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Performance Modeling and Engineering Using Kerncraft

1. Build Execution-Cache-Memory model
2. Predict serial performance and optimal scaling
3. Analytically select optimal spatial blocking factors 

Assumptions:
- no single memory subsystem bottleneck
- serialized transfers between caches, memory and registers (for x86)

Execution-Cache-Memory (ECM) Model[0] for x86

Kerncraft[1] Released under AGPLv3
github.com/RRZE-HPC/kerncraft

Blocking SuggestionECM Prediction
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Approach

Goal

Semi-automatically gathered using LIKWID tools[4], contains information and 
bechmarks on the micro- and macroarchitecture of the compute node.

Kernel Code Machine Con�guration

double U[M][N][N], V[M][N][N], ROC[M][N][N];
double c0, c1, c2, c3, c4, lap;

for(int k=4; k < M-4; k++) { for(int j=4; j < N-4; j++) { for(int i=4; i < N-4; i++) {
    lap = c0 * V[k][j][i]
        + c1 * (V[ k ][ j ][i+1] + V[ k ][ j ][i-1] + V[ k ][j+1][ i ])
        + c1 * (V[ k ][j-1][ i ] + V[k+1][ j ][ i ] + V[k-1][ j ][ i ])
        + c2 * (V[ k ][ j ][i+2] + V[ k ][ j ][i-2] + V[ k ][j+2][ i ])
        + c2 * (V[ k ][j-2][ i ] + V[k+2][ j ][ i ] + V[k-2][ j ][ i ])
        + c3 * (V[ k ][ j ][i+3] + V[ k ][ j ][i-3] + V[ k ][j+3][ i ])
        + c3 * (V[ k ][j-3][ i ] + V[k+3][ j ][ i ] + V[k-3][ j ][ i ])
        + c4 * (V[ k ][ j ][i+4] + V[ k ][ j ][i-4] + V[ k ][j+4][ i ])
        + c4 * (V[ k ][j-4][ i ] + V[k+4][ j ][ i ] + V[k-4][ j ][ i ]);
    U[k][j][i] = 2.f * V[k][j][i] - U[k][j][i] + ROC[k][j][i] * lap;
}}}

Standard complient C99 code, with no additional branches in loops. 

3D-long-range kernel code[2], as used for following examples:

model name: Intel(R) Xeon(R) CPU E5-2680 0 @ 2.70GHz
sockets: 2
cores per socket: 2

memory hierarchy:
    - level: L1
      cache per group: {'sets': 64, 'ways': 8, 'cl_size': 64, # 32 kB
                        'replacement_policy': 'LRU', 'write_allocate': True,
                        'write_back': True, 'load_from': 'L2', 'store_to': 'L2'}
      cores per group: 1
      cycles per cacheline transfer: 2

benchmarks: {measurements: {MEM: {results:
    update: [18.91 GB/s, 32.43 GB/s, 37.28 GB/s, 39.98 GB/s, 40.99 GB/s, 40.92 GB/s, 40.61 GB/s, 40.34 GB/s]}}

Sandy-Bridge Machine con�guration �le, as used for following examples:
CPU & compiler

information

Memory subsystem

Benchmark results

$ kerncraft -p ECM -m E5-2680_2.7.yaml \
            3d-long-range.c -D N 1024 -D M 1024
================= kerncraft ===================
3d-long-range-stencil.c     -m E5-2680_2.7.yaml
-D M 1000 -D N 1000
-------------------- ECM ----------------------
{ 56.6 || 53.0 | 40.0 | 24.0 | 50.3 } cy/CL
{ 56.65 \ 93.0 \ 117.0 \ 167.3 } cy/CL
[...]
$

$ kerncraft -p LC -m E5-2680_2.7.yaml \
            3d-long-range.c -D N 1024 -D M 1024
================= kerncraft ===================
3d-long-range-stencil.c     -m E5-2680_2.7.yaml
-D M 1024 -D N 1024
--------------------- LC ----------------------
[...]
2D Layer-Condition:         3D Layer-Condition:
L1: N <= 216                L1: N <= 19
L2: N <= 1725               L2: N <= 55
L3: N <= 137971             L3: N <= 488
$

Model notation, in reciprocal throughputs:

{ TOL || TnOL | TL1-L2 | TL2-L3 | TL3-MEM } cycles per cache-line work (cy/CL).

Model prediction for x86: Overall prediction

reciprocal throughput [cycles per cache-line]

Data

Execution

Origin of hardware limits in
machine con�guration:

Origin of software requirements
from kernel code:

L1

L2

L3

MEM

Execution

Registers

TOL

TnOL

TL1-L2 

TL2-L3

TL3-MEM

Intel Architecture Core
Analyzer (IACA) and static
assembly code analysis

Cache simulation or
layer condition analysis

Documentation or
microbenchmarks

Microbenchmarks
e.g., with likwid-bench

or STREAM

time [cy]

Data

Exec. TOL

TnOL TL1-L2 TL2-L3 TL3-MEM

5
3

.0
5

6
.6

9
3

.0

1
1

7
.0

1
6

7
.3

Here we predict the reciprocal throughput for 
one work-unit (cache-line length) of an array 
with inner dimensions of 1000x1000 elements. 
Due to numerous elements required, loading is 
the limiting factor, but there is no single signi�-
cant bottleneck showing:
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Parameter Study
$ kerncraft -p ECM -p LC -p Benchmark
            -m E5-2680_2.7.yaml 3d-long-range.c\
            -D N 10-5000:100:log10 -D M [...]
[... analysis results for 100 data points ...]
$

Analytical modeling (Roo�ine and ECM) and 
measurement sweep over the inner dimension, 
with data residing in main memory: 

By blocking the code according to the predicted 
layer conditions, performance does not de-
crease with increasing N:

Optimal Scaling Point
$ kerncraft -p ECM -m E5-2680_2.7.yaml \
            3d-long-range.c \
            -D M 1000 -D N 1000
================= kerncraft ===================
3d-long-range-stencil.c     -m E5-2680_2.7.yaml
-D M 1000 -D N 1000
-------------------- ECM ----------------------
[...]
saturating at 4 cores
$

If we assume perfect scaling of all resources 
except for the main memory bandwidth, we 
expect the performace to max out at four cores.
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Predict performace, increase cache utilization and 
select the most ef�cient core con�guration for regular 
algorithm implementations (streaming, stencil) on cur-
rent multi-core CPUs.

1D layer condition 3D layer condition2D layer condition

stream head (uncached)

cached element

In-Core with IACA

For both ECM and Roo�ine, we need to predict the amount of data loaded and stored in each memory level, as well as execution time
for all arithmetic instructions.
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8 iterations / 1 cache-line of work:
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232 FLOPs (88 MULs, 136 ADDs, 8 SUBs)
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V[k][j][i-4] V[k][j][i-3] V[k][j][i] V[k][j][i+7] V[k][j][i+8] V[k][j][i+11]

V[k-1][j][i] V[k-1][j][i+7]
V[k-2][j][i] V[k-2][j][i+7]
V[k-3][j][i] V[k-3][j][i+7]
V[k-4][j][i] V[k-4][j][i+7]
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V[k][j-1][i] V[k][j-1][i+7]
V[k][j-2][i] V[k][j-2][i+7]
V[k][j-3][i] V[k][j-3][i+7]
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Kernel Code

Compilable Code

Assembly

IACA Marked Assembly

Binary

IACA Analysis

Scaled IACA Analysis

Unrolling Factor

Under the assumption of an LRU cache, we get the following equation:

Required size Sum over all relative offsets
between accesses

Longest relative
offset over all slices

Number of slices
in dimension

Bytes per
element

Intel Architecture Core Analyzer (IACA) allows 
detailed analysis of instruction scheduling and 
execution. It predicts throughput and critical 
path latency of inner-most loops. We employ 
it in the following process:

Cache with pycachesim
Released under AGPLv3

github.com/RRZE-HPC/pycachesim
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and lengths
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MISSs and STOREs
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and mapping

Cache simulation allows us to predict a wide variaty of cache behaviors and 
architectures using your cach simulation library, pycachesim.

Initialization is key to predicting steady-state behavoir. By simulating enough 
accesses until the largest cache is completly occupied and execute exactly 
one cache-line worth of  accesses, the resulting cache state change  provides 
insight into the costs of one CL work-load.

To relate LC dimensions to accesses, we consider slices which contain a subsets of accesses which lie in the 
same dimension. E.g., all elements in the same plane are part of the same slice for 2D layer conditions. When 
computing relative offsets between accesses, only offsets within slices are considered. Offsets accross slice 
boundaries are handled by the second term in paranthesis.

Example: 2D LC for 3D long-range stencil. By adding up the number of stream 
heads in the 2D LC illustration and arrays (U and ROC) in the code, we get:

The longest relative offsets are from V[k][j+1][i] to V[k][j+2][i], thus:

Layer conditions (LCs) give an analytical approach to select optimal blocking factors for LRU-based cache hi-
erarchies. With a 3D kernel, here the 3D long-range stencil, three different layer-conditions can be found: 

Summing up all relative offsets, yields:

Cache size requirement for 2D LC:

Interactive LC Calculator:

https://rrze-hpc.github.io/layer-condition/#calculator

Future Work
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Development of IACA has not been updated recently and does not support 
Intel Broadwell. We therefore need a replacement, which will also enable sup-
port of other architectures.

In-core simulation

Kerncraft provides the information to guide compile-time decisions, if used in 
combination with a compiler. We are currently evaluating this in LLVM-Polly.

LLVM-Polly integration

Going from regular to irregular is a challenging task, which we are currently re-
searching with performance modeling of graph algorithms. If feasable this will 
become a target of future Kerncraft releases.

Graph applications
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