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Vision: Automatically predicit single-node loop kernel performance on current and future architectures.

Released under AGPLv3 on
github.com/RRZE-HPC/kerncraft

High-level description of loop nest resources

LLVM-Polly �nds suitable loop nests and exports them

Restrictions:
 > no branches in inner loop body
 > only af�ne loops and array indices
 typically for dens linear algebra, stencil, streaming codes

double a[M][N][N], b[M][N][N], s;
  for(int k=1; k<M-1; ++k) for(int j=1; j<N-1; ++j) for(int i=1; i<N-1; ++i) 
  b[k][j][i] = ((a[k][j][i] + a[k][j][i-1] + a[k][j][i+1]) + 
    (a[k][j-1][i]  + a[k][j-1][i-1] + a[k-1][j][i-1]) + (a[k][j+1][i] + 
    a[k][j+1][i-1]  + a[k][j+1][i+1]) + (a[k-1][j][i] + a[k][j-1][i+1] +
    a[k-1][j][i+1]) + (a[k+1][j][i] + a[k+1][j][i-1] + a[k+1][j][i+1]) + 
    (a[k-1][j-1][i] + a[k-1][j-1][i-1] + a[k-1][j-1][i+1]) + 
    (a[k-1][j+1][i] + a[k-1][j+1][i-1] + a[k-1][j+1][i+1]) + 
    (a[k+1][j-1][i] + a[k+1][j-1][i-1] + a[k+1][j-1][i+1]) + 
    (a[k-1][j+1][i+1] + a[k+1][j+1][i] + a[k-1][j+1][i-1])) * s;
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model name: Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz
compiler: icc: -O3 -xAVX -fno-alias

memory hierarchy:
    - level: L1
      cache per group: 
         {'sets': 64, 'ways': 8, 'cl_size': 64, # 32 kB
          'replacement_policy': 'LRU', 'write_allocate': True,
          'write_back': True, 'load_from': 'L2', 'store_to': 'L2'}
      cycles per cacheline transfer: 2

benchmarks: {measurements: {MEM: {results:
    update: [18.91 GB/s, 32.43 GB/s, 37.28 GB/s, 39.98 GB/s, ...]}}

Ivy-Bridge Machine con�guration �le:
CPU & compiler

Memory subsystem
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Interactive LC Calculator:

https://rrze-hpc.github.io/layer-condition/#calculator

Analytical model for inclusive, least-recently-used caches

Complete cache simulation using pycachesim

Versatile and accurate for 
thrashing effects, but slow. 

Fast and may predict optimal tiling, restricted to  
stencil-like patterns and steady cache behavior.
Extension to dens linear algebra is in the works. 

YAML based description of hardware architecture

Generated automatically, with additional input provided 
in vendor documentation.

Based on IACA tool from Intel

Open source replacement for Intel’s IACA

1.  Gathering of relevant instructions from typical codes.
2.  Measurement of latency, throughput and overlap of
 instructions and loads with microbenchmarks.
3.  Generation of the in-core model.
4.  Application to given loop-nest assembly.

Roo�ine based model with serial assumption on data 
path and cache bandwidths based on documentation

In-socket scaling is derived by increasing the number 
of cores, until a non-scaling resource (e.g., memory 
bandwith) maxes out.

The Roo�ine model is less accurate if multiple data- 
transfer bottlenecks have almost the same perfor-

mance and do not overlap perfectly.

Well known performance model with overlap assumption 
on all bottlenecks, based on measured bandwidths

Very accurate, but closed source, only supports Intel 
CPUs and not an of�cialy supported product.
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Shown for x86 upto Broadwell
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Model Predictions
and Conclusions
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Transfers measured with LIKWID
using hardware performance counters

Key components are relevant to:
 >  compilers
  tile size selection
 >  architecture researchers
  impact of architectural changes on runtime
 >  of�ine optimizations
  preevaluation of instruction mix
 >  energy-ef�cient computing
  selection of cores and frequencies
 >  software developers
  explain and predict behavior


