detector O

103
102
S
(0]
=
>
D
(O]
C
[N]
10t
100 T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000
Time (sec)

114 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

(continued from previous page)

flux, alpha, pa_bins, axis=1)
>>> flux_by_pa.shape
(24, 6, 10)

This can then be visualized. The pitch angle coverage is not perfect, but the original shape of the distribution is
apparent, and further analysis can be performed on the regular pitch angle grid:

>>> spacepy.plot.simpleSpectrogram(times, pa_bins, flux_by_pal..., 0],
cs cb=False, ylog=False)

>>> matplotlib.pyplot.ylabel('Pitch angle (deg)')

>>> matplotlib.pyplot.xlabel('Time (sec)')

>>> matplotlib.pyplot.title('Flux at 1MeV')

Flux at 1MeV
180 -
160 A
140 -
— 120 A
(@)]
(V]
=
o 100 7
©
C
© 80 .
e
S
% 60
40 ~
20
0 T T T
0 1000 2000 3000 4000 5000 6000 7000
Time (sec)
Or by energy:

>>> spacepy.plot.simpleSpectrogram(times, energies, flux_by_pal:, 2, :],
e cb=False)

>>> matplotlib.pyplot.ylabel('Energy (MeV)')

>>> matplotlib.pyplot.xlabel('Time (sec)')

>>> matplotlib.pyplot.title('Flux at 90 degrees')

rebin can be used for higher dimension data, if the pitch angle itself depends on energy (e.g. if an energy sweep
takes substantial time), and to propagate uncertainties through the rebinning. It can also be used to rebin on the

4.5. datamanager - easy access to and manipulation of data 115

SpacePy Documentation, Release 0.4.0

Flux at 90 degrees

103
102
S
(0]
=
>
D
(O]
C
[N]
10t
100 T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000
Time (sec)

116 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

time axis, e.g. for transforming time base.

spacepy.datamanager.rev_index (idx, axis=- 1)

From an index, return an index that reverses the action of that index

Essentially, a[idx] [rev_index(idx)] == a

Note: This becomes more complicated in multiple dimensions, due to the vagaries of applying a multidimen-
sional index.

Parameters
idx
[array] Indices onto an array, often the output of argsort().

Returns

rev_idx
[array] Indices that, when applied to an array after idx, will return the original array (before
the application of idx).

Other Parameters

axis
[int] Axis along which to return indices, defaults to the last axis.

See also:

apply_index

Examples

>>> import numpy

>>> import spacepy.datamanager

>>> data = numpy.array([7, 2, 4, 6, 3])

>>> idx = numpy.argsort(data)

>>> data[idx] #sorted

array([2, 3, 4, 6, 7])

>>> data[idx] [spacepy.datamanager.rev_index(idx)] #original
array([7, 2, 4, 6, 3])

spacepy.datamanager.values_to_steps (array, axis=- 1)

Transform values along an axis to their order in a unique sequence.
Useful in, e.g., converting a list of energies to their steps.
Parameters

array
[array] Input data.

Returns

steps
[array] An array, the same size as array, with values along axis corresponding to the po-
sition of the value in array in a unique, sorted, set of the values in array along that axis.

4.5. datamanager - easy access to and manipulation of data 117

https://numpy.org/doc/stable/reference/generated/numpy.argsort.html#numpy.argsort

SpacePy Documentation, Release 0.4.0

Differs from argsort () in that identical values will have identical step numbers in the out-
put.

Other Parameters

axis
[int] Axis along which to find the steps.

Examples

>>> import numpy
>>> import spacepy.datamanager
>>> data = [[10., 12., 11., 9., 10., 12., 11., 9.1,
[18., 12., 11., 9., 14., 16., 15., 13.]1]
>>> spacepy.datamanager.values_to_steps(data)
array([[1, 3, 2, 0, 1, 3, 2, O],
[1, 3, 2, 0, 5, 7, 6, 411

4.6 datamodel - easy to use general data model

The datamodel classes constitute a data model implementation meant to mirror the functionality of the data model
output from pycdf, though implemented slightly differently.

This contains the following classes:
e dmarray - numpy arrays that support .attrs for information about the data
* SpaceData - base class that extends dict, to be extended by others
Authors: Steve Morley and Brian Larsen
Additional Contributors: Charles Kiyanda and Miles Engel
Institution: Los Alamos National Laboratory
Contact: smorley @lanl.gov; balarsen @lanl.gov

Copyright 2010-2016 Los Alamos National Security, LLC.

4.6.1 About datamodel

The SpacePy datamodel module implements classes that are designed to make implementing a standard data model
easy. The concepts are very similar to those used in standards like HDF5, netCDF and NASA CDF.

The basic container type is analogous to a folder (on a filesystem; HDFS5 calls this a group): Here we implement this as a
dictionary-like object, a datamodel.SpaceData object, which also carries attributes. These attributes can be considered
to be global, i.e. relevant for the entire folder. The next container type is for storing data and is based on a numpy array,
this class is datamodel.dmarray and also carries attributes. The dmarray class is analogous to an HDF5 dataset.

In fact, HDF5 can be loaded directly into a SpacePy datamodel, carrying across all attributes, using the function
fromHDF5:

>>> import spacepy.datamodel as dm
>>> data = dm.fromHDF5('test.h5")

118 Chapter 4. SpacePy Module Reference

https://numpy.org/doc/stable/reference/generated/numpy.argsort.html#numpy.argsort
mailto:smorley@lanl.gov
mailto:balarsen@lanl.gov

SpacePy Documentation, Release 0.4.0

Functions are also available to directly load data and metadata into a SpacePy datamodel from NASA CDF as well as
JSON-headed ASCII. Writers also exist to output a SpacePy datamodel directly to HDF5 or JSON-headed ASCII.
See datamodel. fromCDF (), datamodel.read]SONheadedASCII(), datamodel.toHDF5(), and datamodel.
t0JSONheadedASCII () for more details.

4.6.2 Examples

Imagine representing some satellite data within the global attributes might be the mission name and the instrument
PI, the variables might be the instrument counts [n-dimensional array], timestamps|[1-dimensional array and an orbit
number [scalar]. Each variable will have one attribute (for this example).

>>> import spacepy.datamodel as dm

>>> mydata = dm.SpaceData(attrs={'MissionName': 'BigSatl'})

>>> mydata['Counts'] = dm.dmarray([[42, 69, 77], [100, 200, 250]], attrs={'Units': 'cnts/
~s'P)

>>> mydata['Epoch'] = dm.dmarray([1, 2, 3], attrs={'units': 'minutes'})

>>> mydata['OrbitNumber'] = dm.dmarray(16, attrs={'StartsFrom': 1})

>>> mydata.attrs['PI'] 'Prof. Big Shot'

This has now populated a structure that can map directly to a NASA CDF, HDF5 or JSON-headed ASCII file. To
visualize our datamodel, we can use tree method (which can be applied to any dictionary-like object using dictree()).

>>> mydata.tree(attrs=True)

+

:|____MissionName
|____PI

Counts

Units

|____Epoch
|____units
OrbitNumber

StartsFrom

4.6.3 Guide for NASA CDF users

By definition, a NASA CDF only has a single ‘layer’. That is, a CDF contains a series of records (stored variables
of various types) and a set of attributes that are either global or local in scope. Thus to use SpacePy’s datamodel
to capture the functionality of CDF the two basic data types are all that is required, and the main constraint is that
datamodel.SpaceData objects cannot be nested (more on this later, if conversion from a nested datamodel to a flat
datamodel is required).

Opening a CDF and working directly with the contents can be easily done using the PyCDF module, however, if you
wish to load the entire contents of a CDF directly into a datamodel (complete with attributes) the following will make
life easier:

>>> import spacepy.datamodel as dm
>>> data = dm.fromCDF('inFile.cdf")

4.6. datamodel - easy to use general data model 119

SpacePy Documentation, Release 0.4.0

4.6.4 A quick guide to JSON-headed ASCII

In many cases it is preferred to have a human-readable ASCII file, rather than a binary file like CDF or HDF5. To make
it easier to carry all the same metadata that is available in HDF5 or CDF we have developed an ASCII data storage
format that encodes the metadata using JSON (JavaScript Object Notation). This notation supports two basic datatypes:
key/value collections (like a SpaceData) and ordered lists (which can represent arrays). JSON is human-readable, but
if large arrays are stored in metadata is quickly becomes difficult to read. For this reason we use JSON to encode the
metadata (usually smaller datasets) and store the data in a standard flat-ASCII format. The metadata is provided as a
header that describes the contents of the file.

To use JSON for storing only metadata associated with the data to be written to an ASCII file a minimal metadata
standard must be implemented. We use the following attribute names: DIMENSION and START_COLUMN. We also
recommend using the NASA ISTP metadata standard to assign attribute names. The biggest limitation of flat ASCII is
that sensibly formatting datasets of more than 2-dimensions (i.e. ranks greater than 2) is not possible. For this reason if
you have datasets of rank 3 or greater then we recommend using HDF5. If text is absolutely required then it is possible
to encode multi-dimensional arrays in the JSON metadata, but this is not recommended.

This format is best understood by illustration. The following example builds a toy SpacePy datamodel and writes it to
a JSON-headed ASCII file. The contents of the file are then shown.

>>> import spacepy.datamodel as dm

>>> data = dm.SpaceData()

>>> data.attrs['Global'] = 'A global attribute’

>>> data['Varl'] = dm.dmarray([1,2,3,4,5], attrs={'Locall': 'A local attribute'})
>>> data['Var2'] dm.dmarray([[8,9],[9,1]1,[3,41,[8,91,[7,811)

>>> data['MVar'] = dm.dmarray([7.8], attrs={'Note': 'Metadata'})

>>> dm.to]SONheadedASCII('outFile.txt', data, depend®='Varl', order=['Varl'])
#Note that not all field names are required, those not given will be listed
#alphabetically after those that are specified

The file looks like:

"MVar": {
"Note": "Metadata",
"VALUES": [7.8]

3,

"Global": "A global attribute",

"Varl": {
"Locall"™: "A local attribute",
"DIMENSION": [1],
"START_COLUMN": O

b

"Var2": {
"DIMENSION": [2],
"START_COLUMN": 2

mhwwl—:ﬁ%%%%%%#%%%%%%%:ﬁ

N o0 w WO
0 O s = ©

120 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Classes

SpaceData(*args, **kwargs)

Datamodel class extending dict by adding attributes.

dmarray(input_array[, attrs, dtype])

Container for data within a SpaceData object

DMWarning

Warnings class for datamodel, subclassed so it can be set
to always

4.6.5 spacepy.datamodel.SpaceData

class spacepy.datamodel.SpaceData(*args, **kwargs)

Datamodel class extending dict by adding attributes.

flatten() Method to collapse datamodel to one level deep
tree(**kwargs) Print the contents of the SpaceData object in a visual
tree
flatten()

Method to collapse datamodel to one level deep

Examples

>>> import spacepy.datamodel as dm
>>> import spacepy.toolbox as tb
>>> a = dm.SpaceData()

>>> a['l'] = dm.SpaceData(dog =
", b="perch')))

>>> a['4'] = dm.SpaceData(cat =
>>> a['5'] = 4

>>> a.tree()

"
[____1
|____dog
| _pig
|____fish
|____a
l___ b
|[____4
|____cat
[____5

5, pig = dm.SpaceData(fish=dm.SpaceData(a="carp

'kitty')

>>> b = dm.flatten(a)
>>> b.tree()

+
|____1<--dog
|____1<--pig<--fish<--a
| ____1<--pig<--fish<--b
4<--cat

5

4.6. datamodel - easy to use general data model

121

SpacePy Documentation, Release 0.4.0

>>> a.flatten()
>>> a.tree()
+
|____1<--dog
|____1<--pig<--fish<--a
|____1<--pig<--fish<--b
|____4<--cat
|____5

tree(**kwargs)

Print the contents of the SpaceData object in a visual tree
Other Parameters

verbose
[boolean (optional)] print more info

spaces
[string (optional)] string will added for every line

levels
[integer (optional)] number of levels to recurse through (True means all)

attrs
[boolean (optional)] display information for attributes

See also:

toolbox.dictree

Examples

>>> import spacepy.datamodel as dm

>>> import spacepy.toolbox as tb

>>> a = dm.SpaceData()

>>> a['l'] = dm.SpaceData(dog 5)

>>> a['4"'] = dm.SpaceData(cat = 'kitty')
>>> a['5'] = 4

>>> a.tree()

+
1
| ___dog
|____4
|____cat
|____5

122 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

4.6.6 spacepy.datamodel.dmarray

class spacepy.datamodel.dmarray (input_array, attrs=None, dtype=None)

Container for data within a SpaceData object
Raises

NameError
raised is the request name was not added to the allowed attributes list

Examples

>>> import spacepy.datamodel as datamodel

>>> position = datamodel.dmarray([1,2,3], attrs={'coord_system':'GSM'})
>>> position

dmarray([1, 2, 3])

>>> position.attrs

{'coord_system': 'GSM'}a

The dmarray, like a numpy ndarray, is versatile and can store any datatype; dmarrays are not just for arrays.

>>> name = datamodel.dmarray('TestName')
dmarray('TestName"')

To extract the string (or scalar quantity), use the tolist method

>>> name.tolist()

'TestName'

addAttribute(namel, value]) Method to add an attribute to a dmarray
equivalent to a = datamodel.dmarray([1,2,3])
a.Allowed_Attributes = a.Allowed_Attributes +
['blabla']

addAttribute (name, value=None)

Method to add an attribute to a dmarray equivalent to a = datamodel.dmarray([1,2,3]) a.Allowed_Attributes
= a.Allowed_Attributes + [‘blabla’]

4.6.7 spacepy.datamodel.DMWarning

class spacepy.datamodel.DMWarning

Warnings class for datamodel, subclassed so it can be set to always

4.6. datamodel - easy to use general data model 123

SpacePy Documentation, Release 0.4.0

Functions

convertKeysToStr(SDobject)

createISTPattrs(datatype[, ndims, vartype, ...])

Return set of unpopulated attributes for ISTP compliant
variable

dmcopy(dobj)

Generic copy utility to return a copy of a (datamodel)
object

dmfilled(shape[, fillval, dtype, order, attrs])

Return a new dmarray of given shape and type, filled
with a specified value (default=0).

flatten(dobj)

Collapse datamodel to one level deep

fromCDF(fname, **kwargs)

Create a SpacePy datamodel representation of a NASA
CDF file

fromHDF5(fname, **kwargs)

Create a SpacePy datamodel representation of an HDF5
file or netCDF4 file which is HDF5 compliant

fromRecArray(recarr)

Takes a numpy recarray and returns each field as a dmar-
ray in a SpaceData container

toCDF(fname, SDobject, **kwargs)

Create a CDF file from a SpacePy datamodel represen-
tation

toHDF5(fname, SDobject, **kwargs)

Create an HDF5 file from a SpacePy datamodel repre-
sentation

toHTML(fname, SDobject|, attrs, varLinks, ...])

Create an HTML dump of the structure of a spacedata

toJSONheadedASCII(fname, insd[, metadata, ...])

Write JSON-headed ASCII file of data with metadata
from SpaceData object

toRecArray(sdo)

Takes a SpaceData and creates a numpy recarray

unflatten(dobj[, marker])

Collapse datamodel to one level deep

readJ]SONMetadata(fname, **kwargs)

Read JSON metadata from an ASCII data file

readJ]SONheadedASCII(fname[, mdata, comment, ...])

read JSON-headed ASCII data files into a SpacePy data-
model

resample(data[, time, winsize, overlap, ...])

resample a SpaceData to a new time interval

write]SONMetadata(fname, insd[, dependo, ...])

Scrape metadata from SpaceData object and make a
JSON header

4.6.8 spacepy.datamodel.convertKeysToStr

spacepy.datamodel . convertKeysToStr (SDobject)

4.6.9 spacepy.datamodel.createlSTPattrs

spacepy.datamodel . createISTPattrs (datatype, ndims=1, vartype=None, units=""', NRV=False)

Return set of unpopulated attributes for ISTP compliant variable

Parameters

datatype

[{‘data’, ‘support_data’, ‘metadata’ }] datatype of variable to create metadata for.

ndims

[int] number of dimensions, default=1

vartype

[{ “float’, ‘char’, ‘int’, ‘epoch’, ‘tt2000’ }] The type of the variable, default=float

124

Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

units
[str] The units of the variable, default=" ¢

NRV
[bool] Is the variable NRV (non-record varying), default=False

Returns

attrs
[dict] dictionary of attributes for the variable

Examples

>>> import spacepy.datamodel as dm
>>> dm.createISTPattrs('data', ndims=2, vartype='float', units='MeV')
{"CATDESC': "',

'DISPLAY_TYPE': 'spectrogram',

'FIELDNAM': "',

'FILLVAL': -1e+31,

'FORMAT': 'F18.6',

'LABLAXIS': "',

'SI_CONVERSION': ' > ',

'UNITS': 'MeV',

'VALIDMIN': "',

'VALIDMAX': '',

'VAR_TYPE': 'data',

'DEPEND_O': 'Epoch',

'DEPEND_1': "'}

4.6.10 spacepy.datamodel.dmcopy

spacepy . datamodel . dmcopy (dobj)
Generic copy utility to return a copy of a (datamodel) object

Parameters

dobj
[object] object to return a copy of

Returns

copy_obj: object (same type as input)
copy of input oibject

Examples

>>> import spacepy.datamodel as dm

>>> dat = dm.dmarray([2,3], attrs={'units': 'T'})
>>> datl = dm.dmcopy(dat)

>>> datl.attrs['copy': True]

>>> dat is datl

False

>>> datl.attrs

(continues on next page)

4.6. datamodel - easy to use general data model

125

SpacePy Documentation, Release 0.4.0

(continued from previous page)

{'copy': True, 'units': 'T'}
>>> dat.attrs
{'units': 'T'}

4.6.11 spacepy.datamodel.dmfilled

spacepy.datamodel .dmfilled (shape, fillval=0, dtype=None, order='C’, attrs=None)
Return a new dmarray of given shape and type, filled with a specified value (default=0).

See also:

numpy . ones

Examples

>>> import spacepy.datamodel as dm
>>> dm.dmfilled(5, attrs={'units': 'nT'})
dmarray([0., 0., 0., 0., 0.1

>>> dm.dmfilled((5,), fillval=1, dtype=np.int)
dmarray([1, 1, 1, 1, 1])

>>> dm.dmfilled((2, 1), fillval=np.nan)
dmarray([[nan],
[nan]])

>>> a = dm.dmfilled((2, 1), np.nan, attrs={'units': 'nT'})
>>> a
dmarray([[nan],
[nanl])
>>> a.attrs
{'units': 'nT'}

4.6.12 spacepy.datamodel.flatten

spacepy.datamodel . flatten(dobj)

Collapse datamodel to one level deep

See also:

unflatten
SpaceData. flatten

126 Chapter 4. SpacePy Module Reference

https://numpy.org/doc/stable/reference/generated/numpy.ones.html#numpy.ones

SpacePy Documentation, Release 0.4.0

Examples

>>> import spacepy.datamodel as dm
>>> import spacepy.toolbox as tb
>>> a = dm.SpaceData()

>>> a['l"'] = dm.SpaceData(dog
— 'perch')))

>>> a['4"'] = dm.SpaceData(cat = 'kitty')
>>> a['5'] = 4

>>> a.tree()

5, pig = dm.SpaceData(fish=dm.SpaceData(a="carp', b=

+
[
|____dog
| ___pig
|____fish
|____a
l___ b
|____4
|____cat
|[____5

>>> b = dm.flatten(a)
>>> b.tree()

+

1<--dog
1<--pig<--fish<--a
1<--pig<--fish<--b
4<--cat

5

>>> a.flatten()

>>> a.tree()

+

1<--dog
1<--pig<--fish<--a
1<--pig<--fish<--b
4<--cat

5

4.6.13 spacepy.datamodel.fromCDF

spacepy .datamodel . fromCDF (fname, **kwargs)
Create a SpacePy datamodel representation of a NASA CDF file

Parameters

file
[string] the name of the cdf file to be loaded into a datamodel

Returns

out
[spacepy.datamodel.SpaceData] SpaceData with associated attributes and variables in dmar-
rays

4.6. datamodel - easy to use general data model 127

SpacePy Documentation, Release 0.4.0

See also:

pycdf.CDF. copy
pycdf.istp.VarBundle

Examples

>>> import spacepy.datamodel as dm
>>> data = dm.fromCDF('test.cdf')

4.6.14 spacepy.datamodel.fromHDF5

spacepy.datamodel . fromHDF5 (fname, **kwargs)
Create a SpacePy datamodel representation of an HDFS5 file or netCDF4 file which is HDF5 compliant

Parameters

file
[string] the name of the HDF5/netCDF4 file to be loaded into a datamodel

Returns

out
[spacepy.datamodel.SpaceData] SpaceData with associated attributes and variables in dmar-
rays

Notes

Zero-sized datasets will break in h5py. This is kluged by returning a dmarray containing a None.

This function is expected to work with any HDF5-compliant files, including netCDF4 (not netCDF3) and MatLab
save files from v7.3 or later, but some datatypes are not supported, e.g., non-string vlen datatypes, and will raise
a warning.

Examples

>>> import spacepy.datamodel as dm
>>> data = dm.fromHDF5('test.hdf")

4.6.15 spacepy.datamodel.fromRecArray

spacepy.datamodel . fromRecArray (recarr)
Takes a numpy recarray and returns each field as a dmarray in a SpaceData container

Parameters

recarr
[numpy record array] object to parse into SpaceData container

Returns

sd: spacepy.datamodel.SpaceData
dict-like containing arrays of named records in recarr

128 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Examples

>>> import numpy as np

>>> import spacepy.datamodel as dm

>>> x = np.array([(1.0, 2), (3.0, 4)], dtype=[('x"', float), ('y', int)])
>>> print(x, x.dtype)

array([(1.0, 2), (3.0, 4)], dtype=[('x", '<£8'), ('y', '<i4")D

>>> sd = dm.fromRecArray(x)

>>> sd.tree(verbose=1)

+

|____x (spacepy.datamodel.dmarray (2,))

| ____y (spacepy.datamodel.dmarray (2,))

4.6.16 spacepy.datamodel.toCDF

spacepy.datamodel . toCDF (fname, SDobject, **kwargs)
Create a CDF file from a SpacePy datamodel representation

Parameters

fname
[str] Filename to write to

SDobject
[spacepy.datamodel.SpaceData] SpaceData with associated attributes and variables in dmar-
rays

Returns
None
Other Parameters

skeleton
[str (optional)] create new CDF from a skeleton file (default *)

flatten
[bool (optional)] flatten incoming datamodel - if SpaceData objects are nested (default False)

overwrite
[bool (optional)] allow overwrite of an existing target file (default False)

autoNRV
[bool (optional)] attempt automatic identification of non-record varying entries in CDF

backward
[bool (optional)] create CDF in backward-compatible format (default is v3+ compatibility
only)

TT2000
[bool (optional)] write variables beginning with ‘Epoch’ as datatype CDF_TT2000 (default
is automatic selection of EPOCH or EPOCH16)

verbose
[bool (optional)] verbosity flag

4.6. datamodel - easy to use general data model 129

SpacePy Documentation, Release 0.4.0

4.6.17 spacepy.datamodel.toHDF5

spacepy .datamodel . toHDF5 (fname, SDobject, **kwargs)

Create an HDFS file from a SpacePy datamodel representation
Parameters

fname
[str] Filename to write to

SDobject
[spacepy.datamodel.SpaceData] SpaceData with associated attributes and variables in dmar-
rays

Returns
None
Other Parameters

overwrite
[bool (optional)] allow overwrite of an existing target file (default True)

mode
[str (optional)] HDFS file open mode (a, w, r) (default ‘a’)

compression
[str (optional)] compress all non-scalar variables using this method (default None) (gzip,
shuffle, fletcher32, szip, 1zf)

Changed in version 0.4.0: No longer compresses scalars (which usually fails).

compression_opts
[str (optional)] options to the compression, see hSpy documentation for more details

Examples

>>> import spacepy.datamodel as dm

>>> a = dm.SpaceData()

>>> a['data'] = dm.dmarray(range(100000), dtype=float)

>>> dm.toHDF5('test_gzip.h5', a, overwrite=True, compression='gzip')
>>> dm.toHDF5('test.h5', a, overwrite=True)

>>> # test_gzip.h5 was 118k, test.h5 was 785k

4.6.18 spacepy.datamodel.toHTML

spacepy.datamodel . toHTML (fname, SDobject, attrs=(), varLinks=False, linkFormat=None, echo=False,
tableTag='<table border="1">")

Create an HTML dump of the structure of a spacedata
Parameters

fname
[str] Filename to write to

SDobject
[spacepy.datamodel.SpaceData] SpaceData with associated attributes and variables in dmar-
rays

130 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Other Parameters

overwrite
[bool (optional)] allow overwrite of an existing target file (default True)

mode
[str (optional)] HDFS file open mode (a, w, r) (default ‘a’)

echo
[bool] echo the html to the screen

varLinks
[bool] make the variable name a link to a stub page

4.6.19 spacepy.datamodel.toJSONheadedASCII

spacepy .datamodel . toJSONheadedASCII (fname, insd, metadata=None, dependO0=None, order=None,
*kkwargs)

Write JSON-headed ASCII file of data with metadata from SpaceData object
Parameters

fname
[str] Filename to write to (can also use a file-like object) None can be given in conjunction
with the returnString keyword to skip writing output

insd
[spacepy.datamodel.SpaceData] SpaceData with associated attributes and variables in dmar-
rays

Returns
None
Other Parameters

depend(
[str (optional)] variable name to use to indicate parameter on which other data depend (e.g.
Time)

order
[list (optional)] list of key names in order of start column in output JSON file

metadata: str or file-like (optional)
filename with JSON header to use (or file-like with JSON metadata)

delimiter: str
delimiter to use in ASCII output (default is whitespace), for tab, use * *

Examples

>>> import spacepy.datamodel as dm

>>> data = dm.SpaceData()

>>> data.attrs['Global'] = "A global attribute’

>>> data['Varl'] = dm.dmarray([1,2,3,4,5], attrs={'Locall’': 'A local attribute'})
>>> datal['Var2'] dm.dmarray([[8,9]1,[9,1],[3,4]1,[8,9]1,[7,8]11)

>>> data['MVar'] dm.dmarray([7.8], attrs={'Note': 'Metadata'})

>>> dm.toJSONheadedASCII('outFile.txt', data, depend®='Varl', order=['Varl'])

(continues on next page)

4.6. datamodel - easy to use general data model 131

SpacePy Documentation, Release 0.4.0

(continued from previous page)

#Note that not all field names are required, those not given will be listed
#alphabetically after those that are specified

4.6.20 spacepy.datamodel.toRecArray

spacepy.datamodel . toRecArray (sdo)

Takes a SpaceData and creates a numpy recarray
Parameters

sdo
[SpaceData] SpaceData to change to a numpy recarray

Returns

recarr: numpy record array
numpy.recarray object with the same values (attributes are lost)

Examples

>>> import numpy as np

>>> import spacepy.datamodel as dm

>>> sd = dm.SpaceData()

>>> sd['x'] = dm.dmarray([1.0, 2.0])
>>> sd['y'] = dm.dmarray([2,4])

>>> sd.tree(verbose=1)

+

|____x (spacepy.datamodel.dmarray (2,))
| ____y (spacepy.datamodel.dmarray (2,))
>>> ra = dm.toRecArray(sd)

>>> print(ra, ra.dtype)

[(2, 1.0) (4, 2.0)] (numpy.record, [('y', '<i8"), ('x', '<f8')1)

4.6.21 spacepy.datamodel.unflatten

spacepy.datamodel .unflatten(dobj, marker='<--'

Collapse datamodel to one level deep

Examples

>>> import spacepy.datamodel as dm
>>> import spacepy.toolbox as tb
>>> a = dm.SpaceData()

>>> a['l"'] = dm.SpaceData(dog = 5, pig = dm.SpaceData(fish=dm.SpaceData(a="carp', b=
—"perch')))
>>> a['4"'] = dm.SpaceData(cat = 'kitty')

>>> a['5'] = 4
>>> a.tree()

(continues on next page)

132 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

(continued from previous page)

+
1
|____dog
|____pig
|____fish
|____a
[____b
|____4
|____cat
|[____5

>>> b = dm.flatten(a)
>>> b.tree()

+

1<--dog
1<--pig<--fish<--a
1<--pig<--fish<--b
4<--cat

5

>>> ¢ = dm.unflatten(b)
>>> c.tree()

+
[
| ___dog
|____pig
|____fish
|____a
[Db
|____4
| ____cat
l____5

4.6.22 spacepy.datamodel.readJSONMetadata

spacepy.datamodel .readJSONMetadata (fname, **kwargs)
Read JSON metadata from an ASCII data file

Parameters

fname
[str] Filename to read metadata from

Returns

mdata: spacepy.datamodel.SpaceData
SpaceData with the metadata from the file

Other Parameters

verbose
[bool (optional)] set verbose output so metadata tree prints on read (default False)

4.6. datamodel - easy to use general data model

133

SpacePy Documentation, Release 0.4.0

4.6.23 spacepy.datamodel.readJSONheadedASCII

spacepy.datamodel .readJSONheadedASCII (fname, mdata=None, comment="#', convert=False, restrict=None)
read JSON-headed ASCII data files into a SpacePy datamodel

Parameters

fname
[str or list] Filename(s) to read data from

Returns

mdata: spacepy.datamodel.SpaceData
SpaceData with the data and metadata from the file

Other Parameters

mdata
[spacepy.datamodel.SpaceData (optional)] supply metadata object, otherwise is read from
fname (default None)

comment: str (optional)
comment string in file to be read; lines starting with comment are ignored (default ‘#’)

convert: bool or dict-like (optional)
If True, uses common names to try conversion from string. If a dict- like then uses the
functions specified as the dict values to convert each element of ‘key’ to a non-string

restrict: list of strings (optional)
If present, restrict the variables stored to only those on this list

4.6.24 spacepy.datamodel.resample

spacepy .datamodel .resample (data, time=[], winsize=0, overlap=0, st_time=None, outtimename='Epoch")

resample a SpaceData to a new time interval
Parameters

data
[SpaceData or dmarray] SpaceData with data to resample or dmarray with data to resample,
variables can only be 1d or 2d, if time is specified only variables the same length as time are
resampled, otherwise only variables with length equal to the longest length are resampled

time

[array-like] dmarray of times the correspond to the data
winsize

[datetime.timedelta] Time frame to average the data over

overlap
[datetime.timedelta] Overlap in the moving average

st_time
[datetime.datetime] Starting time for the resample, if not specified the time of the first data
point is used (see spacepy.toolbox.windowMean)

Returns

ans
[SpaceData] Resampled data, included keys are in the input keys (with the data caveats above)
and Epoch which contains the output time

134 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Examples

>>> import datetime

>>> import spacepy.datamodel as dm

>>> a = dm.SpaceData()

>>> a.attrs['foo'] = 'bar'

>>> a['a'] = dm.dmarray(range(10%2)) .reshape(10,2)

>>> a['b'] = dm.dmarray(range(10)) + 4

>>> a['c'] = dm.dmarray(range(3)) + 10

>>> times = [datetime.datetime(2010, 1, 1) + datetime.timedeltaChours=i) for i in.
—range(10)]

>>> out = dm.resample(a, times, winsize=datetime.timedeltaChours=2),.
—.overlap=datetime.timedeltaChours=0))

>>> out.tree(verbose=1, attrs=1)

+

:|____foo (str [3])

|____Epoch (spacepy.datamodel.dmarray (4,))

|____a (spacepy.datamodel.dmarray (4, 2))

:|____DEPEND_O (str [5])

#

Things to note:

- attributes are preserved

- the output variables have their DEPEND_O changed to Epoch (or outtimename)
- each dimension of a 2d array is resampled individually

4.6.25 spacepy.datamodel.writeJSONMetadata

spacepy.datamodel .writeJSONMetadata (fname, insd, depend0=None, order=None, verbose=False,
returnString=False)

Scrape metadata from SpaceData object and make a JSON header
Parameters

fname
[str] Filename to write to (can also use a file-like object) None can be given in conjunction
with the returnString keyword to skip writing output
insd
[spacepy.datamodel.SpaceData] SpaceData with associated attributes and variables in dmar-
rays
Returns
None (unless returnString keyword is True)
Other Parameters

depend(
[str (optional)] variable name to use to indicate parameter on which other data depend (e.g.
Time)

order
[list (optional)] list of key names in order of start column in output JSON file

verbose: bool (optional)
verbose output

4.6. datamodel - easy to use general data model 135

SpacePy Documentation, Release 0.4.0

returnString: bool (optional)
return JSON header as string instead of returning None

4.7 data assimilation - data assimilation module

Classes

ensemble([ensembles]) Ensemble-based data assimilation subroutines for the
Radiation Belt Model

4.7.1 spacepy.data_assimilation.ensemble

class spacepy.data_assimilation.ensemble (ensembles=50)
Ensemble-based data assimilation subroutines for the Radiation Belt Model

EnKF(A, Psi, Inn, HAp) analysis subroutine after code example in Evensen
2003 this will take the prepared matrices and calcu-
late the analysis most efficiently, A will be returned

EnKF_oneobs(A, Psi, Inn, HAp) analysis subroutine for a single observations with the
EnKF.

add_model_error(model, A, PSDdata) this routine will add a standard error to the ensemble
states

add_model_error_obs(model, A, Lobs, y) this routine will add a standard error to the ensemble
states

getHA(model, Lobs, A) compute HA provided L vector of observations and
ensemble matrix A

getHAprime(HA) calculate ensemble perturbation of HA HA' = HA-
HA_mean

getHPH(Lobs, Pfxx) compute HPH

getInnovation(y, Psi, HA) compute innovation ensemble D'

getperturb(model, y) compute perturbations of observational vector

EnKF (A, Psi, Inn, HAp)

analysis subroutine after code example in Evensen 2003 this will take the prepared matrices and calculate
the analysis most efficiently, A will be returned

Parameters

A
Psi
Inn
HAp

Returns

out

1l
EnKF_oneobs (A, Psi, Inn, HAp)
analysis subroutine for a single observations with the EnKF. This is a special case.

Parameters

136 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

A
Psi
Inn
HAp

Returns

out

[l

add_model_error (model, A, PSDdata)
this routine will add a standard error to the ensemble states

Parameters

model
A
PSDdata

Returns

out

(1
add_model_error_obs (model, A, Lobs, y)

this routine will add a standard error to the ensemble states
Parameters

model
A
Lobs

y
Returns

out

[l
getHA (model, Lobs, A)

compute HA provided L vector of observations and ensemble matrix A
Parameters

model
Lobs
A

Returns

out

[
getHAprime (HA)
calculate ensemble perturbation of HA HA” = HA-HA_mean

Parameters
HA
Returns

out

[l

4.7.

data assimilation - data assimilation module

137

SpacePy Documentation, Release 0.4.0

getHPH(Lobs, Pfxx)
compute HPH

Parameters

Lobs
Pfxx

Returns
out

getInnovation(y, Psi, HA)

compute innovation ensemble D’

Parameters

y
Psi

HA
Returns

out

[l
getperturb (model, y)

compute perturbations of observational vector

Parameters

model
y

Returns

out

1l

Functions

average_window(PSDdata, Lgrid)

combine observations on same L shell in

getobs4window(dd, Tnow)

get observations in time window [Tnow - Twindow,
Tnow] from all satellites lumped together into one y vec-

output(init, result)

write results to file and be done

forecast(Tnow+Twindow)

assimilate_JK(dd)

this version is currently not working main function to
assimilate all data provided in init

addmodelerror_old2(dd, A, y,L)

this routine will add a standard error to the ensemble

addmodelerror_old(dd, A, y, L)

this routine will add a standard error to the ensemble

138

Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

4.7.2 spacepy.data_assimilation.average_window

spacepy.data_assimilation.average_window(PSDdata, Lgrid)

combine observations on same L shell in
Parameters

model
PSDdata
HAp

Returns

out

[l

4.7.3 spacepy.data_assimilation.getobs4window

spacepy.data_assimilation.getobs4window(dd, Tnow)

get observations in time window [Tnow - Twindow, Tnow] from
Parameters

model
PSDdata
HAp

Returns

out

[l

4.7.4 spacepy.data_assimilation.output

spacepy.data_assimilation.output (init, result)

write results to file and be done
Parameters

model
PSDdata
HAp

Returns

out

[l

all satellites lumped together into one y vector

4.7. data assimilation - data assimilation module

139

SpacePy Documentation, Release 0.4.0

4.7.5 spacepy.data_assimilation.forecast

spacepy.data_assimilation.forecast (Tnow+Twindow)

4.7.6 spacepy.data_assimilation.assimilate_JK

spacepy.data_assimilation.assimilate_JK(dd)

this version is currently not working main function to assimilate all data provided in init
Parameters

model
PSDdata
HAp

Returns

out

[l

4.7.7 spacepy.data_assimilation.addmodelerror_old2

spacepy.data_assimilation.addmodelerror_old2(dd, A, y, L)

this routine will add a standard error to the ensemble states

4.7.8 spacepy.data_assimilation.addmodelerror_old
spacepy.data_assimilation.addmodelerror_old(dd, A, y, L)

this routine will add a standard error to the ensemble states

4.8 empiricals - module with heliospheric empirical modules

Module with some useful empirical models (plasmapause, magnetopause, Lmax)
Authors: Steve Morley, Josef Koller Institution: Los Alamos National Laboratory Contact: smorley @lanl.gov

Copyright 2010 Los Alamos National Security, LLC.

140 Chapter 4. SpacePy Module Reference

mailto:smorley@lanl.gov

SpacePy Documentation, Release 0.4.0

getDststar(ticks[, model, dbase])

Calculate the pressure-corrected Dst index, Dst*

getExpectedSWTemp(velo[, model, units])

Return the expected solar wind temperature based on the
bulk velocity

getLmax(ticks[, model, dbase])

calculate a simple empirical model for Lmax - last closed
drift-shell

getMagnetopause(ticks[, LTs, dbase])

Calculates the Shue et al. (1997) position in equatorial
plane.

getlMPstandoff(ticks[, dbase, alpha])

Calculates the Shue et al. (1997) subsolar magnetopause
radius.

getPlasmaPause(ticks[, model, LT, omnivals])

Plasmapause location model(s)

getSolarProtonSpectra([norm, gamma, EO, ...])

Returns a SpaceData with energy and fluence spectra of
solar particle events

getSolarRotation(ticks[, rtype, fp, reverse])

Calculates solar rotation number (Carrington or Bartels)
for a given date/time

getVampolaOrder(L)

Empirical lookup of power for sin”n pitch angle model
from Vampola (1996)

omniFromDirectionalFlux(fluxarr, alphas[, norm])

Calculate omnidirectional flux [(s cm”2 kev)"-1] from
directional flux [(s st cm”2 keV)"-1] array

vampolaPA(omniflux, **kwargs)

Pitch angle model of sin”n form

4.8.1 spacepy.empiricals.getDststar

spacepy.empiricals.getDststar (ticks, model='OBrien’, dbase='QDhourly")

Calculate the pressure-corrected Dst index, Dst*

We need to add in the references to the models here!

Parameters

ticks

[spacepy.time. Ticktock] TickTock object of desired times (will be interpolated from hourly
OMNI data) OR dictionary including ‘Pdyn’ and ‘Dst’ keys where data are lists or arrays and

Dst is in [nT], and Pdyn is in [nPa]
Returns

out

[float] Dst* - the pressure corrected Dst index from OMNI [nT]

Examples

Coeflicients are applied to the standard formulation e.g. Burton et al., 1975 of Dst* = Dst - b*sqrt(Pdyn) + ¢ The
default is the O’Brien and McPherron model (2002). Other options are Burton et al. (1975) and Borovsky and

Denton (2010)

>>> import spacepy.time as spt
>>> import spacepy.omni as om
>>> import spacepy.empiricals as emp

>>> dststar = emp.getDststar(ticks)
>>> dststar[0]
-21.317220132108943

>>> ticks = spt.tickrange('2000-10-16T00:00:00",

'2000-10-31T12:00:00', 1/24.)

4.8. empiricals - module with heliospheric empirical modules 141

SpacePy Documentation, Release 0.4.0

User-determined coeflicients can also be supplied as a two-element list or tuple of the form (b,c), e.g.

>>> dststar = emp.getDststar(ticks, model=(2,11)) #b is extreme driving from OBrien

We have chosen the OBrien model as the default here as this was rigorously determined from a very long data
set and is pertinent to most conditions. It is, however, the most conservative correction. Additionally, Siscoe,
McPherron and Jordanova (2005) argue that the pressure contribution to Dst diminishes during magnetic storms.

To show the relative differences, run the following example:

>>> import matplotlib.pyplot as plt
>>> params = [('Burton','k-'), ('OBrien','r-'), ('Borovsky','b-')]
>>> for model, col in params:
dststar = getDststar(ticks, model=model)
plt.plot(ticks.UTC, dststar, col)

4.8.2 spacepy.empiricals.getExpectedSWTemp

spacepy.empiricals.getExpectedSWTemp (velo, model="XB15', units='K")
Return the expected solar wind temperature based on the bulk velocity

The formulations used by this function are those given by, L87 — Lopez, R.E., J. Geophys. Res., 92, 11189-
11194, 1987 BS06 — Borovsky, J.E. and J.T. Steinberg, Geophysical Monograph Series 167, 59-76, 2006 XB15
— Xu, F. and J.E. Borovsky, J. Geophys. Res., 120, 70-100, 2015

Parameters

velo
[array-like] Array like of solar wind bulk velocity values [km/s]

model
[str [optional]] Name of model to use. Valid choices are L87, BS06 and XB15. Default is
XB15

units
[str [optional]] Units for output temperature, options are eV or K. Default is Kelvin [K]

Returns

Texp
[array-like] The expected solar wind temperature given the bulk velocity [K] or [eV]

4.8.3 spacepy.empiricals.getLmax

spacepy.empiricals.getLmax (ticks, model="JKemp', dbase="QDhourly")
calculate a simple empirical model for Lmax - last closed drift-shell

Uses the parametrized Lmax from: Koller and Morley (2010) ‘Magnetopause shadowing effects for radiation
belt models during high-speed solar wind streams’ American Geophysical Union, Fall Meeting 2010, abstract
#SM13A-1787

Parameters

ticks
[spacepy.time.Ticktock] Ticktock object of desired times

model
[string, optional] ‘JKemp’ (default - empirical model of J. Koller)

142 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Returns

out
[np.ndarray] Lmax - L* of last closed drift shell

See also:

spacepy.LANLstar.LANLmax

Examples

>>> from spacepy.empiricals import getLmax

>>> import spacepy.time as st

>>> import datetime

>>> ticks = st.tickrange(datetime.datetime(2000, 1, 1), datetime.datetime(2000, 1,.
—3), deltadays=1)

array([7.4928412, 8.3585632, 8.6463423])

4.8.4 spacepy.empiricals.getMagnetopause

spacepy.empiricals.getMagnetopause (ticks, LTs=None, dbase="QDhourly")
Calculates the Shue et al. (1997) position in equatorial plane

Shue et al. (1997), A new functional form to study the solar wind control of the magnetopause size and shape,
J. Geophys. Res., 102(AS5), 9497-9511, doi:10.1029/97JA00196.

Parameters

ticks
[spacepy.time.Ticktock] TickTock object of desired times (will be interpolated from hourly
OMNI data) OR dictionary of form { ‘P’: [], ‘Bz’: []} Where P is SW ram pressure [nPa] and
Bz is IMF Bz (GSM) [nT]

LTs
[array-like] Array-like of local times for evaluating the magnetopause model. Default is 6
LT to 18 LT in steps of 20 minutes.

Returns

out
[array] NxMx2 array of magnetopause positions [Re] N is number of timesteps, M is number
of local times. The 2 positions are the X_GSE and Y_GSE positions of the magnetopause

Examples

>>> import spacepy.time as spt
>>> import spacepy.empiricals as emp
>>> ticks = spt.Ticktock(['2002-01-01T12:00:00', " '2002-01-04T00:00:00'])
>>> localtimes = [13,12,11]
>>> emp.getMagnetopause(ticks, LTs=localtimes)
array([[[10.27674331, -2.75364507],
[10.52909163, 0. 1,
[10.27674331, 2.75364507]1]7,

(continues on next page)

4.8. empiricals - module with heliospheric empirical modules 143

SpacePy Documentation, Release 0.4.0

(continued from previous page)

[[10.91791834, -2.9254474],

[11.18712131, 0. 1,

[10.91791834, 2.9254474 11D
>>> emp.getMPstandoff(ticks) #should give same result as getMagnetopause for 12LT
array([10.52909163, 11.18712131])

To plot the magnetopause: >>> import numpy as np >>> import spacepy.plot as splot >>> import mat-
plotlib.pyplot as plt >>> localtimes = np.arange(5, 19.1, 0.5) >>> mp_pos = emp.getMagnetopause(ticks,
localtimes) >>> plt.plot(mp_pos[0,:,0], mp_pos[0,:,1]) >>> axl = plt.gca() >>> axl.set_xlim([-
5,20]) >>> axl.set_xlabel(‘X$_{GSE}$ [R$_E$]’) >>> axl.set_ylabel("YS_{GSE} [R$_E$]") >>>
splot.dual_half_circle(ax=ax1) >>> axl.axes.set_aspect(‘equal’)

4.8.5 spacepy.empiricals.getMPstandoff

spacepy.empiricals.getMPstandoff (ticks, dbase='QDhourly’, alpha=[])
Calculates the Shue et al. (1997) subsolar magnetopause radius

Shue et al. (1997), A new functional form to study the solar wind control of the magnetopause size and shape,
J. Geophys. Res., 102(AS5), 9497-9511, doi:10.1029/97JA00196.

Parameters

ticks
[spacepy.time.Ticktock] TickTock object of desired times (will be interpolated from hourly
OMNI data) OR dictionary of form { ‘P’: [], ‘Bz’: []} Where P is SW ram pressure [nPa] and
Bz is IMF Bz (GSM) [nT]

alpha
[list] Used as an optional return value to obtain the flaring angles. To use, assign an empty
list and pass to this function through the keyword argument. The list will be modified in
place, adding the flaring angles for each time step.

Returns

out
[float] Magnetopause (sub-solar point) standoff distance [Re]

Examples

>>> import spacepy.time as spt

>>> import spacepy.empiricals as emp

>>> ticks = spt.tickrange('2002-01-01T12:00:00','2002-01-04T00:00:00"',.25)

>>> emp.getMPstandoff(ticks)

array([10.57319537, 10.91327764, 10.75086873, 10.77577207,
9.78180261, 11.0374474 , 11.4065 , 11.27555451,
11.47988573, 11.8202582 , 11.23834814])

>>> data = {'P': [2,4], 'Bz': [-2.4, -2.4]}

>>> emp.getMPstandoff(data)

array([9.96096838, 8.96790412])

144 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

4.8.6 spacepy.empiricals.getPlasmaPause

spacepy.empiricals.getPlasmaPause (ticks, model="M2002', LT='all', omnivals=None)
Plasmapause location model(s)
CA1992 — Carpenter, D. L., and R. R. Anderson, An ISEE/whistler model of equatorial electron density in the
magnetosphere, J. Geophys. Res., 97, 1097, 1992. M2002 — Moldwin, M. B., L. Downward, H. K. Rassoul,
R. Amin, and R. R. Anderson, A new model of the location of the plasmapause: CRRES results, J. Geophys.
Res., 107(A11), 1339, doi:10.1029/2001JA009211, 2002. RT1970 — Rycroft, M. J., and J. O. Thomas, The

magnetospheric plasmapause and the electron density trough at the alouette i orbit, Planetary and Space Science,
18(1), 65-80, 1970

Parameters

ticks
[spacepy.time.Ticktock] TickTock object of desired times

Lpp_model
[string, optional] ‘CA1992’ or ‘M2002’ (default) CA1992 returns the Carpenter and Ander-
son model, M2002 returns the Moldwin et al. model

LT
[int, float] requested local time sector, ‘all’ is valid option

omnivals
[spacepy.datamodel.SpaceData, dict] dict-like containing UTC (datetimes) and Kp keys

Returns

out
[float] Plasmapause radius in Earth radii

Warns

RuntimeWarning
If the CA1992 model is called with LT as it is not implemented

Examples

>>> import spacepy.time as spt
>>> import spacepy.empiricals as emp
>>> ticks = spt.tickrange('2002-01-01T12:00:00','2002-01-04T00:00:00",.25)
>>> emp.getPlasmaPause(ticks)
array([6.42140002, 6.42140002, 6.42140002, 6.42140002, 6.42140002,
6.42140002, 6.42140002, 6.26859998, 5.772 , 5.6574 ,
5.6574 iD)

4.8. empiricals - module with heliospheric empirical modules 145

SpacePy Documentation, Release 0.4.0

4.8.7 spacepy.empiricals.getSolarProtonSpectra

spacepy.empiricals.getSolarProtonSpectra(norm=32000000.0, gamma=- 0.96, EO=15.0, Emin=0.1,
Emax=600, nsteps=100)

Returns a SpaceData with energy and fluence spectra of solar particle events
The formulation follows that of: Ellison and Ramaty ApJ 298: 400-408, 1985 dJ/dE = K*{-gamma }exp(-E/EQ)

and the defualt values are the 10/16/2003 SEP event of: Mewaldt, R. A., et al. (2005), J. Geophys. Res., 110,
A09S18, doi:10.1029/2005JA011038.

Returns

data
[dm.SpaceData] SpaceData with the energy and fluence values

Other Parameters

norm
[float] Normilization factor for the intensity of the SEP event

gamma
[float] Power law index

E0
[float] Expoential scaling factor

Emin
[float] Minimum energy for fit

Emax
[float] Maximum energy for fit

nsteps
[int] The number of log spaced energy steps to return

4.8.8 spacepy.empiricals.getSolarRotation

spacepy.empiricals.getSolarRotation(ticks, rtype='carrington’, fp=False, reverse=False)

Calculates solar rotation number (Carrington or Bartels) for a given date/time
Parameters

ticks
[spacepy.time.Ticktock or datetime.datetime]

Returns

rnumber
[integer or array] Carrington (or Bartels) rotation number

146 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

4.8.9 spacepy.empiricals.getVampolaOrder

spacepy.empiricals.getVampolaOrder (L)
Empirical lookup of power for sin”n pitch angle model from Vampola (1996)

Vampola, A.L. Outer zone energetic electron environment update, Final Report of ESA/ESTEC/WMA/P.O.
151351, ESA-ESTEC, Noordwijk, The Netherlands, 1996.

Parameters

L
[arraylike or float]

Returns

order
[array] coefficient for sin”n model corresponding to Mcllwain L (computed for OP777)

Examples

Apply Vampola pitch angle model at L=[4, 6.6]

>>> from spacepy.empiricals import vampolaPA, getVampolaOrder
>>> order = getVampolaOrder([4,6.6])
>>> order
array([3.095 , 1.6402])
>>> vampolaPA([3000, 3000], alpha=[45, 90], order=order)
(array([[140.08798878, 192.33572182],

[409.49143136, 339.57417256]]1), [45, 90])

4.8.10 spacepy.empiricals.omniFromDirectionalFlux

spacepy.empiricals.omniFromDirectionalFlux (fluxarr, alphas, norm=True)
Calculate omnidirectional flux [(s cm”2 kev)*-1] from directional flux [(s st cm”"2 keV)”-1] array

J = 2.pi integ(j sin(a) da) If kwarg ‘norm’ is True (default), the omni flux is normalized by 4.pi to make it per
steradian, in line with the PRBEM guidelines

Parameters

fluxarr
[arraylike] Array of directional flux values

alphas
[arraylike] Array of pitch angles corresponding to fluxarr

Returns

omniflux
[float] Omnidirectional flux value

4.8. empiricals - module with heliospheric empirical modules 147

SpacePy Documentation, Release 0.4.0

Examples

Roundtrip from omni flux, to directional flux (Vampola model), integrate to get back to omni flux.

>>> from spacepy.empiricals import vampolaPA, omniFromDirectionalFlux

>>> dir_flux, pa = vampolaPA(3000, alpha=range(0,181,2), order=4)

>>> dir_flux[:10], pa[:10]

(array([0.00000000e+00), 6.64032473e-04, 1.05986545e-02,
5.34380898e-02, 1.67932162e-01, 4.06999226e-01,
8.36427502e-01, 1.53325140e+00, 2.58383611e+00,
4.08170975e+00]1), [0, 2, 4, 6, 8, 10, 12, 14, 16, 18])

>>> omniFromDirectionalFlux(dir_flux, pa, norm=False)

3000.0000008112293

Calculate “spin-averaged” flux, giving answer per steradian

>>> omniFromDirectionalFlux(dir_flux, pa, norm=True)
238.73241470239859

4.8.11 spacepy.empiricals.vampolaPA

spacepy .empiricals.vampolaPA (omniflux, **kwargs)
Pitch angle model of sin”n form

Parameters

omniflux
[arraylike or float] omnidirectional number flux data

order
[integer or float (optional)] order of sin”n functional form for distribution (default=2)

alphas
[arraylike (optional)] pitch angles at which to evaluate the differential number flux (default
is 5 to 90 degrees in 36 steps)

Returns

dnflux
[array] differential number flux corresponding to pitch angles alphas

alphas
[array] pitch angles at which the differential number flux was evaluated

Notes

Directional number flux integrated over pitch angle from O to 90 degrees is a factor of 4*pi lower than omnidi-
rectional number flux.

148 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Examples

Omnidirectional number flux of [3000, 6000]

>>> from spacepy.empiricals import vampolaPA
>>> vampolaPA(3000, alpha=[45, 90])
(array([179.04931098, 358.09862196]), [45, 90])
>>> data, pas = vampolaPA([3000, 6000], alpha=[45, 90])
>>> pas
[45, 90]
>>> data
array([[179.04931098, 358.09862196],
[358.09862196, 716.19724391]])

4.9 igrf - IGRF magnetic field model
International Geomagnetic Reference Field model

This module is intended primarily to support coordinates rather than for direct end use, and the interface is subject
to change.

4.9.1 Classes

IGRFCoefficients([fname]) Read and store IGRF coefficients from data file
IGRF() International Geomagnetic Reference Field model

spacepy.igrf.IGRFCoefficients

class spacepy.igrf.IGRFCoefficients (fname=None)
Read and store IGRF coefficients from data file

Other Parameters

fname
[str, optional] Filename to read from; defaults from the .spacepy data directory.

spacepy.igrf.IGRF

class spacepy.igrf.IGRF

International Geomagnetic Reference Field model

4.9. igrf - IGRF magnetic field model 149

SpacePy Documentation, Release 0.4.0

Notes

New in version 0.3.0.

Methods
calcDipoleAxis() Calculates dipole axis for initialized time.
initialize(time[, limits]) Initialize model state to a particular time.
Data
calcDipoleAxis()

Calculates dipole axis for initialized time.
Populates moment and dipole.

initialize(time, limits='warn")

Initialize model state to a particular time.
Parameters

time
[datetime] Time for which to initialize the model
Other Parameters
limits
[str, optional] Set to warn to warn about out-of-range times (default); any other value to

€ITor.

dipole
Characteristics of dipole (dict).

moment

Dipole moments (dict).

4.10 irbempy - Python interface to IRBEM library

module wrapper for itbem_lib Reference for this library https://sourceforge.net/projects/irbem/ D. Boscher, S. Bour-
darie, P. O’Brien, T. Guild, IRBEM library V4.3, 2004-2008

Most functions in this module use an options list to define the models used and the settings that define the quality level
of the result. The options list is a 5-element list and is defined as follows.

150 Chapter 4. SpacePy Module Reference

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://sourceforge.net/projects/irbem/

SpacePy Documentation, Release 0.4.0

4.10.1 Options

* Istelement: O - don’t compute L* or phi ; 1 - compute L*; 2- compute phi

* 2nd element: 0 - initialize IGRF field once per year (year.5);
n - n is the frequency (in days) starting on January Ist of each year (i.e. if options(2nd element)=15 then
IGRF will be updated on the following days of the year: 1, 15, 30,45 ...)

* 3rd element: resolution to compute L* (0 to 9) where 0 is the recomended value to ensure a
good ratio precision/computation time (i.e. an error of ~2% at L=6). The higher the value the better will
be the precision, the longer will be the computing time. Generally there is not much improvement for
values larger than 4. Note that this parameter defines the integration step (theta) along the field line such
as dtheta=(2pi)/(720*[options(3rd element)+1])

¢ 4th element: resolution to compute L* (0 to 9). The higher the value the better will be
the precision, the longer will be the computing time. It is recommended to use 0 (usually sufficient) unless
L* is not computed on a LEO orbit. For LEO orbit higher values are recommended. Note that this parameter
defines the integration step (phi) along the drift shell such as dphi=(2pi)/(25*[options(4th element)+1])

* Sth element: allows to select an internal magnetic field model (default is set to IGRF)
- 0=1IGRF
— 1 = Eccentric tilted dipole

2 = Jensen&Cain 1960

3 = GSFC 12/66 updated to 1970

4 = User-defined model (Default: Centred dipole + uniform [Dungey open model])

5 = Centred dipole

The routines also require specification of the external magnetic field model. The default is the Tsyganenko 2001 storm-
time model. The external model is always specified using the extMag keyword and the following options exist.

4.10.2 extMag

* ‘0’ = No external field model

* ‘MEAD’ = Mead and Fairfield

* ‘T87SHORT’ = Tsyganenko 1987 short (inner magnetosphere)
* ‘T87LONG’ = Tsyganenko 1987 long (valid in extended tail region)
* ‘T89’ = Tsyganenko 1989

* ‘OPQUIET’ = Olsen-Pfitzer static model for quiet conditions

* ‘OPDYN’ = Olsen-Pfitzer static model for active conditions

* ‘T96’ = Tsyganenko 1996

* ‘OSTA’ = Ostapenko and Maltsev

* ‘TOIQUIET’ = Tsyganenko 2001 model for quiet conditions

* ‘TOISTORM’ = Tsyganenko 2001 model for active conditions
* ‘T05’ = Tsyganenko and Sitnov 2005 model

* ‘ALEX’ = Alexeev model

* “TSO7’ = Tsyganenko and Sitnov 2007 model

4.10. irbempy - Python interface to IRBEM library 151

SpacePy Documentation, Release 0.4.0

Many of these models have limits placed on the valid range of input parameters, and outside these limits invalid (NaN)
values will be returned.

MEAD : Mead & Fairfield [1975] (uses 0<=Kp<=9 - Valid for rtGEO<=17. Re)
T87SHORT: Tsyganenko short [1987] (uses 0<=Kp<=9 - Valid for rtGEO<=30. Re)
T87LONG : Tsyganenko long [1987] (uses 0<=Kp<=9 - Valid for —tGEO<=70. Re)
T89 : Tsyganenko [1989] (uses 0<=Kp<=9 - Valid for rtGEO<=70. Re)

OPQUIET : Olson & Pfitzer quiet [1977] (default - Valid for rtGEO<=15. Re)

OPDYN
[Olson & Pfitzer dynamic [1988] (uses 5.<=dens<=50., 300.<=velo<=500.,] -100.<=Dst<=20. - Valid for
rGEO<=60. Re)

T96
[Tsyganenko [1996] (uses -100.<=Dst (nT)<=20., 0.5<=Pdyn (nPa)<10.,] |IByIMF| (nT)<1=0., |BzIMF]|
(nT)<=10. - Valid for rtGEO<=40. Re)

OSTA
[Ostapenko & Maltsev [1997] (uses dst,Pdyn,BzIMF, Kp)] TOIQUIET: Tsyganenko [2002a,b] (uses
-50.<Dst (nT)<20., 0.5<Pdyn (nPa)<=5., [ByIMF| (nT)<=5., |BzIMF| (nT)<=5., 0.<=Gl<=10.,
0.<=G2<=10. - Valid for xGSM>=-15. Re)

TO1STORM: Tsyganenko, Singer & Kasper [2003] storm (uses Dst, Pdyn, ByIMF, BzIMF, G2, G3 -
there is no upper or lower limit for those inputs - Valid for xGSM>=-15. Re)

TO05
[Tsyganenko & Sitnov [2005] storm (uses Dst, Pdyn, ByIMF, BzIMF,] W1, W2, W3, W4, W5, W6 - no
upper or lower limit for inputs - Valid for xGSM>=-15. Re)

TS07 : Tsyganenko and Sitnov [2007] model. Uses specially calculated coefficient files.

4.10.3 Authors

Josef Koller, Steve Morley

Copyright 2010 Los Alamos National Security, LLC.

This module provides a Python interface to the IRBEM (formerly known as ONERA-DESP) library.

Reference for this library https://github.com/PRBEM/IRBEM
D. Boscher, S. Bourdarie, P. O’Brien, T. Guild, IRBEM library V4.3, 2004-2008

Authors: Josef Koller, Steve Morley

Copyright 2010 Los Alamos National Security, LLC.

152

Chapter 4. SpacePy Module Reference

https://github.com/PRBEM/IRBEM

SpacePy Documentation, Release 0.4.0

get_AEP8(energy, loci[, model, fluxtype, ...])

will return the flux from the AE8-AP8 model

get_Bfield(ticks, loci[, extMag, options, ...])

call get_bfield in irbem lib and return a dictionary with
the B-field vector and strenght.

get_Lm(ticks, loci, alpha[, extMag, intMag, ...])

Return the Macllwain L value for a given location, time
and model

get_Lstar(ticks, loci[, alpha, extMag, ...])

This will call make_lstarl or
make_lstar_shell_splitting_1 from the irbem library and
will lookup omni values for given time if not provided
(optional).

find_Bmirror(ticks, loci, alpha[, extMag, ...

D

call find_mirror_point from irbem library and return a
dictionary with values for Blocal, Bmirr and the GEO
(cartesian) coordinates of the mirror point

find_footpoint(ticks, loci[, extMag, ...])

call find_foot_pointl from irbem library and return a
dictionary with values for Bmin and the GEO (cartesian)
coordinates of the magnetic equator

find_magequator(ticks, loci[, extMag, ...

D

call find_magequator from irbem library and return a
dictionary with values for Bmin and the GEO (cartesian)
coordinates of the magnetic equator

coord_trans(loci, returntype, returncarsph)

thin layer to call coor_trans1 from irbem lib this will con-
vert between systems GDZ, GEO, GSM, GSE, SM, GEI,
MAG, SPH, RLL

get_dtype(sysaxes)

will return the coordinate system type as string

prep_irbem([ticks, loci, alpha, extMag, ...])

Prepare inputs for direct IRBEM-LIB calls.

4.10.4 spacepy.irbempy.get AEP8

spacepy.irbempy.get_AEP8 (energy, loci, model="min’, fluxtype="diff’, particles='e")

will return the flux from the AE8-AP8 model
Parameters

- energy (float)

[center energy in MeV; if fluxtype=RANGE, then needs to be a list [Emin, Emax]]

- loci (Coords)

[a Coords instance with the location inside the magnetosphere] optional instead of a Coords
instance, one can also provide a list with [BBo, L] combination

- model (str)

[MIN or MAX for solar cycle dependence]

- fluxtype (str)

[DIFF, RANGE, INT are possible types]

- particles (str): e or p or electrons or protons

Returns

- float
[flux from AE8/AP8 model]

4.10. irbempy - Python interface to IRBEM library

153

SpacePy Documentation, Release 0.4.0

Examples

>>> spacepy.irbempy.get_aep8()

>>> import spacepy.time as spt

>>> import spacepy.coordinates as spc

>>> import spacepy.irbempy as ib

>>> t = spt.Ticktock(['2017-02-02T12:00:00'], 'ISO")

>>> y = spc.Coords([3,0,0], 'GEO', 'car', use_irbem=True)
>>> y.ticks = t

>>> energy = 1.0 #MeV

>>> ib.get_AEP8(energy, y, model="max"')
1932209.4427359989

4.10.5 spacepy.irbempy.get_Bfield

spacepy.irbempy.get_Bfield(ticks, loci, extMag="TOISTORM', options=[1, 0, 0, 0, 0], omnivals=None)
call get_bfield in irbem lib and return a dictionary with the B-field vector and strenght.

Parameters

- ticks (Ticktock class)
[containing time information]

- loci (Coords class)
[containing spatial information]

- extMag (string)
[optional; will choose the external magnetic field model] possible values [‘0’, ‘MEAD”,
‘T87SHORT’, ‘T87LONG’, ‘T89’, ‘OPQUIET’, ‘OPDYN’, ‘T96’, ‘OSTA’, ‘TOIQUIET’,
‘TOISTORM’, ‘T05’, ‘ALEX’, ‘TS07’]

- options (optional list or array of integers length=5)
[explained in Lstar]

- omni values as dictionary (optional)
[if not provided, will use lookup table]

- (see Lstar documentation for further explanation)
Returns

- results (dictionary)
[containing keys: Bvec, and Blocal]

See also:

get_Lstar, find_Bmirror, find_magequator

154 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Notes

Most parameterized external field models are subject to limits on the valid range of input parameters and will

return NaN if evaluated outside the bounds.

Examples

>>> import spacepy.time as spt
>>> import spacepy.coordinates as spc
>>> import spacepy.irbempy as ib
>>> t = spt.Ticktock(['2002-02-02T12:00:00', '2002-02-02T12:10:00'], 'IS0')
>>> y = spc.Coords([[3,0,0],[2,0,0]], 'GEO', 'car', use_irbem=True)
>>> ib.get_Bfield(t,y)
{'Blocal': array([976.42565251, 3396.25991675]),
'Bvec': array([[-5.01738885e-01, -1.65104338e+02, 9.62365503e+02],
[3.33497974e+02, -5.42111173e+02, 3.33608693e+03]]1)}

4.10.6 spacepy.irbempy.get Lm

spacepy.irbempy.get_Lm(ticks, loci, alpha, extMag="TOISTORM', intMag="IGRF"', IGRFset=0,
omnivals=None)

Return the Macllwain L value for a given location, time and model
Parameters

- ticks (Ticktock class)
[containing time information]

- loci (Coords class)
[containing spatial information]

- alpha (list or ndarray)
[pitch angles in degrees]

- extMag (string)
[optional; will choose the external magnetic field model] possible values [‘0’, ‘MEAD”,
‘T87SHORT’, ‘T87LONG’, ‘T89’, ‘OPQUIET’, ‘OPDYN’, ‘T96’, ‘OSTA’, ‘TOIQUIET’,
‘TOISTORM’, ‘T05’, ‘ALEX’, “TS07’]

- intMag (string)
[optional: select the internal field model] possible values
[‘IGRF’JEDIP’,JC’ GSFC’, DUN’,;CDIP’] For full details see get_Lstar

- omni values as dictionary (optional)
[if not provided, will use lookup table]

Returns

- results (dictionary)
[containing keys: Lm, Bmin, Blocal (or Bmirr), Xj, MLT] if pitch angles provided in “alpha”
then drift shells are calculated and “Bmirr” is returned if not provided, then “Blocal” at
spacecraft is returned. A negative value for Lm indicates the field line is closed but particles
are lost to the atmosphere; the absolute value indicates the L value.

4.10. irbempy - Python interface to IRBEM library

SpacePy Documentation, Release 0.4.0

4.10.7 spacepy.irbempy.get_Lstar

spacepy.irbempy.get_Lstar (ticks, loci, alpha=90, extMag="TOISTORM', options=[1, 0, 0, 0, 0],
omnivals=None, landi2lstar=False)
This will call make_lstarl or make_lstar_shell_splitting_1 from the irbem library and will lookup omni values
for given time if not provided (optional). If pitch angles are provided, drift shell splitting will be calculated
and “Bmirr” will be returned. If they are not provided, then no drift shell splitting is calculated and “Blocal” is
returned.

Parameters

- ticks (Ticktock class)
[containing time information]

- loci (Coords class)
[containing spatial information]

- alpha (list or ndarray)
[optional pitch angles in degrees (default is 90);] if provided will calculate shell splitting;
max 25 values

- extMag (string)
[optional; will choose the external magnetic field model] possible values [‘0’, ‘MEAD”,
‘T87SHORT", ‘T87LONG’, ‘T89’, ‘OPQUIET’, ‘OPDYN’, ‘T96°, ‘OSTA’, ‘TO1QUIET",
‘TO1STORM’, ‘T05’, ‘ALEX", “TS07’]

- options (optional list or array of integers length=5)
[explained below]

- omni values as dictionary (optional)
[if not provided, will use lookup table]

- landi2lstar
[if True, will use the faster landi2lstar routine if possible. This] routine can only be used with
OPQUIET+IGRF magnetic field models.

Returns

- results (dictionary)
[containing keys: Lm, Lstar, Bmin, Blocal (or Bmirr), Xj, MLT] if pitch angles provided in
“alpha” then drift shells are calculated and “Bmirr” is returned if not provided, then “Blo-
cal” at spacecraft is returned. A negative value for Lm indicates the field line is closed but
particles are lost to the atmosphere; the absolute value indicates the L value. A negative
value for Lstar indicates the field line is closed but particles are lost to the atmosphere before
completing a drift orbit; the absolute value indicates the drift shell.

Notes

External Field

* 0: no external field

* MEAD : Mead & Fairfield [1975] (uses 0<=Kp<=9 - Valid for rtGEO<=17. Re)

* T87SHORT: Tsyganenko short [1987] (uses 0<=Kp<=9 - Valid for —tGEO<=30. Re)
T87LONG : Tsyganenko long [1987] (uses 0<=Kp<=9 - Valid for —tGEO<=70. Re)
* T89 : Tsyganenko [1989] (uses 0<=Kp<=9 - Valid for -GEO<=70. Re)

OPQUIET : Olson & Pfitzer quiet [1977] (default - Valid for rtGEO<=15. Re)

156 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

OPDYN
[Olson & Pfitzer dynamic [1988] (uses 5.<=dens<=50., 300.<=velo<=500.,] -100.<=Dst<=20. -
Valid for rGEO<=60. Re)

T96
[Tsyganenko [1996] (uses -100.<=Dst (nT)<=20., 0.5<=Pdyn (nPa)<10.,] abs(ByIMF) (nT)<1=0.,
abs(BzIMF) (nT)<=10. - Valid for rtGEO<=40. Re)

OSTA
[Ostapenko & Maltsev [1997] (uses dst,Pdyn,BzIMF, Kp)] TOIQUIET: Tsyganenko [2002a,b]
(uses -50.<Dst (nT)<20., 0.5<Pdyn (nPa)<=5., abs(ByIMF) (nT)<=5., abs(BzIMF) (nT)<=5.,
0.<=G1<=10., 0.<=G2<=10. - Valid for xGSM>=-15. Re)

TO1STORM: Tsyganenko, Singer & Kasper [2003] storm (uses Dst, Pdyn, ByIMF, BzIMF, G2,
G3-
there is no upper or lower limit for those inputs - Valid for xGSM>=-15. Re)
TO0S
[Tsyganenko & Sitnov [2005] storm (uses Dst, Pdyn, ByIMF, BzIMF,] W1, W2, W3, W4, W5,
W6 - no upper or lower limit for inputs - Valid for xGSM>=-15. Re)

OMNI contents

Options

Kp: value of Kp as in OMNI2 files but has to be double instead of integer type
Dst: Dst index (nT)

dens: Solar Wind density (cm-3)

velo: Solar Wind velocity (km/s)

Pdyn: Solar Wind dynamic pressure (nPa)

ByIMF: GSM y component of IMF mag. field (nT)

BzIMF: GSM z component of IMF mag. field (nT)

G1: G1=< Vsw*(Bperp/40)2/(1+Bperp/40)*sin3(theta/2) > where the <> mean an average over

the
previous 1 hour, Vsw is the solar wind speed, Bperp is the transverse IMF component (GSM) and

theta it’s clock angle.

G2: G2=< a*Vsw*Bs > where the <> mean an average over the previous 1 hour,
Vsw is solar wind speed, Bs=[IMF Bz| when IMF Bz < 0 and Bs=0 when IMF Bz > 0, a=0.005.

G3: G3=< Vsw*Dsw*Bs /2000.> where the <> mean an average over the previous 1 hour,
Vsw is the solar wind speed, Dsw is the solar wind density, Bs=|IMF Bz| when IMF Bz < 0 and
Bs=0 when IMF Bz > 0.

W1 - W6: see definition in JGR-A, v.110(A3), 2005.) (PDF 1.2MB)

AL: the auroral index

Ist element: O - don’t compute L* or phi ; 1 - compute L*; 2- compute phi

2nd element: 0 - initialize IGRF field once per year (year.5);
n - n is the frequency (in days) starting on January 1st of each year (i.e. if options(2nd element)=15
then IGRF will be updated on the following days of the year: 1, 15, 30,45 ...)

3rd element: resolution to compute L* (0 to 9) where 0 is the recomended value to ensure a
good ratio precision/computation time (i.e. an error of ~2% at L=6). The higher the value the
better will be the precision, the longer will be the computing time. Generally there is not much

4.10. irbempy - Python interface to IRBEM library 157

SpacePy Documentation, Release 0.4.0

improvement for values larger than 4. Note that this parameter defines the integration step (theta)
along the field line such as dtheta=(2pi)/(720*[options(3rd element)+1])

¢ 4th element: resolution to compute L* (0 to 9). The higher the value the better will be
the precision, the longer will be the computing time. It is recommended to use O (usually suf-
ficient) unless L* is not computed on a LEO orbit. For LEO orbit higher values are recom-
mended. Note that this parameter defines the integration step (phi) along the drift shell such as
dphi=(2pi)/(25*[options(4th element)+1])

¢ 5th element: allows to select an internal magnetic field model (default is set to IGRF)

- 0=1IGRF

1 = Eccentric tilted dipole
2 = Jensen&Cain 1960
3 = GSFC 12/66 updated to 1970

4 = User-defined model (Default: Centred dipole + uniform [Dungey open model])

5 = Centred dipole

Examples

>>> t Ticktock(['2002-02-02T12:00:00"', '2002-02-02T12:10:00'], 'IS0')
>>> y = Coords([[3,0,0],[2,0,0]], '"GEO', 'car', use_irbem=True)
>>> spacepy.irbempy.Lstar(t,y)
{'Blocal': array([1020.40493286, 3446.08845227]),
'Bmin': array([1019.98404311, 3437.63865243]),
'Lm': array([3.08948304, 2.06022102]),
'Lstar': array([2.97684043, 1.97868577]),
'"MLT': array([23.5728333 , 23.57287944]),
'Xj': array([0.00112884, 0.00286955])}

4.10.8 spacepy.irbempy.find_Bmirror

spacepy.irbempy. find_Bmirror (ticks, loci, alpha, extMag='TO1STORM', options=[1, 0, 0, 0, 0],
omnivals=None)

call find_mirror_point from irbem library and return a dictionary with values for Blocal, Bmirr and the GEO
(cartesian) coordinates of the mirror point

Parameters

ticks
[Ticktock class] containing time information

loci
[Coords class] containing spatial information

alpha
[array-like] containing the pitch angles

extMag
[str] optional; will choose the external magnetic field model possible values [‘0’, ‘MEAD”,
‘T87SHORT’, ‘T87LONG’, ‘T89’, OPQUIET’, ‘OPDYN’, ‘T96’, ‘OSTA’, ‘TOIQUIET",
‘TO1ISTORM’, ‘T0S’, ‘ALEX’, “TS07’]

158 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

options
[array-like (optional)] length=5 : explained in Lstar

omnivals
[dict (optional)] if not provided, will use lookup table (see get_Lstar documentation for fur-
ther explanation)

Returns

results
[dictionary] containing keys: Blocal, Bmirr, GEOcar

See also:

get_Lstar, get_Bfield, find_magequator

Examples

>>> t Ticktock(['2002-02-02T12:00:00"', '2002-02-02T12:10:00'], 'IS0')
>>> y Coords([[3,0,0],[2,0,0]], 'GEO', 'car', use_irbem=True)

>>> ib.find_Bmirror(t,y,[90,80,60,10])

{'Blocal': array([0., 0.]),

'Bmirr': array([0., 0.]),

'loci': Coords([[NaN NaN NaN]

[NaN NaN NaN]]), dtype=GEO,car, units=['Re', 'Re', 'Re']}

4.10.9 spacepy.irbempy.find_footpoint

spacepy.irbempy. find_footpoint (ticks, loci, extMag="TOISTORM', options=[1, 0, 3, 0, 0], hemi="same',
alt=100, omnivals=None)

call find_foot_pointl from irbem library and return a dictionary with values for Bmin and the GEO (cartesian)
coordinates of the magnetic equator

Parameters

- ticks (Ticktock class)
[containing time information]

- loci (Coords class)
[containing spatial information]

- extMag (string)
[optional; will choose the external magnetic field model] possible values [‘0’, ‘MEAD”,
‘T87SHORT’, ‘T87LONG’, ‘T89’, ‘OPQUIET’, ‘OPDYN’, ‘T96’, ‘OSTA’, ‘TOIQUIET’,
‘TOISTORM’, ‘T05’, ‘ALEX’, “TS07’]

- options (optional list or array of integers length=5)
[explained in Lstar]

- omni values as dictionary (optional)
[if not provided, will use lookup table]

- (see Lstar documentation for further explanation)

- hemi (string)
[optional (valid cases are ‘same’, ‘other’, ‘north’ or ‘south’)] will set the target hemisphere
for tracing the footpoint

4.10. irbempy - Python interface to IRBEM library 159

SpacePy Documentation, Release 0.4.0

- alt (numeric)
[optional keyword to set stop height [km] of fieldline trace (default 100km)]

Returns

- results (spacepy.datamodel.SpaceData)
[containing keys] Bfoot - Magnitude of B-field at footpoint [nT] loci - Coords instance with
GDZ coordinates of the magnetic footpoint [alt, lat, lon] Bfootvec - Components of B-field
at footpoint in cartesian GEO coordinates [nT]

See also:

get_Lstar, get_Bfield, find_Bmirr, find_magequator

Examples

>>> t = Ticktock(['2002-02-02T12:00:00"', '2002-02-02T12:10:00'], 'IS0")
>>> y = Coords([[3,0,0],[3,0,0]], 'GEO', 'car', use_irbem=True)
>>> spacepy.irbempy.find_footpoint(t, y)
{'Bfoot': array([47559.04643444, 47542.84688657]),
"Bfootvec': array([[-38428.07217246, 4497.31549786, -27657.19291928],
[-38419.08514332, 4501.45390964, -27641.1486651711),
'loci': Coords([[99.31443778 55.71415787 -10.21888955]
[99.99397026 55.70716296 -10.22797462]]), dtype=GDZ,sph, units=['km', 'deg',
—'deg']}

4.10.10 spacepy.irbempy.find_magequator

spacepy .irbempy. find_magequator (ticks, loci, extMag='"TO1STORM', options=[1, 0, 0, 0, 0], omnivals=None)
call find_magequator from irbem library and return a dictionary with values for Bmin and the GEO (cartesian)
coordinates of the magnetic equator

Parameters

- ticks (Ticktock class)
[containing time information]

- loci (Coords class)
[containing spatial information]

- extMag (string)
[optional; will choose the external magnetic field model] possible values [‘0’, ‘MEAD”,
‘T87SHORT’, ‘T87LONG’, ‘T89’, ‘OPQUIET’, ‘OPDYN’, ‘T96’, ‘OSTA’, ‘TOIQUIET’,
‘TOISTORM’, ‘T05’, ‘ALEX’, “TS07’]

- options (optional list or array of integers length=5)
[explained in Lstar]

- omni values as dictionary (optional)
[if not provided, will use lookup table]

- (see Lstar documentation for further explanation)
Returns

- results (dictionary)
[containing keys: Bmin, Coords instance with GEO coordinates of] the magnetic equator

160 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

See also:

get_Lstar, get_Bfield, find_Bmirr

Examples

>>> t Ticktock(['2002-02-02T12:00:00"', '2002-02-02T12:10:00'], 'IS0')
>>> y = Coords([[3,0,0],[2,0,0]], 'GEO', 'car', use_irbem=True)
>>> op.find_magequator(t,y)
{'Bmin': array([945.63652413, 3373.64496167]),
'loci': Coords([[2.99938371 0.00534151 -0.03213603]
[2.00298822 -0.0073077 0.04584859]]), dtype=GEO,car, units=['Re', 'Re', 'Re
~'1}

4.10.11 spacepy.irbempy.coord_trans

spacepy .irbempy.coord_trans (loci, returntype, returncarsph)

thin layer to call coor_trans] from irbem lib this will convert between systems GDZ, GEO, GSM, GSE, SM,
GEI, MAG, SPH, RLL

Parameters

- loci (Coords instance)
[containing coordinate information, can contain n points]

- returntype (str)
[describing system as GDZ, GEO, GSM, GSE, SM, GEI, MAG, SPH, RLL]

- returncarsph (str)
[cartesian or spherical units ‘car’, ‘sph’]

Returns

- xout (ndarray)
[values after transformation in (n,3) dimensions]

See also:

sph2car, car2sph

Examples

>>> ¢ = Coords([[3,0,0],[2,0,0]], 'GEO', 'car', use_irbem=True)

>>> c.ticks = Ticktock(['2002-02-02T12:00:00', '2002-02-02T12:10:00'], 'IS0")
>>> coord_trans(c, 'GSM', 'car')

array([[2.8639301 , -0.01848784, 0.89306361],

[1.9124434 , 0.07209424, 0.58082929]1])

4.10. irbempy - Python interface to IRBEM library 161

SpacePy Documentation, Release 0.4.0

4.10.12 spacepy.irbempy.get_dtype

spacepy.irbempy.get_dtype (sysaxes)

will return the coordinate system type as string
Parameters

- sysaxes (int)
[number according to the irbem, possible values: 0-8]

Returns

- dtype (str)
[coordinate system GDZ, GEO, GSM, GSE, SM, GEI, MAG, SPH, RLL]

- carsph (str)
[cartesian or spherical ‘car’, ‘sph’]

See also:

get_sysaxes

Examples

>>> get_dtype(3)
('GSE', 'car')

4.10.13 spacepy.irbempy.prep_irbem

spacepy.irbempy.prep_irbem(ticks=None, loci=None, alpha=[], extMag="TOISTORM', options=[1, 0, 0, 0, 0],
omnivals=None)

Prepare inputs for direct IRBEM-LIB calls. Not expected to be called by the user.

4.11 lanlstar - module to calculate Lstar or Lmax using artificial neural
network

Lstar and Lmax calculation using artificial neural network (ANN) technique.
Authors: Steve Morley, Josef Koller, Yiqun Yu, Aaron Hendry Contact: smorley @lanl.gov, yiqunyul7 @ gmail.com
Copyright 2012 Los Alamos National Security, LLC.

LANLstar(inputdict, extMag) Calculate Lstar
LANLmax(inputdict, extMag) Calculate last closed drift shell (Lmax)

162 Chapter 4. SpacePy Module Reference

mailto:smorley@lanl.gov
mailto:yiqunyu17@gmail.com

SpacePy Documentation, Release 0.4.0

4.11.1 spacepy.LANLstar.LANLstar

spacepy.LANLstar.LANLstar (inputdict, extMag)

Calculate Lstar
Based on the L* artificial neural network (ANN) trained from different magnetospheric field models.
Parameters

extMag
[list of string(s)] containing one or more of the following external magnetic field models:
‘OPDYN’, ‘OPQUIET’, “T89’, ‘T96’, ‘TO1QUIET’, “TO1STORM”’, ‘T05’

inputdict
[dictionary]

containing the following keys, each entry is a list or array. Note the keys for the above
models are different.

—For OPDYN: [‘Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘dens’, ‘velo’, ‘BzIMF’, ‘Lm’, ‘Bmirr’,
‘PA’, ‘rGSM’, ‘1atGSM’, ‘lonGSM’]

— For OPQUIET:
[‘Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘dens’, ‘velo’, ‘BzIMF’, ‘Lm’, ‘Bmirr’, ‘PA’, ‘rGSM’,
‘1TatGSM’, ‘lonGSM’]

—For T89: [‘Year’, ‘DOY’, ‘Hr’, ‘Kp’, ‘Pdyn’, ‘ByIMF’, ‘BzIMF’, ‘Lm’, ‘Bmirr’,
‘PA’, ‘rGSM’, ‘1atGSM’, ‘lonGSM’]

— For T96:
[‘Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘Pdyn’, ‘ByIMF’, ‘BzIMF’, ‘Lm’, ‘Bmirr’, ‘PA’, ‘rGSM’,
‘1atGSM’, ‘lonGSM’]
—For TOIQUIET: [“Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘Pdyn’, ‘ByIMF’, ‘BzIMF’, ‘G1’, ‘G2’,
‘Lm’, ‘Bmirr’, ‘PA’, ‘rGSM’, 1atGSM’, ‘lonGSM’]

— For TO1STORM:
[‘Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘Pdyn’, ‘ByIMF’, ‘BzIMF’, ‘G2’, ‘G3’, ‘Lm’, ‘Bmirr’,
‘PA’, ‘tGSM’, ‘1atGSM’, ‘lonGSM’]

—For T0S: [*Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘Pdyn’, ‘ByIMF’, ‘BzIMF,
WITW2 W3 WA WS’ W6, ‘Lim’, ‘Bmirr’, ‘PA’, ‘rGSM’, ‘1atGSM’, ‘lonGSM’]

— For RAMSCB:
[‘Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘Pdyn’, ‘ByIMF’, ‘BzIMF’, ‘PA’, ‘SMx’,’SMy’,’SMz’]
Dictionaries with numpy vectors are allowed.
Returns

out
[dictionary] Lstar array for each key which corresponds to the specified magnetic field model.

4.11. lanlstar - module to calculate Lstar or Lmax using artificial neural network 163

SpacePy Documentation, Release 0.4.0

Examples

>>> import spacepy.LANLstar as LS

>>> inputdict = {}

>>> inputdict['Kp'] = [2.7] # Kp index

>>> inputdict['Dst'] = [7.7777] # Dst index (nT)

>>> inputdict['dens'] = [4.1011] # solar wind density (/cc)

>>> inputdict['velo'] = [400.1011] # solar wind velocity (km/s)

>>> inputdict['Pdyn'] = [4.1011] # solar wind dynamic pressure (nPa)
>>> inputdict['ByIMF'] = [3.7244] # GSM y component of IMF magnetic.
—field (nT)

>>> inputdict['BzIMF'] = [-0.1266] # GSM z component of IMF magnetic.
—field (nT)

>>> inputdict['Gl'"] = [1.029666] # as defined in Tsganenko 2003

>>> inputdict['G2'] = [0.549334]

>>> inputdict['G3'] = [0.813999]

>>> inputdict['Wl'] = [0.122444] # as defined in Tsyganenko and.
—Sitnov 2005

>>> inputdict['W2'] = [0.2514]

>>> inputdict['W3"'] = [0.0892]

>>> inputdict['W4'] = [0.0478]

>>> inputdict['W5'] = [0.2258]

>>> inputdict['W6"] = [1.0461]

>>> # now add date

>>> inputdict['Year'] = [1996]

>>> inputdict['DOY'] = [6]

>>> inputdict['Hr'] = [1.2444]

>>> # and pitch angle, which doesn't come if taking params from OMNI

>>> inputdict['Lm'] = [4.9360] # McIllwain L

>>> inputdict['Bmirr'] = [315.6202] # magnetic field strength at the.
—mirror point

>>> inputdict['rGSM'] = [4.8341] # radial coordinate in GSM [Re]
>>> inputdict['lonGSM'] = [-40.2663] # longitude coodrinate in GSM.

— [deg]

>>> inputdict['latGSM'] = [36.44696] # latitude coordiante in GSM [deg]
>>> inputdict['PA'] = [57.3874] # pitch angle [deg]

>>> inputdict['SMx'] = [3.9783]

>>> inputdict['SMy'] = [-2.51335]

>>> inputdict['SMz'] = [1.106617]

>>> # and then call the neural network

>>> LS.LANLstar(inputdict, ['OPDYN', 'OPQUIET', 'TO1QUIET', 'TO1STORM', 'T89"','T96", 'TO5

]
—

'"RAMSCB'])

{'OPDYN': array([4.7171]),
"OPQUIET': array([4.6673]),
"TOIQUIET': array([4.8427]),
"TOLISTORM': array([4.8669]),
'T89': array([4.5187]),
'T96': array([4.6439]),
'TSO5': array([4.7174]),
'"RAMSCB', 'array([5.9609]1)}

164

Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

4.11.2 spacepy.LANLstar.LANLmax

spacepy.LANLstar.LANLmax (inputdict, extMag)

Calculate last closed drift shell (Lmax)
Based on the L* artificial neural network (ANN) trained from different magnetospheric field models.
Parameters

extMag
[list of string(s)] containing one or more of the following external Magnetic field models:
‘OPDYN’, ‘OPQUIET", “T89’, ‘T9¢’, ‘TO1QUIET’, “TO1STORM’, ‘T05’

inputdict

[dictionary] containing the following keys, each entry is a list or array. Note the keys for the
above models are different.

— For OPDYN:
[“Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘dens’, ‘velo’, ‘BzIMF’, ‘PA’]
- For OPQUIET:
[Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘dens’, ‘velo’, ‘BzIMF’, ‘PA’]
— For T89:
[“Year’, ‘DOY’, ‘Hr’, ‘Kp’, ‘Pdyn’, ‘ByIMF’, ‘BzIMF’, ‘PA’]
— For T96:
[“Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘Pdyn’, ‘ByIMF’, ‘BzIMF’,’PA’]
— For TO1QUIET:
[*Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘Pdyn’, ‘ByIMF’, ‘BzIMF’, ‘G1’, ‘G2’,PA’]
— For TO1STORM:
[*Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘Pdyn’, ‘ByIMF’, ‘BzIMF’, ‘G2’, ‘G3’, ‘PA’]
— For TO05:
[“Year’, ‘DOY’, ‘Hr’, ‘Dst’, ‘Pdyn’, ‘ByIMF’, ‘BzIMF’, ‘W1’ W2’ ’W3’’W4’*W5’’W6’,
APA,]

Dictionaries with numpy vectors are allowed.
Returns

out
[dictionary] Lmax array for each key which corresponds to the specified magnetic field
model.

Examples

>>> import spacepy.LANLstar as LS
>>> inputdict = {}

>>> inputdict['Kp'] = [2.7 Kp index
>>> inputdict['Dst'] = [7.7777 Dst index (nT)
>>> inputdict['dens'] = solar wind density (/cc)

>>> inputdict['velo'] = [400.1011
>>> inputdict['Pdyn'] [4.1011
>>> inputdict['ByIMF'] [3.7244
~field (nT)

>>> inputdict['BzIMF'] [-0.1266]

solar wind velocity (km/s)
solar wind dynamic pressure (nPa)
GSM y component of IMF magnetic.

]
]
[4.1011]
]
]
]

Il
S R I S

H

GSM z component of IMF magnetic.

Stield (ni) (continues on next page)

4.11. lanlstar - module to calculate Lstar or Lmax using artificial neural network 165

SpacePy Documentation, Release 0.4.0

(continued from previous page)

>>> inputdict['G1l'] = [1.029666] # as defined in Tsganenko 2003
>>> inputdict['G2'] = [0.549334]

>>> inputdict['G3'"] = [0.813999]

>>> inputdict['Wl'] = [0.122444] # as defined in Tsyganenko and.
—Sitnov 2005

>>> inputdict['W2'] = [0.2514]

>>> inputdict['W3'] = [0.0892]

>>> inputdict['W4'] = [0.0478]

>>> inputdict['W5'] = [0.2258]

>>> inputdict['W6"'] = [1.0461]

>>> # now add date

>>> inputdict['Year'] = [1996]

>>> inputdict['DOY'] = [6]

>>> inputdict['Hr'] = [1.2444]

>>> # and pitch angle, which doesn't come if taking params from OMNI

>>> inputdict['PA'"] = [57.3874] # pitch angle [deg]

>>> # and then call the neural network
>>> LS.LANLmax(inputdict, ['OPDYN','OPQUIET', 'TO1QUIET', 'TO1STORM','T89"','T96"', 'TO5
')
{'OPDYN': array([10.6278]),
"OPQUIET': array([9.3352]1),
'TOIQUIET': array([10.0538]),
'"TOISTORM': array([9.9300]),
'T89': array([8.2888]),
'T96': array([9.2410]),
'TO5': array([9.9295])}

4.12 omni - module to read and process NASA OMNIWEB data

Tools to read and process omni data (Qin-Denton, etc.)
Authors: Steve Morley, Josef Koller Institution: Los Alamos National Laboratory Contact: smorley @lanl.gov

Copyright 2010-2014 Los Alamos National Security, LLC.

4.12.1 About omni

The omni module primarily manages the hourly OMNI2 and Qin-Denton data, which are sourced from the Virtual
Radiation Belt Observatory (ViRBO), who maintain these data sources. The data can be kept up-to-date in SpacePy
using the update () function in the spacepy. toolbox module.

The OMNI2 data combines data from a variety of satellites that sample the solar wind (notably ACE and Wind), and
propagates the data to Earth’s bow shock nose. The Qin-Denton data is derived from the OMNI2 data and is designed
for providing input to the Tsyganenko magnetic field models. The later Tsyganenko magnetic field models require
subsidiary parameters (G- and W-parameters) that are pre-calculated in the Qin-Denton data. Further, the Qin-Denton
data contains no data gaps — all gaps are filled (for details on the gap filling, see the paper by Qin et al..)

166 Chapter 4. SpacePy Module Reference

mailto:smorley@lanl.gov
http://virbo.org
http://virbo.org/QinDenton
http://dx.doi.org/10.1029/2006SW000296

SpacePy Documentation, Release 0.4.0

4.12.2 Advanced features

Higher resolution data, or custom data sources, can also be managed/accessed with this module, although this is con-
sidered an advanced use for this module. This is achieved using custom names for the dbase keyword in get_omni,
which must be defined in the SpacePy configuration file (for a user-install on linux, this is ~/.spacepy/spacepy.rc; see
SpacePy Configuration). An example of the formatting required is

qd1min: /usr/somedir/QinDenton/YYY Y/QinDenton_YYYYMMDD_ Imin.txt

In this example the custom data source name is qd1min. Wildcard substitutions can be made for the year (YYYY),
month (MM) and day (DD). Future updates will give more flexibility in data storage model, but currently we assume
that all custom data sources follow a convention in which the data files are daily, and the files are organized into folders
by year. The year, month and day must all be specified in the filename.

Currently there are some restrictions on the data format for custom data sources. The stored data must currently be
stored as JSON-headed ASCII. If data conversions are required, then a valid dictionary of conversion functions must
be supplied via the convert keyword argument. See readJ]SONheadedASCII() for details. Additionally, by default
this will interpolate the data to the requested time ticks. To return only the actual recorded data values for the specified
time range set the keyword argument interp to False.

get_omni(ticks[, dbase]) Returns Qin-Denton OMNI values, interpolated to any
time-base from a default hourly resolution
omnirange([dbase]) Returns datetimes giving start and end times in the

OMNI/Qin-Denton data

4.12.3 spacepy.omni.get_omni

spacepy.omni .get_omni (ticks, dbase='QDhourly’, **kwargs)
Returns Qin-Denton OMNI values, interpolated to any time-base from a default hourly resolution
The update function in toolbox retrieves all available hourly Qin-Denton data, and this function accesses that and
interpolates to the given times, returning the OMNI values as a SpaceData (dict-like) with Kp, Dst, dens, velo,

Pdyn, ByIMF, BzIMF, G1, G2, G3, etc. (see also http://www.dartmouth.edu/~rdenton/magpar/index.html and
http://www.agu.org/pubs/crossref/2007/2006SW000296.shtml)

Parameters

ticks
[Ticktock class or array-like of datetimes] time values for desired output

dbase
[str (optional)] Select data source, options are ‘QDhourly’, ‘OMNI2hourly’, ‘Mergedhourly’
Note - Custom data sources can be specified in the spacepy config file as described in the
module documentation.

Returns

out
[spacepy.datamodel.SpaceData] containing all Qin-Denton values at times given by ticks

4.12. omni - module to read and process NASA OMNIWEB data 167

http://www.dartmouth.edu/~rdenton/magpar/index.html
http://www.agu.org/pubs/crossref/2007/2006SW000296.shtml

SpacePy Documentation, Release 0.4.0

Notes

Note about Qbits: If the status variable is 2, the quantity you are using is fairly well determined. If it is 1, the
value has some connection to measured values, but is not directly measured. These values are still better than
just using an average value, but not as good as those with the status variable equal to 2. If the status variable is O,
the quantity is based on average quantities, and the values listed are no better than an average value. The lower
the status variable, the less confident you should be in the value.

Examples

>>> import spacepy.time as spt
>>> import spacepy.omni as om
>>> ticks = spt.Ticktock(['2002-02-02T12:00:00', '2002-02-02T12:10:00'], 'ISO0")
>>> d = om.get_omni(ticks)
>>> d.tree(levels=1)

+

ByIMF

Bzl

Bz2

Bz3

Bz4

Bz5

Bz6

| ____BzIMF

DOY

Dst

Gl

G2

G3

Hr

Kp

| ____Pdyn

| ____Qbits

RDT

UTC

W1

W2

|____W3

W4

W5

W6

| ____Year

| ____akp3

dens

ticks

velo

168

Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

4.12.4 spacepy.omni.omnirange

spacepy.omni.omnirange (dbase='QDhourly")
Returns datetimes giving start and end times in the OMNI/Qin-Denton data

The update function in toolbox retrieves all available hourly Qin-Denton data, and this function accesses that and
looks up the start and end times, returning them as datetime objects.

Parameters

dbase

[string (optional)] name of omni database to check. Currently ‘QDhourly’ and
‘OMNI2hourly’

Returns

omnirange
[tuple] containing two datetimes giving the start and end times of the available data

Examples

>>> import spacepy.omni as om

>>> om.omnirange()

(datetime.datetime(1963, 1, 1, O, 0), datetime.datetime(2011, 11, 30, 23, 0))
>>> om.omnirange(dbase="0MNI2hourly"')

(datetime.datetime(1963, 1, 1, 0, 0), datetime.datetime(2011, 11, 30, 23, 0))

4.13 plot - Plot, various specialized plotting functions and associated
utilities

plot: SpacePy plotting routines

This package aims to make getting publication ready plots easier. It provides classes and functions for different types
of plot (e.g. Spectrogram, levelPlot), for helping make plots more cleanly (e.g. set_target, dual_half circle), and for
making plots convey information more cleanly, with less effort (e.g. applySmartTimeTicks, style).

This plot module now provides style sheets. For most standard plotting we recommend the default style sheet (aka
spacepy). To auto-apply the default plot style the following should be added to your spacepy.rc file:

apply_plot_styles: True

Different plot types may not work well with this style, so we have provided alternatives. For polar plots, spectrograms,
or anything with larger blocks of color, it may be better to use one of the alternatives:

import spacepy.plot as splot

splot.style('altgrid') # inverts background from default so it's white
splot.style('polar') # designed for filled polar plots
splot.revert_style() # put the style back to matplotlib defaults

Authors: Brian Larsen and Steve Morley Institution: Los Alamos National Laboratory Contact: balarsen @lanl.gov

Copyright 2011-2016 Los Alamos National Security, LLC.

4.13. plot - Plot, various specialized plotting functions and associated utilities 169

mailto:balarsen@lanl.gov

SpacePy Documentation, Release 0.4.0

add_logo(img[, fig, pos, margin])

Add an image (logo) to one corner of a plot.

annotate_xaxis(txt[, ax])

Write text in-line and to the right of the x-axis tick labels

applySmartTimeTicks(ax, time[, dolimit, dolabel])

Given an axis ax and a list/array of datetime objects,
time, use the smartTimeTicks function to build smart
time ticks and then immediately apply them to the given
axis.

available([returnvals])

List the available plot styles provided by spacepy.plot

collapse_vertical(combine[, others, leave_axis])

Collapse the vertical spacing between two or more sub-
plots.

dual_half_circle([center, radius, ...])

Plot two half circles to a plot with the specified face col-
ors and rotation.

levelPlot(data[, var, time, levels, target, ...])

Draw a step-plot with up to 5 levels following a color
cycle (e.g.

plot(*args, **kwargs)

Convenience wrapper for matplotlib's plot function

revert_style()

Revert plot style settings to those in use prior to import-
ing spacepy.plot

set_target(target[, figsize, loc, polar])

Given a target on which to plot a figure, determine if that
target is None or a matplotlib figure or axes object.

shared_ylabel(axes, txt, *args, **kwargs)

Create a ylabel that spans several subplots

solarRotationPlot(ticks, data[, targ_ax, ...])

Plots a 1-D time series as a Carrington or Bartels plot

Spectrogram(data, **kwargs)

This class rebins data to produce a 2D data map that can
be plotted as a spectrogram

style([look, cmap])

Apply SpacePy's matplotlib style settings from a known
style sheet.

timestamp([position, size, draw, strnow, ...])

print a timestamp on the current plot, vertical lower right

add_arrows(lines|, n, size, style, ...])

Add directional arrows along a plotted line.

4.13.1 spacepy.plot.add_logo

spacepy.plot.add_logo (img, fig=None, pos='br', margin=0.05)

Add an image (logo) to one corner of a plot.

The provided image will be placed in a corner of the plot and sized to maintain its aspect ratio and be as large as
possible without overlapping any existing elements of the figure. Thus this should be the last call in constructing

a figure.
Parameters

img

[str or numpy.ndarray] The image to place on the figure. If a string, assumed to be a filename
to be read with imread(); if a numpy array, assumed to be the image itself (in a simliar

format).
Returns

(axes, axesimg)

[tuple of Axes and AxesImage] The Axes object created to hold the iamge, and the

AxesImage object for the image itself.

Other Parameters

fig

[matplotlib.figure.Figure] The figure on which to place the logo; if not specified, the gcf ()

function will be used.

170

Chapter 4. SpacePy Module Reference

https://matplotlib.org/stable/api/image_api.html#matplotlib.image.imread
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/image_api.html#matplotlib.image.AxesImage
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.gcf.html#matplotlib.pyplot.gcf

SpacePy Documentation, Release 0.4.0

pos
[str] The position to place the logo. br: bottom right; bl: bottom left; tl: top left; tr: top right

margin
[float] Margin to include on each side of figure, as a fraction of the larger dimension of the
figure (width or height). Default is 0.05 (5%).

Notes

Calls draw () to ensure locations are up to date.

Examples

>>> import spacepy.plot.utils

>>> import matplotlib.pyplot as plt

>>> fig = plt.figure()

>>> ax® = fig.add_subplot(211)

>>> ax0®.plot([1, 2, 31, [1, 2, 1])
[<matplotlib.lines.Line2D at 0x00000000>]
>>> axl = fig.add_subplot(212)

>>> axl.plot([1, 2, 31, [2, 1, 2])
[<matplotlib.lines.Line2D at 0x00000000>]
>>> spacepy.plot.utils.add_logo('logo.png', fig)
(<matplotlib.axes.Axes at 0x00000000>,
<matplotlib.image.AxesImage at 0x00000000>)

4.13.2 spacepy.plot.annotate_xaxis

spacepy.plot.annotate_xaxis (#xt, ax=None)
Write text in-line and to the right of the x-axis tick labels

Annotates the x axis of an Axes object with text placed in-line with the tick labels and immediately to the right
of the last label. This is formatted to match the existing tick marks.

Parameters

txt
[str] The annotation text.

Returns

out
[matplotlib.text. Text] The Text object for the annotation.

Other Parameters

ax
[matplotlib.axes.Axes] The axes to annotate; if not specified, the gca() function will be
used.

4.13. plot - Plot, various specialized plotting functions and associated utilities 171

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.draw.html#matplotlib.pyplot.draw
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/text_api.html#matplotlib.text.Text
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.gca.html#matplotlib.pyplot.gca

SpacePy Documentation, Release 0.4.0

Notes

The annotation is placed immediately to the right of the last tick label. Generally the first character of txt should

be a space to allow some room.

Calls draw () to ensure tick marker locations are up to date.

Examples

>>> import spacepy.plot.utils
>>> import matplotlib.pyplot as plt
>>> import datetime

>>> times = [datetime.datetime(2010, 1, 1) + datetime.timedeltaChours=i)

. for i in range(®, 48, 3)]
>>> plt.plot(times, range(16))
[<matplotlib.lines.Line2D object at 0x0000000>]

>>> spacepy.plot.utils.annotate_xaxis(' UT') #mark that times are UT

<matplotlib.text.Text object at 0x0000000>

14 -

12 A

10 A

o_

01-01 0001-01 0601-01 1201-01 1801-02 0001-02 0601-02 1201-02 18 UT

172

Chapter 4. SpacePy Module Reference

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.draw.html#matplotlib.pyplot.draw

SpacePy Documentation, Release 0.4.0

4.13.3 spacepy.plot.applySmartTimeTicks

spacepy.plot.applySmartTimeTicks (ax, time, dolimit=True, dolabel=False)

Given an axis ax and a list/array of datetime objects, time, use the smartTimeTicks function to build smart time
ticks and then immediately apply them to the given axis. The first and last elements of the time list will be used
as bounds for the x-axis range.

The range of the time input value will be used to set the limits of the x-axis as well. Set kwarg ‘dolimit’ to False
to override this behavior.

Parameters

ax
[matplotlib.pyplot.Axes] A matplotlib Axis object.

time
[list] list of datetime objects

dolimit
[boolean (optional)] The range of the #ime input value will be used to set the limits of the
x-axis as well. Setting this overrides this behavior.

dolabel
[boolean (optional)] Sets autolabeling of the time axis with “Time from” time[0]

See also:

smartTimeTicks

4.13.4 spacepy.plot.available

spacepy.plot.available (returnvals=False)
List the available plot styles provided by spacepy.plot

Note that some of the available styles have multiple aliases. To apply an available style, use spacepy.plot.style.

4.13.5 spacepy.plot.collapse_vertical

spacepy.plot.collapse_vertical (combine, others=(), leave_axis=False)

Collapse the vertical spacing between two or more subplots.

Useful for a multi-panel plot where most subplots should have space between them but several adjacent ones
should not (i.e., appear as a single plot.) This function will remove all the vertical space between the subplots
listed in combine and redistribute the space between all of the subplots in both combine and others in propor-
tion to their current size, so that the relative size of the subplots does not change.

Parameters

combine
[sequence] The Axes objects (i.e. subplots) which should be placed together with no vertical
space.

Other Parameters

others
[sequence] The Axes objects (i.e. subplots) which will keep their vertical spacing, but will
be expanded with the space taken away from between the elements of combine.

4.13. plot - Plot, various specialized plotting functions and associated utilities 173

https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes

SpacePy Documentation, Release 0.4.0

leave_axis
[bool] If set to true, will leave the axis lines and tick marks between the collapsed subplots.
By default, the axis line (“spine”) is removed so the two subplots appear as one.

Notes

This function can be fairly fragile and should only be used for fairly simple layouts, e.g., a one-column multi-row
plot stack.

This may require some clean-up of the y axis labels, as they are likely to overlap.

Examples

>>> import spacepy.plot.utils

>>> import matplotlib.pyplot as plt

>>> fig = plt.figure()

>>> #Make three stacked subplots

>>> ax0® = fig.add_subplot(311)

>>> axl = fig.add_subplot(312)

>>> ax2 = fig.add_subplot(313)

>>> ax®.plot([1, 2, 3], [1, 2, 1]) #just make some lines
[<matplotlib.lines.Line2D object at 0x0000000>]

>>> axl.plot([1, 2, 31, [1, 2, 1]1)
[<matplotlib.lines.Line2D object at 0x0000000>]

>>> ax2.plot([1, 2, 31, [1, 2, 11)
[<matplotlib.lines.Line2D object at 0x0000000>]

>>> #Collapse space between top two plots, leave bottom one alone
>>> spacepy.plot.utils.collapse_vertical([ax®, axl1], [ax2])

4.13.6 spacepy.plot.dual_half_circle

spacepy.plot.dual_half_circle(center=(0, 0), radius=1.0, sun_direction="right', ax=None, colors=('w’', 'k'),
**kwargs)
Plot two half circles to a plot with the specified face colors and rotation. This is normal to use to denote the sun
direction in magnetospheric science plots.

Returns

out
[tuple] Tuple of the two wedge objects

Other Parameters

center
[array-like, 2 elements] Center in data coordinates of the circles, default (0,0)

radius
[float] Radius of the circles, defualt 1.0

sun_direction
[string or float] The rotation direction of the first (white) circle. Options are [‘down’, ‘down
right’, ‘right’, ‘up left’, ‘up right’, ‘up’, ‘down left’, ‘left’] or an angle in degrees counter-
clockwise from up. Default right.

174 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

2.0 A

1.5 A

1.5 4

1.0 -

1.00 1.25 1.50 1.75 200 225 250 275 3.00

2.0 A

1.5 A

1.0 -

1.00 1.25 1.50 1.75 2.00 225 250 275 3.00

4.13. plot - Plot, various specialized plotting functions and associated utilities 175

SpacePy Documentation, Release 0.4.0

ax
[matplotlib.axes] Axis to plot the circles on.

colors
[array-like, 2 elements] The two colors for the circle fill. The First number is the light and
second is the dark.

**kwargs
[other keywords] Other keywords to pass to matplotlib.patches. Wedge

Examples

>>> import spacepy.plot
>>> spacepy.plot.dual_half circle()

4.13.7 spacepy.plot.levelPlot

spacepy.plot.levelPlot (data, var=None, time=None, levels=(3, 5), target=None, colors=None, **kwargs)
Draw a step-plot with up to 5 levels following a color cycle (e.g. Kp index “stoplight™)

Parameters

data
[array-like, or dict-like] Data for plotting. If dict-like, the key providing an array-like to plot
must be given to var keyword argument.

Returns

binned
[tuple] Tuple of the binned data and bins

Other Parameters

var
[string] Name of key in dict-like input that contains data

time
[array-like or string] Name of key in dict-like that contains time, or arraylike of datetimes
levels

[array-like, up to 5 levels] Breaks between levels in data that should be shown as distinct
colors

target
[figure or axes] Target axes or figure window

colors
[array-like] Colors to use for the color sequence (if insufficient colors, will use as a cycle)

**kwargs
[other keywords] Other keywords to pass to spacepy.toolbox.binHisto

176 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Examples

>>> import spacepy.plot as splot

>>> import spacepy.time as spt

>>> import spacepy.omni as om

>>> tt = spt.tickrange('2012/09/28','2012/10/2"', 3/24.)

>>> omni = om.get_omni(tt)

>>> splot.levelPlot(omni, var='Kp', time='UTC', colors=['seagreen', 'orange',
—'crimson'])

4.13.8 spacepy.plot.plot

spacepy.plot.plot(*args, **kwargs)
Convenience wrapper for matplotlib’s plot function

As with matplotlib’s plot function, args is a variable length argument, allowing for multiple x, y pairs, each with
optional format string. For full details, see matplotlib.pyplot.plot

Other Parameters

smartTimeTicks
[boolean] If True then use applySmartTimeTicks to set x-axis labeling

figsize
[array-like, 2 elements] Set figure size directly on call to plot, (width, height)

**kwargs
[other keywords] Other keywords to pass to matplotlib.pyplot.plot

4.13.9 spacepy.plot.revert_style

spacepy.plot.revert_style()
Revert plot style settings to those in use prior to importing spacepy.plot

4.13.10 spacepy.plot.set_target

spacepy.plot.set_target (target, figsize=None, loc=None, polar=False)

Given a target on which to plot a figure, determine if that farget is None or a matplotlib figure or axes object.
Based on the type of target, a figure and/or axes will be either located or generated. Both the figure and axes
objects are returned to the caller for further manipulation. This is used in nearly all add_plot-type methods.

Parameters

target
[object] The object on which plotting will happen.

Returns

fig
[object] A matplotlib figure object on which to plot.

ax
[object] A matplotlib subplot object on which to plot.

Other Parameters

4.13. plot - Plot, various specialized plotting functions and associated utilities 177

SpacePy Documentation, Release 0.4.0

figsize
[tuple] A two-item tuple/list giving the dimensions of the figure, in inches. Defaults to Mat-
plotlib defaults.

loc
[integer] The subplot triple that specifies the location of the axes object. Defaults to mat-

plotlib default (111).

polar
[bool] Set the axes object to polar coodinates. Defaults to False.

Examples

>>> import matplotlib.pyplot as plt

>>> from spacepy.pybats import set_target
>>> fig = plt.figure()

>>> fig, ax = set_target(target=fig, loc=211)

4.13.11 spacepy.plot.shared_ylabel

spacepy.plot.shared_ylabel (axes, txt, *args, **kwargs)
Create a ylabel that spans several subplots

Useful for a multi-panel plot where several subplots have the same units/quantities on the y axis.
Parameters

axes
[list] The Axes objects (i.e. subplots) which should share a single label

txt
[str] The label to place in the middle of all the axes objects.

Returns

out
[matplotlib.text. Text] The Text object for the label.

Other Parameters

Additional arguments and keywords are passed through to
:meth:"~matplotlib.axes.Axes.set_ylabel

Notes

This function can be fairly fragile and should only be used for fairly simple layouts, e.g., a one-column multi-row
plot stack.

The label is associated with the bottommost subplot in axes.

178 Chapter 4. SpacePy Module Reference

https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/text_api.html#matplotlib.text.Text

SpacePy Documentation, Release 0.4.0

Examples

>>> import spacepy.plot.utils

>>> import matplotlib.pyplot as plt

>>> fig = plt.figure(Q)

>>> #Make three stacked subplots

>>> ax0® = fig.add_subplot(311)

>>> axl = fig.add_subplot(312)

>>> ax2 = fig.add_subplot(313)

>>> ax0.plot([1, 2, 3], [1, 2, 1]) #just make some lines

[<matplotlib.lines.Line2D object at 0x0000000>]

>>> axl.plot([1, 2, 31, [1, 2, 11)

[<matplotlib.lines.Line2D object at 0x0000000>]

>>> ax2.plot([1, 2, 31, [1, 2, 1D)

[<matplotlib.lines.Line2D object at 0x0000000>]

>>> #(Create a green label across all three axes

>>> spacepy.plot.utils.shared_ylabel([ax®, axl, ax2],
'this is a very long label that spans all three axes', color='g')

4.13.12 spacepy.plot.solarRotationPlot

spacepy.plot.solarRotationPlot (ticks, data, targ_ax=None, rtype='bartels’, nbins=27)

Plots a 1-D time series as a Carrington or Bartels plot

4.13.13 spacepy.plot.Spectrogram

spacepy.plot.Spectrogram(data, **kwargs)

This class rebins data to produce a 2D data map that can be plotted as a spectrogram

[T}

It is meant to be used on arbitrary data series. The first series “x” is plotted on the abscissa and second series

“y” is plotted on the ordinate and the third series “z” is plotted in color.
The series are not passed in independently but instead inside a SpaceData container.
Parameters

data

[SpaceData] The data for the spectrogram, the variables to be used default to “Epoch” for
X, “Energy” for y, and “Flux” for z. Other names are specified using the ‘variables’ keyword.

All keywords override .attrs contents.
Other Parameters

variables

[list] keyword containing the names of the variables to use for the spectrogram the list is a

list of the SpaceData keys in x, y, z, order

bins

[list] if the name “bins” is not specified in the .attrs of the dmarray variable this specifies the

bins for each variable in a [[xbins], [ybins]] format

xlim

[list] if the name “lim” is not specified in the .attrs of the dmarray variable this specifies the

limit for the x variable [xlow, xhigh]

4.13. plot - Plot, various specialized plotting functions and associated utilities

179

SpacePy Documentation, Release 0.4.0

ylim
[list] if the name “lim” is not specified in the .attrs of the dmarray variable this specifies the
limit for the y variable [ylow, yhigh]

zlim
[list] if the name “lim” is not specified in the .attrs of the dmarray variable this specifies the
limit for the z variable [zlow, zhigh]

extended_out
[bool (optional)] if this is True add more information to the output data model (default True)

Notes

Helper routines are planned to facilitate the creation of the SpaceData container if the data are not in the format.

Examples

>>> import spacepy.datamodel as dm

>>> import numpy as np

>>> import spacepy.plot as splot

>>> sd = dm.SpaceData()

>>> sd['radius'] = dm.dmarray(2*np.sin(np.linspace(0,30,500))+4, attrs={'units':'km
-'P

>>> sd['day_of_year'] = dm.dmarray(np.linspace(74,77,500))

>>> sd['1D_dataset'] = dm.dmarray(np.random.normal(10,3,500)*sd['radius'])

>>> spec = splot.Spectrogram(sd, variables=['day_of_year', 'radius', '1D_dataset'])
>>> ax = spec.plot()

plot([target, loc, figsize]) Plot the spectrogram

4.13.14 spacepy.plot.style

spacepy.plot.style(look=None, cmap="plasma")
Apply SpacePy’s matplotlib style settings from a known style sheet.

Parameters

look
[str]

Name of style. For a list of available style names, see “spacepy.plot.available’.

4.13.15 spacepy.plot.timestamp

spacepy.plot.timestamp (position=(1.003, 0.01), size="xx-small', draw=True, strnow=None, rotation="vertical',
ax=None, **kwargs)

print a timestamp on the current plot, vertical lower right
Parameters

position
[list] position for the timestamp

180 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

size
[string (optional)] text size

draw
[Boolean (optional)] call draw to make sure it appears

kwargs
[keywords] other keywords to axis.annotate

Examples

>>> import spacepy.plot.utils

>>> from pylab import plot, arange

>>> plot(arange(11))

[<matplotlib.lines.Line2D object at 0x49072b0>]
>>> spacepy.plot.utils.timestamp()

4.13.16 spacepy.plot.add_arrows

spacepy.plot.add_arrows (lines, n=3, size=12, style="->', dorestrict=False, positions=False)
Add directional arrows along a plotted line. Useful for plotting flow lines, magnetic field lines, or other directional
traces.

lines can be either Line2D, a list or tuple of lines, or a LineCollection object.

For each line, arrows will be added using annotate(). Arrows will be spread evenly over the line using the
number of points in the line as the metric for spacing. For example, if a line has 120 points and 3 arrows are
requested, an arrow will be added at point number 30, 60, and 90. Arrow color and alpha is obtained from the
parent line.

Parameters

lines
[Line2D, alist/tuple, or LineCollection] A single line or group of lines on which to place
the arrows. Arrows inherent color and transparency (alpha) from the line on which they are
placed.

Returns
None
Other Parameters

n
[integer] Number of arrows to add to each line; defaults to 3.

size
[integer] The size of the arrows in points. Defaults to 12.

style
[string] Set the style of the arrow via ArrowStyle, e.g. ‘->’ (default) or *-[>’

dorestrict
[boolean] If True (default), only points along the line within the current limits of the axes
will be considered when distributing arrows.

positions
[Nx2 array] N must be the number of lines provided via the argument lines. If provided, only

4.13. plot - Plot, various specialized plotting functions and associated utilities 181

https://matplotlib.org/stable/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D
https://matplotlib.org/stable/api/collections_api.html#matplotlib.collections.LineCollection
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.annotate.html#matplotlib.axes.Axes.annotate
https://matplotlib.org/stable/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D
https://matplotlib.org/stable/api/collections_api.html#matplotlib.collections.LineCollection
https://matplotlib.org/stable/api/_as_gen/matplotlib.patches.ArrowStyle.html#matplotlib.patches.ArrowStyle

SpacePy Documentation, Release 0.4.0

one arrow will be placed per line. positions sets the explicit location of each arrow for each
line as X-Y space in Axes coordinates.

Notes

The algorithm works by dividing the line in to n*+1 segments and placing an arrow between each segment,
endpoints excluded. Arrows span the shortest distance possible, i.e., two adjacent points along a line. For lines
that are long spatially but sparse in points, the arrows will have long tails that may extend beyond axes bounds.
For explicit positions, the arrow is placed at the point on the curve closest to that position and the exact position
is not always attainable. A maximum number of arrows equal to one-half of the number of points in a line per
line will be created, so not all lines will receive *n arrows.

Examples

>>> import matplotlib.pyplot as plt
>>> import numpy as np

>>> x = np.arange(l, 10, .01)

>>> y = np.sin(x)

>>> line = plt.plot(x,y)

>>> add_arrows(line, n=15, style='-[>")

Most of the functionality in the plot module is made available directly through the plor namespace. However, the plot
module does contain several submodules listed below

carrington Module for plotting data by Carrington or Bartels rota-
tion

spectrogram Create and plot generic 'spectrograms' for space science.

utils Utility routines for plotting and related activities

4.13.17 spacepy.plot.carrington

Module for plotting data by Carrington or Bartels rotation

Authors: Steve Morley Institution: Los Alamos National Laboratory Contact: smorley @lanl.gov Los Alamos National
Laboratory

Copyright 2011-2015 Los Alamos National Security, LLC.

4.13.18 spacepy.plot.spectrogram

Create and plot generic ‘spectrograms’ for space science. This is not a signal processing routine and does not apply
Fourier transforms (or similar) to the data. The functionality provided here is the binning (and averaging) of multi-
dimensional to provide a 2D output map of some quantity as a function of two parameters. An example would be
particle data from a satellite mission: electron flux, at a given energy, can be binned as a function of both time and
Mcllwain L, then plotted as a 2D color-map, colloquially known as a spectrogram.

In many other settings ‘spectrogram’ refers to a transform of data from the time domain to the frequency domain,
and the subsequent plotting of some quantity (e.g., power spectral density) as a function of time and frequency. To
approximate this functionality for, e.g., time-series magnetic field data you would first calculate a the power spectral
density and then use Spectrogram to rebin the data for visualization.

182 Chapter 4. SpacePy Module Reference

mailto:smorley@lanl.gov

SpacePy Documentation, Release 0.4.0

Authors: Brian Larsen and Steve Morley Institution: Los Alamos National Laboratory Contact: balarsen@lanl.gov,
smorley @lanl.gov Los Alamos National Laboratory

Copyright 2011 Los Alamos National Security, LLC.

Class

Spectrogram(data, **kwargs) This class rebins data to produce a 2D data map that can
be plotted as a spectrogram

spacepy.plot.spectrogram.Spectrogram

class spacepy.plot.spectrogram.Spectrogram(data, **kwargs)

This class rebins data to produce a 2D data map that can be plotted as a spectrogram

[T}

It is meant to be used on arbitrary data series. The first series “x” is plotted on the abscissa and second series

[T} €,

y” is plotted on the ordinate and the third series “z” is plotted in color.
The series are not passed in independently but instead inside a SpaceData container.
Parameters

data
[SpaceData] The data for the spectrogram, the variables to be used default to “Epoch” for
x, “Energy” for y, and “Flux” for z. Other names are specified using the ‘variables’ keyword.
All keywords override .attrs contents.

Other Parameters

variables
[list] keyword containing the names of the variables to use for the spectrogram the list is a
list of the SpaceData keys in X, y, z, order

bins
[list] if the name “bins” is not specified in the .attrs of the dmarray variable this specifies the
bins for each variable in a [[xbins], [ybins]] format

xlim
[list] if the name “lim” is not specified in the .attrs of the dmarray variable this specifies the
limit for the x variable [xlow, xhigh]

ylim
[list] if the name “lim” is not specified in the .attrs of the dmarray variable this specifies the
limit for the y variable [ylow, yhigh]

zlim
[list] if the name “lim” is not specified in the .attrs of the dmarray variable this specifies the
limit for the z variable [zlow, zhigh]

extended_out
[bool (optional)] if this is True add more information to the output data model (default True)

4.13. plot - Plot, various specialized plotting functions and associated utilities 183

mailto:balarsen@lanl.gov
mailto:smorley@lanl.gov

SpacePy Documentation, Release 0.4.0

Notes

Helper routines are planned to facilitate the creation of the SpaceData container if the data are not in the format.

Examples

>>> import spacepy.datamodel as dm

>>> import numpy as np

>>> import spacepy.plot as splot

>>> sd = dm.SpaceData()

>>> sd['radius'] = dm.dmarray(2*np.sin(np.linspace(0,30,500))+4, attrs={'units':'km
'

>>> sd['day_of_year'] = dm.dmarray(np.linspace(74,77,500))

>>> sd['1D_dataset'] = dm.dmarray(np.random.normal(10,3,500)*sd['radius'])

>>> spec = splot.Spectrogram(sd, variables=['day_of_year', 'radius', '1D_dataset'])
>>> ax = spec.plot()

plot([target, loc, figsize]) Plot the spectrogram

plot (target=None, loc=111, figsize=None, **kwargs)
Plot the spectrogram

Other Parameters

title
[str] plot title (default)

xlabel
[str] x axis label (default ")

ylabel
[str] y axis label (default)

colorbar_label
[str] colorbar label (default “*)

DateFormatter
[matplotlib.dates.DateFormatter] The formatting to use on the dates on the x-axis (default
matplotlib.dates.DateFormatter(“%d %b %Y”’))

zlog
[bool] plot the z variable on a log scale (default True)

cmap
[matplotlib Colormap] colormap instance to use

colorbar
[bool] plot the colorbar (default True)

axis
[matplotlib axis object] axis to plot the spectrogram to

zlim
[np.array] array like 2 element that overrides (interior) the spectrogram zlim (default Spec-
trogram.specSettings[‘zlim’])

figsize
[tuple (optional)] tuple of size to pass to figure(), None does the default

184

Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Function

simpleSpectrogram(*args, **kwargs) Plot a spectrogram given Z or X,Y,Z.

spacepy.plot.spectrogram.simpleSpectrogram

spacepy.plot.spectrogram.simpleSpectrogram(*args, **kwargs)

Plot a spectrogram given Z or X,Y,Z. This is a wrapper around pcolormesh() that can handle Y being a 2d array
of time dependent bins. Like in the Van Allen Probes HOPE and MagFEIS data files.

Parameters

*args
[1 or 3 arraylike] Call Signatures:

simpleSpectrogram(Z, **kwargs) simpleSpectrogram(X, Y, Z, **kwargs)
Returns

ax
[matplotlib.axes._subplots. AxesSubplot] Matplotlib axes object that the plot is on

Other Parameters

zlog
[bool] Plot the color with a log colorbar (default: True)

ylog
[bool] Plot the Y axis with a log scale (default: True)

alpha
[scalar (0-1)] The alpha blending value (default: None)

cmap

[string] The name of the colormap to use (default: system default)
vmin

[float] Minimum color value (default: Z.min(), if log non-zero min)

vmax
[float] Maximum color value (default: Z.max())

ax
[matplotlib.axes] Axes to plot the spectrogram on (default: None - new axes)

cb
[bool] Plot a colorbar (default: True)

chtitle
[string] Label to go on the colorbar (default: None)

4.13. plot - Plot, various specialized plotting functions and associated utilities 185

SpacePy Documentation, Release 0.4.0

4.13.19 spacepy.plot.utils

Utility routines for plotting and related activities

Authors: Jonathan Niehof, Steven Morley, Daniel Welling
Institution: Los Alamos National Laboratory

Contact: jnichof@lanl.gov

Copyright 2012-2014 Los Alamos National Security, LLC.

Classes

EventClicker([ax, n_phases, interval, ...]) Presents a provided figure (normally a time series) and
provides an interface to mark events shown in the plot.

spacepy.plot.utils.EventClicker

class spacepy.plot.utils.EventClicker (ax=None, n_phases=1, interval=None, auto_interval=None,
auto_scale=True, ymin=None, ymax=None, line=None)

Presents a provided figure (normally a time series) and provides an interface to mark events shown in the plot.
The user interface is explained in analyze () and results are returned by get_events()

Other Parameters

ax
[maplotlib.axes.AxesSubplot] The subplot to display and grab data from. If not provided,
the current subplot is grabbed from gca() (Lookup of the current subplot is done when
analyze() is called.)

n_phases
[int (optional, default 1)] number of phases to an event, i.e. number of subevents to mark.
E.g. for a storm where one wants the onset and the minimum, set n_phases to 2 and double
click on the onset, then minimum, and then the next double-click will be onset of the next
storm.

interval
[(optional)] Size of the X window to show. This should be in units that can be added
to/subtracted from individual elements of x (e.g. timedelta if x is a series of datetime.)
Defaults to showing the entire plot.

auto_interval
[boolean (optional)] Automatically adjust interval based on the average distance between
selected events. Default is True if interval is not specified; False if interval is specified.

auto_scale
[boolean (optional, default True):] Automatically adjust the Y axis to match the data as the
X axis is panned.

ymin
[(optional, default None)] If auto_scale is True, the bottom of the autoscaled Y axis will never
be above ymin (i.e. ymin will always be shown on the plot). This prevents the autoscaling
from blowing up very small features in mostly flat portions of the plot. The user can still
manually zoom in past this point. The autoscaler will always zoom out to show the data.

186 Chapter 4. SpacePy Module Reference

mailto:jniehof@lanl.gov

SpacePy Documentation, Release 0.4.0

ymax
[(optional, default None)] Similar to ymin, but the top of the Y axis will never be below
ymax.

line
[matplotlib.lines.Line2D (optional)] Specify the matplotlib line object to use for autoscaling

the Y axis. If this is not specified, the first line object on the provided subplot will be used.
This should usually be correct.

Examples

>>> import spacepy.plot.utils
>>> import numpy
>>> import matplotlib.pyplot as plt
>>> X = numpy.arange(630) / 100.0 * numpy.pi
>>> y = numpy.sin(x)
>>> clicker = spacepy.plot.utils.EventClicker(
. n_phases=2, #Two picks per event
... interval=numpy.pi * 2) #Display one cycle at a time
>>> plt.plot(x, y)
>>> clicker.analyze() #Double-click on max and min of each cycle; close
>>> e = clicker.get_events()
>>> peaks = e[:, 0, 0] #x value of event starts
>>> peaks -= 2 * numpy.pi * numpy.floor(peaks / (2 * numpy.pi)) #mod 2pi
>>> max (numpy .abs(peaks - numpy.pi / 2)) < 0.2 #Peaks should be near pi/2
True
>>> troughs = e[:, 1, 0] #x value of event ends
>>> troughs -= 2 * numpy.pi * numpy.floor(troughs / (2 * numpy.pi))
>>> max (numpy.abs(troughs - 3 * numpy.pi / 2)) < 0.2 #troughs near 3pi/2
True
>>> d = clicker.get_events_data() #snap-to-data of events
>>> peakvals = d[:, 0, 1] #y value, snapped near peaks
>>> max(peakvals) <= 1.0 #should peak at 1
True
>>> min(peakvals) > 0.9 #should click near 1
True
>>> troughvals = d[:, 1, 1] #y value, snapped near peaks
>>> max(troughvals) <= -0.9 #should click near -1
True
>>> min(troughvals) <= -1.0 #should bottom-out at -1
True

>>> import spacepy.plot.utils

>>> import spacepy.time

>>> import datetime

>>> import matplotlib.pyplot as plt

>>> import numpy

>>> t = spacepy.time.tickrange('2019-01-01"', #get a range of days
'2019-12-31",

- deltadays=datetime.timedelta(days=1))

>>> y = numpy.linspace(0, 100, 1001)

>>> seconds = t.TAI - t.TAI[O]

(continues on next page)

4.13. plot - Plot, various specialized plotting functions and associated utilities 187

SpacePy Documentation, Release 0.4.0

(continued from previous page)

>>> seconds = numpy.asarray(seconds) #normal ndarray so reshape (in meshgrid) works
>>> tt, yy = numpy.meshgrid(seconds, y) #use TAI to get seconds

>>> z = 1 + (numpy.exp(-(yy - 20)**2 / 625) #something like a spectrogram

cee * numpy.sin(le-7 * numpy.pi**2 * tt)**2) #pi*le’/ seconds per year

>>> plt.pcolormesh(t.UTC, y, z)

>>> clicker = spacepy.plot.utils.EventClicker(n_phases=1)

>>> clicker.analyze() #double-click on center of peak; close

>>> events = clicker.get_events() #returns an array of the things clicked

>>> len(events) == 10 #10 if you click on the centers, including the last one
True
>>> clicker.get_events_data() is None #should be nothing
True
analyze() Displays the figure provided and allows the user to
select events.
get_events() Get back the list of events.
get_events_data() Get a list of events, "snapped" to the data.
analyze()

Displays the figure provided and allows the user to select events.
All matplot lib controls for zooming, panning, etc. the figure remain active.

Double left click
Mark this point as an event phase. One-phase events are the simplest: they occur at a particular time.
Two-phase events have two times associated with them; an example is any event with a distinct start
and stop time. In that case, the first double-click would mark the beginning, the second one, the end;
the next double-click would mark the beginning of the next event. Each phase of an event is annotated
with a vertical line on the plot; the color and line style is the same for all events, but different for each
phase.

After marking the final phase of an event, the X axis will scroll and zoom to place that phase near the
left of the screeen and include one full interval of data (as defined in the constructor). The Y axis will
be scaled to cover the data in that X range.

Double right click or delete button
Remove the last marked event phase. If an entire event (i.e., the first phase of an event) is removed, the
X axis will be scrolled left to the previous event and the Y axis will be scaled to cover the data in the
new range.

Space bar
Scroll the X axis by one interval. Y axis will be scaled to cover the data.

When finished, close the figure window (if necessary) and call get_events () to get the list of events.

get_events()
Get back the list of events.

Call after analyze().
Returns

out
[array] 3-D array of (x, y) values clicked on. Shape is (n_events, n_phases, 2), i.e. indexed
by event number, then phase of the event, then (X, y).

188 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

get_events_data()

Get a list of events, “snapped” to the data.

For each point selected as a phase of an event, selects the point from the original data which is closest to the
clicked point. Distance from point to data is calculated based on the screen distance, not in data coordinates.

Note that this snaps to data points, not to the closest point on the line between points.

Call after analyze().
Returns

out

[array] 3-D array of (x, y) values in the data which are closest to each point clicked on.
Shape is (n_events, n_phases, 2), i.e. indexed by event number, then phase of the event,

then (x, y).

Functions

add_logo(img], fig, pos, margin])

Add an image (logo) to one corner of a plot.

annotate_xaxis(txt[, ax])

Write text in-line and to the right of the x-axis tick labels

applySmartTimeTicks(ax, time[, dolimit, dolabel])

Given an axis ax and a list/array of datetime objects,
time, use the smartTimeTicks function to build smart
time ticks and then immediately apply them to the given
axis.

collapse_vertical(combine[, others, leave_axis])

Collapse the vertical spacing between two or more sub-
plots.

printfig(fignum[, saveonly, pngonly, clean, ...])

save current figure to file and call Ipr (print).

set_target(target[, figsize, loc, polar])

Given a target on which to plot a figure, determine if that
target is None or a matplotlib figure or axes object.

shared_ylabel(axes, txt, *args, **kwargs)

Create a ylabel that spans several subplots

show_used([fig])

Show the areas of a figure which are used/occupied by
plot elements.

smartTimeTicks(time)

Returns major ticks, minor ticks and format for time-
based plots

timestamp([position, size, draw, strnow, ...])

print a timestamp on the current plot, vertical lower right

add_arrows(lines[, n, size, style, ...])

Add directional arrows along a plotted line.

spacepy.plot.utils.add_logo

spacepy.plot.utils.add_logo(img, fig=None, pos="br', margin=0.05)

Add an image (logo) to one corner of a plot.

The provided image will be placed in a corner of the plot and sized to maintain its aspect ratio and be as large as
possible without overlapping any existing elements of the figure. Thus this should be the last call in constructing

a figure.
Parameters

img

[str or numpy.ndarray] The image to place on the figure. If a string, assumed to be a filename
to be read with imread(); if a numpy array, assumed to be the image itself (in a simliar

format).

Returns

4.13. plot - Plot, various specialized plotting functions and associated utilities 189

https://matplotlib.org/stable/api/image_api.html#matplotlib.image.imread

SpacePy Documentation, Release 0.4.0

(axes, axesimg)
[tuple of Axes and AxesImage] The Axes object created to hold the iamge, and the
AxesImage object for the image itself.

Other Parameters

fig
[matplotlib.figure.Figure] The figure on which to place the logo; if not specified, the gcf ()
function will be used.

pos
[str] The position to place the logo. br: bottom right; bl: bottom left; tl: top left; tr: top right

margin
[float] Margin to include on each side of figure, as a fraction of the larger dimension of the
figure (width or height). Default is 0.05 (5%).

Notes

Calls draw () to ensure locations are up to date.

Examples

>>> import spacepy.plot.utils

>>> import matplotlib.pyplot as plt

>>> fig = plt.figure()

>>> ax® = fig.add_subplot(211)

>>> ax®.plot([1, 2, 31, [1, 2, 1D
[<matplotlib.lines.Line2D at 0x00000000>]
>>> axl = fig.add_subplot(212)

>>> axl.plot([1, 2, 31, [2, 1, 2])
[<matplotlib.lines.Line2D at 0x00000000>]
>>> spacepy.plot.utils.add_logo('logo.png', fig)
(<matplotlib.axes.Axes at 0x00000000>,
<matplotlib.image.AxesImage at 0x00000000>)

spacepy.plot.utils.annotate_xaxis

spacepy.plot.utils.annotate_xaxis (#xt, ax=None)
Write text in-line and to the right of the x-axis tick labels

Annotates the x axis of an Axes object with text placed in-line with the tick labels and immediately to the right
of the last label. This is formatted to match the existing tick marks.

Parameters

txt
[str] The annotation text.

Returns

out
[matplotlib.text. Text] The Text object for the annotation.

Other Parameters

190 Chapter 4. SpacePy Module Reference

https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/image_api.html#matplotlib.image.AxesImage
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.gcf.html#matplotlib.pyplot.gcf
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.draw.html#matplotlib.pyplot.draw
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/text_api.html#matplotlib.text.Text

SpacePy Documentation, Release 0.4.0

ax
[matplotlib.axes.Axes] The axes to annotate; if not specified, the gca() function will be
used.

Notes

The annotation is placed immediately to the right of the last tick label. Generally the first character of txt should
be a space to allow some room.

Calls draw () to ensure tick marker locations are up to date.

Examples

>>> import spacepy.plot.utils

>>> import matplotlib.pyplot as plt

>>> import datetime

>>> times = [datetime.datetime(2010, 1, 1) + datetime.timedeltaChours=i)
. for i in range(0®, 48, 3)]

>>> plt.plot(times, range(16))

[<matplotlib.lines.Line2D object at 0x0000000>]

>>> spacepy.plot.utils.annotate_xaxis(' UT') #mark that times are UT
<matplotlib.text.Text object at 0x0000000>

14

12 ~

10 A

O_

01-01 0001-01 0601-01 1201-01 1801-02 0001-02 0601-02 1201-02 18 UT

4.13. plot - Plot, various specialized plotting functions and associated utilities 191

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.gca.html#matplotlib.pyplot.gca
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.draw.html#matplotlib.pyplot.draw

SpacePy Documentation, Release 0.4.0

spacepy.plot.utils.applySmartTimeTicks

spacepy.plot.utils.applySmartTimeTicks (ax, time, dolimit=True, dolabel=False)

Given an axis ax and a list/array of datetime objects, time, use the smartTimeTicks function to build smart time
ticks and then immediately apply them to the given axis. The first and last elements of the time list will be used
as bounds for the x-axis range.

The range of the time input value will be used to set the limits of the x-axis as well. Set kwarg ‘dolimit’ to False
to override this behavior.

Parameters

ax
[matplotlib.pyplot.Axes] A matplotlib Axis object.

time
[list] list of datetime objects

dolimit
[boolean (optional)] The range of the #ime input value will be used to set the limits of the
x-axis as well. Setting this overrides this behavior.

dolabel
[boolean (optional)] Sets autolabeling of the time axis with “Time from” time[0]

See also:

smartTimeTicks

spacepy.plot.utils.collapse_vertical

spacepy.plot.utils.collapse_vertical (combine, others=(), leave_axis=False)

Collapse the vertical spacing between two or more subplots.

Useful for a multi-panel plot where most subplots should have space between them but several adjacent ones
should not (i.e., appear as a single plot.) This function will remove all the vertical space between the subplots
listed in combine and redistribute the space between all of the subplots in both combine and others in propor-
tion to their current size, so that the relative size of the subplots does not change.

Parameters

combine
[sequence] The Axes objects (i.e. subplots) which should be placed together with no vertical
space.

Other Parameters

others
[sequence] The Axes objects (i.e. subplots) which will keep their vertical spacing, but will
be expanded with the space taken away from between the elements of combine.

leave_axis
[bool] If set to true, will leave the axis lines and tick marks between the collapsed subplots.
By default, the axis line (“spine”) is removed so the two subplots appear as one.

192 Chapter 4. SpacePy Module Reference

https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes

SpacePy Documentation, Release 0.4.0

Notes

This function can be fairly fragile and should only be used for fairly simple layouts, e.g., a one-column multi-row
plot stack.

This may require some clean-up of the y axis labels, as they are likely to overlap.

Examples

>>> import spacepy.plot.utils

>>> import matplotlib.pyplot as plt

>>> fig = plt.figure(Q)

>>> #Make three stacked subplots

>>> ax® = fig.add_subplot(311)

>>> axl = fig.add_subplot(312)

>>> ax2 = fig.add_subplot(313)

>>> ax0.plot([1, 2, 3], [1, 2, 1]) #just make some lines
[<matplotlib.lines.Line2D object at 0x0000000>]

>>> axl.plot([1, 2, 31, [1, 2, 11)
[<matplotlib.lines.Line2D object at 0x0000000>]

>>> ax2.plot([1, 2, 3], [1, 2, 1])
[<matplotlib.lines.Line2D object at 0x0000000>]

>>> #Collapse space between top two plots, leave bottom one alone
>>> spacepy.plot.utils.collapse_vertical([ax®, axl], [ax2])

spacepy.plot.utils.printfig

spacepy.plot.utils.printfig(fignum, saveonly=False, pngonly=False, clean=False, filename=None)

save current figure to file and call Ipr (print).

This routine will create a total of 3 files (png, ps and c.png) in the current working directory with a sequence
number attached. Also, a time stamp and the location of the file will be imprinted on the figure. The file ending
with c.png is clean and no directory or time stamp are attached (good for PowerPoint presentations).

Parameters

fignum
[integer] matplotlib figure number

saveonly
[boolean (optional)] True (don’t print and save only to file) False (print and save)

pngolny
[boolean (optional)] True (only save png files and print png directly) False (print ps file, and
generate png, ps; can be slow)

clean
[boolean (optional)] True (print and save only clean files without directory info) False (print
and save directory location as well)

filename
[string (optional)] None (If specified then the filename is set and code does not use the se-
quence number)

4.13. plot - Plot, various specialized plotting functions and associated utilities 193

SpacePy Documentation, Release 0.4.0

2.0 A

1.5 A

1.5 4

1.0 -

1.00 1.25 1.50 1.75 200 225 250 275 3.00

2.0 A

1.5 A

1.0 -

1.00 1.25 1.50 1.75 2.00 225 250 275 3.00

194 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.

4.0

Examples

>>> import spacepy.plot.utils

>>> import matplotlib.pyplot as plt

>>> p = plt.plot([1,2,3],[2,3,2])

>>> spacepy.plot.utils.printfig(l, pngonly=True, saveonly=True)

spacepy.plot.utils.set_target

spacepy.plot.utils.set_target (target, figsize=None, loc=None, polar=False)

Given a target on which to plot a figure, determine if that farget is None or a matplotlib figure or axes object.
Based on the type of target, a figure and/or axes will be either located or generated. Both the figure and axes

objects are returned to the caller for further manipulation. This is used in nearly all add_plot-type methods.
Parameters

target
[object] The object on which plotting will happen.

Returns

fig
[object] A matplotlib figure object on which to plot.

ax
[object] A matplotlib subplot object on which to plot.

Other Parameters

figsize
[tuple] A two-item tuple/list giving the dimensions of the figure, in inches. Defaults to Mat-
plotlib defaults.

loc
[integer] The subplot triple that specifies the location of the axes object. Defaults to mat-
plotlib default (111).

polar
[bool] Set the axes object to polar coodinates. Defaults to False.

Examples

>>> import matplotlib.pyplot as plt

>>> from spacepy.pybats import set_target
>>> fig = plt.figure()

>>> fig, ax = set_target(target=fig, loc=211)

4.13. plot - Plot, various specialized plotting functions and associated utilities

195

SpacePy Documentation, Release 0.4.0

spacepy.plot.utils.shared_ylabel

spacepy.plot.utils.shared_ylabel (axes, txt, *args, **kwargs)

Create a ylabel that spans several subplots
Useful for a multi-panel plot where several subplots have the same units/quantities on the y axis.
Parameters

axes
[list] The Axes objects (i.e. subplots) which should share a single label

txt
[str] The label to place in the middle of all the axes objects.

Returns

out
[matplotlib.text. Text] The Text object for the label.

Other Parameters

Additional arguments and keywords are passed through to
:meth:"~matplotlib.axes.Axes.set_ylabel

Notes

This function can be fairly fragile and should only be used for fairly simple layouts, e.g., a one-column multi-row
plot stack.

The label is associated with the bottommost subplot in axes.

Examples

>>> import spacepy.plot.utils

>>> import matplotlib.pyplot as plt

>>> fig = plt.figure()

>>> #Make three stacked subplots

>>> ax0® = fig.add_subplot(311)

>>> axl fig.add_subplot(312)

>>> ax2 fig.add_subplot(313)

>>> ax®.plot([1, 2, 3], [1, 2, 1]) #just make some lines

[<matplotlib.lines.Line2D object at 0x0000000>]

>>> axl.plot([1, 2, 31, [1, 2, 1]1)

[<matplotlib.lines.Line2D object at 0x0000000>]

>>> ax2.plot([1, 2, 31, [1, 2, 11)

[<matplotlib.lines.Line2D object at 0x0000000>]

>>> #(Create a green label across all three axes

>>> spacepy.plot.utils.shared_ylabel([ax®, axl, ax2],
"this is a very long label that spans all three axes', color='g')

196 Chapter 4. SpacePy Module Reference

https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/text_api.html#matplotlib.text.Text

SpacePy Documentation, Release 0.4.0

spacepy.plot.utils.show_used

spacepy.plot.utils.show_used(fig=None)

Show the areas of a figure which are used/occupied by plot elements.

This function will overplot each element of a plot with a rectangle showing the full bounds of that element, to
see for example the margins and such used by a text label.

Returns

boxes
[list of Rectangle] The Rectangle objects used for the overplot.

Other Parameters

fig
[matplotlib.figure.Figure] The figure to mark up; if not specified, the gc£ () function will be
used.

Notes

Calls draw () to ensure locations are up to date.

Examples

>>> import spacepy.plot.utils

>>> import matplotlib.pyplot as plt

>>> fig = plt.figure()

>>> ax® = fig.add_subplot(211)

>>> ax0®.plot([1, 2, 31, [1, 2, 1])
[<matplotlib.lines.Line2D at 0x00000000>]

>>> axl = fig.add_subplot(212)

>>> axl.plot([1, 2, 31, [2, 1, 2])
[<matplotlib.lines.Line2D at 0x00000000>]

>>> spacepy.plot.utils.show_used(fig)
[<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,

(continues on next page)

4.13. plot - Plot, various specialized plotting functions and associated utilities 197

https://matplotlib.org/stable/api/_as_gen/matplotlib.patches.Rectangle.html#matplotlib.patches.Rectangle
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.gcf.html#matplotlib.pyplot.gcf
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.draw.html#matplotlib.pyplot.draw

SpacePy Documentation, Release 0.4.0

(continued from previous page)

<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>,
<matplotlib.patches.Rectangle at 0x0000000>]

spacepy.plot.utils.smartTimeTicks

spacepy.plot.utils.smartTimeTicks (time)

Returns major ticks, minor ticks and format for time-based plots

smartTimeTicks takes a list of datetime objects and uses the range to calculate the best tick spacing and format.
Returned to the user is a tuple containing the major tick locator, minor tick locator, and a format string — all
necessary to apply the ticks to an axis.

It is suggested that, unless the user explicitly needs this info, to use the convenience function applySmartTimeT-
icks to place the ticks directly on a given axis.

Parameters

time
[list] list of datetime objects

Returns

out
[tuple] tuple of Mtick - major ticks, mtick - minor ticks, fmt - format

See also:

applySmartTimeTicks

198 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

spacepy.plot.utils.timestamp

spacepy.plot.utils.timestamp (position=(1.003, 0.01), size="xx-small', draw=True, strnow=None,
rotation="vertical', ax=None, **kwargs)

print a timestamp on the current plot, vertical lower right
Parameters

position
[list] position for the timestamp

size
[string (optional)] text size

draw
[Boolean (optional)] call draw to make sure it appears

kwargs
[keywords] other keywords to axis.annotate

Examples

>>> import spacepy.plot.utils

>>> from pylab import plot, arange

>>> plot(arange(11))

[<matplotlib.lines.Line2D object at 0x49072b0>]
>>> spacepy.plot.utils.timestamp()

spacepy.plot.utils.add_arrows

spacepy.plot.utils.add_arrows (lines, n=3, size=12, style='->', dorestrict=False, positions=False)
Add directional arrows along a plotted line. Useful for plotting flow lines, magnetic field lines, or other directional
traces.

lines can be either Line2D, a list or tuple of lines, or a LineCollection object.

For each line, arrows will be added using annotate(). Arrows will be spread evenly over the line using the
number of points in the line as the metric for spacing. For example, if a line has 120 points and 3 arrows are
requested, an arrow will be added at point number 30, 60, and 90. Arrow color and alpha is obtained from the
parent line.

Parameters

lines
[Line2D, alist/tuple, or LineCollection] A single line or group of lines on which to place
the arrows. Arrows inherent color and transparency (alpha) from the line on which they are
placed.

Returns
None
Other Parameters

n
[integer] Number of arrows to add to each line; defaults to 3.

4.13. plot - Plot, various specialized plotting functions and associated utilities 199

https://matplotlib.org/stable/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D
https://matplotlib.org/stable/api/collections_api.html#matplotlib.collections.LineCollection
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.annotate.html#matplotlib.axes.Axes.annotate
https://matplotlib.org/stable/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D
https://matplotlib.org/stable/api/collections_api.html#matplotlib.collections.LineCollection

SpacePy Documentation, Release 0.4.0

size
[integer] The size of the arrows in points. Defaults to 12.

style
[string] Set the style of the arrow via ArrowStyle, e.g. ‘->’ (default) or *-|>’

dorestrict
[boolean] If True (default), only points along the line within the current limits of the axes
will be considered when distributing arrows.

positions
[Nx2 array] N must be the number of lines provided via the argument lines. If provided, only
one arrow will be placed per line. positions sets the explicit location of each arrow for each
line as X-Y space in Axes coordinates.

Notes

The algorithm works by dividing the line in to n*+1 segments and placing an arrow between each segment,
endpoints excluded. Arrows span the shortest distance possible, i.e., two adjacent points along a line. For lines
that are long spatially but sparse in points, the arrows will have long tails that may extend beyond axes bounds.
For explicit positions, the arrow is placed at the point on the curve closest to that position and the exact position
is not always attainable. A maximum number of arrows equal to one-half of the number of points in a line per
line will be created, so not all lines will receive *n arrows.

Examples

>>> import matplotlib.pyplot as plt
>>> import numpy as np

>>> x = np.arange(l, 10, .01)

>>> y = np.sin(x)

>>> line = plt.plot(x,y)

>>> add_arrows(line, n=15, style='-[>")

4.14 PoPPy - Point Processes in Python

PoPPy — Point Processes in Python.

This module contains point process class types and a variety of functions for association analysis. The routines given
here grew from work presented by Morley and Freeman (Geophysical Research Letters, 34, L08104, doi:10.1029/
2006GL028891, 2007), which were originally written in IDL. This module is intended for application to discrete
time series of events to assess statistical association between the series and to calculate confidence limits. Any mis-
application or mis-interpretation by the user is the user’s own fault.

>>> import datetime as dt
>>> import spacepy.time as spt

Since association analysis is rather computationally expensive, this example shows timing.

>>> t® = dt.datetime.now()
>>> onsets = spt.Ticktock(onset_epochs, 'CDF')
>>> ticksR1 = spt.Ticktock(tr_list, 'CDF'")

Each instance must be initialized

200 Chapter 4. SpacePy Module Reference

https://matplotlib.org/stable/api/_as_gen/matplotlib.patches.ArrowStyle.html#matplotlib.patches.ArrowStyle

SpacePy Documentation, Release 0.4.0

>>> lags = [dt.timedelta(minutes=n) for n in range(-400,401,2)]
>>> halfwindow = dt.timedelta(minutes=10)
>>> ppl = poppy.PPro(onsets.UTC, ticksR1.UTC, lags, halfwindow)

To perform association analysis

>>> ppl.assoc()

Starting association analysis

calculating association for series of length [3494, 1323] at 401 lags
>>> tl = dt.datetime.now()

>>> print("Elapsed: " + str(tl-t0))

Elapsed: 0:35:46.927138

Note that for calculating associations between long series at a large number of lags is SLOW!!

To plot

>>> ppl.plot(dpi=80)
Error: No confidence intervals to plot - skipping

To add 95% confidence limits (using 4000 bootstrap samples)

>>> ppl.aa_ci(95, n_boots=4000)

The plot method will then add the 95% confidence intervals as a semi- transparent patch.

Authors: Steve Morley and Jon Niehof Institution: Los Alamos National Laboratory Contact: smorley @lanl.gov,
jniehof @lanl.gov

Copyright 2010 Los Alamos National Security, LLC.

Classes

PPro(processl, process2[, lags, winhalf, ...]) PoPPy point process object

4.14.1 spacepy.poppy-PPro

class spacepy.poppy.PPro(processi, process2, lags=None, winhalf=None, verbose=False)
PoPPy point process object

Initialize object with seriesl and series2. These should be timeseries of events, given as lists, arrays, or lists of
datetime objects. Includes method to perform association analysis of input series

Output can be nicely plotted with plot ().

aa_ci(inter[, n_boots, seed]) Get bootstrap confidence intervals for association
number

assoc([u, h]) Perform association analysis on input series

assoc_mul t(windows|, inter, n_boots, seed]) Association analysis w/confidence interval on multi-
ple windows

plot([figsize, dpi, asympt, show, norm, ...]) Create basic plot of association analysis.

plot_mult(windows, data[, min, max, ...]) Plots a 2D function of window size and lag

swap() Swaps process 1 and process 2

4.14. PoPPy - Point Processes in Python 201

mailto:smorley@lanl.gov
mailto:jniehof@lanl.gov

SpacePy Documentation, Release 0.4.0

aa_ci (inter, n_boots=1000, seed=None)

Get bootstrap confidence intervals for association number

Requires input of desired confidence interval, e.g.:

>>> obj.aa_ci(95)

Upper and lower confidence limits are added to ci.

After calling, conf_above will contain the confidence (in percent) that the association number at that lag is
above the asymptotic association number. (The confidence of being below is 100 - conf_above) For minor
variations in conf_above to be meaningful, a large number of bootstraps is required. (Rougly, 1000 to be
meaningful to the nearest percent; 10000 to be meaningful to a tenth of a percent.) A conf_above of 100
usually indicates an insufficient sample size to resolve, not perfect certainty.

Note also that a 95% chance of being above indicates an exclusion from the 90% confidence interval!
Parameters

inter
[float] percentage confidence interval to calculate

n_boots
[int, optional] number of bootstrap iterations to run

seed
[int, optional] seed for the random number generator. If not specified, Python code will use
numpy’s RNG and its current seed; C code will seed from the clock.

Warning: If seed is specified, results may not be reproducible between systems with different sizes
for C long type. Note that 64-bit Windows uses a 32-bit long and so results will be the same between
64 and 32-bit Windows, but not between 64-bit Windows and other 64-bit operating systems. If seed
is not specified, results are not reproducible anyhow.

assoc (u=None, h=None)

Perform association analysis on input series
Parameters

u
[list, optional] the time lags to use

h
association window half-width, same type as process1

assoc_mult (windows, inter=95, n_boots=1000, seed=None)

Association analysis w/confidence interval on multiple windows

Using the time sequence and lags stored in this object, perform full association analysis, including boot-
strapping of confidence intervals, for every listed window half-size

Parameters

windows
[sequence] window half-size for each analysis

inter
[float, optional] desired confidence interval, default 95

202 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

n_boots
[int, optional] number of bootstrap iterations, default 1000

seed
[int, optional] Random number generator seed. It is STRONGLY recommended not to
specify (i.e. leave None) to permit multithreading.

Returns

out
[three numpy array] Three numpy arrays, (windows x lags), containing (in order) low val-
ues of confidence interval, high values of ci, percentage confidence above the asymptotic
association number

Warning: This function is likely to take a LOT of time.

ci
Contains the upper and lower confidence limits for the association number as a function of lag. The first
element is the array of lower limits; the second, the array of upper limits. Not available until after calling
aa_ci().

conf_above

Contains the confidence that the association number, as a function of lag, is above the asymptotic association
number. (The confidence of being below is 100 - conf_above.) Not available until after calling aa_ci ().

plot (figsize=None, dpi=80, asympt=True, show=True, norm=True, xlabel="Time lag', xscale=None,
ylabel=None, title=None, transparent=True)

Create basic plot of association analysis.
Uses object attributes created by assoc () and, optionally, aa_ci ().
Parameters
figsize
[, optional] passed through to matplotlib.pyplot.figure
dpi
[int, optional] passed through to matplotlib.pyplot.figure

asympt
[boolean, optional] True to overplot the line of asymptotic association number

show
[boolean, optional] Show the plot? (if false, will create without showing)

norm
[boolean, optional] Normalize plot to the asymptotic association number

title
[string, optional] label/title for the plot

xlabel
[string, optional] label to put on the X axis of the resulting plot

xscale
[float, optional] scale x-axis by this factor (e.g. 60.0 to convert seconds to minutes)

ylabel
[string, optional] label to put on the Y axis of the resulting plot

4.14. PoPPy - Point Processes in Python 203

SpacePy Documentation, Release 0.4.0

transparent
[boolean, optional] make c.i. patch transparent (default)

plot_mult (windows, data, min=None, max=None, cbar_label=None, figsize=None, dpi=80, xlabel="Lag’,
yvlabel="Window Size")

Plots a 2D function of window size and lag
Parameters

windows
[list] list of window sizes (y axis)

data
[list] list of data, dimensioned (windows x lags)

min
[float, optional] clip L{data} to this minimum value

max
[float, optional] clip L{data} to this maximum value

swap()
Swaps process 1 and process 2

Functions
plot_two_ppro(pprodata, pproref[, ratio, ...]) Overplots two PPro objects
boots_ci(data, n, inter, func|[, seed, ...]) Construct bootstrap confidence interval
value_percentile(sequence, target) Find the percentile of a particular value in a sequence

4.14.2 spacepy.poppy-plot_two_ppro

spacepy . poppy . plot_two_ppro (pprodata, pproref, ratio=None, norm=False, title=None, xscale=None,
figsize=None, dpi=80, ylim=[None, None], log=False, xticks=None,
yticks=None)
Overplots two PPro objects
Parameters

pprodata
[PPro] first point process to plot (in blue)

pproref
[PPro] second process to plot (in red)

ratio
[float] multiply L{pprodata} by this ratio before plotting, useful for comparing processes of
different magnitude

norm
[boolean] normalize everything to L{pproref}, i.e. the association number for L{pproref}
will always plot as 1.

title
[string] title to put on the plot

204 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

xscale
[float] scale x-axis by this factor (e.g. 60.0 to convert seconds to minutes)

figsize
passed through to matplotlib.pyplot.figure

dpi

[int] passed through to matplotlib.pyplot.figure
ylim

[list] [minimum, maximum] values of y for the axis

log
[bollean] True for a log plot

xticks
[sequence or float] if provided, a list of tickmarks for the X axis

yticks
[sequance or float] if provided, a list of tickmarks for the Y axis

4.14.3 spacepy.poppy-boots_ci

spacepy . poppy .boots_ci (data, n, inter, func, seed=None, target=None, sample_size=None, usepy=False,
nretvals=1)

Construct bootstrap confidence interval

The bootstrap is a statistical tool that uses multiple samples derived from the original data (called surrogates)
to estimate a parameter of the population from which the sample was drawn. This assumes that the sample is
randomly drawn and hence is representative of the underlying distribution. The benefit of the bootstrap is that
it is non-parametric and can be applied in situations where there is reasonable doubt about the characteristics of
the underlying distribution. This routine uses the boot- strap for its most common application - the estimation of
confidence intervals.

Parameters

data
[array like] data to bootstrap

[int] number of surrogate series to select, i.e. number of bootstrap iterations.

inter
[numerical] desired percentage confidence interval

func
[callable] Function to apply to each surrogate series

sample_size
[int] number of samples in the surrogate series, default length of L{data}. This will change
the statistical properties of the bootstrap and should only be used for good reason!

seed
[int] Optional seed for the random number generator. If not specified, numpy generator will
not be reseeded; C generator will be seeded from the clock.

target
[same as data] a ‘target’ value. If specified, will also calculate percentage confidence of being
at or above this value.

4.14. PoPPy - Point Processes in Python 205

SpacePy Documentation, Release 0.4.0

nretvals
[int] number of return values from input function

Returns

out
[sequence of float] inter percent confidence interval on value derived from func applied to
the population sampled by data. If target is specified, also the percentage confidence of being
above that value.

Examples

>>> data, n = numpy.random.lognormal (mean=5.1, sigma=0.3, size=3000), 4000.
>>> myfunc = lambda x: numpy.median(x)
>>> ci_low, ci_high = poppy.boots_ci(data, n, 95, myfunc)
>>> ci_low, numpy.median(data), ci_high
(163.96354196633686, 165.2393331896551, 166.60491435416566) iter. 1
. repeat
(162.50379144492726, 164.15218265100233, 165.42840588032755) iter. 2

For comparison

>>> data = numpy.random.lognormal (mean=5.1, sigma=0.3, size=90000)
>>> numpy.median(data)
163.83888237895815

Note that the true value of the desired quantity may lie outside the 95% confidence interval one time in 20
realizations. This occurred for the first iteration here.

For the lognormal distribution, the median is found exactly by taking the exponential of the “mean” parameter.
Thus here, the theoretical median is 164.022 (6 s.f.) and this is well captured by the above bootstrap confidence
interval.

4.14.4 spacepy.poppy-value_percentile

spacepy .poppy . value_percentile (sequence, target)

Find the percentile of a particular value in a sequence
Parameters

sequence
[sequence] a sequence of values, sorted in ascending order

target
[same type as sequence] a target value

Returns

out
[float] the percentile of target in sequence

206 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

4.15 PyBats - SWMF & BATS-R-US Analysis Tools

PyBats! An open source Python-based interface for reading, manipulating, and visualizing BATS-R-US and SWMF
output. For more information on the SWMF, please visit the Center for Space Environment Modeling.

4.15.1 Introduction

Atits most fundamental level, PyBats provides access to output files written by the Space Weather Modeling Framework
and the codes contained within. The key task performed by PyBats is loading simulation data into a Spacepy data model
object so that the user can move on to the important tasks of analyzing and visualizing the values. The secondary goal
of PyBats is to make common tasks performed with these data as easy as possible. The result is that most SWMF output
can be opened and visualized using only a few lines of code. Many complicated tasks, such as field line integration, is
included as well.

4.15.2 Organization

Many output files in the SWMF share a common format. Objects to handle broad formats like these are found in the
base module. The base module has classes to handle SWMEF input files, as well.

The rest of the classes are organized by code, i.e. classes and functions specifically relevant to BATS-R-US can be
found in spacepy.pybats.bats. Whenever a certain code included in the SWMF requires a independent class or a
subclass from the PyBats base module, it will receive its own submodule.

4.15.3 Conventions and Prefixes

Nearly every class in PyBats inherits from spacepy.datamodel.SpaceData, so it is important for users to under-
stand how to employ and explore SpaceData objects. There are a few exceptions, so always pay close attention to the
docstrings and examples. Legacy code that does not adhere to this pattern is slowly being brought up-to-date with each
release.

Visualization methods have two prefixes: plot_ and add_. Whenever a method begins with plot_, a quick-look product
will be created that is not highly- configurable. These methods are meant to yeild either simple diagnostic plots or static,
often-used products. There are few methods that use this prefix. The prefix add_ is always followed by plot_type; it
indicates a plotting method that is highly configurable and meant to be combined with other add_-like methods and
matplotlib commands.

Common calculations, such as calculating Alfven wave speeds of MHD results, are strewn about PyBats’ classes. They
are always given the method prefix calc_, i.e. calc_alfven. Methods called calc_all will search for all class methods
with the calc_ prefix and call them.

Copyright ©2010 Los Alamos National Security, LL.C.

4.15.4 Submodules

There are submodules for most models included within the SWMF. The classes and methods contained within are
code-specific, yielding power and convenience at the cost of flexibility. A few of the submodules are helper modules-
they are not code specific, but rather provide functionality not related to an SWMF-included code.

4.15. PyBats - SWMF & BATS-R-US Analysis Tools 207

http://csem.engin.umich.edu

SpacePy Documentation, Release 0.4.0

bats

A PyBats module for handling input, output, and visual-
ization of binary SWMF output files taylored to BATS-
R-US-type data.

dgcpm

The PyBats submodule for handling input and output for
the Dynamic Global Core Plasma Model (DGCPM), a
plasmasphere module of the SWMF.

dipole

Some functions for the generation of a dipole field.

gitm

PyBats submodule for handling input/output for the
Global Ionosphere-Thermosphere Model (GITM), one
of the choices for the UA module in the SWMF.

kyoto

kyoto is a tool set for obtaining and handling geomag-
netic indices stored at the Kyoto World Data Center
(WDC) website.

pwom

PyBats submodule for handling input/output for the Po-
lar Wind Outflow Model (PWOM), one of the choices
for the PW module in the SWMF.

ram

A module for reading, handling, and plotting RAM-SCB
output.

rim

Classes, functions, and methods for reading, writing,
and plotting output from the Ridley Ionosphere Model
(RIM) and the similar legacy code, Ridley Serial.

trace2d

A set of routines for fast field line tracing.

spacepy.pybats.bats

A PyBats module for handling input, output, and visualization of binary SWMF output files taylored to BATS-R-US-

type data.

Classes

BatsLog(filename], starttime, keep_case])

A specialized version of LogFile that includes special
methods for plotting common BATS-R-US log file val-
ues, such as D$_{ST}$.

Stream(bats, xstart, ystart, xfield, yfield)

A class for streamlines.

Bats2d(filename, *args, **kwargs)

A child class of IdlFile tailored to 2D BATS-R-US
output.

Mag(nlines, time[, gmvars, ievars])

A container for data from a single BATS-R-US virtual
magnetometer.

MagF1ile(filenamel, ie_name, find_ie])

BATS-R-US magnetometer files are powerful tools for
both research and operations.

GeoIndexF1ile(filename[, keep_case])

Geomagnetic Index files are a specialized BATS-R-US
output that contain geomagnetic indices calculated from
simulated ground-based magnetometers.

VirtSat(*args, **kwargs)

A spacepy.pybats.LogFile object tailored to virtual
satellite output; includes special satellite-specific plot-
ting methods.

208

Chapter 4. SpacePy Module Reference

http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html
http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html

SpacePy Documentation, Release 0.4.0

spacepy.pybats.bats.BatsLog

class spacepy.pybats.bats.BatsLog(filename, starttime=(2000, 1, 1, 0, 0, 0), keep_case=True, *args,
**kwargs)

A specialized version of LogF1i1e that includes special methods for plotting common BATS-R-US log file values,
such as D$_{ST}8$.

add_dst_quicklook([target, loc, plot_obs, ...]) Create a quick-look plot of Dst (if variable present in
file) and compare against observations.

add_dst_quicklook (target=None, loc=111, plot_obs=False, epoch=None, add_legend=True,
plot_sym=False, dstvar=None, obs_kwargs={'c': 'k, 'ls": '--'}, **kwargs)
Create a quick-look plot of Dst (if variable present in file) and compare against observations.
Like all add_* * methods in Pybats, the *target kwarg determines where to place the plot. If kwarg target
is None (default), a new figure is generated from scratch. If target is a matplotlib Figure object, a new axis

is created to fill that figure at subplot location loc (defaults to 111). If target is a matplotlib Axes object,
the plot is placed into that axis at subplot location loc.

With newer versions of BATS-R-US, new dst-like variables are included, named ‘dst’, ‘dst-sm’, ‘dstflx’,
etc. This subroutine will attempt to first use ‘dst-sm’ as it is calculated consistently with observations. If
not found, ‘dst’ is used. Users may choose which value to use via the dstvar kwarg.

Observed Dst and SYM-H is automatically fetched from the Kyoto World Data Center via the spacepy .
pybats.kyoto module. The associated spacepy.pybats.kyoto.KyotoDst or spacepy.pybats.
kyoto.KyotoSym object, which holds the observed Dst/SYM-H, is stored as self.obs_dst for future use.
The observed line can be customized via the obs_kwargs kwarg, which is a dictionary of plotting keyword
arguments.

If kwarg epoch is set to a datetime object, a vertical dashed line will be placed at that time.

The figure and axes objects are returned to the user.

spacepy.pybats.bats.Stream

class spacepy.pybats.bats.Stream(bats, xstart, ystart, xfield, yfield, style="mag', type='streamline’,
method="rk4', var_list="all', extract=False, maxPoints=20000, *args,
**kwargs)

A class for streamlines. Contains all of the information about the streamline, including extracted variables.

Upon instantiation, the object will trace through the vector field determined by the “[x/y]field” values and the
Bats object “bats”.

Parameters

bats
[Bats] Bats2d object through which to trace.

xstart
[float] X value of location to start the trace.

ystart
[float] Y value of location to start the trace.

xfield
[str] Name of variable in bats which contains X values of the field

4.15. PyBats - SWMF & BATS-R-US Analysis Tools 209

SpacePy Documentation, Release 0.4.0

yfield
[str] Name of variable in bats which contains Y values of the field

Other Parameters

style
[str] Sets line style, including colors. See set_style() for details. (Default ‘mag’)

type
[str] (Default ‘streamline’)

method
[str] Integration method. The default is Runge-Kutta 4 (‘rk4”) which gives a good blend of
speed and accuracy. See the test functions in trace2d for more info. The other option is a
simple Euler’s method approach (‘eul’). (Default ‘rk4’)

extract
[bool] (Default: False) Extract variables along stream trace and save within object.

maxPoints
[int] (Default : 20000) Maximum number of integration steps to take.

var_list
[string or sequence of strings] (Default : ‘all’) List of values to extract from dataset. Defaults
to ‘all’, for all values within bats.

Notes
Methods
set_style(style) Set the line style either using a simple matplotlib-type
style string or using a preset style type.
treetrace(bats[, maxPoints]) Trace through the vector field using the quad tree.
trace(bats) Trace through the vector field.
plot(ax, *args, **kwargs) Add streamline to axes object "ax".

set_style(style)
Set the line style either using a simple matplotlib-type style string or using a preset style type. Current types
include:
cmag’
[treat line as a magnetic field line. Closed lines are] white, other lines are black.
treetrace(bats, maxPoints=20000)
Trace through the vector field using the quad tree.

trace (bats)

Trace through the vector field.
plot (ax, *args, **kwargs)

Add streamline to axes object “ax”.

210 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

spacepy.pybats.bats.Bats2d

class spacepy.pybats.bats.Bats2d(filename, *args, **kwargs)
A child class of Id1File tailored to 2D BATS-R-US output.

spacepy.pybats.bats.Mag

class spacepy.pybats.bats.Mag(nlines, time, gmvars=(), ievars=(), *args, **kwargs)

A container for data from a single BATS-R-US virtual magnetometer. These work just like a typical spacepy.
pybats.PbData object. Beyond raw magnetometer data, additional values are calculated and stored, including
total pertubations (the sum of all global and ionospheric pertubations as measured by the magnetometer). Users
will be interested in methods add_comp_plot () and calc_dbdt().

Instantiation is best done through :class: spacepy.pybats.MagFile objects, which load and parse organize many
virtual magnetometers from a single output file into a single object. However, they can be created manually,
though painfully. Users must instantiate by handing the new object the number of lines that will be parsed
(rather, the number of data points that will be needed), a time vector, and (optionally) the list of variables coming
from the GM and IE module. While the latter two are keyword arguments, at least one should be provided. Next,
the arrays whose keys were given by the gmvars and ievars keyword arguments in the instantiation step can either
be filled manually or by using the parse_gmline() and parse_ieline() methods to parse lines of ascii data
from a magnetometer output file. Finally, the recalc() method should be called to calculate total perturbation.

spacepy.pybats.bats.MagFile

class spacepy.pybats.bats.MagFile(filename, ie_name=None, find_ie=False, *args, **kwargs)

BATS-R-US magnetometer files are powerful tools for both research and operations. MagFile objects open,
parse, and visualize such output.

The $delta B$ calculated by the SWMF requires two components: GM (BATSRUS) and IE (Ridley_serial). The
data is spread across two files: GM_mag*.dat and IE_mag*.dat. The former contains $delta B$ caused by gap-
region (i.e., inside the inner boundary) FACs and the changing global field. The latter contains the $delta B$
caused by Pederson and Hall currents in the ionosphere. MagFile objects can open one or both of these files at
a time; when both are opened, the total $delta BS is calculated and made available to the user.

Usage:

>>> # Open up the GM magnetometer file only.

>>> obj = spacepy.pybats.bats.MagFile('GM_file.mag"')

>>>

>>> # Open up both the GM and IE file [LEGACY SWMF ONLY]

>>> obj = spacepy.pybats.bats.MagFile('GM_file.mag', 'IE_file.mag')
>>>

>>> # Open up the GM magnetometer file; search for the IE file.
>>> obj = spacepy.pybats.bats.MagFile('GM_file.mag', find_ie=True)

Note that the find_ie kwarg uses a simple search assuming the data remain in a typical SWMF-output organi-
zational tree (i.e., if the results of a simulation are in folder results, the GM magnetometer file can be found in
results/GM/ or results/GM/I0O2/ while the IE file can be found in results/IE/ or results/IE/ionosphere/). It will
also search the present working directory. This method is not robust; the user must take care to ensure that the
two files correspond to each other.

4.15. PyBats - SWMF & BATS-R-US Analysis Tools 211

SpacePy Documentation, Release 0.4.0

spacepy.pybats.bats.GeolndexFile

class spacepy.pybats.bats.GeoIndexFile (filename, keep_case=True, *args, **kwargs)

Geomagnetic Index files are a specialized BATS-R-US output that contain geomagnetic indices calculated from
simulated ground-based magnetometers. Currently, the only index instituted is Kp through the faKe_p setup.
Future work will expand the system to include Dst, AE, etc.

GeolndFiles are a specialized subclass of pybats.LogFile. It includes additional methods to quickly visualize the
output, perform data-model comparisons, and more.

spacepy.pybats.bats.VirtSat

class spacepy.pybats.bats.VirtSat(*args, **kwargs)

A spacepy.pybats.LogFile object tailored to virtual satellite output; includes special satellite-specific plot-
ting methods.

spacepy.pybats.dgcpm

The PyBats submodule for handling input and output for the Dynamic Global Core Plasma Model (DGCPM), a plas-
masphere module of the SWMEF.

spacepy.pybats.dipole

Some functions for the generation of a dipole field.
Copyright 2010 Los Alamos National Security, LLC.
spacepy.pybats.gitm

PyBats submodule for handling input/output for the Global Ionosphere-Thermosphere Model (GITM), one of the
choices for the UA module in the SWMF.

spacepy.pybats.kyoto

kyoto is a tool set for obtaining and handling geomagnetic indices stored at the Kyoto World Data Center (WDC)
website. Indices can be loaded from file or fetched from the web.

Instantiation of objects from this module should be done through the constructor functions fetch() and load(). Use
help on these objects for more information.

spacepy.pybats.pwom

PyBats submodule for handling input/output for the Polar Wind Outflow Model (PWOM), one of the choices for the
PW module in the SWMF.

212 Chapter 4. SpacePy Module Reference

http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html
http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html

SpacePy Documentation, Release 0.4.0

spacepy.pybats.ram

A module for reading, handling, and plotting RAM-SCB output.

spacepy.pybats.rim

Classes, functions, and methods for reading, writing, and plotting output from the Ridley Ionosphere Model (RIM) and
the similar legacy code, Ridley Serial.

Copyright 2010 Los Alamos National Security, LLC.

Classes
Iono(infile, *args, **kwargs) A class for handling 2D output from the Ridley Iono-
sphere Model.
OvalDebugFile(infile, *args, **kwargs) The auroral oval calculations in RIM may spit out special

debug files that are extremely useful.

spacepy.pybats.rim.lono

class spacepy.pybats.rim.Iono(infile, *args, **kwargs)
A class for handling 2D output from the Ridley Ionosphere Model. Instantiate an object as follows:

>>> jono = rim.Iono('filename.idl")

... where filename.idl is the name of a RIM 2D output file.

spacepy.pybats.rim.OvalDebugFile

class spacepy.pybats.rim.OvalDebugFile (infile, *args, **kwargs)

The auroral oval calculations in RIM may spit out special debug files that are extremely useful. This class handles
reading and plotting the data contained within those files.

Functions
get_iono_cb([ct_name]) Several custom colorbars used by RIM and AMIE have
become standard when visualizing data from these mod-
els.
tex_label(varname) Many variable names used in the Ridley Ionosphere

Model look much better in LaTeX format with their
proper Greek letters.

4.15. PyBats - SWMF & BATS-R-US Analysis Tools 213

SpacePy Documentation, Release 0.4.0

spacepy.pybats.rim.get_iono_cb

spacepy.pybats.rim.get_iono_cb(ct_name='bwr")

Several custom colorbars used by RIM and AMIE have become standard when visualizing data from these mod-
els. These are ‘blue_white_red’ and ‘white_red’, used for data that have positive and negative values and for data
that have only positive values, respectively. This function builds and returns these colorbars when called with
the initials of the color table name as the only argument.

Other Parameters

ct_name
[str] Select the color table. Can be ‘bwr’ for blue-white-red or ‘wr’ for white-red. Defaults
to ‘bwr’.
Examples

>>> bwr_map = get_iono_cb('bwr")
>>> wr_map = get_iono_cb('wr')

spacepy.pybats.rim.tex_label

spacepy.pybats.rim.tex_label (varname)

Many variable names used in the Ridley Ionosphere Model look much better in LaTeX format with their proper
Greek letters. This function takes a variable name, and if it is recognized, returns a properly formatted string that
uses MatPlotLib’s MathText functionality to display the proper characters. If it is not recognized, the varname
is returned.

Parameters

varname
[string] The variable to convert to a LaTeX label.

Examples

>>>tex_label(‘n_phi’) ‘Phi_{Ionosphere}’ >>>tex_label(‘Not Recognized’) ‘Not Recognized’

spacepy.pybats.trace2d

A set of routines for fast field line tracing. “Number crunching” is performed in C for speed.

Copyright 2010-2014 Los Alamos National Security, LLC.

214 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

4.15.5 Top-Level Classes & Functions

Top-level PyBats classes handle common-format input and output from the SWMF and are very flexible. However,
they do little beyond open files for the user.

There are several functions found in the top-level module. These are mostly convenience functions for customizing
plots.

Classes

IdIFile(filename[, iframe, header, keep_case])

Parameters
ImfInput([filename, load, npoints]) A class to read, write, manipulate, and visualize solar
wind upstream input files for SWMF simulations.
LogFile(filename], starttime, keep_case]) An object to read and handle SWMF-type logfiles.
NgdcIndex([filename, load]) Many models incorporated into the SWMF rely on Na-

tional Geophysical Data Center (NGDC) provided index
files (especially F10.7 and Kp).
PbData(*args, **kwargs) The base class for all PyBats data container classes.
SatOrbit([filename]) An class to load, read, write, and handle BATS-R-US
satellite orbit input files.

spacepy.pybats.IdiIFile

class spacepy.pybats.IdlFile(filename, iframe=0, header='units', keep_case=True, *args, **kwargs)

Parameters

filename
[string] A *.out or *.outs SWMF output file name.

Other Parameters

header
[str or None] Determine how to interpret the additional header information. Defaults to
‘units’.

keep_case
[boolean] If set to True, the case of variable names will be preserved. If set to False, variable
names will be set to all lower case.

Notes

PyBats assumes little endian byte ordering because this is what most machines use. However, there is an au-
todetect feature such that, if PyBats doesn’t make sense of the first read (a record length entry, or RecLen), it
will proceed using big endian ordering. If this doesn’t work, the error will manifest itself through the “struct”
package as an “‘unpack requires a string of argument length ‘X’”’.

4.15. PyBats - SWMF & BATS-R-US Analysis Tools 215

SpacePy Documentation, Release 0.4.0

spacepy.pybats.Imflnput

class spacepy.pybats.ImfInput (filename=Fualse, load=True, npoints=0, *args, **kwargs)

A class to read, write, manipulate, and visualize solar wind upstream input files for SWMF simulations. More
about such files can be found in the SWME/BATS-R-US documentation for the #SOLARWINDFILE command.

Creating an ImfInput object is simple:

>>> from spacepy import pybats
>>> obj=pybats.ImfInput(filename="'test.dat', load=True)

Upon instantiation, if filename is a valid file AND kwarg load is set to boolean True, the contents of filename are
loaded into the object and no other work needs to be done.

If filename is False or load is False, a blank ImfInput file is created for the user to manipulate. The user can
set the time array and the associated data values (see obj.attrs[‘var’] for a list) to any values desired and use the
method obj.write() to dump the contents to an SWMF formatted input file. See the documentation for the write
method for more details.

Like most pybats objects, you may interact with ImfInput objects as if they were specialized dictionaries.
Access data like so:

>>> obj.keys(Q)
[lbxl’ lbyl’ lbzl’ 'VX’, 'Vy', 'VZ', 'I‘ho', 'temp']
>>> density=obj['rho']

Adding new data entries is equally simple so long as you have the values and the name for the values:

>>> import numpy as np
>>> v = np.sqrt(obj['vx']**2 + obj['vy']1**2 + obj['vz']%%2)
>>> obj['v']=v

Kwarg Description

filename | Set the input/output file name.

load Read file upon instantiation? Defaults to True

npoints For empty data sets, sets number of points (default is 0)

spacepy.pybats.LogFile

class spacepy.pybats.LogFile (filename, starttime=(2000, 1, 1, 0, 0, 0), keep_case=True, *args, **kwargs)

An object to read and handle SWMF-type logfiles.

LogFile objects read and hold all information in an SWMF ascii time-varying logfile. The file is read upon
instantiation. Many SWMEF codes produce flat ascii files that can be read by this class; the most frequently used
ones have their own classes that inherit from this.

See spacepy.pybats.PbData for information on how to explore data contained within the returned object.

Usage: >>>data = spacepy.pybats.LogFile(‘filename.log’)

kwarg Description
starttime | Manually set the start time of the data.

Time is handled by Python’s datetime package. Given that time may or may not be given in the logfile, there are
three options for how time is returned:

216

Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

1. if the full date and time are listed in the file, self['time'] is an array of datetime objects corre-
sponding to the entries. The starttime kwarg is ignored.

2. If only the runtime (seconds from start of simulation) is given, self[‘time’] is an array of datetime
objects that starts from the given starttime kwarg which defaults to 1/1/1 00:00UT.

3. If neither of the above are given, the time is assumed to advance one second per line starting from
either the starttime kwarg or from 2000/1/1 00:00UT + the first iteration (if given in file.) As you can
imagine, this is sketchy at best.

This time issue is output dependent: some SWMF models place the full date and time into the log by default
while others will almost never include the full date and time. The variable self['runtime'] contains the more
generic seconds from simulation start values.

Example usage:

>>> import spacepy.pybats as pb

>>> import pylab as plt

>>> import datetime as dt

>>> timel = dt.datetime(2009,11,30,9,0)

>>> filel = pb.logfile('satfile_n@00000.dat', starttime=timel)
>>> plt.plot(filel['time'], filel['dst'])

spacepy.pybats.Ngdcindex

class spacepy.pybats.NgdcIndex (filename=None, load=True, *args, **kwargs)

Many models incorporated into the SWMF rely on National Geophysical Data Center (NGDC) provided index
files (especially F10.7 and Kp). These files, albeit simple ascii, have a unique format and expansive header that
can be cumbersome to handle. Data files can be obtained from http://spidr.ngdc.noaa.gov .

Ngdclndex objects aid in reading, creating, and visualizing these files.

Creating an NgdcIndex object is simple:

>>> from spacepy import pybats
>>> obj=pybats.NgdcIndex(filename="'ngdc_example.dat')

Upon instantiation, if filename is a valid file AND kwarg load is set to boolean True, the contents of filename are
loaded into the object and no other work needs to be done.

If filename is False or load is False, a blank NgdcIndex is created for the user to manipulate. The user can set
the time array and the ssociated data values to any values desired and use the method obj.write() to dump the
contents to an NGDC formatted input file. See the documentation for the write method for more details.

This class is a work-in-progress. It is especially tuned for SWMF-needs and cannot be considered a general
function for the handling of generic NGDC files.

Kwarg Description
filename | Set the input/output file name.
load Read file upon instantiation? Defaults to True

4.15. PyBats - SWMF & BATS-R-US Analysis Tools 217

http://spidr.ngdc.noaa.gov

SpacePy Documentation, Release 0.4.0

spacepy.pybats.PbData

class spacepy.pybats.PbData(*args, **kwargs)

The base class for all PyBats data container classes. Inherits from spacepy.datamodel. SpaceData but has
additional methods for quickly exploring an SWMF dataset.

Just like spacepy.datamodel. SpaceData objects, PbData objects work just like dictionaries except they have
special attr dictionary attributes for both the top-level object and most values. This means that the following
syntax can be used to explore a generic PbData object:

>>>print obj.keys() >>>print obj.attrs >>>value = obj[key]

Printing PbData objects will produce a tree of contents and attributes; calling self.listunits() will print
all values that have the ‘units’ attribute and the associated units. Hence, it is often most instructive to use the
following two lines to quickly learn a PbData’s contents:

>>>print obj >>>obj.listunits()

PbData is the main organizational tool for Pybats datasets, so the information here is applicable to nearly all
Pybats classes.

spacepy.pybats.SatOrbit

class spacepy.pybats.SatOrbit (filename=None, *args, **kwargs)

An class to load, read, write, and handle BATS-R-US satellite orbit input files. These files are used to fly virtual
satellites through the MHD domain. Note that the output files should be handled by the LogFile and not this
satorbit object. The object’s required and always present attributes are:

Attribute | Description

head A list of header lines for the file that contain comments.
coor The three-letter code (see SWMF doc) of the coord system.
file Location of the file to read/write.

The object should always have the following two data keys:

Key | Description
time | A list or numpy vector of datetime objects
xyz | A 3 xlen(time) numpy array of x,y,z coordinates associated with the time vector.

A “blank” instantiation will create an empty object for the user to fill. This is desired if the user wants to create
a new orbit, either from data or from scratch, and save it in a properly formatted file. Here’s an example with a
“stationary probe” type orbit where the attributes are filled and then dropped to file:

>>> from spacepy.pybats import SatOrbit

>>> import datetime as dt

>>> import numpy as np

>>> sat = SatOrbit(Q)

>>> sat['time'] = [dt.datetime(2000,1,1), dt.datetime(2000,1,2)]
>>> pos = np.zeros((3,2))

>>> pos[:,0]=[6.6, 0, 0]

>>> pos[:,1]=[6.6, 0, 0]

>>> sat['xyz'] = pos

>>> sat.attrs['coor'] = 'SMG'

(continues on next page)

218

Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

(continued from previous page)

>>> sat.attrs['file'] = 'noon_probe.dat'
>>> sat.write()

If instantiated with a file name, the name is loaded into the object. For example,

>>> sat=SatOrbit('a_sat_orbit_file.dat")

... will populate all fields with the data in a_sat_orbit_file.dat.

Functions
add_body(ax[, rad, facecolor, show_planet, ...]) Creates a circle of radius=self.attrs['rbody'] and returns
the MatPlotLib Ellipse patch object for plotting.
add_planet(ax[, rad, ang, add_night, zorder]) Creates a circle of radius=self.paral'rbody'] and
returns the MatPlotLib Ellipse patch object for plotting.
parse_tecvars(line) Parse the VARIABLES line from a TecPlot-formatted

ascii data file.

spacepy.pybats.add_body

spacepy.pybats.add_body (ax, rad=2.5, facecolor="lightgrey', show_planet=True, ang=0.0, add_night=True,
zorder=1000, **extra_kwargs)
Creates a circle of radius=self.attrs[‘rbody’] and returns the MatPlotLib Ellipse patch object for plotting. If an
axis is specified using the “ax” keyword, the patch is added to the plot. Default color is light grey; extra keywords
are handed to the Ellipse generator function.

Because the body is rarely the size of the planet at the center of the modeling domain, add_planet is automatically
called. This can be negated by using the show_planet kwarg.

Parameters

ax
[Matplotlib Axes object] Set the axes on which to place planet.

Other Parameters

rad
[float] Set radius of the inner boundary. Defaults to 2.5.

facecolor
[string] Set color of face of inner boundary circle via Matplotlib color selectors (name, hex,
etc.) Defaults to ‘lightgrey’.

show_planet
[boolean] Turns on/off planet indicator inside inner boundary. Defaults to True

ang
[float] Set the rotation of the day-night terminator from the y-axis, in degrees. Defaults to
zero (terminator is aligned with Y-axis.)

add_night
[boolean] Add night hemisphere. Defaults to True

4.15. PyBats - SWMF & BATS-R-US Analysis Tools 219

SpacePy Documentation, Release 0.4.0

zorder
[int] Set the matplotlib zorder of the patch to set how other plot elements order with the inner
boundary patch. Defaults to 1000. If a planet is added, it is given a zorder of *zorder*+5.

spacepy.pybats.add_planet

spacepy.pybats.add_planet (ax, rad=1.0, ang=0.0, add_night=True, zorder=1000, **extra_kwargs)
Creates a circle of radius=self.paral'rbody'] and returns the MatPlotLib Ellipse patch object for plotting.
If an axis is specified using the ax keyword, the patch is added to the plot.

Unlike the add_body method, the circle is colored half white (dayside) and half black (nightside) to coincide
with the direction of the sun. Additionally, because the size of the planet is not intrinsically known to the MHD
file, the kwarg “rad”, defaulting to 1.0, sets the size of the planet. add_night can turn off this behavior.

Extra keywords are handed to the Ellipse generator function.
Parameters

ax
[Matplotlib Axes object] Set the axes on which to place planet.

Other Parameters

rad
[float] Set radius of planet. Defaults to 1.

ang
[float] Set the rotation of the day-night terminator from the y-axis, in degrees. Defaults to
zero (terminator is aligned with Y-axis.)

add_night
[boolean] Add night hemisphere. Defaults to True

zorder
[int] Set the matplotlib zorder of the patch to set how other plot elements order with the inner
boundary patch. Defaults to 1000, nightside patch is given zorder of zorder+35.

spacepy.pybats.parse_tecvars

spacepy.pybats.parse_tecvars (line)

Parse the VARIABLES line from a TecPlot-formatted ascii data file. Create a list of name-unit tuples for each
variable.

4.16 pycdf - Python interface to CDF files

This package provides a Python interface to the Common Data Format (CDF) library used for many NASA missions,
available at http://cdf.gsfc.nasa.gov/. It is targeted at Python 2.6+ and should work without change on either Python 2
or Python 3.

The interface is intended to be ‘pythonic’ rather than reproducing the C interface. To open or close a CDF and access
its variables, see the CDF class. Accessing data within the variables is via the Var class. The 1ib object provides access
to some routines that affect the functionality of the library in general. The const module contains constants useful for
accessing the underlying library.

The CDF C library must be properly installed in order to use this package. The CDF distribution provides scripts
meant to be called in a user’s login scripts, definitions.B for bash and definitions.C for C-shell derivatives.

220 Chapter 4. SpacePy Module Reference

http://cdf.gsfc.nasa.gov/

SpacePy Documentation, Release 0.4.0

(See the installation instructions which come with the CDF library.) These will set environment variables specifying
the location of the library; pycdf will respect these variables if they are set. Otherwise it will search the standard system
library path and the default installation locations for the CDF library.

If pycdf has trouble finding the library, try setting CDF_LIB before importing the module, e.g. if the library is in
CDF/1ib in the user’s home directory:

>>> import os
>>> os.environ["CDF_LIB"] = "~/CDF/1lib"
>>> from spacepy import pycdf

If this works, make the environment setting permanent. Note that on OSX, using plists to set the environment may not
carry over to Python terminal sessions; use .cshrc or .bashrc instead.

Authors: Jon Niehof
Institution: University of New Hampshire
Contact: Jonathan.Niehof @unh.edu

Copyright 2010-2015 Los Alamos National Security, LLC.

4.16.1 Contents

Create a CDF

Read a CDF

Modify a CDF

* Non record-varying

Slicing and indexing

String handling

Troubleshooting
— Cannot load CDF C library
— ZLIB_ERROR when opening a CDF

Access to CDF constants and the C library

e Classes

Functions

e Data

Submodules

4.16. pycdf - Python interface to CDF files 221

mailto:Jonathan.Niehof@unh.edu

SpacePy Documentation, Release 0.4.0

Create a CDF

This example presents the entire sequence of creating a CDF and populating it with some data; the parts are explained
individually below.

>>> from spacepy import pycdf

>>> import datetime

>>> time = [datetime.datetime(2000, 10, 1, 1, val) for val in range(60)]
>>> import numpy as np

>>> data = np.random.random_sample(len(time))

>>> cdf = pycdf.CDF('MyCDF.cdf', '")

>>> cdf['Epoch'] = time

>>> cdf['data'] = data

>>> cdf.attrs['Author'] = 'John Doe'

>>> cdf.attrs['CreateDate'] = datetime.datetime.now()
>>> cdf['data'].attrs['units'] = 'MeV'

>>> cdf.close()

Import the pycdf module.

>>> from spacepy import pycdf

Make a data set of datetime. These will be converted into CDF_TIME_TT2000 types.

>>> import datetime
>>> # make a dataset every minute for a hour
>>> time = [datetime.datetime(2000, 10, 1, 1, val) for val in range(60)]

Warning: If you create a CDF in backwards compatibility mode (using set_backward()), then datetime objects
are degraded to CDF_EPOCH (millisecond resolution), not CDF_EPOCH16 (microsecond resolution). Use new ()
to specify a data type.

Create some random data.

>>> import numpy as np
>>> data = np.random.random_sample(len(time))

Create a new empty CDF. The empty string, ¢, is the name of the CDF to use as a master; given an empty string, an
empty CDF will be created, rather than copying from a master CDF. If a master is used, data in the master will be
copied to the new CDF.

>>> cdf = pycdf.CDF('MyCDF.cdf', '')

Note: You cannot create a new CDF with a name that already exists on disk. It will throw a NameError

To put data into a CDF, assign it directly to an element of the CDF. CDF objects behave like Python dictionaries.

>>> # put time into CDF variable Epoch
>>> cdf['Epoch'] = time

(continues on next page)

222 Chapter 4. SpacePy Module Reference

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

SpacePy Documentation, Release 0.4.0

(continued from previous page)

>>> # and the same with data (the smallest data type that fits the data is used by.
—default)
>>> cdf['data'] = data

Adding attributes is done similarly. CDF attributes are also treated as dictionaries.

>>> # add some attributes to the CDF and the data
>>> cdf.attrs['Author'] = 'John Doe'

>>> cdf.attrs['CreateDate’'] = datetime.datetime.now()
>>> cdf['data'].attrs['units'] = 'MeV'

Closing the CDF ensures the new data are written to disk:

>>> cdf.close()

CDF files, like standard Python files, act as context managers

>>> with cdf.CDF('filename.cdf', '') as cdf_file:
#do brilliant things with cdf_file
>>> #cdf_file is automatically closed here

Read a CDF

Reading a CDF is very similar: the CDF object behaves like a dictionary. The file is only accessed when data are
requested. A full example using the above CDF:

>>> from spacepy import pycdf
>>> cdf = pycdf.CDF('MyCDF.cdf")
>>> print(cdf)
Epoch: CDF_TIME_TT2000 [60]
data: CDF_FLOAT [60]
>>> cdf['data'][4]
0.8609974384307861
>>> data = cdf['data'][...] # don't forget the [...]
>>> cdf_dat = cdf.copy()
>>> cdf_dat.keys(Q)
['Epoch', 'data']
>>> cdf.close()

Again import the pycdf module

>>> from spacepy import pycdf

Then open the CDF, this looks the same and creation, but without mention of a master CDF.

>>> cdf = pycdf.CDF('MyCDF.cdf")

The default __str__() and __repr__() behavior explains the contents, type, and size but not the data.

>>> print(cdf)
Epoch: CDF_TIME_TT2000 [60]
data: CDF_FLOAT [60]

4.16. pycdf - Python interface to CDF files 223

SpacePy Documentation, Release 0.4.0

To access the data one has to request specific elements of the variable, similar to a Python list.

>>> cdf['data'][4]
0.8609974384307861
>>> data = cdf['data'][...] # don't forget the [...]

CDF. copy () will return the entire contents of a CDF, including attributes, as a SpaceData object:

>>> cdf_dat = cdf.copy()

Since CDF objects behave like dictionaries they have a keys () method and iterations are over the names in keys ()

>>> cdf_dat.keys(Q
["Epoch', 'data'l]

Close the CDF when finished:

>>> cdf.close()

Modify a CDF

An example modifying the CDF created above:

>>> from spacepy import pycdf
>>> cdf = pycdf.CDF('MyCDF.cdf")
>>> cdf.readonly(False)
False
>>> cdf['newVar'] = [1.0, 2.0]
>>> print(cdf)
Epoch: CDF_TIME_TT2000 [60]
data: CDF_FLOAT [60]
newVar: CDF_FLOAT [2]
>>> cdf.close()

As before, each step in this example will now be individually explained. Existing CDF files are opened in read-only
mode and must be set to read-write before modification:

>>> cdf.readonly(False)
False

Then new variables can be added:

>>> cdf['newVar'] = [1.0, 2.0]

Or contents can be changed:

>>> cdf['data’'][0] = 8675309

You can write all new data to an existing variable, leaving the variable type, dimensionality, and attributes unchanged:

>>> cdf['Epoch'][...] = [datetime.datetime(2010, 10, 1, 1, val)
for val in range(60)]

224 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

This is the common usage when using a CDF file containing all the variables and attributes but no data, sometimes
called a “master CDF”. Although the [...] makes this explicit (writing new records not a new variable), the same
syntax as for a new variable can also be used:

>>> # Either create a new variable or overwrite data in existing
>>> cdf['Epoch'] = [datetime.datetime(2010, 10, 1, 1, val)
for val in range(60)]

The new variables appear immediately:

>>> print(cdf)
Epoch: CDF_TIME_TT2000 [60]
data: CDF_FLOAT [60]
newVar: CDF_FLOAT [2]

Closing the CDF ensures changes are written to disk:

>>> cdf.close()

Non record-varying

Non record-varying (NRV) variables are usually used for data that does not vary with time, such as the energy channels
for an instrument.

NRYV variables need to be created with CDF.new(), specifying the keyword ‘recVary’ as False.

>>> from spacepy import pycdf

>>> cdf = pycdf.CDF('MyCDF2.cdf', '")
>>> cdf.new('data2', [1], recVary=False)
<Var:
CDF_BYTE [1] NRV
>
>>> cdf['data2'][...]
[1]

Slicing and indexing

Subsets of data in a variable can be easily referenced with Python’s slicing and indexing notation.

This example uses bisect to read a subset of the data from the hourly data file created in earlier examples.

>>> from spacepy import pycdf

>>> cdf = pycdf.CDF('MyCDF.cdf")

>>> start = datetime.datetime(2000, 10, 1, 1, 9)

>>> stop = datetime.datetime(2000, 10, 1, 1, 35)

>>> import bisect

>>> start_ind = bisect.bisect_left(cdf['Epoch'], start)
>>> stop_ind = bisect.bisect_left(cdf['Epoch'], stop)
>>> # then grab the data we want

>>> time = cdf['Epoch'][start_ind:stop_ind]

>>> data = cdf['data'][start_ind:stop_ind]

>>> cdf.close()

The Var documentation has several additional examples.

4.16. pycdf - Python interface to CDF files 225

https://docs.python.org/3/library/bisect.html#module-bisect

SpacePy Documentation, Release 0.4.0

String handling

Changed in version 0.3.0.

Prior to SpacePy 0.3.0, pycdf treated all strings as ASCII-encoded, and would raise errors when writing
or reading strings that were not valid ASCIL

Per the NASA CDF library, variable and attribute names must be in ASCII. The contents of CDF_CHAR and CDF_UCHAR
were redefined to be UTF-8 as of CDF 3.8.1. As of SpacePy 0.3.0, pycdf treats all CHAR variables with a default encoding
of UTF-8. This is true regardless of the version of the underlying CDF library.

UTF-8 is a variable-length encoding, so the number of elements in the variable may not correspond to the number of
characters if data are not restricted to the ASCII range.

A different encoding can be specified with the encoding argument to open and this encoding will be used on all reads
and writes to that file. Opening a CDF read-write with encoding other than utf-8 or ascii will issue a warning.

Writing strings which cannot be represented in the desired encoding will raise an error. When reading from a CDF,
characters which cannot be decoded will be replaced with the Unicode “replacement character” U+FFFD, which usually
displays as a question mark.

It is always possible to write raw bytes data to a variable, if it is desired to use a different encoding for one time. For
arrays of data, this will usually involve numpy . char.encode():

>>> cdf['Variable'] = data.encode('latin-1")
>>> cdf['Variable'] = numpy.char.encode(data, encoding='latin-1')

All encoding and decoding can also be skipped using the raw_var () method to access a variable; however, without
encoding, only bytes can be written to string variables.

Troubleshooting

Cannot load CDF C library

pycdf requires the standard NASA CDF library; it can be installed after SpacePy. See specific instructions for Linux,
Mac, and Windows.

The error Cannot load CDF C library indicates pycdf cannot find this library. pycdf searches in locations where
the library is installed by default; if the library is not found, set the CDF_LIB environment variable to the directory
containing the library file (.dll, .dylib, or .so) before importing pycdf.

ZLIB_ERROR when opening a CDF

The error message ZLIB_ERROR: Error during ZLIB decompression most commonly occurs when opening a
CDF which has been compressed with whole-file compression. In this case, it must be unzipped into a temporary
location (details are in the CDF User’s Guide).

The temporary location is specified by environment variables, most commonly CDF_TMP. It appears that, particularly
on Windows, some installers of the library may set this to a location which is not writeable. In that case, the solution
is to change the environment variable to a writeable location.

On Windows, environment variables are set in the System Properties control panel. Click the “Environment Variables”
button on the Advanced tab. Usually a good value for CDF_TMP is C:\Users\USERNAME\AppData\Local\Temp. If
CDF_TMP is not set, variables TMP and TEMP will be used, so those values are worth checking. Values starting with
C:\WINDOWS\system32\config are unlikely to work.

On Unix, including MacOS, CDF_TMP is used if set; otherwise TMPDIR.

226 Chapter 4. SpacePy Module Reference

https://numpy.org/doc/stable/reference/generated/numpy.char.encode.html#numpy.char.encode
https://docs.python.org/3/library/stdtypes.html#bytes
https://cdf.gsfc.nasa.gov/html/cdf_docs.html

SpacePy Documentation, Release 0.4.0

Access to CDF constants and the C library

Constants defined in cdf.h and occasionally useful in accessing CDFs are available in the const module.

The underlying C library is represented by the 1ib variable.

Classes
CDF(pathname[, masterpath, create, ...]) Python object representing a CDF file.
Var(cdf_file, var_name, *args) A CDF variable.
gAttrList(cdf_file[, special_entry]) Object representing all the gAttributes in a CDF.
zAttrList(zvar) Object representing all the zAttributes in a zVariable.
zAttr(cdf_file, attr_name[, create]) zAttribute for zVariables within a CDF.
gAttr(cdf_file, attr_name][, create]) Global Attribute for a CDF
AttrList(cdf_file[, special_entry]) Object representing a list of attributes.
Attr(cdf_file, attr_name][, create]) An attribute, g or z, for a CDF
Library([libpath, library]) Abstraction of the base CDF C library and its state.
CDFCopy(cdf) A dictionary-like copy of all data and attributes in a CDF
VarCopy(zVar) A list-like copy of the data and attributes in a Var
CDFError(status) Raised for an error in the CDF library.
CDFException(status) Base class for errors or warnings in the CDF library.
CDFWarning(status) Used for a warning in the CDF library.
EpochError Used for errors in epoch routines
spacepy.pycdf.CDF

class spacepy.pycdf.CDF (pathname, masterpath=None, create=None, readonly=None, encoding="utf-8")
Python object representing a CDF file.

Open or create a CDF file by creating an object of this class.
Parameters

pathname
[string] name of the file to open or create

masterpath
[string] name of the master CDF file to use in creating a new file. If not provided, an existing
file is opened; if provided but evaluates to False (e.g., ' '), an empty new CDF is created.

create
[bool] Create a new CDF even if masterpath isn’t provided

readonly
[bool] Open the CDF read-only. Default True if opening an existing CDF; False if creating a
new one. A readonly CDF with many variables may be slow to close on CDF library versions
before 3.8.1. See readonly().

encoding
[str, optional] Text encoding to use when reading and writing strings. Default 'utf-8".

Raises

CDFError
if CDF library reports an error

4.16. pycdf - Python interface to CDF files 227

SpacePy Documentation, Release 0.4.0

Warns

CDFWarning
if CDF library reports a warning and interpreter is set to error on warnings.

Examples

Open a CDF by creating a CDF object, e.g.:

>>> cdffile = pycdf.CDF('cdf_filename.cdf")

Be sure to close() or save () when done.

Note: Existing CDF files are opened read-only by default, see readonly () to change.

CDF supports the with keyword, like other file objects, so:

>>> with pycdf.CDF('cdf_filename.cdf') as cdffile:
#do brilliant things with the CDF

will open the CDF, execute the indented statements, and close the CDF when finished or when an error occurs.
The python docs include more detail on this ‘context manager’ ability.

CDF objects behave like a python dictionary, where the keys are names of variables in the CDF, and the values,
Var objects. As a dictionary, they are also iterable and it is easy to loop over all of the variables in a file. Some

examples:

1. List the names of all variables in the open CDF cdffile:

>>> cdffile.keys()
>>> for k in cdffile: #Alternate
print (k)

2. Get a Var object for the variable named Epoch:

>>> epoch = cdffile['Epoch']

3. Determine if a CDF contains a variable named B_GSE:

>>> if 'B_GSE' in cdffile:
print('B_GSE is in the file'")
. else:
print('B_GSE is not in the file')

4. Find how many variables are in the file:

>>> print(len(cdffile))

5. Delete the variable Epoch from the open CDF file cdffile:

>>> del cdffile['Epoch']

6. Display a summary of variables and types in open CDF file cdffile:

228

Chapter 4. SpacePy Module Reference

http://docs.python.org/tutorial/inputoutput.html#methods-of-file-objects
http://docs.python.org/reference/compound_stmts.html#with
http://docs.python.org/tutorial/datastructures.html#dictionaries
http://docs.python.org/tutorial/classes.html#iterators

SpacePy Documentation, Release 0.4.0

>>> print(cdffile)

7. Open the CDF named cdf_filename.cdf, read all the data from all variables into dictionary data, and
close it when done or if an error occurs:

>>> with pycdf.CDF('cdf_filename.cdf') as cdffile:
data = cdffile.copy(Q)

This last example can be very inefficient as it reads the entire CDF. Normally it’s better to treat the CDF as a
dictionary and access only the data needed, which will be pulled transparently from disc. See Var for more subtle
examples.

Potentially useful dictionary methods and related functions:
* in
* keys
e lenQ)
e list comprehensions
e sorted()
e dictree()
The CDF user’s guide section 2.2 has more background information on CDF files.

The attrs Python attribute acts as a dictionary referencing CDF attributes (do not confuse the two); all the
dictionary methods above also work on the attribute dictionary. See gAttrList for more on the dictionary of
global attributes.

Creating a new CDF from a master (skeleton) CDF has similar syntax to opening one:

>>> cdffile = pycdf.CDF('cdf_filename.cdf', 'master_cdf_filename.cdf')

This creates and opens cdf_filename.cdf as a copy of master_cdf_filename.cdf.

Using a skeleton CDF is recommended over making a CDF entirely from scratch, but this is possible by specifying
a blank master:

>>> cdffile = pycdf.CDF('cdf_filename.cdf', '")

When CDFs are created in this way, they are opened read-write, see readonly () to change.

By default, new CDFs (without a master) are created in version 3 format. To create a version 2 (backward-
compatible) CDF, use Library.set_backward():

>>> pycdf.lib.set_backward(True)
>>> cdffile = pycdf.CDF('cdf_filename.cdf', '")

Add variables by direct assignment, which will automatically set type and dimension based on the data provided:

>>> cdffile['new_variable_name'] = [1, 2, 3, 4]

or, if more control is needed over the type and dimensions, use new ().

Although it is supported to assign Var objects to Python variables for convenience, there are some minor pitfalls
that can arise when changing a CDF that will not affect most users. This is only a concern when assigning a
zVar object to a Python variable, changing the CDF through some other variable, and then trying to use the zVar
object via the originally assigned variable.

4.16. pycdf - Python interface to CDF files 229

http://docs.python.org/reference/expressions.html#in
http://docs.python.org/tutorial/datastructures.html#dictionaries
https://docs.python.org/3/library/functions.html#len
http://docs.python.org/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/library/functions.html#sorted

SpacePy Documentation, Release 0.4.0

Deleting a variable:

>>> var = cdffile['Varl']
>>> del cdffile['Varl']
>>> var[0] #fail, no such variable

Renaming a variable:

>>> var = cdffile['Varl']
>>> cdffile['Varl'].rename('Var2')
>>> var[0] #fail, no such variable

Renaming via the same variable works:

>>> var = cdffile['Varl']
>>> var.rename('Var2')
>>> var[0] #succeeds, aware of new name

Deleting a variable and then creating another variable with the same name may lead to some surprises:

>>> var = cdffile['Varl']

>>> var[...] = [1, 2, 3, 4]

>>> del cdffile['Varl']

>>> cdffile.new('Varl', data=[5, 6, 7, 8]
>>> var[...]

[5, 6, 7, 8]

attr_num(attrname) Get the attribute number and scope by attribute name

attrs Global attributes for this CDF in a dict-like format.

add_attr_to_cache(attrname, num, scope) Add an attribute to the name-to-number cache

add_to_cache(varname, num) Add a variable to the name-to-number cache

checksum([new_val]) Set or check the checksum status of this CDF.

clear_attr_from_cache(attrname) Mark an attribute deleted in the name-to-number
cache

clear_from_cache(varname) Mark a variable deleted in the name-to-number cache

clone(zVar[, name, data]) Clone a zVariable (from another CDF or this) into
this CDF

close() Closes the CDF file

col_major([new_col]) Finds the majority of this CDF file

compress([comptype, param]) Set or check the compression of this CDF

copy() Make a copy of all data and attributes in this CDF

from_data(filename, sd) Create a new CDF file from a SpaceData object or
similar

new(name[, data, type, recVary, dimVarys, ...]) Create a new zVariable in this CDF

raw_var(name) Get a "raw" Var object.

readonly([ro]) Sets or check the readonly status of this CDF

save() Saves the CDF file but leaves it open.

var_num(varname) Get the variable number of a particular variable name

version() Get version of library that created this CDF

attrs

Global attributes for this CDF in a dict-like format. See gAttrList for details.

230

Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

backward
True if this CDF was created in backward-compatible mode (for opening with CDF library before 3.x)
add_to_cache (varname, num)

Add a variable to the name-to-number cache

This maintains a cache of name-to-number mappings for zVariables to keep from having to query the CDF
library constantly. It’s mostly an internal function.

Parameters
varname
[bytes] name of the zVariable. Not this is NOT a string in Python 3!

num
[int] number of the variable

add_attr_to_cache (attrname, num, scope)

Add an attribute to the name-to-number cache

This maintains a cache of name-to-number mappings for attributes to keep from having to query the CDF
library constantly. It’s mostly an internal function.

Parameters
varname
[bytes] name of the zVariable. Not this is NOT a string in Python 3!

num
[int] number of the variable

scope
[bool] True if global scope; False if variable scope.
attr_num(attrname)

Get the attribute number and scope by attribute name

This maintains a cache of name-to-number mappings for attributes to keep from having to query the CDF
library constantly. It’s mostly an internal function.

Parameters

attrname
[bytes] name of the attribute. Not this is NOT a string in Python 3!
Returns
out
[tuple] attribute number, scope (True for global) of this attribute

Raises

CDFError
[if attribute is not found]

checksum (new_val=None)

Set or check the checksum status of this CDF. If checksums are enabled, the checksum will be verified
every time the file is opened.

Returns

out
[boolean] True if the checksum is enabled or False if disabled

4.16. pycdf - Python interface to CDF files 231

SpacePy Documentation, Release 0.4.0

Other Parameters

new_val
[boolean] True to enable checksum, False to disable, or leave out to simply check.

clear_from_cache (varname)

Mark a variable deleted in the name-to-number cache
Will remove a variable, and all variables with higher numbers, from the variable cache.
Does NOT delete the variable!

This maintains a cache of name-to-number mappings for zVariables to keep from having to query the CDF
library constantly. It’s mostly an internal function.

Parameters

varname
[bytes] name of the zVariable. Not this is NOT a string in Python 3!

clear_attr_from_cache (attrname)
Mark an attribute deleted in the name-to-number cache

Will remove an attribute, and all attributes with higher numbers, from the attribute cache.
Does NOT delete the variable!

This maintains a cache of name-to-number mappings for attributes to keep from having to query the CDF
library constantly. It’s mostly an internal function.

Parameters

attrname
[bytes] name of the attribute. Not this is NOT a string in Python 3!

clone (zVar, name=None, data=True)
Clone a zVariable (from another CDF or this) into this CDF

Parameters

zVar
[Var] variable to clone

Returns

out
[Var] The newly-created zVar in this CDF

Other Parameters

name
[str] Name of the new variable (default: name of the original)

data
[boolean (optional)] Copy data, or only type, dimensions, variance, attributes? (default:
True, copy data as well)

close()
Closes the CDF file

Although called on object destruction (__del__()), to ensure all data are saved, the user should explicitly
call close() or save().

Raises

232 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

CDFError
[if CDF library reports an error]

Warns

CDFWarning
[if CDF library reports a warning]

col_major (new_col=None)
Finds the majority of this CDF file

Returns

out
[boolean] True if column-major, false if row-major

Other Parameters

new_col
[boolean] Specify True to change to column-major, False to change to row major, or do not
specify to check the majority rather than changing it. (default is check only)

compress (comptype=None, param=None)
Set or check the compression of this CDF

Sets compression on entire file, not per-variable.
See section 2.6 of the CDF user’s guide for more information on compression.
Returns

out
[tuple] (comptype, param) currently in effect

Other Parameters

comptype
[ctypes.c_long] type of compression to change to, see CDF C reference manual section
4.10. Constants for this parameter are in const. If not specified, will not change compres-
sion.

param
[ctypes.c_long] Compression parameter, see CDF CRM 4.10 and const. If not specified,
will choose reasonable default (5 for gzip; other types have only one possible parameter.)

See also:

Var.compress()

Examples

Set file cdffile to gzip compression, compression level 9:

>>> cdffile.compress(pycdf.const.GZIP_COMPRESSION, 9)

copy O
Make a copy of all data and attributes in this CDF

Returns

4.16. pycdf - Python interface to CDF files 233

SpacePy Documentation, Release 0.4.0

out
[CDFCopy] SpaceData-like object of all data
classmethod from_data(filename, sd)

Create a new CDF file from a SpaceData object or similar

The CDF named filename is created, opened, filled with the contents of sd (including attributes), and
closed.

sd should be a dictionary-like object; each key will be made into a variable name. An attribute called
attrs, if it exists, will be made into global attributes for the CDF.

Each value of sd should be array-like and will be used as the contents of the variable; an attribute called
attrs, if it exists, will be made into attributes for that variable.

Parameters

filename
[string] name of the file to create

sd
[spacepy.datamodel.SpaceData] data to put in the CDF. This structure cannot be nested,
i.e., it must contain only dmarray and no Spacedata objects.

new (name, data=None, type=None, recVary=None, dimVarys=None, dims=None, n_elements=None,
compress=None, compress_param=None, sparse=None, pad=None)

Create a new zVariable in this CDF

Note: Either data or type must be specified. If type is not specified, it is guessed from data.

This creates a new variable. If using a “master CDF” with existing variables and no records, simply assign
the new data to the variable, or the “whole variable” slice:

>>> cdf['ExistingVariable'] = data
>>> cdf['ExistingVariable']J[...] = data

Parameters

name
[str] name of the new variable

Returns

out
[Var] the newly-created zVariable

Other Parameters

data
data to store in the new variable. If this has a an attrs attribute (e.g., dmarray), it will be
used to populate attributes of the new variable. Similarly the CDF type, record variance,
etc. will, by default, be taken from data if it is a VarCopy. This can be overridden by
specifying other keywords.

type
[ctypes.c_long] CDF type of the variable, from const. See section 2.5 of the CDF user’s
guide for more information on CDF data types.

recvVary
[boolean] record variance of the variable (default True)

234 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

dimVarys
[list of boolean] dimension variance of each dimension, default True for all dimensions.

dims
[list of int] size of each dimension of this variable, default zero-dimensional. Note this
is the dimensionality as defined by CDF, i.e., for record-varying variables it excludes the
leading record dimension. See Var.

n_elements
[int] number of elements, should be 1 except for CDF_CHAR, for which it’s the length of

the string.

compress
[ctypes.c_long] Compression to apply to this variable, default None. See Var.

compress().

compress_param
[ctypes.c_long] Compression parameter if compression used; reasonable default is chosen.

See Var. compress().

sparse
[ctypes.c_long] New in version 0.2.3.

Sparse records type for this variable, default None (no sparse records). See Var. sparse().

pad
New in version 0.2.3.

Pad value for this variable, default None (do not set). See Var.pad().
Raises

ValueError
[if neither data nor sufficient typing information] is provided.

Notes
Any given data may be representable by a range of CDF types; if the type is not specified, pycdf will guess
which the CDF types which can represent this data. This breaks down to:

1. If input data is a numpy array, match the type of that array

2. Proper kind (numerical, string, time)

3. Proper range (stores highest and lowest number provided)

4. Sufficient resolution (EPOCH16 or TIME_TT2000 required if datetime has microseconds or below.)
If more than one value satisfies the requirements, types are returned in preferred order:

1. Type that matches precision of data first, then

2. integer type before float type, then

3. Smallest type first, then

4. signed type first, then

5. specifically-named (CDF_BYTE) vs. generically named (CDF_INT1)

TIME_TT2000 is always the preferred time type if it is available. Otherwise, EPOCH_16 is preferred over
EPOCH if data specifies below the millisecond level (rule 1), but otherwise EPOCH is preferred (rule 2).

4.16. pycdf - Python interface to CDF files 235

SpacePy Documentation, Release 0.4.0

Changed in version 0.3.0: Before 0.3.0, EPOCH or EPOCH_16 were used if not specified. Now
TIME_TT2000 is always the preferred type.

For floats, four-byte is preferred unless eight-byte is required:
1. absolute values between 0 and 3e-39
2. absolute values greater than 1.7e38

This will switch to an eight-byte double in some cases where four bytes would be sufficient for IEEE 754
encoding, but where DEC formats would require eight.

raw_var (name)

Get a “raw” Var object.

Normally a Var will perform translation of values for certain types (to/from Unicode for CHAR variables
on Py3k, and to/from datetime for all time types). A “raw” object does not perform this translation, on read
or write.

This does not affect the data on disk, and in fact it is possible to maintain multiple Python objects with
access to the same zVariable.

Parameters

name
[str] name or number of the zVariable

readonly (ro=None)
Sets or check the readonly status of this CDF

If the CDF has been changed since opening, setting readonly mode will have no effect.

Note: Before version 3.8.1 of the NASA CDF library, closing a CDF that has been opened readonly, or
setting readonly False, may take a substantial amount of time if there are many variables in the CDF, as a
(potentially large) cache needs to be cleared. If upgrading to a newer CDF library is not possible, specifying
readonly=False when opening the file is an option. However, this may make some reading operations
slower.

Returns

out
[Boolean] True if CDF is read-only, else False

Other Parameters

ro
[Boolean] True to set the CDF readonly, False to set it read/write, or leave out to check
only.

Raises
CDFError
[if bad mode is set]

save()
Saves the CDF file but leaves it open.

If closing the CDF, close () is sufficient; there is no need to call save () before close().

236 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Note: Relies on an undocumented call of the CDF C library, which is also used in the Java interface.

Raises

CDFError
[if CDF library reports an error]

Warns
CDFWarning
[if CDF library reports a warning]

var_num(varname)

Get the variable number of a particular variable name

This maintains a cache of name-to-number mappings for zVariables to keep from having to query the CDF
library constantly. It’s mostly an internal function.

Parameters

varname
[bytes] name of the zVariable. Not this is NOT a string in Python 3!

Returns

out
[int] Variable number of this zvariable.

Raises

CDFError
[if variable is not found]

version()
Get version of library that created this CDF

Returns

out
[tuple] version of CDF library, in form (version, release, increment)

spacepy.pycdf.Var

class spacepy.pycdf.Var(cdf_file, var_name, *args)
A CDF variable.

This object does not directly store the data from the CDF; rather, it provides access to the data in a format that
much like a Python list or numpy ndarray. General list information is available in the python docs: 1, 2, 3.

The CDF user’s guide, section 2.3, provides background on variables.

Note: Not intended to be created directly; use methods of CDF to gain access to a variable.

A record-varying variable’s data are viewed as a hypercube of dimensions n_dims+1 (the extra dimension is the
record number). They are indexed in row-major fashion, i.e. the last index changes most frequently / is contiguous
in memory. If the CDF is column-major, the data are transformed to row-major before return.

4.16. pycdf - Python interface to CDF files 237

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.python.org/tutorial/introduction.html#lists
http://docs.python.org/tutorial/datastructures.html#more-on-lists
http://docs.python.org/library/stdtypes.html#typesseq

SpacePy Documentation, Release 0.4.0

Non record-varying variables are similar, but do not have the extra dimension of record number.

Variables can be subscripted by a multidimensional index to return the data. Indices are in row-major order
with the first dimension representing the record number. If the CDF is column major, the data are reordered to
row major. Each dimension is specified by standard Python slice notation, with dimensions separated by com-
mas. The ellipsis fills in any missing dimensions with full slices. The returned data are lists; Python represents
multidimensional arrays as nested lists. The innermost set of lists represents contiguous data.

Note: numpy ‘fancy indexing’ is not supported.

Degenerate dimensions are ‘collapsed’, i.e. no list of only one element will be returned if a single subscript is
specified instead of a range. (To avoid this, specify a slice like 1:2, which starts with 1 and ends before 2).

Two special cases:

1. requesting a single-dimension slice for a record-varying variable will return all data for that record number
(or those record numbers) for that variable.

2. Requests for multi-dimensional variables may skip the record-number dimension and simply specify the
slice on the array itself. In that case, the slice of the array will be returned for all records.

In the event of ambiguity (e.g., single-dimension slice on a one-dimensional variable), case 1 takes priority.
Otherwise, mismatch between the number of dimensions specified in the slice and the number of dimensions in
the variable will cause an IndexError to be thrown.

This all sounds very complicated but it is essentially attempting to do the ‘right thing’ for a range of slices.

An unusual case is scalar (zero-dimensional) non-record-varying variables. Clearly they cannot be subscripted
normally. In this case, use the [...] syntax meaning ‘access all data.’:

>>> from spacepy import pycdf

>>> testcdf = pycdf.CDF('test.cdf', '")
>>> variable = testcdf.new('variable', recVary=False,
B type=pycdf.const.CDF_INT4)

>>> variable[...] = 10

>>> variable

<Var:

CDF_INT4 [] NRV

>

>>> variable[...]

10

Reading any empty non-record-varying variable will return an empty with the same number of dimensions, but
all dimensions will be of zero length. The scalar is, again, a special case: due to the inability to have a numpy
array which is both zero-dimensional and empty, reading an NRV scalar variable with no data will return an
empty one-dimensional array. This is really not recommended.

Variables with no records (RV) or no data (NRV) are considered to be “false”; those with records or data written
are considered to be “true”, allowing for an easy check of data existence:

>>> if testcdf['variable']:
>>> # do things that require data to exist

As alist type, variables are also iterable; iterating over a variable returns a single complete record at a time.

This is all clearer with examples. Consider a variable B_GSM, with three elements per record (X, y, z components)
and fifty records in the CDF. Then:

238

Chapter 4. SpacePy Module Reference

http://docs.python.org/tutorial/introduction.html#strings
http://docs.python.org/tutorial/classes.html#iterators

SpacePy Documentation, Release 0.4.0

1. B_GSM[®, 1] is the y component of the first record.

2. B_GSM[10, :] isathree-element list, containing X, y, and z components of the 11th record. As a shortcut,
if only one dimension is specified, it is assumed to be the record number, so this could also be written
B_GSM[10].

3. B_GSM[...] reads all data for B_GSM and returns it as a fifty-element list, each element itself being a
three-element list of X, y, z components.

Multidimensional example: consider fluxes stored as a function of pitch angle and energy. Such a variable may
be called Flux and stored as a two-dimensional array, with the first dimension representing (say) ten energy steps
and the second, eighteen pitch angle bins (ten degrees wide, centered from 5 to 175 degrees). Assume 100
records stored in the CDF (i.e. 100 different times).

1. Flux[4] is a list of ten elements, one per energy step, each element being a list of 18 fluxes, one per pitch
bin. All are taken from the fifth record in the CDF.

2. Flux[4, :, 0:4] is the same record, all energies, but only the first four pitch bins (roughly, field-
aligned).
3. Flux[..., 0:4] is a 100-element list (one per record), each element being a ten-element list (one per

energy step), each containing fluxes for the first four pitch bins.

This slicing notation is very flexible and allows reading specifically the desired data from the CDF.

Note: The C CDF library allows reading records which have not been written to a file, returning a pad value.
pycdf checks the size of a variable and will raise IndexError for most attempts to read past the end, except for
variables with sparse records. If these checks fail, a value is returned with a warning VIRTUAL_RECORD_DATA.
Please open an issue if this occurs for variables without sparse records. See pg. 39 and following of the CDF
User’s Guide for more on virtual records.

All data are, on read, converted to appropriate Python data types; EPOCH, EPOCH16, and TIME_TT2000 types
are converted to datetime. Data are returned in numpy arrays.

Note: Although pycdf supports TIME_TT2000 variables, the Python datetime object does not support leap
seconds. Thus, on read, any seconds past 59 are truncated to 59.999999 (59 seconds, 999 milliseconds, 999
microseconds).

Potentially useful list methods and related functions:

e count

e in

* index

e len

e list comprehensions

* sorted
The topic of array majority can be very confusing; good background material is available at IDL. Array Storage
and Indexing. In brief, regardless of the majority stored in the CDF, pycdf will always present the data in the
native Python majority, row-major order, also known as C order. This is the default order in NumPy. However,

packages that render image data may expect it in column-major order. If the axes seem ‘swapped’ this is likely
the reason.

4.16. pycdf - Python interface to CDF files 239

https://github.com/spacepy/spacepy/issues/new
https://cdf.gsfc.nasa.gov/html/cdf_docs.html
https://cdf.gsfc.nasa.gov/html/cdf_docs.html
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
http://docs.python.org/tutorial/datastructures.html#more-on-lists
http://docs.python.org/reference/expressions.html#in
http://docs.python.org/tutorial/datastructures.html#more-on-lists
http://docs.python.org/library/functions.html#len
http://docs.python.org/tutorial/datastructures.html#list-comprehensions
http://docs.python.org/library/functions.html#sorted
http://www.idlcoyote.com/misc_tips/colrow_major.html
http://www.idlcoyote.com/misc_tips/colrow_major.html
http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html#internal-memory-layout-of-an-ndarray

SpacePy Documentation, Release 0.4.0

The at trs Python attribute acts as a dictionary referencing zAttributes (do not confuse the two); all the dictionary
methods above also work on the attribute dictionary. See zAttrList for more on the dictionary of attributes.

With writing, as with reading, every attempt has been made to match the behavior of Python lists. You can
write one record, many records, or even certain elements of all records. There is one restriction: only the record
dimension (i.e. dimension 0) can be resized by write, as all records in a variable must have the same dimensions.
Similarly, only whole records can be deleted.

Note: Unusual error messages on writing data usually mean that pycdf is unable to interpret the data as a regular
array of a single type matching the type and shape of the variable being written. A 5x4 array is supported; an
irregular array where one row has five columns and a different row has six columns is not. Error messages of
this type include:

e Data must be well-formed, regular array of number, string, or datetime
e setting an array element with a sequence.

e shape mismatch: objects cannot be broadcast to a single shape

For these examples, assume Flux has 100 records and dimensions [2, 3].

Rewrite the first record without changing the rest:

>>> Flux[0] = [[1, 2, 3], [4, 5, 61]

Writes a new first record and delete all the rest:

>>> Flux[...] = [[1, 2, 3], [4, 5, 6]1]

Write a new record in the last position and add a new record after:

>>> Flux[99:] = [[[1, 2, 31, [4, 5, 611,
(rit, 1z, 13], [14, 15, 16]]]

Insert two new records between the current number 5 and 6:

>>> Flux[5:6] = [[[1, 2, 31, [4, 5, 6]1, ([[11, 12, 13],
(14, 15, 16]]]

This operation can be quite slow, as it requires reading and rewriting the entire variable. (CDF does not directly
support record insertion.)

Change the first element of the first two records but leave other elements alone:

>>> Flux[0:2, 0, 0] = [1, 2]

Remove the first record:

>>> del Flux[0]

Removes record 5 (the sixth):

>>> del Flux[5]

Due to the need to work around a bug in the CDF library, this operation can be quite slow.

Delete all data from Flux, but leave the variable definition intact:

240

Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

>>> del Flux[...]

Note: Variables using sparse records do not support insertion and only support deletion of a single record at a
time. See sparse () and section 2.3.12 of the CDF user’s guide for more information on sparse records.

Note: Although this interface only directly supports zVariables, zMode is set on opening the CDF so rVars
appear as zVars. See p.24 of the CDF user’s guide; pyCDF uses zMode 2.

attrs zAttributes for this zVariable in a dict-like format.

compress([comptype, param]) Set or check the compression of this variable

copy() Copies all data and attributes from this variable

dtype Provide the numpy dtype equivalent to the CDF type
of this variable.

dv([new_dv]) Gets or sets dimension variance of each dimension of
variable.

insert(index, data) Inserts a single record before an index

name() Returns the name of this variable

nelems() Number of elements for each value in this variable

pad([value]) Gets or sets this variable's pad value.

rename(new_name) Renames this variable

rv([new_rv]) Gets or sets whether this variable has record variance

shape Provides the numpy array-like shape of this variable.

sparse([sparsetype]) Gets or sets this variable's sparse records mode.

type([new_type]) Returns or sets the CDF type of this variable

attrs

zAttributes for this zVariable in a dict-like format. See zAttrList for details.

compress (comptype=None, param=None)

Set or check the compression of this variable

Compression may not be changeable on variables with data already written; even deleting the data may not
permit the change.

See section 2.6 of the CDF user’s guide for more information on compression.
Returns

out
[tuple] the (comptype, param) currently in effect

Other Parameters

comptype
[ctypes.c_long] type of compression to change to, see CDF C reference manual section
4.10. Constants for this parameter are in const. If not specified, will not change compres-
sion.

param
[ctypes.c_long] Compression parameter, see CDF CRM 4.10 and const. If not specified,
will choose reasonable default (5 for gzip; other types have only one possible parameter.)

4.16. pycdf - Python interface to CDF files 241

SpacePy Documentation, Release 0.4.0

copy O
Copies all data and attributes from this variable
Returns
out

[VarCopy] list of all data in record order
dtype
Provide the numpy dtype equivalent to the CDF type of this variable.
Data from this variable will be returned in numpy arrays of this type.

See also:

type
dv (new_dv=None)
Gets or sets dimension variance of each dimension of variable.

If the variance is unknown, True is assumed (this replicates the apparent behavior of the CDF library on
variable creation).

Parameters

new_dv
[list of boolean] Each element True to change that dimension to dimension variance, False
to change to not dimension variance. (Unspecified to simply check variance.)

Returns

out
[list of boolean] True if that dimension has variance, else false.

insert (index, data)

Inserts a single record before an index
Parameters

index
[int] index before which to insert the new record

data
the record to insert

name()
Returns the name of this variable

Returns

out
[str] variable’s name

nelems ()

Number of elements for each value in this variable
This is the length of strings for CHAR and UCHAR, should be 1 otherwise.
Returns
int
length of strings

242 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

pad (value=None)

Gets or sets this variable’s pad value.
See section 2.3.20 of the CDF user’s guide for more information on pad values.
Returns

out
[1 Current pad value for this variable. None if it has never been set. This rarely happens;
the pad value is usually set by the CDF library on variable creation.

Other Parameters

value
If specified, should be an appropriate pad value. If not specified, the pad value will not be
set or changed.

Notes

New in version 0.2.3.

rename (new_name)

Renames this variable
Parameters

new_name
[str] the new name for this variable

rv(new_rv=None)

Gets or sets whether this variable has record variance

If the variance is unknown, True is assumed (this replicates the apparent behavior of the CDF library on
variable creation).

Returns

out
[Boolean] True if record varying, False if NRV

Other Parameters

new_rv
[boolean] True to change to record variance, False to change to NRV, unspecified to simply
check variance.
shape
Provides the numpy array-like shape of this variable.

Returns a tuple; first element is number of records (RV variable only) And the rest provide the dimension-
ality of the variable.

Note: Assigning to this attribute will not change the shape.

sparse (sparsetype=None)

Gets or sets this variable’s sparse records mode.

Sparse records mode may not be changeable on variables with data already written; even deleting the data
may not permit the change.

4.16. pycdf - Python interface to CDF files 243

SpacePy Documentation, Release 0.4.0

See section 2.3.12 of the CDF user’s guide for more information on sparse records.
Returns

out
[ctypes.c_long] Sparse record mode for this variable.

Other Parameters

sparsetype
[ctypes.c_long] If specified, should be a sparse record mode from const; see also CDF C
reference manual section 4.11.1. If not specified, the sparse record mode for this variable
will not change.

Notes

New in version 0.2.3.

type (new_type=None)
Returns or sets the CDF type of this variable

Parameters

new_type
[ctypes.c_long] the new type from const

Returns

out
[int] CDF type

spacepy.pycdf.gAttrList

class spacepy.pycdf.gAttrList(cdf file, special_entry=None)
Object representing all the gAttributes in a CDF.

Normally accessed as an attribute of an open CDF:

>>> global_attribs = cdffile.attrs

Appears as a dictionary: keys are attribute names; each value is an attribute represented by a gAttr object. To
access the global attribute TEXT:

>>> text_attr = cdffile.attrs['TEXT']

See also:

AttrList

244 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

spacepy.pycdf.zAttrList

class spacepy.pycdf.zAttrList (zvar)
Object representing all the zAttributes in a zVariable.

Normally accessed as an attribute of a Var in an open CDF:

>>> epoch_attribs = cdffile['Epoch'].attrs

Appears as a dictionary: keys are attribute names, values are the value of the zEntry associated with the appro-
priate zVariable. Each vAttribute in a CDF may only have a single entry associated with each variable. The
entry may be a string, a single numerical value, or a series of numerical values. Entries with multiple values are
returned as an entire list; direct access to the individual elements is not possible.

Example: finding the first dependency of (ISTP-compliant) variable Flux:

>>> print cdffile['Flux'].attrs['DEPEND_0']

zAttributes are shared among zVariables, one zEntry allowed per zVariable. (pyCDF hides this detail.) Deleting
the last zEntry for a zAttribute will delete the underlying zAttribute.

zEntries are created and destroyed by the usual dict methods on the zAttrlist:

>>> epoch_attribs['new_entry'] = [1, 2, 4] #assign a list to new zEntry
>>> del epoch_attribs['new_entry'] #delete the zEntry

The type of the zEntry is guessed from data provided. The type is chosen to match the data; subject to that
constraint, it will try to match (in order):

1. existing zEntry corresponding to this zVar

2. other zEntries in this zAttribute

3. the type of this zVar

4. data-matching constraints described in CDF.new()

See also:
AttrList
spacepy.pycdf.zAttr

class spacepy.pycdf.zAttr(cdf file, attr_name, create=False)
zAttribute for zVariables within a CDF.

Warning: Because zAttributes are shared across all variables in a CDF, directly manipulating them may
have unexpected consequences. It is safest to operate on zEntries via zAttrList.

Note: When accessing a zAttr, pyCDF exposes only the zEntry corresponding to the associated zVariable.

See also:

Attr

4.16. pycdf - Python interface to CDF files 245

SpacePy Documentation, Release 0.4.0

spacepy.pycdf.gAttr

class spacepy.pycdf.gAttr(cdf file, attr_name, create=False)

Global Attribute for a CDF

Represents a CDF attribute, providing access to the gEntries in a format that looks like a Python list. General
list information is available in the python docs: 1, 2, 3.

Normally accessed by providing a key to a gAttrList:

>>> attribute = cdffile.attrs['attribute_name']
>>> first_gentry = attribute[0]

Each element of the list is a single gEntry of the appropriate type. The index to the elements is the gEntry number.

A gEntry may be either a single string or a 1D array of numerical type. Entries of numerical type (everything
but CDF_CHAR and CDF_UCHAR) with a single element are returned as scalars; multiple-element entries are
returned as a list. No provision is made for accessing below the entry level; the whole list is returned at once (but
Python’s slicing syntax can be used to extract individual items from that list.)

Multi-dimensional slicing is not supported; an entry with multiple elements will have all elements returned (and
can thus be sliced itself). Example:

>>> first_three = attribute[5, 0:3] #will fail
>>> first_three = attribute[5][0:3] #first three elements of 5th Entry

gEntries are not necessarily contiguous; a gAttribute may have an entry 0 and entry 2 without an entry 1. 1len()
will return the number of gEntries; use max_1idx () to find the highest defined gEntry number and has_entry ()
to determine if a particular gEntry number exists. Iterating over all entries is also supported:

>>> entrylist = [entry for entry in attribute]

Deleting gEntries will leave a “hole”:

>>> attribute[0:3] = [1, 2, 3]
>>> del attribute[1]

>>> attribute.has_entry(1)
False

>>> attribute.has_entry(2)
True

>>> print attribute[0:3]

[1, None, 3]

Multi-element slices over nonexistent gEntries will return None where no entry exists. Single-element indices
for nonexistent gEntries will raise IndexError. Assigning None to a gEntry will delete it.

When assigning to a gEntry, the type is chosen to match the data; subject to that constraint, it will try to match
(in order):

1. existing gEntry of the same number in this gAttribute
2. other gEntries in this gAttribute
3. data-matching constraints described in CDF.new().

See also:

Attr

246

Chapter 4. SpacePy Module Reference

http://docs.python.org/tutorial/introduction.html#lists
http://docs.python.org/tutorial/datastructures.html#more-on-lists
http://docs.python.org/library/stdtypes.html#typesseq

SpacePy Documentation, Release 0.4.0

spacepy.pycdf.AttrList

class spacepy.pycdf.AttrList(cdf file, special_entry=None)

Object representing a list of attributes.

Warning: This class should not be used directly, but only via its subclasses, gAttrList and zAttrList.
Methods listed here are safe to use from the subclasses.

clone(master[, name, new_name]) Clones another attribute list, or one attribute from: it,
into this list.

copy() Create a copy of this attribute list

new(name[, data, type]) Create a new Attr in this AttrList

rename(old_name, new_name) Rename an attribute in this list

clone (master, name=None, new_name=None)

Clones another attribute list, or one attribute from it, into this list.
Parameters

master
[AttrList] the attribute list to copy from. This can be any dict-like object.

Other Parameters

name
[str (optional)] name of attribute to clone (default: clone entire list)

new_name
[str (optional)] name of the new attribute, default name

copy O
Create a copy of this attribute list
Returns
out

[dict] copy of the entries for all attributes in this list

new (name, data=None, type=None)
Create a new Attr in this AttrList

Parameters

name
[str] name of the new Attribute

Other Parameters

data
data to put into the first entry in the new Attribute

type
CDF type of the first entry from const. Only used if data are specified.

Raises

KeyError
[if the name already exists in this list]

4.16. pycdf - Python interface to CDF files 247

SpacePy Documentation, Release 0.4.0

rename (old_name, new_name)

Rename an attribute in this list

Renaming a zAttribute renames it for all zVariables in this CDF!

Parameters

old_name

[str] the current name of the attribute

new_name

[str] the new name of the attribute

spacepy.pycdf.Attr

class spacepy.pycdf.Attr(cdf file, attr_name, create=False)

An attribute, g or z, for a CDF

Warning: This class should not be used directly, but only in its subclasses, gAttr and zAt tr. The methods
listed here are safe to use in the subclasses.

Represents a CDF attribute, providing access to the Entries in a format that looks like a Python list. General list

information is available in the python docs: 1, 2, 3.

An introduction to CDF attributes can be found in section 2.4 of the CDF user’s guide.

Each element of the list is a single Entry of the appropriate type. The index to the elements is the Entry number.

Multi-dimensional slicing is not supported; an Entry with multiple elements will have all elements returned (and

can thus be sliced itself). Example:

>>> first_three = attribute[5, 0:3] #will fail
>>> first_three = attribute[5][0:3] #first three elements of 5th Entry

append(data)

Add an entry to end of attribute

has_entry(number)

Check if this attribute has a particular Entry number

insert(index, data)

Insert an entry at a particular number

max_1idx() Maximum index of Entries for this Attr
new(datal, type, number]) Create a new Entry in this Attribute
number() Find the attribute number for this attribute

rename(new_name)

Rename this attribute

type(number[, new_type])

Find or change the CDF type of a particular Entry
number

append (data)
Add an entry to end of attribute

Puts entry after last defined entry (does not fill gaps)

Parameters

data

data for the new entry

248

Chapter 4. SpacePy Module Reference

http://docs.python.org/tutorial/introduction.html#lists
http://docs.python.org/tutorial/datastructures.html#more-on-lists
http://docs.python.org/library/stdtypes.html#typesseq

SpacePy Documentation, Release 0.4.0

has_entry (number)

Check if this attribute has a particular Entry number
Parameters

number
[int] number of Entry to check or change

Returns

out
[bool] True if number is a valid entry number; False if not

insert (index, data)

Insert an entry at a particular number

Inserts entry at particular number while moving all subsequent entries to one entry number later. Does not
close gaps.

Parameters

index
[int] index where to put the new entry

data
data for the new entry

max_idx()
Maximum index of Entries for this Attr

Returns

out
[int] maximum Entry number

new (data, type=None, number=None)

Create a new Entry in this Attribute

Note: If number is provided and an Entry with that number already exists, it will be overwritten.

Parameters

data
data to put in the Entry

Other Parameters

type
[int] type of the new Entry, from const (otherwise guessed from data)

number

[int] Entry number to write, default is lowest available number.

number ()

Find the attribute number for this attribute
Returns

out
[int] attribute number

4.16. pycdf - Python interface to CDF files 249

SpacePy Documentation, Release 0.4.0

rename (new_name)

Rename this attribute
Renaming a zAttribute renames it for all zVariables in this CDF!
Parameters

new_name
[str] the new name of the attribute

type (number, new_type=None)
Find or change the CDF type of a particular Entry number

Parameters

number
[int] number of Entry to check or change

Returns

out
[int] CDF variable type, see const

Other Parameters

new_type
type to change this Entry to, from const. Omit to only check type.

Notes

If changing types, old and new must be equivalent, see CDF User’s Guide section 2.5.5 pg. 57

spacepy.pycdf.Library

class spacepy.pycdf.Library (libpath=None, library=None)
Abstraction of the base CDF C library and its state.

Not normally intended for end-user use. An instance of this class is created at package load time as the 1ib
variable, providing access to the underlying C library if necessary. The CDF library itself is described in section
2.1 of the CDF user’s guide, as well as the CDF C reference manual.

Calling the C library directly requires knowledge of ctypes.

Instantiating this object loads the C library, see pycdf - Python interface to CDF files docs for details.

250 Chapter 4. SpacePy Module Reference

https://docs.python.org/3/library/ctypes.html#module-ctypes

SpacePy Documentation, Release 0.4.0

call(*args, **kwargs)

Call the CDF internal interface

check_status(status[, ignore])

Raise exception or warning based on return status of
CDF call

datetime_to_epoch(dt)

Converts a Python datetime to a CDF Epoch value

datetime_to_epochl6(dt)

Converts a Python datetime to a CDF Epoch16 value

datetime_to_tt2000(dt)

Converts a Python datetime to a CDF TT2000 value

epoch_to_datetime(epoch)

Converts a CDF epoch value to a datetime

epoch_to_epochl6(epoch)

Converts a CDF EPOCH to a CDF EPOCH16 value

epoch_to_num(epoch)

Convert CDF EPOCH to matplotlib number.

epoch_to_tt2000(epoch)

Converts a CDF EPOCH to a CDF TT2000 value

epochl6_to_datetime(epoch0, epochl)

Converts a CDF epoch16 value to a datetime

epochl6_to_epoch(epochl6)

Converts a CDF EPOCH16 to a CDF EPOCH value

epochl6_to_tt2000(epoch0, epochl)

Converts a CDF epoch16 value to TT2000

get_minmax(cdftype)

Find minimum, maximum possible value based on
CDF type.

set_backward([backward])

Set backward compatibility mode for new CDFs

tt2000_to_datetime(tt2000)

Converts a CDF TT2000 value to a datetime

tt2000_to_epoch(tt2000)

Converts a CDF TT2000 value to a CDF EPOCH

tt2000_to_epoch16(tt2000)

Converts a CDF TT2000 value to a CDF EPOCH16

call(*args, **kwargs)
Call the CDF internal interface

Passes all parameters directly through to the CDFlib routine of the CDF library’s C internal interface.

Checks the return value with check_status().

Terminal NULL is automatically added to args.

Parameters

args

[various, see ctypes] Passed directly to the CDF library interface. Useful constants are

defined in the const module.

Returns

out

[int] CDF status from the library

Other Parameters

ignore

[sequence of CDF statuses] sequence of CDF statuses to ignore. If any of these is returned
by CDF library, any related warnings or exceptions will not be raised.

Raises

CDFError

[if CDF library reports an error]

Warns

CDFWarning

[if CDF library reports a warning]

check_status (sratus, ignore=())

Raise exception or warning based on return status of CDF call

Parameters

4.16. pycdf - Python interface to CDF files

251

https://docs.python.org/3/library/ctypes.html#module-ctypes

SpacePy Documentation, Release 0.4.0

status
[int] status returned by the C library

Returns

out
[int] status (unchanged)

Other Parameters

ignore
[sequence of ctypes.c_long] CDF statuses to ignore. If any of these is returned by CDF
library, any related warnings or exceptions will not be raised. (Default none).

Raises

CDFError
[if status < CDF_WARN, indicating an error]

Warns

CDFWarning
[if CDF_WARN <= status < CDF_OK, indicating a warning.]

datetime_to_epoch(dr)
Converts a Python datetime to a CDF Epoch value

Parameters

dt
[datetime.datetime] date and time to convert

Returns

out
[float] epoch corresponding to dt

See also:
v_datetime_to_epoch

datetime_to_epochl6(dr)
Converts a Python datetime to a CDF Epoch16 value

Parameters

dt
[datetime.datetime] date and time to convert

Returns

out
[list of float] epoch16 corresponding to dt

See also:
v_datetime_to_epochl6

datetime_to_tt2000(dr)
Converts a Python datetime to a CDF TT2000 value

Parameters

252 Chapter 4. SpacePy Module Reference

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

SpacePy Documentation, Release 0.4.0

dt
[datetime.datetime] date and time to convert

Returns

out
[int] tt2000 corresponding to dt

See also:
v_datetime_to_tt2000

epoch_to_datetime(epoch)

Converts a CDF epoch value to a datetime
Parameters

epoch
[float] epoch value from CDF

Returns

out
[datetime.datetime] date and time corresponding to epoch. Invalid values are set to
usual epoch invalid value, i.e. last moment of year 9999.

See also:
v_epoch_to_datetime

epoch_to_epochl6 (epoch)
Converts a CDF EPOCH to a CDF EPOCH16 value

Parameters

epoch
[double] EPOCH to convert. Lists and numpy arrays are acceptable.

Returns

out
[(double, double)] EPOCH16 corresponding to epoch

epoch_to_num(epoch)
Convert CDF EPOCH to matplotlib number.

Same output as date2num() and useful for plotting large data sets without converting the times through
datetime.

Parameters

epoch
[double] EPOCH to convert. Lists and numpy arrays are acceptable.

Returns

out
[double] Floating point number representing days since matplotlib epoch (usually 0001-
01-01 as day 1, or 1970-01-01 as day 0).

See also:

matplotlib.dates.date2num, matplotlib.dates.num2date

4.16. pycdf - Python interface to CDF files 253

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://matplotlib.org/stable/api/dates_api.html#matplotlib.dates.date2num
https://matplotlib.org/stable/api/dates_api.html#matplotlib.dates.date2num
https://matplotlib.org/stable/api/dates_api.html#matplotlib.dates.num2date

SpacePy Documentation, Release 0.4.0

Notes
This number is not portable between versions of matplotlib. The returned value is for the installed version
of matplotlib. If matplotlib is not found, the returned value is for matplotlib 3.2 and earlier.

epoch_to_tt2000 (epoch)
Converts a CDF EPOCH to a CDF TT2000 value

Parameters

epoch
[double] EPOCH to convert

Returns

out
[int] tt2000 corresponding to epoch

See also:
v_epoch_to_tt2000

epoch16_to_datetime (epoch0, epochl)
Converts a CDF epoch16 value to a datetime

Note: The call signature has changed since SpacePy 0.1.2. Formerly this method took a single argument
with two values; now it requires two arguments (one for each value). To convert existing code, replace
epochl6_to_datetime(epoch) with epochl16_to_datetime(*epoch).

Parameters

epoch(
[float] epoch16 value from CDF, first half

epochl
[float] epoch16 value from CDF, second half

Returns

out
[datetime.datetime] date and time corresponding to epoch. Invalid values are set to
usual epoch invalid value, i.e. last moment of year 9999.

Raises
EpochError
[if input invalid]
See also:
v_epochl6_to_datetime
epochl16_to_epoch(epochl6)
Converts a CDF EPOCHI16 to a CDF EPOCH value

Parameters

254 Chapter 4. SpacePy Module Reference

https://docs.python.org/3/library/datetime.html#datetime.datetime

SpacePy Documentation, Release 0.4.0

epochl16
[(double, double)] EPOCHI16 to convert. Lists and numpy arrays are acceptable. LAST
dimension should be 2: the two pairs of EPOCH16

Returns

out
[double] EPOCH corresponding to epoch16

epoch16_to_tt2000 (epochO, epochl)
Converts a CDF epoch16 value to TT2000

Note: Because TT2000 does not support picoseconds, the picoseconds value in epoch is ignored (i.e.,
truncated.)

Parameters

epoch0
[float] epoch16 value from CDF, first half

epochl
[float] epoch16 value from CDF, second half

Returns

out
[long] TT2000 corresponding to epoch.

Raises
EpochError
[if input invalid]
See also:

v_epochl6_to_tt2000

get_minmax (cdftype)

Find minimum, maximum possible value based on CDF type.

This returns the processed value (e.g. datetimes for Epoch types) because comparisons to EPOCH16s are
otherwise difficult.

Parameters

cdftype
[int] CDF type number from const

Returns

out
[tuple] minimum, maximum value supported by type (of type matching the CDF type).

Raises

ValueError
[if can’t match the type]

4.16. pycdf - Python interface to CDF files 255

SpacePy Documentation, Release 0.4.0

set_backward (backward=True)
Set backward compatibility mode for new CDFs

Unless backward compatible mode is set, CDF files created by the version 3 library can not be read by V2.
pycdf does not set backward compatible mode by default.

Changed in version 0.3.0: Before 0.3.0, pycdf set backward compatible mode on import.
Parameters
backward
[boolean] Set backward compatible mode if True; clear it if False.
Raises
ValueError
[if backward=False and underlying CDF library is V2]
supports_int8
True if this library supports INT8 and TIME_TT2000 types; else False.
tt2000_to_datetime (72000)
Converts a CDF TT2000 value to a datetime

Note: Although TT2000 values support leapseconds, Python’s datetime object does not. Any times after
23:59:59.999999 will be truncated to 23:59:59.999999.

Parameters

tt2000
[int] TT2000 value from CDF

Returns

out

[datetime.datetime] date and time corresponding to epoch. Invalid values are set to
usual epoch invalid value, i.e. last moment of year 9999.

Raises

EpochError
[if input invalid]

See also:
v_tt2000_to_datetime

tt2000_to_epoch (12000)
Converts a CDF TT2000 value to a CDF EPOCH

Note: Although TT2000 values support leapseconds, CDF EPOCH values do not. Times during leapsec-
onds are rounded up to beginning of the next day.

Parameters

tt2000
[int] TT2000 value from CDF

256 Chapter 4. SpacePy Module Reference

https://docs.python.org/3/library/datetime.html#datetime.datetime

SpacePy Documentation, Release 0.4.0

Returns

out
[double] EPOCH corresponding to the TT2000 input time

Raises

EpochError
[if input invalid]

See also:
v_tt2000_to_epoch

tt2000_to_epochl6 (12000)
Converts a CDF TT2000 value to a CDF EPOCH16

Note: Although TT2000 values support leapseconds, CDF EPOCH16 values do not. Times during
leapseconds are rounded up to beginning of the next day.

Parameters

tt2000
[int] TT2000 value from CDF

Returns

out
[double, double] EPOCH16 corresponding to the TT2000 input time

Raises

EpochError
[if input invalid]

See also:
v_tt2000_to_epochl6

v_datetime_to_epoch(datetime)
A vectorized version of datetime_to_epoch() which takes a numpy array of datetimes as input and
returns an array of epochs.

v_datetime_to_epochl6 (datetime)
A vectorized version of datetime_to_epochl6() which takes a numpy array of datetimes as input and
returns an array of epochl16.

v_datetime_to_tt2000 (datetime)
A vectorized version of datetime_to_tt2000() which takes a numpy array of datetimes as input and
returns an array of TT2000.

v_epoch_to_datetime(epoch)

A vectorized version of epoch_to_datetime () which takes a numpy array of epochs as input and returns
an array of datetimes.

4.16. pycdf - Python interface to CDF files 257

SpacePy Documentation, Release 0.4.0

v_epoch_to_tt2000 (epoch)
A vectorized version of epoch_to_tt2000() which takes a numpy array of epochs as input and returns
an array of tt2000s.

v_epoch16_to_datetime (epoch0, epochl)

A vectorized version of epochl6_to_datetime () which takes a numpy array of epochl6 as input and
returns an array of datetimes. An epochl16 is a pair of doubles; the input array’s last dimension must be two
(and the returned array will have one fewer dimension).

v_epoch16_to_tt2000(epochl6)
A vectorized version of epoch16_to_tt2000() which takes a numpy array of epoch16 as input and returns
an array of tt2000s. An epochl6 is a pair of doubles; the input array’s last dimension must be two (and the
returned array will have one fewer dimension).

v_tt2000_to_datetime (#22000)

A vectorized version of tt2000_to_datetime () which takes a numpy array of tt2000 as input and returns
an array of datetimes.

v_tt2000_to_epoch (712000)

A vectorized version of tt2000_to_epoch () which takes a numpy array of tt2000 as input and returns an
array of epochs.

v_tt2000_to_epochl6 (172000)

A vectorized version of tt2000_to_epochl6() which takes a numpy array of tt2000 as input and returns
an array of epoch16.

libpath
The path where pycdf found the CDF C library, potentially useful in debugging. If this contains just the
name of a file (with no path information), then the system linker found the library for pycdf. On Linux,
ldconfig -p may be useful for displaying the system’s library resolution.

version

Version of the CDF library, (version, release, increment, subincrement)

spacepy.pycdf.CDFCopy

class spacepy.pycdf.CDFCopy (cdf)

A dictionary-like copy of all data and attributes in a CDF

Data are VarCopy objects, keyed by variable name. CDF attributes are in attrs. (l.e., data are accessed much
like from a CDF).

Do not instantiate this class directly; use copy () on an existing CDF.

Examples

>>> from spacepy import pycdf
>>> with pycdf.CDF('test.cdf') as cdffile:
data = cdffile.copy(Q

attrs
Python dictionary containing attributes copied from the CDF.

258

Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

spacepy.pycdf.VarCopy

class spacepy.pycdf.VarCopy(zVar)
A list-like copy of the data and attributes in a Var

Data are in the list elements. CDF attributes are in a dict, accessed through attrs. (I.e., data and attributes are
accessed like in a Var.)

Do not instantiate this class directly; use copy () on an existing Var.

Several methods provide access to details about how the original variable was constructed. This is mostly for
making it easier to reproduce the variable by passing it to new (). Operations that e.g. change the dimensionality
of the copy may make this (or any) metadata out of date; see set () to update.

compress(*args, **kwargs) Gets compression of the variable this was copied
from.

dv() Gets dimension variance of the variable this was
copied from.

nelems() Gets number of elements of the variable this was
copied from.

pad() Gets pad value of the copied variable.

rv() Gets record variance of the variable this was copied
from.

set(key, value) Set CDF metadata

sparse() Gets sparse records mode of the copied variable.

type() Returns CDF type of the variable this was copied
from.

attrs

Python dictionary containing attributes copied from the zVar

compress (*args, **kwargs)

Gets compression of the variable this was copied from.

For details on CDF compression, see spacepy.pycdf.Var.compress().

If any arguments are specified, calls numpy .ndarray.compress() instead (as the names conflict)
Returns

tuple
compression type, parameter currently in effect.

dvQO

Gets dimension variance of the variable this was copied from.
Each dimension other than the record dimension may either vary or not.
Returns

list of boolean
True if that dimension has variance, else False

nelems ()

Gets number of elements of the variable this was copied from.
This is usually 1 except for strings, where it is the length of the string.

Returns

4.16. pycdf - Python interface to CDF files 259

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.compress.html#numpy.ndarray.compress

SpacePy Documentation, Release 0.4.0

int
Number of elements in parent variable

pad()
Gets pad value of the copied variable.

This copy does not preserve which records were written, i.e. the entire copy is read, including pad values,
and the pad values are treated as real data (if, e.g. writing to another CDF).

For details on padding, see spacepy.pycdf.Var.pad().
Returns

various
Pad value, matching type of the variable.

Notes

New in version 0.2.3.

rv(Q)

Gets record variance of the variable this was copied from.
Returns

boolean
True if parent variable was record varying, False if NRV

set (key, value)
Set CDF metadata

Set the metadata describing the original variable this was copied from. Can be used to update the metadata
if transformation of the copy has made it out of date (e.g. by removing dimensions.) There is very little
checking done and this function should only be used with care.

Parameters

key
[str] Which metadata to set; this matches the name of the method used to retrieve it (e.g.
use type to set the CDF type, which is returned by type()).

value
Value to assign to key.

sparse()
Gets sparse records mode of the copied variable.

This copy does not preserve which records were written, i.e. the entire copy is read, including pad values,
and the pad values are treated as real data (if, e.g. writing to another CDF).

For details on sparse records, see spacepy.pycdf.Var.sparse().
Returns

ctypes.c_long
Sparse record type

260 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Notes

New in version 0.2.3.

typeO
Returns CDF type of the variable this was copied from.

Returns
int
CDF type

spacepy.pycdf.CDFError

class spacepy.pycdf.CDFError (status)
Raised for an error in the CDF library.

spacepy.pycdf.CDFException

class spacepy.pycdf.CDFException (status)

Base class for errors or warnings in the CDF library.
Not normally used directly, but in subclasses CDFError and CDFliarning.

Error messages provided by this class are looked up from the underlying C library.

spacepy.pycdf.CDFWarning

class spacepy.pycdf.CDFWarning (starus)
Used for a warning in the CDF library.

spacepy.pycdf.EpochError

class spacepy.pycdf.EpochError

Used for errors in epoch routines

Functions

concatCDF(cdfs[, varnames, raw]) Concatenate data from multiple CDFs

4.16. pycdf - Python interface to CDF files 261

SpacePy Documentation, Release 0.4.0

spacepy.pycdf.concatCDF

spacepy.pycdf.concatCDF (cdfs, varnames=None, raw=False)

Concatenate data from multiple CDFs

Reads data from all specified CDFs in order and returns as if they were from a single CDF. The assumption is
that the CDFs all have the same structure (same variables, each with the same dimensions and variance.)

Parameters

cdfs
[list of Var] Open CDFs, will be read from in order. Must be a list (cannot be an iterable, as
all files need to be open).

varnames
[list of str] Names of variables to read (default: all variables in first CDF)

raw
[bool] If True, read variables as raw (don’t convert epochs, etc.) Default False.

Returns

SpaceData
data concatenated from each CDF, with all attributes from first. Non-record-varying data is
also only from first, and record variance is only checked on the first!

Examples

Read all data from all CDFs in the current directory. Note that CDFs are closed when their variable goes out of
scope.

>>> import glob
>>> import spacepy.pycdf
>>> data = spacepy.pycdf.concatCDF ([
spacepy.pycdf.CDF(f) for f in glob.glob('*.cdf')])

Submodules

const Various constants defined in cdf.h and used in pycdf.
istp Support for ISTP-compliant CDFs
spacepy.pycdf.const

Various constants defined in cdf.h and used in pycdf. Most constants referred to in the CDF manuals are provided by
this module. E.g., to create a CDF and add a variable of type EPOCH:

>>> from spacepy import pycdf
>>> cdf = pycdf.CDF('new.cdf', '")
>>> cdf.new('epoch', type=pycdf.const.CDF_EPOCH)

Copyright 2010-2012 Los Alamos National Security, LLC.

262 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

spacepy.pycdf.istp

Support for ISTP-compliant CDFs

The ISTP metadata standard specifies the interpretation of the attributes in a CDF to describe relationships between
the variables and their physical interpretation.

This module supports that subset of CDFs.
Authors: Jon Niehof

Additional Contributors: Lorna Ellis, Asher Merrill
Institution: University of New Hampshire

Contact: Jonathan.Niehof @unh.edu

Classes
FileChecks() ISTP compliance checks for a CDF file.
VarBundle(source[, name]) Collective handling of ISTP-compliant variable and its
dependencies.
VariableChecks() ISTP compliance checks for a single variable.

spacepy.pycdf.istp.FileChecks

class spacepy.pycdf.istp.FileChecks
ISTP compliance checks for a CDF file.
Checks a file’s compliance with ISTP standards. This mostly performs checks that are not currently performed

by the ISTP skeleton editor. All tests return a list, one error string for every noncompliance found (empty list if
compliant). all () will perform all tests and concatenate all errors.

all(f[, catch]) Perform all variable and file-level tests
empty_entry(f) Check for attributes with empty string
filename(f) Compare filename to global attributes
time_monoton(f) Checks that times are monotonic
times(f) Compare filename to times

classmethod all(f, catch=False)

Perform all variable and file-level tests

In addition to calling every test in this class, will also call VariableChecks.all() for every variable in
the file.

Parameters

f
[CDF] Open CDF file to check

catch
[bool] Catch exceptions in tests (default False). If True, any exceptions in subtests will
result in an addition to the validation failures of the form “Test x did not complete.” Calling
the individual test will reveal the full traceback.

Returns

4.16. pycdf - Python interface to CDF files 263

https://spdf.gsfc.nasa.gov/sp_use_of_cdf.html
mailto:Jonathan.Niehof@unh.edu
https://spdf.gsfc.nasa.gov/skteditor/

SpacePy Documentation, Release 0.4.0

list of str
Description of each validation failure.

Examples

>>> import spacepy.pycdf

>>> import spacepy.pycdf.istp

>>> f = spacepy.pycdf.CDF('foo.cdf', create=True)
>>> v = f.new('Var', data=[1, 2, 3])

>>> spacepy.pycdf.istp.FileChecks.all(f)

['No Logical_source in global attrs.',

'No Logical_file_id in global attrs.',

'Cannot parse date from filename foo.cdf.',

'Var: No FIELDNAM attribute.']

classmethod empty_entry(f)
Check for attributes with empty string

Checks global attributes for this variable for any entries consisting of an empty string. These should be
replaced with a single space.

Parameters

f
[CDF] Open CDF file to check

Returns

list of str
Description of each validation failure.

classmethod filename (f)
Compare filename to global attributes
Check global attribute Logical_file_id and Logical_source for consistency with CDF filename.
Parameters

f
[CDF] Open CDF file to check

Returns

list of str
Description of each validation failure.

classmethod time_monoton(f)
Checks that times are monotonic
Check that all Epoch variables are monotonically increasing.
Parameters

f
[CDF] Open CDF file to check

Returns

list of str
Description of each validation failure.

264 Chapter 4. SpacePy Module Reference

https://spdf.gsfc.nasa.gov/istp_guide/gattributes.html#Logical_file_id
https://spdf.gsfc.nasa.gov/istp_guide/gattributes.html#Logical_source
https://spdf.gsfc.nasa.gov/istp_guide/variables.html#support_data_eg1

SpacePy Documentation, Release 0.4.0

classmethod times(f)

Compare filename to times
Check that all Epoch variables only contain times matching filename.
Parameters

f
[CDF] Open CDF file to check

Returns

list of str
Description of each validation failure.

Notes

This function assumes daily files and should be extended based on the File_naming_convention global
attribute (which itself is another good check to have.)

spacepy.pycdf.istp.VarBundle

class spacepy.pycdf.istp.VarBundle (source, name=None)
Collective handling of ISTP-compliant variable and its dependencies.
Representation of an ISTP-compliant variable bundled together with its dependencies to enable aggregate oper-

ations. Normally used to copy a subset of data from one CDF or SpaceData to another by chaining operations,
or to load just the relevant data from a CDF into a SpaceData.

VarBundle operates on a single variable within a file or SpaceData and its various dependencies, uncertainties,
labels, etc. That variable can be specified one of two ways. An open CDF file or SpaceData can be passed as
the first parameter, and the name of a variable within it as the second parameter. Or, for CDF files, a Var can be
passed as the only parameter, implicitly defining the input file (the CDF containing that variable).

Unusual or indecipherable error messages may indicate an ISTP compliance issue; see VariableChecks for
some checks.

Parameters

source
[CDF, SpaceData, or Var] SpaceData or open CDF containing the variable to process, or
the CDF variable itself.

name
[str] Name of the variable within source to process (‘“main variable”).

See also:

datamodel . fromCDF
pycdf.CDF. copy

4.16. pycdf - Python interface to CDF files 265

https://spdf.gsfc.nasa.gov/istp_guide/variables.html#support_data_eg1
https://docs.python.org/3/library/stdtypes.html#str

SpacePy Documentation, Release 0.4.0

Notes
If using SpaceData input, the contents are assumed to be ISTP compliant. In particular, the following attributes
of the enclosed dmarray are used (italics denotes required):

* DEPEND_0, DEPEND_1, etc.

e LABL_PTR_0, LABL_PTR_1, etc.

* DELTA_PLUS_VAR, DELTA_MINUS_VAR

* VALIDMIN, VALIDMAX, FILLVAL

Examples

>>> import spacepy.pycdf

>>> import spacepy.pycdf.istp

>>> #https://rbsp-ect.newmexicoconsortium.org/data_pub/rbspa/hope/level3/pitchangle/
2012/

>>> infile = spacepy.pycdf.CDF('rbspa_rel®4_ect-hope-PA-L3_20121201_v7.1.0.cdf")

>>> infile['FPDU']

<Var:

CDF_FLOAT [3228, 11, 72]
>

>>> infile['FPDU'].attrs
<zAttrlList:

CATDESC: HOPE differential proton flux [CDF_CHAR]
DEPEND_O0: Epoch_Ion [CDF_CHAR]
DEPEND_1: PITCH_ANGLE [CDF_CHAR]
DEPEND_2: HOPE_ENERGY_Ion [CDF_CHAR]
>
>>> b = spacepy.pycdf.istp.VarBundle(infile['FPDU'])
>>> b = spacepy.pycdf.istp.VarBundle(infile, 'FPDU') # Equivalent
>>> outfile = spacepy.pycdf.CDF('output.cdf', create=True)
>>> b.slice(l, 2, single=True).output(outfile)
<VarBundle:
FPDU: CDF_FLOAT [3228, 72]
Epoch_Ion: CDF_EPOCH [3228]
Epoch_Ion_DELTA: CDF_REAL4 [3228]
PITCH_ANGLE: CDF_FLOAT ---
Pitch_LABL: CDF_CHAR*5 ---
HOPE_ENERGY_Ion: CDF_FLOAT [3228, 72]
ENERGY_TIon_DELTA: CDF_FLOAT [3228, 72]
Energy_LABL: CDF_CHAR*3 [72] NRV

>
>>> outfile['FPDU']

<Var:

CDF_FLOAT [3228, 72]

>

>>> outfile['FPDU'].attrs

<zAttrlist:

CATDESC: HOPE differential proton flux [CDF_CHAR]
DEPEND_O0: Epoch_Ion [CDF_CHAR]

(continues on next page)

266

Chapter 4. SpacePy Module Reference

https://spdf.gsfc.nasa.gov/sp_use_of_cdf.html

SpacePy Documentation, Release 0.4.0

(continued from previous page)

DEPEND_1: HOPE_ENERGY_Ion [CDF_CHAR]

>
>>> outfile.close()
>>> infile.close()

mean(dim)

Take the mean of a dimension.

operations()

Operations of this bundle

output(output[, suffix])

Output the variables as modified

slice(diml, start, stop, step, single])

Slice on a single dimension

sum(dim) Sum across a dimension.

toSpaceData([suffix]) Return variables, as modified.

variables() Description of variable output from the bundle
mean (dim)

Take the mean of a dimension.

Take mean of the main variable of the bundle across the given dimension. That dimension disappears from
the output and dependencies (including their uncertainties) are assumed to be constant across the summed
dimension. The uncertainty of the main variable, if any, is appropriately propagated.

Invalid values are excluded fromthe mean. This does not work well for variables that define multiple
VALIDMIN/VALIDMAX based on position within a dimension; the smallest VALIDMIN/largest VALID-
MAX rather than the position-specific value.

Averaging occurs after slicing, to allow averaging of a subset of a dimension. A single element slice (which
removes the dimension) is incompatible with averaging over that dimension.

There is not currently a way to “undo” a mean; create a new bundle instead.
Parameters
dim
[int] CDF dimension to average. This is the dimension as specified in the CDF (0-base for

RV variables, 1-base for NRV) and does not change with successive slicing or summing.
This must be a positive number (no support for e.g. -1 for last dimension.)

Returns

VarBundle
This bundle, for method chaining. This is not a copy: the original object is updated.

Examples

See the VarBundle examples for creating output.

>>> import spacepy.pycdf

>>> import spacepy.pycdf.istp

>>> infile = spacepy.pycdf.CDF('rbspa_rel04_ect-hope-PA-L3_20121201_v7.1.0.cdf")
>>> b = spacepy.pycdf.istp.VarBundle(infile['Counts_P'])

>>> #Average over dimension 1 (pitch angle)

>>> b.mean(1)

>>> #Get a new bundle (without the previous sum)

>>> b = spacepy.pycdf.istp.VarBundle(infile['Counts_P'])

(continues on next page)

4.16. pycdf - Python interface to CDF files 267

SpacePy Documentation, Release 0.4.0

(continued from previous page)

>>>

>>>

#Average over first 10 elements of dimension 2 (energy bins)

>>> b.slice(2, 0, 10).mean(2)

infile.close()

output (output, suffix=None)

Output the variables as modified

Parameters

output
[CDF, SpaceData] Output container to receive the new data, may be an open CDF file or
a SpaceData.

suffix
[str] Suffix to append to the name of any variables that are changed for the output. This
allows the output to contain multiple variables derived from the same input variable. The
main variable and its DELTA variables will always have the suffix applied. Any dependen-
cies will have the suffix applied only if they have changed from the input CDF (e.g. from

slicing.)
Returns
VarBundle
This bundle, for method chaining.
See also:
toSpaceData
Examples
>>> import spacepy.pycdf
>>> import spacepy.pycdf.istp
>>> infile = spacepy.pycdf.CDF('rbspa_rel04_ect-hope-PA-L3_20121201_v7.1.0.cdf")
>>> b = spacepy.pycdf.istp.VarBundle(infile['FPDU'])
>>> outfile = spacepy.pycdf.CDF('output.cdf', create=True)
>>> #Qutput the low energy half in one variable
>>> b.slice(2, 0, 36).output(outfile, suffix='_LoE")
>>> #And the high energy half in another variable
>>> b.slice(2, 36, 72).output(outfile, suffix='_HiE")
>>> outfile.close()
>>> infile.close()
operations()

Operations of this bundle

Provides information describing the operations this bundle would perform.

Returns

list
Each element is a tuple: first element is a string with the name of the operation (i.e. method
of VarBundle), next is also a tuple of positional arguments, and finally a dict of keyword
arguments.

268

Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Examples

>>> import spacepy.pycdf
>>> import spacepy.pycdf.istp
>>> infile = spacepy.pycdf.CDF('rbspa_rel®4_ect-hope-PA-1L3_20121201_v7.1.0.cdf")
>>> b = spacepy.pycdf.istp.VarBundle(infile['FPDU'])
>>> b.slice(l, 2, single=True).operations()

[('slice', (1, 2), {'single': True})]
>>> #Apply same operations to a different variable
>>> b2 = spacepy.pycdf.istp.VarBundle(infile['FEDU'])
>>> for op, args, kwargs in b2.operations():

getattr(b2, op) (*args, **kwargs)

slice(dim, start=None, stop=None, step=None, single=False)

Slice on a single dimension

Selects subset of a dimension to include in the output. Slicing is done with reference to the dimensions of
the main variable and the corresponding dimensions of all other variables are sliced similarly. The first non-
record dimension of the variable is always 1; 0 is the record dimension (and is ignored for NRV variables).
Multiple slices can be applied to select subsets of multiple dimensions; however, if one dimension is indexed
multiple times, only the last one in the chain takes effect.

Interpretation of the slice parameters is like normal Python slicing, including the ability to use negative
values, etc.

Passing in only a dimension “resets” the slice to include the entire dimension.
Parameters
dim
[int] CDF dimension to slice on. This is the dimension as specified in the CDF (0-base

for RV variables, 1-base for NRV) and does not change with successive slicing. Each
dimension can only be sliced once.

single
[bool] Treat start as a single index and return only that index (reducing dimensionality
of the data by one.)

start
[int] Index of first element of dim to include in the output. This can also be a sequence
of indices to include, in which case stop and step must not be specified. This can be
substantially slower than specifying stop and step.

stop
[int] Index of first element of dim to exclude from the output.

step
[int] Increment between elements to include in the output.

Returns

VarBundle
This bundle, for method chaining. This is not a copy: the original object is updated.

4.16. pycdf - Python interface to CDF files 269

SpacePy Documentation, Release 0.4.0

Examples

See the VarBundle examples for creating output from the slices.

>>> import spacepy.pycdf

>>> import spacepy.pycdf.istp

>>> infile = spacepy.pycdf.CDF('rbspa_rel®4_ect-hope-PA-1L3_20121201_v7.1.0.cdf")
>>> b = spacepy.pycdf.istp.VarBundle(infile['FPDU'])

>>> #Select index 2 from axis 1

>>> b.slice(l, 2, single=True)

>>> #Select from index 5 to end for axis 2, keeping index 2 from axis 1
>>> b.slice(2, 5)

>>> #Select 10 through 15 on axis 2, but all of axis 1

>>> b.slice(l).slice(2, 10, 15)

>>> #Select just record 5 and 10

>>> b.slice(2).slice(0, [5, 10])

>>> infile.close()

sum (dim)

Sum across a dimension.

Total the main variable of the bundle across the given dimension. That dimension disappears from the
output and dependencies (including their uncertainties) are assumed to be constant across the summed
dimension. The uncertainty of the main variable, if any, is appropriately propagated (quadrature sum.)

An invalid value for any element summed over will result in a fill value on the output. This does not work
well for variables that define multiple VALIDMIN/VALIDMAX based on position within a dimension; the
smallest VALIDMIN/largest VALIDMAX rather than the position-specific value.

Summing occurs after slicing, to allow summing of a subset of a dimension. A single element slice (which
removes the dimension) is incompatible with summing over that dimension.

There is not currently a way to “undo” a sum; create a new bundle instead.
Parameters
dim
[int] CDF dimension to total. This is the dimension as specified in the CDF (0-base for RV

variables, 1-base for NRV) and does not change with successive slicing or summing. This
must be a positive number (no support for e.g. -1 for last dimension.)

Returns

VarBundle
This bundle, for method chaining. This is not a copy: the original object is updated.

Examples

See the VarBundle examples for creating output.

>>> import spacepy.pycdf

>>> import spacepy.pycdf.istp

>>> infile = spacepy.pycdf.CDF('rbspa_rel®4_ect-hope-PA-L3_20121201_v7.1.0.cdf")
>>> b = spacepy.pycdf.istp.VarBundle(infile['Counts_P'])

>>> #Total over dimension 1 (pitch angle)

>>> b.sum(1)

>>> #Get a new bundle (without the previous sum)

(continues on next page)

270

Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

(continued from previous page)

>>> b = spacepy.pycdf.istp.VarBundle(infile['Counts_P'])

>>> #Total over first 10 elements of dimension 2 (energy bins)
>>> b.slice(2, 0, 10).sum(2)

>>> infile.close()

toSpaceData (suffix=None)

Return variables, as modified.
Convenience function to call output () on a new SpaceData and return it.
Parameters

suffix
[str] Appended to the name of variables changed on output; see output () for details.

Returns

datamodel . SpaceData
Data read from input and processed according to the defined operations.

See also:

output

Examples

>>> import spacepy.pycdf

>>> import spacepy.pycdf.istp

>>> infile = spacepy.pycdf.CDF('rbspa_rel04_ect-hope-PA-L3_20121201_v7.1.0.cdf")
>>> b = spacepy.pycdf.istp.VarBundle(infile['FPDU'])

>>> data = b.slice(l, 2, single=True).toSpaceData()

>>> infile.close()

>>> data.tree()

+
| ____ENERGY_Ion_DELTA
| ____Energy_LABL
| ____Epoch_Ion
| ____Epoch_Ion_DELTA
| ____FPDU
| ____HOPE_ENERGY_Ion

variables()

Description of variable output from the bundle
Provides information describing the variables output from the bundle
Returns

list
Each element is a list-of-tuples. The list corresponds to a dimension of the master var:
first the master var itself, then the uncertainties and labels associated with each dimension.
Each element of these sublists is then a tuple of variable name and shape on the output

(itself a tuple). If a variable isn’t included in the output (sliced away), its shape will be
None.

4.16. pycdf - Python interface to CDF files 271

SpacePy Documentation, Release 0.4.0

Examples

>>> import spacepy.pycdf
>>> import spacepy.pycdf.istp
>>> infile = spacepy.pycdf.CDF('rbspa_rel®4_ect-hope-PA-1L3_20121201_v7.1.0.cdf")
>>> b = spacepy.pycdf.istp.VarBundle(infile['FPDU'])
>>> b.slice(l, 2, single=True).variables()
[[C'FPDU', (100, 72))1,
[('Epoch_Ion', (100,)), ('Epoch_Ion_DELTA', (100,))],
[("PITCH_ANGLE', None), ('Pitch_LABL', None)],
[('HOPE_ENERGY_Ion', (100, 72)),
("ENERGY_Ion_DELTA', (100, 72)),
("Energy_LABL', (72,))]1]

spacepy.pycdf.istp.VariableChecks

class spacepy.pycdf.istp.VariableChecks
ISTP compliance checks for a single variable.
Checks a variable’s compliance with ISTP standards. This mostly performs checks that are not currently per-

formed by the ISTP skeleton editor. All tests return a list, one error string for every noncompliance found (empty
list if compliant). all () will perform all tests and concatenate all errors.

all(v[, catch]) Perform all variable tests

deltas(v) Check DELTA variables

depends(v) Checks that DELTA, DEPEND, and LABL_PTR
variables exist

depsize(v) Checks that DEPEND has same shape as that dim

empty_entry(v) Check for attributes with empty string

fieldnam(v) Check that FIELDNAM attribute matches variable
name.

fillval(v) Check for FILLVAL presence, type, value

recordcount(v) Check that the DEPEND_OQ has same record count as
variable

validdisplaytype(v) Check that plottype matches dimensions.

validrange(v) Check that all values are within VALID-
MIN/VALIDMAX, or FILLVAL

validscale(v) Check SCALEMIN<=SCALEMAX, and both in
range for CDF datatype.

classmethod all (v, catch=False)
Perform all variable tests

Parameters

v
[Var] Variable to check

catch
[bool] Catch exceptions in tests (default False). If True, any exceptions in subtests will
result in an addition to the validation failures of the form “Test x did not complete.” Calling
the individual test will reveal the full traceback.

272 Chapter 4. SpacePy Module Reference

https://spdf.gsfc.nasa.gov/skteditor/

SpacePy Documentation, Release 0.4.0

Returns

list of str
Description of each validation failure.

Examples

>>> import spacepy.pycdf

>>> import spacepy.pycdf.istp

>>> f = spacepy.pycdf.CDF('foo.cdf', create=True)
>>> v = f.new('Var', data=[1, 2, 3])

>>> spacepy.pycdf.istp.VariableChecks.all(v)

['No FIELDNAM attribute.']

classmethod deltas(v)
Check DELTA variables

Check that variables specified in the variable attributes for DELTA match the type, size, and units of this
variable.

Parameters

v
[Var] Variable to check

Returns

list of str
Description of each validation failure.

classmethod depends(v)
Checks that DELTA, DEPEND, and LABL_PTR variables exist

Check that variables specified in the variable attributes for DELTA, DEPEND, and LABL_PTR exist in the
CDF.

Parameters

v
[Var] Variable to check

Returns

list of str
Description of each validation failure.

classmethod depsize(v)
Checks that DEPEND has same shape as that dim

Compares the size of variables specified in the variable attributes for DEPEND and compares to the size
of the corresponding dimension in this variable.

Parameters

v
[Var] Variable to check

Returns

list of str
Description of each validation failure.

4.16. pycdf - Python interface to CDF files 273

https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#DELTA
https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#DELTA
https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#DEPEND_0
https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#LABL_PTR_1
https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#DEPEND_0

SpacePy Documentation, Release 0.4.0

classmethod empty_entry(v)
Check for attributes with empty string

Checks attributes for this variable for any entries consisting of an empty string. These should be replaced
with a single space.

Parameters

v
[Var] Variable to check

Returns

list of str
Description of each validation failure.

classmethod fieldnam(v)
Check that FIELDNAM attribute matches variable name.

Compare FIELDNAM attribute to the variable name; fail validation if they don’t match.
Parameters

v
[Var] Variable to check

Returns

list of str
Description of each validation failure.

classmethod fillval(v)
Check for FILLVAL presence, type, value

Checks variable for existence of FILLVAL attribute and makes sure it is the same type as variable and
matches ISTP value.

Parameters

v
[Var] Variable to check

Returns

list of str
Description of each validation failure.

See also:

spacepy.pycdf.istp.fillval
Automatic setting of this value.

classmethod recordcount(v)
Check that the DEPEND_O0 has same record count as variable

Checks the record count of the variable specified in the variable attribute for DEPEND_0 and compares to
the record count for this variable.

Parameters

v
[Var] Variable to check

Returns

274 Chapter 4. SpacePy Module Reference

https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#FIELDNAM
https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#FILLVAL
https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#DEPEND_0

SpacePy Documentation, Release 0.4.0

list of str
Description of each validation failure.

classmethod validdisplaytype(v)
Check that plottype matches dimensions.

Check DISPLAYTYPE of this variable and makes sure it is reasonable for the variable dimensions.
Parameters

v
[Var] Variable to check

Returns

list of str
Description of each validation failure.

classmethod validrange(v)
Check that all values are within VALIDMIN/VALIDMAX, or FILLVAL

Compare all values of this variable to VALIDMIN and VALIDMAX; fails validation if any values are below
VALIDMIN or above VALIDMAX unless equal to FILLVAL.

Parameters

v
[Var] Variable to check

Returns

list of str
Description of each validation failure.

classmethod validscale(v)
Check SCALEMIN<=SCALEMAX, and both in range for CDF datatype.

Compares SCALEMIN to SCALEMAX to make sure it isn’t larger and both are within range of the variable
CDF datatype.

Parameters

v
[Var] Variable to check

Returns

list of str
Description of each validation failure.

Functions
fillval(v], ret]) Set ISTP-compliant FILLVAL on a variable
format(v[, use_scaleminmax, dryrun]) Set ISTP-compliant FORMAT on a variable
nanfill(v) Set fill values to NaN

4.16. pycdf - Python interface to CDF files 275

https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#DISPLAY_TYPE
https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#VALIDMIN
https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#FILLVAL
https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#SCALEMIN

SpacePy Documentation, Release 0.4.0

spacepy.pycdf.istp.fillval

spacepy.pycdf.istp.fillval (v, rer=False)
Set ISTP-compliant FILLVAL on a variable

Sets or returns a CDF variable’s FILLVAL attribute to the value required by ISTP (based on variable type).
Parameters

v
[Var] CDF variable to update

Returns

various
If ret is True, returns the correct value for variable type (which may be of various Python
types). Otherwise sets the value and returns None.

Other Parameters

ret
[boolean] If True, return the value instead of setting it (Default False, set).

Examples

>>> import spacepy.pycdf

>>> import spacepy.pycdf.istp

>>> f = spacepy.pycdf.CDF('foo.cdf', create=True)
>>> v = f.new('Var', data=[1, 2, 3])

>>> spacepy.pycdf.istp.fillval(v)

>>> v.attrs['FILLVAL']

-128

spacepy.pycdf.istp.format

spacepy.pycdf.istp.format (v, use_scaleminmax=False, dryrun=False)
Set ISTP-compliant FORMAT on a variable

Sets a CDF variable’s FORMAT attribute, which provides a Fortran-like format string that should be useable for
printing any valid value in the variable. Sets according to the VALIDMIN/VALIDMAX attributes (or, optionally,
SCALEMIN/SCALEMAX) if present, otherwise uses the full range of the type.

Parameters

v
[Var] Variable to update

use_scaleminmax
[bool, optional] Use SCALEMIN/MAX instead of VALIDMIN/MAX (default False). Note:
istpchecks may complain about result.

dryrun
[bool, optional] Print the decided format to stdout instead of modifying the CDF (for use in
command-line debugging) (default False).

276 Chapter 4. SpacePy Module Reference

https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#FILLVAL
https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#FORMAT

SpacePy Documentation, Release 0.4.0

Examples

>>> import spacepy.pycdf

>>> import spacepy.pycdf.istp

>>> f = spacepy.pycdf.CDF('foo.cdf', create=True)
>>> v = f.new('Var', data=[1, 2, 3])

>>> spacepy.pycdf.istp.format(v)

>>> v.attrs['FORMAT']

"I

spacepy.pycdf.istp.nanfill

spacepy.pycdf.istp.nanfill (v)
Set fill values to NaN

Finds all values which are equal to FILLVAL, greater than VALIDMAX, or less than VALIDMIN, and replace with
NaN (not-a-number). This is an update-in-place operation; does not return a copy.

Assumes a single value for VALIDMIN, VALIDMAX, FILLVAL (although if the attribute is not present, will simply
assume no restriction.)

Only applicable to floating-point types. Best applied to a VarCopy or dmarray rather than Var. Updating a
variable in a CDF requires one write per changed value, and also will result in a CDF that is no longer ISTP
compliant.

Because of floating-point comparison, the matching to FILLVAL may fail.
Parameters

v
[Var or dmarray] CDF variable, data, or copy to update

Examples

>>> import spacepy.pycdf

>>> import spacepy.pycdf.istp

>>> f = spacepy.pycdf.CDF('foo.cdf', create=True)
>>> v = f.new('Var', data=[1, 2, 3, -1e31])
>>> spacepy.pycdf.istp.fillval(v)

>>> data = v.copy(Q

>>> data

VarCopy([1l., 2., 3., -1.e31], dtype=float32)
>>> spacepy.pycdf.istp.nanfill(data)

>>> data

VarCopy([1l., 2., 3., nan], dtype=float32)

4.16. pycdf - Python interface to CDF files 277

SpacePy Documentation, Release 0.4.0

Data

spacepy.pycdf.lib

Module global Library object.

Initalized at pycdf load time so all classes have ready access to the CDF library and a common state. E.g:

>>> from spacepy import pycdf
>>> pycdf.lib.version
(31 3’ ®1 ! ')

4.17 radbelt - Functions supporting radiation belt diffusion codes

Functions supporting radiation belt diffusion codes

Authors: Josef Koller Institution: Los Alamos National Laboratory Contact: jkoller@lanl.gov

Copyright 2010 Los Alamos National Security, LLC.

Classes

RBmodelI([grid, NL, const_kp]) 1-D Radial diffusion class

4.17.1 spacepy.radbelt.RBmodel

class spacepy.radbelt.RBmodel (grid='L', NL=91, const_kp=False)

1-D Radial diffusion class

This module contains a class for performing and visualizing 1-D radial diffusion simulations of the radiation
belts.

Here is an example using the default settings of the model. Each instance must be initialized with (assuming
import radbelt as rb):

>>> rmod = rb.RBmodel()

Next, set the start time, end time, and the size of the timestep:

>>> import datetime

>>> start = datetime.datetime(2003,10,14)

>>> end = datetime.datetime(2003,12,26)

>>> delta = datetime.timedeltaChours=1)

>>> rmod.setup_ticks(start, end, delta, dtype='UTC')

Now, run the model over the entire time range using the evolve method:

>>> rmod.evolve()

Finally, visualize the results:

>>> rmod.plot_summary ()

278

Chapter 4. SpacePy Module Reference

mailto:jkoller@lanl.gov

SpacePy Documentation, Release 0.4.0

Gaussian_source()

Gaussian source term added to radiation belt model.

add_Lmax(Lmax_model)

add last closed drift shell Lmax

add_Lpp(Lpp_model)

add last closed drift shell Lmax

add_PSD_obs([time, PSD, Lstar, satlist])

add PSD observations

add_PSD_twin([dt, Lt])

add observations from PSD database using the ticks
list the arguments are the following:

add_omni([keylist])

add omni data to instance according to the tickrange
in ticks

add_source([source, A, mu, sigma])

add source parameters A, mu, and sigma for the
Gaussian source function

assimilate([method, inflation])

Assimilates data for the radiation belt model using
the Ensemble Kalman Filter.

evolve()

calculate the diffusion in L at constant mu,K coordi-
nates

get_DLL(Lgrid, params[, DLL_model])

Calculate DLL as a simple power law function (al-
pha*L**Bbta) using alpha/beta values from popular
models found in the literature and chosen with the
kwarg "DLL_model".

plot([Lmax, Lpp, Kp, Dst, clims, title, values])

Create a summary plot of the RadBelt object distri-
bution function.

plot_obs([Lmax, Lpp, Kp, Dst, clims, title, ...])

Create a summary plot of the observations.

set_lgrid([NL])

Using NL grid points, create grid in L.

setup_ticks(start, end, delta[, dtype])

Add time information to the simulation by specify-
ing a start and end time, timestep, and time type (op-
tional).

Gaussian_source()

Gaussian source term added to radiation belt model. The source term is given by the equation:

S = A exp{-(L-mu)*2/(2*sigma”2)}

with A=107(-8), mu=5.0, and sigma=0.5 as default values

add_Lmax (Lmax_model)
add last closed drift shell Lmax

add_Lpp (Lpp_model)
add last closed drift shell Lmax

add_PSD_obs (time=None, PSD=None, Lstar=None, satlist=None)

add PSD observations
Parameters

time

[Ticktock datetime array] array of observation times

PSD

[list of numpy arrays] PSD observational data for each time. Each entry in the list is a
numpy array with the observations for the corresponding time

Lstar

[list of numpy arrays] Lstar location of each PSD observations. Each entry in the list is a
numpy array with the location of the observations for the corresponding time

satlist
[list of satellite names]

4.17. radbelt - Functions supporting radiation belt diffusion codes 279

SpacePy Documentation, Release 0.4.0

Returns

out
[list of dicts] Information of the observational data, where each entry contains the observa-
tions and locations of observations for each time specified in the time array. Each list entry
is a dictionary with the following information:

Ticks
[Ticktock array] time of observations

Lstar
[numpy array] location of observations

PSD
[numpy array] PSD observation values

sat
[list of strings] satellite names

MU
[scalar value] Mu value for the observations

K
[scalar value] K value for the observations

add_PSD_twin(dr=0, Lt=1)

add observations from PSD database using the ticks list the arguments are the following:

dt = observation time delta in seconds Lt = observation space delta

add_omni (keylist=None)

add omni data to instance according to the tickrange in ticks

add_source (source=True, A=1e-08, mu=>5.0, sigma=0.5)

add source parameters A, mu, and sigma for the Gaussian source function

assimilate (method="EnKF’, inflation=0)
Assimilates data for the radiation belt model using the Ensemble Kalman Filter. The algorithm used is the
SVD method presented by Evensen in 2003 (Evensen, G., Ocean dynamics, 53, pp.343-367, 2003). To
compensate for model errors, three inflation algorithms are implemented. The inflation methodology is
specified by the ‘inflation’ argument, and the options are the following:

inflation == 0: Add model error (perturbation for the ensemble) around model state values only
where observations are available (DEFAULT).

inflation == 1: Add model error (perturbation for the ensemble) around observation values only
where observations are available.

inflation == 2: Inflate around ensemble average for EnKF.

Prior to assimilation, a set of data values has to be speficied by setting the start and end dates, and time
step, using the setup_ticks funcion of the radiation belt model:

>>> import spacepy

>>> import datetime

>>> from spacepy import radbelt

>>> start = datetime.datetime(2002,10,23)

>>> end = datetime.datetime(2002,11,4)

>>> delta = datetime.timedeltaChours=0.5)

>>> rmod.setup_ticks(start, end, delta, dtype='UTC')

280

Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Once the dates and time step are specified, the data is added using the add_PSD function:

>>> rmod.add_PSD()

The observations are averaged over the time windows, whose interval is give by the time step.

Once the dates and data are set, the assimiation is performed using the ‘assimilate’ function:

>>> rmod.assimilate(inflation=1)

This function will add the PSDa values, which are the analysis state of the radiation belt using the observa-
tions within the dates. To plot the analysis simply use the plot funtion:

>>> rmod.plot(values=rmod.PSDa,clims=[-10,-6],Lmax=False,Kp=False,Dst=False)

evolve()
calculate the diffusion in L at constant mu,K coordinates
get_DLL (Lgrid, params, DLL_model="BA2000")

Calculate DLL as a simple power law function (alpha*L**Bbta) using alpha/beta values from popular
models found in the literature and chosen with the kwarg “DLL_model”.

The calculated DLL is returned, as is the alpha and beta values used in the calculationp.
The output DLL is in units of units/day.

plot (Lmax=True, Lpp=False, Kp=True, Dst=True, clims=[0, 10], title=None, values=None)
Create a summary plot of the RadBelt object distribution function. For reference, the last closed drift shell,
Dst, and Kp are all included. These can be disabled individually using the corresponding Boolean kwargs.

The clims kwarg can be used to manually set the color bar range. To use, set it equal to a two-element list
containing minimum and maximum Log_10 value to plot. Default action is to use [0,10] as the log_10 of
the color range. This is good enough for most applications.

The title of the top most plot defaults to ‘Summary Plot’” but can be customized using the title kwarg.

The figure object and all three axis objects (PSD axis, Dst axis, and Kp axis) are all returned to allow the
user to further customize the plots as necessary. If any of the plots are excluded, None is returned in their
stead.

Examples

>>> rb.plot(Lmax=False, Kp=False, clims=[2,10], title='Good work!")

This command would create the summary plot with a color bar range of 100 to 10710. The Lmax line and
Kp values would be excluded. The title of the topmost plot (phase space density) would be set to ‘Good
work!’.

plot_obs (Lmax=True, Lpp=False, Kp=True, Dst=True, clims=[0, 10], title=None, values=None)
Create a summary plot of the observations. For reference, the last closed drift shell, Dst, and Kp are all
included. These can be disabled individually using the corresponding boolean kwargs.

The clims kwarg can be used to manually set the color bar range. To use, set it equal to a two-element list
containing minimum and maximum Log_10 value to plot. Default action is to use [0,10] as the log_10 of
the color range. This is good enough for most applications.

The title of the top most plot defaults to ‘Summary Plot’ but can be customized using the title kwarg.

4.17. radbelt - Functions supporting radiation belt diffusion codes 281

SpacePy Documentation, Release 0.4.0

The figure object and all three axis objects (PSD axis, Dst axis, and Kp axis) are all returned to allow the
user to further customize the plots as necessary. If any of the plots are excluded, None is returned in their
stead.

Examples

>>> rb.plot_obs(Lmax=False, Kp=False, clims=[2,10], title='Observations Plot')

This command would create the summary plot with a color bar range of 100 to 10710. The Lmax line and
Kp values would be excluded. The title of the topmost plot (phase space density) would be set to ‘Good
work!’.

set_lgrid(NL=91)
Using NL grid points, create grid in L. Default number of points is 91 (dL=0.1).

setup_ticks(start, end, delta, dtype="1SO")
Add time information to the simulation by specifying a start and end time, timestep, and time type (optional).

Examples

>>> start = datetime.datetime(2003,10,14)

>>> end = datetime.datetime(2003,12,26)

>>> delta = datetime.timedeltaChours=1)

>>> rmod.setup_ticks(start, end, delta, dtype='UTC')

Functions

get_modelop_L(f, L, Dm_old, Dm_new, Dp_old, ...) Advance the distribution function, f, discretized into the
Lgrid, L, forward in time by a timestep, Tdelta.

diff LL(r, grid, f, Tdelta, Telapsed[, params]) calculate the diffusion in L at constant mu,K coordinates
time units
get_local_accel(Lgrid, params[, SRC_model]) calculate the diffusion coefficient D_LL

4.17.2 spacepy.radbelt.get_modelop_L

spacepy.radbelt.get_modelop_L(f, L, Dm_old, Dm_new, Dp_old, Dp_new, Tdelta, NL)

Advance the distribution function, f, discretized into the Lgrid, L, forward in time by a timestep, Tdelta. The
off-grid current and next diffusion coefficients, D[m,p]_[old,new] will be used. The number of grid points is set
by NL.

This function performs the same calculation as the C-based code, spacepy.lib.solve_cnp. This code is very slow
and should only be used when the C code fails to compile.

282 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

4.17.3 spacepy.radbelt.diff _LL

spacepy.radbelt.diff_LL(r, grid, f, Tdelta, Telapsed, params=None)

calculate the diffusion in L at constant mu,K coordinates time units

4.17.4 spacepy.radbelt.get_local_accel
spacepy.radbelt.get_local_accel (Lgrid, params, SRC_model="JK1")

calculate the diffusion coefficient D_LL

4.18 SeaPy - Superposed Epoch in Python

SeaPy — Superposed Epoch in Python.

This module contains superposed epoch class types and a variety of functions for using on superposed epoch objects.
Each instance must be initialized with (assuming import seapy as se):

>>> obj = se.Sea(data, times, epochs)

To perform a superposed epoch analysis

>>> obj.sea()

To plot

>>> obj.plot(Q)

If multiple SeaPy objects exist, these can be combined into a single object

>>> objdict = seadict([objl, obj2],['objlname', 'obj2name’'])

and then used to create a multipanel plot

>>> multisea(objdict)

For two-dimensional superposed epoch analyses, initialize an Sea2d() instance

>>> obj = se.Sea2d(data, times, epochs, y=[4., 12.])

All object methods are the same as for the 1D object. Also, the multisea() function should accept both 1D and 2D
objects, even mixed together. Currently, the plot() method is recommended for 2D SEA.

—++— By Steve Morley —++—
smorley @lanl.gov Los Alamos National Laboratory

Copyright 2010 Los Alamos National Security, LLC.

4.18. SeaPy - Superposed Epoch in Python 283

mailto:smorley@lanl.gov

SpacePy Documentation, Release 0.4.0

Classes
Sea(data, times, epochs[, window, delta, ...]) SeaPy Superposed epoch analysis object
Sea2d(data, times, epochs[, window, delta, ...]) SeaPy 2D Superposed epoch analysis object

4.18.1 spacepy.seapy.Sea

class spacepy.seapy.Sea(data, times, epochs, window=3.0, delta=1.0, verbose=True)

SeaPy Superposed epoch analysis object

Initialize object with data, times, epochs, window (half-width) and delta (optional). ‘times’ and epochs should
be in some useful format Includes method to perform superposed epoch analysis of input data series

Parameters

data
[array_like] list or array of data

times
[array_like] list of datetime objects (or list of serial times)

epochs
[array_like] list of datetime objects (or serial times) for zero epochs in SEA

window
[datetime.timedelta] size of the half-window for the SEA (can also be given as serial time)

delta
[datetime.timedelta] resolution of the input data series, which must be uniform (can also be
given as serial time)

Notes

Output can be nicely plotted with pIot (), or for multiple objects use the multisea() function

sea(**kwargs) Method called to perform superposed epoch analysis
on data in object.
plot([xquan, yquan, Xunits, yunits, ...]) Method called to create basic plot of superposed

epoch analysis.

sea(**kwargs)

Method called to perform superposed epoch analysis on data in object.

Uses object attributes obj.data, obj.times, obj.epochs, obj.delta, obj.window, all of which must be available
on instantiation.

Other Parameters

storedata
[boolean] saves matrix of epoch windows as obj.datacube (default = False)

quartiles
[list] calculates the quartiles as the upper and lower bounds (and is default);

284

Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

ci
[float] will find the bootstrapped confidence intervals of ci_quan at the ci percent level
(default=95)

mad
[float] will use +/- the median absolute deviation for the bounds;

ci_quan
[string] can be set to ‘median’ (default) or ‘mean’

Notes

A basic plot can be raised with pIlot ()

plot (xquan='Time Since Epoch', yquan=""), xunits=", yunits=", epochline=True, usrlimy=[|, show=True,
target=None, loc=111, figsize=None, dpi=None, transparent=True, color=#7F7FFF")

Method called to create basic plot of superposed epoch analysis.
Parameters
Uses object attributes created by the obj.sea() method.
Other Parameters

xquan
[str] (default = ‘“Time since epoch’) - x-axis label.

yquan
[str] default None - yaxus label

xunits
[str] (default = None) - x-axis units.

yunits
[str] (default = None) - y-axis units.

epochline
[boolean] (default = True) - put vertical line at zero epoch.

usrlimy
[list] (default = []) - override automatic y-limits on plot.

transparent
[boolean] (default True): make patch for low/high bounds transparent

color
[str] Color to use for the patch if not transparent. (default #7F7FFF, a medium blue)

Notes

If both quan and units are supplied, axis label will read ‘Quantity Entered By User [Units]’

4.18. SeaPy - Superposed Epoch in Python 285

SpacePy Documentation, Release 0.4.0

4.18.2 spacepy.seapy.Sea2d

class spacepy.seapy.Sea2d(data, times, epochs, window=3.0, delta=1.0, verbose=False, y=[])
SeaPy 2D Superposed epoch analysis object

Initialize object with data (n element vector), times(y*n array), epochs, window (half-width), delta (optional),
and y (two-element vector with max and min of y;optional) ‘times’ and epochs should be in some useful format
Includes method to perform superposed epoch analysis of input data series

Parameters

data
[array_like] 2-D array of data (Oth dimension is quantity y, 1st dimension is time)

times
[array_like] list of datetime objects (or list of serial times)

epochs
[array_like] list of datetime objects (or serial times) for zero epochs in SEA

window
[datetime.timedelta] size of the half-window for the SEA (can also be given as serial time)

delta
[datetime.timedelta] resolution of the input data series, which must be uniform (can also be
given as serial time)

Notes

Output can be nicely plotted with pIot (), or for multiple objects use the multisea() function

sea([storedata, quartiles, ci, mad, ...]) Perform 2D superposed epoch analysis on data in ob-
ject
plot([xquan, yquan, Xunits, yunits, zunits, ...]) Method called to create basic plot of 2D superposed

epoch analysis.

sea(storedata=False, quartiles=True, ci=False, mad=False, ci_quan="median’', nmask=1, **kwargs)

Perform 2D superposed epoch analysis on data in object

Uses object attributes obj.data, obj.times, obj.epochs, obj.delta, obj.window, all of which must be available
on instantiation.

Other Parameters

storedata
[boolean] saves matrix of epoch windows as obj.datacube (default = False)

quartiles
[list] calculates the inter-quartile range to show the spread (and is default);
ci
[float] will find the bootstrapped confidence interval (and requires ci_quan to be set)

mad
[float] will use the median absolute deviation for the spread;

ci_quan
[string] can be set to ‘median’ or ‘mean’

286 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Notes

A basic plot can be raised with plot ()

plot (xquan='Time Since Epoch’, yquan="", xunits=", yunits="", zunits=", epochline=True, usrlimy=[],
show=True, zlog=True, figsize=None, dpi=300)

Method called to create basic plot of 2D superposed epoch analysis.
Uses object attributes created by sea ().

Other Parameters

x(y)quan
[str] x(y)-axis label. (default = “Time since epoch’ (None))

x(y/z)units
[str] x(y/z)-axis units. (default = None (None))

epochline
[boolean] put vertical line at zero epoch. (default = True)

usrlimy
[list] override automatic y-limits on plot. (default = [])

show
[boolean] shows plot; set to false to output plot object to variable (default = True)

figsize
[tuple] (width, height) in inches

dpi
[int] figure resolution in dots per inch (default=300)

Notes

If both quan and units are supplied, axis label will read ‘Quantity Entered By User [Units]’

Functions

seadict(objlist, namelist) Function to create dictionary of SeaPy.Sea objects.

multisea(dictobj[, n_cols, epochline, ...]) Function to create multipanel plot of superposed epoch
analyses.

readepochs(fname], iso, isofmt]) Read epochs from text file assuming YYYY MM DD hh
mm ss format

sea_signif(objl, obj2[, test, show, xquan, ...]) Test for similarity between distributions at each lag in
two 1-D SEAs

4.18. SeaPy - Superposed Epoch in Python 287

SpacePy Documentation, Release 0.4.0

4.18.3 spacepy.seapy.seadict

spacepy . seapy . seadict (objlist, namelist)

Function to create dictionary of SeaPy.Sea objects.
Parameters

- objlist: List of Sea objects.
- namelist: List of variable labels for input objects.

Other Parameters

namelist = List containing names for y-axes.

4.18.4 spacepy.seapy.multisea

spacepy . seapy.multisea(dictobj, n_cols=1, epochline=True, usrlimx=[|, usrlimy=[], xunits=", show=True,
zunits=", zlog=True, figsize=None)

Function to create multipanel plot of superposed epoch analyses.
Parameters
Dictionary of Sea objects (from superposedepoch.seadict()).
Returns

Plot of input object median and bounds (ci, mad, quartiles - see sea()).
If keyword ‘show’ is False, output is a plot object.

Other Parameters

- epochline (default = True) - put vertical line at zero epoch.

- usrlimy (default = []) - override automatic y-limits on plot (same for all plots).
- show (default = True) - shows plot; set to false to output plot object to variable
- x/zunits - Units for labeling x and z axes, if required

- figsize - tuple of (width, height) in inches

- dpi (default=300) - figure resolution in dots per inch

- n_cols - Number of columns: not yet implemented.

4.18.5 spacepy.seapy.readepochs

spacepy . seapy . readepochs (fname, iso=False, isofmt="%Y-%m-%dT%H: %M:%S")
Read epochs from text file assuming YYYY MM DD hh mm ss format

Parameters

Filename (include path)
Returns

epochs (type=list)
Other Parameters

iso (default = False), read in ISO date format
isofmt (default is YYYY-mm-ddTHH:MM:SS, code is Yo Y-%m-%d T %cH: %cM:%S)

288 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

4.18.6 spacepy.seapy.sea_signif

spacepy.seapy.sea_signif(objl, obj2, test="'KS', show=True, xquan="Time Since Epoch', yquan="", xunits=",
yunits=", epochline=True, usrlimy=[])

Test for similarity between distributions at each lag in two 1-D SEAs
Parameters
obj1
[Sea] First instance for comparison
obj2
[Sea] Second instance for comparison

Other Parameters

test
(default = ‘KS’) Test to apply at each lag: KS is 2-smaple Kolmogorov-Smirnov; U is Mann-
Whitney U-test

show
(default = True)

xquan
(default = ‘Time since epoch’ (None)) - x-axis label.

yquan
(default = ‘Time since epoch’ (None)) - y-axis label.

xunits
(default = None (None)) - x-axis units.

yunits
(default = None (None)) - y-axis units.

epochline
(default = True) - put vertical line at zero epoch.

usrlimy
(default = []) - override automatic y-limits on plot.

Examples

>>> objl = seapy.Sea(datal, timesl, epochsl)
>>> o0bj2 = seapy.Sea(data2, times2, epochs2)
>>> objl.sea(storedata=True)

>>> obj2.sea(storedata=True)

>>> seapy.sea_signif(objl, obj2)

4.18. SeaPy - Superposed Epoch in Python 289

SpacePy Documentation, Release 0.4.0

4.19 time - Time conversion, manipulation and implementation of
Ticktock class

Time conversion, manipulation and implementation of Ticktock class

4.19.1 Notes

The handling of time, in particular the conversions between representations, can be more complicated than it seems on
the surface. This can result in some surprising behavior, particularly when requiring second-level accuracy and convert-
ing between time systems outside of the period 1972 to present. It is strongly recommended to use TAI if transferring
times between SpacePy and other libraries. TAI has a consistent, unambiguous definition and no discontinuities.

Some time systems (e.g. the UTC representation via datetime) cannot represent times during a leapsecond. SpacePy
represents all these times as the latest representable time in the day, e.g.:

>>> spacepy.time.Ticktock('2008-12-31T23:59:60"').UTC[0]
datetime.datetime (2008, 12, 31, 23, 59, 59, 999999)

Conversions between continuous time representations (e.g. TAI), leap second aware representations (e.g. ISO
timestrings), and those that ignore leap seconds (e.g. UTC datetime, Unix time) are well-defined between the in-
troduction of the leap second system to UTC in 1972 and the present. For systems that cannot represent leap seconds,
the leap second moment is considered not to exist. For example, from 23:59:59 on 2008-12-31 to 00:00:00 on 2009-01-
01 is two seconds, but only represents a one-second increment in Unix time. Details are also discussed in the individual
time representations.

UTC times more than six months in the future are not well-defined, since the schedule of leap second insertion is not
known in advance. SpacePy performs conversions assuming there are no leapseconds after those which have been
announced by IERS.

Between 1960 and 1972, UTC was defined by means of fractional leap seconds and a varying-length second. From
1958 (when UTC was set equal to TAI) and 1972, SpacePy treats UTC time similar to after 1972, with a consistent
second the same length of the SI second, and applying a full leap second before the beginning of January and July if
UTC - UT1 exceeded 0.4s. The difference with other methods of calculating UTC is less than half a second.

Changed in version 0.2.3: The application of post-1972 rules to 1958-1927 is new in 0.2.3. Before, SpacePy applied
leap seconds wherever there was an entry in the USNO record of TAI-UTC, rounding fractional total leap second counts
to the integer (0.5 rounds up). The UTC second was still treated as the same length as the SI second (i.e., rate changed
were not applied.) This resulted in the application of six leap seconds at the beginning of 1972. The discrepancy with
other means of calculating TAI-UTC was as much as five seconds by the end of this period.

Changed in version 0.2.2: Before 0.2.2, SpacePy truncated fractional leapseconds rather than rounding.

Before 1958, UTC is not defined. SpacePy assumes days of constant length 86400 seconds, equal to the SI second. This
is almost guaranteed to be wrong; for times well out of the space era, it is strongly recommended to work consistently
in either a continuous time system (e.g. TAI) or a day-based system (e.g. JD).

SpacePy assumes dates including and after 1582-10-15 to be in the Gregorian calendar and dates including and before
1582-10-04 to be Julian. 10-05 through 10-14 do not exist. This change is ignored for continuously-running non leap
second aware timebases: CDF and RDT.

See the Ticktock documentation and its various get functions for more details on the exact definitions of time systems
used by SpacePy.

290 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

4.19.2 Examples:

>>> import spacepy.time as spt
>>> import datetime as dt

Day of year calculations

>>> dts = spt.doy2date([2002]*4, range(186,190), dtobj=True)
>>> dts

[datetime.datetime (2002, 7, 5, 0, 0),
datetime.datetime(2002, 7, 6, 0, 0),
datetime.datetime (2002, 7, 7, 0, 0),
datetime.datetime (2002, 7, 8, 0, 0)]

>>> dts = spt.Ticktock(dts, 'UTC")
>>> dts.DOY
array([186., 187., 188., 189.1)

Ticktock object creation

>>> isodates = ['2009-12-01T12:00:00', '2009-12-04T00:00:00', '2009-12-06T12:00:00']
>>> dts = spt.Ticktock(isodates, 'ISO')

OR

>>> dtdates = [dt.datetime(2009,12,1,12), dt.datetime(2009,12,4), dt.datetime(2009,12,6,
—~12)]
>>> dts = spt.Ticktock(dtdates, 'UTC')

ISO time formatting

>>> dts = spt.tickrange('2009-12-01T12:00:00", '2009-12-06T12:00:00",2.5)

OR

>>> dts = spt.tickrange(dt.datetime(2009,12,1,12),dt.datetime(2009,12,6,12), dt.
—timedelta(days=2, hours=12))

>>> dts
Ticktock(['2009-12-01T12:00:00', '2009-12-04T00:00:00', '2009-12-06T12:00:00']),
—dtype=ISO

>>> dts.isoformat()
Current ISO output format is %Y-%m-%dT%H:%M:%S
Options are: [('seconds', '%Y-%m-%dT%H:%M:%S'), ('microseconds', '%Y-%m-%dT%H:%M:%S.%£f')]

>>> dts.isoformat('microseconds"')

>>> dts.ISO
['2009-12-01T12:00:00.000000',
'2009-12-04T00:00:00.000000',
'2009-12-06T12:00:00.000000']

Time manipulation

4.19. time - Time conversion, manipulation and implementation of Ticktock class 291

SpacePy Documentation, Release 0.4.0

>>> new_dts = dts + tdelt

>>> new_dts.UTC
[datetime.datetime (2009, 12, 2, 18, 0),
datetime.datetime (2009, 12, 5, 6, 0),
datetime.datetime(2009, 12, 7, 18, 0)]

Other time formats

>>> dts.RDT # Gregorian ordinal time
array([733742.5, 733745. , 733747.5])

>>> dts.GPS # GPS time
array([9.43704015e+08, 9.43920015e+08, 9.44136015e+08])

>>> dts.JD # Julian day
array([2455167. , 2455169.5, 2455172. 1)

And so on.

Authors: Steve Morley, Josef Koller, Brian Larsen, Jon Niehof Institution: Los Alamos National Laboratory Contact:
smorley @lanl.gov,

Copyright 2010 Los Alamos National Security, LLC.

Classes

Ticktock(data, dtype) Ticktock class holding various time coordinate systems
(TAIL UTC, ISO, JD, MJD, GPS, UNX, RDT, CDF,
DOY, eDOY, APT)

4.19.3 spacepy.time.Ticktock

class spacepy.time.Ticktock(data, dtype)
Ticktock class holding various time coordinate systems (TAI, UTC, ISO, JD, MJD, GPS, UNX, RDT, CDF,
DQY, eDOY, APT)
Possible input data types:

ISO
ISO standard format like ‘2002-02-25T12:20:30°

UTC
datetime object with UTC time

TAI
Elapsed seconds since 1958-1-1 (includes leap seconds)

GPS
Elapsed seconds since 1980-1-6 (includes leap seconds)

UNX
Elapsed seconds since 1970-1-1 ignoring leapseconds (all days have 86400 secs).

JD
Julian days elapsed

292 Chapter 4. SpacePy Module Reference

mailto:smorley@lanl.gov

SpacePy Documentation, Release 0.4.0

MJD

Modified Julian days

RDT

Rata Die days elapsed since 0001-1-1

CDF

CDF Epoch type: float milliseconds since 0000-1-1 ignoring leapseconds

APT

AstroPy Time. Requires AstroPy 1.0. (New in version 0.2.2.)

Possible output data types: All those listed above, plus:

DOY

Integer day of year, starts with day 1

eDOY

Fractional day of year, starts at day 0

It is strongly recommended to access various time systems via the attributes listed above, as in the examples.

They will be calculated automatically if necessary. Using the get methods will force a recalculation.

The original input data will always be available as the data attribute.

Changed in version 0.2.2: In earlier versions of SpacePy, most values were derived from the datetime-based
UTC representation. This did not properly handle leap seconds in many cases. Now most are derived from TAI
(exceptions being DOY and eDOY). In addition to differences around actual leap seconds, this may result in small
differences between versions of SpacePy, with relative magnitude on the order of the resolution of a 64-bit float
(2e-16). For times in the modern era, this is about 50 microseconds (us) for ID, 15 us for CDF, 1.5 us for RDT, 1
us for MJD, and 360 nanoseconds for TAI.

The relationships between parameters and how they are calculated are listed in the get methods and illustrated

below.
data "dtypes" (inputs)
uTC ISO TAI CDF JD MJD RDT UNX GPS APT
T APT
leaps Output and ™~
7 / intermediaries
e (.LABC) M)D
\ JD
ISO
GPS
UNX A
DOY eDOY CDF RDT
If data dtype is same: populate from data (not shown)
Elif dashed arrow, populate from data via dashed
Else populate from intermediate via ALL solid arrows
Parameters

4.19. time - Time conversion, manipulation and implementation of Ticktock class

293

https://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time

SpacePy Documentation, Release 0.4.0

data
[array_like (int, datetime, float, string)] time stamp

dtype
[string { CDF, ISO, UTC, TAI, ‘GPS’, UNX, JD, MJD, RDT, APT } or function] data type for
data, if a function it must convert input time format to Python datetime

Returns

out
[Ticktock] instance with self.data, self.dtype, self.UTC etc

Other Parameters

isoformat
[str, optional] New in version 0.2.2.

Format string used for parsing and outputting ISO format. Input is not forced to be in this
format; it is tried first, and other common formats tried if parsing fails. Because of this, if ISO
input is in a consistent format, specifying this can speed up the input parsing. Can be changed
on existing Ticktock with isoformat () method. Default '%Y-%m-%dT%H:%M:%S".

See also:

datetime.datetime.strptime, isoformat

Notes

UTC data type is implemented as Python datetime, which cannot represent leap seconds. The time within a leap
second is regarded as not happening.

The CDF data type is the older CDF_EPOCH time type, not the newer CDF_TIME_TT2000. It similarly cannot
represent leap seconds. Year O is considered a leap year.

Examples

>>> x = Ticktock([2452331.0142361112, 2452332.0142361112], 'JD')

>>> x.ISO

dmarray(['2002-02-25T12:20:30', '2002-02-26T12:20:30'], dtype='|S19")
>>> x.DOY # Day of year

dmarray([56., 57.]1)

>>> y = Ticktock(['01-01-2013"', '20-03-2013'], lambda x: datetime.datetime.
o strptime(x, '%d-%m-%Y'))

>>> y.UTC

dmarray([2013-01-01 00:00:00, 2013-03-20 00:00:00], dtype=object)

>>> y.DOY # Day of year

dmarray([1., 79.]1)

294 Chapter 4. SpacePy Module Reference

https://docs.python.org/3/library/datetime.html#datetime.datetime.strptime

SpacePy Documentation, Release 0.4.0

append (other) Will be called when another Ticktock instance has to
be appended to the current one

argsort() This will return the indices that would sort the Tick-
tock values

convert(dtype) convert a Ticktock instance into a new time coordi-
nate system provided in dtype

getAPT() a.APT or a.getAPT()

getCDF() a.getCDF() or a.CDF

getDOY() a.DOY or a.getDOY ()

getGPS() a.GPS or a.getGPS()

getISO() a.ISO or a.getISO()

getID() a.JD or a.getJD()

getMID() a.MJD or a.getMJD()

getRDT() a.RDT or a.RDT()

getTAI() a.TAI or a.getTAI()

getUNX() a.UNX or a.getUNX()

getUTC() a.UTC or a.getUTC()

geteDOY() a.eDOY or a.geteDOY()

getleapsecs() a.leaps or a.getleapsecs()

isoformat(b, attrib)

This changes the self._isofmt attribute by and subse-
quently this function will update the ISO attribute.

now() Create Ticktock with the current UTC time.

sort() This will sort the Ticktock values in place based on
the values in data.

today() Create Ticktock with the current UTC date and time

set to 00:00:00

update_items(attrib)

After changing the self.data attribute by -either
__setitem__ or __add___ etc this function will update
all other attributes.

append (other)

Will be called when another Ticktock instance has to be appended to the current one

Parameters

other

[Ticktock] other (Ticktock instance)

argsort()

This will return the indices that would sort the Ticktock values

Returns

out

[list] indices that would sort the Ticktock values

Other Parameters

kind

[str, optional] Sort algorithm to use, default ‘quicksort’.

Changed in version 0.2.2: Default is now ‘quicksort’ to match numpy default; previously

was ‘mergesort’.

See also:

4.19. time - Time conversion, manipulation and implementation of Ticktock class 295

SpacePy Documentation, Release 0.4.0

argsort, numpy.argsort

convert (dtype)
convert a Ticktock instance into a new time coordinate system provided in dtype

Parameters

dtype
[string] data type for new system, possible values are { CDF, ISO, UTC, TAl, UNX, JD,
MJD, RDT}

Returns

out
[Ticktock] Ticktock instance with new time coordinates

See also:
CDF

IS0
UTC

Examples

>>> a = Ticktock(['2002-02-02T12:00:00', '2002-02-02T12:00:00'], 'IS0')
>>> s = a.convert('TAI")

>>> type(s)

<class 'time.Ticktock'>

>>> s

Ticktock([1391342432 1391342432]), dtype=TAI

getAPT()
a.APT or a.getAPT()

Return AstroPy time object.
Always recalculates from the current value of TAI, which will be created if necessary.
Updates the APT attribute.

Returns

out
[astropy.time.Time] AstroPy Time object

See also:

getUTC, getUNX, getRDT, getJD, getMID, getCDF, getISO, getDOY, geteDOY
getGPS

296 Chapter 4. SpacePy Module Reference

https://numpy.org/doc/stable/reference/generated/numpy.argsort.html#numpy.argsort

SpacePy Documentation, Release 0.4.0

Notes

New in version 0.2.2.

Requires AstroPy 1.0. The returned value will be on the tai scale in gps format (unless the Ticktock
was created from a Time object, in which case it will be the original input.) See the astropy.time docs
for conversion to other scales and formats.

Examples

>>> a = Ticktock('2002-02-02T12:00:00"', 'ISO")
>>> a.APT
<Time object: scale="tai' format='gps' value=696686413.0>

getCDF()
a.getCDF() or a.CDF

Return CDF Epoch time which is milliseconds since 0000-1-1 at 00:00:00.000. “Year zero” is a convention
chosen by NSSDC to measure epoch values. This date is more commonly referred to as 1 BC and is
considered a leap year.

The CDF date/time calculations do not take into account the change to the Gregorian calendar or leap
seconds, and cannot be directly converted into Julian date/times.

Returns data if it was provided in CDF; otherwise always recalculates from the current value of TAI, which
will be created if necessary.

Updates the CDF attribute.
Returns

out
[numpy array] milliseconds since 0000-01-01T00:00:00 assuming no discontinuities.

See also:

getUTC
getUNX
getRDT
getJD
getMID
getISo
getTAI
getDOY
geteDOY
getAPT

4.19. time - Time conversion, manipulation and implementation of Ticktock class 297

https://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.astropy.org/en/stable/time/index.html#module-astropy.time

SpacePy Documentation, Release 0.4.0

Examples

>>> a = Ticktock('2002-02-02T12:00:00"', "ISO')
>>> a.CDF
array([6.31798704e+13])

getDOY()
a.DOY or a.getDOY()

extract DOY (days since January 1st of given year)
Always recalculates from the current value of UTC, which will be created if necessary.
Updates the DOY attribute.

Returns

out
[numpy array] day of the year

See also:

getUTC
getUNX
getRDT
getJD
getMJD
getISO
getTAI
getDOY
geteDOY
getAPT

Examples

>>> a = Ticktock('2002-02-02T12:00:00"', "ISO')
>>> a.DOY
array([331)

getGPS()
a.GPS or a.getGPS()

Return seconds since the GPS epoch (1980-1-6T00:00 UT)
Always recalculates from the current value of TAI, which will be created if necessary.
Updates the GPS attribute.

Returns

out
[numpy array] elapsed secs since 1980-1-6. Leap seconds are counted; i.e. there are no
discontinuities.

See also:

getUTC, getUNX, getRDT, getJD, getMID, getCDF, getISO, getDOY, geteDOY
getAPT

298 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Examples

>>> a = Ticktock('2002-02-02T12:00:00"', "ISO'")
>>> a.GPS
dmarray([6.96686413e+08])

getIS0()
a.ISO or a.getISO()

convert dtype data into ISO string

Always recalculates from the current value of UTC, which will be created if necessary. Applies leapsecond
correction based on TAI, also created as necessary.

Updates the ISO attribute.
Returns

out
[list of strings] date in ISO format

See also:

getUTC, getUNX, getRDT, getJD, getMID, getCDF, getTAI, getDOY, geteDOY
getAPT

Examples

>>> a = Ticktock('2002-02-02T12:00:00', 'ISO")
>>> a.ISO0
dmarray(['2002-02-02T12:00:00'])

getID()
a.JD or a.getJD()

convert dtype data into Julian Date (JD)

Returns data if it was provided in JD; otherwise always recalculates from the current value of TAI, which
will be created if necessary.

Updates the JD attribute.
Returns

out
[numpy array] elapsed days since 4713 BCE 01-01T12:00

See also:

4.19. time - Time conversion, manipulation and implementation of Ticktock class 299

SpacePy Documentation, Release 0.4.0

getUTC
getUNX
getRDT
getJD
getMID
getISo
getTAI
getDOY
geteDOY
getAPT

Notes
This is based on the UTC day, defined as JD(UTC), per the recommendation of IAU General Assembly

XXIII resolution B1. Julian days with leapseconds are 86401 seconds long and each second is a smaller
fraction of the day. Note this “stretching” is across the Julian Day, noon to noon.

Examples

>>> a = Ticktock('2002-02-02T12:00:00', 'ISO")
>>> a.JD
array ([2452308.])

getMID()

a.MJD or a.getMJID()
convert dtype data into MJD (modified Julian date)

Returns data if it was provided in MJD; otherwise always recalculates from the current value of TAI which
will be created if necessary.

Updates the MID attribute.
Returns

out
[numpy array] elapsed days since 1858-11-17T00:00 (Julian date of 1858-11-17T12:00
was 2 400 000)

See also:

getUTC, getUNX, getRDT, getJD, getISO, getCDF, getTAI, getDOY, geteDOY
getAPT

Notes

This is based on the UTC day, defined as JD(UTC) - 2 400 000.5, per the recommendation of AU General
Assembly XXIII resolution B1. Julian days with leapseconds are 86401 seconds long and each second is a
smaller fraction of the day. Note this “stretching” is across the Julian Day not the MJD, so it will affect the
last half of the MJD before the leap second and the first half of the following MJD, so that MJD is always
JD -2 400 000.5 This also means that the MJD following a leap second does not begin exactly at midnight.

300

Chapter 4. SpacePy Module Reference

https://www.iers.org/IERS/EN/Science/Recommendations/resolutionB1.html
https://www.iers.org/IERS/EN/Science/Recommendations/resolutionB1.html
https://www.iers.org/IERS/EN/Science/Recommendations/resolutionB1.html
https://www.iers.org/IERS/EN/Science/Recommendations/resolutionB1.html

SpacePy Documentation, Release 0.4.0

Examples

>>> a = Ticktock('2002-02-02T12:00:00"', "ISO'")
>>> a.MID

array([52307.5])

>>> a = Ticktock('2009-01-01T00:00:00"', "ISO0")
>>> a.MID

array([54832.00000579])

getRDT()
a.RDT or a.RDT()

convert dtype data into Rata Die (lat.) Time, or elapsed days counting 0001-01-01 as day 1. This is a naive
conversion: it ignores the existence of leapseconds for fractional days and ignores the conversion from
Julian to Gregorian calendar, i.e. it assumes Gregorian calendar infinitely into the past.

Returns data if it was provided in RDT; otherwise always recalculates from the current value of TAI, which
will be created if necessary.

Updates the RDT attribute.
Returns

out
[numpy array] elapsed days counting 1/1/1 as day 1.

See also:

getUTC, getUNX, getISO, getID, getMID, getCDF, getTAI, getDOY, geteDOY
getAPT

Examples

>>> a = Ticktock('2002-02-02T12:00:00"', "ISO'")
>>> a.RDT
array([730883.5])

getTAI()
a.TAI or a.getTAI()
return TAI (International Atomic Time), elapsed secs since 1958-1-1 (leap seconds are counted.) Ticktock’s
handling of TAI and UTC conversions treats the UTC second as always equal in length to the SI second
(and thus TAI), ignoring frequency changes and fractional leap seconds from 1958 through 1972, i.e. the

UTC to TAI offset is always treated as an integer, truncated (not rounded) from the value at the most recent
leap second (or fraction thereof).

Return value comes from (in priority order):
1. If data was provided in TAI, returns data.

2. Else recalculates directly from data if it was provided in APT, CDF, GPS, ISO, JD, MID, RDT, or
UNX.

3. Else calculates from current value of UTC, which will be created if necessary.

Updates the TAI attribute; will also create the UTC and ISO attributes from data if input is in ISO (but will
not overwrite an existing IS0 or UTC). This is for efficiency, as computation from ISO requires calculating
UTC and makes creating a formatted ISO string easy.

4.19. time - Time conversion, manipulation and implementation of Ticktock class 301

SpacePy Documentation, Release 0.4.0

Returns

out
[numpy array] TAI as seconds since 1958-1-1.

See also:

getUTC, getUNX, getRDT, getJD, getMID, getCDF, getISO, getDOY, geteDOY
getAPT

Examples

>>> a = Ticktock('2002-02-02T12:00:00', 'ISO")
>>> a.TAI
array([1391342432])

getUNX()

a.UNX or a.getUNX()
convert dtype data into Unix Time (Posix Time) seconds since 1970-1-1 (not counting leap seconds)

Returns data if it was provided in UNX; otherwise always recalculates from the current value of TAI,
which will be created if necessary.

Updates the UNX attribute.
Returns

out
[numpy array] elapsed secs since 1970-1-1 (not counting leap secs)

See also:

getUTC, getISO, getRDT, getJD, getMID, getCDF, getTAI, getDOY, geteDOY
getAPT

Examples

>>> a = Ticktock('2002-02-02T12:00:00"', "ISO')
>>> a.UNX
array([1.01265120e+09])

getUTC()

a.UTC or a.getUTC()
convert dtype data into UTC object a la datetime()
Return value comes from (in priority order):
1. If data was provided in UTC, returns data.
2. Else recalculates directly from data if it was provided in ISO.

3. Else calculates from current value of TAI, which will be created if necessary. (data is TAI, GPS, JD,
MID, RDT, CDF, UNX)).

Updates the UTC attribute.

Returns

302

Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

out
[list of datetime objects] datetime object in UTC time

See also:

getISO, getUNX, getRDT, getJID, getMID, getCDF, getTAI, getDOY, geteDOY
getAPT

Examples

>>> a = Ticktock('2002-02-02T12:00:00', 'ISO")
>>> a.UTC
[datetime.datetime (2002, 2, 2, 12, O]

geteDOY()
a.eDQOY or a.geteDOY ()

extract eDOY (elapsed days since midnight January 1st of given year)
Always recalculates from the current value of UTC, which will be created if necessary.
Updates the eDOY attribute.

Returns

out
[numpy array] days elapsed since midnight bbedJan. 1st

See also:

getUTC
getUNX
getRDT
getJD
getMID
getISo
getTAI
getDOY
geteDOY
getAPT

Examples

>>> a = Ticktock('2002-02-02T12:00:00', 'IS0')
>>> a.eDOY
array([32.5])

getleapsecs()

a.leaps or a.getleapsecs()
retrieve leapseconds from lookup table, used in getTAI

Always recalculates from current value of TAI if data is dtype TAI, otherwise from the current value of
UTC, which will be created if necessary.

Updates the leaps attribute.

4.19. time - Time conversion, manipulation and implementation of Ticktock class 303

SpacePy Documentation, Release 0.4.0

Returns

out
[numpy array] leap seconds

See also:

getTAI

Examples

>>> a = Ticktock('2002-02-02T12:00:00"', 'ISO")
>>> a.leaps
array([32])

isoformat (b, attrib)
This changes the self._isofmt attribute by and subsequently this function will update the ISO attribute.

Parameters

fmt
[string, optional]

classmethod now()
Create Ticktock with the current UTC time.

Equivalent to datetime.utcnow()

Changed in version 0.2.2: This now returns a UTC time; previously it returned a Ticktock UTC object, but
in the local timezone, which made all conversions incorrect.

Returns

out
[ticktock] Ticktock object with the current time, equivalent to datetime.utcnow()

See also:
datetime.datetime.now, datetime.datetime.utcnow

sort()

This will sort the Ticktock values in place based on the values in data. If you need a stable sort use
kind="mergesort’

Other Parameters

kind
[str] Sort algorithm to use, default ‘quicksort’.

See also:
argsort, numpy.argsort

classmethod today()
Create Ticktock with the current UTC date and time set to 00:00:00

Similar to date.today() with time included but in UTC and with the time included (zero hours, minutes,
seconds)

304 Chapter 4. SpacePy Module Reference

https://docs.python.org/3/library/datetime.html#datetime.datetime.now
https://docs.python.org/3/library/datetime.html#datetime.datetime.utcnow
https://numpy.org/doc/stable/reference/generated/numpy.argsort.html#numpy.argsort

SpacePy Documentation, Release 0.4.0

Changed in version 0.2.2: This now returns the UTC day; previously it returned a Ticktock UTC object,
but in the local timezone, which made all conversions incorrect.

Returns

out
[ticktock] Ticktock object with the current UTC day

See also:
datetime.date.today

update_items (artrib)

After changing the self.data attribute by either __setitem__ or __add__ etc this function will update all
other attributes. This function is called automatically in __add__, __init__, and __setitem__.

Parameters

attrib
[str] attribute that was updated; update others from this

Other Parameters

cls
[type] Deprecated since version 0.2.2: Class is now taken from the self of the bound
instance.

Class to use for finding possible attributes; now ignored.
See also:
spacepy.Ticktock.__setitem__

spacepy.Ticktock.__add__
spacepy.Ticktock.__sub__

Functions

dtstr2iso(dtstr[, fmt]) Convert a datetime string to a standard format

doy2date(year, doy[, dtobj, flAns]) convert integer day-of-year doy into a month and
day after http://pleac.sourceforge.net/pleac_python/
datesandtimes.html

leapyear(year[, numdays]) return an array of boolean leap year, a lot faster than the
mod method that is normally seen

randomDate(dtl, dt2[, N, tzinfo, sorted]) Return a (or many) random datetimes between two given
dates

sec2hms(sec[, rounding, days, dtobj]) Convert seconds of day to hours, minutes, seconds

tickrange(start, end, deltadays[, dtype]) return a Ticktock range given the start, end, and delta

4.19. time - Time conversion, manipulation and implementation of Ticktock class 305

https://docs.python.org/3/library/datetime.html#datetime.date.today
http://pleac.sourceforge.net/pleac_python/datesandtimes.html
http://pleac.sourceforge.net/pleac_python/datesandtimes.html

SpacePy Documentation, Release 0.4.0

4.19.4 spacepy.time.dtstr2iso

spacepy.time.dtstr2iso(dsstr, fint="'"%Y-%m-%dT%H: %oM:%S")

Convert a datetime string to a standard format

Attempts to maintain leap second representation while converting time strings to the specified format (by default,
ISO8601-like.) Only handles a single positive leap second; negative leap seconds require no special handling
and policy is for UTC-UT1 not to exceed 0.9.

Parameters

dtstr
[sequence of str] Date + time representation, format is fairly open.

Returns

isostr
[array of str] Representation of dtstr formatted according to fimt. Always a new sequence
even if contents are identical to dtstr.

UTC
[array of datetime.datetime] The closest-possible rendering of UTC time before or equal to
dtstr.

offset
[array of int] Amount (in microseconds) to add to UTC to get the real time.

Other Parameters

fmt
[str, optional] Format appropriate for strftime () for rendering the output time.

4.19.5 spacepy.time.doy2date

spacepy . time.doy2date (year, doy, dtobj=False, flAns=False)

convert integer day-of-year doy into a month and day after http://pleac.sourceforge.net/pleac_python/
datesandtimes.html

Parameters

year
[int or array of int] year

doy
[int or array of int] day of year

Returns

month
[int or array of int] month as integer number

day
[int or array of int] as integer number

See also:

Ticktock.getDOY

306 Chapter 4. SpacePy Module Reference

https://docs.python.org/3/library/datetime.html#datetime.datetime.strftime
http://pleac.sourceforge.net/pleac_python/datesandtimes.html
http://pleac.sourceforge.net/pleac_python/datesandtimes.html

SpacePy Documentation, Release 0.4.0

Examples

>>> month, day = doy2date(2002, 186)
>>> dts = doy2date([2002]%4, range(186,190), dtobj=True)

4.19.6 spacepy.time.leapyear

spacepy . time.leapyear (year, numdays=False)
return an array of boolean leap year, a lot faster than the mod method that is normally seen

Parameters

year
[array_like] array of years

numdays
[boolean (optional)] optionally return the number of days in the year

Returns

out
[numpy array] an array of boolean leap year, or array of number of days

Examples

>>> import numpy

>>> import spacepy.time

>>> spacepy.time.leapyear (numpy.arange(15)+1998)

[False, False, True, False, False, False, True, False, False,
False, True, False, False, False, True]

4.19.7 spacepy.time.randomDate

spacepy . time.randomDate (dtl, dt2, N=I, tzinfo=False, sorted=False)
Return a (or many) random datetimes between two given dates

Convention used is dt1 <=rand < dt2. Leap second times will not be returned.
Parameters

dtl
[datetime.datetime] start date for the the random date

de2
[datetime.datetime] stop date for the the random date

Returns

out
[datetime.datetime or numpy.ndarray of datetime.datetime] the new time for the next call to

EventTimer
Other Parameters

N
[int (optional)] the number of random dates to generate (defualt=1)

4.19. time - Time conversion, manipulation and implementation of Ticktock class 307

SpacePy Documentation, Release 0.4.0

tzinfo
[bool (optional)] maintain the tzinfo of the input datetimes (default=False)

sorted
[bool (optional)] return the times sorted (default=False)

4.19.8 spacepy.time.sec2hms

spacepy . time. sec2hms (sec, rounding=True, days=False, dtobj=False)
Convert seconds of day to hours, minutes, seconds

Parameters

sec
[float] Seconds of day

Returns

out
[[hours, minutes, seconds] or datetime.timedelta]

Other Parameters

rounding
[boolean] set for integer seconds

days
[boolean] set to wrap around day (i.e. modulo 86400)

dtobj
[boolean] set to return a timedelta object

4.19.9 spacepy.time.tickrange

spacepy . time.tickrange (start, end, deltadays, dtype=None)

return a Ticktock range given the start, end, and delta
Parameters

start
[string or number] start time (ISO standard string and UTC/datetime do not require a dtype)

end
[string or number] last possible time in series (excluded unless end=start+n*step for integer
n)

deltadays
[float or timedelta] step in units of days (float); or datetime timedelta object

dtype
[string (optional)] data type for start, end; e.g. ISO, UTC, RTD, etc. see Ticktock for all
options

Returns

out
[Ticktock instance] ticks

See also:

308 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Ticktock

Examples

>>> ticks = st.tickrange('2002-02-01T00:00:00"', '2002-02-10T00:00:00', deltadays =.
D)

>>> ticks

Ticktock(['2002-02-01T00:00:00', '2002-02-02T00:00:00', '2002-02-03T00:00:00',
'2002-02-04T00:00:00'] , dtype=ISO)

4.20 toolbox - Toolbox of various functions and generic utilities

Toolbox of various functions and generic utilities.

Authors: Steve Morley, Jon Niehof, Brian Larsen, Josef Koller, Dan Welling Institution: Los Alamos National Lab-
oratory Contact: smorley @lanl.gov, jniehof @lanl.gov, balarsen@lanl.gov, jkoller@lanl.gov, dwelling@lanl.gov Los
Alamos National Laboratory

Copyright 2010 Los Alamos National Security, LLC.

Array binning

Array creation

Array searching and masking
Other functions

Multithreading and multiprocessing

System tools

4.20.1 Array binning

arraybin(array, bins) Split a sequence into subsequences based on value.
bin_center_to_edges(centers) Convert a list of bin centers to their edges
bin_edges_to_center(edges) Convert a list of bin edges to their centers
binHisto(data[, verbose]) Calculates bin width and number of bins for histogram

using Freedman-Diaconis rule, if rule fails, defaults to
square-root method

spacepy.toolbox.arraybin

spacepy . toolbox.arraybin(array, bins)

Split a sequence into subsequences based on value.

Given a sequence of values and a sequence of values representing the division between bins, return the indices
grouped by bin.

Parameters

array
[array_like] the input sequence to slice, must be sorted in ascending order

4.20.

toolbox - Toolbox of various functions and generic utilities 309

mailto:smorley@lanl.gov
mailto:jniehof@lanl.gov
mailto:balarsen@lanl.gov
mailto:jkoller@lanl.gov
mailto:dwelling@lanl.gov

SpacePy Documentation, Release 0.4.0

bins
[array_like]

dividing lines between bins. Number of bins is len(bins)+1,
value that exactly equal a dividing value are assigned to the higher bin

Returns

out
[list] indices for each bin (list of lists)

Examples

>>> import spacepy.toolbox as tb
>>> tb.arraybin(range(10), [4.2])
[[®1]'! 2’ 31 4]! [5! 6) 7! 8! 9]]

spacepy.toolbox.bin_center_to_edges

spacepy.toolbox.bin_center_to_edges (centers)
Convert a list of bin centers to their edges

Given a list of center values for a set of bins, finds the start and end value for each bin. (start of bin n+1 is assumed
to be end of bin n). Useful for e.g. matplotlib.pyplot.pcolor.

Edge between bins n and n+1 is arithmetic mean of the center of n and n+1; edge below bin 0 and above last bin
are established to make these bins symmetric about their center value.

Parameters

centers
[list] list of center values for bins

Returns

out
[list] list of edges for bins

note: returned list will be one element longer than centers

Examples

>>> import spacepy.toolbox as tb
>>> tb.bin_center_to_edges([1,2,3])
[0.5, 1.5, 2.5, 3.5]

310 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

spacepy.toolbox.bin_edges_to_center

spacepy.toolbox.bin_edges_to_center (edges)
Convert a list of bin edges to their centers

Given a list of edge values for a set of bins, finds the center of each bin. (start of bin n+1 is assumed to be end of
bin n).

Center of bin n is arithmetic mean of the edges of the adjacent bins.
Parameters

edges
[list] list of edge values for bins

Returns

out
[numpy.ndarray] array of centers for bins

note: returned array will be one element shorter than edges

Examples

>>> import spacepy.toolbox as tb
>>> tb.bin_center_to_edges([1,2,3])
[0.5, 1.5, 2.5, 3.5]

spacepy.toolbox.binHisto

spacepy.toolbox.binHisto (data, verbose=False)
Calculates bin width and number of bins for histogram using Freedman-Diaconis rule, if rule fails, defaults to
square-root method

The Freedman-Diaconis method is detailed in:
Freedman, D., and P. Diaconis (1981), On the histogram as a density estimator: L2 theory, Z. Wahrschein-
lichkeitstheor. Verw. Geb., 57, 453-476

and is also described by:
Wilks, D. S. (2006), Statistical Methods in the Atmospheric Sciences, 2nd ed.
Parameters

data
[array_like] list/array of data values

verbose
[boolean (optional)] print out some more information

Returns

out
[tuple] calculated width of bins using F-D rule, number of bins (nearest integer) to use for
histogram

See also:

matplotlib.pyplot.hist

4.20. toolbox - Toolbox of various functions and generic utilities 311

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html#matplotlib.pyplot.hist

SpacePy Documentation, Release 0.4.0

Examples

>>> import numpy, spacepy

>>> import matplotlib.pyplot as plt

>>> numpy.random.seed(8675301)

>>> data = numpy.random.randn(1000)

>>> binw, nbins = spacepy.toolbox.binHisto(data)

>>> print(nbins)

19

>>> p = plt.hist(data, bins=nbins, histtype='step', density=True)

4.20.2 Array creation

dist_to_Ilist(func, length[, min, max]) Convert a probability distribution function to a list of
values

geomspace(start[, ratio, stop, num]) Returns geometrically spaced numbers.

linspace(min, max, num, **kwargs) Returns linear-spaced bins.

logspace(min, max, num, **kwargs) Returns log-spaced bins.

spacepy.toolbox.dist_to_list

spacepy.toolbox.dist_to_list (func, length, min=None, max=None)

Convert a probability distribution function to a list of values

This is a deterministic way to produce a known-length list of values matching a certain probability distribution.
It is likely to be a closer match to the distribution function than a random sampling from the distribution.

Parameters

func
[callable]

function to call for each possible value, returning
probability density at that value (does not need to be normalized.)

length
[int] number of elements to return
min
[float] minimum value to possibly include

max
[float] maximum value to possibly include

312

Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Examples

>>> import matplotlib

>>> import numpy

>>> import spacepy.toolbox as tb

>>> gauss = lambda x: math.exp(-(x ** 2) / (2 * 5 ** 2)) / (5 * math.sqrt(2 * math.
—~pi))

>>> vals = tb.dist_to_list(gauss, 1000, -numpy.inf, numpy.inf)

>>> print vals[0]

-16.45263...

>>> pl = matplotlib.pyplot.hist(vals, bins=[i - 10 for i in range(21)], facecolor=
—'green')

>>> matplotlib.pyplot.hold(True)

>>> x = [i / 100.0 - 10.0 for i in range(2001)]

>>> p2 = matplotlib.pyplot.plot(x, [gauss(i) * 1000 for i in x], 'red')

>>> matplotlib.pyplot.draw()

spacepy.toolbox.geomspace

spacepy.toolbox.geomspace (start, ratio=None, stop=False, num=50)

Returns geometrically spaced numbers.
Parameters

start
[float] The starting value of the sequence.

ratio
[float (optional)] The ratio between subsequent points

stop
[float (optional)] End value, if this is selected num is overridden

num
[int (optional)] Number of samples to generate. Default is 50.

Returns

seq
[array] geometrically spaced sequence

See also:

linspace
logspace

4.20. toolbox - Toolbox of various functions and generic utilities 313

SpacePy Documentation, Release 0.4.0

Examples

To get a geometric progression between 0.01 and 3 in 10 steps

>>> import spacepy.toolbox as tb
>>> tb.geomspace(0.01, stop=3, num=10)
[0.01,

.018846716378431192,
.035519871824902655,
.066943295008216955,
.12616612944575134,
.23778172582285118,
.44814047465571644,
.84459764235318191,
.5917892219322083,
.9999999999999996]

(=]

N oo

To get a geometric progression with a specified ratio, say 10

>>> import spacepy.toolbox as tb
>>> tb.geomspace(0.01, ratio=10, num=5)
[0.01, 0.10000000000000001, 1.0, 10.0, 100.0]

spacepy.toolbox.linspace

spacepy . toolbox.linspace (min, max, num, **kwargs)

Returns linear-spaced bins. Same as numpy.linspace except works with datetime and is faster
Parameters
min
[float, datetime] minimum value

max
[float, datetime] maximum value

num
[integer] number of linear spaced bins

Returns

out
[array] linear-spaced bins from min to max in a numpy array

Other Parameters

kwargs
[dict] additional keywords passed into matplotlib.dates.num2date

See also:

geomspace
logspace

314 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Notes

This function works on both numbers and datetime objects

Examples

>>> import spacepy.toolbox as tb
>>> tb.linspace(l, 10, 4)
array([1., 4., 7., 10.1)

spacepy.toolbox.logspace

spacepy . toolbox.logspace (min, max, num, **kwargs)

Returns log-spaced bins. Same as numpy.logspace except the min and max are the min and max not log10(min)

and log10(max)
Parameters
min
[float] minimum value

max
[float] maximum value

num
[integer] number of log spaced bins

Returns

out
[array] log-spaced bins from min to max in a numpy array

Other Parameters

kwargs
[dict] additional keywords passed into matplotlib.dates.num2date
See also:
geomspace
linspace
Notes

This function works on both numbers and datetime objects

4.20. toolbox - Toolbox of various functions and generic utilities

315

SpacePy Documentation, Release 0.4.0

Examples

>>> import spacepy.toolbox as tb
>>> tb.logspace(l, 100, 5)
array ([1. s 3.16227766, 10. , 31.6227766 , 100. 1

4.20.3 Array searching and masking

interweave(a, b) given two array-like variables interweave them together.

isview(arrayl[, array2]) Returns if an object is a view of another object.

tCommon(ts1, ts2[, mask_only]) Finds the elements in a list of datetime objects present
in another

tOverlap(tsl, ts2, *args, **kwargs) Finds the overlapping elements in two lists of datetime
objects

tOverlapHalf(tsl, ts2[, presort]) Find overlapping elements in two lists of datetime ob-
jects

spacepy.toolbox.interweave

spacepy.toolbox.interweave (a, b)

given two array-like variables interweave them together. Discussed here: http://stackoverflow.com/questions/
5347065/interweaving-two-numpy-arrays

Parameters

a
[array-like] first array

[array-like] second array
Returns

out
[numpy.ndarray] interweaved array

spacepy.toolbox.isview

spacepy.toolbox.isview(arrayl, array2=None)

Returns if an object is a view of another object. More precisely if one array argument is specified True is returned
is the arrays owns its data. If two arrays arguments are specified a tuple is returned of if the first array owns its
data and the the second if they point at the same memory location

Parameters

arrayl
[numpy.ndarray] array to query if it owns its data

Returns

out
[bool or tuple] If one array is specified bool is returned, True is the array owns its data. If
two arrays are specified a tuple where the second element is a bool of if the array point at the
same memory location

316 Chapter 4. SpacePy Module Reference

http://stackoverflow.com/questions/5347065/interweaving-two-numpy-arrays
http://stackoverflow.com/questions/5347065/interweaving-two-numpy-arrays

SpacePy Documentation, Release 0.4.0

Other Parameters

array2
[object (optional)] array to query if arrayl is a view of this object at the specified memory
location
Examples

import numpy import spacepy.toolbox as tb a = numpy.arange(100) b = a[0:10] tb.isview(a) # False tb.isview(b)
True tb.isview(b, a) # (True, True) tb.isview(b, b) # (True, True) # the conditions are met and numpy cannot
tell this

spacepy.toolbox.tCommon

spacepy . toolbox.tCommon (s, ts2, mask_only=True)
Finds the elements in a list of datetime objects present in another

Parameters

ts1
[list or array-like] first set of datetime objects

ts2
[list or array-like] second set of datetime objects

Returns

out
[tuple] Two element tuple of truth tables (of 1 present in 2, & vice versa)

See also:

tOverlapHalf
tOverlap

Examples

>>> import spacepy.toolbox as tb

>>> import numpy as np

>>> import datetime as dt

>>> tsl = np.array([dt.datetime(2001,3,10)+dt.timedeltaChours=a) for a in,

—range(20)]1)

>>> ts2 = np.array([dt.datetime(2001,3,10,2)+dt.timedeltaChours=a*0.5) for a in.

—range(20)]1)

>>> common_inds = tb.tCommon(tsl, ts2)

>>> common_inds[0] #mask of values in tsl common with ts2

array([False, False, True, True, True, True, True, True, True,
True, True, True, False, False, False, False, False, False,
False, False], dtype=bool)

>>> ts2[common_inds[1]] #values of ts2 also in tsl

The latter can be found more simply by setting the mask_only keyword to False

4.20. toolbox - Toolbox of various functions and generic utilities 317

SpacePy Documentation, Release 0.4.0

>>> common_vals = tb.tCommon(tsl, ts2, mask_only=False)

>>> common_vals[1]

array([2001-03-10 02:00:00, 2001-03-10 03:00:00, 2001-03-10 04:00:00,
2001-03-10 05:00:00, 2001-03-10 06:00:00, 2001-03-10 07:00:00,
2001-03-10 08:00:00, 2001-03-10 09:00:00, 2001-03-10 10:00:00,
2001-03-10 11:00:00], dtype=object)

spacepy.toolbox.tOverlap

spacepy.toolbox.tOverlap(ssi, ts2, *args, **kwargs)
Finds the overlapping elements in two lists of datetime objects

Parameters

tsl
[datetime] first set of datetime object

ts2
[datetime] datatime object

args
additional arguments passed to tOverlapHalf

Returns

out
[list] indices of ts1 within interval of ts2, & vice versa

See also:

tOverlapHalf
tCommon

Examples

Given two series of datetime objects, event_dates and omni[“Time’]:

>>> import spacepy.toolbox as tb

>>> from spacepy import omni

>>> import datetime

>>> event_dates = st.tickrange(datetime.datetime(2000, 1, 1), datetime.

—.datetime (2000, 10, 1), deltadays=3)

>>> onni_dates = st.tickrange(datetime.datetime (2000, 1, 1), datetime.datetime(2000,

— 10, 1), deltadays=0.5)

>>> omni = omni.get_omni(onni_dates)

>>> [einds,oinds] = tb.tOverlap(event_dates, omni['ticks'])

>>> omni_time = omni['ticks'][oinds[0]:oinds[-1]+1]

>>> print omni_time

[datetime.datetime (2000, 1, 1, 0O, 0), datetime.datetime(2000, 1, 1, 12, O®),
, datetime.datetime(2000, 9, 30, 0, 0)]

318 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

spacepy.toolbox.tOverlapHalf

spacepy . toolbox.tOverlapHalf (ts/, ts2, presort=False)
Find overlapping elements in two lists of datetime objects

This is one-half of tOverlap, i.e. it finds only occurrences where ts2 exists within the bounds of ts1, or the second
element returned by tOverlap.

Parameters

tsl
[list] first set of datetime object

ts2
[list] datatime object

presort
[bool]

Set to use a faster algorithm which assumes ts1 and
ts2 are both sorted in ascending order. This speeds up the overlap comparison by about
50x, so it is worth sorting the list if one sort can be done for many calls to tOverlap

Returns

out
[list] indices of ts2 within interval of ts1

note: Returns empty list if no overlap found
See also:

tOverlap
tCommon

4.20. toolbox - Toolbox of various functions and generic utilities 319

SpacePy Documentation, Release 0.4.0

4.20.4 Other functions

assemble(fln_pattern, outfln[, sortkey, verbose])

assembles all pickled files matching fln_pattern into sin-
gle file and save as outfin.

bootHisto(data[, inter, n, seed, plot, ...])

Bootstrap confidence intervals for a histogram.

dictree(in_dict[, verbose, spaces, levels, ...])

pretty print a dictionary tree

eventTimer(Event, Timel)

Times an event then prints out the time and the name of
the event, nice for debugging and seeing that the code is
progressing

getNamedPath(name)

Return the full path of a parent directory with name as
the leaf

human_sort(l)

Sort the given list in the way that humans expect.

hypot(*args)

compute the N-dimensional hypot of an iterable or many
arguments

indsFromXrange(inxrange)

return the start and end indices implied by an xrange,
useful when xrange is zero-length

interpol(newx, X, y[, wrap])

1-D linear interpolation with
hours/longitude

interpolation of

intsolve(func, valuel[, start, stop, maxit])

Find the function input such that definite integral is de-
sired value.

medAbsDev(series|, scale])

Calculate median absolute deviation of a given input se-
ries

mlt2rad(mlt[, midnight])

Convert mlt values to radians for polar plotting transform
mlt angles to radians from -pi to pi referenced from noon
by default

normalize(vec[, low, high])

Given an input vector normalize the vector to a given
range

prmm(*args)

print min and max of input arrays

poisson_£it(data[, initial, method])

Fit a Poisson distribution to data using the method and
initial guess provided.

rad2mlt(rad[, midnight])

Convert radians values to mlt transform radians from -pi
to pi to mlt referenced from noon by default

windowMean(data[, time, winsize, overlap, ...])

Windowing mean function, window overlap is user de-
fined

spacepy.toolbox.assemble

spacepy . toolbox.assemble (fln_pattern, outfin, sortkey="ticks', verbose=True)

assembles all pickled files matching fin_pattern into single file and save as outfln. Pattern may contain simple
shell-style wildcards *? a la fnmatch file will be assembled along time axis given by Ticktock (key: ‘ticks’) in
dictionary If sortkey = None, then nothing will be sorted

Parameters

fin_pattern
[string] pattern to match filenames

outfin

[string] filename to save combined files to

Returns

out

[dict] dictionary with combined values

320

Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Examples

>>> import spacepy.toolbox as tb

>>>a, b, ¢ = {'ticks"':[1,2,3]1}, {'ticks':[4,5,6]}, {'ticks':[7,8,9]}
>>> tb.savepickle('input_files_2001.pkl", a)

>>> tb.savepickle('input_files_2002.pkl"', b)

>>> tb.savepickle('input_files_2004.pkl"', c)

>>> a = tb.assemble('input_files_*.pkl', 'combined_input.pkl")
('adding ', 'input_files_2001.pkl")

('adding ', 'input_files_2002.pkl")

('adding ', 'input_files_2004.pkl")

('"\n writing: ', 'combined_input.pkl')

>>> print(a)

{'ticks': array([1l, 2, 3, 4, 5, 6, 7, 8, 9])}

spacepy.toolbox.bootHisto
spacepy . toolbox.bootHisto (data, inter=90.0, n=1000, seed=None, plot=False, target=None, figsize=None,
loc=None, **kwargs)
Bootstrap confidence intervals for a histogram.
All other keyword arguments are passed to numpy .histogram() ormatplotlib.pyplot.bar().
Changed in version 0.2.3: This argument pass-through did not work in earlier versions of SpacePy.
Parameters

data
[array_like] list/array of data values

inter
[float (optional; default 90)] percentage confidence interval to return. Default 90% (i.e. lower
CI will be 5% and upper will be 95%)

[int (optional; default 1000)] number of bootstrap iterations

seed
[int (optional)] Optional seed for the random number generator. If not specified; numpy
generator will not be reseeded.

plot
[bool (optional)] Plot the result. Plots if True or target, figsize, or loc specified.

target
[(optional)] Target on which to plot the figure (figure or axes). See spacepy.plot.utils.
set_target () for details.

figsize
[tuple (optional)] Passed to spacepy.plot.utils.set_target().

loc
[int (optional)] Passed to spacepy.plot.utils.set_target().

Returns

out
[tuple] tuple of bin_edges, low, high, sample[, bars]. Where bin_edges is the edges of the
bins used; low is the histogram with the value for each bin from the bottom of that bin’s

4.20. toolbox - Toolbox of various functions and generic utilities 321

https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.bar.html#matplotlib.pyplot.bar

SpacePy Documentation, Release 0.4.0

confidence interval; high similarly for the top; sample is the histogram of the input sample
without resampling. If plotting, also returned is bars, the container object returned from
matplotlib.

See also:
binHisto
plot.utils.set_target

numpy .histogram
matplotlib.pyplot.hist

Notes

New in version 0.2.1.

The confidence intervals are calculated for each bin individually and thus the resulting low/high histograms may
not have actually occurred in the calculation from the surrogates. If using a probability density histogram, this
can have “interesting” implications for interpretation.

Examples

>>> import numpy.random

>>> import spacepy.toolbox

>>> numpy . random. seed (0)

>>> data = numpy.random.randn(1000)

>>> bin_edges, low, high, sample, bars = spacepy.toolbox.bootHisto(
data, plot=True)

spacepy.toolbox.dictree

spacepy . toolbox.dictree(in_dict, verbose=False, spaces=None, levels=True, attrs=False, **kwargs)
pretty print a dictionary tree

Parameters
in_dict
[dict] a complex dictionary (with substructures)

verbose
[boolean (optional)] print more info

spaces
[string (optional)] string will added for every line

levels
[integer (optional)] number of levels to recurse through (True means all)

attrs
[boolean (optional)] display information for attributes

322 Chapter 4. SpacePy Module Reference

https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html#matplotlib.pyplot.hist

SpacePy Documentation, Release 0.4.0

250 A

200 A

150 A

100 A

50 ~

4.20. toolbox - Toolbox of various functions and generic utilities 323

SpacePy Documentation, Release 0.4.0

Examples

>>> import spacepy.toolbox as tb
>>> d = {'grade':{'levell':[4,5,6], 'level2':[2,3,4]}, 'name':['Mary', 'John',

— '"Chris']}

>>> tb.dictree(d)

+

| ____grade
|____levell
|____level2

| ____name

More complicated example using a datamodel:

>>> from spacepy import datamodel

>>> counts = datamodel.dmarray([2,4,6], attrs={'units': 'cts/s'})
>>> data = {'counts': counts, 'PI': 'Dr Zog'}

>>> tb.dictree(data)

+

|____PI

|____counts

>>> tb.dictree(data, attrs=True, verbose=True)

4

|____PI (str [6])
| ____counts (spacepy.datamodel.dmarray (3,))
:|____units (str [5])

Attributes of, e.g., a CDF or a datamodel type object (obj.attrs) are denoted by a colon.

spacepy.toolbox.eventTimer

spacepy.toolbox.eventTimer (Event, Timel)
Times an event then prints out the time and the name of the event, nice for debugging and seeing that the code is
progressing
Parameters

Event
[str] Name of the event, string is printed out by function

Timel
[time.time] the time to difference in the function

Returns

Time2
[time.time] the new time for the next call to EventTimer

324 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Examples

>>> import spacepy.toolbox as tb

>>> import time

>>> tl = time.time(Q)

>>> tl = tb.eventTimer('Test event finished', t1)
('4.40', 'Test event finished')

spacepy.toolbox.getNamedPath

spacepy.toolbox.getNamedPath (name)

Return the full path of a parent directory with name as the leaf
Parameters

name
[string] the name of the parent directory to locate

Examples

Run from a directory /mnt/projects/dream/bin/Ephem with ‘dream’ as the name, this function would return

‘/mnt/projects/dream’

spacepy.toolbox.human_sort

spacepy.toolbox.human_sort (/)

Sort the given list in the way that humans expect.
sorting-for-humans-natural-sort-order.html

Parameters

1
[list] list of objects to human sort

Returns

out
[list] sorted list

Examples

http://www.codinghorror.com/blog/2007/12/

>>> import spacepy.toolbox as tb

>>> dat = ['rl.txt', 'ri10.txt', 'r2.txt']
>>> dat.sort()

>>> print dat

['rl.txt', 'r10.txt', 'r2.txt']

>>> tb.human_sort(dat)

['r1.txt', 'r2.txt', 'r10.txt']

4.20. toolbox - Toolbox of various functions and generic utilities 325

http://www.codinghorror.com/blog/2007/12/sorting-for-humans-natural-sort-order.html
http://www.codinghorror.com/blog/2007/12/sorting-for-humans-natural-sort-order.html

SpacePy Documentation, Release 0.4.0

spacepy.toolbox.hypot

spacepy . toolbox.hypot (*args)

compute the N-dimensional hypot of an iterable or many arguments

Parameters

args
[many numbers or array-like] array like or many inputs to compute from

Returns

out
[float] N-dimensional hypot of a number

Notes

This function has a complicated speed function.

« if a numpy array of floats is input this is passed off to C
« if iterables are passed in they are made into numpy arrays and comptaton is done local

« if many scalar agruments are passed in calculation is done in a loop

For max speed:

¢ <20 elements expand them into scalars

>>> tb.hypot(*vals)
>>> tb.hypot(vals[0], vals[1l]...) #alternate

* >20 elements premake them into a numpy array of doubles

Examples

>>> from spacepy import toolbox as tb

>>> print tb.hypot([3,4])

5.0

>>> print tb.hypot(3,4)

5.0

>>> # Benchmark ####

>>> from spacepy import toolbox as tb

>>> import numpy as np

>>> import timeit

>>> num_list = []

>>> num_np = []

>>> num_np_double = []

>>> num_scalar = []

>>> tot = 500

>>> for num in tb.logspace(l, tot, 10):

>>> print num

>>> num_list.append(timeit.timeit(stmt="tb.hypot(a)",
setup="£from spacepy import toolbox as tb;
import numpy as np; a = [3]*{0}'.format(int(num)),.

—number=10000))

(continues on next page)

326

Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

(continued from previous page)

>>> num_np.append(timeit.timeit(stmt="tbh.hypot(a)",
setup="'£from spacepy import toolbox as tb;
import numpy as np; a = np.asarray([3]*{0})"'.format(int(num)),
— number=10000))
>>> num_scalar.append(timeit.timeit(stmt="tb.hypot(*a)',
setup="'£from spacepy import toolbox as tb;
import numpy as np; a = [3]*%{0}'.format(int(num)),.
—number=10000))
>>> from pylab import *
>>> loglog(tb.logspace(l, tot, 10), num_list, lw=2, label="list')
>>> loglog(tb.logspace(l, tot, 10), num_np, lw=2, label="numpy->ctypes')
>>> loglog(tb.logspace(l, tot, 10), num_scalar, lw=2, label='scalar')
>>> legend(shadow=True, fancybox=1, loc="upper left')
>>> title('Different hypot times for 10000 runs')
>>> ylabel('Time [s]')
>>> xlabel('Size")

Different hypot times for 10000 runs

101
— list
— numpy->ctypes
— scalar
107} :
- ~
£
=
107t :
10-2 | |
10° 101 107 10°

Size

4.20. toolbox - Toolbox of various functions and generic utilities 327

SpacePy Documentation, Release 0.4.0

spacepy.toolbox.indsFromXrange

spacepy . toolbox.indsFromXrange (inxrange)
return the start and end indices implied by an xrange, useful when xrange is zero-length

Parameters

inxrange
[xrange] input xrange object to parse

Returns

list of int
List of start, stop indices in the xrange. The return value is not defined if a stride is specified
or if stop is before start (but will work when stop equals start).

Examples

>>> import spacepy.toolbox as tb

>>> foo = xrange(23, 39)

>>> foo[0]

23

>>> tb.indsFromXrange (foo)

[23, 39]

>>> fool = xrange(23, 23)

>>> tb.indsFromXrange (foo) #indexing won't work in this case
[23, 23]

spacepy.toolbox.interpol

spacepy . toolbox.interpol (newx, x, y, wrap=None, **kwargs)

1-D linear interpolation with interpolation of hours/longitude
Parameters

newx
[array_like] x values where we want the interpolated values

[array_like] x values of the original data (must be monotonically increasing or wrapping)

y
[array_like] y values of the original data

wrap
[string, optional] for continuous x data that wraps in y at ‘hours’ (24), ‘longitude’ (360), or
arbitrary value (int, float)

kwargs
[dict] additional keywords, currently accepts baddata that sets baddata for masked arrays

Returns

out
[numpy.masked_array] interpolated data values for new abscissa values

328 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Examples

For a simple interpolation

>>> import spacepy.toolbox as tb

>>> import numpy

>>> X = numpy.arange(10)

>>> y = numpy.arange(10)

>>> tb.interpol (numpy.arange(5)+0.5, x, y)
array([0.5, 1.5, 2.5, 3.5, 4.5])

To use the wrap functionality, without the wrap keyword you get the wrong answer

>>> y = range(24)*2

>>> x = range(len(y))

>>> tb.interpol([1.5, 10.5, 23.5], x, y, wrap='hour').compressed() # compress.,
—removed the masked array

array([1.5, 10.5, 23.5])

>>> tb.interpol([1.5, 10.5, 23.5], x, y)

array([1.5, 10.5, 11.51)

spacepy.toolbox.intsolve

spacepy.toolbox.intsolve (func, value, start=None, stop=None, maxit=1000)

Find the function input such that definite integral is desired value.

Given a function, integrate from an (optional) start point until the integral reached a desired value, and return
the end point of the integration.

Parameters

func
[callable] function to integrate, must take single parameter

value
[float] desired final value of the integral

start
[float (optional)] value at which to start integration, default -Infinity

stop
[float (optional)] value at which to stop integration, default +Infinity

maxit
[integer] maximum number of iterations

Returns

out
[float] x such that the integral of L{func} from L{start} to x is L{value}

Note: Assumes func is everywhere positive, otherwise solution may
be multi-valued.

4.20. toolbox - Toolbox of various functions and generic utilities 329

SpacePy Documentation, Release 0.4.0

spacepy.toolbox.medAbsDev

spacepy . toolbox.medAbsDev (series, scale=False)
Calculate median absolute deviation of a given input series

Median absolute deviation (MAD) is a robust and resistant measure of the spread of a sample (same purpose as
standard deviation). The MAD is preferred to the inter-quartile range as the inter-quartile range only shows 50%
of the data whereas the MAD uses all data but remains robust and resistant. See e.g. Wilks, Statistical methods
for the Atmospheric Sciences, 1995, Ch. 3. For additional details on the scaling, see Rousseeuw and Croux, J.
Amer. Stat. Assoc., 88 (424), pp. 1273-1283, 1993.

Parameters

series
[array_like] the input data series

Returns

out
[float] the median absolute deviation

Other Parameters

scale
[bool] if True (default: False), scale to standard deviation of a normal distribution

Examples

Find the median absolute deviation of a data set. Here we use the log- normal distribution fitted to the population
of sawtooth intervals, see Morley and Henderson, Comment, Geophysical Research Letters, 2009.

>>> import numpy

>>> import spacepy.toolbox as tb

>>> numpy.random.seed(8675301)

>>> data = numpy.random.lognormal (mean=5.1458, sigma=0.302313, size=30)
>>> print data

array([181.28078923, 131.18152745, ... , 141.15455416, 160.88972791])
>>> tb.medAbsDev(data)

28.346646721370192

note This implementation is robust to presence of NaNs

spacepy.toolbox.mlt2rad

spacepy . toolbox.mlt2rad (mlit, midnight=False)

Convert mlt values to radians for polar plotting transform mlt angles to radians from -pi to pi referenced from
noon by default

Parameters

mlt
[numpy array] array of mlt values

midnight
[boolean (optional)] reference to midnight instead of noon

Returns

330 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

out
[numpy array] array of radians

See also:

rad2mlt

Examples

>>> from numpy import array
>>> mlt2rad(array([3,6,9,14,22]))

array([-2.35619449, -1.57079633, -0.78539816, 0.52359878,

2.61799388])

spacepy.toolbox.normalize

spacepy . toolbox.normalize (vec, low=0.0, high=1.0)

Given an input vector normalize the vector to a given range
Parameters

vec
[array_like] input vector to normalize

low
[float] minimum value to scale to, default 0.0

high
[float] maximum value to scale to, default 1.0

Returns

out
[array_like] normalized vector

Examples

>>> import spacepy.toolbox as tb
>>> tb.normalize([1,2,3])
[0.0, 0.5, 1.0]

spacepy.toolbox.pmm

spacepy.toolbox.pmm(*args)

print min and max of input arrays
Parameters

a
[array-like] arbitrary number of input arrays (or lists)

Returns

out
[list] list of min, max for each array

4.20. toolbox - Toolbox of various functions and generic utilities

331

SpacePy Documentation, Release 0.4.0

Examples

>>> import spacepy.toolbox as tb
>>> from numpy import arange

>>> tb.pmm(arange(10), arange(10)+3)
([0, 91, [3, 12]]

spacepy.toolbox.poisson_fit

spacepy.toolbox.poisson_£fit (data, initial=None, method="'Powell")

Fit a Poisson distribution to data using the method and initial guess provided.
Parameters

data
[array-like] Data to fit a Poisson distribution to.

initial
[int or None] initial guess for the fit, if None np.median(data) is used

method
[str] method passed to scipy.optimize.minimize, default="Powell’

Returns

result
[scipy.optimize.optimize.OptimizeResult] Resulting fit results from scipy.optimize, answer
is result.x, user should likely round.

Examples

>>> import spacepy.toolbox as tb

>>> from scipy.stats import poisson

>>> import matplotlib.pyplot as plt

>>> import numpy as np

>>> data = poisson.rvs(20, size=1000)

>>> res = tb.poisson_fit(data)

>>> print(res.x)

19.718000038769095

>>> xvals = np.arange(0, np.max(data)+5)
>>> plt.hist(data, bins=xvals, normed=True)
>>> plt.plot(xvals, poisson.pmf(xvals, np.round(res.x)))

spacepy.toolbox.rad2mit

spacepy . toolbox.rad2mlt (rad, midnight=False)

Convert radians values to mlt transform radians from -pi to pi to mlt referenced from noon by default
Parameters

rad
[numpy array] array of radian values

332 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

midnight
[boolean (optional)] reference to midnight instead of noon

Returns

out
[numpy array] array of mlt values

See also:

mlt2rad

Examples

>>> rad2mlt(array([0,pi, pi/2.]1))
array([12., 24., 18.1)

spacepy.toolbox.windowMean

spacepy . toolbox.windowMean (data, time=[], winsize=0, overlap=0, st_time=None, op=<function mean=>)

Windowing mean function, window overlap is user defined
Parameters

data
[array_like] 1D series of points

time
[list (optional)] series of timestamps, optional (format as numeric or datetime) For non-
overlapping windows set overlap to zero.

winsize
[integer or datetime.timedelta (optional)] window size

overlap
[integer or datetime.timedelta (optional)] amount of window overlap

st_time
[datetime.datetime (optional)] for time-based averaging, a start-time other than the first point
can be specified

op
[callable (optional)] the operator to be called, default numpy.mean

Returns

out
[tuple] the windowed mean of the data, and an associated reference time vector

4.20. toolbox - Toolbox of various functions and generic utilities 333

SpacePy Documentation, Release 0.4.0

Examples

For non-overlapping windows set overlap to zero. e.g. (time-based averaging) Given a data set of 100 points at
hourly resolution (with the time tick in the middle of the sample), the daily average of this, with half-overlapping
windows is calculated:

>>> import spacepy.toolbox as tb

>>> from datetime import datetime, timedelta

>>> wsize = datetime.timedelta(days=1)

>>> olap = datetime.timedeltacChours=12)

>>> data [10, 20]%50

>>> time = [datetime.datetime(2001,1,1) + datetime.timedeltaChours=n, minutes = 30).
—for n in range(100)]

>>> outdata, outtime = tb.windowMean(data, time, winsize=wsize, overlap=olap, st_
—time=datetime.datetime(2001,1,1))

>>> outdata, outtime

(f15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0],
[datetime.datetime (2001, 1, 1, 12, 0),
datetime.datetime (2001, 1, 2, O, 0),
datetime.datetime(2001, 1, 2, 12, 0),
datetime.datetime (2001, 1, 3, 0, 0),
datetime.datetime (2001, 1, 3, 12, ®),
datetime.datetime (2001, 1, 4, 0, 0),
datetime.datetime(2001, 1, 4, 12, 0)1)

When using time-based averaging, ensure that the time tick corresponds to the middle of the time-bin to which
the data apply. That is, if the data are hourly, say for 00:00-01:00, then the time applied should be 00:30. If this
is not done, unexpected behaviour can result.

e.g. (pointwise averaging),

>>> outdata, outtime = tb.windowMean(data, winsize=24, overlap=12)

>>> outdata, outtime

([15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0], [12.0, 24.0, 36.0, 48.0, 60.0, 72.0,.
~84.01)

where winsize and overlap are numeric, in this example the window size is 24 points (as the data are hourly) and
the overlap is 12 points (a half day). The output vectors start at winsize/2 and end at N-(winsize/2), the output
time vector is basically a reference to the nth point in the original series.

note This is a quick and dirty function - it is NOT optimized, at all.

4.20.5 Multithreading and multiprocessing

thread_job(job_size, thread_count, target, ...) Split a job into subjobs and run a thread for each
thread_map(target, iterable[, thread_count]) Apply a function to every element of a list, in separate
threads

334 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

spacepy.toolbox.thread_job

spacepy . toolbox. thread_job (job_size, thread_count, target, *args, **kwargs)

Split a job into subjobs and run a thread for each

Each thread spawned will call L{target} to handle a slice of the job.

This is only useful if a job:

1. Can be split into completely independent subjobs
2. Relies heavily on code that does not use the Python GIL, e.g. numpy or ctypes code

3. Does not return a value. Either pass in a list/array to hold the result, or see L{thread_map}

Parameters

job_size
[int] Total size of the job. Often this is an array size.

thread_count
[int]

Number of threads to spawn. If =0 or None, will

spawn as many threads as there are cores available on the system. (Each hyperthreading
core counts as 2.) Generally this is the Right Thing to do. If NEGATIVE, will spawn
abs(thread_count) threads, but will run them sequentially rather than in parallel; useful

for debugging.

target
[callable]

Python callable (generally a function, may also be an

imported ctypes function) to run in each thread. The last two positional arguments passed
in will be a “start” and a “subjob size,” respectively; frequently this will be the start index

and the number of elements to process in an array.

args
[sequence]

Arguments to pass to L{target}. If L{target} is an instance
method, self must be explicitly passed in. start and subjob_size will be appended.

kwargs
[dict] keyword arguments to pass to L{target}.

Examples

squaring 100 million numbers:

>>> import numpy

>>> import spacepy.toolbox as tb

>>> numpy.random.seed(8675301)

>>> a = numpy.random.randint(®, 100, [100000000])
>>> b = numpy.empty([100000000], dtype='int64")

>>> def targ(in_array, out_array, start, count): out_array[start:start.

—+ count] = in_array[start:start + count] ** 2
>>> tb.thread_job(len(a), 0, targ, a, b)

(continues on next page)

4.20. toolbox - Toolbox of various functions and generic utilities

335

SpacePy Documentation, Release 0.4.0

(continued from previous page)

>>> print(b[0:5])
[2704 7225 196 1521 36]

This example:

¢ Defines a target function, which will be called for each thread. It is usually necessary to define a simple
“wrapper” function like this to provide the correct call signature.

* The target function receives inputs C{in_array} and C{out_array}, which are not touched directly by
C{thread_job} but are passed through in the call. In this case, C{a} gets passed as C{in_array} and
C{b} as C{out_array}

* The target function also receives the start and number of elements it needs to process. For each thread
where the target is called, these numbers are different.

spacepy.toolbox.thread_map

spacepy . toolbox.thread_map (target, iterable, thread_count=None, *args, **kwargs)

Apply a function to every element of a list, in separate threads

Interface is similar to multiprocessing.map, except it runs in threads

This is made largely obsolete in python3 by from concurrent import futures
Parameters

target
[callable]

Python callable to run on each element of iterable.
For each call, an element of iterable is appended to args and both args and kwargs are
passed through. Note that this means the iterable element is always the last positional
argument; this allows the specification of self as the first argument for method calls.

iterable
[iterable] elements to pass to each call of L{target}

args
[sequence]

arguments to pass to target before each element of
iterable

thread_count
[integer] Number of threads to spawn; see L{thread_job}.

kwargs
[dict] keyword arguments to pass to L{target}.

Returns

out
[list] return values of L{target} for each item from L{iterable}

Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Examples

find totals of several arrays

>>> import numpy
>>> from spacepy import toolbox
>>> inputs = range(100)

(0, 50, 99)

>>> totals = toolbox.thread_map(numpy.sum, inputs)
>>> print(totals[0], totals[50], totals[99])

>>> # in python3
>>> from concurrent import futures

- print ans
#0

#50
#99

>>> with futures.ThreadPoolExecutor(max_workers=4) as executor:
for ans in executor.map(numpy.sum, [0,50,99]):

4.20.6 System tools

do_with_timeout(timeout, target, *args, **kwargs)

Execute a function (or method) with a timeout.

get_url(url[, outfile, reporthook, cached, ...])

Read data from a URL

loadpickle(fln)

load a pickle and return content as dictionary

progressbar(count, blocksize, totalsize[, text])

print a progress bar with urllib.urlretrieve reporthook
functionality

query_yes_no(question[, default])

Ask a yes/no question via raw_input() and return their
answer.

savepickle(fln, dict[, compress])

save dictionary variable dict to a pickle with filename fln

timeout_check_call(timeout, *args, **kwargs)

Call a subprocess with a timeout.

TimeoutError

Raised when a time-limited process times out

update([all, QDomni, omni, omni2, leapsecs, ...])

Download and update local database for omni, leapsecs
etc

spacepy.toolbox.do_with_timeout

spacepy . toolbox.do_with_timeout (timeout, target, *args, **kwargs)

Execute a function (or method) with a timeout.

Call the function (or method) target, with arguments args and keyword arguments kwargs. Normally return
the return value from target, butif target takes more than timeout seconds to execute, raises TimeoutError.

Note: This is, at best, a blunt instrument. Exceptions from target may not propagate properly (tracebacks
will be hard to follow.) The function which failed to time out may continue to execute until the interpreter exits;
trapping the TimeoutError and continuing normally is not recommended.

Parameters

4.20. toolbox - Toolbox of various functions and generic utilities 337

SpacePy Documentation, Release 0.4.0

timeout
[float] Timeout, in seconds.

target
[callable]

Python callable (generally a function, may also be an
imported ctypes function) to run.

args
[sequence] Arguments to pass to target.

kwargs
[dict] keyword arguments to pass to target.

Returns

out
[] return value of target

Raises

TimeoutError
[If target does not return in timeout seconds.]

Examples

>>> import spacepy.toolbox as tb
>>> import time
>>> def time_me_out():
time.sleep(5)
>>> tb.do_with_timeout(0.5, time_me_out) #raises TimeoutError

spacepy.toolbox.get_url

spacepy . toolbox.get_url (url, outfile=None, reporthook=None, cached=False, keepalive=False, conn=None)
Read data from a URL

Open an HTTP URL, honoring the user agent as specified in the SpacePy config file. Returns the data, optionally
also writing out to a file.

This is similar to the deprecated urlretrieve.
Parameters

url
[str] The URL to open

outfile
[str (optional)] Full path to file to write data to

reporthook
[callable (optional)] Function for reporting progress; takes arguments of block count, block
size, and total size.

cached
[bool (optional)] Compare modification time of the URL to the modification time of
outfile; do not retrieve (and return None) unless the URL is newer than the file.

338 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

keepalive
[bool (optional)] Attempt to keep the connection open to retrieve more URLs. The return
becomes a tuple of (data, conn) to return the connection used so it can be used again. This
mode does not support proxies. (Default False)

conn
[http.client. HTTPConnection (optional)] An established http connection (HTTPS is also
okay) to use with keepalive. If not provided, will attempt to make a connection.

Returns

bytes
The HTTP data from the server.

See also:

progressbar

Notes

This function honors proxy settings as described in urllib.request.getproxies(). Cryptic error messages
(such as Network is unreachable) may indicate that proxy settings should be defined as appropriate for your

environment (e.g. with HTTP_PROXY or HTTPS_PROXY environment variables).

spacepy.toolbox.loadpickle

spacepy . toolbox.loadpickle(fin)
load a pickle and return content as dictionary

Parameters

fin
[string] filename

Returns

out
[dict] dictionary with content from file

See also:

savepickle

Examples

note: If fin is not found, but the same filename with ¢.gz’
is found, will attempt to open the .gz as a gzipped file.

>>> d = loadpickle('test.pbin")

4.20. toolbox - Toolbox of various functions and generic utilities

339

https://docs.python.org/3/library/urllib.request.html#urllib.request.getproxies

SpacePy Documentation, Release 0.4.0

spacepy.toolbox.progressbar

spacepy . toolbox.progressbar (count, blocksize, totalsize, text="Download Progress")

print a progress bar with urllib.urlretrieve reporthook functionality

Examples

>>> import spacepy.toolbox as tb

>>> import urllib

>>> urllib.urlretrieve(config['psddata_url'], PSDdata_fname, reporthook=tb.
—.progressbar)

spacepy.toolbox.query_yes_no

spacepy.toolbox.query_yes_no (question, default="yes")

Ask a yes/no question via raw_input() and return their answer.

“question” is a string that is presented to the user. “default” is the presumed answer if the user just hits <Enter>.
It must be “yes” (the default), “no” or None (meaning an answer is required of the user).

The “answer” return value is one of “yes” or “no”.
Parameters

question
[string] the question to ask

default
[string (optional)]

Returns

out
[string] answer (‘yes’ or ‘no’)

Examples

>>> import spacepy.toolbox as tb
>>> tb.query_yes_no('Ready to go?')
Ready to go? [Y/n] y

yes'

spacepy.toolbox.savepickle

spacepy . toolbox.savepickle(fin, dict, compress=None)

save dictionary variable dict to a pickle with filename fin
Parameters

fin
[string] filename
dict
[dict] container with stuff

340

Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

compress
[bool]

write as a gzip-compressed file
(.gz will be added to f1n). If not specified, defaults to uncompressed, unless the com-
pressed file exists and the uncompressed does not.

See also:

loadpickle

Examples

>>> d = {'grade':[1,2,3], 'nmame':['Mary', 'John', 'Chris']}
>>> savepickle('test.pbin', d)

spacepy.toolbox.timeout_check_call

spacepy . toolbox. timeout_check_call (timeout, *args, **kwargs)

Call a subprocess with a timeout.

Like subprocess.check_call(), but will terminate the process and raise TimeoutError if it runs for too
long.

This will only terminate the single process started; any child processes will remain running (this has implications
for, say, spawing shells.)

Parameters

timeout
[float] Timeout, in seconds. Fractions are acceptable but the resolution is of order 100ms.

args
[sequence] Arguments passed through to subprocess.Popen

kwargs
[dict] keyword arguments to pass to subprocess.Popen

Returns

out
[int] O on successful completion

Raises

TimeoutError
[If subprocess does not return in timeout seconds.]

CalledProcessError
[if command has non-zero exit status]

4.20. toolbox - Toolbox of various functions and generic utilities 341

https://docs.python.org/3/library/subprocess.html#subprocess.check_call
https://docs.python.org/3/library/subprocess.html#subprocess.Popen
https://docs.python.org/3/library/subprocess.html#subprocess.Popen

SpacePy Documentation, Release 0.4.0

Examples

>>> import spacepy.toolbox as tb
>>> tb.timeout_check_call(l, 'sleep 30', shell=True) #raises TimeoutError

spacepy.toolbox.TimeoutError

exception spacepy.toolbox.TimeoutError

Raised when a time-limited process times out

spacepy.toolbox.update

spacepy . toolbox.update (all=True, QDomni=False, omni=False, omni2=False, leapsecs=False,
PSDdata=Fualse, cached=True)

Download and update local database for omni, leapsecs etc

Web access is via get_url (); notes there may be helpful in debugging errors. See also the keepalive config-
uration option.

Parameters

all
[boolean (optional)] if True, update OMNI2, Qin-Denton and leapsecs

omni
[boolean (optional)] if True. update only omni (Qin-Denton)

omni2
[boolean (optional)] if True, update only original OMNI2

QDomni
[boolean (optional)] if True, update OMNI2 and Qin-Denton

leapsecs
[boolean (optional)] if True, update only leapseconds

cached
[boolean (optional)] Only update files if timestamp on server is newer than timestamp on
local file (default). Set False to always download files.

Returns

out
[string] data directory where things are saved

See also:

get_url

342 Chapter 4. SpacePy Module Reference

SpacePy Documentation, Release 0.4.0

Examples

>>> import spacepy.toolbox as tb
>>> tb.update(omni=True)

4.21 Indices and tables

genindex
modindex

search

Release
0.4.0

Doc generation date
Sep 07, 2022

4.21.

Indices and tables

343

SpacePy Documentation, Release 0.4.0

344 Chapter 4. SpacePy Module Reference

S

spacepy, 75
spacepy.ae9ap9, 77
spacepy.coordinates, 80
spacepy.ctrans, 90
spacepy.ctrans.iau80n, 98
spacepy.data_assimilation, 136
spacepy .datamanager, 101
spacepy.datamodel, 118
spacepy.empiricals, 140
spacepy.igrf, 149
spacepy.irbempy, 150
spacepy.LANLstar, 162
spacepy.omni, 166
spacepy.plot, 169
spacepy.plot.carrington, 182
spacepy.plot.spectrogram, 182
spacepy.plot.utils, 186
spacepy . poppy, 200
spacepy.pybats, 207
spacepy.pybats.bats, 208
spacepy.pybats.dgcpm, 212
spacepy.pybats.dipole, 212
spacepy.pybats.gitm, 212
spacepy.pybats.kyoto, 212
spacepy.pybats.pwom, 212
spacepy.pybats.ram, 213
spacepy.pybats.rim, 213
spacepy.pybats.trace2d, 214
spacepy.pycdf, 220
spacepy.pycdf.const, 262
spacepy.pycdf.istp, 263
spacepy.radbelt, 278
spacepy.seapy, 283
spacepy.time, 290
spacepy.toolbox, 309

spacepy_testing, 68

PYTHON MODULE INDEX

345

SpacePy Documentation, Release 0.4.0

346 Python Module Index

A

aa_ciQ) (spacepy.poppy.PPro method), 201

add_arrows () (in module spacepy.plot), 181

add_arrows () (in module spacepy.plot.utils), 199

add_attr_to_cache() (spacepy.pycdf.CDF method),
231

add_body) (in module spacepy.pybats), 219

add_build_to_path() (in module spacepy_testing), 71

add_dst_quicklook() (spacepy.pybats.bats.BatsLog
method), 209

add_Lmax () (spacepy.radbelt. RBmodel method), 279

add_logo () (in module spacepy.plot), 170

add_logo () (in module spacepy.plot.utils), 189

add_Lpp) (spacepy.radbelt. RBmodel method), 279

add_model_error () (spacepy.data_assimilation.ensemble

method), 137
add_model_error_obs()
(spacepy.data_assimilation.ensemble method),
137
add_omni) (spacepy.radbelt. RBmodel method), 280
add_planet () (in module spacepy.pybats), 220
add_PSD_obs () (spacepy.radbelt. RBmodel method), 279
add_PSD_twin() (spacepy.radbelt. RBmodel method),
280
add_source () (spacepy.radbelt. RBmodel method), 280
add_to_cache() (spacepy.pycdf.CDF method), 231
addAttribute() (spacepy.datamodel.dmarray method),
123

addmodelerror_old() (in module
spacepy.data_assimilation), 140
addmodelerror_old2() (in module

spacepy.data_assimilation), 140
Ae9Data (class in spacepy.ae9ap9), 78
all O (spacepy.pycdf.istp.FileChecks class method), 263
all O (spacepy.pycdf.istp.VariableChecks class method),
272
analyze()
188
annotate_xaxis() (in module spacepy.plot), 171
annotate_xaxis () (in module spacepy.plot.utils), 190
append () (spacepy.coordinates.Coords method), 83
append () (spacepy.pycdf.Attr method), 248

(spacepy.plot.utils. EventClicker method),

INDEX

append) (spacepy.time.Ticktock method), 295
apply_index () (in module spacepy.datamanager), 102
applySmartTimeTicks () (in module spacepy.plot), 173
applySmartTimeTicks() (in module
spacepy.plot.utils), 192
argsort() (spacepy.time.Ticktock method), 295
array_interleave() (in
spacepy.datamanager), 103
arraybin() (in module spacepy.toolbox), 309
assemble() (in module spacepy.toolbox), 320
assertDoesntWarn (class in spacepy_testing), 69
assertWarns (class in spacepy_testing), 68
assimilate() (spacepy.radbelt. RBmodel method), 280
assimilate_JK(Q) (in module
spacepy.data_assimilation), 140
assoc () (spacepy.poppy.PPro method), 202
assoc_mult () (spacepy.poppy.PPro method), 202
Attr (class in spacepy.pycdf), 248
attr_num(Q) (spacepy.pycdf.CDF method), 231
AttrList (class in spacepy.pycdf), 247
attrs (spacepy.pycdf.CDF attribute), 230
attrs (spacepy.pycdf.CDFCopy attribute), 258
attrs (spacepy.pycdf.Var attribute), 241
attrs (spacepy.pycdf.VarCopy attribute), 259
available () (in module spacepy.plot), 173
average_window () (in
spacepy.data_assimilation), 139
axis_index () (in module spacepy.datamanager), 103

B

backward (spacepy.pycdf.CDF attribute), 230

Bats2d (class in spacepy.pybats.bats), 211

BatsLog (class in spacepy.pybats.bats), 209

bin_center_to_edges() (in module spacepy.toolbox),
310

bin_edges_to_center () (in module spacepy.toolbox),
311

binHisto() (in module spacepy.toolbox), 311

bootHisto() (in module spacepy.toolbox), 321

boots_ci() (in module spacepy.poppy), 205

module

module

347

SpacePy Documentation, Release 0.4.0

C

calcCoreTransforms () (spacepy.ctrans.CTrans
method), 93

calcDipoleAxis () (spacepy.igrf.IGRF method), 150

calcMagTransforms () (spacepy.ctrans.CTrans
method), 93

calcOrbitParams() (spacepy.ctrans.CTrans method),
92

calcTimes () (spacepy.ctrans.CTrans method), 92

call Q) (spacepy.pycdf.Library method), 251

car2sph() (in module spacepy.coordinates), 84

CDF (class in spacepy.pycdf), 227

CDFCopy (class in spacepy.pycdf’), 258

CDFError (class in spacepy.pycdf), 261

CDFException (class in spacepy.pycdf), 261

cdffile

istp_checks.py command line option, 53

CDFWarning (class in spacepy.pycdf), 261

check_status() (spacepy.pycdf.Library method), 251

checksum() (spacepy.pycdf.CDF method), 231

ci (spacepy.poppy.PPro attribute), 203

clear_attr_from_cache() (spacepy.pycdf.CDF
method), 232

clear_from_cache() (spacepy.pycdf.CDF method),
232

clone () (spacepy.pycdf.AttrList method), 247

clone () (spacepy.pycdf.CDF method), 232

close() (spacepy.pycdf.CDF method), 232

coeff80 (in module spacepy.ctrans.iau80n), 99

col_major() (spacepy.pycdf.CDF method), 233

collapse_vertical () (in module spacepy.plot), 173

collapse_vertical() (in module spacepy.plot.utils),
192

compress () (spacepy.pycdf.CDF method), 233

compress () (spacepy.pycdf.Var method), 241

compress () (spacepy.pycdf.VarCopy method), 259

concatCDF () (in module spacepy.pycdf), 262

conf_above (spacepy.poppy.PPro attribute), 203

convert() (spacepy.coordinates.Coords method), 83

convert() (spacepy.ctrans.CTrans method), 93

convert() (spacepy.time.Ticktock method), 296

convert_multitime() (in module spacepy.ctrans), 95

convertKeysToStr() (in module spacepy.datamodel),
124

coord_trans() (in module spacepy.irbempy), 161

Coords (class in spacepy.coordinates), 81

copy Q) (spacepy.pycdf.AttrList method), 247

copy Q) (spacepy.pycdf.CDF method), 233

copy Q) (spacepy.pycdf.Var method), 241

createISTPattrs() (in module spacepy.datamodel),
124

CTrans (class in spacepy.ctrans), 91

D

datadir (in module spacepy_testing), 71
DataManager (class in spacepy.datamanager), 101

datetime_to_epoch() (spacepy.pycdf.Library
method), 252

datetime_to_epochl6() (spacepy.pycdf.Library
method), 252

datetime_to_tt20000) (spacepy.pycdf.Library

method), 252

deltas() (spacepy.pycdf.istp.VariableChecks class
method), 273

depends() (spacepy.pycdf.istp.VariableChecks class
method), 273

deprecated() (in module spacepy), 76

depsize() (spacepy.pycdf.istp.VariableChecks class

method), 273
dictree() (in module spacepy.toolbox), 322
diff LLQ (in module spacepy.radbelt), 283
dipole (spacepy.igrf.IGRF attribute), 150
dist_to_list () (in module spacepy.toolbox), 312
dmarray (class in spacepy.datamodel), 123
dmcopy Q) (in module spacepy.datamodel), 125
dmfilled () (in module spacepy.datamodel), 126
DMWarning (class in spacepy.datamodel), 123
do_with_timeout () (in module spacepy.toolbox), 337
doy2date() (in module spacepy.time), 306
dtstr2iso() (in module spacepy.time), 306
dtype (spacepy.pycdf.Var attribute), 242
dual_half circle() (in module spacepy.plot), 174
dv Q) (spacepy.pycdf.Var method), 242
dv Q) (spacepy.pycdf.VarCopy method), 259

E

Ellipsoid (class in spacepy.ctrans), 94

empty_entry() (spacepy.pycdf.istp.FileChecks
method), 264

empty_entry() (spacepy.pycdf.istp.VariableChecks
class method), 273

EnKF () (spacepy.data_assimilation.ensemble method),

class

136
EnKF_oneobs() (spacepy.data_assimilation.ensemble
method), 136

ensemble (class in spacepy.data_assimilation), 136

epochl6_to_datetime() (spacepy.pycdf.Library
method), 254

epochl6_to_epoch() (spacepy.pycdf.Library method),
254

epoch16_to_tt20000) (spacepy.pycdf.Library
method), 255
epoch_to_datetime() (spacepy.pycdf.Library

method), 253

epoch_to_epochl6() (spacepy.pycdf.Library method),
253

epoch_to_num(Q) (spacepy.pycdf.Library method), 253

348

Index

SpacePy Documentation, Release 0.4.0

epoch_to_tt2000() (spacepy.pycdf.Library method),
254

EpochError (class in spacepy.pycdf), 261

EventClicker (class in spacepy.plot.utils), 186

eventTimer () (in module spacepy.toolbox), 324

evolve() (spacepy.radbelt. RBmodel method), 281

F

fieldnam() (spacepy.pycdf.istp.VariableChecks class
method), 274

FileChecks (class in spacepy.pycdf.istp), 263

filename() (spacepy.pycdf.istp.FileChecks
method), 264

files_matching () (spacepy.datamanager.DataManager
method), 102

£illval Q) (in module spacepy.pycdf.istp), 2776

fillval Q) (spacepy.pycdf.istp.VariableChecks
method), 274

find_Bmirror () (in module spacepy.irbempy), 158

find_footpoint) (in module spacepy.irbempy), 159

find_magequator) (in module spacepy.irbempy), 160

flatten() (in module spacepy.datamodel), 126

flatten() (spacepy.datamodel.SpaceData method), 121

flatten_idx () (in module spacepy.datamanager), 104

forecast () (in module spacepy.data_assimilation), 140

format () (in module spacepy.pycdf.istp), 276

from_data() (spacepy.pycdf.CDF class method), 234

from_skycoord() (spacepy.coordinates.Coords class
method), 83

fromCDF () (in module spacepy.datamodel), 127

fromHDF5 () (in module spacepy.datamodel), 128

fromRecArray () (in module spacepy.datamodel), 128

G

gAttr (class in spacepy.pycdf), 246
gAttrList (class in spacepy.pycdf), 244
Gaussian_source() (spacepy.radbelt. RBmodel
method), 279
gdz_to_geo () (in module spacepy.ctrans), 95
geo_to_gdz () (in module spacepy.ctrans), 96
geo_to_rl11 () (in module spacepy.ctrans), 96
GeoIndexFile (class in spacepy.pybats.bats), 212
geomspace () (in module spacepy.toolbox), 313
get_AEP8() (in module spacepy.irbempy), 153
get_Bfield() (in module spacepy.irbempy), 154
get_DLLQ) (spacepy.radbelt. RBmodel method), 281
get_dtype () (in module spacepy.irbempy), 162
get_events() (spacepy.plot.utils. EventClicker method),

class

class

188
get_events_data() (spacepy.plot.utils.EventClicker
method), 188

get_filename() (spacepy.datamanager.DataManager
method), 102
get_iono_cb() (in module spacepy.pybats.rim), 214

get_Lm(Q) (in module spacepy.irbempy), 155

get_local_accel () (in module spacepy.radbelt), 283

get_Lstar() (in module spacepy.irbempy), 156

get_minmax () (spacepy.pycdf.Library method), 255

get_modelop_LQ) (in module spacepy.radbelt), 282

get_omni () (in module spacepy.omni), 167

get_url () (in module spacepy.toolbox), 338

getAPT () (spacepy.time.Ticktock method), 296

getCDF) (spacepy.time.Ticktock method), 297

getDOY () (spacepy.time.Ticktock method), 298

getDststar () (in module spacepy.empiricals), 141

geteDOY () (spacepy.time.Ticktock method), 303

getEOP () (spacepy.ctrans.CTrans method), 93

getExpectedSWTemp () (in module spacepy.empiricals),
142

getGPS) (spacepy.time.Ticktock method), 298

getHA() (spacepy.data_assimilation.ensemble method),
137

getHAprime () (spacepy.data_assimilation.ensemble
method), 137

getHPHQ) (spacepy.data_assimilation.ensemble
method), 138

getInnovation() (spacepy.data_assimilation.ensemble
method), 138

getIS0Q) (spacepy.time.Ticktock method), 299

getIDQ) (spacepy.time.Ticktock method), 299

getleapsecs() (spacepy.time.Ticktock method), 303

getlm() (spacepy.ae9ap9.Ae9Data method), 78

getLlmax () (in module spacepy.empiricals), 142

getMagnetopause() (in module spacepy.empiricals),
143

getMID(Q) (spacepy.time.Ticktock method), 300

getMPstandoff() (in module spacepy.empiricals), 144

getNamedPath() (in module spacepy.toolbox), 325

getobs4window() (in module
spacepy.data_assimilation), 139

getperturb() (spacepy.data_assimilation.ensemble
method), 138

getPlasmaPause () (in module spacepy.empiricals), 145

getRDT () (spacepy.time.Ticktock method), 301

getSolarProtonSpectra() (in
spacepy.empiricals), 146

getSolarRotation() (in module spacepy.empiricals),
146

getTAIQ) (spacepy.time.Ticktock method), 301

getUNXQ) (spacepy.time.Ticktock method), 302

getUTCQ) (spacepy.time.Ticktock method), 302

getVampolaOrder () (in module spacepy.empiricals),
147

gmst) (spacepy.ctrans.CTrans method), 94

H

has_entry () (spacepy.pycdf.Attr method), 248
help () (in module spacepy), 77

module

Index

349

SpacePy Documentation, Release 0.4.0

human_sort () (in module spacepy.toolbox), 325
hypot) (in module spacepy.toolbox), 326

Id1File (class in spacepy.pybats), 215

IGRF (class in spacepy.igrf), 149

IGRFCoefficients (class in spacepy.igrf), 149

ImfInput (class in spacepy.pybats), 216

indsFromXrange () (in module spacepy.toolbox), 328

initialize(Q) (spacepy.igrf IGRF method), 150

insert () (spacepy.pycdf.Attr method), 249

insert () (spacepy.pycdf.Var method), 242

insert_£il11 () (in module spacepy.datamanager), 105

interpol) (in module spacepy.toolbox), 328

interweave() (in module spacepy.toolbox), 316

intsolve () (in module spacepy.toolbox), 329

Iono (class in spacepy.pybats.rim), 213

isoformat () (spacepy.time.Ticktock method), 304

istp_checks.py command line option
cdffile, 53

isview() (in module spacepy.toolbox), 316

L

LANLmax () (in module spacepy.LANLstar), 165
LANLstar() (in module spacepy.LANLstar), 163
leapyear () (in module spacepy.time), 307
levelPlot () (in module spacepy.plot), 176

1ib (in module spacepy.pycdf), 278

libpath (spacepy.pycdf.Library attribute), 258
Library (class in spacepy.pycdf), 250
linspace () (in module spacepy.toolbox), 314
loadpickle () (in module spacepy.toolbox), 339
LogFile (class in spacepy.pybats), 216
logspace () (in module spacepy.toolbox), 315

M

Mag (class in spacepy.pybats.bats), 211
MagFile (class in spacepy.pybats.bats), 211
max_idx () (spacepy.pycdf.Attr method), 249
mean() (spacepy.pycdf.istp.VarBundle method), 267
medAbsDev () (in module spacepy.toolbox), 330
mlt2rad() (in module spacepy.toolbox), 330
module
spacepy, 1, 75
spacepy.ae9ap9, 77
spacepy.coordinates, 80
spacepy.ctrans, 90
spacepy.ctrans.iau80n, 98
spacepy.data_assimilation, 136
spacepy .datamanager, 101
spacepy.datamodel, 118
spacepy.empiricals, 140
spacepy.igrf, 149

spacepy.irbempy, 150
spacepy.LANLstar, 162
spacepy.omni, 166
spacepy.plot, 169
spacepy.plot.carrington, 182
spacepy.plot.spectrogram, 182
spacepy.plot.utils, 186
spacepy . poppy, 200
spacepy.pybats, 207
spacepy.pybats.bats, 208
spacepy.pybats.dgcpm, 212
spacepy.pybats.dipole, 212
spacepy.pybats.gitm, 212
spacepy.pybats.kyoto, 212
spacepy.pybats.pwom, 212
spacepy.pybats.ram, 213
spacepy.pybats.rim, 213
spacepy.pybats.trace2d, 214
spacepy.pycdf, 220
spacepy.pycdf.const, 262
spacepy.pycdf.istp, 263
spacepy.radbelt, 278
spacepy.seapy, 283
spacepy. time, 290
spacepy.toolbox, 309
spacepy_testing, 68

moment (spacepy.igrf.IGRF attribute), 150

multisea() (in module spacepy.seapy), 288

N

name) (spacepy.pycdf.Var method), 242
nanfill () (in module spacepy.pycdf.istp), 277
nelems () (spacepy.pycdf.Var method), 242
nelems () (spacepy.pycdf.VarCopy method), 259
new() (spacepy.pycdf.Attr method), 249

new() (spacepy.pycdf.AttrList method), 247
new() (spacepy.pycdf.CDF method), 234
NgdcIndex (class in spacepy.pybats), 217
normalize() (in module spacepy.toolbox), 331
now() (spacepy.time.Ticktock class method), 304
number () (spacepy.pycdf.Attr method), 249
nutation() (in module spacepy.ctrans.iau80n), 98

O

omniFromDirectionalFlux() (in
spacepy.empiricals), 147

omnirange () (in module spacepy.omni), 169

operations() (spacepy.pycdf.istp.VarBundle method),
268

output () (in module spacepy.data_assimilation), 139

output () (spacepy.pycdf.istp.VarBundle method), 268

OvalDebugFile (class in spacepy.pybats.rim), 213

module

350

Index

SpacePy Documentation, Release 0.4.0

P

padQ (spacepy.pycdf.Var method), 242

padQ (spacepy.pycdf.VarCopy method), 260

parse_tecvars() (in module spacepy.pybats), 220

parseHeader () (in module spacepy.ae9ap9), 80

PbData (class in spacepy.pybats), 218

plot) (in module spacepy.plot), 177

plot) (spacepy.plot.spectrogram.Spectrogram method),
184

plot) (spacepy.poppy.PPro method), 203

plot) (spacepy.pybats.bats.Stream method), 210

plot O (spacepy.radbelt. RBmodel method), 281

plot) (spacepy.seapy.Sea method), 285

plot Q) (spacepy.seapy.Seald method), 287

plot_mult() (spacepy.poppy.PPro method), 204

plot_obs() (spacepy.radbelt. RBmodel method), 281

plot_two_ppro(Q) (in module spacepy.poppy), 204

plotOrbit () (spacepy.ae9ap9.Ae9Data method), 78

plotSpectrogram() (spacepy.ae9ap9.Ae9Data
method), 78

plotSummary () (spacepy.ae9ap9.Ae9Data method), 78

pmm () (in module spacepy.toolbox), 331

poisson_£fit () (in module spacepy.toolbox), 332

PPro (class in spacepy.poppy), 201

prep_irbem() (in module spacepy.irbempy), 162

printfig(Q (in module spacepy.plot.utils), 193

progressbar () (in module spacepy.toolbox), 340

Q

quaternionConjugate() (in module
spacepy.coordinates), 87
quaternionFromMatrix() (in module
spacepy.coordinates), 88
quaternionMultiply () (in module
spacepy.coordinates), 86
quaternionNormalize() (in module
spacepy.coordinates), 86
quaternionRotateVector() (in module
spacepy.coordinates), 85
quaternionToMatrix() (in module

spacepy.coordinates), 89
query_yes_no() (in module spacepy.toolbox), 340

R

rad2mlt () (in module spacepy.toolbox), 332
randomDate () (in module spacepy.time), 307
raw_var () (spacepy.pycdf.CDF method), 236
RBmodel (class in spacepy.radbelt), 278
readepochs () (in module spacepy.seapy), 288
readFile() (in module spacepy.ae9ap9), 79
readJSONheadedASCII() (in
spacepy.datamodel), 134
read]SONMetadata() (in module spacepy.datamodel),
133

module

readonly () (spacepy.pycdf.CDF method), 236

rebin() (in module spacepy.datamanager), 106

recordcount () (spacepy.pycdf.istp.VariableChecks
class method), 274

rename () (spacepy.pycdf.Attr method), 249

rename () (spacepy.pycdf.AttrList method), 247

rename () (spacepy.pycdf.Var method), 243

resample () (in module spacepy.datamodel), 134

rev_index() (in module spacepy.datamanager), 117

revert_style() (in module spacepy.plot), 177

rll_to_geo() (in module spacepy.ctrans), 97

rv () (spacepy.pycdf.Var method), 243

rv () (spacepy.pycdf.VarCopy method), 260

S

SatOrbit (class in spacepy.pybats), 218
save () (spacepy.pycdf.CDF method), 236
savepickle() (in module spacepy.toolbox), 340
Sea (class in spacepy.seapy), 284
sea() (spacepy.seapy.Sea method), 284
sea() (spacepy.seapy.Sea2d method), 286
Sea2d (class in spacepy.seapy), 286
sea_signif() (in module spacepy.seapy), 289
seadict () (in module spacepy.seapy), 288
sec2hms () (in module spacepy.time), 308
set () (spacepy.pycdf.VarCopy method), 260
set_backward() (spacepy.pycdf.Library method), 255
set_lgrid() (spacepy.radbelt.RBmodel method), 282
set_style() (spacepy.pybats.bats.Stream method), 210
set_target () (in module spacepy.plot), 177
set_target () (in module spacepy.plot.utils), 195
setUnits () (spacepy.ae9ap9.Ae9Data method), 79
setup_ticks () (spacepy.radbelt.RBmodel method), 282
shape (spacepy.pycdf.Var attribute), 243
shared_ylabel () (in module spacepy.plot), 178
shared_ylabel () (in module spacepy.plot.utils), 196
show_used () (in module spacepy.plot.utils), 197
simpleSpectrogram() (in
spacepy.plot.spectrogram), 185

slice(Q) (spacepy.pycdf.istp.VarBundle method), 269
smartTimeTicks () (in module spacepy.plot.utils), 198
solarRotationPlot () (in module spacepy.plot), 179
sort() (spacepy.time.Ticktock method), 304
SpaceData (class in spacepy.datamodel), 121
spacepy

module, 1, 75
spacepy.ae9ap9

module, 77
spacepy.coordinates

module, 80
spacepy.ctrans

module, 90
spacepy.ctrans.iau80n

module, 98

module

Index

351

SpacePy Documentation, Release 0.4.0

spacepy.data_assimilation

spacepy.seapy

module, 136 module, 283
spacepy.datamanager spacepy.time
module, 101 module, 290
spacepy.datamodel spacepy.toolbox
module, 118 module, 309
spacepy.empiricals spacepy_testing
module, 140 module, 68
spacepy.igrf sparse() (spacepy.pycdf.Var method), 243
module, 149 sparse() (spacepy.pycdf.VarCopy method), 260
spacepy.irbempy Spectrogram (class in spacepy.plot.spectrogram), 183
module, 150 Spectrogram() (in module spacepy.plot), 179
spacepy.LANLstar sph2car () (in module spacepy.coordinates), 85
module, 162 Stream (class in spacepy.pybats.bats), 209
spacepy.omni style() (in module spacepy.plot), 180
module, 166 sum() (spacepy.pycdf.istp.VarBundle method), 270
spacepy.plot supports_int8 (spacepy.pycdf.Library attribute), 256
module, 169 swap () (spacepy.poppy.PPro method), 204
spacepy.plot.carrington
module, 182 T
spacepy.plot.spectrogram tCommon () (in module spacepy.toolbox), 317
module, 182 testsdir (in module spacepy_testing), 71
spacepy .plot.utils tex_label () (in module spacepy.pybats.rim), 214
module, 186 thread_job() (in module spacepy.toolbox), 335
spacepy.poppy thread_map () (in module spacepy.toolbox), 336
module, 200 tickrange () (in module spacepy.time), 308
spacepy.pybats Ticktock (class in spacepy.time), 292
module, 207 time_monoton() (spacepy.pycdf.istp.FileChecks class
spacepy .pybats.bats method), 264
module, 208 timeout_check_call() (in module spacepy.toolbox),
spacepy.pybats.dgcpm 341
module, 212 TimeoutError, 342
spacepy.pybats.dipole times() (spacepy.pycdf.istp.FileChecks class method),
module, 212 264
spacepy .pybats.gitm timestamp () (in module spacepy.plot), 180
module, 212 timestamp () (in module spacepy.plot.utils), 199
spacepy.pybats.kyoto to_skycoord() (spacepy.coordinates.Coords method),
module, 212 84
spacepy.pybats.pwom toCDF () (in module spacepy.datamodel), 129
module, 212 today Q) (spacepy.time.Ticktock class method), 304
spacepy .pybats.ram toHDF5() (in module spacepy.datamodel), 130
module, 213 toHTML () (in module spacepy.datamodel), 130
spacepy.pybats.rim t0JSONheadedASCII() (in module spacepy.datamodel),
module, 213 131
spacepy .pybats.trace2d toRecArray () (in module spacepy.datamodel), 132
module, 214 toSpaceData() (spacepy.pycdf.istp.VarBundle method),
spacepy.pycdf 271
module, 220 tOverlap() (in module spacepy.toolbox), 318
spacepy.pycdf.const tOverlapHalf() (in module spacepy.toolbox), 319
module, 262 trace() (spacepy.pybats.bats.Stream method), 210
spacepy .pycdf.istp tree() (spacepy.datamodel.SpaceData method), 122
module, 263 treetrace() (spacepy.pybats.bats.Stream method), 210
spacepy .radbelt tt2000_to_datetime() (spacepy.pycdf.Library
module, 278 method), 256
352 Index

SpacePy Documentation, Release 0.4.0

tt2000_to_epoch() (spacepy.pycdf.Library method), W

256 windowMean () (in module spacepy.toolbox), 333
tt2000_to_epochl16() (spacepy.pycdf.Library yvjtejSoNMetadata() (in module spacepy.datamodel),
method), 257 135
type) (spacepy.pycdf.Attr method), 250
type) (spacepy.pycdf.Var method), 244 Z

type Q) (spacepy.pycdf.VarCopy method), 261 zZAttr (class in spacepy.pycdf), 245

U zAttrList (class in spacepy.pycdf), 245

unflatten() (in module spacepy.datamodel), 132
update () (in module spacepy.toolbox), 342
update_items () (spacepy.time.Ticktock method), 305

\Y

v_datetime_to_epoch() (spacepy.pycdf.Library
method), 257

v_datetime_to_epochl6() (spacepy.pycdf.Library
method), 257

v_datetime_to_tt2000() (spacepy.pycdf.Library
method), 257

v_epochl6_to_datetime() (spacepy.pycdf.Library
method), 258

v_epochl6_to_tt20000) (spacepy.pycdf.Library
method), 258

v_epoch_to_datetime() (spacepy.pycdf.Library
method), 257

v_epoch_to_tt2000(0) (spacepy.pycdf.Library

method), 257
v_tt2000_to_datetime() (spacepy.pycdf.Library
method), 258

v_tt2000_to_epoch() (spacepy.pycdf.Library
method), 258
v_tt2000_to_epochl16() (spacepy.pycdf.Library

method), 258

validdisplaytype Q) (spacepy.pycdf.istp.VariableChecks
class method), 275

validrange () (spacepy.pycdf.istp.VariableChecks class
method), 275

validscale() (spacepy.pycdf.istp.VariableChecks class
method), 275

value_percentile() (in module spacepy.poppy), 206

values_to_steps() (in module spacepy.datamanager),
117

vampolaPA() (in module spacepy.empiricals), 148

Var (class in spacepy.pycdf), 237

var_num() (spacepy.pycdf.CDF method), 237

VarBundle (class in spacepy.pycdf.istp), 265

VarCopy (class in spacepy.pycdf), 259

VariableChecks (class in spacepy.pycdf.istp), 272

variables() (spacepy.pycdf.istp.VarBundle method),
271

version (spacepy.pycdf.Library attribute), 258

version() (spacepy.pycdf.CDF method), 237

VirtSat (class in spacepy.pybats.bats), 212

Index 353

	Getting Started
	Installing SpacePy
	SpacePy Dependencies
	Hard Dependencies
	Python 2.7+
	NumPy 1.10+
	dateutil
	C compiler

	Soft Dependencies
	SciPy 0.11+
	matplotlib 1.5.0+
	h5py 2.6+
	CDF 2.7+
	Fortran compiler
	Astropy 1.0+

	Soft Dependency Summary

	Linux Installation
	Dependencies via conda
	Dependencies via system packages
	CDF
	Compiling
	Raspberry Pi

	MacOS Installation
	Conda installation
	MacPorts installation
	CDF
	Xcode installation

	Windows Installation
	Compiling
	NASA CDF
	Dependencies via conda
	Standalone dependencies
	Developers

	Troubleshooting
	pip failures
	irbempy

	SpacePy - A Quick Start Documentation
	Installation
	Toolbox - A Box Full of Tools
	Time and Coordinate Transformations
	Ticktock Class
	Timedelta Class
	Coords Class

	The radbelt Module
	The Data Assimilation Module
	OMNI Module
	The irbempy Module
	pyCDF - Python Access to NASA CDF Library
	The datamodel Module
	Guide for NASA CDF users
	Converters to/from datamodel

	Empiricals Module
	SeaPy - Superposed Epoch Analysis in Python

	SpacePy Help
	Contributing

	SpacePy Documents
	SpacePy Capabilities
	Array manipulation
	Coordinate Transforms
	File I/O
	Modeling
	Statistics
	Time conversions
	Time series analysis and correlations
	Visualization

	Release Notes
	0.4 Series
	0.4.0 (2022-09-07)
	New features
	Deprecations and removals
	Major bugfixes
	Dependency requirements
	Other changes

	0.3 Series
	0.3.0 (2022-04-27)
	New features
	Deprecations and removals
	Dependency requirements
	Other changes

	0.2 Series
	0.2.3 (2021-10-30)
	New features
	Deprecations and removals
	Major bugfixes
	Other changes

	0.2.2 (2020-12-29)
	New features
	Deprecations and removals
	Dependency requirements
	Major bugfixes
	Other changes

	0.2.1 (2019-10-02)
	New features
	Deprecations and removals
	Dependency requirements
	Major bugfixes
	Other changes

	0.2.0 (2019-06-22)
	New features
	Deprecations and removals
	Dependency requirements
	Major bugfixes
	Other changes

	0.1 Series
	0.1.6 (2016-09-08)
	0.1.5 (2014-12-23)
	0.1.4 (2013-05-21)
	0.1.3 (2012-06-22)
	0.1.2 (2012-05-25)
	0.1.1 (2011-10-31)
	0.1 (2011-08-24)

	SpacePy Case Studies
	Paulikas and Blake revisited (Reeves et al. 2011)
	Setup
	Obtaining energetic particle data
	Solar Wind data and averaging
	Making Figure 1
	Appendix: Fixing the ESP data file

	Publication List
	Papers using SpacePy
	Peer-reviewed papers
	Other publications and presentations

	Papers about SpacePy
	Peer-reviewed papers
	Other publications and presentations

	Python 2 End of Support
	0.2 series: full support
	0.3 series: no feature support
	0.4 series: no bugfix support
	0.5 series: remove support

	SpacePy Configuration
	The spacepy directory
	Available configuration options
	Developer documentation

	SpacePy Scripts
	istp_checks.py

	Developer Guide
	Writing Pythonic Code
	Good coding practice
	Using language features
	Idiom and communication
	Further Reading

	SpacePy Python Programming Tips
	Basic examples
	Lists, for loops, and arrays
	Zip
	External links

	Dependency version support
	Documentation Standard
	So what do I need to do in my code?
	Allowed headings

	Function Example

	Unit tests
	The spacepy_testing module
	Classes
	spacepy_testing.assertWarns
	spacepy_testing.assertDoesntWarn

	Functions
	spacepy_testing.add_build_to_path

	Data
	spacepy_testing.datadir
	spacepy_testing.testsdir

	Continuous Integration
	Initial run
	Merging rules
	Rerunning CI on a PR
	Cacheing
	Usage

	SpacePy Module Reference
	spacepy - main SpacePy module
	ae9ap9 - Handle AE9/AP9 data files
	spacepy.ae9ap9.Ae9Data
	spacepy.ae9ap9.readFile
	spacepy.ae9ap9.parseHeader

	coordinates - module for coordinate transforms
	Notes on differences between representations
	Setting options for coordinate transformation
	spacepy.coordinates.Coords
	spacepy.coordinates.car2sph
	spacepy.coordinates.sph2car
	spacepy.coordinates.quaternionRotateVector
	spacepy.coordinates.quaternionNormalize
	spacepy.coordinates.quaternionMultiply
	spacepy.coordinates.quaternionConjugate
	spacepy.coordinates.quaternionFromMatrix
	spacepy.coordinates.quaternionToMatrix

	ctrans - Coordinate transformation backend
	Classes
	spacepy.ctrans.CTrans
	spacepy.ctrans.Ellipsoid

	Functions
	spacepy.ctrans.convert_multitime
	spacepy.ctrans.gdz_to_geo
	spacepy.ctrans.geo_to_gdz
	spacepy.ctrans.geo_to_rll
	spacepy.ctrans.rll_to_geo

	Submodules
	spacepy.ctrans.iau80n
	Functions
	spacepy.ctrans.iau80n.nutation

	Data
	spacepy.ctrans.iau80n.coeff80

	datamanager - easy access to and manipulation of data
	About datamanager
	Examples

	datamodel - easy to use general data model
	About datamodel
	Examples
	Guide for NASA CDF users
	A quick guide to JSON-headed ASCII
	spacepy.datamodel.SpaceData
	spacepy.datamodel.dmarray
	spacepy.datamodel.DMWarning
	spacepy.datamodel.convertKeysToStr
	spacepy.datamodel.createISTPattrs
	spacepy.datamodel.dmcopy
	spacepy.datamodel.dmfilled
	spacepy.datamodel.flatten
	spacepy.datamodel.fromCDF
	spacepy.datamodel.fromHDF5
	spacepy.datamodel.fromRecArray
	spacepy.datamodel.toCDF
	spacepy.datamodel.toHDF5
	spacepy.datamodel.toHTML
	spacepy.datamodel.toJSONheadedASCII
	spacepy.datamodel.toRecArray
	spacepy.datamodel.unflatten
	spacepy.datamodel.readJSONMetadata
	spacepy.datamodel.readJSONheadedASCII
	spacepy.datamodel.resample
	spacepy.datamodel.writeJSONMetadata

	data assimilation - data assimilation module
	spacepy.data_assimilation.ensemble
	spacepy.data_assimilation.average_window
	spacepy.data_assimilation.getobs4window
	spacepy.data_assimilation.output
	spacepy.data_assimilation.forecast
	spacepy.data_assimilation.assimilate_JK
	spacepy.data_assimilation.addmodelerror_old2
	spacepy.data_assimilation.addmodelerror_old

	empiricals - module with heliospheric empirical modules
	spacepy.empiricals.getDststar
	spacepy.empiricals.getExpectedSWTemp
	spacepy.empiricals.getLmax
	spacepy.empiricals.getMagnetopause
	spacepy.empiricals.getMPstandoff
	spacepy.empiricals.getPlasmaPause
	spacepy.empiricals.getSolarProtonSpectra
	spacepy.empiricals.getSolarRotation
	spacepy.empiricals.getVampolaOrder
	spacepy.empiricals.omniFromDirectionalFlux
	spacepy.empiricals.vampolaPA

	igrf - IGRF magnetic field model
	Classes
	spacepy.igrf.IGRFCoefficients
	spacepy.igrf.IGRF

	irbempy - Python interface to IRBEM library
	Options
	extMag
	Authors
	spacepy.irbempy.get_AEP8
	spacepy.irbempy.get_Bfield
	spacepy.irbempy.get_Lm
	spacepy.irbempy.get_Lstar
	spacepy.irbempy.find_Bmirror
	spacepy.irbempy.find_footpoint
	spacepy.irbempy.find_magequator
	spacepy.irbempy.coord_trans
	spacepy.irbempy.get_dtype
	spacepy.irbempy.prep_irbem

	lanlstar - module to calculate Lstar or Lmax using artificial neural network
	spacepy.LANLstar.LANLstar
	spacepy.LANLstar.LANLmax

	omni - module to read and process NASA OMNIWEB data
	About omni
	Advanced features
	spacepy.omni.get_omni
	spacepy.omni.omnirange

	plot - Plot, various specialized plotting functions and associated utilities
	spacepy.plot.add_logo
	spacepy.plot.annotate_xaxis
	spacepy.plot.applySmartTimeTicks
	spacepy.plot.available
	spacepy.plot.collapse_vertical
	spacepy.plot.dual_half_circle
	spacepy.plot.levelPlot
	spacepy.plot.plot
	spacepy.plot.revert_style
	spacepy.plot.set_target
	spacepy.plot.shared_ylabel
	spacepy.plot.solarRotationPlot
	spacepy.plot.Spectrogram
	spacepy.plot.style
	spacepy.plot.timestamp
	spacepy.plot.add_arrows
	spacepy.plot.carrington
	spacepy.plot.spectrogram
	spacepy.plot.spectrogram.Spectrogram
	spacepy.plot.spectrogram.simpleSpectrogram

	spacepy.plot.utils
	Classes
	spacepy.plot.utils.EventClicker

	Functions
	spacepy.plot.utils.add_logo
	spacepy.plot.utils.annotate_xaxis
	spacepy.plot.utils.applySmartTimeTicks
	spacepy.plot.utils.collapse_vertical
	spacepy.plot.utils.printfig
	spacepy.plot.utils.set_target
	spacepy.plot.utils.shared_ylabel
	spacepy.plot.utils.show_used
	spacepy.plot.utils.smartTimeTicks
	spacepy.plot.utils.timestamp
	spacepy.plot.utils.add_arrows

	PoPPy - Point Processes in Python
	spacepy.poppy.PPro
	spacepy.poppy.plot_two_ppro
	spacepy.poppy.boots_ci
	spacepy.poppy.value_percentile

	PyBats - SWMF & BATS-R-US Analysis Tools
	Introduction
	Organization
	Conventions and Prefixes
	Submodules
	spacepy.pybats.bats
	spacepy.pybats.bats.BatsLog
	spacepy.pybats.bats.Stream
	spacepy.pybats.bats.Bats2d
	spacepy.pybats.bats.Mag
	spacepy.pybats.bats.MagFile
	spacepy.pybats.bats.GeoIndexFile
	spacepy.pybats.bats.VirtSat

	spacepy.pybats.dgcpm
	spacepy.pybats.dipole
	spacepy.pybats.gitm
	spacepy.pybats.kyoto
	spacepy.pybats.pwom
	spacepy.pybats.ram
	spacepy.pybats.rim
	spacepy.pybats.rim.Iono
	spacepy.pybats.rim.OvalDebugFile
	spacepy.pybats.rim.get_iono_cb
	spacepy.pybats.rim.tex_label

	spacepy.pybats.trace2d

	Top-Level Classes & Functions
	spacepy.pybats.IdlFile
	spacepy.pybats.ImfInput
	spacepy.pybats.LogFile
	spacepy.pybats.NgdcIndex
	spacepy.pybats.PbData
	spacepy.pybats.SatOrbit
	spacepy.pybats.add_body
	spacepy.pybats.add_planet
	spacepy.pybats.parse_tecvars

	pycdf - Python interface to CDF files
	Contents
	Create a CDF
	Read a CDF
	Modify a CDF
	Non record-varying
	Slicing and indexing
	String handling
	Troubleshooting
	Cannot load CDF C library
	ZLIB_ERROR when opening a CDF

	Access to CDF constants and the C library
	Classes
	spacepy.pycdf.CDF
	spacepy.pycdf.Var
	spacepy.pycdf.gAttrList
	spacepy.pycdf.zAttrList
	spacepy.pycdf.zAttr
	spacepy.pycdf.gAttr
	spacepy.pycdf.AttrList
	spacepy.pycdf.Attr
	spacepy.pycdf.Library
	spacepy.pycdf.CDFCopy
	spacepy.pycdf.VarCopy
	spacepy.pycdf.CDFError
	spacepy.pycdf.CDFException
	spacepy.pycdf.CDFWarning
	spacepy.pycdf.EpochError

	Functions
	spacepy.pycdf.concatCDF

	Submodules
	spacepy.pycdf.const
	spacepy.pycdf.istp
	spacepy.pycdf.istp.FileChecks
	spacepy.pycdf.istp.VarBundle
	spacepy.pycdf.istp.VariableChecks
	spacepy.pycdf.istp.fillval
	spacepy.pycdf.istp.format
	spacepy.pycdf.istp.nanfill

	Data

	radbelt - Functions supporting radiation belt diffusion codes
	spacepy.radbelt.RBmodel
	spacepy.radbelt.get_modelop_L
	spacepy.radbelt.diff_LL
	spacepy.radbelt.get_local_accel

	SeaPy - Superposed Epoch in Python
	spacepy.seapy.Sea
	spacepy.seapy.Sea2d
	spacepy.seapy.seadict
	spacepy.seapy.multisea
	spacepy.seapy.readepochs
	spacepy.seapy.sea_signif

	time - Time conversion, manipulation and implementation of Ticktock class
	Notes
	Examples:
	spacepy.time.Ticktock
	spacepy.time.dtstr2iso
	spacepy.time.doy2date
	spacepy.time.leapyear
	spacepy.time.randomDate
	spacepy.time.sec2hms
	spacepy.time.tickrange

	toolbox - Toolbox of various functions and generic utilities
	Array binning
	spacepy.toolbox.arraybin
	spacepy.toolbox.bin_center_to_edges
	spacepy.toolbox.bin_edges_to_center
	spacepy.toolbox.binHisto

	Array creation
	spacepy.toolbox.dist_to_list
	spacepy.toolbox.geomspace
	spacepy.toolbox.linspace
	spacepy.toolbox.logspace

	Array searching and masking
	spacepy.toolbox.interweave
	spacepy.toolbox.isview
	spacepy.toolbox.tCommon
	spacepy.toolbox.tOverlap
	spacepy.toolbox.tOverlapHalf

	Other functions
	spacepy.toolbox.assemble
	spacepy.toolbox.bootHisto
	spacepy.toolbox.dictree
	spacepy.toolbox.eventTimer
	spacepy.toolbox.getNamedPath
	spacepy.toolbox.human_sort
	spacepy.toolbox.hypot
	spacepy.toolbox.indsFromXrange
	spacepy.toolbox.interpol
	spacepy.toolbox.intsolve
	spacepy.toolbox.medAbsDev
	spacepy.toolbox.mlt2rad
	spacepy.toolbox.normalize
	spacepy.toolbox.pmm
	spacepy.toolbox.poisson_fit
	spacepy.toolbox.rad2mlt
	spacepy.toolbox.windowMean

	Multithreading and multiprocessing
	spacepy.toolbox.thread_job
	spacepy.toolbox.thread_map

	System tools
	spacepy.toolbox.do_with_timeout
	spacepy.toolbox.get_url
	spacepy.toolbox.loadpickle
	spacepy.toolbox.progressbar
	spacepy.toolbox.query_yes_no
	spacepy.toolbox.savepickle
	spacepy.toolbox.timeout_check_call
	spacepy.toolbox.TimeoutError
	spacepy.toolbox.update

	Indices and tables

	Python Module Index
	Index

