
Performance Engineering
 by Means of

Automated Performance Modeling

Julian Hammer <julian.hammer@fau.de>, Friedrich-Alexander-University Erlangen-Nuremberg

with

Released under AGPLv3 on
github.com/RRZE-HPC/kerncraft

Kerncraft

Vision:
Automatically predict single-node loop kernel performance

on current and future architectures.

Kernel
Required computational and data resources

Machine
Offered computational

and data resources

i

j

k

C Code (stable)

LLVM IR/Polly (in-development)

Metadata (prototype)

Semi-Automatic Gathering (prototype)

model name: Intel(R) Xeon(R) CPU
 E5-2660 v2 @ 2.20GHz
compiler: icc: -O3 -xAVX -fno-alias

memory hierarchy:
 - level: L1
 cache per group:
 {'sets': 64, 'ways': 8,
 'cl_size': 64, # 32 kB
 'replacement_policy': 'LRU',
 'write_allocate': True,
 'write_back': True,
 'load_from': 'L2',
 'store_to': 'L2'}
 cycles per cacheline transfer: 2

benchmarks: {measurements:
 {MEM: {results:
 update: [18.91 GB/s, 32.43 GB/s,
 37.28 GB/s, 39.98 GB/s, ...]}}

Ivy-Bridge Machine con�guration �le:
CPU & compiler

Memory subsystem

Benchmark results

YAML based description of hardware architecture

Restrictions:
 > no branches in inner loop body
 > only af�ne loops and array indices
 typically for dens linear algebra, stencil, streaming codes

double a[M][N][N], b[M][N][N], s;
  for(int k=1; k<M-1; ++k)
 for(int j=1; j<N-1; ++j)
 for(int i=1; i<N-1; ++i) 
 b[k][j][i] = (
 (a[k][j][i] + a[k][j][i-1] + a[k][j][i+1]) +
 (a[k][j-1][i]  + a[k][j-1][i-1] + a[k-1][j][i-1]) +
 (a[k][j+1][i] + a[k][j+1][i-1]  + a[k][j+1][i+1]) +
 (a[k-1][j][i] + a[k][j-1][i+1] + a[k-1][j][i+1]) +
 (a[k+1][j][i] + a[k+1][j][i-1] + a[k+1][j][i+1]) +
 (a[k-1][j-1][i] + a[k-1][j-1][i-1] + a[k-1][j-1][i+1]) +
 (a[k-1][j+1][i] + a[k-1][j+1][i-1] + a[k-1][j+1][i+1]) +
 (a[k+1][j-1][i] + a[k+1][j-1][i-1] + a[k+1][j-1][i+1]) +
 (a[k-1][j+1][i+1] + a[k+1][j+1][i] + a[k-1][j+1][i-1])) * s;

High-level description of loop nest resources

LLVM-Polly �nds suitable loop nests and exports them

In-core prediction
Computation and loading
from/storing to L1

Cache
prediction

Hits/Misses in all cache levels

Intel Architecture Code Analyzer (stable)

Open Source
Architecture Code Analyzer
(in-development)

Cache Simulator
(stable)

Layer Conditions
(stable)

L1

L2

L3

MEM

Accessed locations

Hit, Miss and
Evicts stats

Occupancy
and mapping

i

j

k

i

j

k

Kernel Code

Compiled Assembly IACA Marked Assembly

Binary

IACA Analysis

Scaled IACA Analysis

Unrolling Factor

L1Execution RegistersTOL TnOL

1. Gather Instructions

2. Measure latency, throughput and overlap
 with microbenchmarks

3. Generate in-core model

4. Apply to loop-nest assembly

Complete simulation with pycachesim

Based on Intel’s IACA

Analytical model for inclusive, LRU caches

Open source replacement for IACA

Execution-Cache-Memory (stable) Roo�ine (stable)

Performance Model
Compilation of runtime prediction

L1

L2

L3

MEM

TOL

TnOL

TL1-L2

TL2-L3

TL3-MEM

Registers

Execution

max

sum

L1

L2

L3

MEM

TL1

TL2

TL3

TMEM

Tcore

Registers

Execution

In-core prediction

Cache prediction

Documentation

Bandwidths from
microbenchmarks

max

Model with overlap assumption on all bottlenecks,
based on measured bandwidths

Model with serial assumption on data path and cache
bandwidths based on documentation

Conclusions

FITweltweit

Federal Ministry
of Education
and Research

SKAMPY, METACCA &
SeaSite

Supported by

Interactive LC Calculator:

https://rrze-hpc.github.io/layer-condition

Taking (some) pain out of analytical performance modeling

Key components are relevant to:
 > compilers
 tile size selection

 > architecture researchers
 impact of changes on runtime

 > of�ine optimizations
 preevaluation of instruction mix

 > energy-ef�cient computing
 selection of cores and frequencies

 > software developers
 What is going on here?

github.com/RRZE-HPC/kerncraft

github.com/RRZE-HPC/pycachesim

Julian Hammer <julian.hammer@fau.de>

Open Source and freely available at:

