
nitime
Time-series analysis for fMRI data

Ariel Rokem

University of California, Berkeley

June 3rd, 2011

Outline

Scientific motivation

The nitime software library

A simple example: coherence

A scientifically interesting example

Outline

Scientific motivation

The nitime software library

A simple example: coherence

A scientifically interesting example

Outline

Scientific motivation

The nitime software library

A simple example: coherence

A scientifically interesting example

Outline

Scientific motivation

The nitime software library

A simple example: coherence

A scientifically interesting example

Outline

Scientific motivation

The nitime software library

A simple example: coherence

A scientifically interesting example

Task-specific networks

One of the goals of contemporary neuroscience is to
delineate task-specific networks in the brain

The wiring diagram

The wiring diagram

Felleman and Van Essen (1991)

The wiring diagram

Felleman and Van Essen (1991)

Task-specific networks

One of the goals of contemporary neuroscience is to
delineate task-specific networks in the brain

Time-series in fMRI data

Nitime

Software library for the analysis of time-series from
neuroscience data

Written in Python

Free and open source

Part of the NIPY project

http://nipy.org/nitime

Nitime

Software library for the analysis of time-series from
neuroscience data

Written in Python

Free and open source

Part of the NIPY project

http://nipy.org/nitime

Nitime

Software library for the analysis of time-series from
neuroscience data

Written in Python

Free and open source

Part of the NIPY project

http://nipy.org/nitime

Nitime

Software library for the analysis of time-series from
neuroscience data

Written in Python

Free and open source

Part of the NIPY project

http://nipy.org/nitime

Nitime

Software library for the analysis of time-series from
neuroscience data

Written in Python

Free and open source

Part of the NIPY project

http://nipy.org/nitime

Nitime

Software library for the analysis of time-series from
neuroscience data

Written in Python

Free and open source

Part of the NIPY project

http://nipy.org/nitime

nitime components:

nitime.timeseries

nitime.viz

nitime.algorithms

nitime.analysis

nitime.utils

nitime components:

nitime.timeseries

nitime.viz

nitime.algorithms

nitime.analysis

nitime.utils

nitime components:

nitime.timeseries

nitime.viz

nitime.algorithms

nitime.analysis

nitime.utils

nitime components:

nitime.timeseries

nitime.viz

nitime.algorithms

nitime.analysis

nitime.utils

nitime components:

nitime.timeseries

nitime.viz

nitime.algorithms

nitime.analysis

nitime.utils

nitime components:

nitime.timeseries

nitime.viz

nitime.algorithms

nitime.analysis

nitime.utils

TimeSeries example:

>>> import nitime . timeseries as ts
>>> t1 = ts . TimeSeries (data=[1 ,2 ,3 ,4] ,

sampling_interval=1.5,
time_unit=’s ’)

>>> t1 . time
UniformTime([0. , 1.5 , 3. , 4.5] ,

time_unit=’s ’)

>>> t1 . sampling_rate
0.666666666667 Hz

TimeSeries example:

>>> import nitime . timeseries as ts
>>> t1 = ts . TimeSeries (data=[1 ,2 ,3 ,4] ,

sampling_interval=1.5,
time_unit=’s ’)

>>> t1 . time
UniformTime([0. , 1.5 , 3. , 4.5] ,

time_unit=’s ’)

>>> t1 . sampling_rate
0.666666666667 Hz

TimeSeries example:

>>> import nitime . timeseries as ts
>>> t1 = ts . TimeSeries (data=[1 ,2 ,3 ,4] ,

sampling_interval=1.5,
time_unit=’s ’)

>>> t1 . time
UniformTime([0. , 1.5 , 3. , 4.5] ,

time_unit=’s ’)

>>> t1 . sampling_rate
0.666666666667 Hz

TimeSeries example:

>>> import nitime . timeseries as ts
>>> t1 = ts . TimeSeries (data=[1 ,2 ,3 ,4] ,

sampling_interval=1.5,
time_unit=’s ’)

>>> t1 . time
UniformTime([0. , 1.5 , 3. , 4.5] ,

time_unit=’s ’)

>>> t1 . sampling_rate
0.666666666667 Hz

Vizualization

>>> import nitime . viz as viz
>>> viz . plot_tseries (t1)

Vizualization

>>> import nitime . viz as viz
>>> viz . plot_tseries (t1)

Vizualization

Vizualization

>>> t2 = ts . TimeSeries (data=np. sin (
np. linspace (0 ,2*np. pi)) ,
sampling_interval=0.1,
t0=−2,
time_unit=’ms’)

>>> viz . plot_tseries (t2)

Vizualization

nitime.algorithms

Provides a functional interface based on numpy
arrays

coherence

event-related

filter

spectral

autoregressive

These implementations accept arrays as their inputs,
not TimeSeries!

nitime.algorithms

Provides a functional interface based on numpy
arrays

coherence

event-related

filter

spectral

autoregressive

These implementations accept arrays as their inputs,
not TimeSeries!

nitime.algorithms

Provides a functional interface based on numpy
arrays

coherence

event-related

filter

spectral

autoregressive

These implementations accept arrays as their inputs,
not TimeSeries!

nitime.algorithms

Provides a functional interface based on numpy
arrays

coherence

event-related

filter

spectral

autoregressive

These implementations accept arrays as their inputs,
not TimeSeries!

nitime.algorithms

Provides a functional interface based on numpy
arrays

coherence

event-related

filter

spectral

autoregressive

These implementations accept arrays as their inputs,
not TimeSeries!

nitime.algorithms

Provides a functional interface based on numpy
arrays

coherence

event-related

filter

spectral

autoregressive

These implementations accept arrays as their inputs,
not TimeSeries!

nitime.algorithms

Provides a functional interface based on numpy
arrays

coherence

event-related

filter

spectral

autoregressive

These implementations accept arrays as their inputs,
not TimeSeries!

nitime.algorithms

Provides a functional interface based on numpy
arrays

coherence

event-related

filter

spectral

autoregressive

These implementations accept arrays as their inputs,
not TimeSeries!

Example: univariate analysis

>>> noise = 0.5
>>> t = np. linspace (0 ,8*pi ,1024)

>>> x = (np. sin (5* t) + np. sin (1.33* t) +
noise*np.random. randn(t . shape[−1]))

>>> y = (np. sin (5* t + pi /4) +
np. sin (1.33*t−pi /2) +

noise*np.random. randn(t . shape[−1]))

>>> t3 = ts . TimeSeries (np. vstack ([x ,y]) ,
sampling_rate=np. pi)

>>> viz . plot_tseries (t3)

Example: univariate analysis

>>> noise = 0.5
>>> t = np. linspace (0 ,8*pi ,1024)

>>> x = (np. sin (5* t) + np. sin (1.33* t) +
noise*np.random. randn(t . shape[−1]))

>>> y = (np. sin (5* t + pi /4) +
np. sin (1.33*t−pi /2) +

noise*np.random. randn(t . shape[−1]))

>>> t3 = ts . TimeSeries (np. vstack ([x ,y]) ,
sampling_rate=np. pi)

>>> viz . plot_tseries (t3)

Example: univariate analysis

>>> noise = 0.5
>>> t = np. linspace (0 ,8*pi ,1024)

>>> x = (np. sin (5* t) + np. sin (1.33* t) +
noise*np.random. randn(t . shape[−1]))

>>> y = (np. sin (5* t + pi /4) +
np. sin (1.33*t−pi /2) +

noise*np.random. randn(t . shape[−1]))

>>> t3 = ts . TimeSeries (np. vstack ([x ,y]) ,
sampling_rate=np. pi)

>>> viz . plot_tseries (t3)

Example: univariate analysis

>>> noise = 0.5
>>> t = np. linspace (0 ,8*pi ,1024)

>>> x = (np. sin (5* t) + np. sin (1.33* t) +
noise*np.random. randn(t . shape[−1]))

>>> y = (np. sin (5* t + pi /4) +
np. sin (1.33*t−pi /2) +

noise*np.random. randn(t . shape[−1]))

>>> t3 = ts . TimeSeries (np. vstack ([x ,y]) ,
sampling_rate=np. pi)

>>> viz . plot_tseries (t3)

Time-series

Univariate analysis: spectral analysis

>>> import nitime . algorithms as alg

>>> method = { ’this_method ’ : ’welch ’ ,
’Fs ’ :np. pi ,
’NFFT ’:256}

>>> f , c = alg . get_spectra (t3 . data ,method=method)

>>> import matplotlib . pylab as pl
>>> plt . plot (f , c [0 ,0])

Univariate analysis: spectral analysis

>>> import nitime . algorithms as alg

>>> method = { ’this_method ’ : ’welch ’ ,
’Fs ’ :np. pi ,
’NFFT ’:256}

>>> f , c = alg . get_spectra (t3 . data ,method=method)

>>> import matplotlib . pylab as pl
>>> plt . plot (f , c [0 ,0])

Univariate analysis: spectral analysis

>>> import nitime . algorithms as alg

>>> method = { ’this_method ’ : ’welch ’ ,
’Fs ’ :np. pi ,
’NFFT ’:256}

>>> f , c = alg . get_spectra (t3 . data ,method=method)

>>> import matplotlib . pylab as pl
>>> plt . plot (f , c [0 ,0])

Univariate analysis: spectral analysis

>>> import nitime . algorithms as alg

>>> method = { ’this_method ’ : ’welch ’ ,
’Fs ’ :np. pi ,
’NFFT ’:256}

>>> f , c = alg . get_spectra (t3 . data ,method=method)

>>> import matplotlib . pylab as pl
>>> plt . plot (f , c [0 ,0])

Univariate analysis: spectral analysis

nitime.analysis

Provides a more stream-lined analysis interface

’Knows’ about TimeSeries objects and accepts them
as inputs

coherence

correlation

event-related

normalization

snr

spectral

nitime.analysis

Provides a more stream-lined analysis interface

’Knows’ about TimeSeries objects and accepts them
as inputs

coherence

correlation

event-related

normalization

snr

spectral

nitime.analysis

Provides a more stream-lined analysis interface

’Knows’ about TimeSeries objects and accepts them
as inputs

coherence

correlation

event-related

normalization

snr

spectral

nitime.analysis

Provides a more stream-lined analysis interface

’Knows’ about TimeSeries objects and accepts them
as inputs

coherence

correlation

event-related

normalization

snr

spectral

nitime.analysis

Provides a more stream-lined analysis interface

’Knows’ about TimeSeries objects and accepts them
as inputs

coherence

correlation

event-related

normalization

snr

spectral

nitime.analysis

Provides a more stream-lined analysis interface

’Knows’ about TimeSeries objects and accepts them
as inputs

coherence

correlation

event-related

normalization

snr

spectral

nitime.analysis

Provides a more stream-lined analysis interface

’Knows’ about TimeSeries objects and accepts them
as inputs

coherence

correlation

event-related

normalization

snr

spectral

nitime.analysis

Provides a more stream-lined analysis interface

’Knows’ about TimeSeries objects and accepts them
as inputs

coherence

correlation

event-related

normalization

snr

spectral

nitime.analysis

Provides a more stream-lined analysis interface

’Knows’ about TimeSeries objects and accepts them
as inputs

coherence

correlation

event-related

normalization

snr

spectral

Bivariate analysis 1: cross-correlation

Rxy(τ) =
∑T

i=0 x(t)y(t + τ)

Bivariate analysis 1: cross-correlation

>>> import nitime . analysis as nta

>>> XC = nta . CorrelationAnalyzer (t3)

>>> viz . plot_xcorr (XC. xcorr_norm , [[0 ,1]])

Bivariate analysis 1: cross-correlation

>>> import nitime . analysis as nta

>>> XC = nta . CorrelationAnalyzer (t3)

>>> viz . plot_xcorr (XC. xcorr_norm , [[0 ,1]])

Bivariate analysis 1: cross-correlation

>>> import nitime . analysis as nta

>>> XC = nta . CorrelationAnalyzer (t3)

>>> viz . plot_xcorr (XC. xcorr_norm , [[0 ,1]])

Bivariate analysis 1: cross-correlation

>>> import nitime . analysis as nta

>>> XC = nta . CorrelationAnalyzer (t3)

>>> viz . plot_xcorr (XC. xcorr_norm , [[0 ,1]])

Bivariate analysis 1: cross-correlation

rxy = 0.25

Bivariate analysis 1: cross-correlation

rxy = 0.25

Why should we care?

Hemodynamic delays

Why should we care?

Hemodynamic delays

Coherency

A spectral analog of correlation

Coherency

Cxy(ω) = fxy(ω)√
fxx(ω)fyy(ω)

Where, fxy is the cross-spectral density and
fxx is the PSD of x

Coherency

Cxy(ω) = fxy(ω)√
fxx(ω)fyy(ω)

Where, fxy is the cross-spectral density and
fxx is the PSD of x

Coherency

Coherency

Coherency is complex-valued:

Coherence: Cohxy(ω) = abs(Cxy(ω)) = |fxy(ω)|2
fxx(ω)fyy(ω)

Ranges from 0 to 1

Coherency

Coherency is complex-valued:

Coherence: Cohxy(ω) = abs(Cxy(ω)) =

|fxy(ω)|2
fxx(ω)fyy(ω)

Ranges from 0 to 1

Coherency

Coherency is complex-valued:

Coherence: Cohxy(ω) = abs(Cxy(ω)) = |fxy(ω)|2
fxx(ω)fyy(ω)

Ranges from 0 to 1

Coherency

Coherency is complex-valued:

Coherence: Cohxy(ω) = abs(Cxy(ω)) = |fxy(ω)|2
fxx(ω)fyy(ω)

Ranges from 0 to 1

Coherence

Coherency

Coherency is complex-valued:

Coherence: Cohxy(ω) = abs(Cxy(ω)) = |fxy(ω)|2
fxx(ω)fyy(ω)

Phase: φ(ω) = angle(Cxy) = tan−1=(fxy(ω))
<(fxy(ω))

Ranges from −π to π

Coherency

Coherency is complex-valued:

Coherence: Cohxy(ω) = abs(Cxy(ω)) = |fxy(ω)|2
fxx(ω)fyy(ω)

Phase: φ(ω) = angle(Cxy) = tan−1=(fxy(ω))
<(fxy(ω))

Ranges from −π to π

Coherency

Coherency is complex-valued:

Coherence: Cohxy(ω) = abs(Cxy(ω)) = |fxy(ω)|2
fxx(ω)fyy(ω)

Phase: φ(ω) = angle(Cxy) = tan−1=(fxy(ω))
<(fxy(ω))

Ranges from −π to π

Phase

>>> plt . plot (C. frequencies , C.phase[0 ,1])

Phase

Not surprising

>>> noise = 0.5
>>> t = np. linspace (0 ,8*pi ,1024)

>>> x = (np. sin (5* t) + np. sin (1.33* t) +
noise*np.random. randn(t . shape[−1]))

>>> y = (np. sin (5* t + pi /4) +
np. sin (1.33*t−pi /2) +

noise*np.random. randn(t . shape[−1]))

Coherency

Sun et al. (2004,2005)

Using coherency to study task-related

networks

Lauritzen et al. (2009)

Covert attention task

Lauritzen et al. (2009)

Baseline coherence

Lauritzen et al. (2009)

Attention coherence

Lauritzen et al. (2009)

Difference in coherence

Lauritzen et al. (2009)

Time delay

The time-delay between two time-series can be calculated
from the phase delay

∆t(ω) = φ(ω)
2πω

Time delay

The time-delay between two time-series can be calculated
from the phase delay

∆t(ω) = φ(ω)
2πω

Time delay

Lauritzen et al. (2009)

Delay difference

Lauritzen et al. (2009)

Task-related network changes:

Lauritzen et al. (2009)

Coherency analysis: summary

Coherency analysis is a spectral analog of correlation

Overcomes some of the pitfalls of 0-order correlation

But - when used for fMRI need to pay attention to:

Baseline connectivity

Confounds due to HRF differences

Coherency analysis: summary

Coherency analysis is a spectral analog of correlation

Overcomes some of the pitfalls of 0-order correlation

But - when used for fMRI need to pay attention to:

Baseline connectivity

Confounds due to HRF differences

Coherency analysis: summary

Coherency analysis is a spectral analog of correlation

Overcomes some of the pitfalls of 0-order correlation

But - when used for fMRI need to pay attention to:

Baseline connectivity

Confounds due to HRF differences

Coherency analysis: summary

Coherency analysis is a spectral analog of correlation

Overcomes some of the pitfalls of 0-order correlation

But - when used for fMRI need to pay attention to:

Baseline connectivity

Confounds due to HRF differences

Coherency analysis: summary

Coherency analysis is a spectral analog of correlation

Overcomes some of the pitfalls of 0-order correlation

But - when used for fMRI need to pay attention to:

Baseline connectivity

Confounds due to HRF differences

Coherency analysis: summary

Coherency analysis is a spectral analog of correlation

Overcomes some of the pitfalls of 0-order correlation

But - when used for fMRI need to pay attention to:

Baseline connectivity

Confounds due to HRF differences

More examples

http://nipy.org/nitime/examples

Summary: nitime

nitime provides tools for representing and
visualizing time-series and derived quantities

Implements several univariate and bi-/multi-variate
algorithms for time-series analysis

Allows for flexible use: choose the analysis module
if you prefer a more stream-lined interface to the
algorithms

Or the algorithms module if you prefer more
customability

Summary: nitime

nitime provides tools for representing and
visualizing time-series and derived quantities

Implements several univariate and bi-/multi-variate
algorithms for time-series analysis

Allows for flexible use: choose the analysis module
if you prefer a more stream-lined interface to the
algorithms

Or the algorithms module if you prefer more
customability

Summary: nitime

nitime provides tools for representing and
visualizing time-series and derived quantities

Implements several univariate and bi-/multi-variate
algorithms for time-series analysis

Allows for flexible use: choose the analysis module
if you prefer a more stream-lined interface to the
algorithms

Or the algorithms module if you prefer more
customability

Summary: nitime

nitime provides tools for representing and
visualizing time-series and derived quantities

Implements several univariate and bi-/multi-variate
algorithms for time-series analysis

Allows for flexible use: choose the analysis module
if you prefer a more stream-lined interface to the
algorithms

Or the algorithms module if you prefer more
customability

Summary: nitime

nitime provides tools for representing and
visualizing time-series and derived quantities

Implements several univariate and bi-/multi-variate
algorithms for time-series analysis

Allows for flexible use: choose the analysis module
if you prefer a more stream-lined interface to the
algorithms

Or the algorithms module if you prefer more
customability

Stay tuned

0.3 release in the next couple of weeks

Which will include new stuff:

Granger causality

Future work:

Network analysis

Stay tuned

0.3 release in the next couple of weeks

Which will include new stuff:

Granger causality

Future work:

Network analysis

Stay tuned

0.3 release in the next couple of weeks

Which will include new stuff:

Granger causality

Future work:

Network analysis

Stay tuned

0.3 release in the next couple of weeks

Which will include new stuff:

Granger causality

Future work:

Network analysis

Stay tuned

0.3 release in the next couple of weeks

Which will include new stuff:

Granger causality

Future work:

Network analysis

Stay tuned

0.3 release in the next couple of weeks

Which will include new stuff:

Granger causality

Future work:

Network analysis

Thanks!

Fernando Perez
Mike Trumpis
Kilian Koepsell
Paul Ivanov
The NIPY developers
Matthew Brett
Neurodebian (Yaroslav and Michael)
Emi Nomura
Caterina Gratton
Ayelet Landau
Thomas Lauritzen
Mark D’Esposito
Michael Silver

Thanks!

Fernando Perez
Mike Trumpis
Kilian Koepsell
Paul Ivanov

The NIPY developers
Matthew Brett
Neurodebian (Yaroslav and Michael)
Emi Nomura
Caterina Gratton
Ayelet Landau
Thomas Lauritzen
Mark D’Esposito
Michael Silver

Thanks!

Fernando Perez
Mike Trumpis
Kilian Koepsell
Paul Ivanov
The NIPY developers
Matthew Brett

Neurodebian (Yaroslav and Michael)
Emi Nomura
Caterina Gratton
Ayelet Landau
Thomas Lauritzen
Mark D’Esposito
Michael Silver

Thanks!

Fernando Perez
Mike Trumpis
Kilian Koepsell
Paul Ivanov
The NIPY developers
Matthew Brett
Neurodebian (Yaroslav and Michael)

Emi Nomura
Caterina Gratton
Ayelet Landau
Thomas Lauritzen
Mark D’Esposito
Michael Silver

Thanks!

Fernando Perez
Mike Trumpis
Kilian Koepsell
Paul Ivanov
The NIPY developers
Matthew Brett
Neurodebian (Yaroslav and Michael)
Emi Nomura
Caterina Gratton
Ayelet Landau
Thomas Lauritzen

Mark D’Esposito
Michael Silver

Thanks!

Fernando Perez
Mike Trumpis
Kilian Koepsell
Paul Ivanov
The NIPY developers
Matthew Brett
Neurodebian (Yaroslav and Michael)
Emi Nomura
Caterina Gratton
Ayelet Landau
Thomas Lauritzen
Mark D’Esposito
Michael Silver

