
Supported by

FITweltweit

Federal Ministry
of Education
and Research

SKAMPY, METACCA &
SeaSite

Semi-Automatic Gathering (prototype)

Cache Simulator (stable)

Layer Conditions[3] (stable)

Execution-Cache-Memory[0] (stable) Roo�ine[2] (stable)

Intel Architecture Code Analyzer[4] (stable)

Open Source Architecture Code Analyzer
(in-development)

C Code (stable)

LLVM IR/Polly (in-development)

Metadata (prototype)

Performance Engineering by Means of Automated Performance Modeling
Friedrich-Alexander-University of Erlangen-Nuremberg, Regional Computing Center Erlangen

Julian Hammer <julian.hammer@fau.de>, Georg Hager (advisor), Gerhard Wellein (advisor)

Kernel
Req. computational
and data resources

Machine
Offered computational

and data resources

Performance
Model

Compilation of runtime prediction

In-core
prediction
Computation and
loading from/
storing to L1

Cache
prediction

Hits/Misses in all
cache levels

Vision: Automatically predicit single-node loop kernel performance on current and future architectures.

Released under AGPLv3 on
github.com/RRZE-HPC/kerncraft

High-level description of loop nest resources

LLVM-Polly �nds suitable loop nests and exports them

Restrictions:
 > no branches in inner loop body
 > only af�ne loops and array indices
 typically for dens linear algebra, stencil, streaming codes

double a[M][N][N], b[M][N][N], s;
  for(int k=1; k<M-1; ++k) for(int j=1; j<N-1; ++j) for(int i=1; i<N-1; ++i) 
 b[k][j][i] = ((a[k][j][i] + a[k][j][i-1] + a[k][j][i+1]) +
 (a[k][j-1][i]  + a[k][j-1][i-1] + a[k-1][j][i-1]) + (a[k][j+1][i] +
 a[k][j+1][i-1]  + a[k][j+1][i+1]) + (a[k-1][j][i] + a[k][j-1][i+1] +
 a[k-1][j][i+1]) + (a[k+1][j][i] + a[k+1][j][i-1] + a[k+1][j][i+1]) +
 (a[k-1][j-1][i] + a[k-1][j-1][i-1] + a[k-1][j-1][i+1]) +
 (a[k-1][j+1][i] + a[k-1][j+1][i-1] + a[k-1][j+1][i+1]) +
 (a[k+1][j-1][i] + a[k+1][j-1][i-1] + a[k+1][j-1][i+1]) +
 (a[k-1][j+1][i+1] + a[k+1][j+1][i] + a[k-1][j+1][i-1])) * s;

In-core prediction

Cache prediction

Documentation

Bandwidth from
microbenchmarks

L1

L2

L3

MEM

TOL

TnOL

TL1-L2

TL2-L3

TL3-MEM

Registers

Execution

max

sum

L1

L2

L3

MEM

TL1

TL2

TL3

TMEM

Tcore

Registers

Execution

In-core prediction

Cache prediction

Documentation

Bandwidths from
microbenchmarks

max

model name: Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz
compiler: icc: -O3 -xAVX -fno-alias

memory hierarchy:
 - level: L1
 cache per group:
 {'sets': 64, 'ways': 8, 'cl_size': 64, # 32 kB
 'replacement_policy': 'LRU', 'write_allocate': True,
 'write_back': True, 'load_from': 'L2', 'store_to': 'L2'}
 cycles per cacheline transfer: 2

benchmarks: {measurements: {MEM: {results:
 update: [18.91 GB/s, 32.43 GB/s, 37.28 GB/s, 39.98 GB/s, ...]}}

Ivy-Bridge Machine con�guration �le:
CPU & compiler

Memory subsystem

Benchmark results

L1

L2

L3

MEM

Accessed locations

Statistics on hits,
misses and evicts

Tracking of occupancy
and mappingKernel Code

Compiled AssemblyIACA Marked Assembly

Binary

IACA Analysis

Scaled IACA Analysis

Unrolling Factor

L1Execution RegistersTOL TnOL

Interactive LC Calculator:

https://rrze-hpc.github.io/layer-condition/#calculator

Analytical model for inclusive, least-recently-used caches

Complete cache simulation using pycachesim

Versatile and accurate for
thrashing effects, but slow.

Fast and may predict optimal tiling, restricted to
stencil-like patterns and steady cache behavior.
Extension to dens linear algebra is in the works.

YAML based description of hardware architecture

Generated automatically, with additional input provided
in vendor documentation.

Based on IACA tool from Intel

Open source replacement for Intel’s IACA

1. Gathering of relevant instructions from typical codes.
2. Measurement of latency, throughput and overlap of
 instructions and loads with microbenchmarks.
3. Generation of the in-core model.
4. Application to given loop-nest assembly.

Roo�ine based model with serial assumption on data
path and cache bandwidths based on documentation

In-socket scaling is derived by increasing the number
of cores, until a non-scaling resource (e.g., memory
bandwith) maxes out.

The Roo�ine model is less accurate if multiple data-
transfer bottlenecks have almost the same perfor-

mance and do not overlap perfectly.

Well known performance model with overlap assumption
on all bottlenecks, based on measured bandwidths

Very accurate, but closed source, only supports Intel
CPUs and not an of�cialy supported product.

i

j

k

i

j

k

i

j

k

Shown for x86 upto Broadwell

J. Treibig and G. Hager. Introducing a performance model for bandwidth-limited loop kernels.
In Parallel Processing and Applied Mathematics, pages 615–624. Springer Science + Business Media, 2010.
doi: 10.1007/978-3-642-14390-8_64.

[0]

S. Williams, A. Waterman, and D. Patterson. Roo�ine: An insightful visual performance model for multicore architectures.
Commun. ACM, 52(4):65–76, 2009. doi: 10.1145/1498765.1498785.

[2]

J. Hammer, J. Eitzinger, G. Hager and G. Wellein. Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels.
Tools for High Performance Computing 2016, pp 1-22, 2016. doi: 10.1007/978-3-319-56702-0_1.

[3]

I. Hirsh and Gideon S., Intel Corp. Intel Architecture Code Analyzer. Version 2.2, March 13, 2017.
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer

[4]

[1] J. Hammer, G. Hager, J. Eitzinger and G.Wellein. Automatic loop kernel analysis and performance modeling with Kerncraft.
In PMBS '15 Proceedings of the 6th International Workshop on Performance Modeling, Benchmarking,
and Simulation of High Performance Computing Systems. doi: 10.1145/2832087.2832092.

Kerncraft[1]

Model Predictions
and Conclusions

1D

1D

1D

3D

2D

2D

2D

L1
32kB

L2
256kB

L3
20MBla

y
e
r-

co
n
d
it

io
n

3D

TOLTnOL

TL1-L2

TL2-L3

TL3-MEM

ECM model prediction and measurement Data transfer prediction and measurement

1D

1D

1D

3D

2D

2D

2D

L1
32kB

L2
256kB

L3
20MBla

y
e
r-

co
n
d
it

io
n

3D

L1-L2

L2-L3

L3-MEM

Transfers measured with LIKWID
using hardware performance counters

Key components are relevant to:
 > compilers
 tile size selection
 > architecture researchers
 impact of architectural changes on runtime
 > of�ine optimizations
 preevaluation of instruction mix
 > energy-ef�cient computing
 selection of cores and frequencies
 > software developers
 explain and predict behavior

