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CHAPTER

ONE

INTRODUCTION

PSyclone, the PSy code generator, is being developed for use in finite element, finite volume and finite difference codes.
PSyclone development started with the aim to support the emerging API in the GungHo project for a finite element
dynamical core.

The GungHo project was initiated in 2011 to address challenges of weather and climate prediction on the next generation
of supercomputers. The project ran for 5 years as a collaboration between the Met Office, NERC (via NERC funded
academics) and STFC. It laid a foundation for redesign of the heart of the Met Office’s Unified Model, known as the
dynamical core, from the choices of numerical methods and model grids to the implementation of parallel algorithms
that will scale to millions of cores.

The software infrastructure based on the GungHo project recommendations is now being developed in the LFRic project
and is expected to is expected to start preparations for operational deployment in 2025. Its development is led by the
requirements to support multiple meshes and element types, thus allowing for future model development.

GungHo also proposed a novel separation of concerns for the software implementation of the dynamical core. This
approach distinguishes between three layers: the Algorithm layer, the Kernel layer and the Parallelisation System (PSy)
layer. Together this separation is termed PSyKAl.

The Algorithm layer specifies the algorithm that the scientist would like to run (in terms of calls to kernel routines and
built-in operations) and logically operates on full fields.

The Kernel layer provides the implementation of the code kernels as subroutines. These subroutines operate on local
fields (a set of elements, a vertical column, or a set of vertical columns, depending on the kernel).

The PSy layer sits in-between the algorithm and kernel layers and its primary role is to provide node-based parallel
performance for the target architecture. The PSy layer can be optimised for a particular hardware architecture, such as
multi-core, many-core, GPGPUs, or some combination thereof with no change to the algorithm or kernel layer code.
This approach therefore offers the potential for portable performance.

Rather than writing the PSy layer manually, the PSyclone code generation system can help a user to optimise the code
for a particular architecture (by providing optimisations such as blocking, loop merging, inlining etc), or alternatively,
generate the PSy layer automatically.

PSyclone is also being extended to support an API being developed in the GOcean project
<https://www.hartree.stfc.ac.uk/publications/case-studies/2016/07/15/developing-next-generation-ocean-modelling-
techniques> for two finite difference ocean model benchmarks, one of which is based on the NEMO ocean model.

1
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2 Chapter 1. Introduction



CHAPTER

TWO

GETTING GOING

2.1 Download

The following instructions are intended for a PSyclone user who wants to work with a released version of the code. If
you are a developer or wish to test a specific branch of PSyclone from the GitHub repository please see Installation in
the Developer Guide.

PSyclone is available on the Python Package Index (PyPI) and is hosted on GitHub:

https://github.com/stfc/PSyclone

The latest release is 2.3.1 and the latest stable version is on the master branch.

There are two ways to install PSyclone. The first one is directly from PyPI using pip install, see Installation from
PyPI for more detailed information.

Alternatively, PSyclone can be downloaded from GitHub - either see 2.3.1 in the Tags tab on the PSyclone page or
download and extract the latest release of PSyclone directly, e.g.

> wget https://github.com/stfc/PSyclone/archive/2.3.1.tar.gz
> tar zxf 2.3.1.tar.gz
> ls
PSyclone-2.3.1

After the source package is downloaded and unpacked, it can be installed using pip install, albeit in a slightly
different way to the PyPI installation, see Installation from source for more detailed information.

Hereon the location where you download or clone PSyclone (including the PSyclone directory itself) will be referred
to as <PSYCLONEHOME>.

2.2 Environment

In order to use PSyclone (including running the test suite and building documentation) you will need to install it. Before
starting the installation process, please refer to the Dependencies section below.

3
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2.2.1 Installation from PyPI

The simplest, and recommended, installation process is from PyPI using pip:

> pip install psyclone

for the latest available release, or:

> pip install psyclone==X.Y.Z

where X.Y.Z is the specific PSyclone release version (e.g. 2.3.1).

By default, pip will attempt a system-wide install. If you wish to do a user-local install instead then supply the --user
flag:

> pip install --user psyclone

PSyclone can also be installed to a specific location using --install-option (see pip documentation for more
detailed information):

> pip install --install-option="--prefix=/my/install/path" psyclone==X.Y.Z

Depending on the installation option (e.g. system-wide, user), PSyclone will be installed in different locations.

2.2.2 Installation from source

PSyclone can also be installed from a downloaded release or repository clone. The simplest way to do this is to use
pip with the supplied setup.py:

> cd <PSYCLONEHOME>
> pip install .

As above, this attempts a system-wide install. For a user-local install use:

> pip install --user .

and for a specific location use:

> pip install --install-option="--prefix=/my/install/path" .

If for some reason you would rather not use pip then you can run the setup manually:

> python setup.py install

or, if you do not have root access:

> python setup.py install --user

or:

> python setup.py install --install-option="--prefix=/my/install/path"

As for the PyPI installation, different installation options lead to different locations of PSyclone installation.

4 Chapter 2. Getting Going
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2.2.3 Location and structure of PSyclone installation

Location of installed Pyclone scripts, modules and other accompanying resources is similar to other Python packages:

• The psyclone script is located in <python-base-prefix>/bin directory (depending on your Linux distribu-
tion, you may need to add this location to your $PATH).

• The PSyclone Python modules are located in <python-base-prefix>/lib/pythonX.Y/site-packages di-
rectory (where X.Y is the version of Python that you are using).

• The configuration file, examples, tutorial and libraries are installed in <python-base-prefix>/share/
psyclone directory.

For a system-wide installation on Linux, <python-base-prefix> will likely be /usr and if a user-local installation
is performed it will likely be ~/.local.

For an installation to a specific location, <python-base-prefix> is simply the path given to the
--install-option="--prefix=/my/install/path". Note that if using this method, it will be necessary
to take further action to ensure PSyclone can find the configuration file installed as a part of this process.

2.2.4 Windows environment

PSyclone can also be installed in Python Windows environment using pip as described above. There are some differ-
ences in directory structure from Linux, for instance the script directory is usually called Scripts instead of bin and
the modules directory Lib instead of lib.

Installation in an Anaconda Python environment on Windows also needs to be done using pip as conda install for
PSyclone is currently not supported.

2.3 Dependencies

PSyclone is written in Python so needs Python 3 to be installed on the target machine. PSyclone is regularly tested with
Python 3.7, 3.8 and 3.11 but should work with any version >= 3.6. (The last PSyclone release to support Python 2.7
was version 2.1.0.)

PSyclone immediately relies on four external Python packages; configparser, fparser, sympy, and pyparsing.
The easiest way to satisfy the Python dependencies is to use the PyPI installation and pip.

If everything is working correctly then using pip to install PSyclone:

> pip install psyclone

will automatically install the Python dependencies.

Warning: Starting with the release 1.6.1, PSyclone will install a specific release of fparser (version specified in
the setup.py script).

In addition to the mandatory dependencies just described, PSyclone also has optional dependencies on both graphviz
and termcolor. PSyclone can use graphviz to produce a visualisation of a schedule’s dependency graph. If this is
desired then the Python package graphviz (for the Python bindings) as well as the graphviz package itself must be
installed. If the graphviz package is not available then the associated PSyclone routines will return silently and no
visualisations will be produced. The Python package termcolor is used for pretty-printing a schedule in terminals that
support coloured text. If the package is not available then the schedule is simply printed in plain text without colour
highlighting.
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2.3.1 System-specific set-up

System-specific Set-up for Users instructions are available for Ubuntu 14.04.2 and OpenSUSE 42.2.

2.3.2 fparser

The fparser package (https://github.com/stfc/fparser) is a Fortran parser originally developed as a part of the f2py
project.

fparser is available from the Python Package Index and thus may be installed using pip (https://packaging.python.
org/installing/#requirements-for-installing-packages):

> pip install fparser

If you do not have sufficient permissions to perform a system-wide install then you can instruct pip to do a user-local
install:

> pip install --user fparser

Should you wish to remove fparser then simply do:

> pip uninstall fparser

If you have already installed fparser and want to upgrade to the latest version simply do:

> pip install fparser --upgrade

Warning: Due to the above-mentioned reliance of PSyclone on a specific fparser release, it is not advisable to
install fparser independently unless it is not to be used with PSyclone. An exception is installation of PSyclone
from source for development purposes, see Installation in the Developer Guide.

2.3.3 pyparsing

PSyclone requires pyparsing, a library designed to allow parsers to be built in Python. PSyclone uses pyparsing to
parse Fortran regular expressions as fparser does not fully parse these (see here for more information).

PSyclone has been tested with pyparsing versions 1.5.2, 2.0.1 and 2.2.0.

You can test whether pyparsing is already installed on your machine by typing import pyparsing from the Python
command line. If pyparsing is installed, this command will complete successfully. If pyparsing is installed you
can check its version by typing pyparsing.__version__ after successfully importing it.

If pyparsing is not installed on your system then it may be installed from the Python Package Index using pip:

> pip install pyparsing

Should you wish to, uninstalling is simply performed by doing:

> pip uninstall pyparsing

If you do not have sufficient privileges for a system-wide install then you can instruct pip to do a user-local install:
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> pip install --user pyparsing

Alternatively, you could follow these instructions.

2.3.4 SymPy

PSyclone requires sympy, a library for symbolic mathematics. PSyclone uses sympy to reason about expression being
equal or not, e.g. i+j and j+i. PSyclone has been tested with sympy versions 1.7.1.

You can test whether sympy is already installed on your machine by typing import sympy from the Python command
line. If sympy is installed, this command will complete successfully. If sympy is installed you can check its version by
typing sympy.__version__ after successfully importing it.

If sympy is not installed on your system then it may be installed from the Python Package Index using pip:

> pip install sympy

Should you wish to, uninstalling is simply performed by doing:

> pip uninstall sympy

If you do not have sufficient privileges for a system-wide install then you can instruct pip to do a user-local install:

> pip install --user sympy

Alternatively, you could follow the instructions on the SymPy web page.

2.3.5 Graphviz

The data dependencies of a PSyIR schedule determine the validity of changes to this schedule. PSyclone supports the
visualisation of these dependencies as a graph using graphviz. This visualisation is not needed to use PSyclone.

If the Python bindings to graphviz are not installed on your system then it may be installed from the Python Package
Index using pip:

> sudo pip install graphviz

Should you wish to, uninstalling is simply performed by doing:

> sudo pip uninstall graphviz

If you do not have sufficient privileges for a system-wide install then you can instruct pip to do a user-local install:

> pip install --user graphviz

If graphviz itself is not installed on your system and your system supports the apt package manager then see below,
otherwise please refer to the download and install instructions which are available here.

If your system supports the apt package manager then it can be installed and removed in the following way:

> sudo apt install graphviz
> sudo apt remove graphviz
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2.3.6 termcolor

By default, the view() method available on any PSyIR (PSyclone Internal Representation) object prints a plain-text
representation to standard-out. However, if the termcolor package is available then PSyclone uses this to add colour
highlighting to the output text.

Installation (and uninstallation) of this package can be done via pip in exactly the same way as for graphviz, as
described above.

2.4 Configuration

Various aspects of PSyclone are configured through a configuration file, psyclone.cfg. The default version of this
file is installed to <python-base-prefix>/shared/psyclone/ during the installation process. Similar to what is
described above, if a system-wide installation is being performed then this will likely be /usr/share/psyclone/
. If a user-local installation is performed (--user flag to pip install) then the location will be something like
~/.local/share/psyclone/.

Warning: If PSyclone is installed to a non-standard location (e.g. by specifying the
--install-option="--prefix=... option to pip install) then PSyclone will not be able to find the
configuration file at execution time. There are two solutions to this: 1. copy the configuration file to a location
where PSyclone will find it (see Configuration) or 2. set the PSYCLONE_CONFIG environment variable to the
full-path to the configuration file, e.g.:

> export PSYCLONE_CONFIG=/some/path/PSyclone/config/psyclone.cfg

Warning: When installing in ‘editable’ mode (-e flag to pip), pip does not install the configuration file. You
will have to take one of the two actions described above.

See Configuration for details of the settings contained within the config file.

2.5 Test

PSyclone contains an extensive test suite, but this test suite is not part of a standard installation. If you want to run the
full test suite, you need to install PSyclone from source, see above or Installation in the Developer Guide.

2.6 Run

You are now ready to try running PSyclone on the examples. One way of doing this is to use the psyclone driver
script. Assuming it is on your PATH:

> psyclone
usage: psyclone [-h] [-oalg OALG] [-opsy OPSY] [-okern OKERN] [-api API]

[-s SCRIPT] [-d DIRECTORY] [-I INCLUDE] [-l {off,all,output}]
[-dm] [-nodm] [--kernel-renaming {multiple,single}]
[--profile {invokes,kernels}] [--config CONFIG] [--version]

(continues on next page)
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(continued from previous page)

filename
psyclone: error: the following arguments are required: filename

As indicated above, the psyclone script takes the name of the Fortran source file containing the algorithm specification
(in terms of calls to invoke()). It parses this, finds the necessary kernel source files and produces two Fortran files.
The first contains the PSy, middle layer and the second a re-write of the algorithm code to use that layer. These files
are named according to the user-supplied arguments (options -oalg and -opsy). If those arguments are not supplied
then the script writes the generated/re-written Fortran to the terminal. For details of the other command-line arguments
please see the The psyclone command Section.

Examples are provided in the examples directory of the PSyclone Git repository - if you have cloned the repository then
EGS_HOME in what follows is the root PSyclone directory. Alternatively, if you have installed PSyclone using pip then
they may be found in the share/psyclone directory under your Python installation (see above for location of PSyclone
installation. In this case you should copy the whole examples directory to some convenient location (hereafter called
EGS_HOME) before attempting to carry out the following instructions. Depending on your precise setup, you may also
need to set PSYCLONE_CONFIG to the full-path to the PSyclone configuration file (see Configuration).

There are seven subdirectories, three of which (lfric, gocean and nemo) correspond to the different APIs/domains
that are supported by PSyclone. (Note, that we are currently in the process of renaming the dynamo0.3 API to lfric.)
In this case we are going to use one of the LFRic examples:

> cd <EGS_HOME>/examples/lfric/eg1
> psyclone -api dynamo0.3 -d ../code -nodm -oalg alg.f90 \

-opsy psy.f90 ./single_invoke.x90

You should see two new files created, called alg.f90 (containing the re-written algorithm layer) and psy.f90 (con-
taining the generated PSy- or middle-layer). Since this is an LFRic example the Fortran source code has dependencies
on the LFRic system and therefore cannot be compiled stand-alone.

The PSy-layer that PSyclone creates is constructed using the PSyclone Internal Representation (PSyIR). Accessing this
is demonstrated by the print_psyir_trans.py script in the second LFRic example:

> cd <EGS_HOME>/examples/lfric/eg2
> psyclone -api dynamo0.3 -d ../code -s ./print_psyir_trans.py \

-opsy psy.f90 -oalg alg.f90 ./multi_invoke_mod.x90

Take a look at the print_psyir_trans.py script for more information. Hint; you can insert a single line in that script
in order to break into the Python interpreter during execution: import pdb; pdb.set_trace(). This then enables
interactive exploration of the PSyIR if you are interested. Alternatively, you can play with some interactive examples
on Binder.
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CHAPTER

THREE

THE PSYCLONE COMMAND

The simplest way to run PSyclone is to use the psyclone command. If you installed PSyclone using pip then this
command should be available on your PATH (see Environment for more details). Alternatively it can be found in the
<PSYCLONEHOME>/bin directory. The command takes an algorithm file as input and outputs modified algorithm code
and generated PSy code. This section walks through its functionality.

3.1 Running

The psyclone command is an executable script designed to be run from the command line, e.g.:

> psyclone <args>

The optional -h argument gives a description of the options provided by the command:

> psyclone -h
usage: psyclone [-h] [-oalg OALG] [-opsy OPSY] [-okern OKERN] [-api API]

[-s SCRIPT] [-d DIRECTORY] [-I INCLUDE] [-l {off,all,output}]
[-dm] [-nodm] [--kernel-renaming {multiple,single}]
[--profile {invokes,kernels}] [--config CONFIG] [--version]
filename

Run the PSyclone code generator on a particular file

positional arguments:
filename algorithm-layer source code

optional arguments:
-h, --help show this help message and exit
-oalg OALG filename of transformed algorithm code
-opsy OPSY filename of generated PSy code
-okern OKERN directory in which to put transformed kernels,

default is the current working directory.
-api API choose a particular api from ['dynamo0.3',

'gocean1.0', 'nemo'], default 'dynamo0.3'.
-s SCRIPT, --script SCRIPT

filename of a PSyclone optimisation script
-d DIRECTORY, --directory DIRECTORY

path to a root directory structure containing kernel
source code. Multiple roots can be specified by using
multiple -d arguments.

-I INCLUDE, --include INCLUDE

11
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path to Fortran INCLUDE or module files
-l {off,all,output}, --limit {off,all,output}

limit the Fortran line length to 132 characters
(default 'off'). Use 'all' to apply limit to both
input and output Fortran. Use 'output' to apply
line-length limit to output Fortran only.

-dm, --dist_mem generate distributed memory code
-nodm, --no_dist_mem do not generate distributed memory code
--kernel-renaming {multiple,single}

Naming scheme to use when re-naming transformed
kernels

--profile {invokes,kernels}, -p {invokes,kernels}
Add profiling hooks for either 'kernels' or 'invokes'

--config CONFIG Config file with PSyclone specific options.
--version, -v Display version information (2.3.1)

3.2 Basic Use

The simplest way to use psyclone is to provide it with an algorithm file:

> psyclone alg.f90

If the algorithm file is invalid for some reason, the command should return with an appropriate error. For example, if
we use the Python psyclone-kern script as an algorithm file we get the following:

> psyclone <PSYCLONEHOME>/bin/psyclone-kern
Parse Error: algorithm.py:parse_fp2: Syntax error in file '<PSYCLONEHOME>/bin/psyclone-
→˓kern':
at line 1
>>>#!/usr/bin/env python

If the algorithm file is valid then the modified algorithm code and the generated PSy code will be output to the terminal
screen.

3.3 Choosing the API

In the previous section we relied on PSyclone using the default API. The default API, along with the supported APIs
can be seen by running the psyclone command with the -h option.

If you use a particular API frequently and it is not the default then you can change the default by creating a copy of the
default psyclone.cfg file and editing it. See Configuration for more details.

If your code uses an API that is different to the default then you can specify this as an argument to the psyclone
command.

> psyclone -api gocean1.0 alg.f90
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3.4 File output

By default the modified algorithm code and the generated PSy code are output to the terminal. These can instead be
output to files by using the -oalg <file> and -opsy <file> options, respectively. For example, the following will
output the generated PSy code to the file ‘psy.f90’ but the algorithm code will be output to the terminal:

> psyclone -opsy psy.f90 alg.f90

If PSyclone is being used to transform Kernels then the location to write these to is specified using the -okern
<directory> option. If this is not supplied then they are written to the current working directory. By default, PSy-
clone will overwrite any kernel of the same name in that directory. To change this behaviour, the user can use the
--no_kernel_clobber option. This causes PSyclone to re-name any transformed kernel that would clash with any
of those already present in the output directory.

3.5 Algorithm files with no invokes

If psyclone is provided with a file that contains no invoke calls then the command outputs a warning to stdout and
copies the input file to stdout, or to the specified algorithm file (if the -oalg <file> option is used). No PSy code
will be output. If a file is specified using the -opsy <file> option this file will not be created.

> psyclone -opsy psy.f90 -oalg alg_new.f90 empty_alg.f90
Warning: 'Algorithm Error: Algorithm file contains no invoke() calls: refusing to
generate empty PSy code'

3.6 Kernel search directory

When an algorithm file is parsed, the parser looks for the associated kernel files. The way in which this is done requires
that any user-defined kernel routine (as opposed to Built-ins) called within an invoke must have an explicit use statement.
For example, the following code gives an error:

> cat no_use.f90
program no_use
call invoke(testkern_type(a,b,c,d,e))

end program no_use
> psyclone -api gocean1.0 no_use.f90
"Parse Error: kernel call 'testkern_type' must either be named in a use statement or be␣
→˓a recognised built-in (one of '[]' for this API)"

(If the chosen API has any Built-ins defined then these will be listed within the [] in the above error message.) If the
name of the kernel is provided in a use statement then the parser will look for a file with the same name as the module
in the use statement. In the example below, the parser will look for a file called “testkern.f90” or “testkern.F90”:

> cat use.f90
program use
use testkern, only : testkern_type
call invoke(testkern_type(a,b,c,d,e))

end program use

Therefore, for PSyclone to find kernel files, the module name of a kernel file must be the same as its filename. By
default the parser looks for the kernel file in the same directory as the algorithm file. If this file is not found then an
error is reported.

3.4. File output 13
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> psyclone use.f90
Kernel file 'testkern.[fF]90' not found in <location>

The -d option can be used to tell psyclone where to look for kernel files by supplying it with a directory. The
execution will recurse from the specified directory path to look for the required file. There must be only one instance
of the specified file within (or below) the specified directory:

> cd <PSYCLONEHOME>/src/psyclone
> psyclone -d . use.f90
More than one match for kernel file 'testkern.[fF]90' found!
> psyclone -d tests/test_files/dynamo0p3 -api dynamo0.3 use.f90
[code output]

Note: The -d option can be repeated to add as many search directories as is required, with the constraint that there
must be only one instance of the specified file within (or below) the specified directories.

3.7 Transformation script

By default the psyclone command will generate ‘vanilla’ Algorithm-layer and PSy-layer code with unmodified kernels
for the gocean1.0 and lfric (dynamo0.3) APIs. For the nemo API, psyclone will not perform any transformations on
the input code.

The -s option allows a Python script to be specified which can contain PSyclone transformations to transform the code.
This option is discussed in more detail in the Script section.

3.8 Fortran line length

By default the psyclone command will generate Fortran code with no consideration of Fortran line-length limits. As
the line-length limit for free-format Fortran is 132 characters, the code that is output may be non-conformant.

Line length is not an issue for many compilers as they allow compiler flags to be set which allow lines longer than the
Fortran standard. However this is not the case for all compilers.

When either the -l all or -l output option is specified to the psyclone command, the output will be line wrapped
so that the output lines are always within the 132 character limit.

The -l all additionally checks the parsed algorithm and kernel files for conformance and raises an error if they do
not conform.

Line wrapping is not performed by default. There are two reasons for this. This first reason is that most compilers
are able to cope with long lines. The second reason is that the line wrapping implementation could fail in certain
pathological cases. The implementation and limitations of line wrapping are discussed in the Limitations section.
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3.9 Distributed memory

By default the psyclone command will generate distributed memory (DM) code (i.e. parallelised using MPI). As with
the choice of API, this default may be configured by editing psyclone.cfg - see Configuration. Alternatively, whether
or not to generate DM code can be specified as an argument to the psyclone command using the -dm/--dist_mem
or -nodm/--no_dist_mem flags, respectively.

For details of PSyclone’s support for generating DM code see Distributed Memory.

3.10 Automatic Profiling Instrumentation

The --profile option allows the user to instruct PSyclone to automatically insert profiling calls within the generated
PSy code. Two options are provided, invokes and kernels. The first of these causes PSyclone to insert profiling-start
and -stop calls at the beginning and end of every generated invoke routine. The second puts profiling calls around every
kernel call (including the associated loops). The generated code must be linked against the PSyclone profiling interface
and the profiling tool itself. The application that calls the PSyclone-generated code is responsible for initialising and
finalising the profiling library that is being used. For full details on the use of this profiling functionality please see the
Profiling section.

3.11 Outputting of Transformed Kernels

When transforming kernels there are two use-cases to consider:

1. a given kernel will be transformed only once and that version then used from multiple, different Invokes and
Algorithms;

2. a given kernel is used from multiple, different Invokes and Algorithms and is transformed differently, depending
on the Invoke.

Whenever PSyclone is used to transform a kernel, the new kernel must be re-named in order to avoid clashing with
other possible calls to the original. By default (--kernel-renaming multiple), PSyclone generates a new, unique
name for each kernel that is transformed. Since PSyclone is run on one Algorithm file at a time, it uses the chosen
kernel output directory (-okern) to ensure that names created by different invocations do not clash. Therefore, when
building a single application, the same kernel output directory must be used for each separate invocation of PSyclone.

Alternatively, in order to support use case 1, a user may specify --kernel-renaming single: now, before trans-
forming a kernel, PSyclone will check the kernel output directory and if a transformed version of that kernel is already
present then that will be used. Note, if the kernel file on disk does not match with what would be generated then
PSyclone will raise an exception.

3.12 Fortran INCLUDE Files and Modules

For the NEMO API, if the source code to be processed by PSyclone contains INCLUDE statements then the location
of any INCLUDE’d files must be supplied to PSyclone via the -I or --include option. (This is necessary because
INCLUDE lines are a part of the Fortran language and must therefore be parsed - they are not handled by any pre-
processing step.) Multiple locations may be specified by using multiple -I flags, e.g.:

> psyclone api "nemo" -I /some/path -I /some/other/path alg.f90

If no include paths are specified then the directory containing the source file currently being parsed is searched by
default. If the specified INCLUDE file is not found then PSyclone will abort with an appropriate error.
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Attempting to specify -I/--include for any API other than NEMO will be rejected by PSyclone.

Currently, the PSyKAl-based APIs (LFRic and GOcean) will ignore (but preserve) INCLUDE statements in algorithm-
layer code. However, INCLUDE statements in kernels will, in general, cause the kernel parsing to fail unless the file(s)
referenced in such statements are in the same directory as the kernel file. Once kernel parsing has been re-implemented
to use fparser2 (issue #239) and the PSyclone Internal Representation then the behaviour will be the same as for the
NEMO API.

Since PSyclone does not attempt to be a full compiler, it does not require that the code be available for any Fortran
modules referred to by use statements. However, certain transformations do require that e.g. type information be
determined for all variables in the code being transformed. In this case PSyclone will need to be able to find and process
any referenced modules. To do this it searches in the directories specified by the -I/--include flags. (Currently this
search assumes that a module named e.g. “my_mod” will be in a file named “my_mod.*90” - see issue #1895.)

3.13 C Pre-processor #include Files

PSyclone currently only supports Fortran input. As such, if a file to be processed contains CPP #include statements
then it must first be processed by a suitable pre-processor before being passed to PSyclone. PSyclone will abort with
an appropriate error if it encounters a #include in any code being processed. This is true of all of the PSyclone APIs.
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CHAPTER

FOUR

TUTORIAL

PSyclone provides a tutorial, part of which uses Jupyter notebooks. This can be launched from a browser using binder:
https://mybinder.org/v2/gh/stfc/psyclone/master?filepath=tutorial%2Fnotebooks%2Fintroduction.ipynb/.

If PSyclone is installed on your system then you can run the tutorial locally. First find the tutorial. If you have installed
PSyclone using pip then the examples may be found in share/psyclone/tutorial/notebooks under your Python
installation (see here for possible locations). Next, copy the tutorial to a local writable space (as the notebooks will be
modified as you go through the tutorial) and change directory to this tutorial. Lastly, start up the tutorial’s introduction
jupyter-notebook introduction.ipynb.

Another part of the tutorial are practicals that provide hands-on introductions to various functionality contained in the
LFRic and NEMO APIs. The sections in the included directories are worked through using PSyclone in a “normal”
Linux environment.

Note: Hands-on practicals are not currently included in a PSyclone installation.
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CHAPTER

FIVE

EXAMPLES

Various examples of the use of PSyclone are provided under the examples directory in the Git repository. If you have
installed PSyclone using pip then the examples may be found in share/psyclone/examples under your Python
installation (see here for possible locations).

Running any of these examples requires that PSyclone be installed on the host system, see Section Getting Going. This
section is intended to provide an overview of the various examples so that a user can find one that is appropriate to them.
For details of what each example does and how to run each example please see the README.md files in the associated
directories.

Alternatively, some of the examples have associated Jupyter notebooks that may be launched with Binder on MyBinder.
This is most easily done by following the links from the top-level README.

For the purposes of correctness checking, the whole suite of examples may be executed using Gnu make (this func-
tionality is used by GitHub Actions alongside the test suite). The default target is transform which just performs
the PSyclone code transformation steps for each example. For those examples that support it, the compile target
also requests that the generated code be compiled. The notebook target checks the various Jupyter notebooks using
nbconvert.

Note: As outlined in the Run section, if working with the examples from a PSyclone installation, it is advisable to copy
the whole examples directory to some convenient location before running them. If you have copied the examples
directory but still wish to use make then you will also have to set the PSYCLONE_CONFIG environment variable to the
full path to the PSyclone configuration file, e.g. PSYCLONE_CONFIG=/some/path/psyclone.cfg make.

5.1 Compilation

Some of the examples support compilation (and some even execution of a compiled binary). Please consult the README.
md to check which ones can be compiled and executed.

As mentioned above, by default each example will execute the transform target, which performs the PSyclone code
transformation steps. In order to compile the sources, use the target compile:

make compile

which will first perform the transformation steps before compiling any created Fortan source files. If the example also
supports running a compiled and linked binary, use the target:

make run

This will first trigger compilation using the compile target, and then execute the program with any parameters that
might be required (check the corresponding README.md document for details).
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All Makefiles support the variables F90 and F90FLAGS to specify the compiler and compilation flags to use. By
default, the Gnu Fortran compiler (gfortran) is used, and the compilation flags will be set to debugging. If you want
to change the compiler or flags, just define these as environment variables:

F90=ifort F90FLAGS="-g -check bounds" make compile

To clean all compiled files (and potential output files from a run), use:

make clean

This will clean up in the examples directory. If you want to change compilers or compiler flags, you should run make
allclean, see the section about Dependencies for details.

5.1.1 Supported Compilers

All examples have been tested with the following compilers. Please let the developers know if you have problems using
a compiler that has been tested or if you are working with a different compiler so it can be recorded in this table.

Compiler Version
Gnu Fortran 9.3
Intel Fortran 17, 21
NVIDIA Fortran 23.5

5.1.2 Dependencies

Any required library that is included in PSyclone (typically the infrastructure libraries for the APIs, or PSyData wrapper
libraries) will automatically be compiled with the same compiler and compilation flags as the examples.

Note: Once a dependent library is compiled, changing the compilation flags will not trigger a recompilation of this
library. For example, if an example is first compiled with debug options, and later the same or a different example is
compiled with optimisations, the dependent library will not automatically be recompiled!

All Makefiles support an allclean target, which will not only clean the current directory, but also all libraries the
current example depends on.

Important: Using make allclean is especially important if the compiler is changed. Typically, one compiler cannot
read module information from a different compiler, and then compilation will fail.

NetCDF

Some examples require NetCDF for compilation. Installation of NetCDF is described in detail in the hands-on practicals
documentation.
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5.2 GOcean

5.2.1 Example 1: Loop transformations

Examples of applying various transformations (loop fusion, OpenMP, OpenMP Taskloop, OpenACC, OpenCL) to the
semi-PSyKAl’d version of the Shallow benchmark. (“semi” because not all kernels are called from within invoke()’s.)
Also includes an example of generating a DAG from an InvokeSchedule.

5.2.2 Example 2: OpenACC

This is a simple but complete example of using PSyclone to enable an application to run on a GPU by adding OpenACC
directives. A Makefile is included which will use PSyclone to generate the PSy code and transformed kernels and
then compile the application. This compilation requires that the dl_esm_inf library be installed/available - it is provided
as a Git submodule of the PSyclone project (see Installation in the Developers’ Guide for details on working with
submodules).

The supplied Makefile also provides a second, profile target which performs the same OpenACC transformations
but then encloses the whole of the resulting PSy layer in a profiling region. By linking this with the PSyclone NVTX
profiling wrapper (and the NVTX library itself), the resulting application can be profiled using NVIDIA’s nvprof or
nvvp tools.

5.2.3 Example 3: OpenCL

Example of the use of PSyclone to generate an OpenCL driver version of the PSy layer and OpenCL kernels. The
Makefile in this example provides a target (make compile-ocl) to compile the generated OpenCL code. This requires
an OpenCL implementation installed in the system. Read the README provided in the example folder for more details
about how to compile and execute the generated OpenCL code.

5.2.4 Example 4: Kernels containing use statements

Transforming kernels for use with either OpenACC or OpenCL requires that we handle those that access data and/or
routines via module use statements. This example shows the various forms for which support is being implemented.
Although there is support for converting global-data accesses into kernel arguments, PSyclone does not yet support
nested use of modules (i.e. data accessed via a module that in turn imports that symbol from another module) and
kernels that call other kernels (Issue #342).

5.2.5 Example 5: PSyData

This directory contains all examples that use the PSyData API . At this stage there are three runnable examples:
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Example 5.1: Kernel data extraction

This example shows the use of kernel data extraction in PSyclone. It instruments each of the two invokes in the example
program with the PSyData-based kernel extraction code. Detailed compilation instructions are in the README.md
file, including how to switch from using the stand-alone extraction library to the NetCDF-based one (see Extraction
Libraries for details).

The Makefile in this example will create the binary that extracts the data at run time, as well as two driver programs
that can read in the extracted data, call the kernel, and compare the results. These driver programs are independent of
the dl_esm_inf infrastructure library. These drivers can only read the corresponding file format, i.e. a NetCDF driver
program cannot read in extraction data that is based on Fortran IO and vice versa.

Note: At this stage the driver program still needs the infrastructure library when compiling the kernels, see #1757.

Example 5.2: Profiling

This example shows how to use the profiling support in PSyclone. It instruments two invoke statements and can link
in with any of the following profiling wrapper libraries: template, simple_timer, dl_timer, TAU, and DrHook (see
Interface to Third Party Profiling Tools). The README.md file contains detailed instructions on how to build the different
executables. By default (i.e. just using makewithout additional parameters) it links in with the template profiling library
included in PSyclone. This library just prints out the name of the module and region before and after each invoke is
executed. This example can actually be executed to test the behaviour of the various profiling wrappers, and is also
useful if you want to develop your own wrapper libraries.

Example 5.3: Read-only-verification

This example shows the use of read-only-verification with PSyclone. It instruments each of the two invokes in the exam-
ple program with the PSyData-based read-only-verification code. It uses the dl_esm_inf-specific read-only-verification
library (lib/read_only/dl_esm_inf/).

Note: The update_field_mod subroutine contains some very buggy and non-standard code to change the value of
some read-only variables and fields, even though the variables are all declared with intent(in). It uses the addresses
of variables and then out-of-bound writes to a writeable array to actually overwrite the read-only variables. Using array
bounds checking at runtime will be triggered by these out-of-bound writes.

The Makefile in this example will link with the compiled read-only-verification library. You can execute the created
binary and it will print two warnings about modified read-only variables:

--------------------------------------
Double precision field b_fld has been modified in main : update
Original checksum: 4611686018427387904
New checksum: 4638355772470722560
--------------------------------------
--------------------------------------
Double precision variable z has been modified in main : update
Original value: 1.0000000000000000
New value: 123.00000000000000
--------------------------------------
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Example 5.4: Valid Number Verification (NaN Test)

This example shows the use of valid number verification with PSyclone. It instruments each of the two invokes in
the example program with the PSyData-based NaN-verification code. It uses the dl_esm_inf-specific nan_test library
(lib/nan_test/dl_esm_inf/).

Note: The update_field_mod subroutine contains code that will trigger a division by 0 to create NaNs. If the
compiler should add floating point exception handling code, this will take effect before the NaN testing is done by the
PSyData-based verification code.

The Makefile in this example will link with the compiled nan_test library. You can execute the created binary and it
will print five warnings about invalid numbers at the indices 1 1, . . . , 5 5:

PSyData: Variable a_fld has the invalid value
Infinity at index/indices 1 1

mainupdate
...

5.2.6 Example 6: PSy-layer Code Creation using PSyIR

This example informs the development of the code generation of PSy-layer code using the PSyIR language backends.

5.3 LFRic

These examples illustrate the functionality of PSyclone for the LFRic domain.

5.3.1 Example 1: Basic Operation

Basic operation of PSyclone with an invoke() containing two kernels, one user-supplied, the other a Built-in. Code
is generated both with and without distributed-memory support. Also demonstrates the use of the -d flag to specify
where to search for user-supplied kernel code (see The psyclone command section for more details).

5.3.2 Example 2: Applying Transformations

A more complex example showing the use of PSyclone transformations to change the generated PSy-layer code. Pro-
vides examples of kernel-inlining and loop-fusion transformations.

5.3.3 Example 3: Distributed and Shared Memory

Shows the use of colouring and OpenMP for the Dynamo 0.3 API. Includes multi-kernel, named invokes with both
user-supplied and built-in kernels. Also shows the use of Wchi function space metadata for coordinate fields in LFRic.
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5.3.4 Example 4: Multiple Built-ins, Named Invokes and Boundary Conditions

Demonstrates the use of the special enforce_bc_kernel which PSyclone recognises as a boundary-condition kernel.

5.3.5 Example 5: Stencils

Example of kernels which require stencil information.

5.3.6 Example 6: Reductions

Example of applying OpenMP to an InvokeSchedule containing kernels that perform reduction operations. Two scripts
are provided, one of which demonstrates how to request that PSyclone generate code for a reproducible OpenMP
reduction. (The default OpenMP reduction is not guaranteed to be reproducible from one run to the next on the same
number of threads.)

5.3.7 Example 7: Column-Matrix Assembly Operators

Example of kernels requiring Column-Matrix Assembly operators.

5.3.8 Example 8: Redundant Computation

Example of the use of the redundant-computation and move transformations to eliminate and re-order halo exchanges.

5.3.9 Example 9: Writing to Discontinuous Fields

Demonstrates the behaviour of PSyclone for kernels that read and write quantities on horizontally-discontinuous func-
tion spaces. In addition, this example demonstrates how to write a PSyclone transformation script that only colours
loops over continuous spaces.

5.3.10 Example 10: Inter-grid Kernels

Demonstrates the use of “inter-grid” kernels that prolong or restrict fields (map between grids of different resolutions),
as well as the use of ANY_DISCONTINUOUS_SPACE function space metadata.

5.3.11 Example 11: Asynchronous Halo Exchanges

Example of the use of transformations to introduce redundant computation, split synchronous halo exchanges into asyn-
chronous exchanges (start and stop) and move the starts of those exchanges in order to overlap them with computation.
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5.3.12 Example 12: Code Extraction

Example of applying code extraction to Nodes in an Invoke Schedule:

> psyclone -nodm -s ./extract_nodes.py \
gw_mixed_schur_preconditioner_alg_mod.x90

or to a Kernel in an Invoke after applying transformations:

> psyclone -nodm -s ./extract_kernel_with_transformations.py \
gw_mixed_schur_preconditioner_alg_mod.x90

For now it only inserts comments in appropriate locations while the the full support for code extraction is being devel-
oped.

This example also contains a Python helper script find_kernel.pywhich displays the names and Schedules of Invokes
containing call(s) to the specified Kernel:

> python find_kernel.py

5.3.13 Example 13 : Kernel Transformation

Demonstrates how an LFRic kernel can be transformed. The example transformation makes Kernel values constant
where appropriate. For example, the number of levels is usually passed into a kernel by argument but the transformation
allows a particular value to be specified which the transformation then sets as a parameter in the kernel. Hard-coding
values in a kernel helps the compiler to do a better job when optimising the code.

5.3.14 Example 14: OpenACC

Example of adding OpenACC directives in the LFRic API. A single transformation script (acc_parallel.py) is
provided which demonstrates how to add OpenACC Kernels and Enter Data directives to the PSy-layer. It supports
distributed memory being switched on by placing an OpenACC Kernels directive around each (parallelisable) loop,
rather than having one for the whole invoke. This approach avoids having halo exchanges within an OpenACC Parallel
region. The script also uses ACCRoutineTrans to transform the one user-supplied kernel through the addition of an
!$acc routine directive. This ensures that the compiler builds a version suitable for execution on the accelerator
(GPU).

This script is used by the supplied Makefile. The invocation of PSyclone within that Makefile also specifies the
--profile invokes option so that each invoke is enclosed within profiling calipers (by default the ‘template’ pro-
filing library supplied with PSyclone is used at the link stage). Compilation of the example using the NVIDIA compiler
may be performed by e.g.:

> F90=nvfortran F90FLAGS="-acc -Minfo=all" make compile

Launching the resulting binary with NV_ACC_NOTIFY set will show details of the kernel launches and data transfers:

> NV_ACC_NOTIFY=3 ./example_openacc
...
Step 5 : chksm = 2.1098315506694516E-004
PreStart called for module 'main_psy' region 'invoke_2:setval_c:r2'

upload CUDA data file=PSyclone/examples/lfric/eg14/main_psy.f90 function=invoke_2␣
→˓line=183 device=0 threadid=1 variable=.attach. bytes=144
upload CUDA data file=PSyclone/examples/lfric/eg14/main_psy.f90 function=invoke_2␣

(continues on next page)
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(continued from previous page)

→˓line=183 device=0 threadid=1 variable=.attach. bytes=144
launch CUDA kernel file=PSyclone/examples/lfric/eg14/main_psy.f90 function=invoke_2␣
→˓line=186 device=0 threadid=1 num_gangs=5 num_workers=1 vector_length=128 grid=5␣
→˓block=128
PostEnd called for module 'main_psy' region 'invoke_2:setval_c:r2'

download CUDA data file=PSyclone/src/psyclone/tests/test_files/dynamo0p3/
→˓infrastructure//field/field_r64_mod.f90 function=log_minmax line=756 device=0␣
→˓threadid=1 variable=self%data(:) bytes=4312
20230807214504.374+0100:INFO : Min/max minmax of field1 = 0.30084014E+00 0.
→˓17067212E+01
...

However, performance will be very poor as, with the limited optimisations and directives currently applied, the NVIDIA
compiler refuses to run the user-supplied kernel in parallel.

5.3.15 Example 15: CPU Optimisation of Matvec

Example of optimising the LFRic matvec kernel for CPUs. This is work in progress with the idea being that PSyclone
transformations will be able to reproduce hand-optimised code.

There is one script which, when run:

> psyclone ./matvec_opt.py ../code/gw_mixed_schur_preconditioner_alg_mod.x90

will print out the modified matvec kernel code. At the moment no transformations are included (as they are work-in-
progress) so the code that is output is the same as the original (but looks different as it has been translated to PSyIR
and then output by the PSyIR Fortran back-end).

5.3.16 Example 16: Generating LFRic Code Using LFRic-specific PSyIR

This example shows how LFRic-specific PSyIR can be used to create LFRic kernel code. There is one Python script
provided which when run:

> python create.py

will print out generated LFRic kernel code. The script makes use of LFRic-specific data symbols to simplify code
generation.

5.3.17 Example 17: Runnable Simplified Examples

This directory contains three simplified LFRic examples that can be compiled and executed - of course, a suitable
Fortran compiler is required. The examples are using a subset of the LFRic infrastructure library, which is contained
in PSyclone and which has been slightly modified to make it easier to create stand-alone, non-MPI LFRic codes.
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Example 17.1: A Simple Runnable Example

The subdirectory full_example contains a very simple example code that uses PSyclone to process two invokes. It
uses unit-testing code from various classes to create the required data structures like initial grid etc. The code can be
compiled with make compile, and the binary executed with either make run or ./example.

Example 17.2: A Simple Runnable Example With NetCDF

The subdirectory full_example_netcdf contains code very similar to the previous example, but uses NetCDF to
read the initial grid from the NetCDF file mesh_BiP128x16-400x100.nc. Installation of NetCDF is described in
the hands-on practicals documentation. The code can be compiled with make compile, and the binary executed with
either make run or ./example.

Example 17.3: Kernel Data Extraction

The example in the subdirectory full_example_extract shows the use of kernel extraction. The code can be com-
piled with make compile, and the binary executed with either make run or ./extract.standalone. By default,
it will be using a stand-alone extraction library (see Extraction Libraries). If you want to use the NetCDF version, set
the environment variable TYPE to be netcdf:

TYPE=netcdf make compile

This requires the installation of a NetCDF development environment (see here for installing NetCDF). The binary will
be called extract.netcdf, and the output files will have the .nc extension.

Running the compiled binary will create two Fortran binary files or two NetCDF files if the NetCDF library was used.
They contain the input and output parameters for the two invokes in this example:

cd full_example_extraction
TYPE=netcdf make compile
./extract.netcdf
ncdump ./main-update.nc | less

5.3.18 Example 18: Special Accesses of Continuous Fields - Incrementing After
Reading and Writing Before (Potentially) Reading

Example containing one kernel with a GH_READINC access and one with a GH_WRITE access, both for continuous fields.
A kernel with GH_READINC access first reads the field data and then increments the field data. This contrasts with a
GH_INC access which simply increments the field data. As an increment is effectively a read followed by a write, it may
not be clear why we need to distinguish between these cases. The reason for distinguishing is that the GH_INC access is
able to remove a halo exchange (or at least reduce its depth by one) in certain circumstances, whereas a GH_READINC
is not able to take advantage of this optimisation.

A kernel with a GH_WRITE access for a continuous field must guarantee to write the same value to a given shared DoF,
independent of which cell is being updated. As described in the Developer Guide, this means that annexed DoFs are
computed correctly without the need to iterate into the L1 halo and thus can remove the need for halo exchanges on
those fields that are read.
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5.3.19 Example 19: Mixed Precision

This example shows the use of the LFRic mixed-precision support to call a kernel with scalars, fields and operators of
different precision.

5.3.20 Example 20: Algorithm Generation

Illustration of the use of the psyclone-kern tool to create an algorithm layer for a kernel. A makefile is provide that
also runs psyclone to create an executable program from the generated algorithm layer and original kernel code. To
see the generated algorithm layer run:

cd eg20/
psyclone-kern -gen alg ../code/testkern_mod.F90

5.4 NEMO

These examples may all be found in the examples/nemo directory.

5.4.1 Example 1: OpenMP parallelisation of tra_adv

Demonstrates the use of PSyclone to parallelise loops in a NEMO tracer-advection benchmark using OpenMP for CPUs
and for GPUs.

5.4.2 Example 2: OpenMP parallelisation of traldf_iso

Demonstrates the use of PSyclone to parallelise in some NEMO tracer-diffusion code using OpenMP for CPUs and for
GPUs.

5.4.3 Example 3: OpenACC parallelisation of tra_adv

Demonstrates the introduction of simple OpenACC parallelisation (using the data and kernels directives) for a
NEMO tracer-advection benchmark.

5.4.4 Example 4: Transforming Fortran code to the SIR

Demonstrates that simple Fortran code examples which conform to the NEMO API can be transformed to the Stencil In-
termediate Representation (SIR). The SIR is the front-end language to DAWN (https://github.com/MeteoSwiss-APN/
dawn), a tool which generates optimised cuda, or gridtools code. Thus various simple Fortran examples and the com-
putational part of the tracer-advection benchmark can be transformed to optimised cuda and/or gridtools code by using
PSyclone and then DAWN.

28 Chapter 5. Examples

https://github.com/MeteoSwiss-APN/dawn
https://github.com/MeteoSwiss-APN/dawn


PSyclone Documentation, Release 2.4.0

5.4.5 Example 5: Kernel Data Extraction

This example shows the use of kernel data extraction in PSyclone for the NEMO API. It instruments each kernel in the
NEMO tracer-advection benchmark with the PSyData-based kernel extraction code. Detailed compilation instructions
are in the README.md file, including how to switch from using the stand-alone extraction library to the NetCDF-based
one (see Extraction Libraries for details).

5.4.6 Scripts

This contains examples of two different scripts that aid the use of PSyclone with the full NEMO model. The first,
process_nemo.py is a simple wrapper script that allows a user to control which source files are transformed, which only
have profiling instrumentation added and which are ignored altogether. The second, kernels_trans.py is a PSyclone
transformation script which adds the largest possible OpenACC Kernels regions to the code being processed.

For more details see the examples/nemo/README.md file.

Note that these scripts are here to support the ongoing development of the NEMO API in PSyclone. They are not
intended as ‘turn-key’ solutions but as a starting point.

5.5 PSyIR

Examples may all be found in the examples/psyir directory. Read the README.md file in this directory for full details.

5.5.1 Example 1: Constructing PSyIR and Generating Code

create.py is a Python script that demonstrates the use of the various create methods to build a PSyIR tree from
scratch.

5.5.2 Example 2: Creating PSyIR for Structure Types

create_structure_types.py demonstrates the representation of structure types (i.e. Fortran derived types or C
structs) in the PSyIR.
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CHAPTER

SIX

LIBRARIES

PSyclone provides PSyData-API-based wrappers to various external libraries. These wrapper libraries provide PSy-
clone transformations that insert callbacks to an external library at runtime. The callbacks then allow third-party li-
braries to access data structures at specified locations in the code for different purposes, such as profiling and extraction
of argument values.

These wrapper libraries can be found under the lib directory in the Git repository. If you have installed PSyclone using
pip then the libraries may be found in share/psyclone/lib under your Python (or PSyclone, depending on the pip
install options) installation (see here for possible locations).

Note: If working with wrapper libraries from a PSyclone installation, it is advisable to copy the entire lib directory
to some convenient location before building and using them. The provided Makefiles support the options to specify
paths to the libraries and their dependencies, see compilation for more information.

6.1 Available libraries

An overview of the currently available functionality is below. For details of what each library does and how to build and
use it please see the related sections in the User Guide and the specific README.md files in the associated directories.

6.1.1 Profiling

PSyclone provides wrapper libraries for some common performance profiling tools, such as dl_timer, TAU, and Dr
Hook. More information can be found in the Profiling section.

Profiling libraries are located in the lib/profiling directory. For detailed instructions on how to build and use them
please refer to their specific README.md documentation.

6.1.2 Kernel Data Extraction

These libraries enable PSyclone to add callbacks that provide access to all input variables before, and output variables
after a kernel invocation. More information can be found in the PSy Kernel Extractor (PSyKE) section.

Example libraries that extract input and output data into a NetCDF file for LFRic (Dynamo0.3) and GOcean1.0 APIs
are included with PSyclone in the lib/extract/netcdf directory. For detailed instructions on how to build and use
these libraries please refer to their specific README.md documentation.
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6.1.3 Access Verification

Read-only libraries check that a field declared as read-only is not modified during a kernel call. More information can
be found in the Read-Only Verification section.

The libraries for LFRic (Dynamo0.3) and GOcean1.0 APIs are included with PSyclone in the lib/read_only di-
rectory. For detailed instructions on how to build and use these libraries please refer to their specific README.md
documentation.

6.1.4 NAN Test

These libraries test all input and output parameters of a kernel to make sure they are not NaN or infinite. More infor-
mation can be found in the NAN Test section.

The libraries for LFRic (Dynamo0.3) and GOcean1.0 APIs are included with PSyclone in the lib/nan_test directory.
For detailed instructions on how to build and use these libraries please refer to their specific README.md documentation.

6.2 Dependencies

Building and using the wrapper libraries requires that PSyclone be installed on the host system, see section Getting
Going. A Fortran compiler (e.g. Gnu Fortran compiler, gfortran, is free and easily installed) and Gnu Make are also
required.

The majority of wrapper libraries use Jinja templates to create PSyData-derived classes (please refer to psy_data and
Jinja Support in the Base Class for full details about the PSyData API).

Compilation of extract, nan_test, read_only and some of the profiling wrapper libraries depends on infrastructure
libraries relevant to the API they are used for. LFRic API uses the LFRic infrastructure and GOcean1.0 uses the
dl_esm_inf library. The LFRic infrastructure can be obtained from the LFRic code repository, however this requires
access to the Met Office Science Repository Service (MOSRS). A useful contact for LFRic-related questions (including
access to MOSRS) is the “lfric” mailing list which gathers the Met Office and external LFRic developers and users.
The dl_esm_inf library is freely available and can be downloaded from https://github.com/stfc/dl_esm_inf.

Some libraries require NetCDF for compilation. Installation of NetCDF is described in details in the hands-on practicals
documentation.

Profiling wrapper libraries that depend on external tools (e.g. dl_timer) require these tools be installed and configured
beforehand.

6.3 Compilation

Each library is compiled with make using the provided Makefile that has configurable options for compiler flags and
locations of dependencies.

As in case of examples, F90 and F90FLAGS specify the compiler and compilation flags to use. The default value for
F90 is gfortran.

Locations of the top-level lib directory and the required Jinja templates are specified with the PSYDATA_LIB_DIR and
LIB_TMPLT_DIR variables. For testing purposes their default values are set to relative paths to the respective directories
in the PSyclone repository.

The locations of the infrastructure libraries for LFRic and GOcean1.0 applications can be configured with the variables
LFRIC_INF_DIR and GOCEAN_INF_DIR, respectively. Their default values are set to relative paths to the locations of
these libraries in the PSyclone repository. The dl_esm_inf library is provided as a Git submodule of the PSyclone project
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(see Installation in the Developers’ Guide for details on working with submodules) and a pared-down version of LFRic
infrastructure is also available in the PSyclone repository (please refer to the README.md documentation of relevant
wrapper libraries). However, the infrastructure libraries are not available in a PSyclone installation and they need to be
downloaded separately, see Dependencies for more information. In this case LFRIC_INF_DIR and GOCEAN_INF_DIR
must be set to the exact paths to where the respective infrastructure source can be found. For instance,

GOCEAN_INF_DIR=$HOME/dl_esm_inf/finite_difference make

Profiling wrapper libraries that depend on external tools have specific variables that configure paths to where these
libraries are located in a user environment.

For more information on how to build and configure a specific library please refer to its README.md documentation.

Similar to compilation of the examples, the compiled library can be removed by running make clean. There is also
the allclean target that removes the compiled wrapper library as well as the compiled infrastructure library that the
wrapper may depend on.

The compilation of wrapper libraries was tested with the Gnu and Intel Fortran compilers, see here for the full list.
Please let the PSyclone developers know if you have problems using a compiler that has been tested or if you are
working with a different compiler.
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CHAPTER

SEVEN

SYSTEM-SPECIFIC SET-UP FOR USERS

This chapter describes the setup for a user of PSyclone. It includes all steps necessary to be able to use PSyclone. And
while you could obviously do some development, none of the required tools for testing or documentation creation will
be installed.

The System-specific Developer Set-up in the Developers’ Guide describes the additional installation of all required
tools to run tests and create documentation.

Detailed instructions are provided for Ubuntu 16.04.2 and OpenSUSE 42.2 - if you are working with a different Linux
distribution some adjustments will be necessary. You will need a terminal window open in which to enter the com-
mands.

7.1 Installing dependencies

Most required dependencies are installed from the Python Package Index (https://packaging.python.org/installing/)
using the program pip (“PIP Installs Packages”). Besides pip it is also recommended to install the graphviz package to
be able to visualise dependency graphs. This is optional and the associated routine will silently return if the graphviz
bindings are not installed.

7.1.1 Installing dependencies on Ubuntu

On Ubuntu pip and graphviz are installed using apt-get. Remember that graphviz is optional and that you’ll need
to install the graphviz package in addition to the Python bindings.

> sudo apt-get install python-pip graphviz

7.1.2 Installing dependencies on OpenSUSE

The vanilla OpenSUSE installation includes pip for Python 3. Note that the graphviz package is installed by default.

> sudo zypper install python-pip
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7.2 Installing PSyclone

Change your working directory to where you would like to place the code and download the latest stable release of
PSyclone.

> cd <PSYCLONEHOME>
> wget https://github.com/stfc/PSyclone/archive/2.3.1.tar.gz
> gunzip 2.3.1.tar.gz
> tar xf 2.3.1.tar
> rm 2.3.1.tar
> cd PSyclone-2.3.1
> export PYTHONPATH=`pwd`/src:${PYTHONPATH}
> export PATH=`pwd`/bin:${PATH}

This sets up your python path and path appropriately. You may want to set these paths permanently (e.g. by editing
your ${HOME}/.bashrc file if you run the BASH shell). You can also use the latest version using git, as described in
Installing PSyclone From GitHub.

7.3 Common installation

To avoid warnings during the dependency installation, it is recommended to update pip to the latest version:

> sudo pip install --upgrade pip

Next you need to install the fparser, pyparsing and sympy packages:

> sudo pip install fparser pyparsing sympy

Tip: With pip it is possible to install packages either system-wide (which requires root privileges) as above, or for
a single user only (in ~/.local). While the latter is only useful for one particular user, it means that PSyclone can be
installed using pip without needing root privileges. In order to install a package for a user, add the –user command
line option to all pip commands. This flag requests that the packages be installed locally for the current user rather than
requiring root access:

> pip install --user fparser pyparsing sympy

You may remove the use of sudo and add the --user option to all pip commands described in this document.

Uninstalling is simply a matter of doing:

> sudo pip uninstall fparser pyparsing sympy

PSyclone supports the ability to output a schedule dependency graph using the graphviz package. This is optional and
the associated routine will silently return if the graphviz bindings are not installed. If you have the graphviz package
installed (see especially section Installing dependencies on Ubuntu if you are on Ubuntu), you also need to install the
python bindings to the graphviz package:

> sudo pip install graphviz

If you just want to use PSyclone then you’ve installed all you need and you are ready to go to the getting-going Run
section.
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CHAPTER

EIGHT

KERNEL LAYER

In the PSyKAl separation of concerns, Kernel code (code which is created to run within the Kernel layer), operates on
a subset of a field (such as a column of cells). The reason for doing this is that it gives the PSy layer the responsibility of
calling the Kernel over the spatial domain which is where parallelism is typically exploited in finite element and finite
difference codes. The PSy layer is therefore able to call the kernel layer in a flexible way (blocked and/or in parallel for
example). Kernel code in the kernel layer is not allowed to include any parallelisation calls or directives and works on
raw Fortran arrays (to allow the compiler to optimise the code).

Since a Kernel is called over the spatial domain (by the PSy layer) it must take at least one field or operator as an
argument.

8.1 API

Kernels in the kernel layer are implemented as subroutines within Fortran modules. One or more kernel modules
are allowed, each of which can contain one or more kernel subroutines. In the example below there is one module
integrate_one_module which contains one kernel subroutine integrate_one_code. The kernel subroutines con-
tain the code that operates over a subset of the field (such as a column).

Metadata describing the kernel subroutines is required by the PSyclone system to generate appropriate PSy layer code.
The metadata is written by the kernel developer and is kept with the kernel code in the same module using a sub-type of
the kernel_type type. In the example below the w3_solver_kernel_type type specifies the appropriate metadata
information describing the kernel code for the dynamo0.3 api:

module w3_solver_kernel_mod

use kernel_mod, only : kernel_type
use constants_mod, only : r_def, i_def
use fs_continuity_mod, only : W3, Wchi
use argument_mod, only : arg_type, func_type, &

GH_FIELD, GH_SCALAR, &
GH_REAL, GH_READ, GH_WRITE, &
GH_BASIS, GH_DIFF_BASIS, &
GH_QUADRATURE_XYoZ, CELLS

implicit none

private

type, public, extends(kernel_type) :: w3_solver_kernel_type
private
type(arg_type) :: meta_args(4) = (/ &

(continues on next page)
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arg_type(GH_FIELD, GH_REAL, GH_WRITE, W3), &
arg_type(GH_FIELD, GH_REAL, GH_READ, W3), &
arg_type(GH_FIELD*3, GH_REAL, GH_READ, Wchi), &
arg_type(GH_SCALAR, GH_REAL, GH_READ) &
/)

type(func_type) :: meta_funcs(2) = (/ &
func_type(W3, GH_BASIS), &
func_type(Wchi, GH_DIFF_BASIS) &
/)

integer :: gh_shape = GH_QUADRATURE_XYoZ
integer :: operates_on = CELL_COLUMN

contains
procedure, nopass :: solver_w3_code

end type

contains

subroutine solver_w3_code(nlayers, &
x, rhs, &
chi_1, chi_2, chi_3, ascalar, &
ndf_w3, undf_w3, map_w3, w3_basis, &
ndf_w0, undf_w0, map_w0, w0_diff_basis, &
nqp_h, nqp_v, wqp_h, wqp_v)

...
end subroutine solver_w3_code

end module w3_solver_kernel_mod

8.2 Metadata

Kernel metadata is not required if the PSy layer is going to be written manually - its sole purpose is to let PSyclone
know how to generate the PSy layer. The content of Kernel metadata differs depending on the particular API and this
information can be found in the API-specific sections of this document.

In all APIs the kernel metadata is implemented as an extension of the kernel_type type. The reason for using a type
to specify metadata is that it allows the metadata to be kept with the code and for it to be compilable. In addition,
currently all APIs will contain information about the arguments in an array called meta_args, a specification of what
data the kernel code expects in a variable called operates_on and a reference to the kernel code itself as a type-bound
procedure:

type, extends(kernel_type) :: integrate_one_kernel
...
type(...) :: meta_args(...) = (/ ... /)
...
integer :: operates_on = ...
...
contains
...
procedure ...
...

end type integrate_one_kernel
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If no type-bound procedure is declared then a named interface with module procedures must be included in the module:

type, extends(kernel_type) :: integrate_one_kernel
...
type(...) :: meta_args(...) = (/ ... /)
...
integer :: operates_on = ...
...

end type integrate_one_kernel

interface ...
module procedure ...

end interface

These module procedures provide alternative implementations (using different precisions) of the kernel code. They are
selected as appropriate by the Fortran compiler, depending on the precision of the fields being passed to them.
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CHAPTER

NINE

ALGORITHM LAYER

In the PSyKAl separation of concerns, the Algorithm layer specifies the algorithm that the scientist would like to run
(in terms of calls to kernel routines and Built-in operations) and logically operates on full fields. Algorithm code in
the algorithm layer is not allowed to include any parallelisation calls or directives and passes datatypes specified by the
particular API.

9.1 API

The Algorithm layer is forbidden from calling the Kernel layer directly. In PSyclone, if the programmer would like to
call a Kernel routine or a Built-in operation from the algorithm layer they must use the invoke call (which is common
to all APIs). The invoke call is not necessary (and indeed will not work) if the PSy layer is written manually.

To make an invoke call, the algorithm layer developer adds one or more call invoke() statements to their code and
within the content of the invoke call they add a reference to the required Kernel/Built-in and the data to pass to it. For
example,

...
call invoke(integrate_one_kernel(arg1,arg2))
...

For more information on the concept of Built-in operations see the Built-ins Section. Details of which operations are
supported for a specific API are given in the documentation of that API.

The algorithm layer can consist of an arbitrary number of files containing fortran code, any of which may contain as
many invoke() calls as is required. PSyclone is applied to an individual algorithm layer file and must therefore be
run multiple times if multiple files containing invoke() calls exist in the algorithm layer.

The algorithm developer is also able to reference more than one Kernel/Built-in within an invoke. In fact this feature
is encouraged for performance reasons. As a general guideline the developer should aim to use as few invokes as
possible with as many Kernel references within them as is possible. The reason for this is that it allows for greater
freedom for optimisation in the PSy layer as PSy layer optimisations are limited to the contents of individual invoke
calls - PSyclone currently does not attempt to optimise the PSy layer over multiple invoke calls.

As well as generating the PSy layer code, PSyclone modifies the Algorithm layer code, replacing invoke calls with
calls to the generated PSy layer so that the algorithm code is compilable and linkable to the PSy layer and adding in
the appropriate use statement. For example, the above integrate_one_kernel invoke is translated into something
like the following:

...
use psy, only : invoke_0_integrate_one_kernel
...

(continues on next page)
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call invoke_0_integrate_one_kernel(arg1,arg2)
...

In addition, any use statements importing Kernels (integrate_one_kernel in this example) are removed because
they are no longer required in the transformed algorithm code.

You may have noticed from other examples in this guide that an algorithm specification in an invoke call references the
metadata type in an invoke call, not the code directly; this is by design.

For example, in the invoke call below, integrate_one_kernel is used.

...
call invoke(integrate_one_kernel(arg1,arg2))
...

integrate_one_kernel is the name of the metadata type in the module, not the name of the subroutine in the Kernel
. . .

module integrate_one_module
...
type, extends(kernel_type) :: integrate_one_kernel
...

end type
...

contains
...
subroutine integrate_one_code(...)
...
end subroutine integrate_one_code
...

end module integrate_one_module

9.1.1 Named Invokes

PSyclone permits the user to optionally specify a label for an invoke call like so:

...
call invoke(integrate_one_kernel(arg1,arg2), &

name="compute something")
...

The name argument to the invoke call is optional. If supplied it must be a string literal. The content of this string (with
any spaces replaced by ‘_’ characters) is used in naming the corresponding PSy-layer routine generated by PSyclone.
So, for the above example, the generated PSy-layer subroutine will be named “invoke_compute_something.” Each
invoke label must currently be unique within an Algorithm source file. Note that, in keeping with the Fortran language,
labels are not case sensitive and, after having any spaces replaced by underscores, must be valid Fortran names (e.g.
name="compute(1)" is invalid). In the future it is intended that the labelling of invokes will help to support invoke-
specific optimisations to be applied as well as enabling more readable profiling output. It may also be used to instruct
PSyclone to just generate a single subroutine to implement all invokes that share the same label.
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9.2 Limitations

In order to re-write the Algorithm layer, as just described, PSyclone must obviously be able to parse the invoke calls.
Since the Fortran expression parser used by PSyclone is relatively simple, this means there are limitations on what
Fortran may be used when specifying kernel arguments in an invoke call. Since these limitations can have a direct
impact on the natural science code, the PSyclone developers endeavour to keep them to a minimum.

The current list of known limitations/restrictions on the form of kernel arguments within an invoke is:

• No arithmetic expressions (e.g. kernel_type(a+b) or kernel_type(-a))

• No named (optional) arguments (e.g. kernel_type(fn(my_arg=a)))

If you encounter any other limitations (or have a burning desire to use one of the above forms) then please contact the
PSyclone developers.
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CHAPTER

TEN

PSY LAYER

In the PSyKAl separation of concerns, the PSy layer is responsible for linking together the Algorithm and Kernel layers
and for providing the implementation of any Built-in operations used. Its functional responsibilities are to

1. map the arguments supplied by an Algorithm invoke call to the arguments required by a Built-in or Kernel call
(as these will not have a one-to-one correspondence).

2. call any Kernel routines such that they cover the required iteration space and

3. perform any Built-in operations (either by including the necessary code directly in the PSy layer or by e.g. calling
a maths library) and

4. include any required distributed memory operations such as halo swaps and reductions.

Its other role is to allow the optimisation expert to optimise any required distributed memory operations, include and
optimise any shared memory parallelism and optimise for single node (e.g. cache and vectorisation) performance.

10.1 Code Generation

The PSy layer can be written manually but this is error prone and potentially complex to optimise. The PSyclone code
generation system generates the PSy layer so there is no need to write the code manually.

To generate correct PSy layer code, PSyclone needs to understand the arguments and datatypes passed by the algo-
rithm layer and the arguments and datatypes expected by the Kernel layer; it needs to know the name of the Kernel
subroutine(s); it needs to know the iteration space that the Kernel(s) is/are written to iterate over; it also needs to know
the ordering of Kernels and Built-ins as specified in the algorithm layer. Finally, it needs to know where to place any
distributed memory operations.

PSyclone determines the above information by being told the API in question (by the user), by reading the appropriate
Kernel and Built-in metadata and by reading the order of Kernels and Built-ins in an invoke call (as specified in the
algorithm layer).

PSyclone has an API-specific parsing stage which reads the algorithm layer and all associated Kernel metadata. This
information is passed to a PSy-generation stage which creates a high level view of the PSy layer. From this high level
view the PSy-generation stage can generate the required PSy code.

For example, the following Python code shows a code being parsed, a PSy-generation object being created using the
output from the parser and the PSy layer code being generated by the PSy-generation object.

from psyclone.parse.algorithm import parse
from psyclone.psyGen import PSyFactory

# This example uses the LFRic (Dynamo 0.3) API
api = "dynamo0.3"

(continues on next page)
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# Parse the file containing the algorithm specification and
# return the Abstract Syntax Tree and invokeInfo objects
ast, invokeInfo = parse("dynamo.F90", api=api)

# Create the PSy-layer object using the invokeInfo
psy = PSyFactory(api).create(invokeInfo)
# Generate the Fortran code for the PSy layer
print psy.gen

10.2 API

The PSy-layer of a single algorithm file is represented by the PSy class. The PSy class has an Invokes object which
contain one or more Invoke instances (one for each invoke in the algorithm layer). Each Invoke has an InvokeSchedule
object with the PSyIR tree that describes the PSy layer invoke subroutine. This subroutine is called by the Algorithm
layer and itself calls one or more kernels and/or implements any required Built-in operations.

All this classes can be specialised in each PSyclone API to support the specific features of the APIs. The class diagram
for the above base classes is shown below using the dynamo0.3 API as an illustration. This class diagram was generated
from the source code with pyreverse and edited with inkscape.
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The InvokeSchedule can currently contain nodes of type: Loop, Kernel, Built-in (see the Built-ins section), Directive
(of various types), HaloExchange, or GlobalSum (the latter two are only used if distributed memory is supported
and is switched on; see the Distributed Memory section). The order of the tree (depth first) indicates the order of the
associated Fortran code.

PSyclone will initially create a “vanilla” (functionally correct but not optimised) InvokeSchedule. This “vanilla” In-
vokeSchedule can be modified by changing the objects within it. For example, the order that two Kernel calls appear
in the generated code can be changed by changing their order in the tree. The ability to modify this high level view
of a InvokeSchedule allows the PSy layer to be optimised for a particular architecture (by applying optimisations such
as blocking, loop merging, inlining, OpenMP parallelisation etc.). The tree could be manipulated directly, however, to
simplify optimisation, a set of transformations are supplied. These transformations are discussed in the next section.

10.2.1 InvokeSchedule visualisation

PSyclone supports visualising an InvokeSchedule (or any other PSyIR node) in two ways. First the view() method
outputs textual information about the contents of a PSyIR node. If we were to look at the LFRic eg6 example we would
see the following output:

>>> print(schedule.view())
InvokeSchedule[invoke='invoke_0', dm=True]

0: Directive[OMP parallel do]
Schedule[]

0: Loop[type='dofs',field_space='any_space_1',it_space='dofs','upper_bound=
→˓'ndofs']

Literal[value:'NOT_INITIALISED']
Literal[value:'NOT_INITIALISED']
Literal[value:'1']
Schedule[]

0: BuiltIn setval_X_code(p,z)
1: BuiltIn X_innerproduct_Y_code(rs_old,res,z)

1: GlobalSum[scalar='rs_old']

The above output tells us that the invoke name for the InvokeSchedule we are looking at is invoke_0 and that the dis-
tributed_memory option has been switched on. Within the InvokeSchedule is an OpenMP parallel directive containing
a loop which itself contains two built-in calls. As the latter of the two built-in calls requires a reduction and distributed
memory is switched on, PSyclone has added a GlobalSum call for the appropriate scalar.

Second, the dag() method (standing for directed acyclic graph), outputs the PSyIR nodes and its data dependencies. By
default a file in dot format is output with the name dag and a file in svg format is output with the name dag.svg. The
file name can be changed using the file_name optional argument and the output file format can be changed using the
file_format optional argument. The file_format value is simply passed on to graphviz so the graphviz documentation
should be consulted for valid formats if svg is not required.

>>> schedule.dag(file_name="lovely", file_format="png")

Note: The dag method can be called from any node and will output the dag for that node and all of its children.

If we were to look at the LFRic eg6 example we would see the following image:
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In the image, all PSyIR nodes with children are split into a start vertex and an end vertex (for example the InvokeSched-
ule node has both schedule_start and schedule_end vertices). Blue arrows indicate that there is a parent to child re-
lationship (from a start node) or a child to parent relationship (to an end node). Green arrows indicate that a Node
depends on another Node later in the schedule (which we call a forward dependence). Therefore the OMP parallel loop
must complete before the globalsum is performed. Red arrows indicate that a Node depends on another Node that is
earlier in the schedule (which we call a backward dependence). However the direction of the red arrows are reversed
to improve the flow of the dag layout. In this example the forward and backward dependence is the same, however this
is not always the case. The two built-ins do not depend on each other, so they have no associated green or red arrows.

The dependence graph output gives an indication of whether nodes can be moved within the InvokeSchedule. In this
case it is valid to run the built-ins in either order. The underlying dependence analysis used to create this graph is used
to determine whether a transformation of a Schedule is valid from the perspective of data dependencies.
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ELEVEN

BUILT-INS

Built-ins (named by analogy with the native functionality provided by Python) are operations which can be specified
within an invoke call in the algorithm layer but do not require an associated kernel to be implemented as they are
provided directly by the infrastructure.

One use of Built-ins is for commonly used operations. In this case Built-ins simplify the use of the system as users do not
need to write kernel routines. Built-ins also offer a potential performance advantage as they provide a specification of
what is required without an implementation. Therefore the PSy layer is free to implement these operations in whatever
way it chooses.

Note: In general, PSyclone will need to know the types of the arguments being passed to any Built-ins. The parser
obtains this information from an API-specific file that contains the metadata for all Built-in operations supported for
that API.

Note: When a particular Built-in is used, the name of this Built-in should not be used for anything else within the
same scope. For example, it is not valid to make use of a Built-in called setval_c and for its parent subroutine to also
be called setval_c. In this case PSyclone will raise an exception.

11.1 Example

In the following example, the invoke call includes a call to two Built-ins (setval_c and X_divideby_Y) and a user-
supplied kernel (matrix_vector_kernel_mm_type). The setval_c Built-in sets all values in the field Ax to 1.0
and the X_divideby_Y Built-in divides values in the field rhs by their equivalent (per degree of freedom) values in
the field lumped_weight (see supported LFRic (Dynamo0.3) API Built-ins). Notice that, unlike the kernel call, no
use association is required for the Built-ins since they are provided as part of the environment (c.f. Fortran intrinsics
such as sin()).

module solver_mod
...
use matrix_vector_mm_mod, only: matrix_vector_kernel_mm_type
...

subroutine jacobi_solver_algorithm(lhs, rhs, mm, mesh, n_iter)

integer(kind=i_def), intent(in) :: n_iter
type(field_type), intent(inout) :: lhs
type(field_type), intent(in) :: rhs

(continues on next page)
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type(operator_type), intent(in) :: mm
type(mesh_type), intent(in) :: mesh
type(field_type) :: Ax, lumped_weight, res

real(kind=r_def), parameter :: MU = 0.9_r_def
...

! Compute mass lump
call invoke( name = "Jacobi_mass_lump", &

setval_c(Ax, 1.0_r_def), &
matrix_vector_kernel_mm_type(lumped_weight, Ax, mm), &
X_divideby_Y(lhs, rhs, lumped_weight) )

end subroutine jacobi_solver_algorithm
...

end module solver_mod

Below is an example of a kernel that is consistent with the matrix_vector_kernel_mm_type kernel specified in
the example above.

module matrix_vector_mm_mod
type, public, extends(kernel_type) :: matrix_vector_kernel_mm_type
private
type(arg_type) :: meta_args(3) = (/ &

arg_type(GH_FIELD, GH_REAL, GH_INC, ANY_SPACE_1), &
arg_type(GH_FIELD, GH_REAL, GH_READ, ANY_SPACE_1), &
arg_type(GH_OPERATOR, GH_REAL, GH_READ, ANY_SPACE_1, ANY_SPACE_1) &
/)

integer :: operates_on = CELL_COLUMN
contains
procedure, nopass :: matrix_vector_mm_code

end type
contains
subroutine matrix_vector_mm_code(cell, &

nlayers, &
lhs, x, &
ncell_3d, &
mass_matrix, &
ndf, undf, map)

end subroutine matrix_vector_mm_code
end module matrix_vector_mm_mod

We now translate the algorithm layer code and generate the PSy layer code. The algorithm code is assumed to be in
a file called solver_mod.x90 (see Example 3 in LFRic examples section). In this case we use the top level Python
interface. See the API section for different ways to translate/generate code.

> psyclone -nodm -oalg solver_mod.f90 -opsy solver_mod_psy.f90 \
> solver_mod.x90

The resultant generated algorithm code is given below.

Ignoring the difference in case (which is due to the output format of the code parser) the differences between the original
algorithm code and the translated algorithm code are:
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• The generic calls to invoke have been replaced by specific CALL invoke_<xx>. The kernel calls within the
original invoke are removed, as are duplicate arguments and any literals, leaving the five fields and one operator
as arguments;

• A use statement is added for the each of the new CALL invoke_<xx> which will call the generated PSy layer
code.

The existence of calls to Built-ins has made no difference at this point:

SUBROUTINE jacobi_solver_algorithm(lhs, rhs, mm, mesh, n_iter)
USE solver_mod_psy, ONLY: invoke_jacobi_iterloop
USE solver_mod_psy, ONLY: invoke_21
USE solver_mod_psy, ONLY: invoke_jacobi_mass_lump

IMPLICIT NONE

INTEGER(KIND = i_def), INTENT(IN) :: n_iter
TYPE(field_type), INTENT(INOUT) :: lhs
TYPE(field_type), INTENT(IN) :: rhs
TYPE(operator_type), INTENT(IN) :: mm
TYPE(mesh_type), INTENT(IN) :: mesh
TYPE(field_type) :: Ax, lumped_weight, res

REAL(KIND = r_def), PARAMETER :: MU = 0.9_r_def

INTEGER(KIND = i_def) :: iter
INTEGER(KIND = i_def) :: rhs_fs
TYPE(function_space_type) :: fs

...
CALL invoke_jacobi_mass_lump(ax, lumped_weight, mm, lhs, rhs)
...

END SUBROUTINE jacobi_solver_algorithm

A vanilla (with no distributed and shared-memory optimisations) version of the generated PSy layer is given below.
As expected, the kernel code is called from the PSy layer. However, in the case of the Built-ins, the code for these has
been written directly into the PSy layer:

• setval_c translates to the loop setting ax_proxy%data(df) = 1.0_r_def;

• X_divideby_Y translates to the loop setting lhs_proxy%data(df) = rhs_proxy%data(df) /
lumped_weight_proxy%data(df).

This example illustrates that Built-ins may be implemented in whatever way PSyclone sees fit with no change to the
algorithm and kernel layers.

MODULE solver_mod_psy
...

SUBROUTINE invoke_jacobi_mass_lump(ax, lumped_weight, mm, lhs, rhs)
USE matrix_vector_mm_mod, ONLY: matrix_vector_mm_code
TYPE(field_type), intent(in) :: ax, lumped_weight, lhs, rhs
TYPE(operator_type), intent(in) :: mm
...
!

(continues on next page)
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! Initialise field and/or operator proxies
!
ax_proxy = ax%get_proxy()
lumped_weight_proxy = lumped_weight%get_proxy()
mm_proxy = mm%get_proxy()
lhs_proxy = lhs%get_proxy()
rhs_proxy = rhs%get_proxy()
!
! Initialise number of layers
!
nlayers = ax_proxy%vspace%get_nlayers()
!
! Look-up dofmaps for each function space
!
map_aspc1_lumped_weight => lumped_weight_proxy%vspace%get_whole_dofmap()
!
! Initialise number of DoFs for aspc1_ax
!
ndf_aspc1_ax = ax_proxy%vspace%get_ndf()
undf_aspc1_ax = ax_proxy%vspace%get_undf()
!
! Initialise number of DoFs for aspc1_lumped_weight
!
ndf_aspc1_lumped_weight = lumped_weight_proxy%vspace%get_ndf()
undf_aspc1_lumped_weight = lumped_weight_proxy%vspace%get_undf()
!
! Initialise number of DoFs for aspc1_lhs
!
ndf_aspc1_lhs = lhs_proxy%vspace%get_ndf()
undf_aspc1_lhs = lhs_proxy%vspace%get_undf()
!
! Call our kernels
!
DO df=1,undf_aspc1_ax
ax_proxy%data(df) = 1.0_r_def

END DO
DO cell=1,lumped_weight_proxy%vspace%get_ncell()
!
CALL matrix_vector_mm_code(cell, nlayers, &

lumped_weight_proxy%data, &
ax_proxy%data, &
mm_proxy%ncell_3d, &
mm_proxy%local_stencil, &
ndf_aspc1_lumped_weight, &
undf_aspc1_lumped_weight, &
map_aspc1_lumped_weight(:,cell))

END DO
DO df=1,undf_aspc1_lhs
lhs_proxy%data(df) = rhs_proxy%data(df) / lumped_weight_proxy%data(df)

END DO
!

END SUBROUTINE invoke_jacobi_mass_lump

(continues on next page)

54 Chapter 11. Built-ins



PSyclone Documentation, Release 2.4.0

(continued from previous page)

...
END MODULE solver_mod_psy

This example is distributed with PSyclone and can be found in <PSYCLONEHOME>/examples/lfric/eg3.

11.2 Supported Built-in operations

The list of supported Built-ins is API-specific and therefore is described under the documentation of each API.

11.3 Adding new Built-in operations

1. Identify the PSyclone source file for the API to be extended. e.g. for the LFRic API it is src/psyclone/
domain/lfric/lfric_builtins.py.

2. Edit this source file to create the class for this new call. It must inherit from the API-specific parent class for
Built-in operations (LFRicBuiltInKern for the LFRic API).

3. Implement __str__ and gen_code() methods for this new class.

4. Add the name of the new Built-in operation and its corresponding class to the BUILTIN_MAP dictionary in that
source file.

5. Add metadata describing this call to the appropriate file specified in the BUILTIN_DEFINITIONS_FILE in that
source file. For the LFRic API this is src/psyclone/parse/lfric_builtins_mod.f90.

6. Add relevant tests to the PSyclone test files for the API to be extended. e.g. for the LFRic API they are * src/
psyclone/tests/domain/lfric/lfric_builtins_test.py, * src/psyclone/tests/domain/lfric/
lfric_integer_builtins_test.py. The tests rely on single_invoke Fortran examples in the relevant
src/psyclone/tests/test_files/ subdirectory.

7. Add an appropriate Fortran single_invoke example for the new Built-in in the relevant src/
psyclone/tests/test_files/ subdirectory. e.g. for the LFRic API it is src/psyclone/tests/
test_files/dynamo0p3/. Names of examples follow the template <category.number>.<subcategory.
number>_<built-in_name>.f90. e.g. for the LFRic API <category.number> is 15 and <built-in_name>
follows the LFRic API Built-in naming scheme.

8. Document the new Built-in in the documentation of the relevant API (e.g. doc/dynamo0p3.rst for LFRic
(Dynamo0.3) API).

If the API being extended does not currently support any Built-ins then the BUILTIN_MAP and
BUILTIN_DEFINITIONS_FILE module variables must be added to the source file for the API. A Fortran module file
must be created in the PSyclone src/parse directory (with the name specified in BUILTIN_DEFINITIONS_FILE)
containing metadata describing the Built-in operations. Finally, parse.get_builtin_defs() must be extended to
import BUILTIN_MAP and BUILTIN_DEFINITIONS_FILE for this API.
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CHAPTER

TWELVE

LFRIC (DYNAMO0.3) API

This section describes the LFRic (Dynamo0.3) application programming interface (API). This API explains what a
user needs to write in order to make use of the LFRic API in PSyclone.

As with the majority of PSyclone APIs, the LFRic (Dynamo0.3) specifies how a user needs to write the algorithm
layer and the kernel layer to allow PSyclone to generate the PSy layer. These algorithm and kernel APIs are discussed
separately in the following sections.

The LFRic API supports the Met Office’s finite element (hereafter FEM) based GungHo dynamical core (see Intro-
duction). This dynamical core with atmospheric physics parameterisation schemes is a part of the Met Office LFRic
modelling system [AFH+19], currently being developed in preparation for exascale computing in the 2020s. The LFRic
repository and the associated wiki are hosted at the Met Office Science Repository Service. The code is BSD-licensed,
however browsing the LFRic wiki and code repository requires login access to MOSRS. For more technical details on
the implementation of LFRic, please see the LFRic documentation.

12.1 Algorithm

The general requirements for the structure of an Algorithm are explained in the Algorithm layer section. This section
explains the LFRic-API-specific specialisations and extensions.

12.1.1 Example

An example LFRic (Dynamo0.3) API invoke call is given below with various different types of objects supported by
the API. These different objects and their use are discussed in the following sections.

real(kind=r_def) :: rscalar
integer(kind=i_def) :: iscalar
logical(kind=l_def) :: lscalar
integer(kind=i_def) :: stencil_extent
type(field_type) :: field1, field2, field3
type(field_type) :: field5(3), field6(3)
type(integer_field_type) :: field7
type(quadrature_type) :: qr
type(operator_type) :: operator1
type(columnwise_operator_type) :: cma_op1
...
call invoke( kernel1(field1, field2, operator1, qr), &

builtin1(rscalar, field2, field3), &
int_builtin2(iscalar, field7), &
kernel2(field1, stencil_extent, field3, lscalar), &

(continues on next page)
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assembly_kernel(cma_op1, operator1), &
name="some_calculation" &

)
call invoke( prolong_kernel_type(field1, field4), &

restrict_kernel_type(field5, field6)
)

Please see the Algorithm layer section for a description of the name argument.

Objects in the LFRic API can be categorised by their functionality as data structures and information that specifies
supported operations on a particular data structure. These data structures are represented by the five LFRic (Dynamo
0.3) API argument types: scalar, field, field vector, operator and column-wise operator. All of them except the field
vector are represented in the above example. qr represents a quadrature object which provides information required by
a kernel to operate on fields (see section Quadrature for more details).

12.1.2 Scalar

In the LFRic API a scalar is a single-valued argument that is identified with GH_SCALAR metadata. Scalar arguments
can have real, integer or logical data type in user-defined Kernels (logical data type is not supported in the
LFRic Built-ins).

12.1.3 Field

LFRic API fields, identified with GH_FIELD metadata, represent FEM discretisations of various dynamical core prog-
nostic and diagnostic variables. In FEM, variables are discretised by placing them into a function space (see Supported
Function Spaces) from which they inherit a polynomial expansion via the basis functions of that space. Field val-
ues at points within a cell are evaluated as the sum of a set of basis functions multiplied by coefficients which are
the data points. Points of evaluation are determined by a quadrature object (Quadrature) and are independent of the
function space the field is on. Placement of field data points, also called degrees of freedom (hereafter “DoFs”), is
determined by the function space the field is on. LFRic fields passed as arguments to any LFRic kernel can be of real
or integer primitive type. In the LFRic infrastructure, these fields are represented by instances of the field_type
and integer_field_type classes, respectively.

12.1.4 Field Vector

Depending on the function space a field lives on, the field data value at a point can be a scalar or a vector (see Supported
Function Spaces for the list of scalar and vector function spaces). There is an additional option, called a field vector,
to represent a bundle of either scalar- or vector-valued fields. Field vectors are represented as GH_FIELD*N where N is
the size of the vector. The 3D coordinate field, for example, has (x, y, z) scalar values at the nodes and therefore
has a vector size of 3.
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12.1.5 Operator

Represents a matrix constructed on a per-cell basis using Local Matrix Assembly (LMA) and is identified with
GH_OPERATOR metadata. In the LFRic infrastructure, operators are represented by instances of the operator_type
class. LFRic operators can only have real-valued data in user-defined Kernels (LFRic Built-ins do not currently sup-
port operators).

12.1.6 Column-wise Operator

The LFRic API has support for the construction and use of column-wise/Column Matrix Assembly (CMA) opera-
tors whose metadata identifier is GH_COLUMNWISE_OPERATOR. In the LFRic infrastructure, column-wise operators are
represented by instances of the columnwise_operator_type class. As for the LMA operators above, LFRic column-
wise operators can only have real-valued data.

As the name suggests, these are operators constructed for a whole column of the mesh. These are themselves constructed
from the Local Matrix Assembly (LMA) operators of each cell in the column. The rules governing Kernels that have
CMA operators as arguments are given in the Kernel section below.

There are three recognised Kernel types involving CMA operations; construction, application (including inverse ap-
plication) and matrix-matrix. The following example sketches-out what the use of such kernels might look like in the
Algorithm layer:

use field_mod, only: field_type
use operator_mod, only : operator_type
use columnwise_operator_mod, only : columnwise_operator_type
type(field_type) :: field1, field2, field3
type(operator_type) :: lma_op1, lma_op2
type(columnwise_operator_type) :: cma_op1, cma_op2, cma_op3
real(kind=r_def) :: alpha
...
call invoke( &

assembly_kernel(cma_op1, lma_op1, lma_op2), &
assembly_kernel2(cma_op2, lma_op1, lma_op2, field3), &
apply_kernel(field1, field2, cma_op1), &
matrix_matrix_kernel(cma_op3, cma_op1, alpha, cma_op2), &
apply_kernel(field3, field1, cma_op3), &
name="cma_example")

The above invoke uses two LMA operators to construct the CMA operator cma_op1. A second CMA operator,
cma_op2, is assembled from the same two LMA operators but also uses a field. The first of these CMA operators
is then applied to field2 and the result stored in field1 (assuming that the metadata for apply_kernel specifies
that it is the first field argument that is written to). The two CMA operators are then combined to produce a third,
cma_op3. This is then applied to field1 and the result stored in field3.

Note that PSyclone identifies the type of kernels performing column-wise operations based on their arguments as
described in metadata (see Rules for Kernels that work with CMA Operators below). The names of the kernels in the
above example are purely illustrative and are not used by PSyclone when determining kernel type.

A full example of CMA operator construction is available in examples/lfric/eg7.
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12.1.7 Quadrature

Kernels conforming to the LFRic API may require quadrature information (specified using e.g. gh_shape =
gh_quadrature_XYoZ in the kernel metadata - see Section gh_shape and gh_evaluator_targets). This informa-
tion must be passed to the kernel from the Algorithm layer in the form of one or more quadrature_type ob-
jects. These must be the last arguments passed to the kernel and must be provided in the same order that they
are specified in the kernel metadata, e.g. if the metadata for kernel pressure_gradient_kernel_type specified
gh_shape = gh_quadrature_XYoZ and that for kernel geopotential_gradient_kernel had gh_shape(2) =
(\ gh_quadrature_XYoZ, gh_quadrature_face \) then the corresponding invoke would look something like:

...
qr_xyoz = quadrature_xyoz_type(nqp_exact, rule)
qr_face = quadrature_face_type(nqp_exact, ..., rule)
call invoke(pressure_gradient_kernel_type(rhs_tmp(igh_u), rho, theta, qr_xyoz), &

geopotential_gradient_kernel_type(rhs_tmp(igh_u), geopotential, &
qr_xyoz, qr_face))

These quadrature objects specify the set(s) of points at which the basis/differential-basis functions required by the
kernel are to be evaluated.

12.1.8 Stencils

The metadata for a Kernel which operates on a cell-column may specify that a Kernel performs a stencil operation on
a field. Any such metadata must provide a stencil type. See the meta_args section for more details. The supported
stencil types are X1D, Y1D, XORY1D, CROSS, CROSS2D or REGION.

If a stencil operation is specified by the Kernel metadata the algorithm layer must provide the extent of the stencil (the
maximum distance from the central cell that the stencil extends). The LFRic API expects this information to be added
as an additional integer argument immediately after the relevant field when specifying the Kernel via an invoke.

For example:

integer(kind=i_def) :: extent = 2
call invoke(kernel(field1, field2, extent))

where field2 has kernel metadata specifying that it has a stencil access.

extent may also be passed as a literal. For example:

call invoke(kernel(field1, field2, 2))

where, again, field2 has kernel metadata specifying that it has a stencil access.

Note: The stencil extent specified in the Algorithm layer is not the same as the stencil size passed in to the Kernel.
The latter contains the number of cells in the stencil which is dependent on both the stencil type and extent.

If the Kernel metadata specifies that the stencil is of type XORY1D (which means X1D or Y1D) then the algorithm layer
must specify whether the stencil is X1D or Y1D for that particular kernel call. The LFRic API expects this information
to be added as an additional argument immediately after the relevant stencil extent argument. The argument should be
an integer with valid values being x_direction or y_direction, both being supplied by the LFRic infrastructure
via the flux_direction_mod fortran module

For example:
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use flux_direction_mod, only : x_direction
integer(kind=i_def) :: direction = x_direction
integer(kind=i_def) :: extent = 2
! ...
call invoke(kernel(field1, field2, extent, direction))

direction may also be passed as a literal. For example:

use flux_direction_mod, only : x_direction
integer(kind=i_def) :: extent = 2
! ...
call invoke(kernel(field1, field2, extent, x_direction))

If the stencil is of type CROSS2D then the arrays passed to the kernel are of different dimensions to those of other stencils.
The CROSS2D stencil is designed for use when it is necessary for a kernel to know where the stencil cells are, relative to
the current cell. For this reason, the stencil_size passed to the kernel is an array of length 4 containing sizes for each
branch of the stencil. The stencil_size array is always ordered: West, South, East, North. This branch dimension
is also part of the stencil_dofmap array making it possible to loop over each branch of the stencil individually. The
invoke call for the CROSS2D stencil remains of the same form as for other stencils.

If certain fields use the same value of extent and/or direction then the same variable, or literal value can be provided.

For example:

call invoke(kernel1(field1, field2, extent, field3, extent, direction), &
kernel2(field1, field2, extent2, field4, extent, direction))

In the above example field2 and field3 in kernel1 and field4 in kernel2 will have the same extent value but
field2 in kernel2 may have a different value. Similarly, field3 in kernel1 and field4 in kernel2 will have the
same direction value.

An example of the use of stencils is available in examples/lfric/eg5.

There is currently no attempt to perform type checking in PSyclone so any errors in the type and/or position of arguments
will not be picked up until compile time. However, PSyclone does check for the correct number of algorithm arguments.
If the wrong number of arguments is provided then an exception is raised.

For example, running test 19.2 from the LFRic (Dynamo0.3) API test suite gives:

cd <PSYCLONEHOME>/src/psyclone/tests
psyclone test_files/dynamo0p3/19.2_single_stencil_broken.f90
"Generation Error: error: expected '5' arguments in the algorithm layer but found '4'.
Expected '4' standard arguments, '1' stencil arguments and '0' qr_arguments'"

12.1.9 Inter-grid

From the Algorithm layer, an Invoke for inter-grid kernels (those that map fields between grids of different resolution)
looks much like an Invoke containing general-purpose kernels. The only restrictions to be aware of are that inter-grid
kernels accept only field or field-vectors as arguments and that an Invoke may not mix inter-grid kernels with any other
kernel type. (Hence the second, separate Invoke in the example Algorithm code given at the beginning of this Section.)
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12.2 Mixed Precision

The LFRic API supports the ability to specify the precision required by the model via precision variables. To make use
of this, the code developer must declare scalars, fields and operators in the algorithm layer with the required LFRic-
supported precision. In the current implementation there are two supported precisions for REAL data and one each for
INTEGER and LOGICAL data. The actual precision used in the code can be set in a configuration file. For example,
INTEGER data could be set to be 32-bit precision. As REAL data has more than one supported precision, different parts
of the code can be configured to have different precision.

The table below gives the currently supported datatypes, their associated kernel metadata description and their preci-
sion:

Data Type Kernel Metadata Precision
REAL(R_DEF) GH_SCALAR, GH_REAL R_DEF
REAL(R_BL) GH_SCALAR, GH_REAL R_BL
REAL(R_PHYS) GH_SCALAR, GH_REAL R_PHYS
REAL(R_SOLVER) GH_SCALAR, GH_REAL R_SOLVER
REAL(R_TRAN) GH_SCALAR, GH_REAL R_TRAN
INTEGER(I_DEF) GH_SCALAR, GH_INTEGER I_DEF
LOGICAL(L_DEF) GH_SCALAR, GH_LOGICAL L_DEF
FIELD_TYPE GH_FIELD, GH_REAL R_DEF
R_BL_FIELD_TYPE GH_FIELD, GH_REAL R_BL
R_PHYS_FIELD_TYPE GH_FIELD, GH_REAL R_PHYS
R_SOLVER_FIELD_TYPE GH_FIELD, GH_REAL R_SOLVER
R_TRAN_FIELD_TYPE GH_FIELD, GH_REAL R_TRAN
INTEGER_FIELD_TYPE GH_FIELD, GH_INTEGER I_DEF
OPERATOR_TYPE GH_OPERATOR, GH_REAL R_DEF
R_SOLVER_OPERATOR_TYPE GH_OPERATOR, GH_REAL R_SOLVER
R_TRAN_OPERATOR_TYPE GH_OPERATOR, GH_REAL R_TRAN
COLUMNWISE_OPERATOR_TYPE GH_COLUMNWISE_OPERATOR, GH_REAL R_SOLVER

As can be seen from the above table, the kernel metadata does not capture all of the precision options. For example,
from the metadata it is not possible to determine whether a REAL scalar, REAL field or REAL operator has precision
R_DEF, R_SOLVER or R_TRAN.

If a scalar, field, or operator is specified with a particular precision in the algorithm layer then any associated kernels
that it is passed to must have been written so that they support this precision. If a kernel needs to support data that can
be stored with different precisions then appropriate precision-specific subroutines should be written. These precision-
specific subroutine should be called via a generic interface (which lets Fortran choose the appropriate subroutine based
on the precision of its argument(s)).

Below is a simple example of an algorithm code calling the same generic kernel twice with potentially different preci-
sion. The implementation of the generic kernel such that it supports both 32- and 64-bit precision is also shown. The
use of LFRic names for precision in the algorithm code allows precision to be controlled in a simple way. For example,
r_solver could be set to be 32-bits in one configuration and 64-bits in another:

program test

use constants_mod, only : r_def, r_solver
use field_mod, only : field_type
use r_solver_field_mod, only : r_solver_field_type
use example_mod, only : example_type

(continues on next page)
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type(field_type) :: field_r_def
type(r_solver_field_type) :: field_r_solver
real(kind=r_def) :: x_r_def
real(kind=r_solver) :: x_r_solver

call invoke( example_type(field_r_def, x_r_def), &
example_type(field_r_solver, x_r_solver))

end program test

module example_mod

use argument_mod
use kernel_mod

implicit none

type, extends(kernel_type) :: example_type
type(arg_type), dimension(2) :: meta_args = (/ &

arg_type(gh_field, gh_real, gh_readwrite, w3), &
arg_type(gh_scalar, gh_real, gh_read ) &
/)

integer :: operates_on = cell_column
contains
procedure, nopass :: code => example_code

end type example_type

private
public :: example_code

interface example_code
module procedure example_code_32
module procedure example_code_64

end interface example_code

contains

subroutine example_code_32(..., field1, x, ...)
real*4, dimension(...), intent(inout) :: field1
real*4, intent(in) :: x
print *, "32-bit example called"

end subroutine example_code_32

subroutine example_code_64(..., field1, x, ...)
real*8, dimension(...), intent(inout) :: field1
real*8, intent(in) :: x
print *, "64-bit example called"

end subroutine example_code_64

end module example_mod

In order to support mixed precision, PSyclone needs to know the precision (as specified in the algorithm layer) of
any kernel arguments that are of a type that supports different precisions (e.g. GH_FIELD). The reason for this is that
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PSyclone needs to be able to declare data with the correct precision information within the PSy-layer to ensure that the
correct flavour of kernels are called.

PSyclone must therefore determine this information from the algorithm layer. The rules for whether PSyclone requires
information for particular LFRic datatypes and what it does with or without this information are given below:

12.2.1 Fields

PSyclone must be able to determine the datatype of a field from the algorithm layer declarations. If it is not able to do
this, PSyclone will abort with a message that indicates the problem.

Supported field types, their Fortran datatype and precisions are outlined in the table below:

Field Type Fortran Datatype Precision
field_type real r_def
r_bl_field_type real r_bl
r_phys_field_type real r_phys
r_solver_field_type real r_solver
r_tran_field_type real r_tran
integer_field_type integer i_def

12.2.2 Field Vectors

In addition to fields, LFRic supports an abstract vector type for fields, used in the LFRic solver API. Please note that
these structures are different from the field vector implementation of field bundles in the PSyclone LFRic API interface.

The LFRic abstract vector type has precision-specific implementations. If PSyclone finds such a specifically declared
field vector argument in the algorithm layer, e.g. r_solver_field_vector_type, it will assume that the actual
field being referenced is of the same datatype and precision (see above for details). The correspondence between the
available field types and their vector implementations is given in the table below (note that only real-valued fields
have abstract vector implementations for now):

Field Type Field Vector Type
field_type field_vector_type
r_bl_field_type r_bl_field_vector_type
r_phys_field_type r_phys_field_vector_type
r_solver_field_type r_solver_field_vector_type
r_tran_field_type r_tran_field_vector_type

If PSyclone finds an argument that is declared as an abstract_field_type then it will not know the actual type of
the argument. For instance, the following algorithm layer code will cause PSyclone to raise an exception:

! ...
class (abstract_vector_type), intent(inout) :: x
! ...
select type (x)
type is (field_vector_type)
call invoke(testkern_type(x%vector(1)))

class default
print *,"Error"

(continues on next page)
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end select
! ...

The suggested solution to this is to add a pointer variable to the code that is of the required type. This pointer can then
be associated with the argument and passed into the routine:

! ...
class (abstract_vector_type), target, intent(inout) :: x
type(field_vector_type), pointer :: x_ptr
! ...
select type (x)
type is (field_vector_type)
x_ptr => x
call invoke(testkern_type(x_ptr%vector(1)))

class default
print *,"Error"

end select
! ...

12.2.3 Scalars

It is not mandatory for PSyclone to be able to determine the datatype of a scalar from the algorithm layer. This constraint
was considered to be too restrictive as PSyclone currently only examines the declarations in the same source file as the
invoke when determining datatype. This means that if scalars are imported from other modules (as is often the case)
then their datatype cannot be determined.

If the precision information for a scalar is found by PSyclone then this is used. If the scalar declaration is found and
it contains no precision information then PSyclone will abort with a message that indicates the problem (since this
violates LFRic coding standards). If no declaration information is found then default precision values are used, as
specified in the PSyclone config file (r_def for real, i_def for integer and l_def for logical).

Supported precisions for scalars are outlined in the table below. If an unsupported scalar precision is found then
PSyclone will abort with a message that indicates the problem.

Fortran Datatype Supported Precision
real r_def, r_bl, r_phys, r_solver, r_tran
integer i_def
logical l_def

12.2.4 LMA Operators

PSyclone must be able to determine the datatype of an LMA operator. If it is not able to do this, PSyclone will abort
with a message that indicates the problem.

Supported LMA operator types, their Fortran datatype and precisions are outlined in the table below:

Operator Type Fortran Datatype Precision
operator_type real r_def
r_solver_operator_type real r_solver
r_tran_operator_type real r_tran
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12.2.5 Column-wise Operators

It is not mandatory for PSyclone to be able to determine the datatype of a column-wise (CMA) operator. The reason
for this is that only one datatype is supported, a columnwise_operator_type which contains real-valued data with
precision r_solver. PSyclone can therefore simply add this datatype in the PSy-layer. However, if the datatype
information is found in the algorithm layer and it is not of the expected type then PSyclone will abort with a message
that indicates the problem.

12.2.6 Consistency

If PSyclone is able to determine the datatype of an LFRic datatype then PSyclone also checks that this datatype is
consistent with the associated kernel metadata. If it is not consistent then PSyclone will abort with a message that
indicates the problem.

12.3 PSy-layer

The general details of the PSy-layer are explained in the PSy layer section. This section describes any dynamo0p3
specific issues.

12.3.1 Module name

The PSy-layer code is contained within a Fortran module. The name of the module is determined from the algorithm-
layer name with “_psy” appended. The algorithm-layer name is the algorithm’s module name if it is a module, its
subroutine name if it is a subroutine that is not within a module, or the program name if it is a program.

So, for example, if the algorithm code is contained within a module called “fred” then the PSy-layer module name will
be “fred_psy”.

Argument Intents

LFRic fields, field vectors, operators and column-wise operators are objects that contain pointers to data rather than
data. The data are accessed by proxies of these objects and modified in kernels. As the objects themselves are not
modified in the PSy layer, their Fortran intents there are always intent(in).

The Fortran intent of scalars is still defined by their access metadata as they are actual data. This means intent(in)
for GH_READ and intent(out) for GH_SUM (more details in meta_args section below).

The intent of other data structures is mandated by the relevant LFRic API rules described in sections below.

12.4 Kernel

The general requirements for the structure of a Kernel are explained in the Kernel layer section. In the LFRic API
there are five different Kernel types; general purpose, CMA, inter-grid, domain and Built-ins. In the case of built-ins,
PSyclone generates the source of the kernels. This section explains the rules for the other four, user-supplied kernel
types and then goes on to describe their metadata and subroutine arguments.

Domain kernels are distinct from the other three, user-supplied kernel types in that they must be passed data for the
whole domain rather than a single cell-column. This permits the use of kernels that have not been written to conform
to the single-column approach which simplifies the integration with existing code. Obviously, any parallelisation in the
‘domain’ kernel must be consistent with that in the rest of the application. The motivation for such kernels in LFRic is
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that they allow existing, “i-first” physics code to be called from the PSy layer. Since those routines currently contain their
own, i-first looping structure (and associated OpenMP parallelisation), the most efficient way to use them is to avoid
enclosing them within a loop in the PSy layer. This is a temporary measure and these kernels will ultimately be replaced
once the LFRic infrastructure has support for i-first kernels (https://code.metoffice.gov.uk/trac/lfric/ticket/2154). At
that point the looping (and associated parallelisation) will be put back into the PSy layer.

12.4.1 Rules for all User-Supplied Kernels that Operate on Cell-Columns

In the following, ‘operator’ refers to both LMA and CMA operator types.

1) A Kernel must have at least one argument that is a field, field vector, or operator. This rule reflects the fact that a
Kernel operates on some subset of the whole domain (e.g. a cell-column) and is therefore designed to be called
from within a loop that iterates over those subsets of the domain.

2) The continuity of the iteration space of the Kernel is determined from the function space of the modified argument
(see Section Supported Function Spaces below). If more than one argument is modified then the iteration space
is taken to be the largest required by any of those arguments. E.g. if a Kernel writes to two fields, the first on W3
(discontinuous) and the second on W1 (continuous), then the iteration space of that Kernel will be determined by
the field on the continuous space.

3) If any of the modified arguments are declared with the generic function space metadata (e.g. ANY_SPACE_<n>,
see Supported Function Spaces) and their actual space cannot be determined statically then the iteration space is
assumed to be

1) discontinuous for ANY_DISCONTINUOUS_SPACE_<n>;

2) continuous for ANY_SPACE_<n> and ANY_W2. This assumption is always safe but leads to additional com-
putation if the quantities being updated are actually on discontinuous function spaces.

4) Operators do not have halo operations operating on them as they are either cell- (LMA) or column-based (CMA)
and therefore act like discontinuous fields.

5) Any Kernel that writes to an operator will have its iteration space expanded such that valid values for the operator
are computed in the level-1 halo.

6) Any Kernel that reads from an operator must not access halos beyond level 1. In this case PSyclone will check
that the Kernel does not require values beyond the level-1 halo. If it does then PSyclone will abort.

7) Any Kernel that takes an operator argument must not also take an integer-valued field as an argument.

12.4.2 Rules specific to General-Purpose Kernels without CMA Operators

1) General-purpose kernels with operates_on = CELL_COLUMN accept arguments of any of the following types:
field, field vector, LMA operator, scalar (real, integer or logical).

2) A Kernel is permitted to write to more than one quantity (field or operator) and these quantities may be on the
same or different function spaces.

3) A Kernel may not write to a scalar argument. (Only built-ins are permitted to do this.) Any scalar arguments
must therefore be declared in the metadata as GH_READ - see below.
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12.4.3 Rules for Kernels that work with CMA Operators

The LFRic API has support for kernels that assemble, apply (or inverse-apply) column-wise/Column Matrix Assembly
(CMA) operators. Such operators may also be used by matrix-matrix kernels. There are thus three types of CMA-
related kernels. Since, by definition, CMA operators only act on data within a column, they have no horizontal depen-
dencies. Therefore, kernels that write to them may be parallelised without colouring.

All three CMA-related kernel types must obey the following rules:

1) Since a CMA operator only acts within a single column of data, stencil operations are not permitted.

2) No vector quantities (e.g. GH_FIELD*3 - see below) are permitted as arguments.

3) The kernel must operate on cell-columns.

There are then additional rules specific to each of the three CMA kernel types. These are described below.

Assembly

CMA operators are themselves constructed from Local-Matrix-Assembly (LMA) operators. Therefore, any kernel
which assembles a CMA operator must obey the following rules:

1) Have one or more LMA operators as read-only arguments.

2) Have exactly one CMA operator argument which must have write access.

3) Other types of argument (e.g. scalars or fields) are permitted but must be read-only.

Application and Inverse Application

Column-wise operators can only be applied to fields. CMA-Application kernels must therefore:

1) Have a single CMA operator as a read-only argument.

2) Have exactly two field arguments, one read-only and one that is written to.

3) The function spaces of the read and written fields must match the from and to spaces, respectively, of the supplied
CMA operator.

Matrix-Matrix

A kernel that has just column-wise operators as arguments and zero or more read-only scalars is identified as performing
a matrix-matrix operation. In this case:

1) Arguments must be CMA operators and, optionally, one or more scalars.

2) Exactly one of the CMA arguments must be written to while all other arguments must be read-only.
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12.4.4 Rules for Inter-Grid Kernels

1) An inter-grid kernel is identified by the presence of a field or field-vector argument with the optional mesh_arg
metadata element (see Inter-Grid Metadata).

2) An invoke that contains one or more inter-grid kernels must not contain any other kernel types. (This restriction
is an implementation decision and could be lifted in future if there is a need.)

3) An inter-grid kernel is only permitted to have field or field-vector arguments.

4) All inter-grid kernel arguments must have the mesh_arg metadata entry.

5) An inter-grid kernel (and metadata) must have at least one field on each of the fine and coarse meshes. Specifying
all fields as coarse or fine is forbidden.

6) Fields on different meshes must always live on different function spaces.

7) All fields on a given mesh must be on the same function space.

8) An inter-grid kernel must operate on cell-columns.

A consequence of Rules 5-7 is that an inter-grid kernel will only involve two function spaces.

12.4.5 Rules for User-Supplied Kernels that Operate on the Domain

The rules for kernels that have operates_on = DOMAIN are a subset of those for kernels that operate on a
CELL_COLUMN without CMA Operators. Specifically:

1) Only scalar, field and field vector arguments are permitted.

2) All fields must be on discontinuous function spaces.

3) Stencil accesses are not permitted.

12.4.6 Metadata

The code below outlines the elements of the LFRic (Dynamo0.3) API Kernel metadata, 1) ‘meta_args’, 2) ‘meta_funcs’,
3) ‘meta_reference_element’, 4) ‘meta_mesh’, 5) ‘gh_shape’ (gh_shape and gh_evaluator_targets), 6) ‘operates_on’
and 7) ‘procedure’:

type, public, extends(kernel_type) :: my_kernel_type
type(arg_type) :: meta_args(...) = (/ ... /)
type(func_type) :: meta_funcs(...) = (/ ... /)
type(reference_element_data_type) :: meta_reference_element(...) = (/ ... /)
type(mesh_data_type) :: meta_mesh(...) = (/ ... /)
integer :: gh_shape = gh_quadrature_XYoZ
integer :: operates_on = cell_column

contains
procedure, nopass :: my_kernel_code

end type

These various metadata elements are discussed in order in the following sections.
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meta_args

The meta_args array specifies information about data that the kernel code expects to be passed to it via its argument
list. There is one entry in the meta_args array for each scalar, field, or operator passed into the Kernel and the order
that these occur in the meta_args array must be the same as they are expected in the kernel code argument list. The
entry must be of arg_type which itself contains metadata about the associated argument. The size of the meta_args
array must correspond to the number of scalars, fields and operators passed into the Kernel.

Note: It makes no sense for a Kernel to have only scalar arguments (because the PSy layer will call a Kernel for each
point in the spatial domain) and PSyclone will reject such Kernels.

For example, if there are a total of 2 scalar / field / operator entities being passed to the Kernel then the meta_args
array will be of size 2 and there will be two arg_type entries:

type(arg_type) :: meta_args(2) = (/ &
arg_type( ... ), &
arg_type( ... ) &
/)

Argument metadata (information contained within the brackets of an arg_type entry), describes either a scalar, a
field or an operator (either LMA or CMA).

The first argument-metadata entry describes whether the data that is being passed is for a scalar (GH_SCALAR), a field
(GH_FIELD) or an operator (either GH_OPERATOR for LMA or GH_COLUMNWISE_OPERATOR for CMA). This information
is mandatory.

Additionally, argument metadata can be used to describe a vector of fields (see the Field Vector section for more details).

As an example, the following meta_args metadata describes 4 entries, the first is a scalar, the next two are fields and
the fourth is an operator. The third entry is a field vector of size 3.

type(arg_type) :: meta_args(4) = (/ &
arg_type(GH_SCALAR, GH_REAL, ...), &
arg_type(GH_FIELD, GH_INTEGER, ... ), &
arg_type(GH_FIELD*3, GH_REAL, ... ), &
arg_type(GH_OPERATOR, GH_REAL, ...) &
/)

The second item in a metadata entry describes the Fortran primitive (intrinsic) type of the data of a kernel argument.
The currently supported values are GH_REAL, GH_INTEGER and GH_LOGICAL for real, integer and logical data,
respectively. This information is mandatory. Valid data types for each LFRic API argument type are specified later in
this section (see Valid Data Types).

The third component of argument metadata describes how the Kernel makes use of the data being passed into it (the way
it is accessed within a Kernel). This information is mandatory. There are currently 6 possible values of this metadata
GH_READ, GH_WRITE, GH_READWRITE, GH_INC, GH_READINC and GH_SUM. However, not all combinations of metadata
entries are valid and PSyclone will raise an exception if an invalid combination is specified. Valid combinations are
specified later in this section (see Valid Access Modes).

• GH_READ indicates that the data is read and is unmodified.

• GH_WRITE indicates the data is modified in the Kernel before (optionally) being read. If any shared DoFs are
written to then different iterations of the Kernel must write the same value.

• GH_READWRITE indicates that different iterations of a Kernel update quantities which do not share DoFs, such
as operators and fields over discontinuous function spaces. If a Kernel modifies only discontinuous fields and/or
operators there is no need for synchronisation or colouring when running such Kernels in parallel. However,
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modifying another field with a GH_INC access in a Kernel means that synchronisation or colouring is required
for parallel runs.

• GH_INC indicates that different iterations of a Kernel make contributions to shared values. For example, values
at cell faces may receive contributions from cells on either side of the face. This means that such a Kernel needs
appropriate synchronisation (or colouring) to run in parallel.

• GH_READINC indicates that the data is first read and then subsequently incremented. Therefore this is equivalent
to a GH_READ followed by a GH_INC.

• GH_SUM is an example of a reduction and is the only reduction currently supported in PSyclone. This metadata
indicates that values are summed over calls to Kernel code.

For example:

type(arg_type) :: meta_args(6) = (/ &
arg_type(GH_OPERATOR, GH_REAL, GH_READ, ... ), &
arg_type(GH_FIELD*3, GH_REAL, GH_WRITE, ... ), &
arg_type(GH_FIELD, GH_REAL, GH_READWRITE, ... ), &
arg_type(GH_FIELD, GH_INTEGER, GH_INC, ... ), &
arg_type(GH_FIELD, GH_REAL, GH_READINC, ... ), &
arg_type(GH_SCALAR, GH_REAL, GH_SUM) &
/)

Warning: It is important that GH_INC is not incorrectly used in place of a GH_READINC access as it could result in
the reading of data from a dirty outermost halo when run in parallel, giving incorrect results. The reason for this is
that PSyclone does not add a halo exchange for the outermost modified halo level of a field before a loop that contains
a GH_INC access to that field, i.e. a loop iterating to the level-n halo will result in a halo exchange to the level-(n-1)
halo being added before the loop (which means no halo exchange is added when n==1). The reason this can be
performed is because any computation in the outermost halo will be incorrect (will only compute partial sums) and
PSyclone therefore sets this halo level to dirty after the loop has completed. There is, therefore, no reason to make
the values of the incremented field clean for the outermost modified halo. However, this optimisation does require
that any (dirty) data in the outermost modified halo does not result in exceptions. With some compilers an exception
can occur for a field that has not yet had its outermost halo data written to, i.e. if the uninitialised data is read. To
avoid this potential problem in user code it is recommended that a redundant computation transformation is added
to compute all setval_c, setval_x and setval_random Built-in calls (see Built-ins) to the same halo depth as
the associated GH_INC access - which is level-1 without any redundant computation transformations being applied
to the associated loops. This will guarantee that all data has been initialised with a value before it is incremented
and avoid any potential exceptions.

Note: In the LFRic API only Built-ins are permitted to write to scalar arguments (and hence perform reductions). Fur-
thermore, this permission is currently restricted to real scalars (GH_SCALAR, GH_REAL) as the LFRic infrastructure
does not yet support integer and logical reductions.

For a scalar, the argument metadata contains only these three entries. However, fields and operators require further
entries specifying function-space information. The meaning of these further entries differs depending on whether a
field or an operator is being described.

In the case of an operator, the fourth and fifth arguments describe the to and from function spaces respectively. In the
case of a field the fourth argument specifies the function space that the field lives on. More details about the supported
function spaces are in subsection Supported Function Spaces.

For example, the metadata for a kernel that applies a column-wise operator to a field might look like:
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type(arg_type) :: meta_args(3) = (/ &
arg_type(GH_FIELD, GH_REAL, GH_INC, W1), &
arg_type(GH_FIELD, GH_REAL, GH_READ, W2H), &
arg_type(GH_COLUMNWISE_OPERATOR, GH_REAL, GH_READ, W1, W2H) &
/)

In some cases a Kernel may be written so that it works for fields and/or operators from any type of a vector W2* space (all
W2* spaces except for the W2*trace spaces, see Section Supported Function Spaces below). In this case the metadata
should be specified as being ANY_W2.

Warning: In the current implementation it is assumed that all fields and/or operators specifying ANY_W2 within
a kernel will use the same function space. It is up to the user to ensure this is the case as otherwise invalid code
would be generated.

It may be that a Kernel is written such that a field and/or operators may be on/map-between any function space(s). In
this case the metadata should be specified as being one of ANY_SPACE_1, . . . , ANY_SPACE_<nmax> (see Supported
Function Spaces), with the number of spaces, <nmax>, being set in the PSyclone configuration file (see here for more
details on this option).

If the generic function spaces are known to be discontinuous the metadata may be specified as being one of
ANY_DISCONTINUOUS_SPACE_1, . . . , ANY_DISCONTINUOUS_SPACE_<nmax> in order to avoid unnecessary compu-
tation into the halos (see rules for user-supplied kernels above). The reason for having different names is that a Kernel
might be written to allow 2 or more arguments to be able to support any function space but for a particular call the
function spaces may have to be the same as each other. Again, <nmax> is the configurable number of generalised
discontinuous function spaces.

In the example below, the first field entry supports any function space but it must be the same as the operator’s to
function space. Similarly, the second field entry supports any function space but it must be the same as the operator’s
from function space. Note, the metadata does not forbid ANY_SPACE_1 and ANY_SPACE_2 from being the same.

type(arg_type) :: meta_args(3) = (/ &
arg_type(GH_FIELD, GH_REAL, GH_INC, ANY_SPACE_1), &
arg_type(GH_FIELD*3, GH_REAL, GH_INC, ANY_SPACE_2), &
arg_type(GH_OPERATOR, GH_REAL, GH_READ, ANY_SPACE_1, ANY_SPACE_2) &
/)

Note also that the scope of this naming of any-space function spaces is restricted to the argument list of individ-
ual kernels. I.e. if an Invoke contains say, two kernel calls that each support arguments on any function space, e.g.
ANY_SPACE_1, there is no requirement that these two function spaces be the same. Put another way, if an Invoke con-
tained two calls of a kernel with arguments described by the above metadata then the first field argument passed to each
kernel call need not be on the same space.

Valid Data Types

As mentioned earlier, the currently supported Fortran primitive (intrinsic) types for kernel argument data are real,
integer and logical, described by the GH_REAL, GH_INTEGER and GH_LOGICAL metadata descriptors. Supported
data types for each argument type are given in the table below (please note that field vectors follow the same rules as
the LFRic fields):
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Argument Type Data Type
GH_SCALAR GH_REAL, GH_INTEGER, GH_LOGICAL
GH_FIELD GH_REAL, GH_INTEGER
GH_OPERATOR GH_REAL
GH_COLUMNWISE_OPERATOR GH_REAL

Valid Access Modes

As mentioned earlier, not all combinations of metadata are valid. Valid combinations for each argument type
in user-defined Kernels are summarised here. All argument types (GH_SCALAR, GH_FIELD, GH_OPERATOR and
GH_COLUMNWISE_OPERATOR) may be read within a Kernel and this is specified in metadata using GH_READ. At least
one kernel argument must be listed as being modified. When data is modified in a user-supplied Kernel (i.e. a Ker-
nel that operates on a CELL_COLUMN, see iteration space metadata) then the permitted access modes depend upon the
argument type and the function space it is on:

Argument Type Function Space Access Type
GH_SCALAR n/a GH_READ
GH_FIELD Discontinuous GH_READ, GH_WRITE, GH_READWRITE
GH_FIELD Continuous GH_READ, GH_WRITE, GH_INC, GH_READINC
GH_OPERATOR Any for both ‘to’ and ‘from’ GH_READ, GH_WRITE, GH_READWRITE
GH_COLUMNWISE_OPERATOR Any for both ‘to’ and ‘from’ GH_READ, GH_WRITE, GH_READWRITE

Note that scalar arguments to user-defined Kernels must be read-only. Only Built-ins are permitted to modify scalar
arguments. In practice this means that the only allowed access for the scalars in user-defined Kernels is GH_READ (see
the allowed accesses for arguments in Built-ins in the section below).

Note also that a GH_FIELD argument that has GH_WRITE or GH_READWRITE as its access pattern must typically (see
below) be on a horizontally-discontinuous function space (see Supported Function Spaces for the list of discontinuous
function spaces). Parallelisation of the loop over the horizontal domain for a Kernel that updates such a field will not
require colouring for either of the above cases (since there are no shared entities).

There is however an exception to this - certain Kernels may write to shared entities but each Kernel iteration is guaran-
teed to write the same value to a given shared DoF. In this case, provided that the first access to any such shared DoF
is a write, the loop containing such a Kernel may be parallelised without colouring. Therefore, GH_WRITE access is
permitted for GH_FIELD arguments on continuous function spaces. Obviously, care must be taken to ensure that the
Kernel implementation satisfies the constraints just described as PSyclone cannot currently check this.

If a field is described as being on ANY_SPACE_*, there is currently no way to determine its continuity from the metadata
(unless we can statically determine the space of the field being passed in). At the moment this type of a user-supplied
Kernel is always treated as if it is updating a field that is on a function space that is continuous in the horizontal, even
if it is not (see rules for user-supplied kernels above).

There is no restriction on the number and function spaces of other quantities that a general-purpose kernel can modify
other than that it must modify at least one. The rules for kernels involving CMA operators, however, are stricter and only
one argument may be modified (the CMA operator itself for assembly, a field for CMA-application and a CMA operator
for matrix-matrix kernels). If a kernel writes to quantities on different function spaces then PSyclone generates loop
bounds appropriate to the largest iteration space. This means that if a single kernel updates one quantity on a continuous
function space and one on a discontinuous space then the resulting loop will include cells in the level-1 halo since they
are required for a quantity on a continuous space. As a consequence, any quantities on a discontinuous space will then
be computed redundantly in the level-1 halo. Currently PSyclone makes no attempt to take advantage of this (by e.g.
setting the appropriate level-1 halo to ‘clean’).
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PSyclone ensures that both CMA and LMA operators are computed (redundantly) out to the level-1 halo cells. This
permits their use in kernels which modify quantities on continuous function spaces and also in subsequent redundant
computation of other quantities on discontinuous function spaces. In conjunction with this, PSyclone also checks (when
generating the PSy layer) that any kernels which read operator values do not do so beyond the level-1 halo. If any such
accesses are found then PSyclone aborts.

Supported Function Spaces

As mentioned in the Field and Field Vector sections, the function space of an argument specifies how it maps onto
the underlying topology and, additionally, whether the data at a point is a vector. In LFRic API the dimension of the
basis function set for the scalar function spaces is 1 and for the vector function spaces is 3 (see the table in Rules for
General-Purpose Kernels for the dimensions of the basis and differential basis functions).

Function spaces can share DoFs between cells in the horizontal, vertical or both directions. Depending on the function
space and FEM order, the shared DoFs can lie on one or more cell entities (faces, edges and vertices) in each direction.
This property is referred to as the continuity of a function space (horizontal, vertical or full). Alternatively, if there
are no shared DoFs a function space is described as discontinuous (fully or in a particular direction).

The mixed FEM formulation is built on a foundation set of four function spaces described below.

• W0 is the space of scalar functions with full continuity. The shared DoFs lie on cell vertices in the lowest order
FEM and on all three entities in higher order FEM.

• W1 is the space of vector functions with full continuity in the tangential direction only. In the lowest order FEM
the shared DoFs lie on cell edges for each component, whereas in higher order they also lie on cell faces.

• W2 is the space of vector functions with full continuity in the normal direction only. The shared DoFs lie on cell
faces for each component.

• W3 is the space of scalar functions with full discontinuity. All DoFs lie within the cell volume and are not shared
across the cell boundaries.

Other spaces required for representation of scalar or component-wise vector variables are:

• Wtheta is the space of scalar functions based on the vertical part of W2, discontinuous in the horizontal and
continuous in the vertical;

• W2H is the space of vector functions based on the horizontal part of W2, continuous in the horizontal and discon-
tinuous in the vertical;

• W2V is the space of vector functions based on the vertical part of W2, discontinuous in the horizontal and contin-
uous in the vertical;

• W2broken is the space of vector functions, locally identical to the W2 space. However, DoFs are topologically
discontinuous in all directions despite their placement on cell faces;

• W2trace is the space of scalar functions defined only on cell faces, resulting from taking the trace of a W2 space.
DoFs are shared between faces, hence making this space fully continuous;

• W2Htrace is the space of scalar functions defined only on cell faces in the horizontal, resulting from taking
the trace of a W2H space. DoFs are shared between horizontal faces, hence making this space continuous in the
horizontal and discontinuous in the vertical;

• W2Vtrace is the space of scalar functions defined only on cell faces in the vertical, resulting from taking the trace
of a W2V space. DoFs are shared between vertical faces, hence making this space discontinuous in the horizontal
and continuous in the vertical;

• Wchi is the space of scalar functions used to store coordinates in LFRic. It is fully discontinuous except for the
coordinate order 0 when it becomes the W0 space (i.e. fully continuous). Please see the next section for more
details on this function space.
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In addition to the specific function space metadata, there are also three generic function space metadata descriptors
mentioned in sections above:

• ANY_SPACE_<n>, n = 1, 2, . . . nmax, for when the function space of the argument(s) cannot be determined and/or
for when a Kernel has been written so that it works with fields on any of the available spaces (as mentioned in
the meta_args section, the number of spaces, <nmax>, is configurable);

• ANY_DISCONTINUOUS_SPACE_<n>, n = 1, 2, . . . nmax, for when the function space of the argument(s) cannot
be determined but is known to be discontinuous and/or for when a Kernel has been written so that it works with
fields on any of the discontinuous spaces (again, the number of spaces, <nmax>, is configurable);

• ANY_W2 for any type of a vector W2* function space, i.e. W2, W2H, W2V and W2broken but not W2*trace spaces.

As mentioned previously , ANY_SPACE_<n> and ANY_W2 function space types are treated as continuous while
ANY_DISCONTINUOUS_SPACE_<n> spaces are treated as discontinuous.

Note: The name and use of ANY_W2metadata (e.g. continuity and vector or/and scalar basis of W2* spaces the metadata
can represent) are being reviewed in PSyclone issue #540.

Since the LFRic API operates on columns of data, function spaces are categorised as continuous or discontinuous with
regard to their continuity in the horizontal. For example, a GH_FIELD that specifies GH_INC as its access pattern (see
:ref:dynamo0.3-kernel-valid-access: above) may be continuous in the vertical (and discontinuous in the horizontal),
continuous in the horizontal (and discontinuous in the vertical), or continuous in both. In each case the code is the same.
This principle of horizontal continuity also applies to the three generic ANY_*_* function space identifiers above. The
valid metadata values for continuous and discontinuous function spaces are summarised in the table below.

Function Space Continuity Function Space Name
Continuous W0, W1, W2, W2H, W2trace, W2Htrace, ANY_W2, ANY_SPACE_<n>
Discontinuous W2broken, W2V, W2Vtrace, W3, Wtheta, ANY_DISCONTINUOUS_SPACE_<n>

Horizontally discontinuous function spaces and fields over them will not need colouring so PSyclone does not perform
it. If such attempt is made, PSyclone will raise a Generation Error in the Dynamo0p3ColourTrans transformation
(see Transformations for more details on transformations). An example of fields iterating over a discontinuous function
space Wtheta is given in examples/lfric/eg9, with the GH_READWRITE access descriptor denoting an update to
the relevant fields. This example also demonstrates how to only colour loops over continuous function spaces when
transformations are applied.

Read-Only Function Spaces

LFRic supports the concept of a read-only function space. A field on such a function space must not be modified by
any kernels contained within invoke calls (i.e. within any code that PSyclone is responsible for). Further, a field on a
read-only function space must contain clean halos in order to avoid any halo exchanges that would occur if the field is
read within a kernel where redundant computation is performed.

The primary reason for including a read-only function space is that it does not need any halo-exchange support e.g. it
does not require a routing table, which can reduce the memory footprint.

Currently Wchi is the only read-only function space in LFRic.

As a read-only function space is not modified, it does not matter whether it is classified as continuous or discontinuous.
LFRic therefore treats read-only as a third category of function space.
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Optional Field Metadata

A field entry in the meta_args array may have an optional fifth element. This element describes either a stencil access
or, for inter-grid kernels, which mesh the field is on. Since an inter-grid kernel is not permitted to have stencil accesses,
these two options are mutually exclusive. The metadata for each case is described in the following sections.

Stencil Metadata

Stencil metadata specifies that the corresponding field argument is accessed as a stencil operation within the Kernel.
Stencil metadata only makes sense if the associated field is read within a Kernel i.e. it only makes sense to specify
stencil metadata if the first entry is GH_FIELD and the second entry is GH_READ.

Stencil metadata is written in the following format:

STENCIL(type)

where type may be one of X1D, Y1D, XORY1D, CROSS, CROSS2D or REGION. As the stencil extent (the maximum
distance from the central cell that the stencil extends) is not provided in the metadata, it is expected to be provided by
the algorithm writer as part of the invoke call (see Section Stencils). As there is currently no way to specify a fixed
extent value for stencils in the Kernel metadata, Kernels must therefore be written to support different values of extent
(i.e. stencils with a variable number of cells).

The XORY1D stencil type indicates that the Kernel can accept either X1D or Y1D stencils. In this case it is up to the
algorithm developer to specify which of these it is from the algorithm layer as part of the invoke call (see Section
Stencils).

For example, the following stencil (with extent=2):

| 3 | 2 | 1 | 4 | 5 |

would be declared as:

STENCIL(X1D)

and the following stencil (with extent=2):

| | | 9 | | |
| | | 8 | | |
| 3 | 2 | 1 | 6 | 7 |
| | | 4 | | |
| | | 5 | | |

would be declared as:

STENCIL(CROSS)

The REGION stencil references a block of cells:

| 9 | 8 | 7 |
| 2 | 1 | 6 |
| 3 | 4 | 5 |

and would be declared as:
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STENCIL(REGION)

Below is an example of stencil information within the full kernel metadata:

type(arg_type) :: meta_args(3) = (/ &
arg_type(GH_FIELD, GH_REAL, GH_INC, W1), &
arg_type(GH_FIELD, GH_REAL, GH_READ, W2H, STENCIL(CROSS)), &
arg_type(GH_OPERATOR, GH_REAL, GH_READ, W1, W2H) &
/)

There is a full example of this distributed with PSyclone. It may be found in examples/lfric/eg5.

Inter-Grid Metadata

The alternative form of the optional fifth metadata argument for a field specifies which mesh the associated field is on.
This is required for inter-grid kernels which perform prolongation or restriction operations on fields (or field vectors)
existing on grids of different resolutions.

Mesh metadata is written in the following format:

mesh_arg=type

where type may be one of GH_COARSE or GH_FINE. Any kernel having a field argument with this metadata is assumed
to be an inter-grid kernel and, as such, all of its other arguments (which must also be fields) must have it specified too.
An example of the metadata for such a kernel is given below:

type(arg_type) :: meta_args(2) = (/ &
arg_type(GH_FIELD, GH_REAL, GH_READWRITE, ANY_DISCONTINUOUS_SPACE_1, &

mesh_arg=GH_COARSE), &
arg_type(GH_FIELD, GH_REAL, GH_READ, ANY_DISCONTINUOUS_SPACE_2, &

mesh_arg=GH_FINE ) &
/)

Note that an inter-grid kernel must have at least one field (or field- vector) argument on each mesh type. Fields that
are on different meshes cannot be on the same function space while those on the same mesh must also be on the same
function space.

Column-wise Operators (CMA)

In this section we provide example metadata for each of the three recognised kernel types involving CMA operators.

Column-wise operators are constructed from cell-wise (local) operators. Therefore, in order to assemble a CMA
operator, a kernel must have at least one read-only LMA operator, e.g.:

type(arg_type) :: meta_args(2) = (/ &
arg_type(GH_OPERATOR, GH_REAL, GH_READ, ANY_SPACE_1, ANY_SPACE_2), &
arg_type(GH_COLUMNWISE_OPERATOR, GH_REAL, GH_WRITE, ANY_SPACE_1, ANY_SPACE_2) &
/)

CMA operators (and their inverse) are applied to fields. Therefore any kernel of this type must have one read-only
CMA operator, one read-only field and a field that is updated, e.g.:
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type(arg_type) :: meta_args(3) = (/ &
arg_type(GH_FIELD, GH_REAL, GH_INC, ANY_SPACE_1), &
arg_type(GH_FIELD, GH_REAL, GH_READ, ANY_SPACE_2), &
arg_type(GH_COLUMNWISE_OPERATOR, GH_REAL, GH_READ, ANY_SPACE_1, ANY_SPACE_2) &
/)

Matrix-matrix kernels compute the product/linear combination of CMA operators. They must therefore have one such
operator that is updated while the rest are read-only. They may also have read-only scalar arguments, e.g.:

type(arg_type) :: meta_args(3) = (/ &
arg_type(GH_COLUMNWISE_OPERATOR, GH_REAL, GH_WRITE, ANY_SPACE_1, ANY_SPACE_2), &
arg_type(GH_COLUMNWISE_OPERATOR, GH_REAL, GH_READ, ANY_SPACE_1, ANY_SPACE_2), &
arg_type(GH_COLUMNWISE_OPERATOR, GH_REAL, GH_READ, ANY_SPACE_1, ANY_SPACE_2), &
arg_type(GH_SCALAR, GH_REAL, GH_READ) /)

Note: The order with which arguments are specified in metadata for CMA kernels does not affect the process of
identifying the type of kernel (whether it is assembly, matrix-matrix etc.)

meta_funcs

The (optional) second component of kernel metadata specifies whether any quadrature or evaluator data is required for
a given function space. (If no quadrature or evaluator data is required then this metadata should be omitted.) Consider
the following kernel metadata:

type, extends(kernel_type) :: testkern_operator_type
type(arg_type), dimension(3) :: meta_args = &

(/ arg_type(gh_operator, gh_real, gh_write, w0, w0), &
arg_type(gh_field*3, gh_real, gh_read, w1), &
arg_type(gh_scalar, gh_integer, gh_read) &

/)
type(func_type) :: meta_funcs(2) = &

(/ func_type(w0, gh_basis, gh_diff_basis) &
func_type(w1, gh_basis) &

/)
integer :: gh_shape = gh_quadrature_XYoZ
integer :: operates_on = cell_column

contains
procedure, nopass :: code => testkern_operator_code

end type testkern_operator_type

The arg_type component of this metadata describes a kernel that takes three arguments (an operator, a field and an
integer scalar). Following the meta_args array we now have a meta_funcs array. This allows the user to specify
that the kernel requires basis functions (gh_basis) and/or the differential of the basis functions (gh_diff_basis) on
one or more of the function spaces associated with the arguments listed in meta_args. In this case we require both for
the W0 function space but only basis functions for W1.

Note: Basis and differential basis functions for both real- and integer-valued field arguments have real values on
the points on which these functions are required.
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meta_reference_element

A kernel that requires properties of the reference element in LFRic specifies those properties through the
meta_reference_elementmetadata entry. (If no reference element properties are required then this metadata should
be omitted.) Consider the following example kernel metadata:

type, extends(kernel_type) :: testkern_type
type(arg_type), dimension(2) :: meta_args = &

(/ arg_type(gh_field, gh_real, gh_read, w1), &
arg_type(gh_field, gh_real, gh_inc, w0) /)

type(reference_element_data_type), dimension(2) :: &
meta_reference_element = &
(/ reference_element_data_type(normals_to_horizontal_faces), &

reference_element_data_type(normals_to_vertical_faces) /)
contains
procedure, nopass :: code => testkern_code

end type testkern_type

This metadata specifies that the testkern_type kernel requires two properties of the reference element. The supported
properties are listed below:

Name Description
normals_to_horizontal_faces Array of normals pointing in the positive (x, y, z) axis direc-

tion for each horizontal face indexed as (component, face).
normals_to_vertical_faces Array of normals pointing in the positive (x, y, z) axis direc-

tion for each vertical face indexed as (component, face).
normals_to_faces Array of normals pointing in the positive (x, y, z) axis direc-

tion for each face indexed as (component, face).
outward_normals_to_horizontal_faces Array of outward-pointing normals for each horizontal face

indexed as (component, face).
outward_normals_to_vertical_faces Array of outward-pointing normals for each vertical face in-

dexed as (component, face).
outward_normals_to_faces Array of outward-pointing normals for each face indexed as

(component, face).

meta_mesh

A kernel that requires properties of the LFRic mesh object specifies those properties through the meta_mesh metadata
entry. (If no mesh properties are required then this metadata should be omitted.) Consider the following example kernel
metadata:

type, extends(kernel_type) :: testkern_type
type(arg_type), dimension(2) :: meta_args = &

(/ arg_type(gh_field, gh_real, gh_read, w1), &
arg_type(gh_field, gh_real, gh_inc, w0) /)

type(mesh_data_type), dimension(1) :: &
meta_mesh = &
(/ mesh_data_type(adjacent_face) /)

contains
procedure, nopass :: code => testkern_code

end type testkern_type
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This metadata specifies that the testkern_type kernel requires one property of the mesh. There is currently one
supported property:

Name Description
adjacent_face Local ID of a neighbouring face in each horizontally-adjacent cell indexed as (face).

gh_shape and gh_evaluator_targets

If a kernel requires basis or differential-basis functions then the metadata must also specify the set of points on which
these functions are required. This information is provided by the gh_shape component of the metadata. Currently
PSyclone supports four shapes; gh_quadrature_XYoZ for Gaussian quadrature points, gh_quadrature_face for
quadrature points on cell faces, gh_quadrature_edge for quadrature points on cell edges and gh_evaluator for
evaluation at nodal points. If a kernel requires just one of these then gh_shape is an integer scalar. However, if more
than one is required then gh_shape becomes a one-dimensional, integer array, e.g.:

integer :: gh_shape(2) = (/ gh_quadrature_face, gh_quadrature_edge /)

If a kernel requires an evaluator then there are two options: if an evaluator is required for multiple function spaces then
these can be specified using the additional gh_evaluator_targets metadata entry. This entry is a one-dimensional,
integer array containing the desired function spaces. For example, to request basis/differential-basis functions eval-
uated on both W0 and W1, the metadata would be:

integer :: gh_shape = gh_evaluator
integer :: gh_evaluator_targets(2) = (/W0, W1/)

The kernel must have an argument (field or operator) on each of the function spaces listed in gh_evaluator_targets.
The default behaviour if gh_evaluator_targets is not specified is to provide evaluators for each function space
associated with the quantities that the kernel is updating. All necessary data is extracted in the PSy layer and passed
to the kernel(s) as required - nothing is required from the Algorithm layer. If a kernel requires quadrature on the
other hand, the Algorithm writer must supply a quadrature_type object for each specified quadrature as the last
argument(s) to the kernel (see Section Quadrature).

Note that it is an error for kernel metadata to specify a value for gh_shape if no basis or differential-basis functions
are required. It is also an error to specify gh_evaluator_targets if the kernel does not require an evaluator (i.e.
gh_shape != gh_evaluator).

operates_on

The fourth type of metadata provided is OPERATES_ON. This specifies that the Kernel has been written with the as-
sumption that it is supplied with the specified data for each field/operator argument. For user-supplied kernels this is
currently only permitted to be CELL_COLUMN or DOMAIN. The possible values for OPERATES_ON and their interpretation
are summarised in the following table:

operates_on Data passed for each field/operator argument
cell_column Single column of cells
dof Single DoF (currently Built-ins only)
domain All columns of cells
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procedure

The fifth and final type of metadata is procedure metadata. This specifies the name of the Kernel subroutine that this
metadata describes.

For example:

procedure, nopass :: my_kernel_subroutine

12.4.7 Subroutine

Rules for General-Purpose Kernels

The arguments to general-purpose kernels (those that do not involve either CMA operators or prolongation/restriction
operations) that operate on cell-columns follow a set of rules which have been specified for the LFRic API. These rules
are encoded in the generate() method within the ArgOrdering abstract class in the dynamo0p3.py file. The rules,
along with PSyclone’s naming conventions, are:

1) If an LMA operator is passed then include the cells argument. cells is an integer of kind i_def and has
intent in.

2) Include nlayers, the number of layers in a column. nlayers is an integer of kind i_def and has intent in.

3) For each scalar/field/vector_field/operator in the order specified by the meta_args metadata:

1) If the current entry is a scalar quantity then include the Fortran variable in the argument list. The intent is
determined from the metadata (see meta_args for an explanation).

2) If the current entry is a field then include the field array. The field array name is currently specified as being
"field_"<argument_position>"_"<field_function_space>. A field array is a rank-1, real array
with extent equal to the number of unique degrees of freedom for the space that the field is on. Its precision
(kind) depends on how it is defined in the algorithm layer, see the Mixed Precision section for more details.
This value is passed in separately. Again, the intent is determined from the metadata (see meta_args).

1) If the field entry has a stencil access then add an integer (or if the stencil is of type CROSS2D, an
integer rank-1 array of extent 4 and kind i_def) stencil-size argument with intent in. This will
supply the number of cells in the stencil or, in the case of the CROSS2D stencil, the number of cells in
each branch of the stencil.

2) If the stencil is of type CROSS2D then an integer of kind i_def and intent in for the max branch
length is needed. This is used in defining the dimensions of the stencil dofmap array and is required
due to the varying length of the branches of the stencil when used on planar meshes.

3) Also needed is a stencil dofmap array of type integer, kind i_def and intent in in either 2 or
3 dimensions. For a CROSS2D stencil the array needs dimensions of (number-of-dofs-in-cell, max-
branch-length, 4). All other stencils need dimensions of (number-of-dofs-in-cell, stencil-size).

4) If the field entry stencil access is of type XORY1D then add an additional integer direction argument
of kind i_def and with intent in.

3) If the current entry is a field vector then for each dimension of the vec-
tor, include a field array. The field array name is specified as being using
"field_"<argument_position>"_"<field_function_space>"_v"<vector_position>. A
field array in a field vector is declared in the same way as a field array (described in the previous step).

4) If the current entry is an operator then first include an integer extent of kind i_def. The name of this
extent is <operator_name>"_ncell_3d". Next include the operator. This is a rank-3, real array. Its
precision (kind) depends on how it is defined in the algorithm layer, see the Mixed Precision section for
more details. The extents of the first two dimensions are the local degrees of freedom for the to and
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from function spaces, respectively, and that of the third is <operator_name>"_ncell_3d". The name
of the operator is "op_"<argument_position>. Again the intent is determined from the metadata (see
meta_args).

4) For each function space in the order they appear in the metadata arguments (the to function space of an operator
is considered to be before the from function space of the same operator as it appears first in lexicographic order)

1) Include the number of local degrees of freedom (i.e. number per-cell) for the function space.
This is an integer of kind i_def and has intent in. The name of this argument is
"ndf_"<field_function_space>.

2) If there is a field on this space

1) Include the unique number of degrees of freedom for the function space. This is an integer of kind
i_def and has intent in. The name of this argument is "undf_"<field_function_space>.

2) Include the dofmap for this function space. This is an integer array of kind i_def with intent in.
It has one dimension sized by the local degrees of freedom for the function space.

3) For each operation on the function space (basis, diff_basis), in the order specified in the metadata, pass
real arrays of kind r_def with intent in. For each shape specified in the gh_shape metadata entry:

1) If shape is gh_quadrature_* then the arrays are of rank four and are
named "basis_"<field_function_space>_<quadrature_arg_name> or
"diff_basis_"<field_function_space>_<quadrature_arg_name>, as appropriate:

1) If shape is gh_quadrature_xyoz then the arrays have extent (dimension, number_of_dofs,
np_xy, np_z).

2) If shape is gh_quadrature_face or gh_quadrature_edge then the arrays have extent
(dimension, number_of_dofs, np_xyz, nfaces or nedges).

2) If shape is gh_evaluator then we pass one array for each target function space (i.e.
as specified by gh_evaluator_targets). Each of these arrays are of rank three with
extent (dimension, number_of_dofs, ndf_<target_function_space>). The name of
the argument is "basis_"<field_function_space>"_on_"<target_function_space> or
"diff_basis_"<field_function_space>"_on_"<target_function_space>, as appropriate.

Here <quadrature_arg_name> is the name of the corresponding quadrature object being passed to the
Invoke. dimension is 1 or 3 and depends upon the function space (see Supported Function Spaces above
for more information) and whether or not it is a basis or a differential basis function (see the table below).
number_of_dofs is the number of degrees of freedom (DoFs) associated with the function space and np_*
are the number of points to be evaluated: i) *_xyz in all directions (3D); ii) *_xy in the horizontal plane
(2D); iii) *_x, *_y in the horizontal (1D); and iv) *_z in the vertical (1D). nfaces and nedges are the
number of horizontal faces/edges obtained from the appropriate quadrature object supplied to the Invoke.

Function Type Dimension Function Space Name
Basis 1 W0, W2trace, W2Htrace, W2Vtrace, W3, Wtheta, Wchi

3 W1, W2, W2H, W2V, W2broken, ANY_W2
Differential Basis 1 W2, W2H, W2V, W2broken, ANY_W2

3 W0, W1, W2trace, W2Htrace, W2Vtrace, W3, Wtheta, Wchi

5) If either the normals_to_horizontal_faces or outward_normals_to_horizontal_faces
properties of the reference element are required then pass the number of horizontal faces of the
reference element (nfaces_re_h). Similarly, if either the normals_to_vertical_faces or
outward_normals_to_vertical_faces are required then pass the number of vertical faces (nfaces_re_v).
This also holds for the normals_to_faces and outward_normals_to_faces where the number of all faces
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of the reference element (nfaces_re) is passed to the kernel. (All of these quantities are integers of kind
i_def.) Then, in the order specified in the meta_reference_element metadata:

1) For the normals_to_horizontal/vertical_faces, pass a rank-2 integer array of kind i_def with
dimensions (3, nfaces_re_h/v).

2) For the outward_normals_to_horizontal/vertical_faces, pass a rank-2 integer array of kind
i_def with dimensions (3, nfaces_re_h/v).

3) For normals_to_faces or outward_normals_to_faces pass a rank-2 integer array of kind i_def
with dimensions (3, nfaces_re).

6) If the adjacent_face mesh property is required then:

1) If the number of horizontal cell faces obtained from the reference element (nfaces_re_h) is not already
being passed to the kernel (due to rule 5 above) then supply it here. This is an integer of kind i_def.

2) Pass a rank-1, integer array of kind i_def and extent nfaces_re_h.

7) If Quadrature is required (gh_shape = gh_quadrature_*) then, for each shape in the order specified in the
gh_shape metadata:

1) Include integer, scalar arguments of kind i_def with intent in that specify the extent of the basis/diff-
basis arrays:

1) If gh_shape is gh_quadrature_XYoZ then pass np_xy_<quadrature_arg_name> and
np_z_<quadrature_arg_name>.

2) If gh_shape is gh_quadrature_face/_edge then pass nfaces/nedges_<quadrature_arg_name>
and np_xyz_<quadrature_arg_name>.

2) Include weights which are real arrays of kind r_def:

1) If gh_quadrature_XYoZ pass in weights_xz_<quadrature_arg_name> (rank one, extent
np_xy_<quadrature_arg_name>) and weights_z_<quadrature_arg_name> (rank one, extent
np_z_<quadrature_arg_name>).

2) If gh_quadrature_face/_edge pass in weights_xyz_<quadrature_arg_name> (rank two with
extents [np_xyz_<quadrature_arg_name>, nfaces/nedges_<quadrature_arg_name>]).

Examples

For instance, if a kernel has only one written argument and requires an evaluator then its metadata might be:

type, extends(kernel_type) :: testkern_operator_type
type(arg_type), dimension(2) :: meta_args = &

(/ arg_type(gh_operator, gh_real, gh_write, w0, w1), &
arg_type(gh_field*3, gh_real, gh_read, w0) /)

type(func_type) :: meta_funcs(1) = &
(/ func_type(w0, gh_basis) /)

integer :: operates_on = cell_column
integer :: gh_shape = gh_evaluator

contains
procedure, nopass :: code => testkern_operator_code

end type testkern_operator_type

then we only pass the basis functions evaluated on W0 (the space of the written kernel argument). The subroutine
arguments will therefore be:
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subroutine testkern_operator_code(cell, nlayers, ncell_3d, &
local_stencil, xdata, ydata, zdata, ndf_w0, undf_w0, map_w0, &
basis_w0_on_w0, ndf_w1)

where local_stencil is the operator, xdata, ydata etc. are the three components of the field vector and map_w0 is
the dofmap for the W0 function space.

If instead, gh_evaluator_targets is specified in the metadata:

type, extends(kernel_type) :: testkern_operator_type
type(arg_type), dimension(2) :: meta_args = &

(/ arg_type(gh_operator, gh_real, gh_write, w0, w1), &
arg_type(gh_field*3, gh_real, gh_read, w0) /)

type(func_type) :: meta_funcs(1) = &
(/ func_type(w0, gh_basis) /)

integer :: operates_on = cell_column
integer :: gh_shape = gh_evaluator
integer :: gh_evaluator_targets(2) = (/W0, W1/)

contains
procedure, nopass :: code => testkern_operator_code

end type testkern_operator_type

then we will need to pass two sets of basis functions (evaluated at W0 and at W1):

subroutine testkern_operator_code(cell, nlayers, ncell_3d, &
local_stencil, xdata, ydata, zdata, ndf_w0, undf_w0, map_w0, &
basis_w0_on_w0, basis_w0_on_w1, ndf_w1)

If the metadata specifies that a kernel requires both an evaluator and quadrature:

type, extends(kernel_type) :: testkern_operator_type
type(arg_type), dimension(2) :: meta_args = &

(/ arg_type(gh_operator, gh_real, gh_write, w0, w1), &
arg_type(gh_field*3, gh_real, gh_read, w0) /)

type(func_type) :: meta_funcs(1) = &
(/ func_type(w0, gh_basis) /)

integer :: operates_on = cell_column
integer :: gh_shape(2) = (/ gh_evaluator, gh_quadrature_face /)

contains
procedure, nopass :: code => testkern_operator_code

end type testkern_operator_type

then we will need to pass basis functions for both the evaluator and the quadrature (where qr_face is the name of the
face-quadrature object passed to the Invoke):

subroutine testkern_operator_code(cell, nlayers, ncell_3d, &
local_stencil, xdata, ydata, zdata, ndf_w0, undf_w0, map_w0, &
basis_w0_on_w0, basis_w0_qr_face, ndf_w1, &
np_xyz_qr_face, nfaces_qr_face, weights_xyz_qr_face)

If the metadata specifies that the kernel requires a property of the reference element:

type, extends(kernel_type) :: testkern_operator_type
type(arg_type), dimension(2) :: meta_args = &

(continues on next page)
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(continued from previous page)

(/ arg_type(gh_operator, gh_real, gh_write, w0, w1), &
arg_type(gh_field*3, gh_real, gh_read, w0) /)

type(reference_element_data_type) :: meta_reference_element(1) = &
(/ reference_element_data_type(normals_to_horizontal_faces) /)

integer :: operates_on = cell_column
contains
procedure, nopass :: code => testkern_operator_code

end type testkern_operator_type

then the kernel must be passed the number of faces of the reference element and the array of face normals in the specified
direction (here horizontal):

subroutine testkern_operator_code(cell, nlayers, ncell_3d, &
local_stencil, xdata, ydata, zdata, ndf_w0, undf_w0, map_w0, &
nfaces_re_h, normals_face_h)

Rules for CMA Kernels

Kernels involving CMA operators are restricted to just three types; assembly, application/inverse-application and
matrix-matrix. We give the rules for each of these in the sections below.

Assembly

An assembly kernel requires the column-banded dofmap for both the to- and from-function spaces of the CMA operator
being assembled as well as the number of DoFs for each of the dofmaps. The full set of rules is:

1) Include the cell argument. cell is an integer of kind i_def``and has intent ``in.

2) Include nlayers, the number of layers in a column. nlayers is an integer of kind i_def and has intent in.

3) Include the total number of cells in the 2D mesh (including halos), ncell_2d, which is an integer of kind
i_def with intent in.

4) Include the total number of cells, ncell_3d, which is an integer of kind i_def with intent in.

5) For each argument in the meta_args metadata array:

1) If it is a LMA operator, include a real, 3-dimensional array. The first two dimensions are the local degrees
of freedom for the to and from spaces, respectively. The third dimension is ncell_3d. The precision
of the array depends on how it is defined in the algorithm layer, see the Mixed Precision section for more
details;

2) If it is a CMA operator, include a real, 3-dimensional array of kind r_solver. The first dimension is
"bandwidth_"<operator_name>, the second is "nrow_"<operator_name>, and the third is ncell_2d.

1) Include the number of rows in the banded matrix. This is an integer of kind i_def with intent in
and is named as "nrow_"<operator_name>.

2) If the from-space of the operator is not the same as the to-space then include the number of
columns in the banded matrix. This is an integer of kind i_def with intent in and is named as
"ncol_"<operator_name>.

3) Include the bandwidth of the banded matrix. This is an integer of kind i_def with intent in and is
named as "bandwidth_"<operator_name>.
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4) Include banded-matrix parameter alpha. This is an integer of kind i_def with intent in and is
named as "alpha_"<operator_name>.

5) Include banded-matrix parameter beta. This is an integer of kind i_def with intent in and is
named as "beta_"<operator_name>.

6) Include banded-matrix parameter gamma_m. This is an integer of kind i_def with intent in and is
named as "gamma_m_"<operator_name>.

7) Include banded-matrix parameter gamma_p. This is an integer of kind i_def with intent in and is
named as "gamma_p_"<operator_name>.

3) If it is a field or scalar argument then include arguments following the same rules as for general-purpose
kernels.

6) For each unique function space in the order they appear in the metadata arguments (the to function space of an
operator is considered to be before the from function space of the same operator as it appears first in lexicographic
order):

1) Include the number of degrees of freedom per cell for the space. This is an integer of kind i_def with
intent in. The name of this argument is "ndf_"<arg_function_space>.

2) If there is a field on this space then:

1) Include the unique number of degrees of freedom for the function space. This is an integer of kind
i_def and has intent in. The name of this argument is "undf_"<field_function_space>.

2) Include the dofmap for this space. This is an integer array of kind i_def with intent in. It has one
dimension sized by the local degrees of freedom for the function space.

3) If the CMA operator has this space as its to/from space then include the column-banded dofmap, the list of
offsets for the to/from-space. This is an integer array of rank 2 and kind i_def. The first dimension is
"ndf_"<arg_function_space> and the second is nlayers.

Application/Inverse-Application

A kernel applying a CMA operator requires the column-indirection dofmap for both the to- and from-function spaces of
the CMA operator. Since it does not have any LMA operator arguments it does not require the ncell_3d and nlayers
scalar arguments. (Since a column-wise operator is, by definition, assembled for a whole column, there is no loop over
levels when applying it.) The full set of rules is then:

1) Include the cell argument. cell is an integer of kind i_def and has intent in.

2) Include the total number of cells in the 2D mesh (including halos), ncell_2d, which is an integer of kind
i_def with intent in.

3) For each argument in the meta_args metadata array:

1) If it is a field, include the field array. This is a real array of rank 1. Its precision (kind) depends on how
it is defined in the algorithm layer, see the Mixed Precision. The field array name is currently specified as
being "field_"<argument_position>"_"<field_function_space>. The extent of the array is the
number of unique degrees of freedom for the function space that the field is on. This value is passed in
separately. The intent of the argument is determined from the metadata (see meta_args);

2) If it is a CMA operator, include it and its associated parameters (see Rule 5 of CMA Assembly kernels).

4) For each of the unique function spaces encountered in the metadata arguments (the to function space of an
operator is considered to be before the from function space of the same operator as it appears first in lexicographic
order):
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1) Include the number of degrees of freedom per cell for the associated function space. This is an integer
of kind i_def with intent in. The name of this argument is "ndf_"<field_function_space>;

2) Include the number of unique degrees of freedom for the associated function space. This is an integer of
kind i_def with intent in. The name of this argument is "undf_"<field_function_space>;

3) Include the dofmap for this function space. This is a rank-1 integer array of kind i_def with extent equal
to the number of degrees of freedom of the space ("ndf_"<field_function_space>).

5) Include the indirection map for the to-space of the CMA operator. This is a rank-1 integer array of kind i_def
with extent nrow.

6) If the from-space of the operator is not the same as the to-space then include the indirection map for the from-
space of the CMA operator. This is a rank-1 integer array of kind i_def with extent ncol.

Matrix-Matrix

Does not require any dofmaps and also does not require the nlayers and ncell_3d scalar arguments. The full set of
rules are then:

1) Include the cell argument. cell is an integer of kind i_def and has intent in.

2) Include the total number of cells in the 2D mesh (including halos), ncell_2d, which is an integer of kind
i_def with intent in.

3) For each CMA operator or scalar argument specified in metadata:

1) If it is a CMA operator, include it and its associated parameters (see Rule 5 of CMA Assembly kernels);

2) If it is a scalar argument include the corresponding Fortran variable in the argument list with intent in.

Rules for Inter-Grid Kernels

As already specified, inter-grid kernels are only permitted to take fields and/or field-vectors as arguments. Fields (and
field-vectors) that are on different meshes must be on different function spaces. Fields on the same mesh must also be
on the same function space.

Argument ordering follows the general pattern used for ‘normal’ kernels with field data being followed by dofmap data.
The rules for arguments to inter-grid kernels are as follows:

1) Include nlayers, the number of layers in a column. nlayers is an integer of kind i_def and has intent in.

2) Include the cell_map for the current cell (column). This is an integer array of rank two, kind i_def and
intent in which provides the mapping from the coarse to the fine mesh. It has extent (ncell_f_per_c_x,
ncell_f_per_c_y).

3) Include ncell_f_per_c_x, and ncell_f_per_c_y, the numbers of fine cells per coarse cell in the x and y
directions, respectively. These are integers of kind i_def and have intent in.

4) Include ncell_f, the number of cells (columns) in the fine mesh. This is an integer of kind i_def and has
intent in.

5) For each argument in the meta_args metadata array (which must be a field or field-vector):

1) Pass in field data as done for a regular kernel.

6) For each unique function space (of which there will currently be two) in the order in which they are encountered
in the meta_args metadata array, include dofmap information:

If the dofmap is associated with an argument on the fine mesh:

1) Include ndf_fine, the number of DoFs per cell for the FS of the field on the fine mesh;
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2) Include undf_fine, the number of unique DoFs per cell for the FS of the field on the fine mesh;

3) Include dofmap_fine, the whole dofmap for the fine mesh. This is an integer array of rank two and kind
i_def with intent in. The extent of the first dimension is ndf_fine and that of the second is ncell_f.

else, the dofmap is associated with an argument on the coarse mesh:

1) Include undf_coarse, the number of unique DoFs for the coarse field. This is an integer of kind i_def
with intent in;

2) Include dofmap_coarse, the dofmap for the current cell (column) in the coarse mesh. This is an integer
array of rank one, kind i_def``and has intent ``in.

Rules for Domain Kernels

The rules for kernels that have operates_on = DOMAIN are almost identical to those for general-purpose kernels
(described above), allowing for the fact that they are not permitted any type of operator argument or any argument with
a stencil access. The only difference is that, since the kernel operates on the whole domain, the number of columns
in the mesh excluding those in the halo (ncell_2d_no_halos), must be passed in. This is provided as the second
argument to the kernel (after nlayers). ncell_2d_no_halos is an integer of kind i_def with intent in.

Argument Intents

As described above, LFRic kernels read and/or update the data pointed to by objects such as fields or operators. This
data is passed to the kernels as subroutine arguments and their Fortran intents usually follow the logic determined by
their access modes.

• GH_READ indicates intent(in) as the argument is only ever read from.

• GH_WRITE (for discontinuous function spaces) indicates that the argument is only written to in a kernel. The
field and operator arguments’ data in LFRic are always defined outside of a kernel so the argument intent for this
access type is intent(inout).

• GH_INC, GH_READINC and GH_READWRITE indicate intent(inout) as the arguments are updated (albeit in a
different way due to different access to DoFs, see meta_args for more details).

12.4.8 Kernel Naming Conventions

LFRic development uses strict naming conventions related to kernels. While they are not a requirement for PSyclone
itself, any LFRic development should follow these conventions (see e.g. LFRic examples in PSyclone):

Module name:
<base_name>_kernel_mod

Kernel type name:
<base_name>_kernel_type

Subroutine name:
<base_name>_code

The latest version of the LFRic coding style guidelines are availabe in this LFRic wiki page (requires login access to
MOSRS, see the above introduction to the LFRic API).
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12.5 Built-ins

The basic concept of a PSyclone Built-in is described in the Built-ins section. In the LFRic (Dynamo0.3) API, calls to
Built-ins generally follow a convention that the field/scalar written to comes first in the argument list. LFRic Built-ins
must conform to the following rules:

1) They must have one and only one modified (i.e. written to) argument.

2) They must operate on a DoF (operates_on = DOF metadata).

3) There must be at least one field in the argument list. This is so that we know the number of DoFs to iterate over
in the PSy layer.

4) Kernel arguments must be either fields or scalars (real- and/or integer-valued).

5) All field arguments to a given Built-in must be on the same function space. This is because all current Built-ins
operate on DoFs and therefore all fields should have the same number. It also means that we can determine the
number of DoFs uniquely when a scalar is written to;

6) Built-ins that update real-valued fields can, in general, only read from other real-valued fields, but they can
take both real and integer scalar arguments (see rule 8 for exceptions);

7) Built-ins that update integer-valued fields can, in general, only read from other integer-valued fields and take
integer scalar arguments (see rule 8 for exceptions);

8) The only two exceptions from the rules 6) and 7) above regarding the same data type of “write” and “read”
field arguments are Built-ins that convert field data from real to integer, int_X, and from integer to real,
real_X.

The Built-ins supported for the LFRic API are listed in the related subsections, grouped first by the data type of fields
they operate on (real-valued and integer-valued) and then by the mathematical operation they perform.

The field arguments in Built-ins are the derived types that represent the LFRic fields, however mathematical operations
are actually performed on the data of the field proxies (e.g. field1_proxy%data(:)). For instance, X_plus_Y Built-
in adds the values of two fields accessed via their proxies in a loop over DoFs:

DO df=loop0_start,loop0_stop
field3_proxy%data(df) = field1_proxy%data(df) + field2_proxy%data(df)

where the precise values of the loop limits depend on the use of distributed memory, annexed DoFs or both.

As described in the PSy-layer Argument Intents section, the Fortran intent of LFRic field objects is always in (because
it is only the data pointed to from within the object that is modified). The field or scalar that has its data modified by a
Built-in is marked in bold.

For clarity, the calculation performed by each Built-in is described using Fortran array syntax without the details about
field proxies. The actual implementation of the Built-in may change in future (e.g. it could be implemented by PSyclone
generating a call to an optimised Maths library).
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12.5.1 Metadata

The code below outlines the elements of the LFRic API Built-in metadata for the Built-ins that update a real-valued
field, 1) ‘meta_args’, 2) ‘operates_on’ and 3) ‘procedure’:

type, public, extends(kernel_type) :: aX_plus_bY
private
type(arg_type) :: meta_args(5) = (/ &

arg_type(GH_FIELD, GH_REAL GH_WRITE, ANY_SPACE_1), &
arg_type(GH_SCALAR, GH_REAL, GH_READ ), &
arg_type(GH_FIELD, GH_REAL, GH_READ, ANY_SPACE_1), &
arg_type(GH_SCALAR, GH_REAL, GH_READ ), &
arg_type(GH_FIELD, GH_REAL GH_READ, ANY_SPACE_1) &
/)

integer :: operates_on = DOF
contains
procedure, nopass :: aX_plus_bY_code

end type aX_plus_bY

As can be seen, the metadata for a Built-in kernel is a subset of that for a user-defined Kernel with the exception that
operates_on must be DOF instead of CELL_COLUMN.

The metadata for the LFRic Built-ins that update an integer-valued field is similar:

!> ifield3 = ifield1 + ifield2
type, public, extends(kernel_type) :: int_X_plus_Y
private
type(arg_type) :: meta_args(3) = (/ &

arg_type(GH_FIELD, GH_INTEGER, GH_WRITE, ANY_SPACE_1), &
arg_type(GH_FIELD, GH_INTEGER, GH_READ, ANY_SPACE_1), &
arg_type(GH_FIELD, GH_INTEGER, GH_READ, ANY_SPACE_1) &
/)

integer :: operates_on = DOF
contains
procedure, nopass :: int_X_plus_Y_code

end type int_X_plus_Y

Valid Data Types and Access Modes

The allowed data types and accesses for arguments in LFRic Built-in kernels are a bit different than for the user-defined
Kernels and are listed in the table below.

Argument Type Data Type Function Space Access Type
GH_SCALAR GH_INTEGER n/a GH_READ
GH_SCALAR GH_REAL n/a GH_READ, GH_SUM
GH_FIELD GH_REAL, GH_INTEGER ANY_SPACE_<n> GH_READ, GH_WRITE, GH_READWRITE

Note: Since the LFRic infrastructure does not currently support integer reductions, integer scalar arguments in
Built-ins are restricted to having read-only access. Also, logical scalar arguments are not permitted.
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12.5.2 Naming scheme

The supported Built-ins in the LFRic API are named according to the scheme presented below. Any new Built-in needs
to comply with these rules.

1) Ordering of arguments in Built-ins calls follows LHS (result) <- RHS (operation on arguments) direction, except
where a Built-in returns the LHS result to one of the RHS arguments. In that case ordering of arguments remains
as in the RHS expression, with the returning RHS argument written as close to the LHS as it can be without
affecting the mathematical expression.

2) Field names begin with upper case in short form (e.g. X, Y, Z) and any case in long form (e.g. Field1, field).

3) Scalar names begin with lower case: e.g. a, b, are scalar1, scalar2. Special names for scalars are: constant (or
c), innprod (inner/scalar product of two fields) and sumfld (sum of a field).

4) Arguments in Built-ins variable declarations and constructs (PSyclone Fortran and Python definitions):

1) Are always written in long form and lower case (e.g. field1, field2, scalar1, scalar2);

2) LHS result arguments are always listed first;

3) RHS arguments are listed in order of appearance in the mathematical expression, except when one of them
is the LHS result.

5) Built-ins names in Fortran consist of:

1) RHS arguments in short form (e.g. X, Y, a, b) only;

2) Descriptive name of mathematical operation on RHS arguments in the form
<operationname>_<RHSargs> or <RHSargs>_<operationname>_<RHSargs>;

3) Prefix "inc_" where the result is returned to one of the RHS arguments (i.e.
"inc_"<RHSargs>_<operationname>_<RHSargs>);

4) Prefix "int_" for the Built-in operations on the integer-valued field arguments (i.e.
"int_inc_"<RHSargs>_<operationname>_<RHSargs>), except for the Built-in that converts the
data type of field arguments from integer to real (see rule 7 below).

6) Built-ins names in Python definitions are similar to their Fortran counterparts, with a few differences:

1) Operators and RHS arguments are all in upper case (e.g. X, Y, A, B, Plus, Minus);

2) There are no underscores;

4) Common suffix is "Kern";

3) Common prefix is "LFRic" for the Built-in operations on the real-valued arguments and "LFRicInt"
for the Built-in operations on the integer-valued fields (except for the data-type conversion Built-ins, see
rule 7 below).

7) As in the case of Built-in field argument rules, the names of the field data-type conversion Built-ins, int_X
(converts field data from real to integer) and real_X (converts field data from integer to real), are the
only exceptions for the naming of Built-ins in Fortran above.
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12.5.3 Built-in operations on real-valued fields

As described above, Built-ins that operate on real-valued fields mandate GH_REAL as the kernel metadata for fields
and scalars.

The precision of fields and scalars, however, is determined by the algorithm layer via precision variables as described
in the Mixed Precision section (see subsections on fields and scalars).

For instance, field and scalar declarations for the aX_plus_Y Built-in that operates on r_solver_field_type and
uses r_solver scalar will be:

real(kind=r_solver), intent(in) :: ascalar
type(r_solver_field_type), intent(in) :: zfield, xfield, yfield

Mixing precisions is not explicitly forbidden, so we may have e.g. X_divideby_a Built-in where:

real(kind=r_def), intent(in) :: ascalar
type(r_tran_field_type), intent(in) :: yfield, xfield

Certain Built-ins are currently restricted in the precision of the arguments that they accept. Those that calculate the
inner product and sum of a field are restricted to r_def precision because the scalar global reductions in the LFRic
infrastructure are currently only able to support field_type and hence have r_def precision. In addition, all integer
arguments to Built-ins are currently restricted to i_def precision.

Addition

Built-ins that add (scaled) real-valued fields and return the result as a real-valued field are denoted with the keyword
plus.

X_plus_Y

X_plus_Y (field3, field1, field2)

Sums two fields and stores the result in the third field (Z = X + Y):

field3(:) = field1(:) + field2(:)

inc_X_plus_Y

inc_X_plus_Y (field1, field2)

Adds the second field to the first and returns it (X = X + Y):

field1(:) = field1(:) + field2(:)
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a_plus_X

a_plus_X (field2, rscalar, field1)

Adds a real scalar value to all elements of a field and stores the result in another field (Y = a + X):

field2(:) = rscalar + field1(:)

inc_a_plus_X

inc_a_plus_X (rscalar, field)

Adds a real scalar value to all elements of a field and returns the field (X = a + X):

field(:) = rscalar + field(:)

aX_plus_Y

aX_plus_Y (field3, rscalar, field1, field2)

Performs Z = aX + Y:

field3(:) = rscalar*field1(:) + field2(:)

inc_aX_plus_Y

inc_aX_plus_Y (rscalar, field1, field2)

Performs X = aX + Y (increments the first field):

field1(:) = rscalar*field1(:) + field2(:)

inc_X_plus_bY

inc_X_plus_bY (field1, rscalar, field2)

Performs X = X + bY (increments the first field):

field1(:) = field1(:) + rscalar*field2(:)

aX_plus_bY

aX_plus_bY (field3, rscalar1, field1, rscalar2, field2)

Performs Z = aX + bY:

field3(:) = rscalar1*field1(:) + rscalar2*field2(:)

12.5. Built-ins 93



PSyclone Documentation, Release 2.4.0

inc_aX_plus_bY

inc_aX_plus_bY (rscalar1, field1, rscalar2, field2)

Performs X = aX + bY (increments the first field):

field1(:) = rscalar1*field1(:) + rscalar2*field2(:)

aX_plus_aY

aX_plus_aY (field3, rscalar, field1, field2)

Performs Z = aX + aY = a(X + Y):

field3(:) = rscalar*(field1(:) + field2(:))

Subtraction

Built-ins which subtract (scaled) real-valued fields and return the result as a real-valued field are denoted with the
keyword minus.

X_minus_Y

X_minus_Y (field3, field1, field2)

Subtracts the second field from the first and returns the result in the third field (Z = X - Y):

field3(:) = field1(:) - field2(:)

inc_X_minus_Y

inc_X_minus_Y (field1, field2)

Subtracts the second field from the first and returns it (X = X - Y):

field1(:) = field1(:) - field2(:)

a_minus_X

a_minus_X (field2, rscalar, field1)

Subtracts all elements of a field from a real scalar value and stores the result in another field (Y = a - X):

field2(:) = rscalar - field1(:)
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inc_a_minus_X

inc_a_minus_X (rscalar, field)

Subtracts all elements of a field from a real scalar value and returns the field (X = a - X):

field(:) = rscalar - field(:)

X_minus_a

X_minus_a (field2, field1, rscalar)

Subtracts a real scalar value from all elements of a field and stores the result in another field (Y = X - a):

field2(:) = field1(:) - rscalar

inc_X_minus_a

inc_X_minus_a (field, rscalar)

Subtracts a real scalar value from all elements of a field and returns the field (X = X - a):

field(:) = field(:) - rscalar

aX_minus_Y

aX_minus_Y (field3, rscalar, field1, field2)

Performs Z = aX - Y:

field3(:) = rscalar*field1(:) - field2(:)

X_minus_bY

X_minus_bY (field3, field1, rscalar, field2)

Performs Z = X - bY:

field3(:) = field1(:) - rscalar*field2(:)

inc_X_minus_bY

inc_X_minus_bY (field1, rscalar, field2)

Performs X = X - bY (decrements the first field):

field1(:) = field1(:) - rscalar*field2(:)
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aX_minus_bY

aX_minus_bY (field3, rscalar1, field1, rscalar2, field2)

Performs Z = aX - bY:

field3(:) = rscalar1*field1(:) - rscalar2*field2(:)

Multiplication

Built-ins which multiply (scaled) real-valued fields and return the result as a real-valued field are denoted with the
keyword times.

X_times_Y

X_times_Y (field3, field1, field2)

Multiplies two fields DoF by DoF and returns the result in a third field (Z = X*Y):

field3(:) = field1(:)*field2(:)

inc_X_times_Y

inc_X_times_Y (field1, field2)

Multiplies the first field by the second and returns it (X = X*Y):

field1(:) = field1(:)*field2(:)

inc_aX_times_Y

inc_aX_times_Y (rscalar, field1, field2)

Performs X = a*X*Y (increments the first field):

field1(:) = rscalar*field1(:)*field2(:)

Scaling

Built-ins which scale real-valued fields are technically cases of multiplying a real-valued field by a real scalar and
are hence also denoted with the keyword times.
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a_times_X

a_times_X (field2, rscalar, field1)

Multiplies a field by a real scalar value and stores the result in another field (Y = a*X):

field2(:) = rscalar*field1(:)

inc_a_times_X

inc_a_times_X (rscalar, field)

Multiplies a field by a real scalar value and returns the field (X = a*X):

field(:) = rscalar*field(:)

Division

Built-ins which divide real-valued fields and return the result as a real-valued field are denoted with the keyword
divideby.

X_divideby_Y

X_divideby_Y (field3, field1, field2)

Divides the first field by the second field, DoF by DoF, and stores the result in the third field (Z = X/Y):

field3(:) = field1(:)/field2(:)

inc_X_divideby_Y

inc_X_divideby_Y (field1, field2)

Divides the first field by the second and returns it (X = X/Y):

field1(:) = field1(:)/field2(:)

X_divideby_a

X_divideby_a (field2, field1, rscalar)

Divides each field element by a real scalar value and stores the result in another field (Y = X/a):

field2(:) = field1(:)/rscalar
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inc_X_divideby_a

inc_X_divideby_a (field, rscalar)

Divides each field element by a real scalar value and returns the field (X = X/a):

field(:) = field(:)/rscalar

Inverse scaling

Built-ins which perform inverse scaling of real-valued fields are also denoted with the keyword divideby as they
divide a real scalar by elements of a real-valued field.

a_divideby_X

a_divideby_X (field2, rscalar, field1)

Divides a real scalar value by each field element and stores the result in another field (Y = a/X):

field2(:) = rscalar/field1(:)

inc_a_divideby_X

inc_a_divideby_X (rscalar, field)

Divides a real scalar value by each field element and returns the field (X = a/X):

field(:) = rscalar/field(:)

Setting to a value

Built-ins which set real-valued field elements to some real value are denoted with the keyword setval.

setval_c

setval_c (field, constant)

Sets all elements of a field field to a real scalar constant (X = c):

field(:) = constant
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setval_X

setval_X (field2, field1)

Sets a field field2 equal (DoF per DoF) to another field field1 (Y = X):

field2(:) = field1(:)

setval_random

setval_random (field)

Fills all elements of a field field using a sequence of real, pseudo-random numbers in the interval 0 <= x < 1:

do df = 1, ndofs
field(df) = RAND()

end do

where RAND() is some function that returns a new pseudo-random number each time it is called.

Warning: This Built-in is implemented using the Fortran random_number intrinsic. Therefore no guarantee is
made as to the quality of the sequence of pseudo-random numbers, especially when running in parallel.

Raising to power

Built-ins which raise real-valued field elements to an exponent are denoted with the keyword powreal for a real
exponent or powint for an integer exponent.

inc_X_powreal_a

inc_X_powreal_a (field, rscalar)

Raises a field to a real scalar value and returns the field (X = X**a):

field(:) = field(:)**rscalar

inc_X_powint_n

inc_X_powint_n (field, iscalar)

Raises a field to an integer scalar value and returns the field (X = X**n):

field(:) = field(:)**iscalar

where iscalar is an integer scalar of i_def precision.
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Inner product

Built-ins which calculate the inner product of two real-valued fields or of a real-valued field with itself and return
the result as a real scalar are denoted with the keyword innerproduct.

Note: When used with distributed memory these Built-ins will trigger the addition of a global sum which may affect
the performance and/or scalability of the code. Also, whilst the fields in these Built-ins can be of any supported real
precision, the only currently supported precision for the global reductions in the LFRic infrastructure is r_def, hence
the result will be converted accordingly.

X_innerproduct_Y

X_innerproduct_Y (innprod, field1, field2)

Computes the inner product of two fields, field1 and field2, i.e.:

innprod = SUM(field1(:)*field2(:))

where innprod is a real scalar of r_def precision.

X_innerproduct_X

X_innerproduct_X (innprod, field)

Computes the inner product of the field field1 by itself, i.e.:

innprod = SUM(field(:)*field(:))

where innprod is a real scalar of r_def precision.

Sum of elements

A Built-in which sums the elements of a real-valued field and returns the result as a real scalar is denoted with the
keyword sum.

Note: When used with distributed memory this Built-in will trigger the addition of a global sum which may affect
the performance and/or scalability of the code. Also, whilst the fields in these Built-ins can be of any supported real
precision, the only currently supported precision for the global reductions in the LFRic infrastructure is r_def, hence
the result will be converted accordingly.
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sum_X

sum_X (sumfld, field)

Sums all of the elements of the field field and returns the result in the real scalar variable sumfld:

sumfld = SUM(field(:))

where sumfld is a real scalar of r_def precision.

Sign of elements

A Built-in which returns the sign of a real-valued field is denoted with the keyword sign.

sign_X

sign_X (field2, rscalar, field1)

Returns the sign of a real-valued field, e.g. in Fortran: Y = sign(a, X). Here a is a real scalar and Y and X are
real-valued fields. The results are a for X >= 0 and -a for X < 0:

field2(:) = SIGN(rscalar, field1(:))

DoF-wise maximum of elements

Built-ins which return the DoF-wise maximum of a real scalar and a real-valued field are denoted with the keyword
max.

max_aX

max_aX (field2, rscalar, field1)

Returns maximum of rscalar and each element of the field field1 as the second field field2 (Y = max(a, X)):

field2(:) = MAX(rscalar, field1(:))

inc_max_aX

inc_max_aX (rscalar, field)

Returns maximum of rscalar and each element of the field field in the same field (X = max(a, X)):

field(:) = MAX(rscalar, field(:))
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DoF-wise minimum of elements

Built-ins which return the DoF-wise minimum of a real scalar and a real-valued field are denoted with the keyword
min.

min_aX

min_aX (field2, rscalar, field1)

Returns minimum of rscalar and each element of the field field1 as the second field field2 (Y = min(a, X)):

field2(:) = MIN(rscalar, field1(:))

inc_min_aX

inc_min_aX (rscalar, field)

Returns minimum of rscalar and each element of the field field in the same field (X = min(a, X)):

field(:) = MIN(rscalar, field(:))

Conversion of real to integer field elements

A Built-in which takes a real field and converts it to an integer field is denoted with the keyword int.

int_X

int_X (ifield2, field1)

Converts real-valued field elements to integer-valued field elements, e.g. in Fortran this would be: Y = int(X,
i_def). Here Y is an integer-valued field and X is the real-valued field being converted:

ifield2(:) = INT(field1(:), i_def)

where ifield2 is an integer_field_type of i_def precision and a real-valued field field1 can be of any supported
precisions for GH_REAL fields (e.g. r_tran for r_tran_field_type).

12.5.4 Built-in operations on integer-valued fields

The number of supported Built-in operations on the integer-valued fields is not as large as for their real counterparts
as not all mathematical operations on integer-valued fields make sense.

As described above, Built-ins that operate on integer-valued fields mandate GH_INTEGER as the kernel metadata for
fields and scalars. Both integer scalar arguments and integer-valued fields can only currently have i_def precision,
as described in the Mixed Precision section.

For instance, field and scalar declarations for the X_minus_a Built-in will be:

integer(kind=i_def), intent(in) :: ascalar
type(integer_field_type), intent(in) :: yfield, xfield
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Addition

Built-ins that add integer-valued fields and return the result as an integer-valued field are denoted with the keyword
plus and the prefix int.

int_X_plus_Y

int_X_plus_Y (ifield3, ifield1, ifield2)

Sums two fields and stores the result in the third field (Z = X + Y):

ifield3(:) = ifield1(:) + ifield2(:)

int_inc_X_plus_Y

int_inc_X_plus_Y (ifield1, ifield2)

Adds the second field to the first and returns it (X = X + Y):

ifield1(:) = ifield1(:) + ifield2(:)

int_a_plus_X

int_a_plus_X (ifield2, iscalar, ifield1)

Adds an integer scalar value to all elements of a field and stores the result in another field (Y = a + X):

ifield2(:) = iscalar + ifield1(:)

int_inc_a_plus_X

int_inc_a_plus_X (iscalar, ifield)

Adds an integer scalar value to all elements of a field and returns the field (X = a + X):

ifield(:) = iscalar + ifield(:)

Subtraction

Built-ins which subtract integer-valued fields and return the result as an integer-valued field are denoted with the
keyword minus and the prefix int.
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int_X_minus_Y

int_X_minus_Y (ifield3, ifield1, ifield2)

Subtracts the second field from the first and returns the result in the third field (Z = X - Y):

ifield3(:) = ifield1(:) - ifield2(:)

int_inc_X_minus_Y

int_inc_X_minus_Y (ifield1, ifield2)

Subtracts the second field from the first and returns it (X = X - Y):

ifield1(:) = ifield1(:) - ifield2(:)

int_a_minus_X

int_a_minus_X (ifield2, iscalar, ifield1)

Subtracts all elements of a field from an integer scalar value and stores the result in another field (Y = a - X):

ifield2(:) = iscalar - ifield1(:)

int_inc_a_minus_X

int_inc_a_minus_X (iscalar, ifield)

Subtracts all elements of a field from an integer scalar value and returns the field (X = a - X):

ifield(:) = iscalar - ifield(:)

int_X_minus_a

int_X_minus_a (ifield2, ifield1, iscalar)

Subtracts an integer scalar value from all elements of a field and stores the result in another field (Y = X - a):

ifield2(:) = ifield1(:) - iscalar

int_inc_X_minus_a

int_inc_X_minus_a (ifield, iscalar)

Subtracts an integer scalar value from all elements of a field and returns the field (X = X - a):

ifield(:) = ifield(:) - iscalar
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Multiplication

Built-ins which multiply integer-valued fields and return the result as an integer-valued field are denoted with the
keyword times and the prefix int.

int_X_times_Y

int_X_times_Y (ifield3, ifield1, ifield2)

Multiplies two fields DoF by DoF and returns the result in a third field (Z = X*Y):

ifield3(:) = ifield1(:)*ifield2(:)

int_inc_X_times_Y

int_inc_X_times_Y (ifield1, ifield2)

Multiplies the first field by the second and returns it (X = X*Y):

ifield1(:) = ifield1(:)*ifield2(:)

Scaling

Built-ins which scale integer-valued fields are denoted with the keyword times and prefixed by the keyword int.

int_a_times_X

int_a_times_X (ifield2, iscalar, ifield1)

Multiplies a field by an integer scalar and stores the result in another field (Y = a*X):

ifield2(:) = iscalar*ifield1(:)

int_inc_a_times_X

int_inc_a_times_X (iscalar, ifield)

Multiplies a field by an integer scalar value and returns the field (X = a*X):

ifield(:) = iscalar*ifield(:)
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Setting to a value

Built-ins which set integer-valued field elements to some integer value are denoted with the keyword setval and
the prefix int.

int_setval_c

int_setval_c (ifield, constant)

Sets all elements of a field ifield to an integer scalar constant (X = c):

ifield(:) = constant

int_setval_X

int_setval_X (ifield2, ifield1)

Sets a field ifield2 equal (DoF per DoF) to another field ifield1 (Y = X):

ifield2(:) = ifield1(:)

Sign of elements

A Built-in which returns the sign of an integer-valued field is denoted with the keyword sign and the prefix int.

int_sign_X

int_sign_X (ifield2, iscalar, ifield1)

Returns the sign of an integer-valued field, e.g. in Fortran: Y = sign(a, X). Here a is an integer scalar and Y
and X are integer-valued fields. The results are a for X >= 0 and -a for a < 0:

ifield2(:) = SIGN(iscalar, ifield1(:))

DoF-wise maximum of elements

Built-ins which return the DoF-wise maximum of an integer scalar and an integer-valued field are denoted with
the keyword max.

int_max_aX

int_max_aX (ifield2, iscalar, ifield1)

Returns maximum of iscalar and each element of the field ifield1 as the second field ifield2 (Y = max(a, X)):

ifield2(:) = MAX(iscalar, ifield1(:))
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int_inc_max_aX

int_inc_max_aX (iscalar, ifield)

Returns maximum of iscalar and each element of the field ifield in the same field (X = max(a, X)):

ifield(:) = MAX(iscalar, ifield(:))

DoF-wise minimum of elements

Built-ins which return the DoF-wise minimum of an integer scalar and an integer-valued field are denoted with
the keyword min.

int_min_aX

int_min_aX (ifield2, iscalar, ifield1)

Returns minimum of iscalar and each element of the field ifield1 as the second field ifield2 (Y = min(a, X)):

ifield2(:) = MIN(iscalar, ifield1(:))

int_inc_min_aX

int_inc_min_aX (iscalar, ifield)

Returns minimum of iscalar and each element of the field ifield in the same field (X = min(a, X)):

ifield(:) = MIN(iscalar, ifield(:))

Conversion of integer to real field elements

A Built-in which takes an integer field and converts it to a real field is denoted with the keyword real.

real_X

real_X (field2, ifield1)

Converts integer-valued field elements to real-valued field elements, e.g. in Fortran this would be Y = real(X,
r_def). Here Y is a real-valued field and X is the integer-valued field being converted:

field2(:) = REAL(ifield1(:), r_<prec>)

where ifield1 is an integer_field_type of i_def precision. The real-valued field1 can be of any sup-
ported precisions for GH_REAL fields, hence r_<prec> is determined from the algorithm layer (e.g. r_solver for
r_solver_field_type).
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12.6 Boundary Conditions

In the Dynamo0.3 API, boundary conditions for a field or LMA operator can be enforced by the algorithm developer
by calling the Kernels enforce_bc_type or enforce_operator_bc_type, respectively. These kernels take a field
or operator as input and apply boundary conditions. For example:

call invoke( kernel_type(field1, field2), &
enforce_bc_type(field1), &
kernel_with_op_type(field1, op1), &
enforce_operator_bc_type(op1) &

)

The particular boundary conditions that are applied are not known by PSyclone, PSyclone simply recognises these
kernels by their names and passes pre-specified dofmap and boundary_value arrays into the kernel implementations,
the contents of which are set by the LFRic infrastructure.

Up to and including version 1.4.0 of PSyclone, boundary conditions were applied automatically after a call to
matrix_vector_type if the field arguments were on a vector function space (one of W1, W2, W2H, W2V or W2broken).
With the subsequent introduction of the ability to apply boundary conditions to operators this functionality is no longer
required and has been removed.

Example eg4 in the examples/lfric directory includes a call to enforce_bc_kernel_type so can be used to see the
boundary condition code that is added by PSyclone. See the README in the examples/lfric directory for instructions
on how to run this example.

An example of applying boundary conditions to an operator is the kernel enforce_operator_bc_kernel_mod.F90
in the <PSYCLONEHOME>/src/psyclone/tests/test_files/dynamo0p3 directory. Since operators are discontin-
uous quantities, updating their values can be safely performed in parallel (see Section Kernel). The GH_READWRITE
access is used for updating discontinuous operators (see subsection Valid Access Modes for more details).

12.7 Conventions

The naming of Dynamo0.3 API kernels and associated entities (types, subroutines and modules) follows the PSyclone
Fortran naming conventions (see Fortran Naming Conventions). However, PSyclone does not need this convention to
be followed apart from the stub generator (see the Kernel-stub Generator Section ) where the name of the metadata to
be parsed is determined from the module name.

The contents of the metadata is also usually declared private but this does not affect PSyclone.

Finally, the procedure metadata (located within the kernel metadata) usually has nopass specified but again this is
ignored by PSyclone.

12.8 Configuration

The general and the LFRic-API-specific configuration options are described in the Configuration section.
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12.8.1 Annexed DoFs

When a kernel operates on DoFs (rather than cell-columns) for a continuous field using distributed memory (see the
Distributed Memory Section), then PSyclone need only ensure that DoFs owned by a processor are computed. However,
for continuous fields, shared DoFs at the boundary between processors must be replicated (as different cells share the
same DoF). Only one processor can own a DoF, therefore processors will have continuous fields which contain DoFs
that the processor does not own. These unowned DoFs are called annexed in the Dynamo0.3 API and are a separate,
but related, concept to field halos.

When a kernel that operates on a cell-column needs to read a continuous field then the annexed DoFs must be up-
to-date on all processors. If they are not then a halo exchange must be added. Currently PSyclone defaults, for ker-
nels which iterate over DoFs, to iterating over only owned DoFs. This behaviour can be changed by setting COM-
PUTE_ANNEXED_DOFS to true in the dynamo0.3 section of the configuration file (see the Configuration section).
PSyclone will then generate code to iterate over both owned and annexed DoFs, thereby reducing the number of halo
exchanges required (at the expense of redundantly computing annexed DoFs). For more details please refer to the LFRic
(Dynamo0.3) developers section.

12.8.2 Run-time Checks

PSyclone performs static consistency checks where possible. When this is not possible PSyclone can generate run-
time checks. As there may be performance costs associated with run-time checks they may be switched on or off by
the RUN_TIME_CHECKS option in the configuration file.

Currently run-time checks can be generated to:

1) Check that a field with a read-only function space (see section Read-Only Function Spaces) is not modified by
a kernel. This is enforced by checking that all fields that are marked (in kernel metadata) as being updated by
a kernel are not on a read-only function space. A second check that is required for fields on read-only function
spaces is to ensure that the halo is clean before it is accessed. This check is currently implemented within the
LFRic infrastructure halo exchange call (that the PSyclone LFRic API places at appropriate locations). If the
halo is clean then the halo exchange will not be called. However, if the halo is not clean then the resulting halo
exchange call will cause the infrastructure to raise an error (because the field is on a read-only space).

2) Check that the function space of a field is consistent with the kernel function space metadata that the field’s data
is passed into. For example, if kernel metadata specifies that a field is on the W2 function space then a run-time
check is added to ensure that the field object passed into the PSy layer is indeed on that space. For more general
kernel function space metadata, such as ANY_DISCONTINUOUS_SPACE_* then a run-time check is added to
ensure that the field is on one of the discontinuous function spaces supported in the LFRic API.

12.8.3 Supported Data Types and Default Kind

The LFRic API supports three Fortran primitive (intrinsic) data types, real, integer and logical (listed in the
supported_fortran_datatypes section of the PSyclone configuration file). All three data types are used for scalars.
Fields and field vectors are allowed to have real and integer data. Operators and column-wise operators are only
allowed to have real data. These supported primitive types are linked to the respective kernel data type metadata
descriptors, GH_REAL and GH_INTEGER.

The default kind (precision) for these supported data types is set to r_def, i_def and l_def, respectively, in the
default_kind dictionary in the configuration file. These default values are defined in the LFRic infrastructure code.

Note: Whilst the logical Fortran primitive (intrinsic) data type is supported in the LFRic API for scalar arguments,
it is not yet available for fields and operators. This will be added as required in future releases.
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12.8.4 Number of Generalised ANY_*_SPACE Function Spaces

As outlined in the meta_args and the Supported Function Spaces sections above, the number of generalised
ANY_SPACE_<n> and ANY_DISCONTINUOUS_SPACE_<n> function spaces can be set in the PSyclone configuration
file.

The relevant parameters are NUM_ANY_SPACE and NUM_ANY_DISCONTINUOUS_SPACE, respectively. Their default val-
ues in the configuration file are 10 and their allowed values are positive non-zero integers. PSyclone will raise a
ConfigurationError if a supplied value is invalid.

12.9 Transformations

This section describes the Dynamo0.3-API-specific transformations. In cases, excepting
Dynamo0p3RedundantComputationTrans, Dynamo0p3AsyncHaloExchangeTrans and Dy-
namo0p3KernelConstTrans, these transformations are specialisations of generic transformations described in
the Transformations section. The difference between these transformations and the generic ones is that these perform
Dynamo0.3-API-specific checks to make sure the transformations are valid. In practice these transformations perform
the required checks then call the generic ones internally.

The use of the Dynamo0.3-API-specific transformations is exactly the same as the equivalent generic ones in all cases
excepting LFRicLoopFuseTrans. In this case an additional optional argument same_space can be set when applying
the transformation. The reason for this is to allow loop fusion when one or more of the iteration spaces is determined by a
function space that is unknown by PSyclone at compile time. This is the case when the ANY_SPACE_<n> function space
is specified in the Kernel metadata. Adding {"same_space": True} as option when applying the transformation
allows the user to specify that the spaces are the same (see Standard Functionality for using options in transformations).
This option should therefore be used with caution. PSyclone will raise an error if same_space is used when at least one
of the function spaces is not ANY_SPACE_<n> or both spaces are not the same. In general, PSyclone will not allow loop
fusion if it does not know the spaces are the same. The exception are loops over discontinuous spaces (see Supported
Function Spaces for list of discontinuous function spaces) for which loop fusion is allowed (unless the loop bounds
become different due to a prior transformation).

The Dynamo0p3RedundantComputationTrans and Dynamo0p3AsyncHaloExchange transformations are only
valid for the Dynamo0.3 API. This is because this API is currently the only one that supports distributed memory.
An example of redundant computation can be found in examples/lfric/eg8 and an example of asynchronous halo
exchanges can be found in examples/lfric/eg11.

The Dynamo0p3KernelConstTrans transformation is only valid for the Dynamo0.3 API. This is because the proper-
ties that it makes constant are API specific.

The LFRic (dynamo0.3) API-specific transformations currently available are given below. Early transformations
include “Dynamo0p3” or “Dynamo” in their name to indicate that these transformations are only valid for this
particular API. More recent transformations typically include “LFRic” in their name to indicate the same restric-
tion. However, more importantly, transformations that are specific to LFRic reside in the LFRic-specific “psy-
clone.domain/lfric/transformations” directory. Note, the early LFRic (dynamo0.3) API-specific transformations have
not yet been migrated to this directory.

Note: Only the loop-colouring and OpenMP transformations are currently supported for loops that contain inter-grid
kernels. Attempting to apply other transformation types will result in PSyclone raising an error.

class psyclone.domain.lfric.transformations.LFRicExtractTrans

Dynamo0.3 API application of ExtractTrans transformation to extract code into a stand-alone program. For
example:
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>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>>
>>> API = "dynamo0.3"
>>> FILENAME = "solver_alg.x90"
>>> ast, invokeInfo = parse(FILENAME, api=API)
>>> psy = PSyFactory(API, distributed_memory=False).create(invoke_info)
>>> schedule = psy.invokes.get('invoke_0').schedule
>>>
>>> from psyclone.domain.lfric.transformations import LFRicExtractTrans
>>> etrans = LFRicExtractTrans()
>>>
>>> # Apply LFRicExtractTrans transformation to selected Nodes
>>> etrans.apply(schedule.children[0:3])
>>> print(schedule.view())

apply(nodes, options=None)
Apply this transformation to a subset of the nodes within a schedule - i.e. enclose the specified Nodes
in the schedule within a single PSyData region. It first uses the DependencyTool to determine input- and
output-parameters. If requested, it will then call the LFRicExtractDriverCreator to write the stand-alone
driver program. Then it will call apply of the base class.

Parameters

• nodes (psyclone.psyir.nodes.Node or List[psyclone.psyir.nodes.Node]) – can
be a single node or a list of nodes.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["prefix"] (str) – a prefix to use for the PSyData module name
(prefix_psy_data_mod) and the PSyDataType (prefix_PSyDataType) - a “_” will be
added automatically. It defaults to “extract”, resulting in e.g. extract_psy_data_mod.

• options["create_driver"] (bool) – whether or not to create a driver program at code-
generation time. If set, the driver will be created in the current working directory with
the name “driver-MODULE-REGION.f90” where MODULE and REGION will be the
corresponding values for this region. Defaults to False.

• options["region_name"] (Tuple[str,str]) – an optional name to use for this PSy-
Data area, provided as a 2-tuple containing a location name followed by a local name. The
pair of strings should uniquely identify a region unless aggregate information is required
(and is supported by the runtime library).

validate(node_list, options=None)
Perform Dynamo0.3 API specific validation checks before applying the transformation.

Parameters

• node_list (List[psyclone.psyir.nodes.Node]) – the list of Node(s) we are checking.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

Raises
TransformationError – if transformation is applied to a Loop over cells in a colour without
its parent Loop over colours.
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class psyclone.domain.lfric.transformations.LFRicLoopFuseTrans

Dynamo0.3 API specialisation of the base class in order to fuse two Dynamo loops after performing validity
checks. For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>>
>>> API = "dynamo0.3"
>>> FILENAME = "alg.x90"
>>> ast, invokeInfo = parse(FILENAME, api=API)
>>> psy = PSyFactory(API, distributed_memory=False).create(invoke_info)
>>> schedule = psy.invokes.get('invoke_0').schedule
>>>
>>> from psyclone.domain.lfric.transformations import LFRicLoopFuseTrans
>>> ftrans = LFRicLoopFuseTrans()
>>>
>>> ftrans.apply(schedule[0], schedule[1])
>>> print(schedule.view())

The optional argument same_space can be set as

>>> ftrans.apply(schedule[0], schedule[1], {"same_space": True})

when applying the transformation.

validate(node1, node2, options=None)
Performs various checks to ensure that it is valid to apply the LFRicLoopFuseTrans transformation to the
supplied loops.

Parameters

• node1 (psyclone.dynamo0p3.DynLoop) – the first Loop to fuse.

• node2 (psyclone.dynamo0p3.DynLoop) – the second Loop to fuse.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["same_space"] (bool) – this optional flag, set to True, asserts that an unknown
iteration space (i.e. ANY_SPACE) matches the other iteration space. This is set at the user’s
own risk. If both iteration spaces are discontinuous the loops can be fused without having
to use the same_space flag.

Raises

• TransformationError – if either of the supplied loops contains an inter-grid kernel.

• TransformationError – if one or both function spaces have invalid names.

• TransformationError – if the same_space flag was set, but does not apply because nei-
ther field is on ANY_SPACE or the spaces are not the same.

• TransformationError – if one or more of the iteration spaces is unknown (ANY_SPACE)
and the same_space flag is not set to True.

• TransformationError – if the loops are over different spaces that are not both discon-
tinuous and the loops both iterate over cells.

• TransformationError – if the loops’ upper bound names are not the same.

• TransformationError – if the halo-depth indices of two loops are not the same.
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• TransformationError – if each loop already contains a reduction.

• TransformationError – if the first loop has a reduction and the second loop reads the
result of the reduction.

class psyclone.domain.lfric.transformations.RaisePSyIR2LFRicKernTrans

Raise a generic PSyIR representation of a kernel-layer routine and metadata to an LFRic version with specialised
domain-specific nodes and symbols. This is currently limited to the specialisation of kernel metadata.

>>> from psyclone.domain.lfric.transformations import ␣
→˓RaisePSyIR2LFRicKernTrans
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> CODE = ("""
... MODULE example
... TYPE, EXTENDS(kernel_type) :: compute_cu
... TYPE(arg_type), DIMENSION(4) :: meta_args = (/ &
... arg_type(GH_FIELD, GH_REAL, GH_INC, W1), &
... arg_type(GH_FIELD, GH_REAL, GH_READ, W3), &
... arg_type(GH_FIELD, GH_REAL, GH_READ, W3), &
... arg_type(GH_FIELD, GH_REAL, GH_READ, W3)/)
... INTEGER :: OPERATES_ON = CELL_COLUMN
... CONTAINS
... PROCEDURE, NOPASS :: code => compute_cu_code
... END TYPE compute_cu
... contains
... subroutine compute_cu_code()
... end subroutine
... end module""")
>>> fortran_reader = FortranReader()
>>> kernel_container = fortran_reader.psyir_from_source(CODE)
>>> trans = RaisePSyIR2LFRicKernTrans()
>>> trans.apply(kernel_container, {"metadata_name": "compute_cu"})

apply(node, options=None)
Raise the supplied language-level kernel to LFRic-specific kernel PSyIR. Specialises the kernel container
to an LFRic-specific subclass, populates this subclass with the kernel metadata extracted from the metadata
symbol as specified in metadata_name (which is supplied via the options argument) and removes the symbol
from the symbol table.

Parameters

• node (psyclone.psyir.node.Container) – a kernel represented in generic PSyIR.

• options (Optional[Dict[str: str]]) – a dictionary with options for transforma-
tions. This is expected to contain the metadata_name.

validate(node, options=None)
Validate the supplied PSyIR tree.

Parameters

• node (psyclone.psyir.node.Container) – a PSyIR node that is the root of a PSyIR
tree.

• options (Optional[Dict[str: str]]) – a dictionary with options for transforma-
tions.

Raises
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• TransformationError – if the supplied node is not a Container.

• TransformationError – if the supplied node argument has a parent.

• TransformationError – if the metadata name has not been provided in the options ar-
gument.

• TransformationError – if the metadata name has not been set or does not exist in the
code.

class psyclone.transformations.DynamoOMPParallelLoopTrans(omp_directive='do',
omp_schedule='static')

Dynamo-specific OpenMP loop transformation. Adds Dynamo specific validity checks. Actual transformation
is done by the base class.

Parameters

• omp_directive (str) – choose which OpenMP loop directive to use. Defaults to “do”.

• omp_schedule (str) – the OpenMP schedule to use. Must be one of ‘runtime’, ‘static’,
‘dynamic’, ‘guided’ or ‘auto’. Defaults to ‘static’.

apply(node, options=None)
Perform Dynamo specific loop validity checks then call the apply() method of the base class.

Parameters

• node (psyclone.psyir.nodes.Node) – the Node in the Schedule to check

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

Raises
TransformationError – if the associated loop requires colouring.

class psyclone.transformations.Dynamo0p3AsyncHaloExchangeTrans

Splits a synchronous halo exchange into a halo exchange start and halo exchange end. For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "dynamo0.3"
>>> ast, invokeInfo = parse("file.f90", api=api)
>>> psy=PSyFactory(api).create(invokeInfo)
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>>
>>> from psyclone.transformations import Dynamo0p3AsyncHaloExchangeTrans
>>> trans = Dynamo0p3AsyncHaloExchangeTrans()
>>> trans.apply(schedule.children[0])
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

apply(node, options=None)
Transforms a synchronous halo exchange, represented by a HaloExchange node, into an asynchronous halo
exchange, represented by HaloExchangeStart and HaloExchangeEnd nodes.

Parameters

• node (psyclone.psygen.HaloExchange) – a synchronous haloexchange node.
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• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

property name

Returns
the name of this transformation as a string.

Return type
str

validate(node, options)
Internal method to check whether the node is valid for this transformation.

Parameters

• node (psyclone.psygen.HaloExchange) – a synchronous Halo Exchange node

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

Raises
TransformationError – if the node argument is not a HaloExchange (or subclass thereof)

class psyclone.transformations.Dynamo0p3ColourTrans

Split a Dynamo 0.3 loop over cells into colours so that it can be parallelised. For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> import transformations
>>> import os
>>> import pytest
>>>
>>> TEST_API = "dynamo0.3"
>>> _,info=parse(os.path.join(os.path.dirname(os.path.abspath(__file__)),
>>> "tests", "test_files", "dynamo0p3",
>>> "4.6_multikernel_invokes.f90"),
>>> api=TEST_API)
>>> psy = PSyFactory(TEST_API).create(info)
>>> invoke = psy.invokes.get('invoke_0')
>>> schedule = invoke.schedule
>>>
>>> ctrans = Dynamo0p3ColourTrans()
>>> otrans = DynamoOMPParallelLoopTrans()
>>>
>>> # Colour all of the loops
>>> for child in schedule.children:
>>> ctrans.apply(child)
>>>
>>> # Then apply OpenMP to each of the colour loops
>>> for child in schedule.children:
>>> otrans.apply(child.children[0])
>>>
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

Colouring in the LFRic (Dynamo 0.3) API is subject to the following rules:
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• Only kernels which operate on ‘CELL_COLUMN’s and which increment a field on a continuous function
space require colouring. Kernels that update a field on a discontinuous function space will cause this
transformation to raise an exception. Kernels that only write to a field on a continuous function space also
do not require colouring but are permitted.

• A kernel may have at most one field with ‘GH_INC’ access.

• A separate colour map will be required for each field that is coloured (if an invoke contains >1 kernel call).

apply(node, options=None)
Performs Dynamo0.3-specific error checking and then uses the parent class to convert the Loop represented
by node into a nested loop where the outer loop is over colours and the inner loop is over cells of that colour.

Parameters

• node (psyclone.dynamo0p3.DynLoop) – the loop to transform.

• options – a dictionary with options for transformations. :type options: Optional[Dict[str,
Any]]

class psyclone.transformations.Dynamo0p3KernelConstTrans

Modifies a kernel so that the number of dofs, number of layers and number of quadrature points are fixed in the
kernel rather than being passed in by argument.

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "dynamo0.3"
>>> ast, invokeInfo = parse("file.f90", api=api)
>>> psy=PSyFactory(api).create(invokeInfo)
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>>
>>> from psyclone.transformations import Dynamo0p3KernelConstTrans
>>> trans = Dynamo0p3KernelConstTrans()
>>> for kernel in schedule.coded_kernels():
>>> trans.apply(kernel, number_of_layers=150)
>>> kernel_schedule = kernel.get_kernel_schedule()
>>> # Uncomment the following line to see a text view of the
>>> # symbol table
>>> # print(kernel_schedule.symbol_table.view())

apply(node, options=None)
Transforms a kernel so that the values for the number of degrees of freedom (if a valid value for the ele-
ment_order arg is provided), the number of quadrature points (if the quadrature arg is set to True) and the
number of layers (if a valid value for the number_of_layers arg is provided) are constant in a kernel rather
than being passed in by argument.

The “cellshape”, “element_order” and “number_of_layers” arguments are provided to mirror the namelist
values that are input into an LFRic model when it is run.

Quadrature support is currently limited to XYoZ in ths transformation. In the case of XYoZ the number of
quadrature points (for horizontal and vertical) are set to the element_order + 3 in the LFRic infrastructure
so their value is derived.

Parameters

• node (psyclone.psygen.DynKern) – a kernel node.
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• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["cellshape"] (str) – the shape of the cells. This is provided as it helps de-
termine the number of dofs a field has for a particular function space. Currently only
“quadrilateral” is supported which is also the default value.

• options["element_order"] (int) – the order of the cell. In combination with cell-
shape, this determines the number of dofs a field has for a particular function space. If
it is set to None (the default) then the dofs values are not set as constants in the kernel,
otherwise they are.

• options["number_of_layers"] (int) – the number of vertical layers in the LFRic
model mesh used for this particular run. If this is set to None (the default) then the nlayers
value is not set as a constant in the kernel, otherwise it is.

• options["quadrature"] (bool) – whether the number of quadrature points values are
set as constants in the kernel (True) or not (False). The default is False.

property name

Returns
the name of this transformation as a string.

Return type
str

validate(node, options=None)
This method checks whether the input arguments are valid for this transformation.

Parameters

• node (psyclone.psygen.DynKern) – a dynamo 0.3 kernel node.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["cellshape"] (str) – the shape of the elements/cells.

• options["element_order"] (int) – the order of the elements/cells.

• options["number_of_layers"] (int) – the number of layers to use.

• options["quadrature"] (bool) – whether quadrature dimension sizes should or
shouldn’t be set as constants in a kernel.

Raises
TransformationError – if the node argument is not a dynamo 0.3 kernel, the cellshape
argument is not set to “quadrilateral”, the element_order argument is not a 0 or a positive
integer, the number of layers argument is not a positive integer, the quadrature argument is
not a boolean, neither element order nor number of layers arguments are set (as the transfor-
mation would then do nothing), or the quadrature argument is True but the element order is
not provided (as the former needs the latter).

class psyclone.transformations.Dynamo0p3OMPLoopTrans(omp_schedule='static')
LFRic (Dynamo 0.3) specific orphan OpenMP loop transformation. Adds Dynamo-specific validity checks.

Parameters
omp_schedule (str) – the OpenMP schedule to use. Must be one of ‘runtime’, ‘static’, ‘dy-
namic’, ‘guided’ or ‘auto’. Defaults to ‘static’.
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apply(node, options=None)
Apply LFRic (Dynamo 0.3) specific OMPLoopTrans.

Parameters

• node (psyclone.psyir.nodes.Node) – the Node in the Schedule to check.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transformations
and validation.

• options["reprod"] (bool) – indicating whether reproducible reductions should be
used. By default the value from the config file will be used.

validate(node, options=None)
Perform LFRic (Dynamo 0.3) specific loop validity checks for the OMPLoopTrans.

Parameters

• node (psyclone.psyir.nodes.Node) – the Node in the Schedule to check

• options (Optional[Dict[str, Any]]) – a dictionary with options for transformations
and validation.

• options["reprod"] (bool) – indicating whether reproducible reductions should be
used. By default the value from the config file will be used.

Raises
TransformationError – if an OMP loop transform would create incorrect code.

class psyclone.transformations.Dynamo0p3RedundantComputationTrans

This transformation allows the user to modify a loop’s bounds so that redundant computation will be performed.
Redundant computation can result in halo exchanges being modified, new halo exchanges being added or existing
halo exchanges being removed.

• This transformation should be performed before any parallelisation transformations (e.g. for OpenMP) to
the loop in question and will raise an exception if this is not the case.

• This transformation can not be applied to a loop containing a reduction and will again raise an exception if
this is the case.

• This transformation can only be used to add redundant computation to a loop, not to remove it.

• This transformation allows a loop that is already performing redundant computation to be modified, but
only if the depth is increased.

apply(loop, options=None)
Apply the redundant computation transformation to the loop loop. This transformation can be applied to
loops iterating over ‘cells or ‘dofs’. if depth is set to a value then the value will be the depth of the field’s
halo over which redundant computation will be performed. If depth is not set to a value then redundant
computation will be performed to the full depth of the field’s halo.

Parameters

• loop (psyclone.psyGen.DynLoop) – the loop that we are transforming.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["depth"] (int) – the depth of the stencil. Defaults to None.

validate(node, options=None)
Perform various checks to ensure that it is valid to apply the RedundantComputation transformation to the
supplied node
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Parameters

• node (psyclone.psyir.nodes.Node) – the supplied node on which we are performing
validity checks

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["depth"] (int) – the depth of the stencil if the value is provided and None if
not.

Raises

• TransformationError – if the parent of the loop is a psyclone.psyir.nodes.
Directive.

• TransformationError – if the parent of the loop is not a psyclone.psyir.nodes.
Loop or a psyclone.psyGen.DynInvokeSchedule.

• TransformationError – if the parent of the loop is a psyclone.psyir.nodes.Loop
but the original loop does not iterate over ‘colour’.

• TransformationError – if the parent of the loop is a psyclone.psyir.nodes.Loop
but the parent does not iterate over ‘colours’.

• TransformationError – if the parent of the loop is a psyclone.psyir.nodes.Loop
but the parent’s parent is not a psyclone.psyGen.DynInvokeSchedule.

• TransformationError – if this transformation is applied when distributed memory is
not switched on.

• TransformationError – if the loop does not iterate over cells, dofs or colour.

• TransformationError – if the transformation is setting the loop to the maximum halo
depth but the loop already computes to the maximum halo depth.

• TransformationError – if the transformation is setting the loop to the maximum halo
depth but the loop contains a stencil access (as this would result in the field being accessed
beyond the halo depth).

• TransformationError – if the supplied depth value is not an integer.

• TransformationError – if the supplied depth value is less than 1.

• TransformationError – if the supplied depth value is not greater than 1 when a contin-
uous loop is modified as this is the minimum valid value.

• TransformationError – if the supplied depth value is not greater than the existing depth
value, as we should not need to undo existing transformations.

• TransformationError – if a depth value has been supplied but the loop has already been
set to the maximum halo depth.
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CHAPTER

THIRTEEN

GOCEAN1.0 API

13.1 Introduction

The GOcean 1.0 application programming interface (API) was originally designed to support ocean models that use
the finite-difference scheme for two-dimensional domains. However, the approach is not specific to ocean models and
can potentially be applied to any finite-difference code.

As with all PSyclone APIs, the GOcean 1.0 API specifies how a user must write the Algorithm Layer and the Kernel
Layer to allow PSyclone to generate the PSy Layer. These Algorithm and Kernel APIs are discussed separately in the
sections below. Before these we describe the functionality provided by the GOcean Library.

13.2 The GOcean Library

The use of PSyclone and the GOcean 1.0 API implies the use of a standard set of data types and associated infrastructure.
This is provided by version 1.0 of the GOcean Library (GOLib v.1.0). Currently this library is distributed separately
from PSyclone and is available from https://puma.nerc.ac.uk/trac/GOcean.

13.2.1 Grid

The GOLib contains a grid_mod module which defines a grid_type and associated constructor:

use grid_mod
...
!> The grid on which our fields are defined
type(grid_type), target :: model_grid
...
! Create the model grid
model_grid = grid_type(GO_ARAKAWA_C, &

(/GO_BC_EXTERNAL,GO_BC_EXTERNAL,GO_BC_NONE/), &
GO_OFFSET_NE)

Note: The grid object itself must be declared with the target attribute. This is because each field object will contain
a pointer to it.

The grid_type constructor takes three arguments:

1. The type of grid (only GO_ARAKAWA_C is currently supported)
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2. The boundary conditions on the domain for the x, y and z dimensions (see below). The value for the z dimension
is currently ignored.

3. The ‘index offset’ - the convention used for indexing into offset fields.

Three types of boundary condition are currently supported:

Name Description
GO_BC_NONE No boundary conditions are applied.
GO_BC_EXTERNAL Some external forcing is applied. This must be implemented by a kernel. The domain

must be defined with a T-point mask (see The grid_init Routine).
GO_BC_PERIODIC Periodic boundary conditions are applied.

The infrastructure requires this information in order to determine the extent of the model grid.

The index offset is required because a model (kernel) developer has choice in how they actually implement the stagger-
ing of variables on a grid. This comes down to a choice of which grid points in the vicinity of a given T point have the
same array (i, j) indices. In the diagram below, the image on the left corresponds to choosing those points to the South
and West of a T point to have the same (i, j) index. That on the right corresponds to choosing those points to the North
and East of the T point (this is the offset scheme used in the NEMO ocean model):

The GOcean 1.0 API supports these two different offset schemes, which we term GO_OFFSET_SW and GO_OFFSET_NE.

Note that the constructor does not specify the extent of the model grid. This is because this information is normally
obtained by reading a file (a namelist file, a netcdf file etc.) which is specific to an application. Once this information
has been obtained, a second routine, grid_init, is provided with which to ‘load’ a grid object with state. This is
discussed below.

The grid_init Routine

Once an application has determined the details of the model configuration, it must use this information to populate the
grid object. This is done via a call to the grid_init subroutine:

subroutine grid_init(grid, m, n, dxarg, dyarg, tmask)
!> The grid object to configure
type(grid_type), intent(inout) :: grid
!> Dimensions of the model grid
integer, intent(in) :: m, n
!> The (constant) grid spacing in x and y (m)
real(wp), intent(in) :: dxarg, dyarg
!> Optional T-point mask specifying whether each grid point is
!! wet (1), dry (0) or external (-1).
integer, dimension(m,n), intent(in), optional :: tmask
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If no T-mask is supplied then this routine configures the grid appropriately for an all-wet domain with periodic boundary
conditions in both the x- and y-dimensions. It should also be noted that currently only grids with constant resolution
in x and y are supported by this routine.

13.2.2 Fields

Once a model has a grid defined it will require one or more fields. The GOLib contains a field_mod module which
defines an r2d_field type (real, 2-dimensional field) and associated constructor:

use field_mod
...
!> Current ('now') sea-surface height at different grid points
type(r2d_field) :: sshn_u_fld, sshn_v_fld, sshn_t_fld
...

! Sea-surface height now (current time step)
sshn_u = r2d_field(model_grid, GO_U_POINTS)
sshn_v = r2d_field(model_grid, GO_V_POINTS)
sshn_t = r2d_field(model_grid, GO_T_POINTS)

The constructor takes two arguments:

1. The grid on which the field exists

2. The type of grid point at which the field is defined (GO_U_POINTS, GO_V_POINTS, GO_T_POINTS or
GO_F_POINTS)

Note that the grid object need not have been fully configured (by a call to grid_init for instance) before it is passed
into this constructor.

13.2.3 Example

PSyclone is distributed with a full example of the use of the GOcean Library. See <PSYCLONEHOME>/examples/
gocean/shallow_alg.f90. In what follows we will walk through a slightly cut-down example for a different program.

The following code illustrates the use of the GOLib in constructing an application:

program gocean2d
use grid_mod ! From dl_esm_inf
use field_mod ! From dl_esm_inf
use model_mod
use boundary_conditions_mod

!> The grid on which our fields are defined. Must have the 'target'
!! attribute because each field object contains a pointer to it.
type(grid_type), target :: model_grid

!> Current ('now') velocity component fields
type(r2d_field) :: un_fld, vn_fld
!> 'After' velocity component fields
type(r2d_field) :: ua_fld, va_fld
...

! time stepping index
(continues on next page)
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(continued from previous page)

integer :: istp

! Create the model grid. We use a NE offset (i.e. the U, V and F
! points immediately to the North and East of a T point all have the
! same i,j index). This is the same offset scheme as used by NEMO.
model_grid = grid_type(GO_ARAKAWA_C, &

(/GO_BC_EXTERNAL,GO_BC_EXTERNAL,GO_BC_NONE/), &
GO_OFFSET_NE)

!! read in model parameters and configure the model grid
CALL model_init(model_grid)

! Create fields on this grid

! Velocity components now (current time step)
un_fld = r2d_field(model_grid, GO_U_POINTS)
vn_fld = r2d_field(model_grid, GO_V_POINTS)

! Velocity components 'after' (next time step)
ua_fld = r2d_field(model_grid, GO_U_POINTS)
va_fld = r2d_field(model_grid, GO_V_POINTS)

...

!! time stepping
do istp = nit000, nitend, 1

call step(istp, &
ua_fld, va_fld, un_fld, vn_fld, &
...)

end do
...

end program gocean2d

The model_init routine is application specific since it must determine details of the model configuration being run,
e.g. by reading a namelist file. An example might look something like:

subroutine model_init(grid)
type(grid_type), intent(inout) :: grid

!> Problem size, read from namelist
integer :: jpiglo, jpjglo
real(wp) :: dx, dy
integer, dimension(:,:), allocatable :: tmask

! Read model configuration from namelist
call read_namelist(jpiglo, jpjglo, dx, dy, &

nit000, nitend, irecord, &
jphgr_msh, dep_const, rdt, cbfr, visc)

! Set-up the T mask. This defines the model domain.
allocate(tmask(jpiglo,jpjglo))

(continues on next page)
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(continued from previous page)

call setup_tpoints_mask(jpiglo, jpjglo, tmask)

! Having specified the T points mask, we can set up mesh parameters
call grid_init(grid, jpiglo, jpjglo, dx, dy, tmask)

! Clean-up. T-mask has been copied into the grid object.
deallocate(tmask)

end subroutine model_init

Here, only grid_type and the grid_init routine come from the GOLib. The remaining code is all application
specific.

Once the grid object is fully configured and all fields have been constructed, a simulation will proceed by performing
calculations with those fields. In the example program given above, this calculation is performed in the time-stepping
loop within the step subroutine. The way in which this routine uses Invoke calls is described in the Invokes Section.

13.3 Algorithm

The Algorithm is the top-level specification of the natural science implemented in the software. Essentially it consists
of mesh setup, field declarations, initialisation of fields and (a series of) Kernel calls. Infrastructure to support these
tasks is provided in version 1.0 of the GOcean library (see The GOcean Library).

13.3.1 Invokes

The Kernels to call are specified through the use of Invokes, e.g.:

call invoke( kernel1(field1, field2), &
kernel2(field1, field3) &

)

The location and number of these call invoke(...) statements within the source code is entirely up to the user.
The only requirement is that PSyclone must be run on every source file that contains one or more Invokes. The body
of each Invoke specifies the kernels to be called, the order in which they are to be applied and the fields (and scalars)
that they work with.

Note that the kernel names specified in an Invoke are the names of the corresponding kernel types defined in the kernel
metadata (see the Kernel Section). These are not the same as the names of the Fortran subroutines which contain the
actual kernel code. The kernel arguments are typically field objects, as described in the Fields Section, but they may
also be scalar quantities (real or integer).

In the example gocean2d program shown earlier, there is only one Invoke call and it is contained within the step
subroutine:

subroutine step(istp, &
ua, va, un, vn, &
sshn_t, sshn_u, sshn_v, &
ssha_t, ssha_u, ssha_v, &
hu, hv, ht)

use kind_params_mod ! From dl_esm_inf
(continues on next page)

13.3. Algorithm 125



PSyclone Documentation, Release 2.4.0

(continued from previous page)

use grid_mod ! From dl_esm_inf
use field_mod ! From dl_esm_inf
use model_mod, only: rdt ! The model time-step
use continuity_mod, only: continuity
use momentum_mod, only: momentum_u, momentum_v
use boundary_conditions_mod, only: bc_ssh, bc_solid_u
!> The current time step
integer, intent(inout) :: istp
type(r2d_field), intent(inout) :: un, vn, sshn_t, sshn_u, sshn_v
type(r2d_field), intent(inout) :: ua, va, ssha_t, ssha_u, ssha_v
type(r2d_field), intent(inout) :: hu, hv, ht

call invoke( &
continuity(ssha_t, sshn_t, sshn_u, sshn_v, &

hu, hv, un, vn, rdt), &
momentum_u(ua, un, vn, hu, hv, ht, &

ssha_u, sshn_t, sshn_u, sshn_v), &
momentum_v(va, un, vn, hu, hv, ht, &

ssha_v, sshn_t, sshn_u, sshn_v), &
bc_ssh(istp, ssha_t), &
bc_solid_u(ua), &
...
)

end subroutine step

Note that in this example the grid was constructed for a model with ‘external’ boundary conditions. These boundary
conditions are applied through several user-supplied kernels, two of which (bc_ssh and bc_solid_u) are include in
the above code fragment.

13.4 Kernel

The general requirements for the structure of a Kernel are explained in the Kernel layer section. This section explains
the metadata and subroutine arguments that are specific to the GOcean 1.0 API.

13.4.1 Metadata

The metadata for a GOcean 1.0 API kernel has four components:

1) ‘meta_args’,

2) ‘iterates_over’,

3) ‘index_offset’ and

4) ‘procedure’:

These are illustrated in the code below:

type, extends(kernel_type) :: my_kernel_type
type(go_arg), dimension(...) :: meta_args = (/ ... /)
integer :: iterates_over = ...
integer :: index_offset = ...

(continues on next page)
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contains
procedure, nopass :: code => my_kernel_code

end type my_kernel_type

These four metadata elements are discussed in order in the following sections.

Argument Metadata: meta_args

The meta_args array specifies information about data that the kernel code expects to be passed to it via its argument
list. There is one entry in the meta_args array for each scalar, field, or grid-property passed into the Kernel. Their
ordering in the meta_args array must be the same as that in the kernel code argument list. The entry must be of type
go_argwhich itself contains metadata about the associated argument. The size of the meta_args array must correspond
to the total number of scalars, fields and grid properties passed into the Kernel.

For example, if there are a total of two field entities being passed to the Kernel then the meta_args array will be of size
2 and there will be two entries of type GO_arg:

type(GO_arg) :: meta_args(2) = (/ &
go_arg( ... ), &
go_arg( ... ) &
/)

Argument-metadata (metadata contained within the brackets of an go_arg entry), describes either a scalar, a field or
a grid property.

The first argument-metadata entry describes how the kernel will access the corresponding argument. As an example,
the following meta_args metadata describes four entries, the first one is written to by the kernel while the remaining
three are only read:

type(go_arg) :: meta_args(4) = (/ &
go_arg(GO_WRITE, ... ), &
go_arg(GO_READ, ... ), &
go_arg(GO_READ, ... ), &
go_arg(GO_READ, ...) &
/)

The second entry to argument-metadata (information contained within the brackets of an go_arg type) describes the
type of data represented by the argument. This type falls into three categories; field data, scalar data and grid properties.
For field data the metadata entry consists of the type of grid-point that field values are defined on. Since the GOcean
API supports fields on an Arakawa C grid, the possible grid-point types are GO_CU, GO_CV, GO_CF and GO_CT. GOcean
Kernels can also take scalar quantities as arguments. Since these do not live on grid-points they are specified as either
GO_R_SCALAR or GO_I_SCALAR depending on whether the corresponding Fortran variable is a real or integer quantity.
Finally, grid-property entries are used to specify any properties of the grid required by the kernel (e.g. the area of cells
at U points or whether T points are wet or dry).

For example:

type(go_arg) :: meta_args(4) = (/ &
go_arg(GO_WRITE, GO_CT, ... ), &
go_arg(GO_READ, GO_CU, ... ), &
go_arg(GO_READ, GO_R_SCALAR, ... ), &
go_arg(GO_READ, GO_GRID_AREA_U) &
/)
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Here, the first argument is a field on T points, the second is a field on U points, the fourth is a real scalar and the fifth
is a property of the grid (cell area at U points).

The full list of supported grid properties in the GOcean 1.0 API is:

Table 13.1: Grid Properties Table

Name Description Type
go_grid_area_t Cell area at T point Real array, rank=2
go_grid_area_u Cell area at U point Real array, rank=2
go_grid_area_v Cell area at V point Real array, rank=2
go_grid_mask_t T-point mask (1=wet, 0=dry) Integer array, rank=2
go_grid_dx_t Grid spacing in x at T points Real array, rank=2
go_grid_dx_u Grid spacing in x at U points Real array, rank=2
go_grid_dx_v Grid spacing in x at V points Real array, rank=2
go_grid_dy_t Grid spacing in y at T points Real array, rank=2
go_grid_dy_u Grid spacing in y at U points Real array, rank=2
go_grid_dy_v Grid spacing in y at V points Real array, rank=2
go_grid_lat_u Latitude of U points (gphiu) Real array, rank=2
go_grid_lat_v Latitude of V points (gphiv) Real array, rank=2
go_grid_dx_const Grid spacing in x if constant Real, scalar
go_grid_dy_const Grid spacing in y if constant Real, scalar
go_grid_x_min_index Minimum X index Integer, scalar
go_grid_x_max_index Maximum X index Integer, scalar
go_grid_y_min_index Minimum Y index Integer, scalar
go_grid_y_max_index Maximum Y index Integer, scalar

These are defined in the psyclone config file (see Configuration), and the user or infrastructure library developer can
provide additional entries if required. PSyclone will query PSyclone’s Configuration class to get the properties required.
All of the rank-two arrays have the first rank as longitude (x) and the second as latitude (y).

Scalars and fields contain a third argument-metadata entry which describes whether the kernel accesses the correspond-
ing argument with a stencil. The value GO_POINTWISE indicates that there is no stencil access. Metadata for a scalar
field is limited to this value. Grid-property arguments have no third metadata argument. If there are no stencil accesses
then the full argument metadata for our previous example will be:

type(go_arg) :: meta_args(4) = (/ &
go_arg(GO_WRITE, GO_CT, GO_POINTWISE), &
go_arg(GO_READ, GO_CU, GO_POINTWISE), &
go_arg(GO_READ, GO_R_SCALAR, GO_POINTWISE), &
go_arg(GO_READ, GO_GRID_AREA_U) &
/)

If a kernel accesses a field using a stencil then the third argument metadata entry should take the form go_stencil(.
..). Note, a stencil access is only allowed for a field that is READ by a kernel.

In the GOcean API, fields are implemented as two-dimensional arrays. In Fortran, a standard 5-point stencil would
look something like the following:

a(i,j) + a(i+1,j) + a(i-1,j) + a(i,j+1) + a(i,j-1)

If we view the above accesses as co-ordinates relative to the a(i,j) access we get (0,0), (1,0), (-1,0), (0,1),
(0,-1). If we then view these accesses in graphical form with i being in the horizontal direction and j in the vertical
and with a 1 indicating a (depth-1) access and a 0 indicating there is no access we get the following:
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010
111
010

In the GOcean API a stencil access is captured as a triplet of integers (one row at a time from top to bottom) using the
above view i.e.

go_stencil(010,111,010)

So far we have only considered depth-1 stencils. In our notation the depth of access is captured by the integer value (0
for no access, 1 for depth 1, 2 for depth 2 etc). For example:

a(i,j) + a(i,j+1) + a(i,j+2)

would be captured as:

go_stencil(020,010,000)

All forms of stencil can be summarised using this triplet notation up to a depth of 9 apart from the central a(i,j)
value which can either be 0 (not accessed) or 1 (accessed). Note, the central value is not currently used by PSyclone.
The notation is a summary in two ways

1) it only captures the depth of the stencil in a particular direction, not the actual accesses. Therefore, there is no
way to distinguish between the stencil a(i+2,j) and the stencil a(i+1,j) + a(i+2,j).

2) when there are offsets for both i and j e.g. a(i+1,j+1) it only captures whether there is an access in that
direction at a particular depth, not the details of the access. For example, there is no way to distinguish between
a(i+2,j+2) and a(i+2,j+2) + a(i+1,j+2) + a(i+2,j+1).

Whilst the description is a summary, it is accurate enough for PSyclone as this information is primarily used to determine
which grid partitions must communicate with which for the purposes of placing halo exchange calls. In this case, it is
the depth and direction information that is most important.

Iterates Over

The second element of kernel metadata is ITERATES_OVER. This specifies that the Kernel has been written with
the assumption that it is iterating over grid points of the specified type. By default the supported values are:
GO_INTERNAL_PTS, GO_EXTERNAL_PTS and GO_ALL_PTS. These may be understood by considering the following
diagram of an example model configuration:
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GO_INTERNAL_PTS are then those points that are within the Model domain (fuscia box), GO_EXTERNAL_PTS are those
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outside the domain and GO_ALL_PTS encompasses all grid points in the model. The chosen value is specified in the
kernel-meta data like so:

integer :: iterates_over = GO_INTERNAL_PTS

A user can use a config file (see Configuration) to add additional iteration spaces to PSyclone.

Index Offset

The third element of kernel metadata, INDEX_OFFSET, specifies the index-offset that the kernel uses. This is the same
quantity as supplied to the grid constructor (see the Grid Section for a description).

The GOcean 1.0 API supports two different offset schemes; GO_OFFSET_NE, GO_OFFSET_SW. The scheme used by a
kernel is specified in the metadata as, e.g.:

integer :: index_offset = GO_OFFSET_NE

Currently all kernels used in an application must use the same offset scheme which must also be the same as passed to
the grid constructor.

Procedure

The fourth and final type of metadata is procedure metadata. This specifies the name of the Kernel Fortran subroutine
that this metadata describes.

For example:

procedure :: my_kernel_code

13.4.2 Subroutine

Rules

Kernel arguments follow a set of rules which have been specified for the GOcean 1.0 API. These rules are encoded
in the gen_code() method of the GOKern class in the gocean1p0.py file. The rules, along with PSyclone’s naming
conventions, are:

1) Every kernel has the indices of the current grid point as the first two arguments, i and j. These are integers and
have intent in.

2) For each field/scalar/grid property in the order specified by the meta_args metadata:

1) For a field; the field array itself. A field array is a real array of kind go_wp and rank two. The first rank is
longitude (x) and the second latitude (y).

2) For a scalar; the variable itself. A real scalar is of kind go_wp.

3) For a grid property; the array or variable (see the earlier table) containing the specified property.

Note: Grid properties are not passed from the Algorithm Layer. PSyclone generates the necessary lookups in the PSy
Layer and includes the resulting references in the arguments passed to the kernel.

As an example, consider the bc_solid_u kernel that is used in the gocean2d program shown earlier. The metadata
for this kernel is:
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type, extends(kernel_type) :: bc_solid_u
type(go_arg), dimension(2) :: meta_args = &

(/ go_arg(GO_WRITE, GO_CU, GO_POINTWISE), &
go_arg(GO_READ, GO_GRID_MASK_T) &

/)

!> This is a boundary-conditions kernel and therefore
!! acts on all points of the domain rather than just
!! those that are internal
integer :: ITERATES_OVER = GO_ALL_PTS

integer :: index_offset = GO_OFFSET_NE

contains
procedure, nopass :: code => bc_solid_u_code

end type bc_solid_u

The interface to the subroutine containing the implementation of this kernel is:

subroutine bc_solid_u_code(ji, jj, ua, tmask)
integer, intent(in) :: ji, jj
integer, dimension(:,:), intent(in) :: tmask
real(wp), dimension(:,:), intent(inout) :: ua

As described above, the first two arguments to this subroutine specify the grid-point at which the computation is to be
performed. The third argument is the field that this kernel updates and the fourth argument is the T-point mask. The
latter is a property of the grid and is provided to the kernel call from the PSy Layer.

Comparing this interface definition with the use of the kernel in the Invoke call:

call invoke ( ..., &
bc_solid_u(ua), &
... )

we see that in the Algorithm Layer the user need only provide the field(s) (and possibly scalars) that a kernel operates
on. The index of the grid point and any grid properties are provided in the (generated) PSy Layer where the kernel
subroutine proper is called.

13.5 Built-ins

The GOcean 1.0 API does not support any built-in operations.

13.6 Conventions

The GOcean 1.0 API kernel code conforms to the PSyclone Fortran naming conventions (see Fortran Naming Conven-
tions). However, PSyclone’s support for the GOcean 1.0 API does not rely on this convention.

The contents of the kernel metadata is usually declared private but this does not affect PSyclone.

Finally, the procedure metadata (located within the kernel metadata) usually has nopass specified but again this is
ignored by PSyclone.
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13.7 Configuration

The configuration file (see Configuration) used by PSyclone can contain GOcean 1.0 specific options. For example,
after the default section the GOcean 1.0 specific section looks like this:

[gocean1.0]
iteration-spaces=offset_sw:ct:test_only:1:2:3:4

offset_sw:ct:internal_ns_halo:{start}-1:{stop}+1:{start}:{stop}

The supported keys are listed in the next section.

13.7.1 Iteration-spaces

This section lists additional iteration spaces that can be used in a kernel metadata declaration to allow PSyclone to create
a loop with different loop boundaries. Each line of the iteration-spaces declaration contains 7 values, separated
by ‘:’. The fields are:

Field Description Details
1 Index Offset See Index Offset.
2 grid-point types See Grid point types.
3 Iterates Over See Iterates Over.
4 Start index of outer loop Start index of North-South loop.
5 End index of outer loop End index of North-South loop.
6 Start index of inner loop Start index of East-West loop.
7 End index of inner loop End index of East-West loop.

Two special variables can be used in an iteration space: {start} and {stop}. These values will be replaced by
PSyclone with the correct loop boundaries for the inner points of a grid (i.e. the non-halo area). This means that the
depth-1 halo region can be specified using {start}-1 and {stop}+1.

For example, given the iteration-spaces declaration above, a kernel declared with
iterates_over=internal_ns_halo for a field type ct and index offset offset_sw would create the follow-
ing loop boundaries:

DO j=2-1,jstop+1
DO i=2,istop
CALL (i, j, ...)

END DO
END DO

Warning: With user defined iteration spaces it is possible that PSyclone will create code that does not compile: if
you specify syntactically correct, but semantically incorrect boundary definitions, the PSyclone internal tests will
accept the new iteration space, but the compiler will not. For example if one of the loop boundaries contains the
name of a variable that is not defined, compilation will fail. It is the responsibility of the user to make sure that
valid loop boundaries are specified in a new iteration space definition.
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13.7.2 Grid Properties

Various grid properties can be specified as parameters to a kernel. The actual names and meaning of these properties
depend on the infrastructure library used. By default PSyclone provides settings for the dl_esm_inf infrastructure
library. But the user or a library developer can change or add definitions to the configuration file as required.

The grid properties are specified as values for the key grid-properties. They consist of three entries, separated by
“:”.

• The first entry is the name of the property as used in kernel metadata.

• The next entry is the way of dereferencing the corresponding value in Fortran. The expression {0} is replaced
with the field name that is used. Note that any % must be replaced with %% (due to the way Python reads in
configuration files).

• The last entry specifies whether the value is an array or a scalar.

Below an excerpt from the configuration file that is distributed with PSyclone:

grid-properties = go_grid_xstop: {0}%%grid%%subdomain%%internal%%xstop: scalar,
go_grid_ystop: {0}%%grid%%subdomain%%internal%%ystop: scalar,
go_grid_data: {0}%%data: array,
go_grid_internal_inner_stop: {0}%%internal%%xstop: scalar,
go_grid_internal_outer_stop: {0}%%internal%%ystop: scalar,
go_grid_whole_inner_stop: {0}%%whole%%xstop: scalar,
go_grid_whole_outer_stop: {0}%%whole%%ystop: scalar,

...

Most of the property names can be set arbitrarily by the user (to match whatever infrastructure library is being used),
but PSyclone relies on a small number of properties that must be defined with the right name:

Key Description
go_grid_data This property gives access to the raw 2d-field.
go_grid_xstop, go_grid_ystop These values specify the upper loop boundary when

computing the constant loop boundaries.

go_grid_{internal,whole}
_{inner,outer}_{start,stop}

These eight values are required to specify the loop
boundaries depending on the field space.

go_grid_nx, go_grid_ny These properties are only required when OpenCL is en-
abled. They specify the overall array size (including any
padding that the infrastructure library might implement).

13.7.3 Debug Mode

The GOcean configuration also includes a boolean parameter to enable or disable the generation of additional code
which may impact performance but is useful for debugging the application. By default it is set to False, but it can be
changed by updating the following line in the configuration file:

[gocean1.0]
DEBUG_MODE = true

Currently, only the OpenCL Invokes generate additional debugging code.
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13.8 Transformations

In this section we describe the transformations that are specific to the GOcean 1.0 API. For an overview of transforma-
tions in general see Transformations.

class psyclone.domain.gocean.transformations.GOceanExtractTrans

GOcean1.0 API application of ExtractTrans transformation to extract code into a stand-alone program. For
example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>>
>>> API = "gocean1.0"
>>> FILENAME = "shallow_alg.f90"
>>> ast, invokeInfo = parse(FILENAME, api=API)
>>> psy = PSyFactory(API, distributed_memory=False).create(invoke_info)
>>> schedule = psy.invokes.get('invoke_0').schedule
>>>
>>> from psyclone.domain.gocean.transformations import GOceanExtractTrans
>>> etrans = GOceanExtractTrans()
>>>
>>> # Apply GOceanExtractTrans transformation to selected Nodes
>>> etrans.apply(schedule.children[0])
>>> print(schedule.view())

apply(nodes, options=None)
Apply this transformation to a subset of the nodes within a schedule - i.e. enclose the specified Nodes in
the schedule within a single PSyData region. Note that this implementation just calls the base class, it is
only added here to provide the documentation for this function, since it accepts different options to the base
class (e.g. create_driver, which is passed to the ExtractNode instance that will be inserted.).

Parameters

• nodes (psyclone.psyir.nodes.Node or list of psyclone.psyir.nodes.Node) – can
be a single node or a list of nodes.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["prefix"] (str) – a prefix to use for the PSyData module name
(prefix_psy_data_mod) and the PSyDataType (prefix_PSyDataType) - a “_” will be
added automatically. It defaults to “extract”, resulting in e.g. extract_psy_data_mod.

• options["create_driver"] (bool) – whether or not to create a driver program at code-
generation time. If set, the driver will be created in the current working directory with
the name “driver-MODULE-REGION.f90” where MODULE and REGION will be the
corresponding values for this region. Defaults to False.

• options["region_name"] ((str,str)) – an optional name to use for this PSyData
area, provided as a 2-tuple containing a location name followed by a local name. The pair
of strings should uniquely identify a region unless aggregate information is required (and
is supported by the runtime library).

validate(node_list, options=None)
Perform GOcean1.0 API specific validation checks before applying the transformation.

Parameters
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• node_list (list of psyclone.psyir.nodes.Node) – the list of Node(s) we are checking.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["create_driver"] (bool) – whether or not to create a driver program at code-
generation time. If set, the driver will be created in the current working directory with
the name “driver-MODULE-REGION.f90” where MODULE and REGION will be the
corresponding values for this region. This flag is forwarded to the ExtractNode. Its default
value is False.

• options["region_name"] ((str,str)) – an optional name to use for this data-
extraction region, provided as a 2-tuple containing a module name followed by a local
name. The pair of strings should uniquely identify a region unless aggregate information
is required (and is supported by the runtime library). This option is forwarded to the PSy-
DataNode (where it changes the region names) and to the ExtractNode (where it changes
the name of the created output files and the name of the driver program).

Raises
TransformationError – if transformation is applied to an inner Loop without its parent
outer Loop.

class psyclone.domain.gocean.transformations.GOceanLoopFuseTrans

GOcean API specialisation of the base class in order to fuse two GOcean loops after performing validity
checks (e.g. that the loops are over the same grid-point type). For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> ast, invokeInfo = parse("shallow_alg.f90")
>>> psy = PSyFactory("gocean1.0").create(invokeInfo)
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> print(schedule.view())
>>>
>>> from psyclone.transformations import GOceanLoopFuseTrans
>>> ftrans = GOceanLoopFuseTrans()
>>> ftrans.apply(schedule[0], schedule[1])
>>> print(schedule.view())

validate(node1, node2, options=None)
Checks if it is valid to apply the GOceanLoopFuseTrans transform. It ensures that the fused loops are over
the same grid-point types, before calling the normal LoopFuseTrans validation function.

Parameters

• node1 (psyclone.gocean1p0.GOLoop) – the first Node representing a GOLoop.

• node2 (psyclone.gocean1p0.GOLoop) – the second Node representing a GOLoop.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

Raises

• TransformationError – if the supplied loops are over different grid-point types.

• TransformationError – if invalid parameters are passed in.
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class psyclone.transformations.GOceanOMPParallelLoopTrans(omp_directive='do',
omp_schedule='static')

GOcean specific OpenMP Do loop transformation. Adds GOcean specific validity checks (that supplied Loop is
an inner or outer loop). Actual transformation is done by base class.

param str omp_directive
choose which OpenMP loop directive to use. Defaults to “do”.

param str omp_schedule
the OpenMP schedule to use. Must be one of ‘runtime’, ‘static’, ‘dynamic’, ‘guided’ or
‘auto’. Defaults to ‘static’.

apply(node, options=None)
Perform GOcean-specific loop validity checks then call OMPParallelLoopTrans.apply().

Parameters

• node (psyclone.psyir.nodes.Loop) – a Loop node from an AST.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transformations
and validation.

Raises
TransformationError – if the supplied node is not an inner or outer loop.

class psyclone.transformations.GOceanOMPLoopTrans(omp_directive='do', omp_schedule='static')
GOcean-specific orphan OpenMP loop transformation. Adds GOcean specific validity checks (that the node is
either an inner or outer Loop).

Parameters

• omp_directive (str) – choose which OpenMP loop directive to use. Defaults to “do”.

• omp_schedule (str) – the OpenMP schedule to use. Must be one of ‘runtime’, ‘static’,
‘dynamic’, ‘guided’ or ‘auto’. Defaults to ‘static’.

validate(node, options=None)
Checks that the supplied node is a valid target for parallelisation using OMP directives.

Parameters

• node (psyclone.psyir.nodes.Loop) – the candidate loop for parallelising using OMP
Do.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

Raises
TransformationError – if the loop_type of the supplied Loop is not “inner” or “outer”.

class psyclone.domain.gocean.transformations.GOConstLoopBoundsTrans

Use of a common constant variable for each loop bound within a GOInvokeSchedule. By deafault, PSyclone
generates loops where the bounds are obtained by de-referencing a field object, e.g.:

DO j = my_field%grid%internal%ystart, my_field%grid%internal%ystop

Some compilers are able to produce more efficient code if they are provided with information on the relative
trip-counts of the loops within an Invoke. With constant loop bounds, PSyclone generates code like:
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ny = my_field%grid%subdomain%internal%ystop
...
DO j = 1, ny-1

In practice, the application of the constant loop bounds transformation looks something like, e.g.:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> import os
>>> TEST_API = "gocean1.0"
>>> _, info = parse(os.path.join("tests", "test_files", "gocean1p0",
... "single_invoke.f90"),
... api=TEST_API)
>>> psy = PSyFactory(TEST_API).create(info)
>>> invoke = psy.invokes.get('invoke_0_compute_cu')
>>> schedule = invoke.schedule
>>>
>>> from psyclone.transformations import GOConstLoopBoundsTrans
>>> clbtrans = GOConstLoopBoundsTrans()
>>>
>>> clbtrans.apply(schedule)
>>> print(schedule.view())

apply(node, options=None)
Modify the GOcean kernel loops in a GOInvokeSchedule to use common constant loop bound variables.

Parameters

• node (psyclone.gocean1p0.GOInvokeSchedule) – the GOInvokeSchedule of which
all loops will get the constant loop bounds.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

property name

Returns
the name of the Transformation as a string.

Return type
str

validate(node, options=None)
Checks if it is valid to apply the GOConstLoopBoundsTrans transform.

Parameters

• node (psyclone.gocean1p0.GOInvokeSchedule) – the GOInvokeSchedule to trans-
form.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

Raises

• TransformationError – if the supplied node is not a GOInvokeSchedule.

• TransformationError – if the supplied schedule has loops with a loop with loop_type
different than ‘inner’ or ‘outer’.

138 Chapter 13. GOcean1.0 API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


PSyclone Documentation, Release 2.4.0

• TransformationError – if the supplied schedule has loops with attributes for
index_offsets, field_space, iteration_space and loop_type that don’t appear in the
GOLoop.bounds_lookup table.

• TransformationError – if the supplied schedule doesn’t have a field argument.

class psyclone.domain.gocean.transformations.GOMoveIterationBoundariesInsideKernelTrans

Provides a transformation that moves iteration boundaries that are encoded in the Loops lower_bound() and
upper_bound() methods to a mask inside the kernel with the boundaries passed as kernel arguments.

For example the following kernel call:

do i = 2, N - 1
do j = 2, N - 1

kernel(i, j, field)
end do

end do

will be transformed to:

startx = 2
stopx = N - 1
starty = 2
stopy = N - 1
do i = 1, size(field, 1)

do j = 1, size(field, 2)
kernel(i, j, field, startx, stopx, starty, stopy)

end do
end do

additionally a mask like the following one will be introduced in the kernel code:

if (i < startx .or. i > stopx .or. j < starty .or. j > stopy) then
return

end if

apply(node, options=None)
Apply this transformation to the supplied node.

Parameters

• node (psyclone.gocean1p0.GOKern) – the node to transform.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

property name

Returns the name of this transformation as a string.

validate(node, options=None)
Ensure that it is valid to apply this transformation to the supplied node.

Parameters

• node (psyclone.gocean1p0.GOKern) – the node to validate.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.
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Raises
TransformationError – if the node is not a GOKern.
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CHAPTER

FOURTEEN

NEMO API

In contrast to the other APIs supported by PSyclone, the NEMO API is designed to work with source code that does not
follow the PSyKAl separation of concerns. Instead, the NEMO source code is treated as if it were a manually written
PSy layer with all kernels in-lined. This approach relies upon the NEMO Coding Conventions [nem13] in order to
reason about the code being processed. Rather than construct an InvokeSchedule for the PSy layer from scratch (as is
done for other APIs), the InvokeSchedule is constructed by parsing the supplied Fortran code and generating a higher-
level representation.

Note: the NEMO API is currently only a prototype. The known issues are listed in Limitations.

14.1 Algorithm

Since NEMO source is treated as a pre-existing PSy layer, this API does not have the concept of an Algorithm layer.

14.2 Constructing the PSyIR

Transformations in PSyclone are applied to an Internal Representation, the “PSyIR.” In contrast to the other APIs where
the PSyIR is constructed from scratch, for NEMO PSyclone must parse the existing Fortran and create a higher-level
representation of it. This is done using rules based upon the NEMO Coding Conventions [nem13]. These rules are
described in the following sections.

14.2.1 Loops

Explicit

PSyclone recognises the following loop types, based on the name of the loop variable:

Loop type Loop variable
Vertical levels jk
Latitude ji
Longitude jj
Tracer species jn

PSyclone currently assumes that each of these loop types may be safely parallelised. In practice this will not always be
the case (e.g. when performing a tri-diagonal solve) and this implementation will need to be refined.
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Implicit

The use of Fortran array notation is encouraged in the NEMO Coding Conventions [nem13] (section 4.2) and is em-
ployed throughout the NEMO code base. The Coding Conventions mandate that the shape of every array in such
expressions must be specified, e.g.:

onedarraya(:) = onedarrayb(:) + onedarrayc(:)
twodarray (:,:) = scalar * anothertwodarray(:,:)

PSyclone therefore also recognises the loops implied by this notation.

Note, not all uses of Fortran array notation in NEMO imply a loop. For instance:

ascalar = afunc(twodarray(:,:))

is actually a function call which is passed a reference to twodarray. However, if the quantity being assigned to is
actually an array, e.g.:

twodarray2(:,:) = afunc(twodarray(:,:))

then this does represent a loop. However, currently PSyclone does not recognise any occurrences of array notation that
are themselves within an array access or function call. It is therefore not yet possible to transform such implicit loops
into explicit loops. It is hoped that this limitation will be removed in future releases of PSyclone by adding the ability
to discover the interface to functions such as afunc and thus determining whether they return scalar or array quantities.

14.3 Example

A typical fragment of NEMO source code (taken from the traldf_iso routine) is shown below:

DO jn = 1, kjpt
zdit (1,:,:) = 0._wp ; zdit (jpi,:,:) = 0._wp
zdjt (1,:,:) = 0._wp ; zdjt (jpi,:,:) = 0._wp

DO jk = 1, jpkm1
DO jj = 1, jpjm1

DO ji = 1, fs_jpim1
zdit(ji,jj,jk) = ( ptb(ji+1,jj ,jk,jn) - ptb(ji,jj,jk,jn) ) * umask(ji,jj,jk)
zdjt(ji,jj,jk) = ( ptb(ji ,jj+1,jk,jn) - ptb(ji,jj,jk,jn) ) * vmask(ji,jj,jk)

END DO
END DO

END DO

PSyclone uses fparser2 to parse such source code and then generates the PSy Internal Representation of it:

Loop[type='tracers',field_space='None',it_space='None']
Loop[type='None',field_space='None',it_space='None']
Loop[type='None',field_space='None',it_space='None']
Loop[type='None',field_space='None',it_space='None']
Loop[type='None',field_space='None',it_space='None']
Loop[type='levels',field_space='None',it_space='None']

Loop[type='lat',field_space='None',it_space='None']
Loop[type='lon',field_space='None',it_space='None']

CodedKern[]
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14.4 Transformations

The following transformations are specific to the NEMO API.

class psyclone.domain.nemo.transformations.NemoLoopFuseTrans

NEMO-specific implementation of the loop fusion transformation.

apply(node1, node2, options=None)
Fuses two loops represented by psyclone.psyir.nodes.Node objects after performing validity checks.

Parameters

• node1 (psyclone.psyir.nodes.Node) – the first Node that is being checked.

• node2 (psyclone.psyir.nodes.Node) – the second Node that is being checked.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

validate(node1, node2, options=None)
Perform NEMO API specific validation checks before applying the transformation.

Parameters

• node1 (psyclone.psyir.nodes.Node) – the first Node that is being checked.

• node2 (psyclone.psyir.nodes.Node) – the second Node that is being checked.

• options (Optional[Dict[str, Any]]) – a dict with options for transformations.

Raises

• TransformationError – if the lower or upper loop boundaries are not the same.

• TransformationError – if the loop step size is not the same.

• TransformationError – if the loop variables are not the same.

class psyclone.domain.nemo.transformations.NemoArrayRange2LoopTrans

Transformation that given an assignment with an ArrayReference Range in the LHS (equivalent to an array as-
signment statement in Fortran), it converts it to an explicit loop doing each of the individual element assignments
separately. For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "nemo"
>>> filename = "tra_adv.F90" # examples/nemo/code
>>> ast, invoke_info = parse(filename, api=api)
>>> psy = PSyFactory(api).create(invoke_info)
>>> schedule = psy.invokes.invoke_list[0].schedule
>>> print(schedule.view())
>>>
>>> from psyclone.psyir.nodes import Range
>>> from psyclone.domain.nemo.transformations import ␣
→˓NemoArrayRange2LoopTrans
>>> from psyclone.transformations import TransformationError

(continues on next page)

14.4. Transformations 143

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


PSyclone Documentation, Release 2.4.0

(continued from previous page)

>>>
>>> trans = NemoArrayRange2LoopTrans()
>>> for my_range in reversed(schedule.walk(Range)):
>>> try:
>>> trans.apply(my_range)
>>> except TransformationError:
>>> pass
>>> print(schedule.view())

The specified Range node must be the outermost Range (specifying an access to an array index) within an Array
Reference and the array reference must be on the left-hand-side of an Assignment node. This is required for
correctness and if not satisfied the transformation will raise an exception.

apply(node, options=None)
Apply the transformation that given an assignment with an ArrayReference Range in the LHS (equivalent
to an array assignment statement in Fortran), it converts it to an explicit loop doing each of the individual
element assignments separately.

The Range node is provided to the apply method of the transformation to indicate which array index should
be transformed. This can only be applied to the outermost Range of the ArrayReference.

This is currently specific to NEMO. It will create NemoLoops and put the loop body inside a NemoKern
to conform to the NEMO API.

Parameters

• node (psyclone.psyir.nodes.Range) – a Range node.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions. No options are used in this transformation. This is an optional argument that defaults
to None.

validate(node, options=None)
Perform various checks to ensure that it is valid to apply the NemoArrayRange2LoopTrans transformation
to the supplied PSyIR Node.

Parameters

• node (psyclone.psyir.nodes.Range) – the node that is being checked.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions. No options are used in this transformation. This is an optional argument that defaults
to None.

Raises

• TransformationError – if the node argument is not a Range, if the Range node is not part
of an ArrayReference, if the Range node is not the outermost Range node of the ArrayRef-
erence or if that ArrayReference does not constitute the left hand side of an Assignment
node.

• TransformationError – if the node argument has nested array expressions with Ranges
or is an invalid tree with ranges in multiple locations of a structure of arrays.

• TransformationError – if the node argument contains a non-elemental Operation or
Call.
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class psyclone.domain.nemo.transformations.NemoOuterArrayRange2LoopTrans

Provides a transformation from the outermost PSyIR ArrayReference Range to a PSyIR NemoLoop. For exam-
ple:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "nemo"
>>> filename = "tra_adv.F90" # examples/nemo/code
>>> ast, invoke_info = parse(filename, api=api)
>>> psy = PSyFactory(api).create(invoke_info)
>>> schedule = psy.invokes.invoke_list[0].schedule
>>>
>>> from psyclone.psyir.nodes import Assignment
>>> from psyclone.domain.nemo.transformations import ␣
→˓NemoOuterArrayRange2LoopTrans
>>> from psyclone.transformations import TransformationError
>>>
>>> print(schedule.view())
>>> trans = NemoOuterArrayRange2LoopTrans()
>>> for assignment in schedule.walk(Assignment):
>>> while True:
>>> try:
>>> trans.apply(assignment)
>>> except TransformationError:
>>> break
>>> print(schedule.view())

apply(node, options=None)
Apply the NemoOuterArrayRange2Loop transformation to the specified node if the node is an Assignment
and the left-hand-side of the assignment is an Array Reference containing at least one Range node specifying
an access to an array index. If this is the case then the outermost Range nodes within array references within
the assignment are replaced with references to a loop index. A NemoLoop loop (with the same loop index)
is also placed around the modified assignment statement. If the array reference on the left-hand-side of
the assignment only had one range node as an index (so now has none) then the assignment is also placed
within a NemoKern.

The name of the loop index is taken from the PSyclone configuration file if a name exists for the particular
array index, otherwise a new name is generated. The bounds of the loop are taken from the Range node if
they are provided. If not, the loop bounds are taken from the PSyclone configuration file if bounds values are
supplied. If not, the LBOUND or UBOUND intrinsics are used as appropriate. The type of the NemoLoop
is also taken from the configuration file if it is supplied for that index, otherwise it is specified as being
“unknown”.

Parameters

• node (psyclone.psyir.nodes.Assignment) – an Assignment node.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions. No options are used in this transformation. This is an optional argument that defaults
to None.

validate(node, options=None)
Perform various checks to ensure that it is valid to apply the NemoOuterArrayRange2LoopTrans transfor-
mation to the supplied PSyIR Node.

Parameters
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• node (psyclone.psyir.nodes.Assignment) – the node that is being checked.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions. No options are used in this transformation. This is an optional argument that defaults
to None.

Raises
TransformationError – if the supplied node is not an Assignment node, if the Assignment
node does not have an Array-type Reference node on its left hand side or if the Array-type
node does not contain at least one Range node.

class psyclone.domain.nemo.transformations.NemoAllArrayRange2LoopTrans

Provides a transformation for all PSyIR Array Ranges in an assignment to PSyIR NemoLoops. For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "nemo"
>>> filename = "tra_adv.F90" # examples/nemo/code
>>> ast, invoke_info = parse(filename, api=api)
>>> psy = PSyFactory(api).create(invoke_info)
>>> schedule = psy.invokes.invoke_list[0].schedule
>>>
>>> from psyclone.psyir.nodes import Assignment
>>> from psyclone.domain.nemo.transformations import ␣
→˓NemoAllArrayRange2LoopTrans
>>>
>>> print(schedule.view())
>>> trans = NemoAllArrayRange2LoopTrans()
>>> for assignment in schedule.walk(Assignment):
>>> trans.apply(assignment)
>>> print(schedule.view())

apply(node, options=None)
Apply the NemoAllArrayRange2Loop transformation to the specified node if the node is an Assignment
and the left-hand-side of the assignment is an Array Reference containing at least one Range node spec-
ifying an access to an array index. If this is the case then all Range nodes within array references within
the assignment are replaced with references to the appropriate loop indices. The appropriate number of
NemoLoop loops are also placed around the modified assignment statement and the assignment statement
is placed within a NemoKern.

The name of each loop index is taken from the PSyclone configuration file if a name exists for the particular
array index, otherwise a new name is generated. The bounds of each loop are taken from the Range node
if they are provided. If not, the loop bounds are taken from the PSyclone configuration file if a bounds
value is supplied. If not, the LBOUND or UBOUND intrinsics are used as appropriate. The type of the
NemoLoop is also taken from the configuration file if it is supplied for that index, otherwise it is specified
as being “unknown”.

Parameters

• node (psyclone.psyir.nodes.Assignment) – an Assignment node.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions. No options are used in this transformation. This is an optional argument that defaults
to None.
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• options["verbose"] (bool) – whether to print out the reason why the inner transfor-
mation was not applied. This is useful because this transfomation succeeds even if one of
the inner transformations fails, and therefor the reason why the inner transformation failed
is not propagated.

validate(node, options=None)
Perform various checks to ensure that it is valid to apply the NemoArrayRange2LoopTrans transformation
to the supplied PSyIR Node.

Parameters

• node (psyclone.psyir.nodes.Assignment) – the node that is being checked.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions. No options are used in this transformation. This is an optional argument that defaults
to None.

Raises
TransformationError – if the supplied node is not an Assignment.

class psyclone.domain.nemo.transformations.NemoArrayAccess2LoopTrans

Provides a transformation to transform a constant index access to an array (i.e. one that does not contain a loop
iterator) to a single trip loop. For example:

>>> from psyclone.domain.nemo.transformations import \
... NemoArrayAccess2LoopTrans
>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.nodes import Assignment
>>> code = ("program example\n"
... " real a(10)\n"
... " a(1) = 0.0\n"
... "end program example\n")
>>> psyir = FortranReader().psyir_from_source(code)
>>> assignment = psyir.walk(Assignment)[0]
>>> NemoArrayAccess2LoopTrans().apply(assignment.lhs.children[0])
>>> print(FortranWriter()(psyir))
program example
real, dimension(10) :: a
integer :: ji

do ji = 1, 1, 1
a(ji) = 0.0

enddo

end program example

apply(node, options=None)
Apply the NemoArrayAccess2Loop transformation if the supplied node is an access to an array index within
an Array Reference that is on the left-hand-side of an Assignment node. The access must be a scalar (i.e.
not a range) and must not include a loop variable (as we are transforming a single access to a loop).

These constraints are required for correctness and an exception will be raised if they are not satisfied. If the
constraints are satisfied then the array access is replaced with a loop iterator and a single trip loop.
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The new loop will be placed immediately around the assignment i.e. it will not take into account any
expected nesting (ji, jj, jk etc) constraints. Loop re-ordering should be performed by a separate transfor-
mation.

The name of the loop index is taken from the PSyclone configuration file if a name exists for the particular
array index, otherwise a new name is generated.

Parameters

• node (psyclone.psyir.nodes.Node) – an array index.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions. No options are used in this transformation. This is an optional argument that defaults
to None.

validate(node, options=None)
Perform various checks to ensure that it is valid to apply the NemoArrayAccess2LoopTrans transformation
to the supplied PSyIR Node.

Parameters

• node (psyclone.psyir.nodes.Node) – the node that is being checked.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions. No options are used in this transformation. This is an optional argument that defaults
to None.

class psyclone.domain.nemo.transformations.NemoAllArrayAccess2LoopTrans

Provides a transformation from a PSyIR Assignment containing constant index accesses to an array into single
trip loops: For example:

>>> from psyclone.domain.nemo.transformations import \
... NemoAllArrayAccess2LoopTrans
>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.nodes import Assignment
>>> code = ("program example\n"
... " real a(10,10), b(10,10)\n"
... " integer :: n\n"
... " a(1,n-1) = b(1,n-1)\n"
... "end program example\n")
>>> psyir = FortranReader().psyir_from_source(code)
>>> assignment = psyir.walk(Assignment)[0]
>>> NemoAllArrayAccess2LoopTrans().apply(assignment)
>>> print(FortranWriter()(psyir))
program example
real, dimension(10,10) :: a
real, dimension(10,10) :: b
integer :: n
integer :: ji
integer :: jj

do ji = 1, 1, 1
do jj = n - 1, n - 1, 1

a(ji,jj) = b(ji,jj)
enddo

(continues on next page)
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(continued from previous page)

enddo

end program example

apply(node, options=None)
Apply the NemoAllArrayAccess2Loop transformation if the supplied node is an Assignment with an Array
Reference on its left-hand-side. Each constant array index access (i.e. one not containing a loop iterator or
a range) is then transformed into an iterator and the assignment placed within a single trip loop, subject to
any constraints in the NemoArrayAccess2Loop transformation.

If any of the NemoAllArrayAccess2Loop constraints are not satisfied for a loop index then this transforma-
tion does nothing for that index and silently moves to the next.

Parameters

• node (psyclone.psyir.nodes.Assignment) – an assignment.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions. No options are used in this transformation. This is an optional argument that defaults
to None.

validate(node, options=None)
Perform any checks to ensure that it is valid to apply the NemoAllArrayAccess2LoopTrans transformation
to the supplied PSyIR Node.

Parameters

• node (psyclone.psyir.nodes.Node) – the node that is being checked.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions. No options are used in this transformation. This is an optional argument that defaults
to None.

14.5 Limitations

The NEMO API is currently under development. Here we list the current, known limitations/issues:

1. Scalar variables inside loops are not made private when parallelising using OpenMP;

2. Labelled do-loops are not handled (i.e. they will be put inside a ‘CodeBlock’ in the PSyIR);

3. Loops are currently only permitted to contain one kernel. This restriction will have to be lifted in order to permit
loop fusion;

4. The psyir.nodes.Node base class now has an _ast property to hold a pointer into the associated fparser2 AST.
However, the psyGen.Kern class already has an _fp2_ast property that points to the whole fparser2 AST of the
kernel code. This will be rationalised in #241;
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CHAPTER

FIFTEEN

PSYIR : THE PSYCLONE INTERNAL REPRESENTATION

The PSyIR is at the heart of PSyclone, representing code (at both the PSy- and kernel-layer levels) in a language-
agnostic form. A PSyIR may be constructed from scratch (in Python) or by processing existing source code using
a frontend. Transformations act on the PSyIR and ultimately the generated code is produced by one of the PSyIR’s
backends.

15.1 PSyIR Nodes

The PSyIR consists of classes whose instances can be connected together to form a tree which represent computation
in a language-independent way. These classes all inherit from the Node baseclass and, as a result, PSyIR instances are
often referred to collectively as ‘PSyIR nodes’.

At the present time PSyIR classes can be essentially split into two types. PSy-layer classes and Kernel-layer classes.
PSy-layer classes make use of a gen_code() or an update() method to create Fortran code whereas Kernel-layer
classes make use of PSyIR backends to create code.

Note: This separation will be removed in the future and eventually all PSyIR classes will make use of backends with
the expectation that gen_code() and update() methods will be removed. Further this separation will be superseded
by a separation between language-level PSyIR and domain-specific PSyIR.

15.1.1 PSy-layer nodes

PSy-layer PSyIR classes are primarily used to create the PSy-layer. These tend to be relatively descriptive and do
not specify how a particular PSyclone frontend would implement them. With the exception of Loop, these classes
are currently not compatible with the PSyIR backends. The generic (non-api-specific) PSy-layer PSyIR nodes are:
InvokeSchedule, Directive, GlobalSum, HaloExchange, Loop and Kern. The Directive class is subclassed into
many directives associated with OpenMP and OpenACC. The Kern class is subclassed into CodedKern, InlinedKern
and BuiltinKern.
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15.1.2 Kernel-layer nodes

Kernel-layer PSyIR classes are currently used to describe existing code in a language independent way. Consequently
these nodes are more prescriptive and are independent of a particular PSyclone frontend. These nodes are designed to
be used with PSyIR backends. Two PSy-layer classes (Loop and Schedule) can also be used as Kernel-layer classes.
Additionally, the Schedule class is further subclassed into a Routine and then a kernel-layer KernelSchedule. In ad-
dition to KernelSchedule, Kernel-layer PSyIR nodes are: Loop, WhileLoop, IfBlock, CodeBlock, Assignment,
Range, Reference, Operation, Literal, Call, Return and Container. The Reference class is further sub-
classed into ArrayReference, StructureReference and ArrayOfStructuresReference, the Operation class
is further subclassed into UnaryOperation, BinaryOperation and the Container class is further subclassed into
FileContainer (representing a file that may contain more than one Container and/or Routine. Those nodes rep-
resenting references to structures (derived types in Fortran) have a Member child node representing the member of the
structure being accessed. The Member class is further subclassed into StructureMember (representing a member of
a structure that is itself a structure), ArrayMember (a member of a structure that is an array of primitive types) and
ArrayOfStructuresMember (a member of a structure this is itself an array of structures).

15.2 Node Descriptions

15.2.1 The Range node

class psyclone.psyir.nodes.Range(ast=None, children=None, parent=None, annotations=None)
The Range node is used to capture a range of integers via start, stop and step expressions. For example,
start=2, stop=6 and step=2 indicates the values 2, 4 and 6.

At the moment the only valid use of Range in the PSyIR is to describe a set of accesses to an Array dimension
(so-called array notation in Fortran). Therefore, the parent of a Range node should only be an Array node.

The Range node has three children nodes, the first child captures the start of the range, the second child captures
the end of the range and the third captures the step within the range.

The nodes for each of the children must return an integer. Potentially valid nodes are therefore Literal,
Reference, Operation and CodeBlock.

A common use case is to want to specify all the elements of a given array dimension without knowing the extent
of that dimension. In the PSyIR this is achieved by using the LBOUND, and UBOUND intrinsics:

>>> one = Literal("1", INTEGER_TYPE)
>>> # Declare a 1D real array called 'a' with 10 elements
>>> symbol = DataSymbol("a", ArrayType(REAL_TYPE, [10]))
>>> # Return the lower bound of the first dimension of array 'a'
>>> lbound = IntrinsicCall.create(

IntrinsicCall.Intrinsic.LBOUND,
[Reference(symbol), one.copy()])

>>> # Return the upper bound of the first dimension of array 'a'
>>> ubound = IntrinsicCall.create(

IntrinsicCall.Intrinsic.UBOUND,
[Reference(symbol), one.copy()])

>>> # Step defaults to 1 so no need to include it when creating range
>>> my_range = Range.create(lbound, ubound)
>>> # Create an access to all elements in the 1st dimension of array 'a'
>>> array_access = ArrayReference.create(symbol, [my_range])

In Fortran the above access array_access can be represented by a(:). The Fortran front-ends and back-ends
are aware of array notation. Therefore the Fortran frontend is able to convert array notation to PSyIR and the
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Fortran backend is able to convert PSyIR back to array notation.

static create(start, stop, step=None)
Create an internally-consistent Range object. If no step is provided then it defaults to an integer Literal with
value 1.

Parameters

• start (psyclone.psyir.nodes.Node) – the PSyIR for the start value.

• stop (psyclone.psyir.nodes.Node) – the PSyIR for the stop value.

• step (psyclone.psyir.nodes.Node or NoneType) – the PSyIR for the increment/step
or None.

• parent (psyclone.psyir.nodes.Node or NoneType) – the parent node of this Range
in the PSyIR.

Returns
a fully-populated Range object.

Return type
psyclone.psyir.nodes.ranges.Range

property start

Checks that this Range is valid and then returns the PSyIR for the starting value of the range.

Returns
the starting value of this range.

Return type
psyclone.psyir.nodes.Node

property step

Checks that this Range is valid and then returns the step (increment) value/expression.

Returns
the increment used in this range.

Return type
psyclone.psyir.nodes.Node

property stop

Checks that this Range is valid and then returns the end value/expression.

Returns
the end value of this range.

Return type
psyclone.psyir.nodes.Node

15.3 Text Representation

When developing a transformation script it is often necessary to examine the structure of the PSyIR. All nodes in the
PSyIR have the view method that writes a text-representation of that node and all of its descendants to stdout. If the
termcolor package is installed (see Getting Going) then colour highlighting is used for this output. For instance, part
of the Schedule constructed for the second NEMO example is rendered as:
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Note that in this view, only those nodes which are children of Schedules have their indices shown. This means that
nodes representing e.g. loop bounds or the conditional part of if statements are not indexed. For the example
shown, the PSyIR node representing the if(l_hst) code would be reached by schedule.children[6].if_body.
children[1] or, using the shorthand notation (see below), schedule[6].if_body[1] where schedule is the over-
all parent Schedule node (omitted from the above image).

One problem with the view method is that the output can become very large for big ASTs and is not readable for users
unfamiliar with the PSyIR. An alternative to it is the debug_string method that generates a text representation with
Fortran-like syntax but on which the high abstraction constructs have not yet been lowered to Fortran level and instead
they will be embedded as < node > expressions.

15.4 Tree Navigation

Each PSyIR node provides several ways to navigate the AST:

The children and parent properties (available in all nodes) provide an homogeneous method to go up and down the
tree hierarchy. This method is recommended when applying general operations or analysis to the tree, however, if one
intends to navigate the tree in a way that depends on the type of node, the children and parent methods should be
avoided. The structure of the tree may change in different versions of PSyclone and the encoded navigation won’t be
future-proof.

To solve this issue some Nodes also provide methods for semantic navigation:

• Schedule:
subscript operator for indexing the statements (children) inside the Schedule, e.g. sched[3] or
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sched[2:4].

• Assignment:

Assignment.lhs()

Returns
the child node representing the Left-Hand Side of the assignment.

Return type
psyclone.psyir.nodes.Node

Raises
InternalError – Node has fewer children than expected.

Assignment.rhs()

Returns
the child node representing the Right-Hand Side of the assignment.

Return type
psyclone.psyir.nodes.Node

Raises
InternalError – Node has fewer children than expected.

• IfBlock:

IfBlock.condition()

Return the PSyIR Node representing the conditional expression of this IfBlock.
Returns

IfBlock conditional expression.
Return type
psyclone.psyir.nodes.Node

Raises
InternalError – If the IfBlock node does not have the correct number of children.

IfBlock.if_body()

Return the Schedule executed when the IfBlock evaluates to True.
Returns

Schedule to be executed when IfBlock evaluates to True.
Return type
psyclone.psyir.nodes.Schedule

Raises
InternalError – If the IfBlock node does not have the correct number of children.

IfBlock.else_body()

If available return the Schedule executed when the IfBlock evaluates to False, otherwise return None.
Returns

Schedule to be executed when IfBlock evaluates to False, if it doesn’t exist returns None.
Return type
psyclone.psyir.nodes.Schedule or NoneType

• Loop:

Loop.loop_body()

Returns
the PSyIR Schedule with the loop body statements.

Return type
psyclone.psyir.nodes.Schedule

• WhileLoop:
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WhileLoop.condition()

Return the PSyIR Node representing the conditional expression of this WhileLoop.
Returns

WhileLoop conditional expression.
Return type
psyclone.psyir.nodes.Node

Raises
InternalError – If the WhileLoop node does not have the correct number of children.

WhileLoop.loop_body()

Return the Schedule executed when the WhileLoop condition is True.
Returns

Schedule to be executed when WhileLoop condition is True.
Return type
psyclone.psyir.nodes.Schedule

Raises
InternalError – If the WhileLoop node does not have the correct number of children.

• Array nodes (e.g. ArrayReference, ArrayOfStructuresReference):

ArrayReference.indices()

Supports semantic-navigation by returning the list of nodes representing the index expressions for this
array reference.

Returns
the PSyIR nodes representing the array-index expressions.

Return type
list of psyclone.psyir.nodes.Node

Raises
InternalError – if this node has no children or if they are not valid array-index expres-
sions.

• RegionDirective:

RegionDirective.dir_body()

Returns
the Schedule associated with this directive.

Return type
psyclone.psyir.nodes.Schedule

Raises
InternalError – if this node does not have a Schedule as its first child.

RegionDirective.clauses()

Returns
the Clauses associated with this directive.

Return type
List of psyclone.psyir.nodes.Clause

• Nodes representing accesses of data within a structure (e.g. StructureReference, StructureMember):

StructureReference.member()

Returns
the member of the structure that this reference is to.

Return type
psyclone.psyir.nodes.Member

Raises
InternalError – if the first child of this node is not an instance of Member.
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These are the recommended methods to navigate the tree for analysis or operations that depend on the Node type.

Additionally, the walk method (available in all nodes) is able to recurse through the tree and return objects of a given
type. This is useful when the objective is to move down the tree to a specific node or list of nodes without information
about the exact location.

Node.walk(my_type, stop_type=None)
Recurse through the PSyIR tree and return all objects that are an instance of ‘my_type’, which is either a single
class or a tuple of classes. In the latter case all nodes are returned that are instances of any classes in the tuple.
The recursion into the tree is stopped if an instance of ‘stop_type’ (which is either a single class or a tuple of
classes) is found. This can be used to avoid analysing e.g. inlined kernels, or as performance optimisation to
reduce the number of recursive calls.

Parameters

• my_type (type | Tuple[type, ...]) – the class(es) for which the instances are col-
lected.

• stop_type (Optional[type | Tuple[type, ...]]) – class(es) at which recursion is
halted (optional).

Returns
list with all nodes that are instances of my_type starting at and including this node.

Return type
List[psyclone.psyir.nodes.Node]

All nodes also provide the ancestor method which may be used to recurse back up the tree from a given node in order
to find a node of a particular type:

Node.ancestor(my_type, excluding=None, include_self=False, limit=None, shared_with=None)
Search back up the tree and check whether this node has an ancestor that is an instance of the supplied type. If
it does then we return it otherwise we return None. An individual (or tuple of) (sub-) class(es) to ignore may be
provided via the excluding argument. If include_self is True then the current node is included in the search. If
limit is provided then the search ceases if/when the supplied node is encountered. If shared_with is provided,
then the ancestor search will find an ancestor of both this node and the node provided as shared_with if such an
ancestor exists.

Parameters

• my_type (type | Tuple[type, ...]) – class(es) to search for.

• excluding (Optional[type | Tuple[type, ...]]) – (sub-)class(es) to ignore or
None.

• include_self (bool) – whether or not to include this node in the search.

• limit (Optional[psyclone.psyir.nodes.Node]) – an optional node at which to stop the
search.

• shared_with (Optional[psyclone.psyir.nodes.Node]) – an optional node which must
also have the found node as an ancestor.

Returns
First ancestor Node that is an instance of any of the requested classes or None if not found.

Return type
Optional[psyclone.psyir.nodes.Node]

Raises

• TypeError – if excluding is provided but is not a type or tuple of types.
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• TypeError – if limit is provided but is not an instance of Node.

Finally, the path_from method can be used to find the route through the tree from an ancestor node to the node:

Node.path_from(ancestor)
Find the path in the psyir tree between ancestor and node and returns a list containing the path.

The result of this method can be used to find the node from its ancestor for example by:

>>> index_list = node.path_from(ancestor)
>>> cursor = ancestor
>>> for index in index_list:
>>> cursor = cursor.children[index]
>>> assert cursor is node

Parameters
ancestor (psyclone.psyir.nodes.Node) – an ancestor node of self to find the path from.

Raises
ValueError – if ancestor is not an ancestor of self.

Returns
a list of child indices representing the path between ancestor and self.

Return type
List[int]

15.5 DataTypes

The PSyIR supports the following datatypes: ScalarType, ArrayType, StructureType, DeferredType,
UnknownType and NoType. These datatypes are used when creating instances of DataSymbol, RoutineSymbol and
Literal (although note that NoType may only be used with a RoutineSymbol). DeferredType and UnknownType are
both used when processing existing code. The former is used when a symbol is being imported from some other scope
(e.g. via a USE statement in Fortran) that hasn’t yet been resolved and the latter is used when an unsupported form of
declaration is encountered.

More information on each of these various datatypes is given in the following subsections.

15.5.1 Scalar DataType

A Scalar datatype consists of an intrinsic and a precision.

The intrinsic can be one of INTEGER, REAL, BOOLEAN and CHARACTER.

The precision can be UNDEFINED, SINGLE, DOUBLE, an integer value specifying the precision in bytes, or a datasymbol
(see Section Symbols and Symbol Tables) that contains precision information. Note that UNDEFINED, SINGLE and
DOUBLE allow the precision to be set by the system so may be different for different architectures. For example:

>>> char_type = ScalarType(ScalarType.Intrinsic.CHARACTER,
... ScalarType.Precision.UNDEFINED)
>>> int_type = ScalarType(ScalarType.Intrinsic.INTEGER,
... ScalarType.Precision.SINGLE)
>>> bool_type = ScalarType(ScalarType.Intrinsic.BOOLEAN, 4)
>>> symbol = DataSymbol("rdef", int_type, initial_value=4)
>>> scalar_type = ScalarType(ScalarType.Intrinsic.REAL, symbol)
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For convenience PSyclone predefines a number of scalar datatypes:

REAL_TYPE, INTEGER_TYPE, BOOLEAN_TYPE and CHARACTER_TYPE all have precision set to UNDEFINED;

REAL_SINGLE_TYPE, REAL_DOUBLE_TYPE, INTEGER_SINGLE_TYPE and INTEGER_DOUBLE_TYPE;

REAL4_TYPE, REAL8_TYPE, INTEGER4_TYPE and INTEGER8_TYPE.

15.5.2 Array DataType

An Array datatype itself has another datatype (or DataTypeSymbol) specifying the type of its elements and a shape.
The shape can have an arbitrary number of dimensions. Each dimension captures what is known about its extent. It is
necessary to distinguish between four cases:

Description Entry in shape list
An array has a static extent known at compile time. ArrayType.ArrayBounds containing integer Literal

values
An array has an extent defined by another symbol or (constant)
PSyIR expression.

ArrayType.ArrayBounds containing Reference or
Operation nodes

An array has a definite extent which is not known at compile time
but can be queried at runtime.

ArrayType.Extent.ATTRIBUTE

It is not known whether an array has memory allocated to it in
the current scoping unit.

ArrayType.Extent.DEFERRED

where ArrayType.ArrayBounds is a namedtuple with lower and upper members holding the lower- and upper-
bounds of the extent of a given array dimension.

The distinction between the last two cases is that in the former the extents are known but are kept internally with the
array (for example an assumed shape array in Fortran) and in the latter the array has not yet been allocated any memory
(for example the declaration of an allocatable array in Fortran) so the extents may have not been defined yet.

For example:

>>> array_type = ArrayType(REAL4_TYPE, [5, 10])

>>> n_var = DataSymbol("n", INTEGER_TYPE)
>>> array_type = ArrayType(INTEGER_TYPE, [Reference(n_var),
... Reference(n_var)])

>>> array_type = ArrayType(REAL8_TYPE, [ArrayType.Extent.ATTRIBUTE,
... ArrayType.Extent.ATTRIBUTE])

>>> array_type = ArrayType(BOOLEAN_TYPE, [ArrayType.Extent.DEFERRED])
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15.5.3 Structure Datatype

A Structure datatype consists of a dictionary of components where the name of each component is used as the corre-
sponding key. Each component is stored as a named tuple with name, datatype and visibility members.

For example:

# Shorthand for a scalar type with REAL_KIND precision
SCALAR_TYPE = ScalarType(ScalarType.Intrinsic.REAL, REAL_KIND)

# Structure-type definition
GRID_TYPE = StructureType.create([

("dx", SCALAR_TYPE, Symbol.Visibility.PUBLIC),
("dy", SCALAR_TYPE, Symbol.Visibility.PUBLIC)])

GRID_TYPE_SYMBOL = DataTypeSymbol("grid_type", GRID_TYPE)

# A structure-type containing other structure types
FIELD_TYPE_DEF = StructureType.create(

[("data", ArrayType(SCALAR_TYPE, [10]), Symbol.Visibility.PUBLIC),
("grid", GRID_TYPE_SYMBOL, Symbol.Visibility.PUBLIC),
("sub_meshes", ArrayType(GRID_TYPE_SYMBOL, [3]),
Symbol.Visibility.PUBLIC),
("flag", INTEGER4_TYPE, Symbol.Visibility.PUBLIC)])

15.5.4 Unknown DataType

If a PSyIR frontend encounters an unsupported declaration then the corresponding Symbol is given UnknownType.
The text of the original declaration is stored in the type object and is available via the declaration property.

15.5.5 NoType

NoType represents the empty type, equivalent to void in C. It is currently only used to describe a RoutineSymbol that
has no return type (such as a Fortran subroutine).

15.6 Symbols and Symbol Tables

Some PSyIR nodes have an associated Symbol Table (psyclone.psyir.symbols.SymbolTable) which keeps a record of
the Symbols (psyclone.psyir.symbols.Symbol) specified and used within them.

Symbol Tables can be nested (i.e. a node with an attached symbol table can be an ancestor or descendent of a node with
an attached symbol table). If the same symbol name is used in a hierarchy of symbol tables then the symbol within
the symbol table attached to the closest ancestor node is in scope. By default, symbol tables are aware of other symbol
tables and will return information about relevant symbols from all symbol tables.

The SymbolTable has the following interface:

class psyclone.psyir.symbols.SymbolTable(node=None, default_visibility=Visibility.PUBLIC)
Encapsulates the symbol table and provides methods to add new symbols and look up existing symbols. Nested
scopes are supported and, by default, the add and lookup methods take any ancestor symbol tables into consid-
eration (ones attached to nodes that are ancestors of the node that this symbol table is attached to). If the default
visibility is not specified then it defaults to Symbol.Visbility.PUBLIC.
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Parameters

• node (psyclone.psyir.nodes.Schedule, psyclone.psyir.nodes.Container or
NoneType) – reference to the Schedule or Container to which this symbol table belongs.

• default_visibility – optional default visibility value for this symbol table, if not pro-
vided it defaults to PUBLIC visibility.

Raises
TypeError – if node argument is not a Schedule or a Container.

Where each element is a Symbol with an immutable name:

class psyclone.psyir.symbols.Symbol(name, visibility=Visibility.PUBLIC, interface=None)
Generic Symbol item for the Symbol Table and PSyIR References. It has an immutable name label because it
must always match with the key in the SymbolTable. If the symbol is private then it is only visible to those nodes
that are descendants of the Node to which its containing Symbol Table belongs.

Parameters

• name (str) – name of the symbol.

• visibility (psyclone.psyir.symbols.Symbol.Visibility) – the visibility of the
symbol.

• interface (Optional[ psyclone.psyir.symbols.symbol.SymbolInterface]) – op-
tional object describing the interface to this symbol (i.e. whether it is passed as a rou-
tine argument or accessed in some other way). Defaults to psyclone.psyir.symbols.
AutomaticInterface

Raises
TypeError – if the name is not a str.

There are several Symbol sub-classes to represent different labeled entities in the PSyIR. At the moment the available
symbols are:

• class psyclone.psyir.symbols.ContainerSymbol(name, wildcard_import=False, **kwargs)
Symbol that represents a reference to a Container. The reference is lazy evaluated, this means that the
Symbol will be created without parsing and importing the referenced container, but this can be imported
when needed.

Parameters

– name (str) – name of the symbol.

– wildcard_import (bool) – if all public Symbols of the Container are imported into the
current scope. Defaults to False.

– kwargs (unwrapped dict.) – additional keyword arguments provided by psyclone.
psyir.symbols.Symbol.

• class psyclone.psyir.symbols.DataSymbol(name, datatype, is_constant=False, initial_value=None,
**kwargs)

Symbol identifying a data element. It contains information about: the datatype, the shape (in column-major
order) and the interface to that symbol (i.e. Local, Global, Argument).

Parameters

– name (str) – name of the symbol.

– datatype (psyclone.psyir.symbols.DataType) – data type of the symbol.

– is_constant (bool) – whether this DataSymbol is a compile-time constant (default is
False). If True then an initial_value must also be provided.
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– initial_value (Optional[item of TYPE_MAP_TO_PYTHON | psyclone.psyir.
nodes.Node]) – sets a fixed known expression as an initial value for this DataSym-
bol. If is_constant is True then this Symbol will always have this value. If the value
is None then this symbol does not have an initial value (and cannot be a constant).
Otherwise it can receive PSyIR expressions or Python intrinsic types available in the
TYPE_MAP_TO_PYTHON map. By default it is None.

– kwargs (unwrapped dict.) – additional keyword arguments provided by psyclone.
psyir.symbols.TypedSymbol

• class psyclone.psyir.symbols.DataTypeSymbol(name, datatype, visibility=Visibility.PUBLIC,
interface=None)

Symbol identifying a user-defined type (e.g. a derived type in Fortran).

Parameters

– name (str) – the name of this symbol.

– datatype (psyclone.psyir.symbols.DataType) – the type represented by this sym-
bol.

– visibility (psyclone.psyir.symbols.Symbol.Visibility) – the visibility of this
symbol.

– interface (psyclone.psyir.symbols.SymbolInterface) – the interface to this
symbol.

• class psyclone.psyir.symbols.IntrinsicSymbol(name, datatype=None, **kwargs)
Symbol identifying a callable intrinsic routine.

Parameters

– name (str) – name of the symbol.

– datatype (psyclone.psyir.symbols.DataType) – data type of the symbol. Default
to NoType().

– kwargs (unwrapped dict.) – additional keyword arguments provided by psyclone.
psyir.symbols.TypedSymbol

• class psyclone.psyir.symbols.RoutineSymbol(name, datatype=None, **kwargs)
Symbol identifying a callable routine.

Parameters

– name (str) – name of the symbol.

– datatype (psyclone.psyir.symbols.DataType) – data type of the symbol. Default
to NoType().

– kwargs (unwrapped dict.) – additional keyword arguments provided by psyclone.
psyir.symbols.TypedSymbol

See the reference guide for the full API documentation of the SymbolTable and the Symbol types.
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15.6.1 Symbol Interfaces

Each symbol has a Symbol Interface with the information about how the variable data is provided into the local context.
The currently available Interfaces are:

• class psyclone.psyir.symbols.AutomaticInterface

The symbol is declared without attributes. Its data will live during the local context.

• class psyclone.psyir.symbols.DefaultModuleInterface

The symbol contains data declared in a module scope without additional attributes.

• class psyclone.psyir.symbols.ImportInterface(container_symbol, orig_name=None)
Describes the interface to a Symbol that is imported from an external PSyIR container. The symbol can be
renamed on import and, if so, its original name in the Container is specified using the optional ‘orig_name’
argument.

Parameters

– container_symbol (psyclone.psyir.symbols.ContainerSymbol) – symbol repre-
senting the external container from which the symbol is imported.

– orig_name (Optional[str]) – the name of the symbol in the external container before
it is renamed, or None (the default) if it is not renamed.

Raises
TypeError – if the orig_name argument is an unexpected type.

• class psyclone.psyir.symbols.ArgumentInterface(access=None)
Captures the interface to a Symbol that is accessed as a routine argument.

Parameters
access (psyclone.psyir.symbols.ArgumentInterface.Access) – specifies how the
argument is used in the Schedule

• class psyclone.psyir.symbols.StaticInterface

The symbol contains data that is kept alive through the execution of the program.

• class psyclone.psyir.symbols.CommonBlockInterface

A symbol declared in the local scope but acts as a global that can be accessed by any scope referencing the
same CommonBlock name.

• class psyclone.psyir.symbols.UnresolvedInterface

We have a symbol but we don’t know where it is declared.

• class psyclone.psyir.symbols.UnknownInterface

We have a symbol with a declaration but PSyclone does not support its attributes.

15.7 Creating PSyIR

15.7.1 Symbol names

PSyIR symbol names can be specified by a user. For example:

var_name = "my_name"
symbol_table = SymbolTable()
data = DataSymbol(var_name, REAL_TYPE)

(continues on next page)
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(continued from previous page)

symbol_table.add(data)
reference = Reference(data)

However, the SymbolTable add() method will raise an exception if a user tries to add a symbol with the same name
as a symbol already existing in the symbol table.

Alternatively, the SymbolTable also provides the new_symbol() method (see Section Symbols and Symbol Tables
for more details) that uses a new distinct name from any existing names in the symbol table. By default the generated
name is the value PSYIR_ROOT_NAME variable specified in the DEFAULT section of the PSyclone config file, followed
by an optional “_” and an integer. For example, the following code:

from psyclone.psyir.symbols import SymbolTable
symbol_table = SymbolTable()
for i in range(0, 3):

var_name = symbol_table.new_symbol().name
print(var_name)

gives the following output:

psyir_tmp
psyir_tmp_0
psyir_tmp_1

As the root name (psyir_tmp in the example above) is specified in PSyclone’s config file it can be set to whatever the
user wants.

Note: The particular format used to create a unique name is the responsibility of the SymbolTable class and may
change in the future.

A user might want to create a name that has some meaning in the context in which it is used e.g. idx for an index, i
for an iterator, or temp for a temperature field. To support more readable names, the new_symbol() method allows
the user to specify a root name as an argument to the method which then takes the place of the default root name. For
example, the following code:

from psyclone.psyir.symbols import SymbolTable
symbol_table = SymbolTable()
for i in range(0, 3):

var_name = symbol_table.new_symbol(root_name="something")
print(var_name)

gives the following output:

something
something_0
something_1

By default, new_symbol() creates generic symbols, but often the user will want to specify a Symbol subclass with some
given parameters. The new_symbol() method accepts a symbol_type parameter to specify the subclass. Arguments
for the constructor of that subclass may be supplied as keyword arguments. For example, the following code:

from psyclone.psyir.symbols import SymbolTable, DataSymbol, REAL_TYPE
symbol_table = SymbolTable()

(continues on next page)
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symbol_table.new_symbol(root_name="something",
symbol_type=DataSymbol,
datatype=REAL_TYPE,
is_constant=True,
initial_value=3)

declares a symbol named “something” of REAL_TYPE datatype where the is_constant and initial_value argu-
ments will be passed to the DataSymbol constructor.

An example of using the new_symbol() method can be found in the PSyclone examples/psyir directory.

15.7.2 Nodes

PSyIR nodes are connected together via parent and child methods provided by the Node baseclass.

These nodes can be created in isolation and then connected together. For example:

assignment = Assignment()
literal = Literal("0.0", REAL_TYPE)
reference = Reference(symbol)
assignment.children = [reference, literal]

However, as connections get more complicated, creating the correct connections can become difficult to manage and
error prone. Further, in some cases children must be collected together within a Schedule (e.g. for IfBlock, Loop
and WhileLoop).

To simplify this complexity, each of the Kernel-layer nodes which contain other nodes have a static create method
which helps construct the PSyIR using a bottom up approach. Using this method, the above example then becomes:

literal = Literal("0.0", REAL_TYPE)
reference = Reference(symbol)
assignment = Assignment.create(reference, literal)

Creating the PSyIR to represent a complicated access of a member of a structure is best performed using the
create() method of the appropriate Reference subclass. For a relatively straightforward access such as (the Fortran)
field1%region%nx, this would be:

from psyclone.psyir.nodes import StructureReference
fld_sym = symbol_table.lookup("field1")
ref = StructureReference.create(fld_sym, ["region", "nx"])

where symbol_table is assumed to be a pre-populated Symbol Table containing an entry for “field1”.

A more complicated access involving arrays of structures such as field1%sub_grids(idx, 1)%nx would be con-
structed as:

from psyclone.psyir.symbols import INTEGER_TYPE
from psyclone.psyir.nodes import StructureReference, Reference, Literal
idx_sym = symbol_table.lookup("idx")
fld_sym = symbol_table.lookup("field1")
ref = StructureReference.create(fld_sym,

[("sub_grids", [Reference(idx_sym), Literal("1", INTEGER_TYPE)]),
"nx"])
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Note that the list of quantities passed to the create() method now contains a 2-tuple in order to describe the array
access.

More examples of using this approach can be found in the PSyclone examples/psyir directory.

15.8 Comparing PSyIR nodes

The == (equality) operator for PSyIR nodes performs a specialised equality check to compare the value of each node.
This is also useful when comparing entire subtrees since the equality operator automatically recurses through the
children and compares each child with the appropriate equality semantics, e.g.

# Is the loop upper bound expression exactly the same?
if loop1.stop_expr == loop2.stop_expr:

print("Same upper bound!")

The equality operator will handle expressions like my_array%my_field(:3) with the derived type fields and the
range components automatically, but it cannot handle symbolically equivalent fields, i.e. my_array%my_field(:3)
!= my_array%my_field(:2+1).

Annotations and code comments are ignored in the equality comparison since they don’t alter the semantic meaning of
the code. So these two statements compare to True:

a = a + 1
a = a + 1 !Increases a by 1

Sometimes there are cases where one really means to check for the specific instance of a node. In this case, Python
provides the is operator, e.g.

# Is the self instance part of this routine?
is_here = any(node is self for node in routine.walk(Node))

Additionally, PSyIR nodes cannot be used as map keys or similar. The easiest way to do this is just use the id as the
key:

node_map = {}
node_map[id(mynode)] = "element"

15.9 Modifying the PSyIR

Once we have a complete PSyIR AST there are 2 ways to modify its contents and/or structure: by applying trans-
formations (see next section Transformations), or by direct PSyIR API methods. This section describes some of the
methods that the PSyIR classes provide to modify the PSyIR AST in a consistent way (e.g. without breaking its many
internal references). Some complete examples of modifying the PSyIR can be found in the PSyclone examples/
psyir/modify.py script.

The rest of this section introduces examples of the available direct PSyIR modification methods.
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15.9.1 Renaming symbols

The symbol table provides the method rename_symbol() that given a symbol and an unused name will rename the
symbol. The symbol renaming will affect all the references in the PSyIR AST to that symbol. For example, the PSyIR
representing the following Fortran code:

subroutine work(psyir_tmp)
real, intent(inout) :: psyir_tmp
psyir_tmp=0.0

end subroutine

could be modified by the following PSyIR statements:

symbol = symbol_table.lookup("psyir_tmp")
symbol_table.rename_symbol(tmp_symbol, "new_variable")

which would result in the following Fortran output code:

subroutine work(new_variable)
real, intent(inout) :: new_variable
new_variable=0.0

end subroutine

15.9.2 Specialising symbols

The Symbol class provides the method specialise() that given a subclass of Symbol will change the Symbol instance
to the specified subclass. If the subclass has any additional properties then these would need to be set explicitly.

symbol = Symbol("name")
symbol.specialise(RoutineSymbol)
# Symbol is now a RoutineSymbol

This method is useful as it allows the class of a symbol to be changed without affecting any references to it.

15.9.3 Replacing PSyIR nodes

In certain cases one might want to replace a node in a PSyIR tree with another node. All nodes provide the re-
place_with() method to replace the node and its descendants with another given node and its descendants.

node.replace_with(new_node)

When the node being replaced is part of a named context (in Calls or Operations) the name of the argument is conserved
by default. For example

call named_subroutine(name1=1)

call.children[0].replace_with(Literal('2', INTEGER_TYPE))

will become:

call named_subroutine(name1=2)

This behaviour can be changed with the keep_name_in_context parameter.
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call.children[0].replace_with(
Literal('3', INTEGER_TYPE),
keep_name_in_context=False

)

will become:

call named_subroutine(3)

15.9.4 Detaching PSyIR nodes

Sometimes we just may wish to detach a certain PSyIR subtree in order to remove it from the root tree but we don’t
want to delete it altogether, as it may be re-inserted again in another location. To achieve this, all nodes provide the
detach method:

tmp = node.detach()

15.9.5 Copying nodes

Copying a PSyIR node and its children is often useful in order to avoid repeating the creation of similar PSyIR subtrees.
The result of the copy allows the modification of the original and the copied subtrees independently, without altering
the other subtree. Note that this is not equivalent to the Python copy or deepcopy functionality provided in the
copy library. This method performs a bespoke copy operation where some components of the tree, like children, are
recursively copied, while others, like the top-level parent reference are not.

new_node = node.copy()

15.9.6 Named arguments

The Call node (and its sub-classes) support named arguments.

Named arguments can be set or modified via the create(), append_named_arg(), insert_named_arg() or re-
place_named_arg() methods.

If an argument is inserted directly (via the children list) then it is assumed that this is not a named argument. If the
top node of an argument is replaced by removing and inserting a new node then it is assumed that this argument is no
longer a named argument. If it is replaced with the replace_with method, it has a keep_name_in_context argument to
choose the desired behaviour (defaults to True). If arguments are re-ordered then the names follow the re-ordering.

The names of named arguments can be accessed via the argument_names property. This list has an entry for each
argument and either contains a name or None (if this is not a named argument).

The PSyIR does not constrain which arguments are specified as being named and what those names are. It is the
developer’s responsibility to make sure that these names are consistent with any intrinsics that will be generated by the
back-end. In the future, it is expected that the PSyIR will know about the number and type of arguments expected by
Operation nodes, beyond simply being unary, binary or nary.

One restriction that Fortran has (but the PSyIR does not) is that all named arguments should be at the end of the
argument list. If this is not the case then the Fortran backend writer will raise an exception.
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CHAPTER

SIXTEEN

TRANSFORMATIONS

As discussed in the previous section, transformations can be applied to PSyclone’s internal representation (PSyIR) to
modify it. Typically transformations will be used to optimise the Algorithm, PSy and/or Kernel layer(s) for a particular
architecture, however transformations could be added for other reasons, such as to aid debugging or for performance
monitoring.

16.1 Finding

Transformations can be imported directly, but the user needs to know what transformations are available. A helper
class TransInfo is provided to show the available transformations

Note: The directory layout of PSyclone is currently being restructured. As a result of this some transformations are
already in the new locations, while others have not been moved yet. Transformations in the new locations can at the
moment not be found using the TransInfo approach, and need to be imported directly from the path indicated in the
documentation.

class psyclone.psyGen.TransInfo(module=None, base_class=None)
This class provides information about, and access, to the available transformations in this implementation of PSy-
clone. New transformations will be picked up automatically as long as they subclass the abstract Transformation
class.

For example:

>>> from psyclone.psyGen import TransInfo
>>> t = TransInfo()
>>> print(t.list)
There is 1 transformation available:
1: SwapTrans, A test transformation

>>> # accessing a transformation by index
>>> trans = t.get_trans_num(1)
>>> # accessing a transformation by name
>>> trans = t.get_trans_name("SwapTrans")

get_trans_name(name)
return the transformation with this name (use list() first to see available transformations)

get_trans_num(number)
return the transformation with this number (use list() first to see available transformations)
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property list

return a string with a human readable list of the available transformations

property num_trans

return the number of transformations available

16.2 Standard Functionality

Each transformation must provide at least two functions for the user: one for validation, i.e. to verify that a certain
transformation can be applied, and one to actually apply the transformation. They are described in detail in the overview
of all transformations, but the following general guidelines apply.

16.2.1 Validation

Each transformation provides a function validate. This function can be called by the user, and it will raise an exception
if the transformation can not be applied (and otherwise will return nothing). Validation will always be called when a
transformation is applied. The parameters for validate can change from transformation to transformation, but each
validate function accepts a parameter options. This parameter is either None, or a dictionary of string keys, that
will provide additional parameters to the validation process. For example, some validation functions allow part of the
validation process to be disabled in order to allow the HPC expert to apply a transformation that they know to be safe,
even if the more general validation process might reject it. Those parameters are documented for each transformation,
and will show up as a parameter, e.g.: options["node-type-check"]. As a simple example:

# The validation might reject the application, but in this
# specific case it is safe to apply the transformation,
# so disable the node type check:
my_transform.validate(node, {"node-type-check": False})

16.2.2 Application

Each transformation provides a function apply which will apply the transformation. It will first validate the transform
by calling the validate function. Each apply function takes the same options parameter as the validate function
described above. Besides potentially modifying the validation process, optional parameters for the transformation are
also provided this way. A simple example:

kctrans = Dynamo0p3KernelConstTrans()
kctrans.apply(kernel, {"element_order": 0, "quadrature": True})

The same options dictionary will be used when calling validate.

16.3 Available transformations

Some transformations are generic as the schedule structure is independent of the API, however it often makes sense
to specialise these for a particular API by adding API-specific errors checks. Some transformations are API-specific.
Currently these different types of transformation are indicated by their names.

The generic transformations currently available are listed in alphabetical order below (a number of these have special-
isations which can be found in the API-specific sections).
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Note: PSyclone currently only supports OpenCL and KernelImportsToArguments transformations for the GOcean
1.0 API, the OpenACC Data transformation is limited to the NEMO and GOcean 1.0 APIs and the OpenACC Kernels
transformation is limited to the NEMO and LFRic (Dynamo0.3) APIs.

Note: The directory layout of PSyclone is currently being restructured. As a result of this some transformations are
already in the new locations, while others have not been moved yet.

class psyclone.psyir.transformations.Abs2CodeTrans

Provides a transformation from a PSyIR ABS Operator node to equivalent code in a PSyIR tree. Validity checks
are also performed.

The transformation replaces

R = ABS(X)

with the following logic:

IF X < 0.0:
R = X*-1.0

ELSE:
R = X

apply(node, options=None)
Apply the ABS intrinsic conversion transformation to the specified node. This node must be an ABS
UnaryOperation. The ABS UnaryOperation is converted to equivalent inline code. This is implemented as
a PSyIR transform from:

R = ... ABS(X) ...

to:

tmp_abs = X
if tmp_abs < 0.0:

res_abs = tmp_abs*-1.0
else:

res_abs = tmp_abs
R = ... res_abs ...

where X could be an arbitrarily complex PSyIR expression and ... could be arbitrary PSyIR code.

This transformation requires the operation node to be a descendent of an assignment and will raise an
exception if this is not the case.

Parameters

• node (psyclone.psyir.nodes.UnaryOperation) – an ABS UnaryOperation node.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.
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Warning: This transformation assumes that the ABS Intrinsic acts on PSyIR Real scalar data and does not check
that this is not the case. Once issue #658 is on master then this limitation can be fixed.

class psyclone.transformations.ACCDataTrans

Add an OpenACC data region around a list of nodes in the PSyIR. COPYIN, COPYOUT and COPY clauses are
added as required.

For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "nemo"
>>> ast, invokeInfo = parse(NEMO_SOURCE_FILE, api=api)
>>> psy = PSyFactory(api).create(invokeInfo)
>>>
>>> from psyclone.transformations import ACCKernelsTrans, ACCDataTrans
>>> ktrans = ACCKernelsTrans()
>>> dtrans = ACCDataTrans()
>>>
>>> schedule = psy.invokes.get('tra_adv').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>>
>>> # Add a kernels construct for execution on the device
>>> kernels = schedule.children[9]
>>> ktrans.apply(kernels)
>>>
>>> # Enclose the kernels in a data construct
>>> kernels = schedule.children[9]
>>> dtrans.apply(kernels)

apply(node, options=None)
Put the supplied node or list of nodes within an OpenACC data region.

Parameters

• node ((list of) psyclone.psyir.nodes.Node) – the PSyIR node(s) to enclose in the data
region.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

class psyclone.transformations.ACCEnterDataTrans

Adds an OpenACC “enter data” directive to a Schedule. For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "gocean1.0"
>>> ast, invokeInfo = parse(GOCEAN_SOURCE_FILE, api=api)
>>> psy = PSyFactory(api).create(invokeInfo)
>>>

(continues on next page)
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(continued from previous page)

>>> from psyclone.transformations import ACCEnterDataTrans, ACCLoopTrans,␣
→˓ACCParallelTrans
>>> dtrans = ACCEnterDataTrans()
>>> ltrans = ACCLoopTrans()
>>> ptrans = ACCParallelTrans()
>>>
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>>
>>> # Apply the OpenACC Loop transformation to *every* loop in the schedule
>>> for child in schedule.children[:]:
... ltrans.apply(child)
>>>
>>> # Enclose all of these loops within a single OpenACC parallel region
>>> ptrans.apply(schedule)
>>>
>>> # Add an enter data directive
>>> dtrans.apply(schedule)
>>>
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

apply(sched, options=None)
Adds an OpenACC “enter data” directive to the invoke associated with the supplied Schedule. Any fields
accessed by OpenACC kernels within this schedule will be added to this data region in order to ensure they
remain on the target device.

Parameters

• sched (sub-class of psyclone.psyir.nodes.Schedule) – schedule to which to add an
“enter data” directive.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

class psyclone.transformations.ACCKernelsTrans

Enclose a sub-set of nodes from a Schedule within an OpenACC kernels region (i.e. within “!$acc kernels” . . .
“!$acc end kernels” directives).

For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "nemo"
>>> ast, invokeInfo = parse(NEMO_SOURCE_FILE, api=api)
>>> psy = PSyFactory(api).create(invokeInfo)
>>>
>>> from psyclone.transformations import ACCKernelsTrans
>>> ktrans = ACCKernelsTrans()
>>>
>>> schedule = psy.invokes.get('tra_adv').schedule
>>> # Uncomment the following line to see a text view of the schedule

(continues on next page)
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>>> # print(schedule.view())
>>> kernels = schedule.children[9]
>>> # Transform the kernel
>>> ktrans.apply(kernels)

apply(node, options=None)
Enclose the supplied list of PSyIR nodes within an OpenACC Kernels region.

Parameters

• node ((a list of) psyclone.psyir.nodes.Node) – a node or list of nodes in the PSyIR to
enclose.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["default_present"] (bool) – whether or not the kernels region should have
the ‘default present’ attribute (indicating that data is already on the accelerator). When
using managed memory this option should be False.

class psyclone.transformations.ACCLoopTrans

Adds an OpenACC loop directive to a loop. This directive must be within the scope of some OpenACC Parallel
region (at code-generation time).

For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.parse.utils import ParseError
>>> from psyclone.psyGen import PSyFactory
>>> from psyclone.errors import GenerationError
>>> api = "gocean1.0"
>>> ast, invokeInfo = parse(GOCEAN_SOURCE_FILE, api=api)
>>> psy = PSyFactory(api).create(invokeInfo)
>>>
>>> from psyclone.psyGen import TransInfo
>>> t = TransInfo()
>>> ltrans = t.get_trans_name('ACCLoopTrans')
>>> rtrans = t.get_trans_name('ACCParallelTrans')
>>>
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>>
>>> # Apply the OpenACC Loop transformation to *every* loop in the schedule
>>> for child in schedule.children[:]:
... ltrans.apply(child)
>>>
>>> # Enclose all of these loops within a single OpenACC parallel region
>>> rtrans.apply(schedule)
>>>

apply(node, options=None)
Apply the ACCLoop transformation to the specified node. This node must be a Loop since this transfor-
mation corresponds to inserting a directive immediately before a loop, e.g.:
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!$ACC LOOP
do ...

...
end do

At code-generation time (when psyclone.psyir.nodes.ACCLoopDirective.gen_code() is called),
this node must be within (i.e. a child of) a PARALLEL region.

Parameters

• node (psyclone.psyir.nodes.Loop) – the supplied node to which we will apply the
Loop transformation.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["collapse"] (int) – number of nested loops to collapse.

• options["independent"] (bool) – whether to add the “independent” clause to the di-
rective (not strictly necessary within PARALLEL regions).

• options["sequential"] (bool) – whether to add the “seq” clause to the directive.

• options["gang"] (bool) – whether to add the “gang” clause to the directive.

• options["vector"] (bool) – whether to add the “vector” clause to the directive.

class psyclone.transformations.ACCParallelTrans

Create an OpenACC parallel region by inserting directives. This parallel region must come after an enter-data
directive (see ACCEnterDataTrans) or within a data region (see ACCDataTrans). For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "gocean1.0"
>>> ast, invokeInfo = parse(GOCEAN_SOURCE_FILE, api=api)
>>> psy = PSyFactory(api).create(invokeInfo)
>>>
>>> from psyclone.psyGen import TransInfo
>>> t = TransInfo()
>>> ptrans = t.get_trans_name('ACCParallelTrans')
>>> dtrans = t.get_trans_name('ACCDataTrans')
>>>
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>>
>>> # Enclose everything within a single OpenACC PARALLEL region
>>> ptrans.apply(schedule.children)
>>> # Add an enter-data directive
>>> dtrans.apply(schedule)
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

apply(target_nodes, options=None)
Apply this transformation to a subset of the nodes within a schedule - i.e. enclose the specified Loops in
the schedule within a single parallel region.
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Parameters

• target_nodes ((list of) psyclone.psyir.nodes.Node) – a single Node or a list of
Nodes.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["node-type-check"] (bool) – this flag controls if the type of the nodes en-
closed in the region should be tested to avoid using unsupported nodes inside a region.

class psyclone.psyir.transformations.ArrayRange2LoopTrans

Provides a transformation from a PSyIR Array Range to a PSyIR Loop. For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "nemo"
>>> filename = "tra_adv_compute.F90"
>>> ast, invoke_info = parse(filename, api=api)
>>> psy = PSyFactory(api).create(invoke_info)
>>> schedule = psy.invokes.invoke_list[0].schedule
>>>
>>> from psyclone.psyir.nodes import Assignment
>>> from psyclone.psyir.transformations import ArrayRange2LoopTrans, >>> ␣
→˓TransformationError
>>>
>>> print(schedule.view())
>>> trans = ArrayRange2LoopTrans()
>>> for assignment in schedule.walk(Assignment):
>>> while True:
>>> try:
>>> trans.apply(assignment)
>>> except TransformationError:
>>> break
>>> print(schedule.view())

apply(node, options=None)
Apply the ArrayRange2Loop transformation to the specified node. The node must be an assignment. The
rightmost range node in each array within the assignment is replaced with a loop index and the assignment
is placed within a loop iterating over that index. The bounds of the loop are determined from the bounds
of the array range on the left hand side of the assignment.

Parameters
node (psyclone.psyir.nodes.Assignment) – an Assignment node.

class psyclone.psyir.transformations.ChunkLoopTrans

Apply a chunking transformation to a loop (in order to permit a chunked parallelisation). For example:

>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.nodes import Loop
>>> from psyclone.psyir.transformations import ChunkLoopTrans
>>> psyir = FortranReader().psyir_from_source("""

(continues on next page)
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... subroutine sub()

... integer :: ji, tmp(100)

... do ji=1, 100

... tmp(ji) = 2 * ji

... enddo

... end subroutine sub""")
>>> loop = psyir.walk(Loop)[0]
>>> ChunkLoopTrans().apply(loop)

will generate:

subroutine sub()
integer :: ji
integer, dimension(100) :: tmp
integer :: ji_el_inner
integer :: ji_out_var
do ji_out_var = 1, 100, 32

ji_el_inner = MIN(ji_out_var + (32 - 1), 100)
do ji = ji_out_var, ji_el_inner, 1

tmp(ji) = 2 * ji
enddo

enddo
end subroutine sub

apply(node, options=None)
Converts the given Loop node into a nested loop where the outer loop is over chunks and the inner loop is
over each individual element of the chunk.

Parameters

• node (psyclone.psyir.nodes.Loop) – the loop to transform.

• options (Optional[Dict[str, Any]]) – a dict with options for transformations.

• options["chunksize"] (int) – The size to chunk over for this transformation. If not
specified, the value 32 is used.

class psyclone.transformations.ColourTrans

Apply a colouring transformation to a loop (in order to permit a subsequent parallelisation over colours). For
example:

>>> invoke = ...
>>> schedule = invoke.schedule
>>>
>>> ctrans = ColourTrans()
>>>
>>> # Colour all of the loops
>>> for child in schedule.children:
>>> ctrans.apply(child)
>>>
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
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apply(node, options=None)
Converts the Loop represented by node into a nested loop where the outer loop is over colours and the inner
loop is over cells of that colour.

Parameters

• node (psyclone.psyir.nodes.Loop) – the loop to transform.

• options (Optional[Dict[str, Any]]) – options for the transformation.

class psyclone.psyir.transformations.DotProduct2CodeTrans

Provides a transformation from a PSyIR DOT_PRODUCT Operator node to equivalent code in a PSyIR tree.
Validity checks are also performed.

If R is a scalar and A, and B have dimension N, The transformation replaces:

R = ... DOT_PRODUCT(A,B) ...

with the following code:

TMP = 0.0
do I=1,N

TMP = TMP + A(i)*B(i)
R = ... TMP ...

For example:

>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.nodes import IntrinsicCall
>>> from psyclone.psyir.transformations import DotProduct2CodeTrans
>>> code = ("subroutine dot_product_test(v1,v2)\n"
... "real,intent(in) :: v1(10), v2(10)\n"
... "real :: result\n"
... "result = dot_product(v1,v2)\n"
... "end subroutine\n")
>>> psyir = FortranReader().psyir_from_source(code)
>>> trans = DotProduct2CodeTrans()
>>> trans.apply(psyir.walk(IntrinsicCall)[0])
>>> print(FortranWriter()(psyir))
subroutine dot_product_test(v1, v2)
real, dimension(10), intent(in) :: v1
real, dimension(10), intent(in) :: v2
real :: result
integer :: i
real :: res_dot_product

res_dot_product = 0.0
do i = 1, 10, 1
res_dot_product = res_dot_product + v1(i) * v2(i)

enddo
result = res_dot_product

end subroutine dot_product_test
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apply(node, options=None)
Apply the DOT_PRODUCT intrinsic conversion transformation to the specified node. This node must be a
DOT_PRODUCT BinaryOperation. If the transformation is successful then an assignment which includes
a DOT_PRODUCT BinaryOperation node is converted to equivalent inline code.

Parameters

• node (psyclone.psyir.nodes.BinaryOperation) – a DOT_PRODUCT Binary-
Operation node.

• options (dict of str:str or None) – a dictionary with options for transformations.

class psyclone.psyir.transformations.extract_trans.ExtractTrans(node_class=<class 'psy-
clone.psyir.nodes.extract_node.ExtractNode'>)

This transformation inserts an ExtractNode or a node derived from ExtractNode into the PSyIR of a schedule.
At code creation time this node will use the PSyData API to create code that can write the input and output
parameters to a file. The node might also create a stand-alone driver program that can read the created file
and then execute the instrumented region. Examples are given in the derived classes DynamoExtractTrans and
GOceanExtractTrans.

After applying the transformation the Nodes marked for extraction are children of the ExtractNode. Nodes to
extract can be individual constructs within an Invoke (e.g. Loops containing a Kernel or BuiltIn call) or entire
Invokes. This functionality does not support distributed memory.

Parameters
node_class (psyclone.psyir.nodes.ExtractNode or derived class) – The Node class of
which an instance will be inserted into the tree (defaults to ExtractNode), but can be any derived
class.

apply(nodes, options=None)
Apply this transformation to a subset of the nodes within a schedule - i.e. enclose the specified Nodes in
the schedule within a single PSyData region.

Parameters

• nodes (psyclone.psyir.nodes.Node or list of psyclone.psyir.nodes.Node) – can
be a single node or a list of nodes.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["prefix"] (str) – a prefix to use for the PSyData module name
(PREFIX_psy_data_mod) and the PSyDataType (PREFIX_PSYDATATYPE) - a “_” will be
added automatically. It defaults to “”.

• options["region_name"] ((str,str)) – an optional name to use for this PSyData
area, provided as a 2-tuple containing a location name followed by a local name. The pair
of strings should uniquely identify a region unless aggregate information is required (and
is supported by the runtime library).

class psyclone.psyir.transformations.HoistLocalArraysTrans

This transformation takes a Routine and promotes any local, ‘automatic’ arrays to Container scope:
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>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.nodes import Assignment
>>> from psyclone.psyir.transformations import HoistLocalArraysTrans
>>> code = ("module test_mod\n"
... "contains\n"
... " subroutine test_sub(n)\n"
... " integer :: i,j,n\n"
... " real :: a(n,n)\n"
... " real :: value = 1.0\n"
... " do i=1,n\n"
... " do j=1,n\n"
... " a(i,j) = value\n"
... " end do\n"
... " end do\n"
... " end subroutine test_sub\n"
... "end module test_mod\n")
>>> psyir = FortranReader().psyir_from_source(code)
>>> hoist = HoistLocalArraysTrans()
>>> hoist.apply(psyir.walk(Routine)[0])
>>> print(FortranWriter()(psyir).lower())
module test_mod
implicit none
real, allocatable, dimension(:,:), private :: a
public

public :: test_sub

contains
subroutine test_sub(n)
integer :: n
integer :: i
integer :: j
real :: value = 1.0

if (.not.allocated(a) .or. ubound(a, 1) /= n .or. ubound(a, 2) /= n) then
if (allocated(a)) then
deallocate(a)

end if
allocate(a(1 : n, 1 : n))

end if
do i = 1, n, 1
do j = 1, n, 1
a(i,j) = value

enddo
enddo

end subroutine test_sub

end module test_mod

By default, the target routine will be rejected if it is found to contain an ACCRoutineDirective since this usually
implies that the routine will be launched in parallel on the OpenACC device. This check can be disabled by
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setting ‘allow_accroutine’ to True in the options dictionary.

apply(node, options=None)
Applies the transformation to the supplied Routine node, moving any local arrays up to Container scope
and adding a suitable allocation when they are first accessed. If there are no local arrays or the supplied
Routine is a program then this method does nothing.

Parameters

• node (psyclone.psyir.nodes.Routine) – target PSyIR node.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["allow_accroutine"] (bool) – permit the target routine to contain an AC-
CRoutineDirective. These are forbidden by default because their presence usually indicates
that the routine will be run in parallel on the OpenACC device.

class psyclone.psyir.transformations.HoistLoopBoundExprTrans

This transformation moves complex bounds expressions out of the loop construct and places them in integer
scalar assignments before the loop.

>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.nodes import Loop
>>> from psyclone.psyir.transformations import HoistTrans
>>> code = ("program test\n"
... " use mymod, only: mytype\n"
... " integer :: i,j,n\n"
... " real :: a(n)\n"
... " do i=mytype%start, UBOUND(a,1)\n"
... " a(i) = 1.0\n"
... " end do\n"
... "end program\n")
>>> psyir = FortranReader().psyir_from_source(code)
>>> hoist = HoistLoopBoundExprTrans()
>>> hoist.apply(psyir.walk(Loop)[0])
>>> print(FortranWriter()(psyir))
program test
use mymod, only : mytype
integer :: i
integer :: j
integer :: n
real, dimension(n) :: a
integer :: loop_bound
integer :: loop_bound_1

loop_bound_1 = UBOUND(a, 1)
loop_bound = mytype%start
do i = loop_bound, loop_bound_1, 1
a(i) = 1.0

enddo

end program test
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apply(node, options=None)
Move complex bounds expressions out of the given loop construct and place them in integer scalar assign-
ments before the loop.

Parameters

• node (psyclone.psyir.nodes.Loop) – target PSyIR loop.

• options (Dict[str, Any]) – a dictionary with options for transformations.

class psyclone.psyir.transformations.HoistTrans

This transformation takes an assignment and moves it outside of its parent loop if it is valid to do so. For example:

>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.nodes import Assignment
>>> from psyclone.psyir.transformations import HoistTrans
>>> code = ("program test\n"
... " integer :: i,j,n\n"
... " real :: a(n,n)\n"
... " real value\n"
... " do i=1,n\n"
... " value = 1.0\n"
... " do j=1,n\n"
... " a(i,j) = value\n"
... " end do\n"
... " end do\n"
... "end program\n")
>>> psyir = FortranReader().psyir_from_source(code)
>>> hoist = HoistTrans()
>>> hoist.apply(psyir.walk(Assignment)[0])
>>> print(FortranWriter()(psyir))
program test
integer :: i
integer :: j
integer :: n
real, dimension(n,n) :: a
real :: value

value = 1.0
do i = 1, n, 1
do j = 1, n, 1

a(i,j) = value
enddo

enddo

end program test

apply(node, options=None)
Applies the hoist transformation to the supplied assignment node within a loop, moving the assignment
outside of the loop if it is valid to do so. Issue #1445 will also look to extend this transformation to other
types of node.

Parameters
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• node (subclass of psyclone.psyir.nodes.Assignment) – target PSyIR node.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

class psyclone.psyir.transformations.InlineTrans

This transformation takes a Call (which may have a return value) and replaces it with the body of the target
routine. It is used as follows:

>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.nodes import Call, Routine
>>> from psyclone.psyir.transformations import InlineTrans
>>> code = """
... module test_mod
... contains
... subroutine run_it()
... integer :: i
... real :: a(10)
... do i=1,10
... a(i) = 1.0
... call sub(a(i))
... end do
... end subroutine run_it
... subroutine sub(x)
... real, intent(inout) :: x
... x = 2.0*x
... end subroutine sub
... end module test_mod"""
>>> psyir = FortranReader().psyir_from_source(code)
>>> call = psyir.walk(Call)[0]
>>> inline_trans = InlineTrans()
>>> inline_trans.apply(call)
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(psyir.walk(Routine)[0].view())
>>> print(FortranWriter()(psyir.walk(Routine)[0]))
subroutine run_it()
integer :: i
real, dimension(10) :: a

do i = 1, 10, 1
a(i) = 1.0
a(i) = 2.0 * a(i)

enddo

end subroutine run_it

Warning: Routines/calls with any of the following characteristics are not supported and will result in a
TransformationError:

• the routine is not in the same file as the call;

• the routine contains an early Return statement;
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• the routine contains a variable with UnknownInterface;

• the routine contains a variable with StaticInterface;

• the routine contains an UnknownType variable with ArgumentInterface;

• the routine has a named argument;

• the shape of any array arguments as declared inside the routine does not match the shape of the arrays
being passed as arguments;

• the routine accesses an un-resolved symbol;

• the routine accesses a symbol declared in the Container to which it belongs.

Some of these restrictions will be lifted by #924.

apply(node, options=None)
Takes the body of the routine that is the target of the supplied call and replaces the call with it.

Parameters

• node (psyclone.psyir.nodes.Routine) – target PSyIR node.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

class psyclone.domain.common.transformations.KernelModuleInlineTrans

Module-inlines (bring the subroutine to the same compiler-unit) the subroutine pointed by this Kernel. For
example:

from psyclone.domain.common.transformations import \
KernelModuleInlineTrans

inline_trans = KernelModuleInlineTrans()
inline_trans.apply(schedule.walk(CodedKern)[0])

print(schedule.parent.view())

Warning: Not all kernel subroutines can be module-inlined. This transformation will reject attempts to
in-line kernels that access global data in the original module.

apply(node, options=None)
Bring the kernel subroutine into this Container.

Parameters

• node (psyclone.psyGen.CodedKern) – the kernel to module-inline.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

class psyclone.psyir.transformations.LoopFuseTrans

Provides a generic loop-fuse transformation to two Nodes in the PSyIR of a Schedule after performing validity
checks for the supplied Nodes. Examples are given in the descriptions of any children classes.
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apply(node1, node2, options=None)
Fuses two loops represented by psyclone.psyir.nodes.Node objects after performing validity checks.

Parameters

• node1 (psyclone.psyir.nodes.Node) – the first Node that is being checked.

• node2 (psyclone.psyir.nodes.Node) – the second Node that is being checked.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

class psyclone.psyir.transformations.LoopSwapTrans

Provides a loop-swap transformation, e.g.:

DO j=1, m
DO i=1, n

becomes:

DO i=1, n
DO j=1, m

This transform is used as follows:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> ast, invokeInfo = parse("shallow_alg.f90")
>>> psy = PSyFactory("gocean1.0").create(invokeInfo)
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>>
>>> from psyclone.transformations import LoopSwapTrans
>>> swap = LoopSwapTrans()
>>> swap.apply(schedule.children[0])
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

apply(node, options=None)
The argument outer must be a loop which has exactly one inner loop. This transform then swaps the outer
and inner loop.

Parameters

• outer (psyclone.psyir.nodes.Loop) – the node representing the outer loop.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

Raises
TransformationError – if the supplied node does not allow a loop swap to be done.
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class psyclone.psyir.transformations.LoopTiling2DTrans

Apply a 2D loop tiling transformation to a loop. For example:

>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.nodes import Loop
>>> from psyclone.psyir.transformations import LoopTiling2DTrans
>>> psyir = FortranReader().psyir_from_source("""
... subroutine sub()
... integer :: ji, tmp(100)
... do i=1, 100
... do j=1, 100
... tmp(i, j) = 2 * tmp(i, j)
... enddo
... enddo
... end subroutine sub""")
>>> loop = psyir.walk(Loop)[0]
>>> LoopTiling2DTrans().apply(loop)

will generate:

subroutine sub()
integer :: ji
integer, dimension(100) :: tmp
integer :: ji_el_inner
integer :: ji_out_var
do i_out_var = 1, 100, 32
i_el_inner = MIN(i_out_var + (32 - 1), 100)
do j_out_var = 1, 100, 32
do i = i_out_var, i_el_inner, 1
j_el_inner = MIN(j_out_var + (32 - 1), 100)
do j = j_out_var, j_el_inner, 1
tmp(i, j) = 2 * tmp(i, j)

enddo
enddo

enddo
enddo

end subroutine sub

apply(node, options=None)
Converts the given 2D Loop construct into a tiled version of the nested loops.

Parameters

• node (psyclone.psyir.nodes.Loop) – the loop to transform.

• options (Optional[Dict[str, Any]]) – a dict with options for transformations.

• options["tilesize"] (int) – The size of the resulting tile, currently square tiles are
always used. If not specified, the value 32 is used.

class psyclone.psyir.transformations.Matmul2CodeTrans

Provides a transformation from a PSyIR MATMUL Operator node to equivalent code in a PSyIR tree. Validity
checks are also performed.

For a matrix-vector multiplication, if the dimensions of R, A, and B are R(N), A(N,M), B(M), the transformation
replaces:
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R=MATMUL(A,B)

with the following code:

do i=1,N
R(i) = 0.0
do j=1,M

R(i) = R(i) + A(i,j) * B(j)

For a matrix-matrix multiplication, if the dimensions of R, A, and B are R(P,M), A(P,N), B(N,M), the MATMUL
is replaced with the following code:

do j=1,M
do i=1,P

R(i,j) = 0.0
do ii=1,N

R(i,j) = R(i,j) + A(i,ii) * B(ii,j)

Note that this transformation does not support the case where A is a rank-1 array.

apply(node, options=None)
Apply the MATMUL intrinsic conversion transformation to the specified node. This node must be a MAT-
MUL BinaryOperation. The first argument must currently have two dimensions while the second must have
either one or two dimensions. Each argument is permitted to have additional dimensions (i.e. more than
2) but in each case it is only the first one or two which may be ranges. Further, the ranges must currently
be for the full index space for that dimension (i.e. array subsections are not supported). If the transforma-
tion is successful then an assignment which includes a MATMUL BinaryOperation node is converted to
equivalent inline code.

Parameters

• node (psyclone.psyir.nodes.BinaryOperation) – a MATMUL Binary-Operation
node.

• options (Optional[Dict[str, Any]]) – options for the transformation.

Note: This transformation is currently limited to translating the matrix vector form of MATMUL to equivalent PSyIR
code.

class psyclone.psyir.transformations.Max2CodeTrans

Provides a transformation from a PSyIR MAX Intrinsic node to equivalent code in a PSyIR tree. Validity checks
are also performed (by a parent class).

The transformation replaces

R = MAX(A, B, C ...)

with the following logic:

R = A
if B > R:

R = B
if C > R:

(continues on next page)
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(continued from previous page)

R = C
...

apply(node, options=None)
Apply this utility transformation to the specified node. This node must be a MIN or MAX BinaryOperation
or NaryOperation. The operation is converted to equivalent inline code. This is implemented as a PSyIR
transform from:

R = ... [MIN or MAX](A, B, C ...) ...

to:

res = A
tmp = B
IF tmp [< or >] res:

res = tmp
tmp = C
IF tmp [< or >] res:

res = tmp
...
R = ... res ...

where A, B, C . . . could be arbitrarily complex PSyIR expressions and the ... before and after [MIN or
MAX](A, B, C ...) can be arbitrary PSyIR code.

This transformation requires the operation node to be a descendent of an assignment and will raise an
exception if this is not the case.

Parameters

• node (psyclone.psyir.nodes.BinaryOperation or psyclone.psyir.nodes.
NaryOperation) – a MIN or MAX Binary- or Nary-Operation node.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

Warning: This transformation assumes that the MAX Intrinsic acts on PSyIR Real scalar data and does not check
that this is not the case. Once issue #658 is on master then this limitation can be fixed.

class psyclone.psyir.transformations.Maxval2CodeTrans

Provides a transformation from a PSyIR MAXVAL IntrinsicCall node to equivalent code in a PSyIR tree. Validity
checks are also performed.

If MAXVAL contains a single positional argument which is an array, the maximum value of all of the elements
in the array is returned in the the scalar R.

R = MAXVAL(ARRAY)

For example, if the array is two dimensional, the equivalent code for real data is:
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R = TINY(R)
DO J=LBOUND(ARRAY,2),UBOUND(ARRAY,2)
DO I=LBOUND(ARRAY,1),UBOUND(ARRAY,1)
IF (R < ARRAY(I,J)) THEN
R = ARRAY(I,J)

If the dimension argument is provided then the maximum value is returned along the row for each entry in that
dimension:

R = MAXVAL(ARRAY, dimension=2)

If the array is two dimensional, the equivalent code for real data is:

R(:) = TINY(R)
DO J=LBOUND(ARRAY,2),UBOUND(ARRAY,2)
DO I=LBOUND(ARRAY,1),UBOUND(ARRAY,1)
IF (R(I) < ARRAY(I,J)) THEN

R(I) = ARRAY(I,J)

A restriction is that the value of dimension must be able to be determined by PSyclone, either being a literal or
a reference to something with a known value.

If the mask argument is provided then the mask is used to determine whether the maxval is applied:

R = MAXVAL(ARRAY, mask=MOD(ARRAY, 2.0)==1)

If the array is two dimensional, the equivalent code for real data is:

R = TINY(R)
DO J=LBOUND(ARRAY,2),UBOUND(ARRAY,2)
DO I=LBOUND(ARRAY,1),UBOUND(ARRAY,1)
IF (MOD(ARRAY(I,J), 2.0)==1) THEN
IF (R < ARRAY(I,J)) THEN
R = ARRAY(I,J)

The array passed to MAXVAL may use array syntax, array notation or array sections (or a mixture of the two),
but scalar bounds are not allowed:

R = MAXVAL(ARRAY) ! array syntax
R = MAXVAL(ARRAY(:,:)) ! array notation
R = MAXVAL(ARRAY(1:10,lo:hi)) ! array sections
R = MAXVAL(ARRAY(1:10,:)) ! mix of array sections and array notation
R = MAXVAL(ARRAY(1:10,2)) ! NOT SUPPORTED as 2 is a scalar bound

For example:

>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.transformations import Maxval2CodeTrans
>>> code = ("subroutine maxval_test(array)\n"
... " real :: array(10,10)\n"
... " real :: result\n"
... " result = maxval(array)\n"
... "end subroutine\n")

(continues on next page)
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(continued from previous page)

>>> psyir = FortranReader().psyir_from_source(code)
>>> sum_node = psyir.children[0].children[0].children[1]
>>> Maxval2CodeTrans().apply(sum_node)
>>> print(FortranWriter()(psyir))
subroutine maxval_test(array)
real, dimension(10,10) :: array
real :: result
real :: maxval_var
integer :: i_0
integer :: i_1

maxval_var = TINY(maxval_var)
do i_1 = 1, 10, 1
do i_0 = 1, 10, 1

if (maxval_var < array(i_0,i_1)) then
maxval_var = array(i_0,i_1)

end if
enddo

enddo
result = maxval_var

end subroutine maxval_test

apply(node, options=None)
Apply the SUM, MINVAL or MAXVAL intrinsic conversion transformation to the specified node. This
node must be one of these intrinsic operations which is converted to equivalent inline code.

Parameters

• node (psyclone.psyir.nodes.IntrinsicCall) – a Sum, Minval or Maxval intrinsic.

• options (Optional[Dict[str, Any]]) – options for the transformation.

class psyclone.psyir.transformations.Min2CodeTrans

Provides a transformation from a PSyIR MIN Intrinsic node to equivalent code in a PSyIR tree. Validity checks
are also performed (by a parent class).

The transformation replaces

R = MIN(A, B, C ...)

with the following logic:

R = A
if B < R:

R = B
if C < R:

R = C
...

apply(node, options=None)
Apply this utility transformation to the specified node. This node must be a MIN or MAX BinaryOperation
or NaryOperation. The operation is converted to equivalent inline code. This is implemented as a PSyIR
transform from:
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R = ... [MIN or MAX](A, B, C ...) ...

to:

res = A
tmp = B
IF tmp [< or >] res:

res = tmp
tmp = C
IF tmp [< or >] res:

res = tmp
...
R = ... res ...

where A, B, C . . . could be arbitrarily complex PSyIR expressions and the ... before and after [MIN or
MAX](A, B, C ...) can be arbitrary PSyIR code.

This transformation requires the operation node to be a descendent of an assignment and will raise an
exception if this is not the case.

Parameters

• node (psyclone.psyir.nodes.BinaryOperation or psyclone.psyir.nodes.
NaryOperation) – a MIN or MAX Binary- or Nary-Operation node.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

Warning: This transformation assumes that the MIN Intrinsic acts on PSyIR Real scalar data and does not check
that this is not the case. Once issue #658 is on master then this limitation can be fixed.

class psyclone.psyir.transformations.Minval2CodeTrans

Provides a transformation from a PSyIR MINVAL IntrinsicCall node to equivalent code in a PSyIR tree. Validity
checks are also performed.

If MINVAL contains a single positional argument which is an array, the minimum value of all of the elements in
the array is returned in the the scalar R.

R = MINVAL(ARRAY)

For example, if the array is two dimensional, the equivalent code for real data is:

R = HUGE(R)
DO J=LBOUND(ARRAY,2),UBOUND(ARRAY,2)
DO I=LBOUND(ARRAY,1),UBOUND(ARRAY,1)
IF (R > ARRAY(I,J)) THEN
R = ARRAY(I,J)

If the dimension argument is provided then the minimum value is returned along the row for each entry in that
dimension:

R = MINVAL(ARRAY, dimension=2)

If the array is two dimensional, the equivalent code for real data is:
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R(:) = HUGE(R)
DO J=LBOUND(ARRAY,2),UBOUND(ARRAY,2)
DO I=LBOUND(ARRAY,1),UBOUND(ARRAY,1)
IF (R(I) > ARRAY(I,J)) THEN

R(I) = ARRAY(I,J)

A restriction is that the value of dimension must be able to be determined by PSyclone, either being a literal or
a reference to something with a known value.

If the mask argument is provided then the mask is used to determine whether the minval is applied:

R = MINVAL(ARRAY, mask=MOD(ARRAY, 2.0)==1)

If the array is two dimensional, the equivalent code for real data is:

R = HUGE(R)
DO J=LBOUND(ARRAY,2),UBOUND(ARRAY,2)
DO I=LBOUND(ARRAY,1),UBOUND(ARRAY,1)
IF (MOD(ARRAY(I,J), 2.0)==1) THEN
IF (R > ARRAY(I,J)) THEN
R = ARRAY(I,J)

The array passed to MINVAL may use array syntax, array notation or array sections (or a mixture of the two),
but scalar bounds are not allowed:

R = MINVAL(ARRAY) ! array syntax
R = MINVAL(ARRAY(:,:)) ! array notation
R = MINVAL(ARRAY(1:10,lo:hi)) ! array sections
R = MINVAL(ARRAY(1:10,:)) ! mix of array sections and array notation
R = MINVAL(ARRAY(1:10,2)) ! NOT SUPPORTED as 2 is a scalar bound

For example:

>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.transformations import Minval2CodeTrans
>>> code = ("subroutine minval_test(array)\n"
... " real :: array(10,10)\n"
... " real :: result\n"
... " result = minval(array)\n"
... "end subroutine\n")
>>> psyir = FortranReader().psyir_from_source(code)
>>> sum_node = psyir.children[0].children[0].children[1]
>>> Minval2CodeTrans().apply(sum_node)
>>> print(FortranWriter()(psyir))
subroutine minval_test(array)
real, dimension(10,10) :: array
real :: result
real :: minval_var
integer :: i_0
integer :: i_1

minval_var = HUGE(minval_var)
do i_1 = 1, 10, 1

(continues on next page)

192 Chapter 16. Transformations



PSyclone Documentation, Release 2.4.0

(continued from previous page)

do i_0 = 1, 10, 1
if (minval_var > array(i_0,i_1)) then
minval_var = array(i_0,i_1)

end if
enddo

enddo
result = minval_var

end subroutine minval_test

apply(node, options=None)
Apply the SUM, MINVAL or MAXVAL intrinsic conversion transformation to the specified node. This
node must be one of these intrinsic operations which is converted to equivalent inline code.

Parameters

• node (psyclone.psyir.nodes.IntrinsicCall) – a Sum, Minval or Maxval intrinsic.

• options (Optional[Dict[str, Any]]) – options for the transformation.

class psyclone.transformations.MoveTrans

Provides a transformation to move a node in the tree. For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> ast,invokeInfo=parse("dynamo.F90")
>>> psy=PSyFactory("dynamo0.3").create(invokeInfo)
>>> schedule=psy.invokes.get('invoke_v3_kernel_type').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>>
>>> from psyclone.transformations import MoveTrans
>>> trans=MoveTrans()
>>> trans.apply(schedule.children[0], schedule.children[2],
... options = {"position":"after")
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

Nodes may only be moved to a new location with the same parent and must not break any dependencies otherwise
an exception is raised.

apply(node, location, options=None)
Move the node represented by node before location location (which is also a node) by default and after
if the optional position argument is set to ‘after’.

Parameters

• node (psyclone.psyir.nodes.Node) – the node to be moved.

• location (psyclone.psyir.nodes.Node) – node before or after which the given node
should be moved.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["position"] (str) – either ‘before’ or ‘after’.
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Raises

• TransformationError – if the given node is not an instance of psyclone.psyir.
nodes.Node

• TransformationError – if the location is not valid.

class psyclone.domain.gocean.transformations.GOOpenCLTrans

Switches on/off the generation of an OpenCL PSy layer for a given InvokeSchedule. Additionally, it will generate
OpenCL kernels for each of the kernels referenced by the Invoke. For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> API = "gocean1.0"
>>> FILENAME = "shallow_alg.f90" # examples/gocean/eg1
>>> ast, invoke_info = parse(FILENAME, api=API)
>>> psy = PSyFactory(API, distributed_memory=False).create(invoke_info)
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> ocl_trans = GOOpenCLTrans()
>>> ocl_trans.apply(schedule)
>>> print(schedule.view())

apply(node, options=None)
Apply the OpenCL transformation to the supplied GOInvokeSchedule. This causes PSyclone to generate
an OpenCL version of the corresponding PSy-layer routine. The generated code makes use of the FortCL
library (https://github.com/stfc/FortCL) in order to manage the OpenCL device directly from Fortran.

Parameters

• node (psyclone.psyGen.GOInvokeSchedule) – the InvokeSchedule to transform.

• options (dict of str:value or None) – set of option to tune the OpenCL genera-
tion.

• options["enable_profiling"] (bool) – whether or not to set up the OpenCL envi-
ronment with the profiling option enabled.

• options["out_of_order"] (bool) – whether or not to set up the OpenCL environment
with the out_of_order option enabled.

• options["end_barrier"] (bool) – whether or not to add an OpenCL barrier at the end
of the transformed invoke.

class psyclone.transformations.OMPDeclareTargetTrans

Adds an OpenMP declare target directive to the specified routine.

For example:

>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.nodes import Loop
>>> from psyclone.transformations import OMPDeclareTargetTrans
>>>
>>> tree = FortranReader().psyir_from_source("""
... subroutine my_subroutine(A)
... integer, dimension(10, 10), intent(inout) :: A

(continues on next page)
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... integer :: i

... integer :: j

... do i = 1, 10

... do j = 1, 10

... A(i, j) = 0

... end do

... end do

... end subroutine

... """
>>> omptargettrans = OMPDeclareTargetTrans()
>>> omptargettrans.apply(tree.walk(Routine)[0])

will generate:

subroutine my_subroutine(A)
integer, dimension(10, 10), intent(inout) :: A
integer :: i
integer :: j
!$omp declare target
do i = 1, 10

do j = 1, 10
A(i, j) = 0

end do
end do

end subroutine

apply(node, options=None)
Insert an OMPDeclareTargetDirective inside the provided routine.

Parameters

• node (psyclone.psyir.nodes.Routine) – the PSyIR routine to insert the directive into.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

class psyclone.psyir.transformations.OMPLoopTrans(omp_directive='do', omp_schedule='auto')
Adds an OpenMP directive to parallelise this loop. It can insert different directives such as “omp do/for”, “omp
parallel do/for”, “omp teams distribute parallel do/for” or “omp loop” depending on the provided parameters. The
OpenMP schedule to use can also be specified, but this will be ignored in case of the “omp loop” (as the ‘schedule’
clause is not valid for this specific directive). The configuration-defined ‘reprod’ parameter also specifies whether
a manual reproducible reproduction is to be used. Note, reproducible in this case means obtaining the same results
with the same number of OpenMP threads, not for different numbers of OpenMP threads.

Parameters

• omp_schedule (str) – the OpenMP schedule to use. Defaults to ‘auto’.

• omp_directive (str) – choose which OpenMP loop directive to use. Defaults to “omp
do”

For example:
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>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.nodes import Loop
>>> from psyclone.transformations import OMPLoopTrans, OMPParallelTrans
>>>
>>> psyir = FortranReader().psyir_from_source("""
... subroutine my_subroutine()
... integer, dimension(10, 10) :: A
... integer :: i
... integer :: j
... do i = 1, 10
... do j = 1, 10
... A(i, j) = 0
... end do
... end do
... end subroutine
... """)
>>> loop = psyir.walk(Loop)[0]
>>> omplooptrans1 = OMPLoopTrans(omp_schedule="dynamic",
... omp_directive="paralleldo")
>>> omplooptrans1.apply(loop)
>>> print(FortranWriter()(psyir))
subroutine my_subroutine()
integer, dimension(10,10) :: a
integer :: i
integer :: j

!$omp parallel do default(shared), private(i,j), schedule(dynamic)
do i = 1, 10, 1
do j = 1, 10, 1

a(i,j) = 0
enddo

enddo
!$omp end parallel do

end subroutine my_subroutine

apply(node, options=None)
Apply the OMPLoopTrans transformation to the specified PSyIR Loop.

Parameters

• node (psyclone.psyir.nodes.Node) – the supplied node to which we will apply the
OMPLoopTrans transformation

• options (Optional[Dict[str, Any]]) – a dictionary with options for transformations
and validation.

• options["reprod"] (bool) – indicating whether reproducible reductions should be
used. By default the value from the config file will be used.

property omp_directive

Returns
the type of OMP directive that this transformation will insert.
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Return type
str

property omp_schedule

Returns
the OpenMP schedule that will be specified by this transformation.

Return type
str

class psyclone.transformations.OMPMasterTrans

Create an OpenMP MASTER region by inserting directives. The most likely use case for this transformation is
to wrap around task-based transformations. Note that adding this directive requires a parent OpenMP parallel
region (which can be inserted by OMPParallelTrans), otherwise it will produce an error in generation-time.

For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "gocean1.0"
>>> ast, invokeInfo = parse(GOCEAN_SOURCE_FILE, api=api)
>>> psy = PSyFactory(api).create(invokeInfo)
>>>
>>> from psyclone.transformations import OMPParallelTrans, OMPMasterTrans
>>> mastertrans = OMPMasterTrans()
>>> paralleltrans = OMPParallelTrans()
>>>
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>>
>>> # Enclose all of these loops within a single OpenMP
>>> # MASTER region
>>> mastertrans.apply(schedule.children)
>>> # Enclose all of these loops within a single OpenMP
>>> # PARALLEL region
>>> paralleltrans.apply(schedule.children)
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

apply(target_nodes, options=None)
Apply this transformation to a subset of the nodes within a schedule - i.e. enclose the specified Loops in
the schedule within a single parallel region.

Parameters

• target_nodes ((list of) psyclone.psyir.nodes.Node) – a single Node or a list of
Nodes.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["node-type-check"] (bool) – this flag controls if the type of the nodes en-
closed in the region should be tested to avoid using unsupported nodes inside a region.
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get_node_list(nodes)
This is a helper function for region based transformations. The parameter for any of those transformations is
either a single node, a schedule, or a list of nodes. This function converts this into a list of nodes according
to the parameter type. This function will always return a copy, to avoid issues e.g. if a child list of a node
should be provided, and a transformation changes the order in this list (which would then also change the
order of the nodes in the tree).

Parameters

• nodes (Union[psyclone.psyir.nodes.Node, psyclone.psyir.nodes.Schedule,
List[psyclone.psyir.nodes.Node]) – can be a single node, a schedule or a list of nodes.

• options (Optional[Dict[str,Any]]) – a dictionary with options for transformations.

Returns
a list of nodes.

Return type
List[psyclone.psyir.nodes.Node]

Raises
TransformationError – if the supplied parameter is neither a single Node, nor a Schedule,
nor a list of Nodes.

validate(node_list, options=None)
Check that the supplied list of Nodes are eligible to be put inside a parallel region.

Parameters

• node_list (list) – list of nodes to put into a parallel region

• options – a dictionary with options for transformations. :type options: Optional[Dict[str,
Any]]

• options["node-type-check"] (bool) – this flag controls whether or not the type of
the nodes enclosed in the region should be tested to avoid using unsupported nodes inside
a region.

Raises

• TransformationError – if the supplied node is an InvokeSchedule rather than being
within an InvokeSchedule.

• TransformationError – if the supplied nodes are not all children of the same parent
(siblings).

Note: PSyclone does not support (distributed-memory) halo swaps or global sums within OpenMP master regions.
Attempting to create a master region for a set of nodes that includes halo swaps or global sums will produce an error.
In such cases it may be possible to re-order the nodes in the Schedule such that the halo swaps or global sums are
performed outside the single region. The MoveTrans transformation may be used for this.

class psyclone.transformations.OMPParallelLoopTrans(omp_directive='do', omp_schedule='auto')
Adds an OpenMP PARALLEL DO directive to a loop.

For example:
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>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> ast, invokeInfo = parse("dynamo.F90")
>>> psy = PSyFactory("dynamo0.3").create(invokeInfo)
>>> schedule = psy.invokes.get('invoke_v3_kernel_type').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>>
>>> from psyclone.transformations import OMPParallelLoopTrans
>>> trans = OMPParallelLoopTrans()
>>> trans.apply(schedule.children[0])
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

apply(node, options=None)
Apply an OMPParallelLoop Transformation to the supplied node (which must be a Loop). In the generated
code this corresponds to wrapping the Loop with directives:

!$OMP PARALLEL DO ...
do ...
...

end do
!$OMP END PARALLEL DO

Parameters

• node (psyclone.f2pygen.DoGen) – the node (loop) to which to apply the transformation.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transformations
and validation.

class psyclone.transformations.OMPParallelTrans

Create an OpenMP PARALLEL region by inserting directives. For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.parse.utils import ParseError
>>> from psyclone.psyGen import PSyFactory
>>> from psyclone.errors import GenerationError
>>> api = "gocean1.0"
>>> ast, invokeInfo = parse(GOCEAN_SOURCE_FILE, api=api)
>>> psy = PSyFactory(api).create(invokeInfo)
>>>
>>> from psyclone.psyGen import TransInfo
>>> t = TransInfo()
>>> ltrans = t.get_trans_name('GOceanOMPLoopTrans')
>>> rtrans = t.get_trans_name('OMPParallelTrans')
>>>
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>>

(continues on next page)
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>>> # Apply the OpenMP Loop transformation to *every* loop
>>> # in the schedule
>>> for child in schedule.children:
>>> ltrans.apply(child)
>>>
>>> # Enclose all of these loops within a single OpenMP
>>> # PARALLEL region
>>> rtrans.apply(schedule.children)
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

apply(target_nodes, options=None)
Apply this transformation to a subset of the nodes within a schedule - i.e. enclose the specified Loops in
the schedule within a single parallel region.

Parameters

• target_nodes ((list of) psyclone.psyir.nodes.Node) – a single Node or a list of
Nodes.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["node-type-check"] (bool) – this flag controls if the type of the nodes en-
closed in the region should be tested to avoid using unsupported nodes inside a region.

get_node_list(nodes)
This is a helper function for region based transformations. The parameter for any of those transformations is
either a single node, a schedule, or a list of nodes. This function converts this into a list of nodes according
to the parameter type. This function will always return a copy, to avoid issues e.g. if a child list of a node
should be provided, and a transformation changes the order in this list (which would then also change the
order of the nodes in the tree).

Parameters

• nodes (Union[psyclone.psyir.nodes.Node, psyclone.psyir.nodes.Schedule,
List[psyclone.psyir.nodes.Node]) – can be a single node, a schedule or a list of nodes.

• options (Optional[Dict[str,Any]]) – a dictionary with options for transformations.

Returns
a list of nodes.

Return type
List[psyclone.psyir.nodes.Node]

Raises
TransformationError – if the supplied parameter is neither a single Node, nor a Schedule,
nor a list of Nodes.

validate(node_list, options=None)
Perform OpenMP-specific validation checks.

Parameters

• node_list (list of psyclone.psyir.nodes.Node) – list of Nodes to put within parallel
region.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.
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• options["node-type-check"] (bool) – this flag controls if the type of the nodes en-
closed in the region should be tested to avoid using unsupported nodes inside a region.

Raises
TransformationError – if the target Nodes are already within some OMP parallel region.

Note: PSyclone does not support (distributed-memory) halo swaps or global sums within OpenMP parallel regions.
Attempting to create a parallel region for a set of nodes that includes halo swaps or global sums will produce an error.
In such cases it may be possible to re-order the nodes in the Schedule such that the halo swaps or global sums are
performed outside the parallel region. The MoveTrans transformation may be used for this.

class psyclone.transformations.OMPSingleTrans(nowait=False)
Create an OpenMP SINGLE region by inserting directives. The most likely use case for this transformation is to
wrap around task-based transformations. The parent region for this should usually also be a OMPParallelTrans.

Parameters
nowait (bool) – whether to apply a nowait clause to this transformation. The default value is
False

For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "gocean1.0"
>>> ast, invokeInfo = parse(GOCEAN_SOURCE_FILE, api=api)
>>> psy = PSyFactory(api).create(invokeInfo)
>>>
>>> from psyclone.transformations import OMPParallelTrans, OMPSingleTrans
>>> singletrans = OMPSingleTrans()
>>> paralleltrans = OMPParallelTrans()
>>>
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>>
>>> # Enclose all of these loops within a single OpenMP
>>> # SINGLE region
>>> singletrans.apply(schedule.children)
>>> # Enclose all of these loops within a single OpenMP
>>> # PARALLEL region
>>> paralleltrans.apply(schedule.children)
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

apply(node_list, options=None)
Apply the OMPSingleTrans transformation to the specified node in a Schedule.

At code-generation time this node must be within (i.e. a child of) an OpenMP PARALLEL region. Code
generation happens when OMPLoopDirective.gen_code() is called, or when the PSyIR tree is given to
a backend.

If the keyword “nowait” is specified in the options, it will cause a nowait clause to be added if it is set to
True, otherwise no clause will be added.

16.3. Available transformations 201

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


PSyclone Documentation, Release 2.4.0

Parameters

• node_list ((a list of) psyclone.psyir.nodes.Node) – the supplied node or node list
to which we will apply the OMPSingleTrans transformation

• options (Optional[Dict[str, Any]]) – a list with options for transformations and
validation.

• options["nowait"] (bool) – indicating whether or not to use a nowait clause on this
single region.

get_node_list(nodes)
This is a helper function for region based transformations. The parameter for any of those transformations is
either a single node, a schedule, or a list of nodes. This function converts this into a list of nodes according
to the parameter type. This function will always return a copy, to avoid issues e.g. if a child list of a node
should be provided, and a transformation changes the order in this list (which would then also change the
order of the nodes in the tree).

Parameters

• nodes (Union[psyclone.psyir.nodes.Node, psyclone.psyir.nodes.Schedule,
List[psyclone.psyir.nodes.Node]) – can be a single node, a schedule or a list of nodes.

• options (Optional[Dict[str,Any]]) – a dictionary with options for transformations.

Returns
a list of nodes.

Return type
List[psyclone.psyir.nodes.Node]

Raises
TransformationError – if the supplied parameter is neither a single Node, nor a Schedule,
nor a list of Nodes.

property omp_nowait

Returns
whether or not this Single region uses a nowait clause to remove the end barrier.

Return type
bool

validate(node_list, options=None)
Check that the supplied list of Nodes are eligible to be put inside a parallel region.

Parameters

• node_list (list) – list of nodes to put into a parallel region

• options – a dictionary with options for transformations. :type options: Optional[Dict[str,
Any]]

• options["node-type-check"] (bool) – this flag controls whether or not the type of
the nodes enclosed in the region should be tested to avoid using unsupported nodes inside
a region.

Raises

• TransformationError – if the supplied node is an InvokeSchedule rather than being
within an InvokeSchedule.

• TransformationError – if the supplied nodes are not all children of the same parent
(siblings).
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Note: PSyclone does not support (distributed-memory) halo swaps or global sums within OpenMP single regions.
Attempting to create a single region for a set of nodes that includes halo swaps or global sums will produce an error.
In such cases it may be possible to re-order the nodes in the Schedule such that the halo swaps or global sums are
performed outside the single region. The MoveTrans transformation may be used for this.

class psyclone.psyir.transformations.OMPTargetTrans

Adds an OpenMP target directive to a region of code.

For example:

>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.nodes import Loop
>>> from psyclone.psyir.transformations import OMPTargetTrans
>>>
>>> tree = FortranReader().psyir_from_source("""
... subroutine my_subroutine()
... integer, dimension(10, 10) :: A
... integer :: i
... integer :: j
... do i = 1, 10
... do j = 1, 10
... A(i, j) = 0
... end do
... end do
... end subroutine
... """)
>>> OMPTargetTrans().apply(tree.walk(Loop)[0])
>>> print(FortranWriter()(tree))
subroutine my_subroutine()
integer, dimension(10,10) :: a
integer :: i
integer :: j

!$omp target
do i = 1, 10, 1
do j = 1, 10, 1

a(i,j) = 0
enddo

enddo
!$omp end target

end subroutine my_subroutine

apply(node, options=None)
Insert an OMPTargetDirective before the provided node or list of nodes.

Parameters

• node (List[psyclone.psyir.nodes.Node]) – the PSyIR node or nodes to enclose in the
OpenMP target region.

• options (Optional[Dict[str,Any]]) – a dictionary with options for transformations.
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class psyclone.transformations.OMPTaskloopTrans(grainsize=None, num_tasks=None, nogroup=False)
Adds an OpenMP taskloop directive to a loop. Only one of grainsize or num_tasks must be specified.

TODO: #1364 Taskloops do not yet support reduction clauses.

Parameters

• grainsize (int or None) – the grainsize to use in for this transformation.

• num_tasks (int or None) – the num_tasks to use for this transformation.

• nogroup (bool) – whether or not to use a nogroup clause for this transformation. Default
is False.

For example:

>>> from pysclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "gocean1.0"
>>> ast, invokeInfo = parse(GOCEAN_SOURCE_FILE, api=api)
>>> psy = PSyFactory(api).create(invokeInfo)
>>>
>>> from psyclone.transformations import OMPParallelTrans, OMPSingleTrans
>>> from psyclone.transformations import OMPTaskloopTrans
>>> from psyclone.psyir.transformations import OMPTaskwaitTrans
>>> singletrans = OMPSingleTrans()
>>> paralleltrans = OMPParallelTrans()
>>> tasklooptrans = OMPTaskloopTrans()
>>> taskwaittrans = OMPTaskwaitTrans()
>>>
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>>
>>> # Apply the OpenMP Taskloop transformation to *every* loop
>>> # in the schedule.
>>> # This ignores loop dependencies. These can be handled
>>> # by the OMPTaskwaitTrans
>>> for child in schedule.children:
>>> tasklooptrans.apply(child)
>>> # Enclose all of these loops within a single OpenMP
>>> # SINGLE region
>>> singletrans.apply(schedule.children)
>>> # Enclose all of these loops within a single OpenMP
>>> # PARALLEL region
>>> paralleltrans.apply(schedule.children)
>>> # Ensure loop dependencies are satisfied
>>> taskwaittrans.apply(schedule.children)
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

apply(node, options=None)
Apply the OMPTaskloopTrans transformation to the specified node in a Schedule. This node must be a
Loop since this transformation corresponds to wrapping the generated code with directives like so:

204 Chapter 16. Transformations

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool


PSyclone Documentation, Release 2.4.0

!$OMP TASKLOOP
do ...

...
end do
!$OMP END TASKLOOP

At code-generation time (when OMPTaskloopDirective.gen_code() is called), this node must be within
(i.e. a child of) an OpenMP SERIAL region.

If the keyword “nogroup” is specified in the options, it will cause a nogroup clause be generated if it is set
to True. This will override the value supplied to the constructor, but will only apply to the apply call to
which the value is supplied.

Parameters

• node (psyclone.psyir.nodes.Node) – the supplied node to which we will apply the
OMPTaskloopTrans transformation

• options (Optional[Dict[str, Any]]) – a dictionary with options for transformations
and validation.

• options["nogroup"] (bool) – indicating whether a nogroup clause should be applied
to this taskloop.

property omp_grainsize

Returns the grainsize that will be specified by this transformation. By default the grainsize clause is not
applied, so grainsize is None.

Returns
The grainsize specified by this transformation.

Return type
int or None

property omp_num_tasks

Returns the num_tasks that will be specified by this transformation. By default the num_tasks clause is not
applied so num_tasks is None.

Returns
The grainsize specified by this transformation.

Return type
int or None

class psyclone.psyir.transformations.OMPTaskTrans

Apply an OpenMP Task Transformation to a Loop. The Loop must be within an OpenMP Serial region (Single
or Master) at codegen time. Once lowering begins, no more modifications to the tree should occur as the task
directives do not recompute dependencies after lowering. In the future it may be possible to do this through an
_update_node implementation.

apply(node, options=None)
Apply the OMPTaskTrans to the specified node in a Schedule.

Can only be applied to a Loop.

The specified node is wrapped by directives during code generation like so:
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!$OMP TASK
...
!$OMP END TASK

At code-generation time, this node must be within (i.e. a child of) an OpenMP Serial region (OpenMP
Single or OpenMP Master)

Any kernels or Calls will be inlined into the region before the task transformation is applied.

Parameters

• node (psyclone.psyir.nodes.Loop) – the supplied node to which we will apply the
OMPTaskTrans transformation

• options (dictionary of string:values or None) – a dictionary with options for
transformations and validation.

class psyclone.psyir.transformations.OMPTaskwaitTrans

Adds zero or more OpenMP Taskwait directives to an OMP parallel region. This transformation will add di-
rectives to satisfy dependencies between Taskloop directives without an associated taskgroup (i.e. no nogroup
clause). It also tries to minimise the number added to maximise available parallelism.

For example:

>>> from pysclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "gocean1.0"
>>> filename = "nemolite2d_alg.f90"
>>> ast, invokeInfo = parse(filename, api=api, invoke_name="invoke")
>>> psy = PSyFactory(api).create(invokeInfo)
>>>
>>> from psyclone.transformations import OMPParallelTrans, OMPSingleTrans
>>> from psyclone.transformations import OMPTaskloopTrans
>>> from psyclone.psyir.transformations import OMPTaskwaitTrans
>>> singletrans = OMPSingleTrans()
>>> paralleltrans = OMPParallelTrans()
>>> tasklooptrans = OMPTaskloopTrans()
>>> taskwaittrans = OMPTaskwaitTrans()
>>>
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> print(schedule.view())
>>>
>>> # Apply the OpenMP Taskloop transformation to *every* loop
>>> # in the schedule.
>>> # This ignores loop dependencies. These are handled by the
>>> # taskwait transformation.
>>> for child in schedule.children:
>>> tasklooptrans.apply(child, nogroup = true)
>>> # Enclose all of these loops within a single OpenMP
>>> # SINGLE region
>>> singletrans.apply(schedule.children)
>>> # Enclose all of these loops within a single OpenMP
>>> # PARALLEL region
>>> paralleltrans.apply(schedule.children)

(continues on next page)
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>>> taskwaittrans.apply(schedule.children)
>>> print(schedule.view())

apply(node, options=None)
Apply an OMPTaskwait Transformation to the supplied node (which must be an OMPParallelDirective).
In the generated code this corresponds to adding zero or more OMPTaskwaitDirectives as appropriate:

!$OMP PARALLEL
...
!$OMP TASKWAIT
...
!$OMP TASKWAIT
...

!$OMP END PARALLEL

Parameters

• node (psyclone.psyir.nodes.OMPParallelDirective) – the node to which to apply
the transformation.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transformations
and validation.

• options["fail_on_no_taskloop"] (bool) – indicating whether this should throw an
error if no OMPTaskloop nodes are found in this tree. This can be safely disabled as if there
are no Taskloop nodes the result of this transformation is valid OpenMP code. Default is
True

class psyclone.psyir.transformations.ProfileTrans

Create a profile region around a list of statements. For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.parse.utils import ParseError
>>> from psyclone.psyGen import PSyFactory, GenerationError
>>> from psyclone.psyir.transformations import ProfileTrans
>>> api = "gocean1.0"
>>> filename = "nemolite2d_alg.f90"
>>> ast, invokeInfo = parse(filename, api=api, invoke_name="invoke")
>>> psy = PSyFactory(api).create(invokeInfo)
>>>
>>> p_trans = ProfileTrans()
>>>
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> print(schedule.view())
>>>
>>> # Enclose all children within a single profile region
>>> p_trans.apply(schedule.children)
>>> print(schedule.view())

This implementation relies completely on the base class PSyDataTrans for the actual work, it only adjusts the
name etc, and the list of valid nodes.
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apply(nodes, options=None)
Apply this transformation to a subset of the nodes within a schedule - i.e. enclose the specified Nodes in
the schedule within a single PSyData region.

Parameters

• nodes (psyclone.psyir.nodes.Node or list of psyclone.psyir.nodes.Node) – can
be a single node or a list of nodes.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["prefix"] (str) – a prefix to use for the PSyData module name
(PREFIX_psy_data_mod) and the PSyDataType (PREFIX_PSYDATATYPE) - a “_” will be
added automatically. It defaults to “”.

• options["region_name"] ((str,str)) – an optional name to use for this PSyData
area, provided as a 2-tuple containing a location name followed by a local name. The pair
of strings should uniquely identify a region unless aggregate information is required (and
is supported by the runtime library).

class psyclone.psyir.transformations.ReadOnlyVerifyTrans(node_class=<class 'psy-
clone.psyir.nodes.read_only_verify_node.ReadOnlyVerifyNode'>)

This transformation inserts a ReadOnlyVerifyNode or a node derived from ReadOnlyVerifyNode into the PSyIR
of a schedule. At code creation time this node will use the PSyData API to create code that will verify that
read-only quantities are not modified.

After applying the transformation the Nodes marked for verification are children of the ReadOnlyVerifyNode.
Nodes to verify can be individual constructs within an Invoke (e.g. Loops containing a Kernel or BuiltIn call) or
entire Invokes.

Parameters
node_class (psyclone.psyir.nodes.ReadOnlyVerifyNode or derived class) – The class
of Node which will be inserted into the tree (defaults to ReadOnlyVerifyNode), but can be any
derived class.

apply(nodes, options=None)
Apply this transformation to a subset of the nodes within a schedule - i.e. enclose the specified Nodes in
the schedule within a single PSyData region.

Parameters

• nodes (psyclone.psyir.nodes.Node or list of psyclone.psyir.nodes.Node) – can
be a single node or a list of nodes.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["prefix"] (str) – a prefix to use for the PSyData module name
(PREFIX_psy_data_mod) and the PSyDataType (PREFIX_PSYDATATYPE) - a “_” will be
added automatically. It defaults to “”.

• options["region_name"] ((str,str)) – an optional name to use for this PSyData
area, provided as a 2-tuple containing a location name followed by a local name. The pair
of strings should uniquely identify a region unless aggregate information is required (and
is supported by the runtime library).
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class psyclone.psyir.transformations.Reference2ArrayRangeTrans

Provides a transformation from PSyIR Array Notation (a reference to an Array) to a PSyIR Range. For example:

>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.nodes import Reference
>>> from psyclone.psyir.transformations import TransformationError
>>> CODE = ("program example\n"
... "real :: a(:)\n"
... "a = 0.0\n"
... "end program\n")
>>> trans = Reference2ArrayRangeTrans()
>>> psyir = FortranReader().psyir_from_source(CODE)
>>> for reference in psyir.walk(Reference):
... try:
... trans.apply(reference)
... except TransformationError:
... pass
>>> print(FortranWriter()(psyir))
program example
real, dimension(:) :: a

a(:) = 0.0

end program example

This transformation does not currently support arrays within structures, see issue #1858.

apply(node, options=None)
Apply the Reference2ArrayRangeTrans transformation to the specified node. The node must be a Reference
to an array. The Reference is replaced by an ArrayReference with appropriate explicit range nodes (termed
colon notation in Fortran).

Parameters

• node (psyclone.psyir.nodes.Reference) – a Reference node.

• options (Optional[Dict[str, Any]]) – a dict with options for transformations.

class psyclone.psyir.transformations.ReplaceInductionVariablesTrans

Move all supported induction variables out of the loop, and replace their usage inside the loop. For example:

>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.nodes import Loop
>>> from psyclone.psyir.transformations import ␣
→˓ReplaceInductionVariablesTrans
>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> psyir = FortranReader().psyir_from_source("""
... subroutine sub()
... integer :: i, im, ic, tmp(100)
... do i=1, 100
... im = i - 1
... ic = 2
... tmp(i) = ic * im

(continues on next page)
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... enddo

... end subroutine sub""")
>>> loop = psyir.walk(Loop)[0]
>>> ReplaceInductionVariablesTrans().apply(loop)
>>> print(FortranWriter()(psyir))
subroutine sub()
integer :: i
integer :: im
integer :: ic
integer, dimension(100) :: tmp

do i = 1, 100, 1
tmp(i) = 2 * (i - 1)

enddo
ic = 2
im = i - 1 - 1

end subroutine sub

The replaced induction variables assignments are added after the loop, so these variables will have the correct
value if they are used elsewhere.

The following restrictions apply for the assignment to an induction variable:

• the variable must be a scalar (i.e. no array access at all, not even a constant like a(3) or a%b(3)%c)

• none of variables on the right-hand side can be written in the loop body (the loop variable is written in the
Loop statement, not in the body, so it can be used).

• Only intrinsic function calls are allowed on the RHS (since they are known to be elemental)

• the assigned variable must not be read before the assignment.

• the assigned variable cannot occur on the right-hand side (e.g. k = k + 3).

• there must be only one assignment to this induction variable.

apply(node, options=None)
Apply the ReplaceInductionVariablesTrans transformation to the specified node. The node must be a loop.
In case of nested loops, the transformation might need to be applied several times, from the inner-most loop
outwards.

Parameters
node (psyclone.psyir.nodes.Loop) – a Loop node.

class psyclone.psyir.transformations.Sign2CodeTrans

Provides a transformation from a PSyIR SIGN intrinsic node to equivalent code in a PSyIR tree. Validity checks
are also performed.

The transformation replaces

R = SIGN(A, B)

with the following logic:
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R = ABS(A)
if B < 0.0:

R = R*-1.0

i.e. the value of A with the sign of B

apply(node, options=None)
Apply the SIGN intrinsic conversion transformation to the specified node. This node must be a SIGN
IntrinsicCall. The SIGN IntrinsicCall is converted to equivalent inline code. This is implemented as a
PSyIR transform from:

R = ... SIGN(A, B) ...

to:

tmp_abs = A
if tmp_abs < 0.0:

res_abs = tmp_abs*-1.0
else:

res_abs = tmp_abs
res_sign = res_abs
tmp_sign = B
if tmp_sign < 0.0:

res_sign = res_sign*-1.0
R = ... res_sign ...

where A and B could be arbitrarily complex PSyIR expressions, ... could be arbitrary PSyIR code and
where ABS has been replaced with inline code by the NemoAbsTrans transformation.

This transformation requires the IntrinsicCall node to be a child of an assignment and will raise an exception
if this is not the case.

Parameters

• node (psyclone.psyir.nodes.IntrinsicCall) – a SIGN IntrinsicCall node.

• symbol_table (psyclone.psyir.symbols.SymbolTable) – the symbol table.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

Warning: This transformation assumes that the SIGN Intrinsic acts on PSyIR Real scalar data and does not check
whether or not this is the case. Once issue #658 is on master then this limitation can be fixed.

class psyclone.psyir.transformations.Sum2CodeTrans

Provides a transformation from a PSyIR SUM IntrinsicCall node to equivalent code in a PSyIR tree. Validity
checks are also performed.

If SUM contains a single positional argument which is an array, all elements of that array are summed and the
result returned in the scalar R.

R = SUM(ARRAY)

For example, if the array is two dimensional, the equivalent code for real data is:
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R = 0.0
DO J=LBOUND(ARRAY,2),UBOUND(ARRAY,2)
DO I=LBOUND(ARRAY,1),UBOUND(ARRAY,1)
R = R + ARRAY(I,J)

If the dimension argument is provided then only that dimension is summed:

R = SUM(ARRAY, dimension=2)

If the array is two dimensional, the equivalent code for real data is:

R(:) = 0.0
DO J=LBOUND(ARRAY,2),UBOUND(ARRAY,2)
DO I=LBOUND(ARRAY,1),UBOUND(ARRAY,1)
R(I) = R(I) + ARRAY(I,J)

A restriction is that the value of dimension must be able to be determined by PSyclone, either being a literal or
a reference to something with a known value.

If the mask argument is provided then the mask is used to determine whether the sum is applied:

R = SUM(ARRAY, mask=MOD(ARRAY, 2.0)==1)

If the array is two dimensional, the equivalent code for real data is:

R = 0.0
DO J=LBOUND(ARRAY,2),UBOUND(ARRAY,2)
DO I=LBOUND(ARRAY,1),UBOUND(ARRAY,1)
IF (MOD(ARRAY(I,J), 2.0)==1) THEN
R = R + ARRAY(I,J)

The array passed to SUM may use array syntax, array notation or array sections (or a mixture of the two), but
scalar bounds are not allowed:

R = SUM(ARRAY) ! array syntax
R = SUM(ARRAY(:,:)) ! array notation
R = SUM(ARRAY(1:10,lo:hi)) ! array sections
R = SUM(ARRAY(1:10,:)) ! mix of array sections and array notation
R = SUM(ARRAY(1:10,2)) ! NOT SUPPORTED as 2 is a scalar bound

For example:

>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.transformations import Sum2CodeTrans
>>> code = ("subroutine sum_test(array,n,m)\n"
... " integer :: n, m\n"
... " real :: array(10,10)\n"
... " real :: result\n"
... " result = sum(array)\n"
... "end subroutine\n")
>>> psyir = FortranReader().psyir_from_source(code)
>>> sum_node = psyir.children[0].children[0].children[1]
>>> Sum2CodeTrans().apply(sum_node)

(continues on next page)
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>>> print(FortranWriter()(psyir))
subroutine sum_test(array, n, m)
integer :: n
integer :: m
real, dimension(10,10) :: array
real :: result
real :: sum_var
integer :: i_0
integer :: i_1

sum_var = 0.0
do i_1 = 1, 10, 1
do i_0 = 1, 10, 1

sum_var = sum_var + array(i_0,i_1)
enddo

enddo
result = sum_var

end subroutine sum_test

apply(node, options=None)
Apply the SUM, MINVAL or MAXVAL intrinsic conversion transformation to the specified node. This
node must be one of these intrinsic operations which is converted to equivalent inline code.

Parameters

• node (psyclone.psyir.nodes.IntrinsicCall) – a Sum, Minval or Maxval intrinsic.

• options (Optional[Dict[str, Any]]) – options for the transformation.

16.4 Algorithm-layer

The gocean1.0 API supports the transformation of the algorithm layer. In the future the LFRic (dynamo0.3) API will
also support this. However, this is not relevant to the nemo API as it does not have the concept of an algorithm layer
(just PSy and Kernel layers). The ability to transformation the algorithm layer is new and at this time no relevant
transformations have been developed.

16.5 Kernels

PSyclone supports the transformation of Kernels as well as PSy-layer code. However, the transformation of kernels to
produce new kernels brings with it additional considerations, especially regarding the naming of the resulting kernels.
PSyclone supports two use cases:

1. the HPC expert wishes to optimise the same kernel in different ways, depending on where/how it is called;

2. the HPC expert wishes to transform the kernel just once and have the new version used throughout the Algorithm
file.

The second case is really an optimisation of the first for the case where the same set of transformations is applied to
every instance of a given kernel.
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Since PSyclone is run separately for each Algorithm in a given application, ensuring that there are no name clashes
for kernels in the application as a whole requires that some state is maintained between PSyclone invocations. This
is achieved by requiring that the same kernel output directory is used for every invocation of PSyclone when building
a given application. However, this is under the control of the user and therefore it is possible to use the same output
directory for a subset of algorithms that require the same kernel transformation and then a different directory for another
subset requiring a different transformation. Of course, such use would require care when building and linking the
application since the differently-optimised kernels would have the same names.

By default, transformed kernels are written to the current working directory. Alternatively, the user may specify the
location to which to write the modified code via the -okern command-line flag.

In order to support the two use cases given above, PSyclone supports two different kernel-renaming schemes: “mul-
tiple” and “single” (specified via the --kernel-renaming command-line flag). In the default, “multiple” scheme,
PSyclone ensures that each transformed kernel is given a unique name (with reference to the contents of the kernel
output directory). In the “single” scheme, it is assumed that any given kernel that is transformed is always transformed
in the same way (or left unchanged) and thus just one transformed version of it is created. This assumption is checked
by examining the Fortran code for any pre-existing transformed version of that kernel. If another transformed version of
that kernel exists and does not match that created by the current transformation then PSyclone will raise an exception.

16.5.1 Rules

Kernel code that is to be transformed is subject to certain restrictions. These rules are intended to make kernel trans-
formations as robust as possible, in particular by limiting the amount of code that must be parsed by PSyclone (via
fparser). The rules are as follows:

1) Any variable or procedure accessed by a kernel must either be explicitly declared or named in the only clause
of a module use statement within the scope of the subroutine containing the kernel implementation. This means
that:

1) Kernel subroutines are forbidden from accessing data using COMMON blocks;

2) Kernel subroutines are forbidden from calling procedures declared via the EXTERN statement;

3) Kernel subroutines must not access data or procedures made available via their parent (containing) module.

2) The full Fortran source of a kernel must be available to PSyclone. This includes the source of any modules from
which it accesses either routines or data. (However, kernel routines are permitted to make use of Fortran intrinsic
routines.)

For instance, consider the following Fortran module containing the bc_ssh_code kernel:

module boundary_conditions_mod
real :: forbidden_var

contains

subroutine bc_ssh_code(ji, jj, istep, ssha)
use kind_params_mod, only: go_wp
use model_mod, only: rdt
integer, intent(in) :: ji, jj, istep
real(go_wp), dimension(:,:), intent(inout) :: ssha
real(go_wp) :: rtime

rtime = real(istep, go_wp) * rdt
...

end subroutine bc_ssh_code
(continues on next page)
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end module boundary_conditions_mod

Since the kernel subroutine accesses data (the rdt variable) from the model_mod module, the source of that module
must be available to PSyclone if a transformation is applied to this kernel. Should rdt not actually be defined in
model_mod (i.e. model_mod itself imports it from another module) then the source containing its definition must also
be available to PSyclone. Note that the rules forbid the bc_ssh_code kernel from accessing the forbidden_var
variable that is available to it from the enclosing module scope.

Note: these rules only apply to kernels that are the target of PSyclone kernel transformations.

16.5.2 Available Kernel Transformations

The transformations listed below have to be applied specifically to a PSyclone kernel. There are a number of transfor-
mations not listed here that can be applied to either or both the PSy-layer and Kernel-layer PSyIR.

Note: Some of these transformations modify the PSyIR tree of both the InvokeSchedule where the transformed
CodedKernel is located and its associated KernelSchedule.

class psyclone.transformations.ACCRoutineTrans

Transform a kernel or routine by adding a “!$acc routine” directive (causing it to be compiled for the OpenACC
accelerator device). For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "gocean1.0"
>>> ast, invokeInfo = parse(GOCEAN_SOURCE_FILE, api=api)
>>> psy = PSyFactory(api).create(invokeInfo)
>>>
>>> from psyclone.transformations import ACCRoutineTrans
>>> rtrans = ACCRoutineTrans()
>>>
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>> kern = schedule.children[0].children[0].children[0]
>>> # Transform the kernel
>>> rtrans.apply(kern)

apply(node, options=None)
Add the ‘!$acc routine’ OpenACC directive into the code of the supplied Kernel (in a PSyKAl API such as
GOcean or LFRic) or directly in the supplied Routine.

Parameters

• node (psyclone.psyGen.Kern or psyclone.psyir.nodes.Routine) – the kernel call
or routine implementation to transform.
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• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

property name

Returns
the name of this transformation class.

Return type
str

validate(node, options=None)
Perform checks that the supplied kernel or routine can be transformed.

Parameters

• node (psyclone.psyGen.Kern or psyclone.psyir.nodes.Routine) – the kernel
which is the target of the transformation.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

Raises

• TransformationError – if the node is not a kernel or a routine.

• TransformationError – if the target is a built-in kernel.

• TransformationError – if it is a kernel but without an associated PSyIR.

• TransformationError – if any of the symbols in the kernel are accessed via a module
use statement.

class psyclone.psyir.transformations.FoldConditionalReturnExpressionsTrans

Provides a transformation that folds conditional expressions with only a return statement inside so that the Return
statement is moved to the end of the Routine and therefore it can be safely removed. This simplifies the control
flow of the kernel to facilitate other transformations like kernel fusions. For example, the following code:

subroutine test(i)
if (i < 5) then

return
endif
if (i > 10) then

return
endif
! CODE

end subroutine

will be transformed to:

subroutine test(i)
if (.not.(i < 5)) then

if (.not.(i > 10)) then
! CODE

endif
endif

end subroutine
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apply(node, options=None)
Apply this transformation to the supplied node.

Parameters

• node (psyclone.psyir.nodes.Routine) – the node to transform.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

property name

Returns the name of this transformation as a string.

validate(node, options=None)
Ensure that it is valid to apply this transformation to the supplied node.

Parameters

• node (psyclone.psyir.nodes.Routine) – the node to validate.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

Raises
TransformationError – if the node is not a Routine.

class psyclone.transformations.KernelImportsToArguments

Transformation that removes any accesses of imported data from the supplied kernel and places them in the caller.
The values/references are then passed by argument into the kernel.

apply(node, options=None)
Convert the imported variables used inside the kernel into arguments and modify the InvokeSchedule to
pass the same imported variables to the kernel call.

Parameters

• node (psyclone.psyGen.CodedKern) – a kernel call.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

Note: This transformation is only supported by the GOcean 1.0 API.

16.6 Applying

Transformations can be applied either interactively or through a script.
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16.6.1 Interactive

To apply a transformation interactively we first parse and analyse the code. This allows us to generate a “vanilla” PSy
layer. For example:

>>> from fparser.common.readfortran import FortranStringReader
>>> from psyclone.parse.algorithm import Parser
>>> from psyclone.psyGen import PSyFactory
>>> from fparser.two.parser import ParserFactory

>>> example_str = (
... "program example\n"
... " use field_mod, only: field_type\n"
... " type(field_type) :: field\n"
... " call invoke(setval_c(field, 0.0))\n"
... "end program example\n")

>>> parser = ParserFactory().create(std="f2008")
>>> reader = FortranStringReader(example_str)
>>> ast = parser(reader)
>>> invoke_info = Parser().invoke_info(ast)

# This example uses the LFRic (dynamo0.3) API
>>> api = "dynamo0.3"

# Create the PSy-layer object using the invokeInfo
>>> psy = PSyFactory(api, distributed_memory=False).create(invoke_info)

# Optionally generate the vanilla PSy layer fortran
>>> print(psy.gen)
MODULE example_psy
USE constants_mod, ONLY: r_def, i_def
USE field_mod, ONLY: field_type, field_proxy_type
IMPLICIT NONE
CONTAINS
SUBROUTINE invoke_0(field)
TYPE(field_type), intent(in) :: field
INTEGER df
INTEGER(KIND=i_def) loop0_start, loop0_stop
TYPE(field_proxy_type) field_proxy
INTEGER(KIND=i_def) undf_aspc1_field
!
! Initialise field and/or operator proxies
!
field_proxy = field%get_proxy()
!
! Initialise number of DoFs for aspc1_field
!
undf_aspc1_field = field_proxy%vspace%get_undf()
!
! Set-up all of the loop bounds
!
loop0_start = 1

(continues on next page)
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(continued from previous page)

loop0_stop = undf_aspc1_field
!
! Call our kernels
!
DO df=loop0_start,loop0_stop
field_proxy%data(df) = 0.0

END DO
!

END SUBROUTINE invoke_0
END MODULE example_psy

We then extract the particular schedule we are interested in. For example:

# List the various invokes that the PSy layer contains
>>> print(psy.invokes.names)
dict_keys(['invoke_0'])

# Get the required invoke
>>> invoke = psy.invokes.get('invoke_0')

# Get the schedule associated with the required invoke
> schedule = invoke.schedule
> print(schedule.view())
InvokeSchedule[invoke='invoke_0', dm=True]

0: Loop[type='dof', field_space='any_space_1', it_space='dof', upper_bound='ndofs']
Literal[value:'NOT_INITIALISED', Scalar<INTEGER, UNDEFINED>]
Literal[value:'NOT_INITIALISED', Scalar<INTEGER, UNDEFINED>]
Literal[value:'1', Scalar<INTEGER, UNDEFINED>]
Schedule[]

0: BuiltIn setval_c(field,0.0)

Now we have the schedule we can create and apply a transformation to it to create a new schedule and then replace the
original schedule with the new one. For example:

# Create an OpenMPParallelLoopTrans
> from psyclone.transformations import OMPParallelLoopTrans
> ol = OMPParallelLoopTrans()

# Apply it to the loop schedule of the selected invoke
> ol.apply(schedule.children[0])
> print(schedule.view())

# Generate the Fortran code for the new PSy layer
> print(psy.gen)
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16.6.2 Script

PSyclone provides a Python script (psyclone) that can be used from the command line to generate PSy layer code and
to modify algorithm layer code appropriately. By default this script will generate “vanilla” (unoptimised) PSy-layer
and algorithm layer code. For example:

> psyclone algspec.f90
> psyclone -oalg alg.f90 -opsy psy.f90 -api dynamo0.3 algspec.f90

The psyclone script has an optional -s flag which allows the user to specify a script file to modify the PSy layer as
required. Script files may be specified without a path. For example:

> psyclone -s opt.py algspec.f90

In this case, the current directory is prepended to the Python search path PYTHONPATH which will then be used to
try to find the script file. Thus, the search begins in the current directory and continues over any pre-existing directories
in the search path, failing if the file cannot be found.

Alternatively, script files may be specified with a path. In this case the file must exist in the specified location. This
location is then added to the Python search path PYTHONPATH as before. For example:

> psyclone -s ./opt.py algspec.f90
> psyclone -s ../scripts/opt.py algspec.f90
> psyclone -s /home/me/PSyclone/scripts/opt.py algspec.f90

PSyclone also provides the same functionality via a function (which is what the psyclone script calls internally).

###.. autofunction:: psyclone.generator.generate ### :noindex:

A valid script file must contain a trans function which accepts a PSy object as an argument and returns a PSy object,
i.e.:

>>> def trans(psy):
... # ...
... return psy

It is up to the script what it does with the PSy object. The example below does the same thing as the example in the
Interactive section.

>>> def trans(psy):
... from psyclone.transformations import OMPParallelLoopTrans
... invoke = psy.invokes.get('invoke_0_v3_kernel_type')
... schedule = invoke.schedule
... ol = OMPParallelLoopTrans()
... ol.apply(schedule.children[0])
... return psy

In the gocean1.0 API (and in the future the lfric (dynamo0.3) API) an optional trans_alg function may also be supplied.
This function accepts PSyIR (representing the algorithm layer) as an argument and returns PSyIR i.e.:

>>> def trans_alg(psyir):
... # ...
... return psyir

As with the trans() function it is up to the script what it does with the algorithm PSyIR. Note that the trans_alg() script
is applied to the algorithm layer before the PSy-layer is generated so any changes applied to the algorithm layer will be
reflected in the PSy object that is passed to the trans() function.
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For example, if the trans_alg() function in the script merged two invoke calls into one then the Alg object passed to the
trans() function of the script would only contain one schedule associated with the merged invoke.

Of course the script may apply as many transformations as is required for a particular algorithm and/or schedule and
may apply transformations to all the schedules (i.e. invokes and/or kernels) contained within the PSy layer.

Examples of the use of transformation scripts can be found in many of the examples, such as examples/lfric/eg3 and
examples/lfric/scripts. Please read the examples/lfric/README file first as it explains how to run the examples (and
see also the examples/check_examples script).

An example of the use of a script making use of the trans_alg() function can be found in examples/gocean/eg7.

16.7 OpenMP

OpenMP is added to a code by using transformations. The OpenMP transformations currently supported allow the
addition of:

• an OpenMP Parallel directive

• an OpenMP Target directive

• an OpenMP Declare Target directive

• an OpenMP Do/For/Loop directive

• an OpenMP Single directive

• an OpenMP Master directive

• an OpenMP Taskloop directive

• multiple OpenMP Taskwait directives; and

• an OpenMP Parallel Do directive.

The generic versions of these transformations (i.e. ones that theoretically work for all APIs) were given in the Standard
Functionality section. The API-specific versions of these transformations are described in the API-specific sections of
this document.

16.7.1 Reductions

PSyclone supports parallel scalar reductions. If a scalar reduction is specified in the Kernel metadata (see the API-
specific sections for details) then PSyclone ensures the appropriate reduction is performed.

In the case of distributed memory, PSyclone will add GlobalSum’s at the appropriate locations. As can be inferred by
the name, only “summation” reductions are currently supported for distributed memory.

In the case of an OpenMP parallel loop the standard reduction support will be used by default. For example

!$omp parallel do, reduction(+:x)
!loop
!$omp end parallel do

OpenMP reductions do not guarantee to give bit reproducible results for different runs of the same problem even if
the same problem is run using the same resources. The reason for this is that the order in which data is reduced is not
mandated.

Therefore, an additional reprod option has been added to the OpenMP Do transformation. If the reprod option is set
to “True” then the OpenMP reduction support is replaced with local per-thread reductions which are reduced serially
after the loop has finished. This implementation guarantees to give bit-wise reproducible results for different runs of
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the same problem using the same resources, but will not bit-wise compare if the code is rerun with different numbers
of OpenMP threads.

16.7.2 Restrictions

If two reductions are used within an OpenMP region and the same variable is used for both reductions then PSyclone
will raise an exception. In this case the solution is to use a different variable for each reduction.

PSyclone does not support (distributed-memory) halo swaps or global sums within OpenMP parallel regions. Attempt-
ing to create a parallel region for a set of nodes that includes halo swaps or global sums will produce an error. In such
cases it may be possible to re-order the nodes in the Schedule using the MoveTrans transformation.

16.7.3 OpenMP Tasking

PSyclone supports OpenMP Tasking, through the OMPTaskloopTrans and OMPTaskwaitTrans transformations.
OMPTaskloopTrans transformations can be applied to loops, whilst the OMPTaskwaitTrans operator is ap-
plied to an OpenMP Parallel Region, and computes the dependencies caused by Taskloops, and adds OpenMP
Taskwait statements to satisfy those dependencies. An example of using OpenMP tasking is available in PSy-
clone/examples/nemo/eg1/openmp_taskloop_trans.py.

16.8 OpenCL

OpenCL is added to a code by using the GOOpenCLTrans transformation (see the Standard Functionality Section
above). Currently this transformation is only supported for the GOcean1.0 API and is applied to the whole InvokeSched-
ule of an Invoke. This transformation will add an OpenCL driver infrastructure to the PSy layer and generate an
OpenCL kernel for each of the Invoke kernels. This means that all kernels in that Invoke will be executed on the
OpenCL device. The PSy-layer OpenCL code generated by PSyclone is still Fortran and makes use of the FortCL
library (https://github.com/stfc/FortCL) to access OpenCL functionality. It also relies upon the device acceleration
support provided by the dl_esm_inf library (https://github.com/stfc/dl_esm_inf).

Note: The generated OpenCL kernels are written in a file called opencl_kernels_<index>.cl where the index keeps
increasing if the file name already exist.

The GOOpenCLTrans transformation accepts an options argument with a map of optional parameters to tune the
OpenCL host code in the PSy layer. These options will be attached to the transformed InvokeSchedule. The current
available options are:

Option Description Default
end_barrier Whether a synchronization barrier should be placed at the end of the Invoke. True
enable_profiling Enables the profiling of OpenCL Kernels. False
out_of_order Allows the OpenCL implementation to execute the enqueued kernels out-of-order. False

Additionally, each individual kernel (inside the Invoke that is going to be transformed) also accepts a map of options
which are provided by the set_opencl_options() method of the Kern object. This can affect both the driver layer and/or
the OpenCL kernels. The current available options are:
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Op-
tion

Description De-
fault

lo-
cal_size

Number of work-items to group together in a work-group execution (kernel instances executed at the
same time).

64

queue_numberThe identifier of the OpenCL command_queue to which the kernel should be submitted. If the
kernel has a dependency on another kernel submitted to a different command_queue a barrier will
be added to guarantee the execution order.

1

Below is an example of a PSyclone script that uses a GOOpenCLTranswith multiple InvokeSchedule and kernel-specific
optimization options.

1 from psyclone.psyir.transformations import \
2 FoldConditionalReturnExpressionsTrans
3 from psyclone.domain.gocean.transformations import GOOpenCLTrans, \
4 GOMoveIterationBoundariesInsideKernelTrans
5

6

7 def trans(psy):
8 '''
9 Transformation routine for use with PSyclone. Applies the OpenCL

10 transform to the first Invoke in the psy object.
11

12 :param psy: the PSy object which this script will transform.
13 :type psy: :py:class:`psyclone.psyGen.PSy`
14 :returns: the transformed PSy object.
15 :rtype: :py:class:`psyclone.psyGen.PSy`
16

17 '''
18 ocl_trans = GOOpenCLTrans()
19 fold_trans = FoldConditionalReturnExpressionsTrans()
20 move_boundaries_trans = GOMoveIterationBoundariesInsideKernelTrans()
21

22 # Get the Schedule associated with the first Invoke
23 invoke = psy.invokes.invoke_list[0]
24 sched = invoke.schedule
25

26 # Provide kernel-specific OpenCL optimization options
27 for idx, kern in enumerate(sched.kernels()):
28 # Move the PSy-layer loop boundaries inside the kernel as a kernel
29 # mask, this allows to iterate through the whole domain
30 move_boundaries_trans.apply(kern)
31 # Change the syntax to remove the return statements introduced by the
32 # previous transformation
33 fold_trans.apply(kern.get_kernel_schedule())
34 # Specify the OpenCL queue and workgroup size of the kernel
35 # In this case we dispatch each kernel in a different queue to check
36 # that the output code has the necessary barriers to guarantee the
37 # kernel execution order.
38 kern.set_opencl_options({"queue_number": idx+1, 'local_size': 4})
39

40 # Transform the Schedule
41 ocl_trans.apply(sched, options={"end_barrier": True})
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OpenCL delays the decision of which and where kernels will execute until run-time, therefore it is important to use the
environment variables provided by FortCL and DL_ESM_INF to inform how things should execute. Specifically:

• FORTCL_KERNELS_FILE: Point to the file containing the kernels to execute, they can be compiled ahead-of-time
or providing the source for JIT compilation. To link more than a single kernel, one must merge all the kernels
generated by PSyclone in a single source file.

• FORTCL_PLATFORM: If the system has more than 1 OpenCL platform. This environment variable may be used to
select which platform on which to execute the kernels.

• DL_ESM_ALIGNMENT: When using OpenCL <= 1.2 the local_size should be exactly divisible by the total
size. If this is not the case some implementations fail silently. A way to solve this issue is to set the
DL_ESM_ALIGNMENT variable to be equal to the local size.

Note: The OpenCL generation can be combined with distributed memory generation. In the case where there is more
than one accelerator available on each node, the PSyclone configuration file parameter OCL_DEVICES_PER_NODE has
to be set to the appropriate value and the number of MPI-ranks-per-node set by the mpirun command has to match this
value accordingly.

For instance if there are 2 accelerators per nodes, psyclone.cfg should have OCL_DEVICES_PER_NODE=2 and the pro-
gram must be executed with mpirun -n <total_ranks> -ppn 2 ./application (Note: -ppn is an Intel MPI
specific parameter, use equivalent configuration parameters for other MPI implementations.)

For example, an execution of a PSyclone generated OpenCL code using all the mentioned run-time configuration
options could look something like:

FORTCL_PLATFORM=3 FORTCL_KERNELS_FILE=allkernels.cl DL_ESM_ALIGNMENT=64 \
mpirun -n 2 ./application.exe

16.9 OpenACC

PSyclone supports the generation of code targetting GPUs through the addition of OpenACC directives. This is achieved
by a user applying various OpenACC transformations to the PSyIR before the final Fortran code is generated. The steps
to parallelisation are very similar to those in OpenMP with the added complexity of managing the movement of data
to and from the GPU device. For the latter task PSyclone provides the ACCDataTrans and ACCEnterDataTrans
transformations, as described in the Standard Functionality Section above. These two transformations add statically-
and dynamically-scoped data regions, respectively. The former manages what data is on the remote device for a specific
section of code while the latter allows run-time control of data movement. This second option is essential for minimising
data movement as, without it, PSyclone-generated code would move data to and from the device upon every entry/exit
of an Invoke. The first option is mainly provided as an aid to incremental porting and/or debugging of an OpenACC
application as it provides explicit control over what data is present on a device for a given (part of an) Invoke routine.

The PGI compiler provides an alternative approach to controlling data movement through its ‘unified memory’ option
(-ta=tesla:managed). When this is enabled the compiler itself takes on the task of ensuring that data is copied
to/from the GPU when required. (Note that this approach can struggle with Fortran code containing derived types
however.)

As well as ensuring the correct data is copied to and from the remote device, OpenACC directives must also be
added to a code in order to tell the compiler how it should be parallelised. PSyclone provides the ACCKernelsTrans,
ACCParallelTrans and ACCLoopTrans transformations for this purpose. The simplest of these is ACCKernelsTrans
(currently only supported for the NEMO and Dynamo0.3 APIs) which encloses the code represented by a sub-tree
of the PSyIR within an OpenACC kernels region. This essentially gives free-reign to the compiler to automat-
ically parallelise any suitable loops within the specified region. An example of the use of ACCDataTrans and
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ACCKernelsTrans may be found in PSyclone/examples/nemo/eg3 and an example of ACCKernelsTrans may be
found in PSyclone/examples/lfric/eg14.

However, as with any “automatic” approach, a more performant solution can almost always be obtained by providing
the compiler with more explicit direction on how to parallelise the code. The ACCParallelTrans and ACCLoopTrans
transformations allow the user to define thread-parallel regions and, within those, define which loops should be paral-
lelised. For an example of their use please see PSyclone/examples/gocean/eg2 or PSyclone/examples/lfric/eg14.

In order for a given section of code to be executed on a GPU, any routines called from within that section must also have
been compiled for the GPU. This then requires either that any such routines are in-lined or that the OpenACC routine
directive be added to any such routines. This situation will occur routinely in those PSyclone APIs that use the PSyKAl
separation of concerns since the user-supplied kernel routines are called from within PSyclone-generated loops in the
PSy layer. PSyclone therefore provides the ACCRoutineTrans transformation which, given a Kernel node in the PSyIR,
creates a new version of that kernel with the routine directive added. See either PSyclone/examples/gocean/eg2 or
PSyclone/examples/lfric/eg14 for an example.

16.10 SIR

It is currently not possible for PSyclone to output SIR code without using a script. Three examples of such scripts
are given in example 4 for the NEMO API. The first sir_trans.py simply outputs SIR. This will raise an exception if
used with the tracer advection example as the example contains array-index notation which is not supported by the
SIR backend, but will generate code for the other examples. The second, sir_trans_loop.py includes transformations
to hoist code out of a loop, translate array-index notation into explicit loops and translate a single access to an array
dimension to a one-trip loop (to make the code suitable for the SIR backend). This works with the tracer-advection
example. The third script sir_trans_all.py additionally replaces any intrinsics with equivalent code and can also be
used with the tracer-advection example (and the intrinsic_example.f90 example).
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SEVENTEEN

DISTRIBUTED MEMORY

PSyclone supports the generation of code for distributed memory machines. When this option is switched on, PSyclone
takes on responsibility for both performance and correctness, as described below.

17.1 Correctness

PSyclone is responsible for adding appropriate distributed memory communication calls to the PSy layer to ensure that
the distributed memory code runs correctly. For example, a stencil operation will require halo exchanges between the
different processes.

The burden of correctly placing distributed memory communication calls has traditionally been born by the user.
However, PSyclone is able to determine the placing of these within the PSy-layer, thereby freeing the user from this
responsibility. Thus, the Algorithm and Kernel code remain the same, irrespective of whether the target architecture
does or does not require a distributed memory solution.

17.2 Performance

PSyclone adds HaloExchange and GlobalSum objects to the generated PSyIR InvokeSchedule at the required loca-
tions. The halo-exchange and global-sum objects are exposed here for the purposes of optimisation. For example the
halo-exchange and/or global-sum objects may be moved in the schedule (via appropriate transformations) to enable
overlap of computation with communication.

Note: When these optimisations are implemented, add a reference to the Transformations Section.

A halo exchange is required with distributed memory when a processor requires data from its halo and the halo infor-
mation is out of date. One example is where a field is written to and then read using a stencil access. Halo exchanges
have performance implications so should only be used where necessary.

A global sum is required with distributed memory when a scalar is written to. Global sums can have performance
implications so should only be used where necessary. Global sums currently only occur in certain Built-in kernels.
The description of Built-ins indicates when this is the case.
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17.3 Implementation

Within the contents of an invoke() call, PSyclone is able to statically determine which communication calls are
required and where they should be placed. However, PSyclone has no information on what happens outside invoke()
calls and thus is unable to statically determine whether communication is required between these calls. The solution
we use is to add run-time flags in the PSy layer to keep track of whether data has been written to and read from. These
flags are then used to determine whether communication calls are required upon entry to an invoke().

17.4 Control

Support for distributed memory can be switched on or off with the default being on. The default can be changed
permanently by modifying the DISTRIBUTED_MEMORY variable in the psyclone.cfg configuration file to false (see
Configuration).

Distributed memory can be switched on or off from the psyclone script using the -dm/--dist_mem or
-nodm/--no_dist_mem flags, respectively.

For interactive access, the distributed memory option can be changed interactively from the PSyFactory class by
setting the optional distributed_memory flag; for example:

psy = PSyFactory(api=api, distributed_memory=False)

Similarly the distributed memory option can be changed interactively from the generate function by setting the op-
tional distributed_memory flag, e.g.:

psy, alg = generate("file.f90", distributed_memory=False).

17.5 Status

Distributed memory support is currently supported by the dynamo0.3 and the gocean1p0 APIs. The remaining APIs
ignore the distributed memory flag and continue to produce code without any distributed memory functionality, irre-
spective of its value.
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EIGHTEEN

PSYCLONE KERNEL TOOLS

In addition to the psyclone command, the PSyclone package also provides tools related to generating code purely
from kernel metadata. Currently there are two such tools:

1. Kernel-stub Generator

2. Algorithm Generator

The kernel-stub generator takes a file containing kernel metadata as input and outputs the (Fortran) kernel subroutine
arguments and declarations. The word “stub” is used to indicate that it is only the subroutine arguments and their
declarations that are generated; the subroutine has no content.

The algorithm generator also takes a file containing a kernel implementation but this time generates an appropriate
algorithm layer subroutine. This algorithm layer plus the associated kernel metadata may then be processed with
PSyclone in the usual way to generate code which executes the supplied kernel.

This functionality is provided to the user via the psyclone-kern command, described in more detail below.

18.1 The psyclone-kern Command

Before using the psyclone-kern tool, PSyclone must be installed. If you have not already done so, please follow the
instructions for setting up PSyclone in Section Getting Going.

PSyclone will be installed in a particular location on your machine, which will be referred to as the
<PSYCLONEINSTALL> directory. The psyclone-kern script comes with the PSyclone installation. A quick check
> which psyclone-kern should return the location of the <PSYCLONEINSTALL>/bin directory.

The psyclone-kern command has the following arguments:

> psyclone-kern -h
usage: psyclone-kern [-h] [-gen {alg,stub}] [-o OUT_FILE] [-api API]

[-I INCLUDE] [-l {off,all,output}]
[--config CONFIG] [-v]
filename

Run the PSyclone kernel generator on a particular file

positional arguments:
filename file containing Kernel metadata

optional arguments:
-h, --help show this help message and exit
-gen {alg,stub) what to generate for the supplied kernel

(continues on next page)
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(continued from previous page)

(alg=algorithm layer, stub=kernel-stub subroutine).
Defaults to stub.

-o OUT_FILE filename for created code.
-api API choose a particular API from ['dynamo0.3',

'gocean1.0', 'nemo'], default 'dynamo0.3'.
-I INCLUDE, --include INCLUDE

path to Fortran INCLUDE or module files
-l {off,all,output}, --limit {off,all,output}

limit the Fortran line length to 132
characters (default 'off'). Use 'all' to
apply limit to both input and output
Fortran. Use 'output' to apply line-length
limit to output Fortran only.

--config CONFIG config file with PSyclone specific options.
-v, --version display version information (\ |release|\ )

The -o option allows the user to specify that the output should be written to a particular file. If this is not specified then
the Python print statement is used to write to stdout. Typically this results in the output being printed to the terminal.

As is indicated when using the -h option, the -api option only accepts dynamo0.3 (LFRic) at the moment and is
redundant as this option is also the default. However the number of supported APIs is expected to expand in the future.

The -l, or --limit option utilises the PSyclone support for wrapping of lines within the 132 character limit in the
generated Fortran code (please see the Line Length chapter for more details).

18.2 Kernel-stub Generator

18.2.1 Quick Start

1) Use an existing Kernel file or create a Kernel file containing a Kernel module with the required metadata and an
empty Kernel subroutine with no arguments.

2) Run the following command

> psyclone-kern -gen stub <PATH>/my_file.f90

3) To have the generated code written to file rather than stdout use the -o flag

> psyclone-kern -gen stub -o my_stub_file.f90 ./my_kernel_mod.f90

(Since stub generation is the default, the -gen stub may be omitted if desired.)

18.2.2 Introduction

PSyclone provides a kernel stub generator for the LFRic (Dynamo 0.3) API. The kernel stub generator takes a kernel
file as input and outputs the kernel subroutine arguments and declarations. The word “stub” is used to indicate that it
is only the subroutine arguments and their declarations that are generated; the subroutine has no content.

The primary reason the stub generator is useful is that it generates the correct Kernel subroutine arguments and dec-
larations for the LFRic API as specified by the Kernel metadata. As the number of arguments to Kernel subroutines
can become large and the arguments have to follow a particular order, it can become burdensome, and potentially error
prone, for the user to have to work out the appropriate argument list if written by hand.
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The stub generator can be used when creating a new Kernel. A Kernel can first be written to specify the required
metadata and then the generator can be used to create the appropriate (empty) Kernel subroutine. The user can then fill
in the content of the subroutine.

The stub generator can also be used to check whether the arguments for an existing Kernel are correct i.e. whether the
Kernel subroutine and Kernel metadata are consistent. One example would be where a Kernel is updated resulting in
a change to the metadata and subroutine arguments.

The LFRic API requires Kernels to conform to a set of rules which determine the required arguments and types for
a particular Kernel. These rules are required as the generated PSy layer needs to know exactly how to call a Kernel.
These rules are outlined in Section Rules.

Therefore PSyclone has been coded with the LFRic API rules which are then applied when reading the Kernel metadata
to produce the required Kernel call and its arguments in the generated PSy layer. These same rules are used by the Kernel
stub generator to produce Kernel subroutine stubs, thereby guaranteeing that Kernel calls from the PSy layer and the
associated Kernel subroutines are consistent.

18.2.3 Kernels

Any LFRic kernel can be used as input to the stub generator. Example Kernels can be found in the examples/lfric
repository or, for more simple cases, in the tests/test_files/dynamo0p3 directory. These directories are located in
the <PSYCLONEHOME>/src/psyclone directory where <PSYCLONEHOME> refers to the location where you download
or clone PSyclone (Getting Going).

In the tests/test_files/dynamo0p3 directory the majority of examples start with testkern. Amongst the excep-
tions are: testkern_simple_mod.f90, ru_kernel_mod.f90 and matrix_vector_kernel_mod.F90. The fol-
lowing test kernels can be used to generate kernel stub code (running stub generation from the <PSYCLONEHOME>/
src/psyclone directory):

tests/test_files/dynamo0p3/testkern_chi_read_mod.F90
tests/test_files/dynamo0p3/testkern_coord_w0_mod.F90
tests/test_files/dynamo0p3/testkern_operator_mod.f90
tests/test_files/dynamo0p3/testkern_operator_nofield_mod.f90
tests/test_files/dynamo0p3/ru_kernel_mod.f90
tests/test_files/dynamo0p3/testkern_simple_mod.f90

18.2.4 Example

A simple, single field example of a kernel that can be used as input for the stub generator is found in tests/
test_files/dynamo0p3/testkern_simple_mod.f90 and is shown below:

module simple_mod

use argument_mod
use fs_continuity_mod
use kernel_mod
use constants_mod

implicit none

type, extends(kernel_type) :: simple_type
type(arg_type), dimension(1) :: meta_args = &

(/ arg_type(gh_field, gh_real, gh_inc, w1) /)
(continues on next page)
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integer :: operates_on = cell_column
contains
procedure, nopass :: code => simple_code

end type simple_type

contains

subroutine simple_code()
end subroutine

end module simple_mod

Note: The module name simple_mod and the type name simple_type share the same root simple and have the
extensions _mod and _type respectively. This is a convention in LFRic API and is required by the kernel stub generator
as it needs to determine the name of the type containing the metadata and infers this by reading the module name. If
this rule is not followed the kernel stub generator will return with an error message (see Section Errors).

Note: Whilst strictly the kernel stub generator only requires the Kernel metadata to generate the appropriate stub code,
the parser that the generator relies on currently requires a dummy kernel subroutine to exist.

If we run the kernel stub generator on the testkern_simple_mod.f90 example:

> psyclone-kern -gen stub tests/test_files/dynamo0p3/testkern_simple_mod.f90

we get the following kernel stub output:

MODULE simple_mod
IMPLICIT NONE
CONTAINS
SUBROUTINE simple_code(nlayers, field_1_w1, ndf_w1, undf_w1, map_w1)
USE constants_mod, ONLY: r_def, i_def
IMPLICIT NONE
INTEGER(KIND=i_def), intent(in) :: nlayers
INTEGER(KIND=i_def), intent(in) :: ndf_w1
INTEGER(KIND=i_def), intent(in), dimension(ndf_w1) :: map_w1
INTEGER(KIND=i_def), intent(in) :: undf_w1
REAL(KIND=r_def), intent(inout), dimension(undf_w1) :: field_1_w1

END SUBROUTINE simple_code
END MODULE simple_mod

The subroutine content can then be copied into the required module, used as the basis for a new module, or checked
with an existing subroutine for correctness.

Note: The output does not currently conform to Met Office coding standards so must be modified accordingly.

Note: The code will not compile without a) providing the constants_mod, argument_mod and kernel_modmodules
in the compiler include path and b) adding in code that writes to any arguments declared as intent out or inout. For
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a quick check, the USE declaration and KIND declarations can be removed and the field_1_w1 array can be initialised
with some value in the subroutine. At this point the Kernel should compile successfully.

Note: Whilst there is only one field declared in the metadata there are 5 arguments to the Kernel. The first argument
nlayers specifies the number of layers in a column for a field. The second argument is the array associated with the
field. The field array is dimensioned as the number of unique degrees of freedom (hereafter undf) which is also passed
into the kernel (the fourth argument). The naming convention is to call each field a field, followed by its position in
the (algorithm) argument list (which is reflected in the metadata ordering). The third argument is the number of degrees
of freedom for the particular column and is used to dimension the final argument which is the degrees of freedom map
(dofmap) which indicates the location of the required values in the field array. The naming convention for the dofmap,
undf and ndf is to append the name with the space that it is associated with.

We now take a look at a more complicated example. The metadata in this example is the same as an actual LFRic
(Dynamo 0.3) kernel, however the subroutine content and various comments have been removed. The metadata specifies
that there are four fields passed by the algorithm layer, the fourth of which is a vector field of size three. All three of
the spaces require a basis function and the W0 and W2 function spaces additionally require a differential basis function.
The content of the Kernel, excluding the subroutine body, is given below:

module ru_kernel_mod

use argument_mod
use fs_continuity_mod
use kernel_mod
use constants_mod

implicit none

private

type, public, extends(kernel_type) :: ru_kernel_type
private
type(arg_type) :: meta_args(6) = (/ &

arg_type(GH_FIELD, GH_REAL, GH_INC, W2), &
arg_type(GH_FIELD, GH_REAL, GH_READ, W3), &
arg_type(GH_SCALAR, GH_INTEGER, GH_READ), &
arg_type(GH_SCALAR, GH_REAL, GH_READ), &
arg_type(GH_FIELD, GH_REAL, GH_READ, W0), &
arg_type(GH_FIELD*3, GH_REAL, GH_READ, W0) &
/)

type(func_type) :: meta_funcs(3) = (/ &
func_type(W2, GH_BASIS, GH_DIFF_BASIS), &
func_type(W3, GH_BASIS), &
func_type(W0, GH_BASIS, GH_DIFF_BASIS) &
/)

integer :: operates_on = CELL_COLUMN
integer :: gh_shape = gh_quadrature_XYoZ

contains
procedure, nopass :: ru_code

end type

public ru_code
(continues on next page)
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contains

subroutine ru_code()
end subroutine ru_code

end module ru_kernel_mod

If we run the kernel stub generator on this example:

> psyclone-kern -gen stub tests/test_files/dynamo0p3/ru_kernel_mod.f90

we obtain the following output:

MODULE ru_mod
IMPLICIT NONE
CONTAINS
SUBROUTINE ru_code(nlayers, field_1_w2, field_2_w3, iscalar_3, rscalar_4, &

field_5_w0, field_6_w0_v1, field_6_w0_v2, field_6_w0_v3, &
ndf_w2, undf_w2, map_w2, basis_w2_qr_xyoz, &
diff_basis_w2_qr_xyoz, ndf_w3, undf_w3, map_w3, &
basis_w3_qr_xyoz, ndf_w0, undf_w0, map_w0, &
basis_w0_qr_xyoz, diff_basis_w0_qr_xyoz, &
np_xy_qr_xyoz, np_z_qr_xyoz, weights_xy_qr_xyoz, weights_

→˓z_qr_xyoz)
USE constants_mod, ONLY: r_def, i_def
IMPLICIT NONE
INTEGER(KIND=i_def), intent(in) :: nlayers
INTEGER(KIND=i_def), intent(in) :: ndf_w0
INTEGER(KIND=i_def), intent(in), dimension(ndf_w0) :: map_w0
INTEGER(KIND=i_def), intent(in) :: ndf_w2
INTEGER(KIND=i_def), intent(in), dimension(ndf_w2) :: map_w2
INTEGER(KIND=i_def), intent(in) :: ndf_w3
INTEGER(KIND=i_def), intent(in), dimension(ndf_w3) :: map_w3
INTEGER(KIND=i_def), intent(in) :: undf_w2, undf_w3, undf_w0
REAL(KIND=r_def), intent(in) :: rscalar_4
INTEGER(KIND=i_def), intent(in) :: iscalar_3
REAL(KIND=r_def), intent(inout), dimension(undf_w2) :: field_1_w2
REAL(KIND=r_def), intent(in), dimension(undf_w3) :: field_2_w3
REAL(KIND=r_def), intent(in), dimension(undf_w0) :: field_5_w0
REAL(KIND=r_def), intent(in), dimension(undf_w0) :: field_6_w0_v1
REAL(KIND=r_def), intent(in), dimension(undf_w0) :: field_6_w0_v2
REAL(KIND=r_def), intent(in), dimension(undf_w0) :: field_6_w0_v3
INTEGER(KIND=i_def), intent(in) :: np_xy_qr_xyoz, np_z_qr_xyoz
REAL(KIND=r_def), intent(in), dimension(3,ndf_w2,np_xy_qr_xyoz,np_z_qr_

→˓xyoz) :: basis_w2_qr_xyoz
REAL(KIND=r_def), intent(in), dimension(1,ndf_w2,np_xy_qr_xyoz,np_z_qr_

→˓xyoz) :: diff_basis_w2_qr_xyoz
REAL(KIND=r_def), intent(in), dimension(1,ndf_w3,np_xy_qr_xyoz,np_z_qr_

→˓xyoz) :: basis_w3_qr_xyoz
REAL(KIND=r_def), intent(in), dimension(1,ndf_w0,np_xy_qr_xyoz,np_z_qr_

→˓xyoz) :: basis_w0_qr_xyoz
(continues on next page)

234 Chapter 18. PSyclone Kernel Tools



PSyclone Documentation, Release 2.4.0

(continued from previous page)

REAL(KIND=r_def), intent(in), dimension(3,ndf_w0,np_xy_qr_xyoz,np_z_qr_
→˓xyoz) :: diff_basis_w0_qr_xyoz
REAL(KIND=r_def), intent(in), dimension(np_xy_qr_xyoz) :: weights_xy_qr_

→˓xyoz
REAL(KIND=r_def), intent(in), dimension(np_z_qr_xyoz) :: weights_z_qr_xyoz

END SUBROUTINE ru_code
END MODULE ru_mod

The above example demonstrates that the argument list can get quite complex. Rather than going through an explanation
of each argument you are referred to Section Rules for more details on the rules for argument types and argument
ordering. Regarding naming conventions for arguments you can see that the arrays associated with the fields are labelled
as 1-6 depending on their position in the metadata. For a vector field, each vector results in a different array. These are
distinguished by appending _vx where x is the number of the vector.

The introduction of stencil operations on field arguments further complicates the argument list of a kernel. An example
of the use of the stub generator for a kernel that performs stencil operations is provided in examples/lfric/eg5:

> psyclone-kern -gen stub ../../examples/lfric/eg5/conservative_flux_kernel_mod.F90

18.2.5 Errors

The stub generator has been written to provide useful errors if mistakes are found. If you run the generator and it does
not produce a useful error - and in particular if it produces a stack trace - please contact the PSyclone developers.

The following tests do not produce stub kernel code either because they are invalid or because they contain functionality
that is not supported in the stub generator:

tests/test_files/dynamo0p3/testkern_any_space_1_mod.f90
tests/test_files/dynamo0p3/testkern_any_space_4_mod.f90
tests/test_files/dynamo0p3/testkern_any_discontinuous_space_op_2_mod.f90
tests/test_files/dynamo0p3/testkern_dofs_mod.f90
tests/test_files/dynamo0p3/testkern_invalid_fortran_mod.f90
tests/test_files/dynamo0p3/testkern_short_name_mod.f90
tests/test_files/dynamo0p3/testkern_no_datatype_mod.f90
tests/test_files/dynamo0p3/testkern_wrong_file_name.F90

testkern_invalid_fortran_mod.f90, testkern_no_datatype_mod.f90, testkern_short_name_mod.f90
and testkern_wrong_file_name.F90 are designed to be invalid for PSyclone stub generation testing purposes and
should produce appropriate errors. Two examples are below:

> psyclone-kern -gen stub tests/test_files/dynamo0p3/testkern_invalid_fortran_mod.f90
Error: 'Parse Error: Code appears to be invalid Fortran'

> psyclone-kern -gen stub tests/test_files/dynamo0p3/testkern_no_datatype_mod.f90
Error: 'Parse Error: Kernel type testkern_type does not exist'

testkern_dofs_mod.f90 is an example with an unsupported feature, as the operates_on metadata specifies dof.
Currently only kernels with operates_on=CELL_COLUMN are supported by the stub generator.

Generic function space metadata any_space and any_discontinuous_space (see Section Supported Function
Spaces for function-space identifiers) are currently only supported for LFRic (Dynamo 0.3) fields in the stub gen-
erator. Basis and differential basis functions on these generic function spaces, required for quadrature and eval-
uators, are not supported. Hence, testkern_any_space_1_mod.f90, testkern_any_space_4_mod.f90 and
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testkern_any_discontinuous_space_op_2_mod.f90 should fail with appropriate warnings because of that. For
example:

> psyclone-kern -gen stub tests/test_files/dynamo0p3/testkern_any_space_1_mod.f90
Error: "Generation Error: Unsupported space for basis function, expecting
one of ['w3', 'wtheta', 'w2v', 'w2vtrace', 'w2broken', 'w0', 'w1', 'w2',
'w2trace', 'w2h', 'w2htrace', 'any_w2', 'wchi'] but found 'any_space_1'"

As noted above, if the LFRic API naming convention for module and type names is not followed, the stub generator
will return with an error message. For example:

> psyclone-kern -gen stub tests/test_files/dynamo0p3/testkern_wrong_file_name.F90
Error: "Parse Error: Error, module name 'testkern_wrong_file_name' does not have
'_mod' as an extension. This convention is assumed."

18.3 Algorithm Generator

18.3.1 Quick Start

1) Use an existing Kernel file containing a full LFRic kernel implementation.

2) Run the following command

> psyclone-kern -gen alg <PATH>/my_kern_file_mod.f90

3) The generated Algorithm code will be output to stdout by default. To have it written to a file use the -o flag.

18.3.2 Introduction

The ability to generate a valid LFRic Algorithm layer that calls a given kernel is useful for a number of reasons:

1) Starting point for creating a test for a kernel;

2) Benchmarking an individual kernel;

3) Constructing a test harness for the adjoint of a kernel produced by PSyAD.

Currently algorithm generation is only supported for the LFRic (Dynamo 0.3) API but it could be extended to the
GOcean API if desired.

Mapping of Function Spaces

Every field or operator argument to an LFRic kernel must have its function space(s) specified in the metadata of the ker-
nel. This information is used by the algorithm generation to ensure that each kernel argument is correctly constructed.
However, the metadata permits the use of certain ‘generic’ function-space specifiers (see Supported Function Spaces).
If an argument is specified as being on one of these spaces then the algorithm generator chooses an appropriate, specific
function space for that argument. e.g. an argument that is specified as being on ANY_SPACE_<n> will be constructed
on W0 while one on ANY_DISCONTINUOUS_SPACE_<n> will be constructed on W3.
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18.3.3 Example

If we take the same kernel used in the stub-generation example then running

> psyclone-kern -gen alg tests/test_files/dynamo0p3/testkern_simple_mod.f90

gives the following algorithm layer code:

module test_alg_mod
implicit none
public

contains
subroutine test_alg(mesh, chi, panel_id)
use field_mod, only : field_type
use function_space_mod, only : function_space_type
use fs_continuity_mod, only : w1
use function_space_collection_mod, only : function_space_collection
use mesh_mod, only : mesh_type
use simple_mod, only : simple_type
use constants_mod, only : i_def, r_def
integer(kind=i_def), parameter :: element_order = 1_i_def
type(mesh_type), pointer, intent(in) :: mesh
type(field_type), dimension(3), intent(in), optional :: chi
type(field_type), intent(in), optional :: panel_id
TYPE(function_space_type), POINTER :: vector_space_w1_ptr
type(field_type) :: field_1

vector_space_w1_ptr => function_space_collection % get_fs(mesh, element_
→˓order, w1)
call field_1 % initialise(vector_space=vector_space_w1_ptr, name='field_1')
call invoke(setval_c(field_1, 1.0_r_def), simple_type(field_1))

end subroutine test_alg

end module test_alg_mod

Note that the generated code implements an Algorithm subroutine that is intended to be called from within an LFRic
application that has already setup data structures for the mesh (and, optionally, the chi coordinate field and panel ID
mapping). Since the metadata for the simple_type kernel specifies that the field argument is on W1, the generated code
must ensure that the appropriate function space is set up and used to initialise the field. Once that’s done, the interesting
part is the invoke call:

call invoke(setval_c(field_1, 1.0_r_def), &
simple_type(field_1))

(where a line-break has been added for clarity). In this example the invoke is for two kernels: the first is a Built-in that
gives field_1 the value 1.0 everywhere and the second is the ‘simple’ kernel itself which is passed the now initialised
field_1.

This Algorithm code can now be processed by PSyclone in the normal way in order to generate a transformed version
plus an associated PSy-layer routine. See Example 20: Algorithm Generation for a full example of doing this.
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18.3.4 Limitations

• Algorithm generation is only currently supported for the LFRic (dynamo 0.3) API.

• All fields are currently set to unity. Obviously the generated algorithm code may be edited to change this.

• The generator does not currently recognise ‘special’ fields that hold geometry information (such as Chi or the
face IDs) and these too will all be initialised to unity. This is the subject of Issue #1708 (although note that the
generated code already permits the caller to supply Chi and/or face IDs).

• Kernels with operator arguments are not yet supported.

• Kernels with stencil accesses are not yet supported.
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LINE LENGTH

By default PSyclone will generate Fortran code with no consideration of Fortran line-length limits. As the line-length
limit for free-form Fortran is 132 characters, the code that is output may be non-conformant.

Line length is not an issue for many compilers as they allow compiler flags to be set which allow lines longer than the
Fortran standard. However this is not the case for all compilers.

PSyclone therefore supports the wrapping of lines within the 132 character limit. The next two sections discuss how
this is done when scripting and when working interactively respectively.

19.1 Script

The psyclone script provides the -l option to wrap lines. Please see the Fortran line length section for more details.

19.2 Interactive

When using PSyclone interactively the line lengths of the input algorithm and Kernel files can be checked by setting
the psyclone.parse.algorithm.parse() function’s line_length argument to True.

>>> from psyclone.parse.algorithm import parse
>>> ast, info = parse("argspec.F90", line_length=True)

Similarly the line_length argument can be set to True if calling the generator.generate() function. This func-
tion simply passes this argument on to the psyclone.parse.algorithm.parse() function.

>>> from psyclone.generator import generate
>>> alg, psy = generate("argspec.F90", line_length=True)

Line wrapping is performed as a post-processing step, i.e. after the code has been generated. This is done by an instance
of the line_length.FortLineLength class. For example:

>>> from psyclone.generator import generate
>>> from psyclone.line_length import FortLineLength
>>> psy, alg = generate("algspec.f90", line_length=True)
>>> line_length = FortLineLength()
>>> psy_str = line_length.process(str(psy))
>>> print psy_str
>>> alg_str = line_length.process(str(alg))
>>> print alg_str
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19.3 Limitations

The line_length.FortLineLength class is only partially aware of Fortran syntax. This awareness is required so
that appropriate continuation characters can be used (for example & at the end of a line and !$omp& at the start of a line
for OpenMP directives, & at the end of a line for statements and & at the end of a line and & at the beginning of a line
for strings).

Whilst statements only require an & at the end of the line when line wrapping with free-form fortran they may optionally
also have an & at the beginning of the subsequent line. In contrast, when splitting a string over multiple lines an & is
required at both locations. Therefore an instance of the line_length.FortLineLength class will always add & at
the beginning of a continuation line for a statement, in case the line is split within a string.

One known situation that could cause an instance of the line_length.FortLineLength class to fail is when an inline
comment is used at the end of a line to make it longer than the 132 character limit. Whilst PSyclone does not generate
such code for the PSy-layer, this might occur in Algorithm-layer code, even if the Algorithm-layer code conforms to the
132 line length limit. The reason for this is that PSyclone’s internal parser concatenates lines together, thus a long line
correctly split with continuation characters in the Algorithm-layer becomes a line that needs to be split by an instance
of the line_length.FortLineLength class.
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FORTRAN NAMING CONVENTIONS

There is a convention in the kernel code for the Dynamo0.3 and GOcean1.0 APIs that if the name of the operation
being performed is <name> then a kernel file is <name>_mod.[fF90], the name of the module inside the kernel file is
<name>_mod, the name of the kernel metadata in the module is <name>_type and the name of the kernel subroutine
in the module is <name>_code.

PSyclone itself does not rely on this convention apart from in the stub generator (see the Kernel-stub Generator Section)
where the name of the metadata to be parsed is determined from the module name.
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API

21.1 The generator module

This module provides the PSyclone ‘main’ routine which is intended to be driven from the bin/psyclone executable
script. ‘main’ takes an algorithm file as input and produces modified algorithm code and generated PSy code. A
function, ‘generate’, is also provided which has the same functionality as ‘main’ but can be called from within another
Python program.

psyclone.generator.generate(filename, api='', kernel_paths=None, script_name=None, line_length=False,
distributed_memory=None, kern_out_path='', kern_naming='multiple')

Takes a PSyclone algorithm specification as input and outputs the associated generated algorithm and psy codes
suitable for compiling with the specified kernel(s) and support infrastructure. Uses the parse.algorithm.
parse() function to parse the algorithm specification, the psyGen.PSy class to generate the PSy code and the
alg_gen.Alg class to generate the modified algorithm code.

Parameters

• filename (str) – the file containing the algorithm specification.

• api (str) – the name of the API to use. Defaults to empty string.

• kernel_paths (Optional[List[str]]) – the directories from which to recursively
search for the files containing the kernel source (if different from the location of the algorithm
specification). Defaults to None.

• script_name (str) – a script file that can apply optimisations to the PSy layer (can be a
path to a file or a filename that relies on the PYTHONPATH to find the module). Defaults
to None.

• line_length (bool) – a logical flag specifying whether we care about line lengths being
longer than 132 characters. If so, the input (algorithm and kernel) code is checked to make
sure that it conforms. The default is False.

• distributed_memory (bool) – a logical flag specifying whether to generate distributed
memory code. The default is set in the ‘config.py’ file.

• kern_out_path (str) – directory to which to write transformed kernel code. Defaults to
empty string.

• kern_naming (bool) – the scheme to use when re-naming transformed kernels. Defaults to
“multiple”.

Returns
2-tuple containing the fparser1 AST for the algorithm code and the fparser1 AST or a string (for
NEMO) of the psy code.
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Return type
Tuple[fparser.one.block_statements.BeginSource, fparser.one.
block_statements.Module] | Tuple[fparser.one.block_statements.BeginSource,
str]

Raises

• GenerationError – if an invalid API is specified.

• GenerationError – if an invalid kernel-renaming scheme is specified.

• GenerationError – if there is an error raising the PSyIR to domain-specific PSyIR.

• GenerationError – if a kernel functor is not named in a use statement.

• IOError – if the filename or search path do not exist.

• NoInvokesError – if no invokes are found in the algorithm file.

For example:

>>> from psyclone.generator import generate
>>> alg, psy = generate("algspec.f90")
>>> alg, psy = generate("algspec.f90", kernel_paths=["src/kernels"])
>>> alg, psy = generate("algspec.f90", script_name="optimise.py")
>>> alg, psy = generate("algspec.f90", line_length=True)
>>> alg, psy = generate("algspec.f90", distributed_memory=False)

21.2 The parse module

Module that uses the Fortran parser fparser2 to parse PSyclone-conformant Algorithm code.

psyclone.parse.algorithm.parse(alg_filename, api='', invoke_name='invoke', kernel_paths=None,
line_length=False)

Takes a PSyclone conformant algorithm file as input and outputs a parse tree of the code contained therein and
an object containing information about the ‘invoke’ calls in the algorithm file and any associated kernels within
the invoke calls.

Parameters

• alg_filename (str) – the file containing the algorithm specification.

• api (str) – the PSyclone API to use when parsing the code. Defaults to empty string.

• invoke_name (str) – the expected name of the invocation calls in the algorithm code. De-
faults to “invoke”.

• kernel_paths (list of str or NoneType) – the paths to search for kernel source files
(if different from the location of the algorithm source). Defaults to None.

• line_length (bool) – a logical flag specifying whether we care about line lengths being
longer than 132 characters. If so, the input (algorithm and kernel) code is checked to make
sure that it conforms and an error raised if not. The default is False.

Returns
2-tuple consisting of the fparser2 parse tree of the Algorithm file and an object holding details of
the invokes found.

Return type
(fparser.two.Fortran2003.Program, psyclone.parse.FileInfo)
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For example:

>>> from psyclone.parse.algorithm import parse
>>> ast, info = parse(SOURCE_FILE)

21.3 The transformations module

This module provides the various transformations that can be applied to PSyIR nodes. There are both general and
API-specific transformation classes in this module where the latter typically apply API-specific checks before calling
the base class for the actual transformation.

class psyclone.transformations.ACCDataTrans

Add an OpenACC data region around a list of nodes in the PSyIR. COPYIN, COPYOUT and COPY clauses are
added as required.

For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "nemo"
>>> ast, invokeInfo = parse(NEMO_SOURCE_FILE, api=api)
>>> psy = PSyFactory(api).create(invokeInfo)
>>>
>>> from psyclone.transformations import ACCKernelsTrans, ACCDataTrans
>>> ktrans = ACCKernelsTrans()
>>> dtrans = ACCDataTrans()
>>>
>>> schedule = psy.invokes.get('tra_adv').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>>
>>> # Add a kernels construct for execution on the device
>>> kernels = schedule.children[9]
>>> ktrans.apply(kernels)
>>>
>>> # Enclose the kernels in a data construct
>>> kernels = schedule.children[9]
>>> dtrans.apply(kernels)

apply(node, options=None)
Put the supplied node or list of nodes within an OpenACC data region.

Parameters

• node ((list of) psyclone.psyir.nodes.Node) – the PSyIR node(s) to enclose in the data
region.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

property name

Returns
the name of this transformation.
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Return type
str

validate(nodes, options)
Check that we can safely add a data region around the supplied list of nodes.

Parameters

• nodes (List[psyclone.psyir.nodes.Node] | psyclone.psyir.nodes.Node) – the
proposed node(s) to enclose in a data region.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

Raises

• TransformationError – if the Schedule to which the nodes belong already has an ‘enter
data’ directive.

• TransformationError – if any of the nodes are themselves data directives.

• TransformationError – if an array of structures needs to be deep copied (this is not
currently supported).

class psyclone.transformations.ACCEnterDataTrans

Adds an OpenACC “enter data” directive to a Schedule. For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "gocean1.0"
>>> ast, invokeInfo = parse(GOCEAN_SOURCE_FILE, api=api)
>>> psy = PSyFactory(api).create(invokeInfo)
>>>
>>> from psyclone.transformations import ACCEnterDataTrans, ACCLoopTrans,␣
→˓ACCParallelTrans
>>> dtrans = ACCEnterDataTrans()
>>> ltrans = ACCLoopTrans()
>>> ptrans = ACCParallelTrans()
>>>
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>>
>>> # Apply the OpenACC Loop transformation to *every* loop in the schedule
>>> for child in schedule.children[:]:
... ltrans.apply(child)
>>>
>>> # Enclose all of these loops within a single OpenACC parallel region
>>> ptrans.apply(schedule)
>>>
>>> # Add an enter data directive
>>> dtrans.apply(schedule)
>>>
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

apply(sched, options=None)
Adds an OpenACC “enter data” directive to the invoke associated with the supplied Schedule. Any fields
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accessed by OpenACC kernels within this schedule will be added to this data region in order to ensure they
remain on the target device.

Parameters

• sched (sub-class of psyclone.psyir.nodes.Schedule) – schedule to which to add an
“enter data” directive.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

property name

Returns
the name of this transformation.

Return type
str

validate(sched, options=None)
Check that we can safely apply the OpenACC enter-data transformation to the supplied Schedule.

Parameters

• sched (sub-class of psyclone.psyir.nodes.Schedule) – Schedule to which to add an
“enter data” directive.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

Raises
TransformationError – if passed something that is not a (subclass of) psyclone.psyir.
nodes.Schedule.

class psyclone.transformations.ACCKernelsTrans

Enclose a sub-set of nodes from a Schedule within an OpenACC kernels region (i.e. within “!$acc kernels” . . .
“!$acc end kernels” directives).

For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "nemo"
>>> ast, invokeInfo = parse(NEMO_SOURCE_FILE, api=api)
>>> psy = PSyFactory(api).create(invokeInfo)
>>>
>>> from psyclone.transformations import ACCKernelsTrans
>>> ktrans = ACCKernelsTrans()
>>>
>>> schedule = psy.invokes.get('tra_adv').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>> kernels = schedule.children[9]
>>> # Transform the kernel
>>> ktrans.apply(kernels)

apply(node, options=None)
Enclose the supplied list of PSyIR nodes within an OpenACC Kernels region.

Parameters
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• node ((a list of) psyclone.psyir.nodes.Node) – a node or list of nodes in the PSyIR to
enclose.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["default_present"] (bool) – whether or not the kernels region should have
the ‘default present’ attribute (indicating that data is already on the accelerator). When
using managed memory this option should be False.

property name

Returns
the name of this transformation class.

Return type
str

validate(nodes, options)
Check that we can safely enclose the supplied node or list of nodes within OpenACC kernels . . . end kernels
directives.

Parameters

• nodes ((list of) psyclone.psyir.nodes.Node) – the proposed PSyIR node or nodes to
enclose in the kernels region.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

Raises

• NotImplementedError – if the supplied Nodes belong to a GOInvokeSchedule.

• TransformationError – if there are no Loops within the proposed region.

class psyclone.transformations.ACCLoopTrans

Adds an OpenACC loop directive to a loop. This directive must be within the scope of some OpenACC Parallel
region (at code-generation time).

For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.parse.utils import ParseError
>>> from psyclone.psyGen import PSyFactory
>>> from psyclone.errors import GenerationError
>>> api = "gocean1.0"
>>> ast, invokeInfo = parse(GOCEAN_SOURCE_FILE, api=api)
>>> psy = PSyFactory(api).create(invokeInfo)
>>>
>>> from psyclone.psyGen import TransInfo
>>> t = TransInfo()
>>> ltrans = t.get_trans_name('ACCLoopTrans')
>>> rtrans = t.get_trans_name('ACCParallelTrans')
>>>
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>>
>>> # Apply the OpenACC Loop transformation to *every* loop in the schedule

(continues on next page)
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(continued from previous page)

>>> for child in schedule.children[:]:
... ltrans.apply(child)
>>>
>>> # Enclose all of these loops within a single OpenACC parallel region
>>> rtrans.apply(schedule)
>>>

apply(node, options=None)
Apply the ACCLoop transformation to the specified node. This node must be a Loop since this transfor-
mation corresponds to inserting a directive immediately before a loop, e.g.:

!$ACC LOOP
do ...

...
end do

At code-generation time (when psyclone.psyir.nodes.ACCLoopDirective.gen_code() is called),
this node must be within (i.e. a child of) a PARALLEL region.

Parameters

• node (psyclone.psyir.nodes.Loop) – the supplied node to which we will apply the
Loop transformation.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["collapse"] (int) – number of nested loops to collapse.

• options["independent"] (bool) – whether to add the “independent” clause to the di-
rective (not strictly necessary within PARALLEL regions).

• options["sequential"] (bool) – whether to add the “seq” clause to the directive.

• options["gang"] (bool) – whether to add the “gang” clause to the directive.

• options["vector"] (bool) – whether to add the “vector” clause to the directive.

excluded_node_types

alias of PSyDataNode

class psyclone.transformations.ACCParallelTrans

Create an OpenACC parallel region by inserting directives. This parallel region must come after an enter-data
directive (see ACCEnterDataTrans) or within a data region (see ACCDataTrans). For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "gocean1.0"
>>> ast, invokeInfo = parse(GOCEAN_SOURCE_FILE, api=api)
>>> psy = PSyFactory(api).create(invokeInfo)
>>>
>>> from psyclone.psyGen import TransInfo
>>> t = TransInfo()
>>> ptrans = t.get_trans_name('ACCParallelTrans')
>>> dtrans = t.get_trans_name('ACCDataTrans')
>>>
>>> schedule = psy.invokes.get('invoke_0').schedule

(continues on next page)
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(continued from previous page)

>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>>
>>> # Enclose everything within a single OpenACC PARALLEL region
>>> ptrans.apply(schedule.children)
>>> # Add an enter-data directive
>>> dtrans.apply(schedule)
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

property name

Returns
the name of this transformation as a string.

Return type
str

class psyclone.transformations.ACCRoutineTrans

Transform a kernel or routine by adding a “!$acc routine” directive (causing it to be compiled for the OpenACC
accelerator device). For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "gocean1.0"
>>> ast, invokeInfo = parse(GOCEAN_SOURCE_FILE, api=api)
>>> psy = PSyFactory(api).create(invokeInfo)
>>>
>>> from psyclone.transformations import ACCRoutineTrans
>>> rtrans = ACCRoutineTrans()
>>>
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>> kern = schedule.children[0].children[0].children[0]
>>> # Transform the kernel
>>> rtrans.apply(kern)

apply(node, options=None)
Add the ‘!$acc routine’ OpenACC directive into the code of the supplied Kernel (in a PSyKAl API such as
GOcean or LFRic) or directly in the supplied Routine.

Parameters

• node (psyclone.psyGen.Kern or psyclone.psyir.nodes.Routine) – the kernel call
or routine implementation to transform.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

property name

Returns
the name of this transformation class.

Return type
str
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validate(node, options=None)
Perform checks that the supplied kernel or routine can be transformed.

Parameters

• node (psyclone.psyGen.Kern or psyclone.psyir.nodes.Routine) – the kernel
which is the target of the transformation.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

Raises

• TransformationError – if the node is not a kernel or a routine.

• TransformationError – if the target is a built-in kernel.

• TransformationError – if it is a kernel but without an associated PSyIR.

• TransformationError – if any of the symbols in the kernel are accessed via a module
use statement.

class psyclone.transformations.ColourTrans

Apply a colouring transformation to a loop (in order to permit a subsequent parallelisation over colours). For
example:

>>> invoke = ...
>>> schedule = invoke.schedule
>>>
>>> ctrans = ColourTrans()
>>>
>>> # Colour all of the loops
>>> for child in schedule.children:
>>> ctrans.apply(child)
>>>
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

apply(node, options=None)
Converts the Loop represented by node into a nested loop where the outer loop is over colours and the inner
loop is over cells of that colour.

Parameters

• node (psyclone.psyir.nodes.Loop) – the loop to transform.

• options (Optional[Dict[str, Any]]) – options for the transformation.

class psyclone.transformations.Dynamo0p3AsyncHaloExchangeTrans

Splits a synchronous halo exchange into a halo exchange start and halo exchange end. For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "dynamo0.3"
>>> ast, invokeInfo = parse("file.f90", api=api)
>>> psy=PSyFactory(api).create(invokeInfo)
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

(continues on next page)
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(continued from previous page)

>>>
>>> from psyclone.transformations import Dynamo0p3AsyncHaloExchangeTrans
>>> trans = Dynamo0p3AsyncHaloExchangeTrans()
>>> trans.apply(schedule.children[0])
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

apply(node, options=None)
Transforms a synchronous halo exchange, represented by a HaloExchange node, into an asynchronous halo
exchange, represented by HaloExchangeStart and HaloExchangeEnd nodes.

Parameters

• node (psyclone.psygen.HaloExchange) – a synchronous haloexchange node.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

property name

Returns
the name of this transformation as a string.

Return type
str

validate(node, options)
Internal method to check whether the node is valid for this transformation.

Parameters

• node (psyclone.psygen.HaloExchange) – a synchronous Halo Exchange node

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

Raises
TransformationError – if the node argument is not a HaloExchange (or subclass thereof)

class psyclone.transformations.Dynamo0p3ColourTrans

Split a Dynamo 0.3 loop over cells into colours so that it can be parallelised. For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> import transformations
>>> import os
>>> import pytest
>>>
>>> TEST_API = "dynamo0.3"
>>> _,info=parse(os.path.join(os.path.dirname(os.path.abspath(__file__)),
>>> "tests", "test_files", "dynamo0p3",
>>> "4.6_multikernel_invokes.f90"),
>>> api=TEST_API)
>>> psy = PSyFactory(TEST_API).create(info)
>>> invoke = psy.invokes.get('invoke_0')
>>> schedule = invoke.schedule
>>>

(continues on next page)
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(continued from previous page)

>>> ctrans = Dynamo0p3ColourTrans()
>>> otrans = DynamoOMPParallelLoopTrans()
>>>
>>> # Colour all of the loops
>>> for child in schedule.children:
>>> ctrans.apply(child)
>>>
>>> # Then apply OpenMP to each of the colour loops
>>> for child in schedule.children:
>>> otrans.apply(child.children[0])
>>>
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

Colouring in the LFRic (Dynamo 0.3) API is subject to the following rules:

• Only kernels which operate on ‘CELL_COLUMN’s and which increment a field on a continuous function
space require colouring. Kernels that update a field on a discontinuous function space will cause this
transformation to raise an exception. Kernels that only write to a field on a continuous function space also
do not require colouring but are permitted.

• A kernel may have at most one field with ‘GH_INC’ access.

• A separate colour map will be required for each field that is coloured (if an invoke contains >1 kernel call).

apply(node, options=None)
Performs Dynamo0.3-specific error checking and then uses the parent class to convert the Loop represented
by node into a nested loop where the outer loop is over colours and the inner loop is over cells of that colour.

Parameters

• node (psyclone.dynamo0p3.DynLoop) – the loop to transform.

• options – a dictionary with options for transformations. :type options: Optional[Dict[str,
Any]]

class psyclone.transformations.Dynamo0p3KernelConstTrans

Modifies a kernel so that the number of dofs, number of layers and number of quadrature points are fixed in the
kernel rather than being passed in by argument.

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "dynamo0.3"
>>> ast, invokeInfo = parse("file.f90", api=api)
>>> psy=PSyFactory(api).create(invokeInfo)
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>>
>>> from psyclone.transformations import Dynamo0p3KernelConstTrans
>>> trans = Dynamo0p3KernelConstTrans()
>>> for kernel in schedule.coded_kernels():
>>> trans.apply(kernel, number_of_layers=150)
>>> kernel_schedule = kernel.get_kernel_schedule()
>>> # Uncomment the following line to see a text view of the

(continues on next page)
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(continued from previous page)

>>> # symbol table
>>> # print(kernel_schedule.symbol_table.view())

apply(node, options=None)
Transforms a kernel so that the values for the number of degrees of freedom (if a valid value for the ele-
ment_order arg is provided), the number of quadrature points (if the quadrature arg is set to True) and the
number of layers (if a valid value for the number_of_layers arg is provided) are constant in a kernel rather
than being passed in by argument.

The “cellshape”, “element_order” and “number_of_layers” arguments are provided to mirror the namelist
values that are input into an LFRic model when it is run.

Quadrature support is currently limited to XYoZ in ths transformation. In the case of XYoZ the number of
quadrature points (for horizontal and vertical) are set to the element_order + 3 in the LFRic infrastructure
so their value is derived.

Parameters

• node (psyclone.psygen.DynKern) – a kernel node.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["cellshape"] (str) – the shape of the cells. This is provided as it helps de-
termine the number of dofs a field has for a particular function space. Currently only
“quadrilateral” is supported which is also the default value.

• options["element_order"] (int) – the order of the cell. In combination with cell-
shape, this determines the number of dofs a field has for a particular function space. If
it is set to None (the default) then the dofs values are not set as constants in the kernel,
otherwise they are.

• options["number_of_layers"] (int) – the number of vertical layers in the LFRic
model mesh used for this particular run. If this is set to None (the default) then the nlayers
value is not set as a constant in the kernel, otherwise it is.

• options["quadrature"] (bool) – whether the number of quadrature points values are
set as constants in the kernel (True) or not (False). The default is False.

property name

Returns
the name of this transformation as a string.

Return type
str

validate(node, options=None)
This method checks whether the input arguments are valid for this transformation.

Parameters

• node (psyclone.psygen.DynKern) – a dynamo 0.3 kernel node.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["cellshape"] (str) – the shape of the elements/cells.

• options["element_order"] (int) – the order of the elements/cells.

• options["number_of_layers"] (int) – the number of layers to use.
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• options["quadrature"] (bool) – whether quadrature dimension sizes should or
shouldn’t be set as constants in a kernel.

Raises
TransformationError – if the node argument is not a dynamo 0.3 kernel, the cellshape
argument is not set to “quadrilateral”, the element_order argument is not a 0 or a positive
integer, the number of layers argument is not a positive integer, the quadrature argument is
not a boolean, neither element order nor number of layers arguments are set (as the transfor-
mation would then do nothing), or the quadrature argument is True but the element order is
not provided (as the former needs the latter).

class psyclone.transformations.Dynamo0p3OMPLoopTrans(omp_schedule='static')
LFRic (Dynamo 0.3) specific orphan OpenMP loop transformation. Adds Dynamo-specific validity checks.

Parameters
omp_schedule (str) – the OpenMP schedule to use. Must be one of ‘runtime’, ‘static’, ‘dy-
namic’, ‘guided’ or ‘auto’. Defaults to ‘static’.

apply(node, options=None)
Apply LFRic (Dynamo 0.3) specific OMPLoopTrans.

Parameters

• node (psyclone.psyir.nodes.Node) – the Node in the Schedule to check.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transformations
and validation.

• options["reprod"] (bool) – indicating whether reproducible reductions should be
used. By default the value from the config file will be used.

validate(node, options=None)
Perform LFRic (Dynamo 0.3) specific loop validity checks for the OMPLoopTrans.

Parameters

• node (psyclone.psyir.nodes.Node) – the Node in the Schedule to check

• options (Optional[Dict[str, Any]]) – a dictionary with options for transformations
and validation.

• options["reprod"] (bool) – indicating whether reproducible reductions should be
used. By default the value from the config file will be used.

Raises
TransformationError – if an OMP loop transform would create incorrect code.

class psyclone.transformations.Dynamo0p3RedundantComputationTrans

This transformation allows the user to modify a loop’s bounds so that redundant computation will be performed.
Redundant computation can result in halo exchanges being modified, new halo exchanges being added or existing
halo exchanges being removed.

• This transformation should be performed before any parallelisation transformations (e.g. for OpenMP) to
the loop in question and will raise an exception if this is not the case.

• This transformation can not be applied to a loop containing a reduction and will again raise an exception if
this is the case.

• This transformation can only be used to add redundant computation to a loop, not to remove it.

• This transformation allows a loop that is already performing redundant computation to be modified, but
only if the depth is increased.
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apply(loop, options=None)
Apply the redundant computation transformation to the loop loop. This transformation can be applied to
loops iterating over ‘cells or ‘dofs’. if depth is set to a value then the value will be the depth of the field’s
halo over which redundant computation will be performed. If depth is not set to a value then redundant
computation will be performed to the full depth of the field’s halo.

Parameters

• loop (psyclone.psyGen.DynLoop) – the loop that we are transforming.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["depth"] (int) – the depth of the stencil. Defaults to None.

validate(node, options=None)
Perform various checks to ensure that it is valid to apply the RedundantComputation transformation to the
supplied node

Parameters

• node (psyclone.psyir.nodes.Node) – the supplied node on which we are performing
validity checks

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["depth"] (int) – the depth of the stencil if the value is provided and None if
not.

Raises

• TransformationError – if the parent of the loop is a psyclone.psyir.nodes.
Directive.

• TransformationError – if the parent of the loop is not a psyclone.psyir.nodes.
Loop or a psyclone.psyGen.DynInvokeSchedule.

• TransformationError – if the parent of the loop is a psyclone.psyir.nodes.Loop
but the original loop does not iterate over ‘colour’.

• TransformationError – if the parent of the loop is a psyclone.psyir.nodes.Loop
but the parent does not iterate over ‘colours’.

• TransformationError – if the parent of the loop is a psyclone.psyir.nodes.Loop
but the parent’s parent is not a psyclone.psyGen.DynInvokeSchedule.

• TransformationError – if this transformation is applied when distributed memory is
not switched on.

• TransformationError – if the loop does not iterate over cells, dofs or colour.

• TransformationError – if the transformation is setting the loop to the maximum halo
depth but the loop already computes to the maximum halo depth.

• TransformationError – if the transformation is setting the loop to the maximum halo
depth but the loop contains a stencil access (as this would result in the field being accessed
beyond the halo depth).

• TransformationError – if the supplied depth value is not an integer.

• TransformationError – if the supplied depth value is less than 1.
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• TransformationError – if the supplied depth value is not greater than 1 when a contin-
uous loop is modified as this is the minimum valid value.

• TransformationError – if the supplied depth value is not greater than the existing depth
value, as we should not need to undo existing transformations.

• TransformationError – if a depth value has been supplied but the loop has already been
set to the maximum halo depth.

class psyclone.transformations.DynamoOMPParallelLoopTrans(omp_directive='do',
omp_schedule='static')

Dynamo-specific OpenMP loop transformation. Adds Dynamo specific validity checks. Actual transformation
is done by the base class.

Parameters

• omp_directive (str) – choose which OpenMP loop directive to use. Defaults to “do”.

• omp_schedule (str) – the OpenMP schedule to use. Must be one of ‘runtime’, ‘static’,
‘dynamic’, ‘guided’ or ‘auto’. Defaults to ‘static’.

apply(node, options=None)
Perform Dynamo specific loop validity checks then call the apply() method of the base class.

Parameters

• node (psyclone.psyir.nodes.Node) – the Node in the Schedule to check

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

Raises
TransformationError – if the associated loop requires colouring.

class psyclone.transformations.GOceanOMPLoopTrans(omp_directive='do', omp_schedule='static')
GOcean-specific orphan OpenMP loop transformation. Adds GOcean specific validity checks (that the node is
either an inner or outer Loop).

Parameters

• omp_directive (str) – choose which OpenMP loop directive to use. Defaults to “do”.

• omp_schedule (str) – the OpenMP schedule to use. Must be one of ‘runtime’, ‘static’,
‘dynamic’, ‘guided’ or ‘auto’. Defaults to ‘static’.

validate(node, options=None)
Checks that the supplied node is a valid target for parallelisation using OMP directives.

Parameters

• node (psyclone.psyir.nodes.Loop) – the candidate loop for parallelising using OMP
Do.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

Raises
TransformationError – if the loop_type of the supplied Loop is not “inner” or “outer”.

class psyclone.transformations.GOceanOMPParallelLoopTrans(omp_directive='do',
omp_schedule='static')

GOcean specific OpenMP Do loop transformation. Adds GOcean specific validity checks (that supplied Loop is
an inner or outer loop). Actual transformation is done by base class.
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param str omp_directive
choose which OpenMP loop directive to use. Defaults to “do”.

param str omp_schedule
the OpenMP schedule to use. Must be one of ‘runtime’, ‘static’, ‘dynamic’, ‘guided’ or
‘auto’. Defaults to ‘static’.

apply(node, options=None)
Perform GOcean-specific loop validity checks then call OMPParallelLoopTrans.apply().

Parameters

• node (psyclone.psyir.nodes.Loop) – a Loop node from an AST.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transformations
and validation.

Raises
TransformationError – if the supplied node is not an inner or outer loop.

class psyclone.transformations.KernelImportsToArguments

Transformation that removes any accesses of imported data from the supplied kernel and places them in the caller.
The values/references are then passed by argument into the kernel.

apply(node, options=None)
Convert the imported variables used inside the kernel into arguments and modify the InvokeSchedule to
pass the same imported variables to the kernel call.

Parameters

• node (psyclone.psyGen.CodedKern) – a kernel call.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

property name

Returns
the name of this transformation.

Return type
str

validate(node, options=None)
Check that the supplied node is a valid target for this transformation.

Parameters

• node (psyclone.psyGen.CodedKern) – the PSyIR node to validate.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

Raises

• TransformationError – if the supplied node is not a CodedKern.

• TransformationError – if this transformation is not applied to a Gocean API Invoke.

• TransformationError – if the supplied kernel contains wildcard imports of symbols
from one or more containers (e.g. a USE without an ONLY clause in Fortran).
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class psyclone.transformations.MoveTrans

Provides a transformation to move a node in the tree. For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> ast,invokeInfo=parse("dynamo.F90")
>>> psy=PSyFactory("dynamo0.3").create(invokeInfo)
>>> schedule=psy.invokes.get('invoke_v3_kernel_type').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>>
>>> from psyclone.transformations import MoveTrans
>>> trans=MoveTrans()
>>> trans.apply(schedule.children[0], schedule.children[2],
... options = {"position":"after")
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

Nodes may only be moved to a new location with the same parent and must not break any dependencies otherwise
an exception is raised.

apply(node, location, options=None)
Move the node represented by node before location location (which is also a node) by default and after
if the optional position argument is set to ‘after’.

Parameters

• node (psyclone.psyir.nodes.Node) – the node to be moved.

• location (psyclone.psyir.nodes.Node) – node before or after which the given node
should be moved.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["position"] (str) – either ‘before’ or ‘after’.

Raises

• TransformationError – if the given node is not an instance of psyclone.psyir.
nodes.Node

• TransformationError – if the location is not valid.

property name

Returns the name of this transformation as a string.

validate(node, location, options=None)
validity checks for input arguments.

Parameters

• node (psyclone.psyir.nodes.Node) – the node to be moved.

• location (psyclone.psyir.nodes.Node) – node before or after which the given node
should be moved.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["position"] (str) – either ‘before’ or ‘after’.
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Raises

• TransformationError – if the given node is not an instance of psyclone.psyir.
nodes.Node

• TransformationError – if the location is not valid.

class psyclone.transformations.OMPLoopTrans(omp_directive='do', omp_schedule='auto')
Adds an OpenMP directive to parallelise this loop. It can insert different directives such as “omp do/for”, “omp
parallel do/for”, “omp teams distribute parallel do/for” or “omp loop” depending on the provided parameters. The
OpenMP schedule to use can also be specified, but this will be ignored in case of the “omp loop” (as the ‘schedule’
clause is not valid for this specific directive). The configuration-defined ‘reprod’ parameter also specifies whether
a manual reproducible reproduction is to be used. Note, reproducible in this case means obtaining the same results
with the same number of OpenMP threads, not for different numbers of OpenMP threads.

Parameters

• omp_schedule (str) – the OpenMP schedule to use. Defaults to ‘auto’.

• omp_directive (str) – choose which OpenMP loop directive to use. Defaults to “omp
do”

For example:

>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.nodes import Loop
>>> from psyclone.transformations import OMPLoopTrans, OMPParallelTrans
>>>
>>> psyir = FortranReader().psyir_from_source("""
... subroutine my_subroutine()
... integer, dimension(10, 10) :: A
... integer :: i
... integer :: j
... do i = 1, 10
... do j = 1, 10
... A(i, j) = 0
... end do
... end do
... end subroutine
... """)
>>> loop = psyir.walk(Loop)[0]
>>> omplooptrans1 = OMPLoopTrans(omp_schedule="dynamic",
... omp_directive="paralleldo")
>>> omplooptrans1.apply(loop)
>>> print(FortranWriter()(psyir))
subroutine my_subroutine()
integer, dimension(10,10) :: a
integer :: i
integer :: j

!$omp parallel do default(shared), private(i,j), schedule(dynamic)
do i = 1, 10, 1
do j = 1, 10, 1

a(i,j) = 0
enddo

enddo
(continues on next page)
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(continued from previous page)

!$omp end parallel do

end subroutine my_subroutine

apply(node, options=None)
Apply the OMPLoopTrans transformation to the specified PSyIR Loop.

Parameters

• node (psyclone.psyir.nodes.Node) – the supplied node to which we will apply the
OMPLoopTrans transformation

• options (Optional[Dict[str, Any]]) – a dictionary with options for transformations
and validation.

• options["reprod"] (bool) – indicating whether reproducible reductions should be
used. By default the value from the config file will be used.

property omp_directive

Returns
the type of OMP directive that this transformation will insert.

Return type
str

property omp_schedule

Returns
the OpenMP schedule that will be specified by this transformation.

Return type
str

class psyclone.transformations.OMPMasterTrans

Create an OpenMP MASTER region by inserting directives. The most likely use case for this transformation is
to wrap around task-based transformations. Note that adding this directive requires a parent OpenMP parallel
region (which can be inserted by OMPParallelTrans), otherwise it will produce an error in generation-time.

For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "gocean1.0"
>>> ast, invokeInfo = parse(GOCEAN_SOURCE_FILE, api=api)
>>> psy = PSyFactory(api).create(invokeInfo)
>>>
>>> from psyclone.transformations import OMPParallelTrans, OMPMasterTrans
>>> mastertrans = OMPMasterTrans()
>>> paralleltrans = OMPParallelTrans()
>>>
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>>
>>> # Enclose all of these loops within a single OpenMP
>>> # MASTER region

(continues on next page)
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(continued from previous page)

>>> mastertrans.apply(schedule.children)
>>> # Enclose all of these loops within a single OpenMP
>>> # PARALLEL region
>>> paralleltrans.apply(schedule.children)
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

property name

Returns
the name of this transformation as a string.

Return type
str

class psyclone.transformations.OMPParallelLoopTrans(omp_directive='do', omp_schedule='auto')
Adds an OpenMP PARALLEL DO directive to a loop.

For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> ast, invokeInfo = parse("dynamo.F90")
>>> psy = PSyFactory("dynamo0.3").create(invokeInfo)
>>> schedule = psy.invokes.get('invoke_v3_kernel_type').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>>
>>> from psyclone.transformations import OMPParallelLoopTrans
>>> trans = OMPParallelLoopTrans()
>>> trans.apply(schedule.children[0])
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

apply(node, options=None)
Apply an OMPParallelLoop Transformation to the supplied node (which must be a Loop). In the generated
code this corresponds to wrapping the Loop with directives:

!$OMP PARALLEL DO ...
do ...
...

end do
!$OMP END PARALLEL DO

Parameters

• node (psyclone.f2pygen.DoGen) – the node (loop) to which to apply the transformation.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transformations
and validation.

class psyclone.transformations.OMPParallelTrans

Create an OpenMP PARALLEL region by inserting directives. For example:
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>>> from psyclone.parse.algorithm import parse
>>> from psyclone.parse.utils import ParseError
>>> from psyclone.psyGen import PSyFactory
>>> from psyclone.errors import GenerationError
>>> api = "gocean1.0"
>>> ast, invokeInfo = parse(GOCEAN_SOURCE_FILE, api=api)
>>> psy = PSyFactory(api).create(invokeInfo)
>>>
>>> from psyclone.psyGen import TransInfo
>>> t = TransInfo()
>>> ltrans = t.get_trans_name('GOceanOMPLoopTrans')
>>> rtrans = t.get_trans_name('OMPParallelTrans')
>>>
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>>
>>> # Apply the OpenMP Loop transformation to *every* loop
>>> # in the schedule
>>> for child in schedule.children:
>>> ltrans.apply(child)
>>>
>>> # Enclose all of these loops within a single OpenMP
>>> # PARALLEL region
>>> rtrans.apply(schedule.children)
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

property name

Returns
the name of this transformation as a string.

Return type
str

validate(node_list, options=None)
Perform OpenMP-specific validation checks.

Parameters

• node_list (list of psyclone.psyir.nodes.Node) – list of Nodes to put within parallel
region.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["node-type-check"] (bool) – this flag controls if the type of the nodes en-
closed in the region should be tested to avoid using unsupported nodes inside a region.

Raises
TransformationError – if the target Nodes are already within some OMP parallel region.

class psyclone.transformations.OMPSingleTrans(nowait=False)
Create an OpenMP SINGLE region by inserting directives. The most likely use case for this transformation is to
wrap around task-based transformations. The parent region for this should usually also be a OMPParallelTrans.
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Parameters
nowait (bool) – whether to apply a nowait clause to this transformation. The default value is
False

For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "gocean1.0"
>>> ast, invokeInfo = parse(GOCEAN_SOURCE_FILE, api=api)
>>> psy = PSyFactory(api).create(invokeInfo)
>>>
>>> from psyclone.transformations import OMPParallelTrans, OMPSingleTrans
>>> singletrans = OMPSingleTrans()
>>> paralleltrans = OMPParallelTrans()
>>>
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>>
>>> # Enclose all of these loops within a single OpenMP
>>> # SINGLE region
>>> singletrans.apply(schedule.children)
>>> # Enclose all of these loops within a single OpenMP
>>> # PARALLEL region
>>> paralleltrans.apply(schedule.children)
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

apply(node_list, options=None)
Apply the OMPSingleTrans transformation to the specified node in a Schedule.

At code-generation time this node must be within (i.e. a child of) an OpenMP PARALLEL region. Code
generation happens when OMPLoopDirective.gen_code() is called, or when the PSyIR tree is given to
a backend.

If the keyword “nowait” is specified in the options, it will cause a nowait clause to be added if it is set to
True, otherwise no clause will be added.

Parameters

• node_list ((a list of) psyclone.psyir.nodes.Node) – the supplied node or node list
to which we will apply the OMPSingleTrans transformation

• options (Optional[Dict[str, Any]]) – a list with options for transformations and
validation.

• options["nowait"] (bool) – indicating whether or not to use a nowait clause on this
single region.

property name

Returns
the name of this transformation.

Return type
str
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property omp_nowait

Returns
whether or not this Single region uses a nowait clause to remove the end barrier.

Return type
bool

class psyclone.transformations.ParallelRegionTrans

Base class for transformations that create a parallel region.

apply(target_nodes, options=None)
Apply this transformation to a subset of the nodes within a schedule - i.e. enclose the specified Loops in
the schedule within a single parallel region.

Parameters

• target_nodes ((list of) psyclone.psyir.nodes.Node) – a single Node or a list of
Nodes.

• options (Optional[Dict[str, Any]]) – a dictionary with options for transforma-
tions.

• options["node-type-check"] (bool) – this flag controls if the type of the nodes en-
closed in the region should be tested to avoid using unsupported nodes inside a region.

abstract property name

Returns the name of this transformation as a string.

validate(node_list, options=None)
Check that the supplied list of Nodes are eligible to be put inside a parallel region.

Parameters

• node_list (list) – list of nodes to put into a parallel region

• options – a dictionary with options for transformations. :type options: Optional[Dict[str,
Any]]

• options["node-type-check"] (bool) – this flag controls whether or not the type of
the nodes enclosed in the region should be tested to avoid using unsupported nodes inside
a region.

Raises

• TransformationError – if the supplied node is an InvokeSchedule rather than being
within an InvokeSchedule.

• TransformationError – if the supplied nodes are not all children of the same parent
(siblings).
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21.4 The psyGen module

This module provides generic support for PSyclone’s PSy code optimisation and generation. The classes in this method
need to be specialised for a particular API and implementation.

class psyclone.psyGen.PSy(invoke_info)
Base class to help manage and generate PSy code for a single algorithm file. Takes the invocation information
output from the function parse.algorithm.parse() as its input and stores this in a way suitable for optimi-
sation and code generation.

Parameters
invoke_info (psyclone.parse.algorithm.FileInfo) – An object containing the required
invocation information for code optimisation and generation. Produced by the function parse.
algorithm.parse().

For example:

>>> from psyclone.parse.algorithm import parse
>>> ast, info = parse("argspec.F90")
>>> from psyclone.psyGen import PSyFactory
>>> api = "..."
>>> psy = PSyFactory(api).create(info)
>>> print(psy.gen)

property container

Returns
the container associated with this PSy object

Return type
psyclone.psyir.nodes.Container

abstract property gen

Abstract base class for code generation function.

Returns
root node of generated Fortran AST.

Return type
psyclone.psyir.nodes.Node

property invokes

Returns
the list of invokes.

Return type
psyclone.psyGen.Invokes or derived class

property name

Returns
the name of the PSy object.

Return type
str
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21.5 The alg_gen module

This module provides the Alg class and supporting exception-handling to translate the original algorithm file into one
that can be compiled and linked with the generated PSy code.

class psyclone.alg_gen.Alg(parse_tree, psy, invoke_name='invoke')
Generate a modified algorithm code for a single algorithm specification. Takes the parse tree of the algorithm
specification output from the function psyclone.parse.algorithm.parse() and an instance of the psyGen.
PSy class as input. The latter allows consistent names to be generated between the algorithm (callng) and psy
(callee) layers.

For example:

>>> from psyclone.algorithm.parse import parse
>>> parse_tree, info = parse("argspec.F90")
>>> from psyclone.psyGen import PSy
>>> psy = PSy(info)
>>> from psyclone.alg_gen import Alg
>>> alg = Alg(parse_tree, psy)
>>> print(alg.gen)

Parameters

• parse_tree (fparser.two.utils.Base) – an object containing a parse tree of the al-
gorithm specification which was produced by the function psyclone.parse.algorithm.
parse(). Assumes the algorithm will be parsed by fparser2 and expects a valid program
unit, program, module, subroutine or function.

• psy (psyclone.psyGen.PSy) – an object containing information about the PSy layer.

• invoke_name (str) – the name that the algorithm layer uses to indicate an invoke call. This
is an optional argument that defaults to the name “invoke”.

property gen

Modifies and returns the algorithm code. ‘invoke’ calls are replaced with calls to the corresponding PSy-
layer routines and the USE statements for the kernels that were referenced by each ‘invoke’ are removed.

Returns
the modified algorithm specification as an fparser2 parse tree.

Return type
fparser.two.utils.Base

Raises
NoInvokesError – if no ‘invoke()’ calls are found.
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21.6 The line_length module

Provides support for breaking long fortran lines into smaller ones to allow the code to conform to the maximum line
length limits (132 for f90 free format is the default)

class psyclone.line_length.FortLineLength(line_length=132)
This class take a free format fortran code as a string and line wraps any lines that are larger than the specified
line length

property length

returns the maximum allowed line length

long_lines(fortran_in)
returns true if at least one of the lines in the input code is longer than the allowed length. Otherwise returns
false

process(fortran_in)
Processes unlimited line-length Fortran code into Fortran code with long lines wrapped appropriately.

Parameters
fortran_in (str) – Fortran code to be line wrapped.

Returns
line wrapped Fortran code.

Return type
str
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TWENTYTWO

PSYDATA API

PSyclone provides transformations that will insert callbacks to an external library at runtime. These callbacks allow
third-party libraries to access data structures at specified locations in the code. The PSyclone wrappers to external
libraries are provided with the PSyclone installation. Some example use cases are:

Profiling:
By inserting callbacks before and after a region of code, performance measurements can be added. PSyclone
provides wrapper libraries for some common performance profiling tools, see Profiling for details.

Kernel Data Extraction:
PSyclone provides the ability to add callbacks that provide access to all input variables before, and output vari-
ables after a kernel invocation. This can be used to automatically create tests for a kernel, or to write a stand-alone
driver that just calls one kernel, which can be used for performance tuning. Two example libraries that extract
input and output data into either a Fortran binary or a NetCDF file are included with PSyclone (see Extraction
Libraries).

Access Verification:
The callbacks can be used to make sure a field declared as read-only is not modified during a kernel call (either
because of an incorrect declaration, or because memory is overwritten). The implementation included in PSy-
clone uses a simple 64-bit checksum to detect changes to a field (and scalar values). See Read-Only Verification
for details.

NAN Test:
The callbacks can be used to make sure that all floating point input and output parameters of a kernel are not a
NaN (not-a-number) or infinite. See NAN Test for the full description.

In-situ Visualisation:
By giving access to output fields of a kernel, an in-situ visualisation library can be used to plot fields while a
(PSyclone-processed) application is running. There is no example library available at this stage, but the API has
been designed with this application in mind.

The PSyData API should be general enough to allow these and other applications to be developed and used.

PSyclone provides transformations that will insert callbacks to the PSyData API, for example ProfileTrans,
GOceanExtractTrans and LFRicExtractTrans. A user can develop additional transformations and correspond-
ing runtime libraries for additional functionality. Refer to psy_data for full details about the PSyData API.
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22.1 Read-Only Verification

The PSyData interface is being used to verify that read-only variables in a kernel are not overwritten. The
ReadOnlyVerifyTrans (in psyir.transformations.read_only_verify_trans, or the Transformation Refer-
ence Guide) uses the dependency analysis to determine all read-only variables (i.e. arguments declared to be read-only
in metadata, most implicit arguments in LFRic, grid properties in GOcean). A simple 64-bit checksum is then com-
puted for all these arguments before a kernel call, and compared with the checksum after the kernel call. Any change
in the checksum causes a message to be printed at runtime, e.g.:

--------------------------------------
Double precision field b_fld has been modified in main : update
Original checksum: 4611686018427387904
New checksum: 4638355772470722560
--------------------------------------

The transformation that adds read-only-verification to an application can be applied for both the LFRic and GOcean
API - no API-specific transformations are required. Below is an example that searches for each loop in an invoke (which
will always surround kernel calls) and applies the transformation to each one. This code has been successfully used as
a global transformation with the LFRic Gravity Wave miniapp (the executable is named gravity_wave):

def trans(psy):
from psyclone.psyir.transformations import ReadOnlyVerifyTrans
from psyclone.psyir.nodes import Loop
read_only_verify = ReadOnlyVerifyTrans()

for invoke in psy.invokes.invoke_list:
schedule = invoke.schedule
for node in schedule:

if isinstance(node, Loop):
read_only_verify.apply(node)

return psy

Besides the transformation, a library is required to do the actual verification at runtime. There are two implementations
of the read-only-verification library included in PSyclone: one for LFRic, and one for GOcean. Both libraries support
the environment variable PSYDATA_VERBOSE. This can be used to control how much output is generated by the read-
only-verification library at runtime. If the variable is not specified or has the value ‘0’, warnings will only be printed if
checksums change. If it is set to ‘1’, a message will be printed before and after each kernel call that is checked. If the
variable is set to ‘2’, it will additionally print the name of each variable that is checked.

22.1.1 Read-Only Verification Library for LFRic

This library is contained in lib/read_only/lfric and it must be compiled before compiling any LFRic-based appli-
cation that uses read-only verification. Compiling this library requires access to the LFRic infrastructure library (since
it must implement a generic interface for e.g. the LFRic field class).

The Makefile uses the variable LFRIC_INF_DIR to point to the location where LFRic’s field_mod and
integer_field_mod have been compiled. It defaults to the path to location of the pared-down LFRic infrastruc-
ture located in a clone of PSyclone repository, <PSYCLONEHOME>/src/psyclone/tests/test_files/dynamo0p3/
infrastructure, but this will certainly need to be changed for any user (for instance with PSyclone installation). The
LFRic infrastructure library is not used in linking the verification library. The application which uses the read-only-
verification library needs to link in the infrastructure library anyway.

Compilation of the library is done by invoking make and setting the required variables:
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make LFRIC_INF_DIR=some_path F90=ifort F90FLAGS="--some-flag"

This will create a library called lib_read_only.a.

22.1.2 Read-Only-Verification Library for GOcean

This library is contained in the lib/read_only/dl_esm_inf directory and it must be compiled before linking any
GOcean-based application that uses read-only verification. Compiling this library requires access to the GOcean in-
frastructure library (since it must implement a generic interface for e.g. the dl_esm_inf r2d_field class).

The Makefile uses the variable GOCEAN_INF_DIR to point to the location where dl_esm_inf’s field_mod has been
compiled. It defaults to the relative path to location of the dl_esm_inf version included in PSyclone repository as
a Git submodule, <PSYCLONEHOME>/external/dl_esm_inf/finite_difference/src. It can be changed to a
user-specified location if required (for instance with the PSyclone installation).

The dl_esm_inf library is not used in linking the verification library. The application which uses the read-only-
verification library needs to link in the infrastructure library anyway.

Compilation of the library is done by invoking make and setting the required variables:

make GOCEAN_INF_DIR=some_path F90=ifort F90FLAGS="--some-flag"

This will create a library called lib_read_only.a. An executable example for using the GOcean read-only-
verification library is included in examples/gocean/eg5/readonly, see Example 5.3: Read-only-verification.

22.2 NAN Test

This transformation can be used for both LFRic and GOcean APIs. It will test all input and output parameters of a
kernel to make sure they are not NaN or infinite. If they are, an error message like the following is printed, but the
program is not aborted:

PSyData: Variable a_fld has the invalid value Inf at index/indices 1 1 in module 'main'␣
→˓region 'update'.

Is uses the function IEEE_IS_FINITE from the ieee_arithmetic module for this test. Note that only floating point
numbers will be tested. Integer numbers do not have a bit pattern for ‘infinity’ or NaN.

The runtime libraries for GOcean and LFRic are based on a jinja-template contained in the directory <PSYCLONEHOME>/
lib/nan_test. The respective API-specific libraries map the internal field structures to Fortran basic types and call
the functions from the base class to handle those.

The relevant libraries for the LFRic and GOcean APIs are contained in the lib/nan_test/lfric
and``lib/nan_test/dl_esm_inf`` subdirectories, respectively. For more information on how to build and link
these libraries, please refer to the relevant README.md files.

An executable example for using the LFRic read-only-verification library is included in tutorial/practicals/
LFRic/building_code/4_psydata directory, see this link for more information.
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CHAPTER

TWENTYTHREE

PROFILING

PSyclone has the ability to define regions that can be profiled with various performance measurement tools. The
profiling can be enabled automatically using command line parameters like:

psyclone --profile kernels ...

Or, for finer-grained control, it may be applied via a profiling transformation within a transformation script.

PSyclone can be used with a variety of existing profiling tools. It currently supports dl_timer, TAU, Dr Hook, the
NVIDIA GPU profiling tools and it comes with a simple stand-alone timer library. The PSyData API (see also the
Developer Guide) is utilised to implement wrapper libraries that connect the PSyclone application to the profiling
libraries. Certain adjustments to the application’s build environment are required:

• The compiler needs to be able to find the module files for the wrapper of the selected profiling library.

• The application needs to be linked with the wrapper library that interfaces between the PSyclone API and the
tool-specific API.

• The tool-specific library also needs to be linked in.

It is the responsibility of the user to supply the corresponding compiler command line options when building the
application that incorporates the PSyclone-generated code.

23.1 Interface to Third Party Profiling Tools

PSyclone comes with wrapper libraries to support usage of TAU, Dr Hook, dl_timer, NVTX (NVIDIA Tools Extension
library), and a simple non-thread-safe timing library. Support for further profiling libraries will be added in the future.
To compile the wrapper libraries, change into the directory lib/profiling of PSyclone and type make to compile all
wrappers. If only some of the wrappers are required, you can either use make wrapper-name (e.g. make drhook),
or change into the corresponding directory and use make. The corresponding README.md files contain additional
parameters that can be set in order to find third party profiling tools.

Below are short descriptions of each of the various wrapper libraries that come with PSyclone:

lib/profiling/template
This is a simple library that just prints out the name as regions are entered and exited. It could act as a template
to develop new wrapper libraries, hence its name.

lib/profiling/simple_timing
This is a simple, stand-alone library that uses Fortran system calls to measure the execution time, and reports
average, minimum and maximum execution time for all regions. It is not MPI aware (i.e. it will just report
independently for each MPI process), and not thread-safe.

lib/profiling/dl_timer
This wrapper uses the apeg-dl_timer library. In order to use this wrapper, you must download and install the
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dl_timer library from https://bitbucket.org/apeg/dl_timer. This library has various compile-time op-
tions and may be built with MPI or OpenMP support. Additional link options might therefore be required (e.g.
enabling OpenMP, or linking with MPI).

lib/profiling/tau
This wrapper uses TAU profiling and tracing toolkit. It can be downloaded from https://www.cs.uoregon.
edu/research/tau.

lib/profiling/drhook
This wrapper uses the Dr Hook library. You need to contact ECMWF to obtain a copy of Dr Hook.

lib/profiling/nvidia
This is a wrapper library that maps the PSyclone profiling API to the NVIDIA Tools Extension library (NVTX).
This library is available from https://developer.nvidia.com/cuda-toolkit.

lib/profiling/lfric_timer
This profile wrapper uses the timer functionality provided by LFRic, and it comes in two different versions:

• libpsy_lfric_timer.a This library just contains the PSyData wrapper, but not the actual timer code. It
must therefore be linked with the LFRic infrastructure library. It is meant to be used by LFRic only.

• libpsy_lfric_timer_standalone.a This library contains the LFRic timer object and its dependencies.
It can be used standalone (i.e. without LFRic) with any program. A runnable example using a GOcean code
is included in examples/gocean/eg5/profile.

The LFRic timer writes its output to a file called timer.txt in the current directory, and will overwrite this file
if it should already exist.

Any user can create similar wrapper libraries for other profiling tools by providing a corresponding Fortran module.
The functions that need to be implemented are described in the developer’s guide (psy_data).

Most libraries in lib/profiling need to be linked in with the corresponding 3rd party profiling tool, or use a compiler
wrapper provided by the tool which will provide the required additional compiler parameters. The exceptions are
the template and simple_timing libraries, which are stand alone. The profiling example in examples/gocean/eg5/
profile can be used with any of the wrapper libraries (except nvidia) to see how they work.

23.2 Required Modifications to the Program

In order to guarantee that any profiling library is properly initialised, PSyclone’s profiling wrappers utilise two additional
function calls that the user must manually insert into the program:

23.2.1 profile_PSyDataInit()

This method needs to be called once to initialise the profiling tool. At this stage this call is not automatically inserted
by PSyclone, so it is the responsibility of the user to add the call to an appropriate location in the application:

use profile_psy_data_mod, only : profile_PSyDataInit
...
call profile_PSyDataInit()

The “appropriate” location might depend on the profiling library used. For example, it might be necessary to invoke
this before or after a call to MPI_Init().
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23.2.2 profile_PSyDataShutdown()

At the end of the program the function profile_PSyDataShutdown() must be called. It will make sure that the
measurements are printed, files are flushed, and that the profiling tool is closed correctly. Again at this stage it is
necessary to manually insert the call at an appropriate location:

use profile_psy_data_mod, only : profile_PSyDataShutdown
...
call profile_PSyDataShutdown()

And again the appropriate location might depend on the profiling library used (e.g. before or after a call to
MPI_Finalize()).

23.3 Profiling Command-Line Options

PSyclone offers two command line options to automatically instrument code with profiling regions. It can create profile
regions around a full invoke (including all kernel calls in this invoke), and/or around each individual kernel.

The option --profile invokes will automatically add calls to start and end a profile region at the beginning and end
of every invoke subroutine created by PSyclone. All kernels called within this invoke subroutine will be included in
the profiled region.

The option --profile kernels will surround each outer loop created by PSyclone with start and end profiling calls.

Note: In some APIs (for example LFRic when using distributed memory) additional minor code might get included
in a profiled kernel section, for example setDirty() calls (expensive calls like HaloExchange are excluded).

Note: If the kernels option is used in combination with an optimisation script that introduces OpenACC then profiling
calls are automatically excluded from within OpenACC regions (since the PSyData wrappers are not compiled for GPU
execution).

Note: It is still the responsibility of the user to manually add the calls to profile_PSyDataInit and
profile_PSyDataShutdown to the code base (see Required Modifications to the Program).

PSyclone will modify the schedule of each invoke to insert the profiling regions. Below we show an example of
a schedule created when instrumenting invokes - all children of a Profile-Node will be part of the profiling region,
including all loops created by PSyclone and all kernel calls (note that for brevity, the nodes holding the loop bounds
have been omitted for all but the first loop):

GOInvokeSchedule[invoke='invoke_1']
0: [Profile]

Schedule[]
0: Loop[type='outer',field_space='go_cu',it_space='go_internal_pts']

Literal[value:'2']
Literal[value:'jstop']
Literal[value:'1']
Schedule[]

0: Loop[type='inner',field_space='go_cu',
it_space='go_internal_pts']

(continues on next page)
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...
Schedule[]

0: CodedKern compute_unew_code(unew_fld,uold_fld,z_fld,
cv_fld,h_fld,tdt,dy) [module_inline=False]

1: Loop[type='outer',field_space='cv',it_space='internal_pts']
...
Schedule[]

0: Loop[type='inner',field_space='cv',it_space='internal_pts']
...
Schedule[]

0: CodedKern compute_vnew_code(vnew_fld,vold_fld,z_fld,
cu_fld,h_fld,tdt,dy) [module_inline=False]

2: Loop[type='outer',field_space='ct',it_space='internal_pts']
...
Schedule[]

0: Loop[type='inner',field_space='ct',it_space='internal_pts']
...
Schedule[]

0: CodedKern compute_pnew_code(pnew_fld,pold_fld,cu_fld,
cv_fld,tdt,dx,dy) [module_inline=False]

And now the same schedule when instrumenting kernels. In this case each loop nest and kernel call will be contained
in a separate region:

GOInvokeSchedule[invoke='invoke_1']
0: [Profile]

Schedule[]
0: Loop[type='outer',field_space='go_cu',it_space='go_internal_pts']

...
Schedule[]

0: Loop[type='inner',field_space='go_cu',
it_space='go_internal_pts']

...
Schedule[]

0: CodedKern compute_unew_code(unew_fld,uold_fld,z_fld,
cv_fld,h_fld,tdt,dy) [module_inline=False]

1: [Profile]
Schedule[]

0: Loop[type='outer',field_space='go_cv',it_space='go_internal_pts']
...
Schedule[]

0: Loop[type='inner',field_space='go_cv',
it_space='go_internal_pts']
...
Schedule[]

0: CodedKern compute_vnew_code(vnew_fld,vold_fld,z_fld,
cu_fld,h_fld,tdt,dy) [module_inline=False]

2: [Profile]
Schedule[]

0: Loop[type='outer',field_space='go_ct',it_space='go_internal_pts']
...
Schedule[]

(continues on next page)
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0: Loop[type='inner',field_space='go_ct',
it_space='go_internal_pts']

...
Schedule[]

0: CodedKern compute_pnew_code(pnew_fld,pold_fld,
cu_fld,cv_fld,tdt,dx,dy) [module_inline=False]

Both options can be specified at the same time:

GOInvokeSchedule[invoke='invoke_1']
0: [Profile]

Schedule[]
0: [Profile]

Schedule[]
0: Loop[type='outer',field_space='go_cu',

it_space='go_internal_pts']
...
Schedule[]

0: Loop[type='inner',field_space='go_cu',
it_space='go_internal_pts']

...
Schedule[]

0: CodedKern compute_unew_code(unew_fld,uold_fld,
...) [module_inline=False]

1: [Profile]
Schedule[]

0: Loop[type='outer',field_space='go_cv',
it_space='go_internal_pts']

...
Schedule[]

0: Loop[type='inner',field_space='go_cv',
it_space='go_internal_pts']
...
Schedule[]

0: CodedKern compute_vnew_code(vnew_fld,vold_fld,
...) [module_inline=False]

2: [Profile]
Schedule[]

0: Loop[type='outer',field_space='go_ct',
it_space='go_internal_pts']

...
Schedule[]

0: Loop[type='inner',field_space='go_ct',
it_space='go_internal_pts']

...
Schedule[]

0: CodedKern compute_pnew_code(pnew_fld,pold_fld,
...) [module_inline=False]
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23.4 Profiling in Scripts - ProfileTrans

The greatest flexibility is achieved by using the profiler transformation explicitly in a transformation script. The script
takes either a single PSyIR Node or a list of PSyIR Nodes as argument, and will insert a Profile Node into the PSyIR,
with the specified nodes as children. At code creation time the listed children will all be enclosed in one profile region.
As an example:

from psyclone.psyir.transformations import ProfileTrans

p_trans = ProfileTrans()
schedule = psy.invokes.get('invoke_0').schedule
print(schedule.view())

# Enclose some children within a single profile region
p_trans.apply(schedule.children[1:3])
print(schedule.view())

The profiler transformation also allows the profile name to be set explicitly, rather than being automatically created
(see Naming Profiling Regions for details). This allows for potentially more intuitive names or finer grain control over
profiling (as particular regions could be provided with the same profile names). For example:

invoke = psy.invokes.invoke_list[0]
schedule = invoke.schedule
profile_trans = ProfileTrans()
# Use the actual psy-layer module and subroutine names.
options = {"region_name": (psy.name, invoke.name)}
profile_trans.apply(schedule.children, options=options)
# Use own names and repeat for different regions to aggregate profile.
options = {"region_name": ("my_location", "my_region")}
profile_trans.apply(schedule[0].children[1:2], options=options)
profile_trans.apply(schedule[0].children[5:7], options=options)

Warning: If “region_name” is misspelt in the options dictionary then the option will be silently ignored. This is
true for all options. Issue #613 captures this problem.

Warning: It is the responsibility of the user to make sure that a profile region is only created inside a multi-threaded
region if the profiling library used is thread-safe!

23.5 Naming Profiling Regions

A profile region derives its name from two components:

module_name
A string identifying the psy-layer containing this profile node.

region_name
A string identifying the invoke containing this profile node and its location within the invoke (where necessary).

By default PSyclone will generate appropriate names to uniquely determine a particular region. Since those names can
be somewhat cryptic, alternative names can be specified by the user when adding profiling via a transformation script,
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see Passing Parameters From the User to the Node Constructor.

The automatic name generation depends on the API according to the following rules:

For the NEMO API ,

• the module_name string is set to the name of the parent function/subroutine/program. This name is unique as
Fortran requires these names to be unique within a program.

• the region_name is set to an r (standing for region) followed by an integer which uniquely identifies the profile
within the parent function/subroutine/program (based on the profile node’s position in the PSyIR representation
relative to any other profile nodes).

For the LFRic (Dynamo0.3) and GOcean1.0 APIs,

• the module_name string is set to the module name of the generated PSy-layer. This name should be unique by
design (otherwise module names would clash when compiling).

• the region_name is set to the name of the invoke in which it resides, followed by a : and a kernel name if the
profile region contains a single kernel, and is completed by :r (standing for region) followed by an integer which
uniquely identifies the profile within the invoke (based on the profile node’s position in the PSyIR representation
relative to any other profile nodes). For example:

InvokeSchedule[invoke='invoke_0', dm=True]
0: Profile[]

Schedule[]
0: Profile[]

Schedule[]
0: HaloExchange[field='f2', type='region', depth=1,

check_dirty=True]
1: HaloExchange[field='m1', type='region', depth=1,

check_dirty=True]
2: HaloExchange[field='m2', type='region', depth=1,

check_dirty=True]
1: Profile[]

Schedule[]
0: Loop[type='', field_space='w1', it_space='cells',

upper_bound='cell_halo(1)']
Literal[value:'1', DataType.INTEGER]
Literal[value:'mesh%get_last_halo_cell(1)',

DataType.INTEGER]
Literal[value:'1', DataType.INTEGER]
Schedule[]

0: CodedKern testkern_code(a,f1,f2,m1,m2)
[module_inline=False]

1: Profile[]
Schedule[]

0: Loop[type='', field_space='w1',
it_space='cells',
upper_bound='cell_halo(1)']

Literal[value:'1', DataType.INTEGER]
Literal[value:'mesh%get_last_halo_cell(1)',

DataType.INTEGER]
Literal[value:'1', DataType.INTEGER]
Schedule[]

0: CodedKern testkern_code(a,f1,f2,m1,m2)
[module_inline=False]

(continues on next page)
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2: Loop[type='', field_space='w1', it_space='cells',
upper_bound='cell_halo(1)']

Literal[value:'1', DataType.INTEGER]
Literal[value:'mesh%get_last_halo_cell(1)', DataType.INTEGER]
Literal[value:'1', DataType.INTEGER]
Schedule[]

0: CodedKern testkern_qr_code(f1,f2,m1,a,m2,istp)
[module_inline=False]

This is the code created for this example:

MODULE container
CONTAINS
SUBROUTINE invoke_0(a, f1, f2, m1, m2, istp, qr)
...
CALL psy_data_3%PreStart("multi_functions_multi_invokes_psy", "invoke_0:r0", &

0, 0)
CALL psy_data%PreStart("multi_functions_multi_invokes_psy", "invoke_0:r1", 0, 0)
IF (f2_proxy%is_dirty(depth=1)) THEN
CALL f2_proxy%halo_exchange(depth=1)

END IF
IF (m1_proxy%is_dirty(depth=1)) THEN
CALL m1_proxy%halo_exchange(depth=1)

END IF
IF (m2_proxy%is_dirty(depth=1)) THEN
CALL m2_proxy%halo_exchange(depth=1)

END IF
CALL psy_data%PreEnd()
CALL psy_data_1%PreStart("multi_functions_multi_invokes_psy", "invoke_0:r2", &

0, 0)
DO cell=1,mesh%get_last_halo_cell(1)
CALL testkern_code(...)

END DO
...
CALL psy_data_2%PreStart("multi_functions_multi_invokes_psy", &

"invoke_0:testkern_code:r3", 0, 0)
DO cell=1,mesh%get_last_halo_cell(1)
CALL testkern_code(...)

END DO
...
CALL psy_data_2%PostEnd()
CALL psy_data_1%PostEnd()
...
DO cell=1,mesh%get_last_halo_cell(1)
CALL testkern_qr_code(...)

END DO
...
CALL psy_data_3%PostEnd()
...

END SUBROUTINE invoke_0
END MODULE container
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TWENTYFOUR

PSY KERNEL EXTRACTOR (PSYKE)

24.1 Introduction

PSyclone has the ability to define regions of a PSyclone-conformant code to be extracted and run as a stand-alone
application. This ability, called PSyKE (PSy Kernel Extractor), can be useful for benchmarking parts of a model, such
as LFRic, without the need for using its infrastructure.

24.1.1 Mechanism

The code marked for extraction can be (subject to Restrictions):

• One or more Nodes in an Invoke (e.g. Loops containing Kernel or Built-In calls, a Directive enclosing one or
more Loops) or

• The entire Invoke (extraction applied to all Nodes).

The basic mechanism of code extraction is through applying the ExtractTrans transformation to selected
Nodes. This transformation is further sub-classed into API-specific implementations, LFRicExtractTrans and
GOceanExtractTrans. Both sub-classed transformations insert an instance of the ExtractNode object into the
Schedule of a specific Invoke. All Nodes marked for extraction become children of the ExtractNode.

The ExtractNode class uses the dependency analysis to detect which variables are input-, and which ones are output-
parameters. The lists of variables are then passed to the PSyDataNode, which is the base class of any ExtractNode
(details of the PSyDataNode can be found in psy_data). This node then creates the actual code, as in the following
LFRic example:

! ExtractStart
!
CALL extract_psy_data%PreStart("testkern_mod", "testkern_code", 4, 2)
CALL extract_psy_data%PreDeclareVariable("a", a)
CALL extract_psy_data%PreDeclareVariable("f2", f2)
CALL extract_psy_data%PreDeclareVariable("m1", m1)
CALL extract_psy_data%PreDeclareVariable("m2", m2)
CALL extract_psy_data%PreDeclareVariable("map_w1", map_w1)
...
CALL extract_psy_data%PreDeclareVariable("undf_w3", undf_w3)
CALL extract_psy_data%PreDeclareVariable("f1_post", f1)
CALL extract_psy_data%PreDeclareVariable("cell_post", cell)
CALL extract_psy_data%PreEndDeclaration
CALL extract_psy_data%ProvideVariable("a", a)
CALL extract_psy_data%ProvideVariable("f2", f2)
CALL extract_psy_data%ProvideVariable("m1", m1)

(continues on next page)
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CALL extract_psy_data%ProvideVariable("m2", m2)
CALL extract_psy_data%ProvideVariable("map_w1", map_w1)
...
CALL extract_psy_data%ProvideVariable("undf_w3", undf_w3)
CALL extract_psy_data%PreEnd
DO cell=1,f1_proxy%vspace%get_ncell()
!
CALL testkern_code(nlayers, a, f1_proxy%data, f2_proxy%data, &

m1_proxy%data, m2_proxy%data, ndf_w1, undf_w1, &
map_w1(:,cell), ndf_w2, undf_w2, map_w2(:,cell), ndf_w3, &
undf_w3, map_w3(:,cell))

END DO
CALL extract_psy_data%PostStart
CALL extract_psy_data%ProvideVariable("cell_post", cell)
CALL extract_psy_data%ProvideVariable("f1_post", f1)
CALL extract_psy_data%PostEnd
!
! ExtractEnd

The PSyData API relies on generic Fortran interfaces to provide the field-type-specific implementations of the
ProvideVariable for different types. This means that a different version of the external PSyData library that PSyKE
uses must be supplied for each PSyclone API.

24.1.2 Restrictions

Code extraction can be applied to unoptimised or optimised code. There are restrictions that check for correctness of
optimising transformations when extraction is applied, as well as restrictions that eliminate dependence on the specific
model infrastructure.

General

This group of restrictions is enforced irrespective of whether optimisations are used or not.

• Extraction can be applied to a single Node or a list of Nodes in a Schedule. For the latter, Nodes in the list must
be consecutive children of the same parent Schedule.

• Extraction cannot be applied to an ExtractNode or a Node list that already contains one (otherwise we would
have an extract region within another extract region).

• A Kernel or a Built-In call cannot be extracted without its parent Loop.

Distributed memory

As noted in the Distributed Memory section, support for distributed memory in PSyclone is currently limited to the
LFRic (Dynamo0.3) API . Since the implementation generates calls to LFRic infrastructure (e.g. runtime checks for
status of field halos), code extraction is not allowed when distributed memory is enabled.
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Shared memory and API-specific

The ExtractTrans transformation cannot be applied to:

• A Loop without its parent Directive,

• An orphaned Directive (e.g. OMPDoDirective, ACCLoopDirective) without its parent Directive (e.g. ACC or
OMP Parallel Directive),

• A Loop over cells in a colour without its parent Loop over colours in the LFRic API,

• An inner Loop without its parent outer Loop in the GOcean1.0 API.

24.2 Use

The code extraction is currently enabled by utilising a transformation script (see Script section for more details).

For example, the transformation script which extracts the first Kernel call in LFRic API test example 15.1.
2_builtin_and_normal_kernel_invoke.f90 would be written as:

from psyclone.domain.lfric.transformations import LFRicExtractTrans

# Get instance of the ExtractRegionTrans transformation
etrans = LFRicExtractTrans()

# Get Invoke and its Schedule
invoke = psy.invokes.get("invoke_0")
schedule = invoke.schedule

# Apply extract transformation to the selected Node
etrans.apply(schedule.children[2])
print(schedule.view())

and called as:

> psyclone -nodm -s ./extract_single_node.py \
<path-to-example>/15.1.2_builtin_and_normal_kernel_invoke.f90

PSyclone modifies the Schedule of the selected invoke_0:

Schedule[invoke='invoke_0' dm=False]
0: Loop[type='dofs',field_space='any_space_1',it_space='dofs',

upper_bound='ndofs']
Literal[value:'NOT_INITIALISED']
Literal[value:'NOT_INITIALISED']
Literal[value:'1']
Schedule[]

0: BuiltIn setval_c(f5,0.0)
1: Loop[type='dofs',field_space='any_space_1',it_space='dofs',

upper_bound='ndofs']
...
Schedule[]

0: BuiltIn setval_c(f2,0.0)
2: Loop[type='',field_space='w2',it_space='cells', upper_bound='ncells']

...
(continues on next page)
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Schedule[]
0: CodedKern testkern_code_w2_only(f3,f2) [module_inline=False]

3: Loop[type='',field_space='wtheta',it_space='cells', upper_bound='ncells']
...
Schedule[]

0: CodedKern testkern_wtheta_code(f4,f5) [module_inline=False]
4: Loop[type='',field_space='w1',it_space='cells', upper_bound='ncells']

...
Schedule[]

0: CodedKern testkern_code(scalar,f1,f2,f3,f4) [module_inline=False]

to insert the extract region. As shown below, all children of an ExtractNode will be part of the region:

Schedule[invoke='invoke_0' dm=False]
0: Loop[type='dofs',field_space='any_space_1',it_space='dofs',

upper_bound='ndofs']
...
Schedule[]

0: BuiltIn setval_c(f5,0.0)
1: Loop[type='dofs',field_space='any_space_1',it_space='dofs',

upper_bound='ndofs']
...
Schedule[]

0: BuiltIn setval_c(f2,0.0)
2: Extract

Schedule[]
0: Loop[type='',field_space='w2',it_space='cells', upper_bound='ncells']

...
Schedule[]

0: CodedKern testkern_code_w2_only(f3,f2) [module_inline=False]
3: Loop[type='',field_space='wtheta',it_space='cells', upper_bound='ncells']

...
Schedule[]

0: CodedKern testkern_wtheta_code(f4,f5) [module_inline=False]
4: Loop[type='',field_space='w1',it_space='cells', upper_bound='ncells']

...
Schedule[]

0: CodedKern testkern_code(scalar,f1,f2,f3,f4) [module_inline=False]

To extract multiple Nodes, ExtractTrans can be applied to the list of Nodes (subject to General restrictions above):

# Apply extract transformation to the selected Nodes
etrans.apply(schedule.children[1:3])

This modifies the above Schedule as:

...
Extract

Schedule[]
0: Loop[type='dofs',field_space='any_space_1',it_space='dofs',

upper_bound='ndofs']
...
Schedule[]

(continues on next page)
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0: BuiltIn setval_c(f2,0.0)
1: Loop[type='',field_space='w2',it_space='cells', upper_bound='ncells']

...
Schedule[]

0: CodedKern testkern_code_w2_only(f3,f2) [module_inline=False]
...

As said above, extraction can be performed on optimised code. For example, the following example transformation
script first adds !$OMP PARALLEL DO directive and then extracts the optimised code in LFRic API test example 15.
1.2_builtin_and_normal_kernel_invoke.f90:

from psyclone.domain.lfric.transformations import LFRicExtractTrans
from psyclone.transformations import DynamoOMPParallelLoopTrans

# Get instances of the transformations
etrans = LFRicExtractTrans()
otrans = DynamoOMPParallelLoopTrans()

# Get Invoke and its Schedule
invoke = psy.invokes.get("invoke_0")
schedule = invoke.schedule

# Add OMP PARALLEL DO directives
otrans.apply(schedule.children[1])
otrans.apply(schedule.children[2])
# Apply extract transformation to the selected Nodes
etrans.apply(schedule.children[1:3])
print(schedule.view())

The generated code is now:

! ExtractStart
CALL extract_psy_data%PreStart("unknown-module", "setval_c", 0, 4)
CALL extract_psy_data%PreDeclareVariable("cell_post", cell)
CALL extract_psy_data%PreDeclareVariable("df_post", df)
CALL extract_psy_data%PreDeclareVariable("f2_post", f2)
CALL extract_psy_data%PreDeclareVariable("f3_post", f3)
...
CALL extract_psy_data%PreEndDeclaration
...
CALL extract_psy_data%PreEnd
!
!$omp parallel do default(shared), private(df), schedule(static)
DO df=1,undf_aspc1_f2
f2_proxy%data(df) = 0.0

END DO
!$omp end parallel do
!$omp parallel do default(shared), private(cell), schedule(static)
DO cell=1,f3_proxy%vspace%get_ncell()
!
CALL testkern_code_w2_only(nlayers, f3_proxy%data, f2_proxy%data, ndf_w2, undf_w2, map_

→˓w2(:,cell))
(continues on next page)
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END DO
!$omp end parallel do
CALL extract_psy_data%PostStart
CALL extract_psy_data%ProvideVariable("cell_post", cell)
CALL extract_psy_data%ProvideVariable("df_post", df)
CALL extract_psy_data%ProvideVariable("f2_post", f2)
CALL extract_psy_data%ProvideVariable("f3_post", f3)
CALL extract_psy_data%PostEnd
!
! ExtractEnd

Examples in examples/lfric/eg12 directory demonstrate how to apply code extraction by utilising PSyclone
transformation scripts (see Examples section for more information). The code in examples/lfric/eg17/
full_example_extract can be compiled and run, and it will create two kernel data files.

24.3 Extraction Libraries

PSyclone comes with two extraction libraries: one is based on NetCDF and will create NetCDF files to contain all
input- and output-parameters. The second one is a stand-alone library which uses only standard Fortran IO to write and
read kernel data. The binary files produced using this library may not be portable between machines and compilers. If
you require such portability then please use the NetCDF extraction library.

The two extraction libraries are in lib/extract/standalone. and in lib/extract/netcdf.

24.3.1 Extraction for GOcean

The extraction libraries in lib/extract/standalone/dl_esm_inf and lib/extract/netcdf/dl_esm_inf implement the full PSy-
Data API for use with the GOcean1.0 dl_esm_inf infrastructure library. When running the instrumented executable, it
will create either a binary or a NetCDF file for each instrumented code region. It includes all variables that are read
before the code is executed, and all variables that have been modified. The output variables have the postfix _post
attached to the names, e.g. a variable xyz that is read and written will be stored with the name xyz containing the
input values, and the name xyz_post containing the output values. Arrays have their size explicitly stored (in case of
NetCDF as dimensions): again the variable xyz will have its sizes stored as xyzdim1, xyzdim2 for the input values,
and output arrays use the name xyz_postdim1, xyz_postdim2.

Note: The stand-alone library does not store the names of the variables in the output file, but these names will be used
as variable names in the created driver.

The output file contains the values of all variables used in the subroutine. The GOceanExtractTrans transformation
can automatically create a driver program which will read the corresponding output file, call the instrumented region,
and compare the results. In order to create this driver program, the options parameter create_driver must be set to
true:

extract = GOceanExtractTrans()
extract.apply(schedule.children,

{"create_driver": True,
"region_name": ("main", "init")})

This will create a Fortran file called driver-main-init.f90, which can then be compiled and executed. This stand-
alone program will read the output file created during an execution of the actual program, call the kernel with all
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required input parameter, and compare the output variables with the original output variables. This can be used to
create stand-alone test cases to reproduce a bug, or for performance optimisation of a stand-alone kernel.

Warning: Care has to be taken that the driver matches the version of the code that was used to create the output
file, otherwise the driver will likely crash. The stand-alone driver relies on a strict ordering of variable values in
the output file and e.g. even renaming one variable can affect this. The NetCDF version stores the variable names
and will not be able to find a variable if its name has changed.

24.3.2 Extraction for LFRic

The libraries in lib/extract/standalone/lfric and lib/extract/netcdf/lfric implement the full PSyData API for use with the
LFRic infrastructure library. When running the code, it will create an output file for each instrumented code region.
The same logic for naming variables (using _post for output variables) used in Extraction for GOcean is used here.

As in the case of e.g. read-only verification, this library uses the pared-down LFRic infrastructure located in a clone
of PSyclone repository, <PSYCLONEHOME>/src/psyclone/tests/test_files/dynamo0p3/infrastructure.
However, this needs to be changed for any user (for instance with PSyclone installation). Please refer to the relevant
README.md documentation on how to build and link this library.

The output file contains the values of all variables used in the subroutine. The LFRicExtractTrans transformation
can automatically create a driver program which will read the corresponding output file, call the instrumented region,
and compare the results. In order to create this driver program, the options parameter create_driver must be set to
true:

extract = LFRicExtractTrans()
extract.apply(schedule.children,

{"create_driver": True,
"region_name": ("main", "init")})

This will create a Fortran file called driver-main-init.F90, which can then be compiled and executed. This stand-
alone program will read the output file created during an execution of the actual program, call the kernel with all
required input parameter, and compare the output variables with the original output variables. This can be used to
create stand-alone test cases to reproduce a bug, or for performance optimisation of a stand-alone kernel.

Warning: Care has to be taken that the driver matches the version of the code that was used to create the output
file, otherwise the driver will likely crash. The stand-alone driver relies on a strict ordering of variable values in
the output file and e.g. even renaming one variable can affect this. The NetCDF version stores the variable names
and will not be able to find a variable if its name has changed.

Note: If the kernel, or any function called from an extracted kernel should use a variable from a module directly (as
opposed to supplying this as parameter in the kernel call), this variable will not be written to the extract data file, and the
driver will also not try to read in the value. As a result, the kernel will not be able to run stand-alone. As a work-around,
these values can be added manually to the driver program. Issue #1990 tracks improvement of this situation.

The LFRic kernel driver will inline all required external modules into the driver. It uses a ModuleManager to find the
required modules, based on the assumption that a file my_special_mod.f90 will define exactly one module called
my_special_mod (the _mod is required to be part of the filename). The driver creator will sort the modules in the
appropriate order and add the source code directly into the driver. As a result, the driver program is truly stand-alone
and does not need any external dependency (the only exception being NetCDF if the NetCDF-based extraction library is
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used). The ModuleManager uses all kernel search paths specified on the command line (see -d option in The psyclone
command), and it will recursively search for all files under each path specified on the command line.

Therefore, compilation for a created driver, e.g. the one created in examples/lfric/eg17/
full_example_extract, is simple:

$ gfortran -g -O0 driver-main-update.F90 -o driver-main-update
$ ./driver-main-update
cell correct
field1 correct

Note that the Makefile in the example will actually provide additional include paths (infrastructure files and extraction
library) for the compiler, but these flags are actually only required for compiling the example program, not for the
driver.

24.3.3 Extraction for NEMO

The libraries in lib/extract/standalone/nemo and lib/extract/netcdf/nemo implement the full PSyData API for use with
the NEMO API. When running the code, it will create an output file for each instrumented code region. The same logic
for naming variables used in Extraction for GOcean is used here.

Note: Driver creation in NEMO is not yet supported, and is tracked in issue #2058.
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CHAPTER

TWENTYFIVE

CONFIGURATION

PSyclone reads various run-time configuration options from the psyclone.cfg file. As described in Configuration,
the default psyclone.cfg configuration file is installed in <python-base-prefix>/share/psyclone/ during the
installation process. The original version of this file is in the PSyclone/config directory of the PSyclone distribution.

At execution-time, the user can specify a custom configuration file to be used. This can either be done with
the --config command line option, or by specifying the (full path to the) configuration file to use via the
PSYCLONE_CONFIG environment variable. If the specified configuration file is not found then PSyclone will fall back
to searching in a list of default locations.

The ordering of these locations depends upon whether PSyclone is being run within a Python virtual environment (such
as venv). If no virtual environment is detected then the locations searched, in order, are:

1. ${PWD}/.psyclone/

2. ${HOME}/.local/share/psyclone/

3. <python-base-dir>/share/psyclone/

where <python-base-dir> is the path stored in Python’s sys.prefix.

If a virtual environment is detected then it is assumed that the share directory will be a part of that environment.
In order to maintain isolation of distinct virtual environments this directory is then checked before the user’s home
directory. i.e. the list of locations searched is now:

1. ${PWD}/.psyclone/

2. <python-base-dir>/share/psyclone/

3. ${HOME}/.local/share/psyclone/

Note that for developers a slightly different configuration handling is implemented, see Module: configuration for
details.

25.1 Options

The configuration file is read by the Python ConfigParser class (https://docs.python.org/3/library/configparser.html)
and must be formatted accordingly. It currently consists of a DEFAULT section e.g.:

[DEFAULT]
DEFAULTAPI = dynamo0.3
DEFAULTSTUBAPI = dynamo0.3
DISTRIBUTED_MEMORY = true
REPRODUCIBLE_REDUCTIONS = false
REPROD_PAD_SIZE = 8

(continues on next page)
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PSYIR_ROOT_NAME = psyir_tmp
VALID_PSY_DATA_PREFIXES = profile, extract

and an optional API specific section, for example for the dynamo0.3 section:

[dynamo0.3]
access_mapping = gh_read: read, gh_write: write, gh_readwrite: readwrite,

gh_inc: inc, gh_readinc: readinc, gh_sum: sum
COMPUTE_ANNEXED_DOFS = false
supported_fortran_datatypes = real, integer, logical
default_kind = real: r_def, integer: i_def, logical: l_def
RUN_TIME_CHECKS = false
NUM_ANY_SPACE = 10
NUM_ANY_DISCONTINUOUS_SPACE = 10

or for gocean1.0:

[gocean1.0]
access_mapping = go_read:read, go_write:write, go_readwrite:readwrite
grid-properties = go_grid_xstop: {0}%%grid%%subdomain%%internal%%xstop: scalar,

go_grid_ystop: {0}%%grid%%subdomain%%internal%%ystop: scalar,
go_grid_data: {0}%%data: array,
...

The meaning of the various entries is described in the following sub-sections.

Note that ConfigParser supports various forms of boolean entry including “true/false”, “yes/no” and “1/0”. See https:
//docs.python.org/3/library/configparser.html#supported-datatypes for more details.

25.1.1 DEFAULT Section

This section contains entries that are, in principle, applicable to all APIs supported by PSyclone.
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Entry Description
DEFAULTAPI The API that PSyclone assumes an Algorithm/Kernel conforms to if no

API is specified. Must be one of the APIs supported by PSyclone
(“dynamo0.3”, “gocean1.0” and “nemo”). If there is no API specified and
there is only one API-specific section in the config file loaded, this API will
be used. This value can be overwritten by the command line option ‘-api’.
If there is no API entry in the config file, and ‘-api’ is not specified on the
command line, “dynamo0.3” is used as default.

DEFAULTSTUBAPI The API that the kernel-stub generator assumes by default. Must be one of
the stub-APIs supported by PSyclone (“dynamo0.3” only at this stage).

DISTRIBUTED_MEMORY Whether or not to generate code for distributed-memory parallelism by
default. Note that this is currently only supported for the LFRic (Dynamo
0.3) API.

REPRODUCIBLE_REDUCTIONS Whether or not to generate code for reproducible OpenMP reductions (see
Reductions) by default.

REPROD_PAD_SIZE If generating code for reproducible OpenMP reductions, this setting
controls the amount of padding used between elements of the array in
which each thread accumulates its local reduction. (This prevents false
sharing of cache lines by different threads.)

PSYIR_ROOT_NAME The root for generated PSyIR symbol names if one is not supplied when
creating a symbol. Defaults to “psyir_tmp”.

VALID_PSY_DATA_PREFIXES Which class prefixes are permitted in any PSyData-related transformations.
See PSyData API for details.

25.1.2 Common Sections

The following entries must be defined for each API in order for PSyclone to work as expected:

Entry Description
access_mapping This field defines the strings that are used by a particular API to indicate write, read, . . .

access. Its value is a comma separated list of access-string:access pairs, e.g.:
gh_read: read, gh_write: write, gh_readwrite: readwrite, gh_inc:
inc, gh_readinc: gh_sum: sum
At this stage these 6 types are defined for read, write, read+write, increment, read+increment
and summation access by PSyclone. Sum is a form of reduction. The GOcean API does not
support increment or sum, so it only defines three mappings for read, write, and readwrite.
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25.1.3 dynamo0.3 Section

This section contains configuration options that are only applicable when using the LFRic (Dynamo 0.3) API.

Entry Description
COMPUTE_ANNEXED_DOFS Whether or not to perform redundant computation over annexed dofs

in order to reduce the number of halo exchanges, see Annexed DoFs.
supported_fortran_datatypes Captures the supported Fortran data types of LFRic arguments, see

Supported Data Types and Default Kind.
default_kind Captures the default kinds (precisions) for the supported Fortran

data types in LFRic, see Supported Data Types and Default Kind.
RUN_TIME_CHECKS Specifies whether to generate run-time validation checks, see

Run-time Checks.
NUM_ANY_SPACE Sets the number of ANY_SPACE function spaces in LFRic, see

Number of Generalised ANY_*_SPACE Function Spaces.
NUM_ANY_DISCONTINUOUS_SPACE Sets the number of ANY_DISCONTINUOUS_SPACE function spaces in

LFRic, see Number of Generalised ANY_*_SPACE Function Spaces.

25.1.4 gocean1.0 Section

This section contains configuration options that are only applicable when using the Gocean 1.0 API.

Entry Description
iteration-spaces This contains definitions of additional iteration spaces used by PSyclone. A detailed

description can be found in the Iteration-spaces section of the GOcean1.0 chapter.
grid-properties This key contains definitions to access various grid properties. A detailed description can be

found in the Grid Properties section of the GOcean1.0 chapter.

25.1.5 NEMO Section

This section contains configuration options that are only applicable when using the NEMO API.

Entry Description
mapping-TYPE This declares a mapping for a certain loop level, specified as TYPE. Each value must have

three key:value pairs. A value can be empty if it is not required or not known, but the key must
still be specified. The required keys are:
var: the variable name that indicates the loop level,
start: the first loop iteration, and
stop: the last loop iteration.
Each loop detected by the NEMO API will be given one of the TYPE values specified in the
configuration file. See the example below for more details.

index-order Specifies the order in which loops are created when converting an implicit loop to an explicit
loop. All values in this comma-separated list must have a corresponding mapping-TYPE value
defined.

Below we show an example of the NEMO section of a PSyclone configuration file. Note how the values in
index-order have corresponding mapping entries, e.g. mapping-lon, mapping-lat etc.:
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mapping-lon = var: ji, start: 1, stop: jpi
mapping-lat = var: jj, start: 1, stop: jpj
mapping-levels = var: jk, start: 1, stop: jpk
mapping-tracers = var: jt, start: 1, stop:
mapping-unknown = var: , start: 1, stop:

index-order = lon, lat, levels, tracers

If a NEMO loop then uses Do jj=..., PSyclone will give this loop the type ‘lat’, because the loop uses the variable
name specified in the configuration file for a loop of type ‘lat’. The loop type can be accessed using loop.loop_type,
i.e. in this example it will be loop.loop_type == 'lat'.

The entry mapping-unknown has an empty value for the key ‘var’. This means that the type ‘unknown’ will be used
for any loop that can not be mapped using any of the other variable names in the configuration file.

25.1. Options 293



PSyclone Documentation, Release 2.4.0

294 Chapter 25. Configuration



BIBLIOGRAPHY

[nem13] NEMO Coding Conventions. 2013. URL: https://forge.nemo-ocean.eu/nemo/attachment/wiki/
Documentation/NEMO_coding.conv_v3.pdf2.

[AFH+19] S. V. Adams, R. W. Ford, M. Hambley, J. M. Hobson, I. Kavčič, C. M. Maynard, T. Melvin, E. H. Müller,
S. Mullerworth, A. R. Porter, M. Rezny, B. J. Shipway, and R. Wong. LFRic: Meeting the challenges of
scalability and performance portability in Weather and Climate models. Journal of Parallel and Distributed
Computing, 132:383–396, 2019. doi:https://doi.org/10.1016/j.jpdc.2019.02.007.

295

https://forge.nemo-ocean.eu/nemo/attachment/wiki/Documentation/NEMO_coding.conv_v3.pdf2
https://forge.nemo-ocean.eu/nemo/attachment/wiki/Documentation/NEMO_coding.conv_v3.pdf2
https://doi.org/https://doi.org/10.1016/j.jpdc.2019.02.007


PSyclone Documentation, Release 2.4.0

296 Bibliography



PYTHON MODULE INDEX

p
psyclone.alg_gen, 267
psyclone.generator, 243
psyclone.line_length, 268
psyclone.parse.algorithm, 244
psyclone.psyGen, 266
psyclone.transformations, 245

297



PSyclone Documentation, Release 2.4.0

298 Python Module Index



INDEX

A
ACCDataTrans (class in psyclone.transformations), 245
ACCEnterDataTrans (class in psy-

clone.transformations), 246
ACCKernelsTrans (class in psyclone.transformations),

247
ACCLoopTrans (class in psyclone.transformations), 248
ACCParallelTrans (class in psyclone.transformations),

249
ACCRoutineTrans (class in psyclone.transformations),

250
Alg (class in psyclone.alg_gen), 267
ancestor() (psyclone.psyir.nodes.Node method), 157
apply() (psyclone.transformations.ACCDataTrans

method), 245
apply() (psyclone.transformations.ACCEnterDataTrans

method), 246
apply() (psyclone.transformations.ACCKernelsTrans

method), 247
apply() (psyclone.transformations.ACCLoopTrans

method), 249
apply() (psyclone.transformations.ACCRoutineTrans

method), 250
apply() (psyclone.transformations.ColourTrans

method), 251
apply() (psyclone.transformations.Dynamo0p3AsyncHaloExchangeTrans

method), 252
apply() (psyclone.transformations.Dynamo0p3ColourTrans

method), 253
apply() (psyclone.transformations.Dynamo0p3KernelConstTrans

method), 254
apply() (psyclone.transformations.Dynamo0p3OMPLoopTrans

method), 255
apply() (psyclone.transformations.Dynamo0p3RedundantComputationTrans

method), 255
apply() (psyclone.transformations.DynamoOMPParallelLoopTrans

method), 257
apply() (psyclone.transformations.GOceanOMPParallelLoopTrans

method), 258
apply() (psyclone.transformations.KernelImportsToArguments

method), 258
apply() (psyclone.transformations.MoveTrans method),

259
apply() (psyclone.transformations.OMPLoopTrans

method), 261
apply() (psyclone.transformations.OMPParallelLoopTrans

method), 262
apply() (psyclone.transformations.OMPSingleTrans

method), 264
apply() (psyclone.transformations.ParallelRegionTrans

method), 265
ArgumentInterface (class in psyclone.psyir.symbols),

163
AutomaticInterface (class in psyclone.psyir.symbols),

163

C
clauses() (psyclone.psyir.nodes.RegionDirective

method), 156
ColourTrans (class in psyclone.transformations), 251
CommonBlockInterface (class in psy-

clone.psyir.symbols), 163
condition() (psyclone.psyir.nodes.IfBlock method),

155
condition() (psyclone.psyir.nodes.WhileLoop method),

155
container (psyclone.psyGen.PSy property), 266
ContainerSymbol (class in psyclone.psyir.symbols), 161
create() (psyclone.psyir.nodes.Range static method),

153

D
DataSymbol (class in psyclone.psyir.symbols), 161
DataTypeSymbol (class in psyclone.psyir.symbols), 162
DefaultModuleInterface (class in psy-

clone.psyir.symbols), 163
dir_body() (psyclone.psyir.nodes.RegionDirective

method), 156
Dynamo0p3AsyncHaloExchangeTrans (class in psy-

clone.transformations), 251
Dynamo0p3ColourTrans (class in psy-

clone.transformations), 252
Dynamo0p3KernelConstTrans (class in psy-

clone.transformations), 253

299



PSyclone Documentation, Release 2.4.0

Dynamo0p3OMPLoopTrans (class in psy-
clone.transformations), 255

Dynamo0p3RedundantComputationTrans (class in
psyclone.transformations), 255

DynamoOMPParallelLoopTrans (class in psy-
clone.transformations), 257

E
else_body() (psyclone.psyir.nodes.IfBlock method),

155
excluded_node_types (psy-

clone.transformations.ACCLoopTrans at-
tribute), 249

F
FortLineLength (class in psyclone.line_length), 268

G
gen (psyclone.alg_gen.Alg property), 267
gen (psyclone.psyGen.PSy property), 266
generate() (in module psyclone.generator), 243
get_trans_name() (psyclone.psyGen.TransInfo

method), 169
get_trans_num() (psyclone.psyGen.TransInfo method),

169
GOceanOMPLoopTrans (class in psy-

clone.transformations), 257
GOceanOMPParallelLoopTrans (class in psy-

clone.transformations), 257

I
if_body() (psyclone.psyir.nodes.IfBlock method), 155
ImportInterface (class in psyclone.psyir.symbols), 163
indices() (psyclone.psyir.nodes.ArrayReference

method), 156
IntrinsicSymbol (class in psyclone.psyir.symbols), 162
invokes (psyclone.psyGen.PSy property), 266

K
KernelImportsToArguments (class in psy-

clone.transformations), 258

L
length (psyclone.line_length.FortLineLength property),

268
lhs() (psyclone.psyir.nodes.Assignment method), 155
list (psyclone.psyGen.TransInfo property), 169
long_lines() (psyclone.line_length.FortLineLength

method), 268
loop_body() (psyclone.psyir.nodes.Loop method), 155
loop_body() (psyclone.psyir.nodes.WhileLoop method),

156

M
member() (psyclone.psyir.nodes.StructureReference

method), 156
module

psyclone.alg_gen, 267
psyclone.generator, 243
psyclone.line_length, 268
psyclone.parse.algorithm, 244
psyclone.psyGen, 266
psyclone.transformations, 245

MoveTrans (class in psyclone.transformations), 258

N
name (psyclone.psyGen.PSy property), 266
name (psyclone.transformations.ACCDataTrans prop-

erty), 245
name (psyclone.transformations.ACCEnterDataTrans

property), 247
name (psyclone.transformations.ACCKernelsTrans prop-

erty), 248
name (psyclone.transformations.ACCParallelTrans prop-

erty), 250
name (psyclone.transformations.ACCRoutineTrans prop-

erty), 250
name (psyclone.transformations.Dynamo0p3AsyncHaloExchangeTrans

property), 252
name (psyclone.transformations.Dynamo0p3KernelConstTrans

property), 254
name (psyclone.transformations.KernelImportsToArguments

property), 258
name (psyclone.transformations.MoveTrans property),

259
name (psyclone.transformations.OMPMasterTrans prop-

erty), 262
name (psyclone.transformations.OMPParallelTrans prop-

erty), 263
name (psyclone.transformations.OMPSingleTrans prop-

erty), 264
name (psyclone.transformations.ParallelRegionTrans

property), 265
num_trans (psyclone.psyGen.TransInfo property), 170

O
omp_directive (psyclone.transformations.OMPLoopTrans

property), 261
omp_nowait (psyclone.transformations.OMPSingleTrans

property), 264
omp_schedule (psyclone.transformations.OMPLoopTrans

property), 261
OMPLoopTrans (class in psyclone.transformations), 260
OMPMasterTrans (class in psyclone.transformations),

261
OMPParallelLoopTrans (class in psy-

clone.transformations), 262

300 Index



PSyclone Documentation, Release 2.4.0

OMPParallelTrans (class in psyclone.transformations),
262

OMPSingleTrans (class in psyclone.transformations),
263

P
ParallelRegionTrans (class in psy-

clone.transformations), 265
parse() (in module psyclone.parse.algorithm), 244
path_from() (psyclone.psyir.nodes.Node method), 158
process() (psyclone.line_length.FortLineLength

method), 268
PSy (class in psyclone.psyGen), 266
psyclone.alg_gen

module, 267
psyclone.generator

module, 243
psyclone.line_length

module, 268
psyclone.parse.algorithm

module, 244
psyclone.psyGen

module, 266
psyclone.transformations

module, 245

R
Range (class in psyclone.psyir.nodes), 152
rhs() (psyclone.psyir.nodes.Assignment method), 155
RoutineSymbol (class in psyclone.psyir.symbols), 162

S
start (psyclone.psyir.nodes.Range property), 153
StaticInterface (class in psyclone.psyir.symbols), 163
step (psyclone.psyir.nodes.Range property), 153
stop (psyclone.psyir.nodes.Range property), 153
Symbol (class in psyclone.psyir.symbols), 161
SymbolTable (class in psyclone.psyir.symbols), 160

T
TransInfo (class in psyclone.psyGen), 169

U
UnknownInterface (class in psyclone.psyir.symbols),

163
UnresolvedInterface (class in psy-

clone.psyir.symbols), 163

V
validate() (psyclone.transformations.ACCDataTrans

method), 246
validate() (psyclone.transformations.ACCEnterDataTrans

method), 247

validate() (psyclone.transformations.ACCKernelsTrans
method), 248

validate() (psyclone.transformations.ACCRoutineTrans
method), 250

validate() (psyclone.transformations.Dynamo0p3AsyncHaloExchangeTrans
method), 252

validate() (psyclone.transformations.Dynamo0p3KernelConstTrans
method), 254

validate() (psyclone.transformations.Dynamo0p3OMPLoopTrans
method), 255

validate() (psyclone.transformations.Dynamo0p3RedundantComputationTrans
method), 256

validate() (psyclone.transformations.GOceanOMPLoopTrans
method), 257

validate() (psyclone.transformations.KernelImportsToArguments
method), 258

validate() (psyclone.transformations.MoveTrans
method), 259

validate() (psyclone.transformations.OMPParallelTrans
method), 263

validate() (psyclone.transformations.ParallelRegionTrans
method), 265

W
walk() (psyclone.psyir.nodes.Node method), 157

Index 301


	Introduction
	Getting Going
	Download
	Environment
	Installation from PyPI
	Installation from source
	Location and structure of PSyclone installation
	Windows environment

	Dependencies
	System-specific set-up
	fparser
	pyparsing
	SymPy
	Graphviz
	termcolor

	Configuration
	Test
	Run

	The psyclone command
	Running
	Basic Use
	Choosing the API
	File output
	Algorithm files with no invokes
	Kernel search directory
	Transformation script
	Fortran line length
	Distributed memory
	Automatic Profiling Instrumentation
	Outputting of Transformed Kernels
	Fortran INCLUDE Files and Modules
	C Pre-processor #include Files

	Tutorial
	Examples
	Compilation
	Supported Compilers
	Dependencies
	NetCDF


	GOcean
	Example 1: Loop transformations
	Example 2: OpenACC
	Example 3: OpenCL
	Example 4: Kernels containing use statements
	Example 5: PSyData
	Example 5.1: Kernel data extraction
	Example 5.2: Profiling
	Example 5.3: Read-only-verification
	Example 5.4: Valid Number Verification (NaN Test)

	Example 6: PSy-layer Code Creation using PSyIR

	LFRic
	Example 1: Basic Operation
	Example 2: Applying Transformations
	Example 3: Distributed and Shared Memory
	Example 4: Multiple Built-ins, Named Invokes and Boundary Conditions
	Example 5: Stencils
	Example 6: Reductions
	Example 7: Column-Matrix Assembly Operators
	Example 8: Redundant Computation
	Example 9: Writing to Discontinuous Fields
	Example 10: Inter-grid Kernels
	Example 11: Asynchronous Halo Exchanges
	Example 12: Code Extraction
	Example 13 : Kernel Transformation
	Example 14: OpenACC
	Example 15: CPU Optimisation of Matvec
	Example 16: Generating LFRic Code Using LFRic-specific PSyIR
	Example 17: Runnable Simplified Examples
	Example 17.1: A Simple Runnable Example
	Example 17.2: A Simple Runnable Example With NetCDF
	Example 17.3: Kernel Data Extraction

	Example 18: Special Accesses of Continuous Fields - Incrementing After Reading and Writing Before (Potentially) Reading
	Example 19: Mixed Precision
	Example 20: Algorithm Generation

	NEMO
	Example 1: OpenMP parallelisation of tra_adv
	Example 2: OpenMP parallelisation of traldf_iso
	Example 3: OpenACC parallelisation of tra_adv
	Example 4: Transforming Fortran code to the SIR
	Example 5: Kernel Data Extraction
	Scripts

	PSyIR
	Example 1: Constructing PSyIR and Generating Code
	Example 2: Creating PSyIR for Structure Types


	Libraries
	Available libraries
	Profiling
	Kernel Data Extraction
	Access Verification
	NAN Test

	Dependencies
	Compilation

	System-specific Set-up for Users
	Installing dependencies
	Installing dependencies on Ubuntu
	Installing dependencies on OpenSUSE

	Installing PSyclone
	Common installation

	Kernel layer
	API
	Metadata

	Algorithm layer
	API
	Named Invokes

	Limitations

	PSy layer
	Code Generation
	API
	InvokeSchedule visualisation


	Built-ins
	Example
	Supported Built-in operations
	Adding new Built-in operations

	LFRic (Dynamo0.3) API
	Algorithm
	Example
	Scalar
	Field
	Field Vector
	Operator
	Column-wise Operator
	Quadrature
	Stencils
	Inter-grid

	Mixed Precision
	Fields
	Field Vectors
	Scalars
	LMA Operators
	Column-wise Operators
	Consistency

	PSy-layer
	Module name
	Argument Intents


	Kernel
	Rules for all User-Supplied Kernels that Operate on Cell-Columns
	Rules specific to General-Purpose Kernels without CMA Operators
	Rules for Kernels that work with CMA Operators
	Assembly
	Application and Inverse Application
	Matrix-Matrix

	Rules for Inter-Grid Kernels
	Rules for User-Supplied Kernels that Operate on the Domain
	Metadata
	meta_args
	Valid Data Types
	Valid Access Modes
	Supported Function Spaces
	Read-Only Function Spaces
	Optional Field Metadata
	Stencil Metadata
	Inter-Grid Metadata

	Column-wise Operators (CMA)

	meta_funcs
	meta_reference_element
	meta_mesh
	gh_shape and gh_evaluator_targets
	operates_on
	procedure

	Subroutine
	Rules for General-Purpose Kernels
	Examples

	Rules for CMA Kernels
	Assembly
	Application/Inverse-Application
	Matrix-Matrix

	Rules for Inter-Grid Kernels
	Rules for Domain Kernels
	Argument Intents

	Kernel Naming Conventions

	Built-ins
	Metadata
	Valid Data Types and Access Modes

	Naming scheme
	Built-in operations on real-valued fields
	Addition
	X_plus_Y
	inc_X_plus_Y
	a_plus_X
	inc_a_plus_X
	aX_plus_Y
	inc_aX_plus_Y
	inc_X_plus_bY
	aX_plus_bY
	inc_aX_plus_bY
	aX_plus_aY

	Subtraction
	X_minus_Y
	inc_X_minus_Y
	a_minus_X
	inc_a_minus_X
	X_minus_a
	inc_X_minus_a
	aX_minus_Y
	X_minus_bY
	inc_X_minus_bY
	aX_minus_bY

	Multiplication
	X_times_Y
	inc_X_times_Y
	inc_aX_times_Y

	Scaling
	a_times_X
	inc_a_times_X

	Division
	X_divideby_Y
	inc_X_divideby_Y
	X_divideby_a
	inc_X_divideby_a

	Inverse scaling
	a_divideby_X
	inc_a_divideby_X

	Setting to a value
	setval_c
	setval_X
	setval_random

	Raising to power
	inc_X_powreal_a
	inc_X_powint_n

	Inner product
	X_innerproduct_Y
	X_innerproduct_X

	Sum of elements
	sum_X

	Sign of elements
	sign_X

	DoF-wise maximum of elements
	max_aX
	inc_max_aX

	DoF-wise minimum of elements
	min_aX
	inc_min_aX

	Conversion of real to integer field elements
	int_X


	Built-in operations on integer-valued fields
	Addition
	int_X_plus_Y
	int_inc_X_plus_Y
	int_a_plus_X
	int_inc_a_plus_X

	Subtraction
	int_X_minus_Y
	int_inc_X_minus_Y
	int_a_minus_X
	int_inc_a_minus_X
	int_X_minus_a
	int_inc_X_minus_a

	Multiplication
	int_X_times_Y
	int_inc_X_times_Y

	Scaling
	int_a_times_X
	int_inc_a_times_X

	Setting to a value
	int_setval_c
	int_setval_X

	Sign of elements
	int_sign_X

	DoF-wise maximum of elements
	int_max_aX
	int_inc_max_aX

	DoF-wise minimum of elements
	int_min_aX
	int_inc_min_aX

	Conversion of integer to real field elements
	real_X



	Boundary Conditions
	Conventions
	Configuration
	Annexed DoFs
	Run-time Checks
	Supported Data Types and Default Kind
	Number of Generalised ANY_*_SPACE Function Spaces

	Transformations

	GOcean1.0 API
	Introduction
	The GOcean Library
	Grid
	The grid_init Routine

	Fields
	Example

	Algorithm
	Invokes

	Kernel
	Metadata
	Argument Metadata: meta_args
	Iterates Over
	Index Offset
	Procedure

	Subroutine
	Rules


	Built-ins
	Conventions
	Configuration
	Iteration-spaces
	Grid Properties
	Debug Mode

	Transformations

	NEMO API
	Algorithm
	Constructing the PSyIR
	Loops
	Explicit
	Implicit


	Example
	Transformations
	Limitations

	PSyIR : The PSyclone Internal Representation
	PSyIR Nodes
	PSy-layer nodes
	Kernel-layer nodes

	Node Descriptions
	The Range node

	Text Representation
	Tree Navigation
	DataTypes
	Scalar DataType
	Array DataType
	Structure Datatype
	Unknown DataType
	NoType

	Symbols and Symbol Tables
	Symbol Interfaces

	Creating PSyIR
	Symbol names
	Nodes

	Comparing PSyIR nodes
	Modifying the PSyIR
	Renaming symbols
	Specialising symbols
	Replacing PSyIR nodes
	Detaching PSyIR nodes
	Copying nodes
	Named arguments


	Transformations
	Finding
	Standard Functionality
	Validation
	Application

	Available transformations
	Algorithm-layer
	Kernels
	Rules
	Available Kernel Transformations

	Applying
	Interactive
	Script

	OpenMP
	Reductions
	Restrictions
	OpenMP Tasking

	OpenCL
	OpenACC
	SIR

	Distributed Memory
	Correctness
	Performance
	Implementation
	Control
	Status

	PSyclone Kernel Tools
	The psyclone-kern Command
	Kernel-stub Generator
	Quick Start
	Introduction
	Kernels
	Example
	Errors

	Algorithm Generator
	Quick Start
	Introduction
	Mapping of Function Spaces

	Example
	Limitations


	Line length
	Script
	Interactive
	Limitations

	Fortran Naming Conventions
	API
	The generator module
	The parse module
	The transformations module
	The psyGen module
	The alg_gen module
	The line_length module

	PSyData API
	Read-Only Verification
	Read-Only Verification Library for LFRic
	Read-Only-Verification Library for GOcean

	NAN Test

	Profiling
	Interface to Third Party Profiling Tools
	Required Modifications to the Program
	profile_PSyDataInit()
	profile_PSyDataShutdown()

	Profiling Command-Line Options
	Profiling in Scripts - ProfileTrans
	Naming Profiling Regions

	PSy Kernel Extractor (PSyKE)
	Introduction
	Mechanism
	Restrictions
	General
	Distributed memory
	Shared memory and API-specific


	Use
	Extraction Libraries
	Extraction for GOcean
	Extraction for LFRic
	Extraction for NEMO


	Configuration
	Options
	DEFAULT Section
	Common Sections
	dynamo0.3 Section
	gocean1.0 Section
	NEMO Section


	Bibliography
	Python Module Index
	Index

