
Results and Validation

User Input

Automatic Modeling

Federal Ministry
of Education
and Research

Supported by We would also like to thank
Prof. Pingali at ICES, UT Austin
Prof. Hack at CDL, Saarland University

FITweltweitSKAMPY

Performance Modeling and Engineering Using Kerncraft

1. Build Execution-Cache-Memory model
2. Predict serial performance and optimal scaling
3. Analytically select optimal spatial blocking factors

Assumptions:
- no single memory subsystem bottleneck
- serialized transfers between caches, memory and registers (for x86)

Execution-Cache-Memory (ECM) Model[0] for x86

Kerncraft[1] Released under AGPLv3
github.com/RRZE-HPC/kerncraft

Blocking SuggestionECM Prediction

Friedrich-Alexander-University of Erlangen-Nuremberg, Regional Computing Center Erlangen
Julian Hammer <julian.hammer@fau.de>, Georg Hager (advisor), Gerhard Wellein (advisor)

Approach

Goal

Semi-automatically gathered using LIKWID tools[4], contains information and
bechmarks on the micro- and macroarchitecture of the compute node.

Kernel Code Machine Con�guration

double U[M][N][N], V[M][N][N], ROC[M][N][N];
double c0, c1, c2, c3, c4, lap;

for(int k=4; k < M-4; k++) { for(int j=4; j < N-4; j++) { for(int i=4; i < N-4; i++) {
 lap = c0 * V[k][j][i]
 + c1 * (V[k][j][i+1] + V[k][j][i-1] + V[k][j+1][i])
 + c1 * (V[k][j-1][i] + V[k+1][j][i] + V[k-1][j][i])
 + c2 * (V[k][j][i+2] + V[k][j][i-2] + V[k][j+2][i])
 + c2 * (V[k][j-2][i] + V[k+2][j][i] + V[k-2][j][i])
 + c3 * (V[k][j][i+3] + V[k][j][i-3] + V[k][j+3][i])
 + c3 * (V[k][j-3][i] + V[k+3][j][i] + V[k-3][j][i])
 + c4 * (V[k][j][i+4] + V[k][j][i-4] + V[k][j+4][i])
 + c4 * (V[k][j-4][i] + V[k+4][j][i] + V[k-4][j][i]);
 U[k][j][i] = 2.f * V[k][j][i] - U[k][j][i] + ROC[k][j][i] * lap;
}}}

Standard complient C99 code, with no additional branches in loops.

3D-long-range kernel code[2], as used for following examples:

model name: Intel(R) Xeon(R) CPU E5-2680 0 @ 2.70GHz
sockets: 2
cores per socket: 2

memory hierarchy:
 - level: L1
 cache per group: {'sets': 64, 'ways': 8, 'cl_size': 64, # 32 kB
 'replacement_policy': 'LRU', 'write_allocate': True,
 'write_back': True, 'load_from': 'L2', 'store_to': 'L2'}
 cores per group: 1
 cycles per cacheline transfer: 2

benchmarks: {measurements: {MEM: {results:
 update: [18.91 GB/s, 32.43 GB/s, 37.28 GB/s, 39.98 GB/s, 40.99 GB/s, 40.92 GB/s, 40.61 GB/s, 40.34 GB/s]}}

Sandy-Bridge Machine con�guration �le, as used for following examples:
CPU & compiler

information

Memory subsystem

Benchmark results

$ kerncraft -p ECM -m E5-2680_2.7.yaml \
 3d-long-range.c -D N 1024 -D M 1024
================= kerncraft ===================
3d-long-range-stencil.c -m E5-2680_2.7.yaml
-D M 1000 -D N 1000
-------------------- ECM ----------------------
{ 56.6 || 53.0 | 40.0 | 24.0 | 50.3 } cy/CL
{ 56.65 \ 93.0 \ 117.0 \ 167.3 } cy/CL
[...]
$

$ kerncraft -p LC -m E5-2680_2.7.yaml \
 3d-long-range.c -D N 1024 -D M 1024
================= kerncraft ===================
3d-long-range-stencil.c -m E5-2680_2.7.yaml
-D M 1024 -D N 1024
--------------------- LC ----------------------
[...]
2D Layer-Condition: 3D Layer-Condition:
L1: N <= 216 L1: N <= 19
L2: N <= 1725 L2: N <= 55
L3: N <= 137971 L3: N <= 488
$

Model notation, in reciprocal throughputs:

{ TOL || TnOL | TL1-L2 | TL2-L3 | TL3-MEM } cycles per cache-line work (cy/CL).

Model prediction for x86: Overall prediction

reciprocal throughput [cycles per cache-line]

Data

Execution

Origin of hardware limits in
machine con�guration:

Origin of software requirements
from kernel code:

L1

L2

L3

MEM

Execution

Registers

TOL

TnOL

TL1-L2

TL2-L3

TL3-MEM

Intel Architecture Core
Analyzer (IACA) and static
assembly code analysis

Cache simulation or
layer condition analysis

Documentation or
microbenchmarks

Microbenchmarks
e.g., with likwid-bench

or STREAM

time [cy]

Data

Exec. TOL

TnOL TL1-L2 TL2-L3 TL3-MEM

5
3

.0
5

6
.6

9
3

.0

1
1

7
.0

1
6

7
.3

Here we predict the reciprocal throughput for
one work-unit (cache-line length) of an array
with inner dimensions of 1000x1000 elements.
Due to numerous elements required, loading is
the limiting factor, but there is no single signi�-
cant bottleneck showing:

10 21 57 215 497 1747 N (of N*N*M matrix)

86.0

102.0

118.0

134.0

169.6

185.6

0.0

25.0

50.0

75.0

cy
/C

L

L1-L2
+16cy

L2-L3
+16cy

L1-L2
+16cy

L2-L3
+16cy

L3-MEM
+34.6cy

L1
32kB

L2
256kB

L3
20MB

1D 1D 1DD2 D23D

2D 2D 1DD3 D23D

3D 2D 2DD3 D33Dla
y
e
r-

co
n
d
it

io
n

L3-MEM

L2-L3

L1-L2

nOL

OL

Roofline

Parameter Study
$ kerncraft -p ECM -p LC -p Benchmark
 -m E5-2680_2.7.yaml 3d-long-range.c\
 -D N 10-5000:100:log10 -D M [...]
[... analysis results for 100 data points ...]
$

Analytical modeling (Roo�ine and ECM) and
measurement sweep over the inner dimension,
with data residing in main memory:

By blocking the code according to the predicted
layer conditions, performance does not de-
crease with increasing N:

Optimal Scaling Point
$ kerncraft -p ECM -m E5-2680_2.7.yaml \
 3d-long-range.c \
 -D M 1000 -D N 1000
================= kerncraft ===================
3d-long-range-stencil.c -m E5-2680_2.7.yaml
-D M 1000 -D N 1000
-------------------- ECM ----------------------
[...]
saturating at 4 cores
$

If we assume perfect scaling of all resources
except for the main memory bandwidth, we
expect the performace to max out at four cores.

1 2 3 4 5 6 7 8
cores

0

20

40

60

80

100

120

140

160

re
ci

p
ro

ca
l
th

ro
u

g
h

p
u

t
[c

y
/C

L]

Scaling with OpenMP schedule(static, 4)

measured
predicted scaling
predicted scaling
point

Predict performace, increase cache utilization and
select the most ef�cient core con�guration for regular
algorithm implementations (streaming, stencil) on cur-
rent multi-core CPUs.

1D layer condition 3D layer condition2D layer condition

stream head (uncached)

cached element

In-Core with IACA

For both ECM and Roo�ine, we need to predict the amount of data loaded and stored in each memory level, as well as execution time
for all arithmetic instructions.

STOREs
LOADs

8 iterations / 1 cache-line of work:

ECM[0] & Roo�ine[3] Model Layer Conditions[5] Model

B
enchm

ark M
od

e
E

xclud
ed

 for b
revity

...

k

j

i

k

j

i

j

k

i

232 FLOPs (88 MULs, 136 ADDs, 8 SUBs)

U[k][j][i] U[k][j][i+7]

V[k][j][i-4] V[k][j][i-3] V[k][j][i] V[k][j][i+7] V[k][j][i+8] V[k][j][i+11]

V[k-1][j][i] V[k-1][j][i+7]
V[k-2][j][i] V[k-2][j][i+7]
V[k-3][j][i] V[k-3][j][i+7]
V[k-4][j][i] V[k-4][j][i+7]

First Addr. Last Addr.

V[k][j-1][i] V[k][j-1][i+7]
V[k][j-2][i] V[k][j-2][i+7]
V[k][j-3][i] V[k][j-3][i+7]
V[k][j-4][i] V[k][j-4][i+7]

First Addr. Last Addr.

V[k+1][j][i] V[k+1][j][i+7]
V[k+2][j][i] V[k+2][j][i+7]
V[k+3][j][i] V[k+3][j][i+7]
V[k+4][j][i] V[k+4][j][i+7]

First Addr. Last Addr.

V[k][j+1][i] V[k][j+1][i+7]
V[k][j+2][i] V[k][j+2][i+7]
V[k][j+3][i] V[k][j+3][i+7]
V[k][j+4][i] V[k][j+4][i+7]

First Addr. Last Addr.

Kernel Code

Compilable Code

Assembly

IACA Marked Assembly

Binary

IACA Analysis

Scaled IACA Analysis

Unrolling Factor

Under the assumption of an LRU cache, we get the following equation:

Required size Sum over all relative offsets
between accesses

Longest relative
offset over all slices

Number of slices
in dimension

Bytes per
element

Intel Architecture Core Analyzer (IACA) allows
detailed analysis of instruction scheduling and
execution. It predicts throughput and critical
path latency of inner-most loops. We employ
it in the following process:

Cache with pycachesim
Released under AGPLv3

github.com/RRZE-HPC/pycachesim

L1

L2

L3

MEM

Simulated Cache Hierarchy

Accessed locations
and lengths

Statistics on HITs,
MISSs and STOREs

Tracking of occupancy
and mapping

Cache simulation allows us to predict a wide variaty of cache behaviors and
architectures using your cach simulation library, pycachesim.

Initialization is key to predicting steady-state behavoir. By simulating enough
accesses until the largest cache is completly occupied and execute exactly
one cache-line worth of accesses, the resulting cache state change provides
insight into the costs of one CL work-load.

To relate LC dimensions to accesses, we consider slices which contain a subsets of accesses which lie in the
same dimension. E.g., all elements in the same plane are part of the same slice for 2D layer conditions. When
computing relative offsets between accesses, only offsets within slices are considered. Offsets accross slice
boundaries are handled by the second term in paranthesis.

Example: 2D LC for 3D long-range stencil. By adding up the number of stream
heads in the 2D LC illustration and arrays (U and ROC) in the code, we get:

The longest relative offsets are from V[k][j+1][i] to V[k][j+2][i], thus:

Layer conditions (LCs) give an analytical approach to select optimal blocking factors for LRU-based cache hi-
erarchies. With a 3D kernel, here the 3D long-range stencil, three different layer-conditions can be found:

Summing up all relative offsets, yields:

Cache size requirement for 2D LC:

Interactive LC Calculator:

https://rrze-hpc.github.io/layer-condition/#calculator

Future Work

References
Jan Treibig and Georg Hager. Introducing a performance model for bandwidth-limited loop kernels.
In Parallel Processing and Applied Mathematics, pages 615–624. Springer Science + Business Media, 2010.
doi: 10.1007/978-3-642-14390-8_64.

[0] S. Williams, A. Waterman, and D. Patterson. Roo�ine: An insightful visual performance model for multicore architectures.
Commun. ACM, 52(4):65–76, 2009. doi: 10.1145/1498765.1498785.

[3]

J. Treibig, G. Hager, and G. Wellein. LIKWID: A lightweight performance-oriented tool suite for x86 multicore environments.
Proceedings of PSTI2010, the First International Workshop on Parallel Software Tools and Tool Infrastructures,
San Diego CA, September 13, 2010. doi: 10.1109/ICPPW.2010.38.

[4]

Gabriel Rivera and Chau-Wen Tseng. Tiling optimizations for 3D scienti�c computations.
In Proceedings of the 2000 ACM/IEEE conference on Supercomputing (SC '00). IEEE.
doi: 10.1109/sc.2000.10015.

[5]

[1] Julian Hammer, Georg Hager, Jan Eitzinger and Gerhard Wellein.
Automatic loop kernel analysis and performance modeling with Kerncraft.
In PMBS '15 Proceedings of the 6th International Workshop on Performance Modeling, Benchmarking,
and Simulation of High Performance Computing Systems. doi: 10.1145/2832087.2832092.

[2] Tareq Malas, Georg Hager, Hatem Ltaief, Holger Stengel, Gerhard Wellein, and David Keyes.
Multicore-optimized wavefront diamond blocking for optimizing stencil updates.
SIAM Journal on Scienti�c Computing, 37(4):C439–C464, 10 2015. doi: 10.1137/140991133.

Development of IACA has not been updated recently and does not support
Intel Broadwell. We therefore need a replacement, which will also enable sup-
port of other architectures.

In-core simulation

Kerncraft provides the information to guide compile-time decisions, if used in
combination with a compiler. We are currently evaluating this in LLVM-Polly.

LLVM-Polly integration

Going from regular to irregular is a challenging task, which we are currently re-
searching with performance modeling of graph algorithms. If feasable this will
become a target of future Kerncraft releases.

Graph applications

215 497 1747

N

86.0

102.0

118.0

134.0

169.6

185.6

70.0
80.0

cy
/C

L

Spatial blocking with 400x100 (NxN) elements

j

k

i

Accesses to array V (stencil)

L1Execution RegistersTOL TnOL

