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Task-specific networks

One of the goals of contemporary neuroscience is to
delineate task-specific networks in the brain
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TimeSeries example:

>>> import nitime . timeseries as ts
>>> t1 = ts . TimeSeries (data=[1 ,2 ,3 ,4] ,

sampling_interval=1.5,
time_unit=’s ’ )

>>> t1 . time
UniformTime( [ 0. , 1.5 , 3. , 4.5] ,

time_unit=’s ’ )

>>> t1 . sampling_rate
0.666666666667 Hz
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Vizualization

>>> import nitime . viz as viz
>>> viz . plot_tseries ( t1 )
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Vizualization

>>> t2 = ts . TimeSeries (data=np. sin (
np. linspace (0 ,2*np. pi ) ) ,
sampling_interval=0.1,
t0=−2,
time_unit=’ms’ )

>>> viz . plot_tseries ( t2 )



Vizualization
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Provides a functional interface based on numpy
arrays
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These implementations accept arrays as their inputs,
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Example: univariate analysis

>>> noise = 0.5
>>> t = np. linspace (0 ,8*pi ,1024)

>>> x = (np. sin (5* t ) + np. sin (1.33* t ) +
noise*np.random. randn( t . shape[−1]))

>>> y = (np. sin (5* t + pi /4) +
np. sin (1.33*t−pi /2) +

noise*np.random. randn( t . shape[−1]))

>>> t3 = ts . TimeSeries (np. vstack ( [x ,y ] ) ,
sampling_rate=np. pi )

>>> viz . plot_tseries ( t3 )
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Time-series



Univariate analysis: spectral analysis

>>> import nitime . algorithms as alg

>>> method = { ’this_method ’ : ’welch ’ ,
’Fs ’ :np. pi ,
’NFFT ’:256}

>>> f , c = alg . get_spectra ( t3 . data ,method=method)

>>> import matplotlib . pylab as pl
>>> plt . plot ( f , c [0 ,0])
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Univariate analysis: spectral analysis
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’Knows’ about TimeSeries objects and accepts them
as inputs
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Bivariate analysis 1: cross-correlation

Rxy(τ) =
∑T

i=0 x(t)y(t + τ)
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Coherency

A spectral analog of correlation
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fxx(ω)fyy(ω)

Where, fxy is the cross-spectral density and
fxx is the PSD of x
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Phase

>>> plt . plot (C. frequencies , C.phase[0 ,1])



Phase



Not surprising

>>> noise = 0.5
>>> t = np. linspace (0 ,8*pi ,1024)

>>> x = (np. sin (5* t ) + np. sin (1.33* t ) +
noise*np.random. randn( t . shape[−1]))

>>> y = (np. sin (5* t + pi /4) +
np. sin (1.33*t−pi /2) +

noise*np.random. randn( t . shape[−1]))



Coherency

Sun et al. (2004,2005)



Using coherency to study task-related

networks

Lauritzen et al. (2009)



Covert attention task

Lauritzen et al. (2009)



Baseline coherence

Lauritzen et al. (2009)



Attention coherence

Lauritzen et al. (2009)



Difference in coherence

Lauritzen et al. (2009)



Time delay

The time-delay between two time-series can be calculated
from the phase delay

∆t(ω) = φ(ω)
2πω
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Time delay

Lauritzen et al. (2009)



Delay difference

Lauritzen et al. (2009)



Task-related network changes:

Lauritzen et al. (2009)



Coherency analysis: summary

Coherency analysis is a spectral analog of correlation

Overcomes some of the pitfalls of 0-order correlation

But - when used for fMRI need to pay attention to:

Baseline connectivity

Confounds due to HRF differences
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More examples

http://nipy.org/nitime/examples
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if you prefer a more stream-lined interface to the
algorithms

Or the algorithms module if you prefer more
customability
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