AND, ASC, BEING, DELETE, DESC, DISTINCT, EXISTS, FALSE, GROUPBY,
HAVING, ILIKE, INSERT, LIKE, LIMIT, NOT, NOW, NULL, OFFSET,
OR, ORDERBY, SET, TODAY, TRUE, UNION, WHERE, WITH
The keywords are not case sensitive. You should not use them when defining your schema, or as RQL variable names.
Entities and values to browse and/or select are represented in the query by variables that must be written in capital letters.
With RQL, we do not distinguish between entities and attributes. The value of an attribute is considered as an entity of a particular type (see below), linked to one (real) entity by a relation called the name of the attribute, where the entity is the subject and the attribute the object.
The possible type(s) for each variable is derived from the schema according to the constraints expressed above and thanks to the relations between each variable.
We can restrict the possible types for a variable using the special relation is in the restrictions.
Those relations may only be used in RQL query but are not actual attributes of your entities.
Bases types supported by RQL are those supported by yams schema. Literal values are expressed as explained below:
You may also use the NULL keyword, meaning ‘unspecified’.
AND, OR, NOT, ','
‘,’ is equivalent to ‘AND’ but with the smallest among the priority of logical operators (see Operators priority).
=, !=, <, <=, >=, >, IN
The syntax to use comparison operators is:
VARIABLE attribute <operator> VALUE
The = operator is the default operator and can be omitted, i.e. :
VARIABLE attribute = VALUE
is equivalent to
VARIABLE attribute VALUE
The operator IN provides a list of possible values:
Any X WHERE X name IN ('chauvat', 'fayolle', 'di mascio', 'thenault')
LIKE, ILIKE, ~=, REGEXP
The LIKE string operator can be used with the special character % in a string as wild-card:
# match every entity whose name starts with 'Th'
Any X WHERE X name ~= 'Th%'
# match every entity whose name endswith 'lt'
Any X WHERE X name LIKE '%lt'
# match every entity whose name contains a 'l' and a 't'
Any X WHERE X name LIKE '%l%t%'
ILIKE is the case insensitive version of LIKE. It’s not available on all backend (e.g. sqlite doesn’t support it). If not available for your backend, ILIKE will behave like LIKE.
~= is a shortcut version of ILIKE, or of LIKE when the former is not available on the back-end.
The REGEXP is an alternative to LIKE that supports POSIX regular expressions:
# match entities whose title starts with a digit
Any X WHERE X title REGEXP "^[0-9].*"
The underlying SQL operator used is back-end-dependent :
Other back-ends are not supported yet.
Simplified grammar of search query:
[ `DISTINCT`] `Any` V1 (, V2) \*
[ `GROUPBY` V1 (, V2) \*] [ `ORDERBY` <orderterms>]
[ `LIMIT` <value>] [ `OFFSET` <value>]
[ `WHERE` <triplet restrictions>]
[ `WITH` V1 (, V2)\* BEING (<query>)]
[ `HAVING` <other restrictions>]
[ `UNION` <query>]
The fist occuring clause is the selection of terms that should be in the result set. Terms may be variable, literals, function calls, arithmetic, etc. and each term is separated by a comma.
There will be as much column in the result set as term in this clause, respecting order.
Syntax for function call is somewhat intuitive, for instance:
Any UPPER(N) WHERE P firstname N
The GROUPBY keyword is followed by a list of terms on which results should be grouped. They are usually used with aggregate functions, responsible to aggregate values for each group (see Aggregate functions).
For grouped queries, all selected variables must be either aggregated (i.e. used by an aggregate function) or grouped (i.e. listed in the GROUPBY clause).
The ORDERBY keyword if followed by the definition of the selection order: variable or column number followed by sorting method (ASC, DESC), ASC being the default. If the sorting method is not specified, then the sorting is ascendant (ASC).
The LIMIT and OFFSET keywords may be respectively used to limit the number of results and to tell from which result line to start (for instance, use LIMIT 20 to get the first 20 results, then LIMIT 20 OFFSET 20 to get the next 20.
The WHERE keyword introduce one of the “main” part of the query, where you “define” variables and add some restrictions telling what you’re interested in.
It’s a list of triplets “subject relation object”, e.g. V1 relation (V2 | <static value>). Triplets are separated using Logical operators.
In this clause, you can also use EXISTS when you want to know if some expression is true and do not need the complete set of elements that make it true. Testing for existence is much faster than fetching the complete set of results, especially when you think about using OR against several expressions. For instance if you want to retrieve versions which are in state “ready” or tagged by “priority”, you should write :
Any X ORDERBY PN,N
WHERE X num N, X version_of P, P name PN,
EXISTS(X in_state S, S name "ready")
OR EXISTS(T tags X, T name "priority")
not
Any X ORDERBY PN,N
WHERE X num N, X version_of P, P name PN,
(X in_state S, S name "ready")
OR (T tags X, T name "priority")
Both queries aren’t at all equivalent :
You can also use the question mark (?) to mark optional relations which allow you to select entities related or not to another. It is a similar concept that the Left outer join:
the result of a left outer join (or simply left join) for table A and B always contains all records of the “left” table (A), even if the join-condition does not find any matching record in the “right” table (B).
You must use the ? behind a variable to specify that the relation toward it is optional. For instance:
Anomalies of a project attached or not to a version
Any X, V WHERE X concerns P, P eid 42, X corrected_in V?
You will get a result set containing all the project’s tickets, with either the version in which it’s corrected or None for tickets not related to a version.
All cards and the project they document if any
Any C, P WHERE C is Card, P? documented_by C
The HAVING clause, as in SQL, may be used to restrict a query according to value returned by an aggregate function, e.g.:
Any X GROUPBY X WHERE X relation Y HAVING COUNT(Y) > 10
It may however be used for something else: In the WHERE clause, we are limited to triplet expressions, so some things may not be expressed there. Let’s take an example : if you want to get people whose upper-cased first name equals to another person upper-cased first name. There is no proper way to express this using triplet, so you should use something like:
Any X WHERE X firstname XFN, Y firstname YFN, NOT X identity Y HAVING UPPER(XFN) = UPPER(YFN)
Another example: imagine you want person born in 2000:
Any X WHERE X birthday XB HAVING YEAR(XB) = 2000
Notice that while we would like this to work without the HAVING clause, this can’t be currently be done because it introduces an ambiguity in RQL’s grammar that can’t be handled by Yapps, the parser’s generator we’re using.
The WITH keyword introduce sub-queries clause. Each sub-query has the form:
V1(,V2) BEING (rql query)
Variables at the left of the BEING keyword defines into which variables results from the sub-query will be mapped to into the outer query. Sub-queries are separated from each other using a comma.
Let’s say we want to retrieve for each project its number of versions and its number of tickets. Due to the nature of relational algebra behind the scene, this can’t be achieved using a single query. You have to write something along the line of:
Any X, VC, TC WHERE X identity XX
WITH X, VC BEING (Any X, COUNT(V) GROUPBY X WHERE V version_of X),
XX, TC BEING (Any X, COUNT(T) GROUPBY X WHERE T ticket_of X)
Notice that we can’t reuse a same variable name as alias for two different sub-queries, hence the usage of ‘X’ and ‘XX’ in this example, which are then unified using the special identity relation (see XXX).
You may get a result set containing the concatenation of several queries using the UNION. The selection of each query should have the same number of columns.
(Any X, XN WHERE X is Person, X surname XN) UNION (Any X,XN WHERE X is Company, X name XN)
Below is the list of aggregate and transformation functions that are supported nativly by the framework. Notice that cubes may define additional functions.
COUNT() | return the number of rows |
MIN() | return the minimum value |
MAX() | return the maximum value |
AVG() | return the average value |
SUM() | return the sum of values |
COMMA_JOIN() | return each value separated by a comma (for string only) |
All aggregate functions above take a single argument. Take care some aggregate functions (e.g. MAX, MIN) may return None if there is no result row.
UPPER(String)() | upper case the string |
LOWER(String)() | lower case the string |
LENGTH(String)() | return the length of the string |
|
extract from the string a string starting at given index and of given length |
|
if the length of the string is greater than given max size, strip it and add ellipsis (“...”). The resulting string will hence have max size + 3 characters |
|
similar to the above, but allow to specify the MIME type of the text contained by the string. Supported formats are text/html, text/xhtml and text/xml. All others will be considered as plain text. For non plain text format, sgml tags will be first removed before limiting the string. |
YEAR(Date)() | return the year of a date or datetime |
MONTH(Date)() | return the year of a date or datetime |
DAY(Date)() | return the year of a date or datetime |
HOUR(Datetime)() | return the year of a datetime |
MINUTE(Datetime)() | return the year of a datetime |
SECOND(Datetime)() | return the year of a datetime |
ABS(num)() | return the absolute value of a number |
RANDOM() | return a pseudo-random value from 0.0 to 1.0 |
FSPATH(X)() | expect X to be an attribute whose value is stored in a BFSStorage and return its path on the file system |
FTKIRANK(X)() | expect X to be an entity used in a has_text relation, and return a number corresponding to the rank order of each resulting entity |
CAST(Type, X)() | expect X to be an attribute and return it casted into the given final type |
Search for the object of identifier 53
Any WHERE X
X eid 53
Search material such as comics, owned by syt and available
Any X WHERE X is Document
X occurence_of F, F class C, C name 'Comics'
X owned_by U, U login 'syt'
X available TRUE
Looking for people working for eurocopter interested in training
Any P WHERE
P is Person, P work_for S, S name 'Eurocopter'
P interested_by T, T name 'training'
Search note less than 10 days old written by jphc or ocy
Any N WHERE
N is Note, N written_on D, D day> (today -10),
N written_by P, P name 'jphc' or P name 'ocy'
Looking for people interested in training or living in Paris
Any P WHERE
P is Person, (P interested_by T, T name 'training') OR
(P city 'Paris')
The surname and firstname of all people
Any N, P WHERE
X is Person, X name N, X firstname P
Note that the selection of several entities generally force the use of “Any” because the type specification applies otherwise to all the selected variables. We could write here
String N, P WHERE
X is Person, X name N, X first_name P
Note: You can not specify several types with * ... where X is FirstType or X is SecondType*. To specify several types explicitly, you have to do
Any X where X is in (FirstType, SecondType)
INSERT <entity type> V1 (, <entity type> V2) * : <assignments> [ WHERE <restriction>]
assignments: | list of relations to assign in the form V1 relationship V2 | <static value> |
---|
The restriction can define variables used in assignments.
Caution, if a restriction is specified, the insertion is done for each line result returned by the restriction.
Insert a new person named ‘foo’
INSERT Person X: X name 'foo'
Insert a new person named ‘foo’, another called ‘nice’ and a ‘friend’ relation between them
INSERT Person X, Person Y: X name 'foo', Y name 'nice', X friend Y
Insert a new person named ‘foo’ and a ‘friend’ relation with an existing person called ‘nice’
INSERT Person X: X name 'foo', X friend Y WHERE name 'nice'
SET <assignements> [ WHERE <restriction>]
Caution, if a restriction is specified, the update is done for each result line returned by the restriction.
Renaming of the person named ‘foo’ to ‘bar’ with the first name changed
SET X name 'bar', X firstname 'original' WHERE X is Person, X name 'foo'
Insert a relation of type ‘know’ between objects linked by the relation of type ‘friend’
SET X know Y WHERE X friend Y
DELETE (<entity type> V) | (V1 relation v2 ),... [ WHERE <restriction>]
Caution, if a restriction is specified, the deletion is made for each line result returned by the restriction.
Deletion of the person named ‘foo’
DELETE Person X WHERE X name 'foo'
Removal of all relations of type ‘friend’ from the person named ‘foo’
DELETE X friend Y WHERE X is Person, X name 'foo'