Decimal fixed-point arithmetic¶
The module decimalfp provides a Decimal number type which can represent decimal numbers of arbitrary magnitude and arbitrary precision, i.e. any number of fractional digits.
Usage¶
decimalfp.Decimal instances are created by giving a value (default: 0) and a precision (i.e the number of fractional digits, default: None).
>>> Decimal()
Decimal(0)
If precision is given, it must be of type int and >= 0.
>>> Decimal(5, 3)
Decimal(5, 3)
>>> Decimal(5555, -3)
ValueError: Precision must be >= 0.
If value is given, it must either be a string (type str or unicode in Python 2.x, bytes or str in Python 3.x), an instance of number.Integral (for example int or long in Python 2.x, int in Python 3.x), number.Rational (for example fractions.Fraction), decimal.Decimal or float or be convertable to a float or an int.
The value is always adjusted to the given precision or the precision is calculated from the given value, if no precision is given.
>>> Decimal(b'12.345')
Decimal('12.345')
>>> Decimal(u'12.345')
Decimal('12.345')
>>> Decimal(u'12.345', 5)
Decimal('12.345', 5)
>>> Decimal(15, 4)
Decimal(15, 4)
>>> Decimal(10 ** 23)
Decimal(100000000000000000000000)
>>> Decimal(10 ** 48)
Decimal(1000000000000000000000000000000000000000000000000)
>>> Decimal(2 ** 48)
Decimal(281474976710656)
>>> Decimal(2 ** 98)
Decimal(316912650057057350374175801344)
>>> Decimal(Fraction(7, 56))
Decimal('0.125')
>>> Decimal(Fraction(8106479329266893, 4503599627370496), 7)
Decimal('1.8', 7)
>>> Decimal(1.8, 7)
Decimal('1.8', 7)
>>> Decimal(decimal.Decimal('-19.26', 5), 3)
Decimal('-19.26', 3)
When the given precision is lower than the precision of the given value, the result is rounded, according to the rounding mode of the current context held by the standard module decimal (which defaults to ROUND_HALF_EVEN, in contrast to the round function in Python 2.x !!!).
>>> Decimal(u'12.345', 2)
Decimal('12.34')
>>> Decimal(u'12.3456', 3)
Decimal('12.346')
>>> Decimal(0.2, 3)
Decimal('0.2', 3)
>>> Decimal(0.2, 17)
Decimal('0.20000000000000001')
>>> Decimal(0.2, 55)
Decimal('0.200000000000000011102230246251565404236316680908203125', 55)
When no precision is given and the given value is a float or a numbers.Rational (but no Decimal), the Decimal constructor tries to convert value exactly. But, for performance reasons, this is done only up a fixed limit of fractional digits. This limit defaults to 32 and is accessible as decimalfp.LIMIT_PREC. If value can not be represented as a Decimal within this limit, an exception is raised.
>>> Decimal(0.2)
ValueError: Can't convert 0.2 exactly to Decimal.
>>> Decimal(Fraction(1, 7))
ValueError: Can't convert Fraction(1, 7) exactly to Decimal.
Decimal does not deal with infinity, division by 0 always raises a ZeroDivisionError. Likewise, infinite instances of type float or decimal.Decimal can not be converted to Decimal instances. The same is true for the ‘not a number’ instances of these types.
Computations¶
When importing decimalfp, its Decimal type is registered in Pythons numerical stack as number.Rational. It supports all operations defined for that base class and its instances can be mixed in computations with instances of all numeric types mentioned above.
All numerical operations give an exact result, i.e. they are not automatically constraint to the precision of the operands or to a number of significant digits (like the floating-point Decimal type from the standard module decimal). When the result can not exactly be represented by a Decimal instance within the limit given by decimalfp.LIMIT_PREC, an instance of fractions.Fraction is returned.
Addition and subtraction¶
Adding or subtracting Decimal instances results in a Decimal instance with a precision equal to the maximum of the precisions of the operands.
>>> Decimal('7.3') + Decimal('8.275')
Decimal('15.575')
>>> Decimal('-7.3', 4) + Decimal('8.275')
Decimal('0.975', 4)
In operations with other numerical types the precision of the result is at least equal to the precision of the involved Decimal instance, but may be greater, if neccessary. If the needed precision exceeds decimalfp.LIMIT_PREC, an instance of fractions.Fraction is returned.
>>> 0.25 + Decimal(3)
Decimal('3.25')
>>> 0.25 - Decimal(-3, 5)
Decimal('3.25', 5)
>>> 0.725 + Decimal('3')
Fraction(33551817223910195, 9007199254740992)
>>> Decimal('3') + Fraction(1, 7)
Fraction(22, 7)
Multiplication and division¶
Multiplying Decimal instances results in a Decimal instance with precision equal to the sum of the precisions of the operands.
>>> Decimal('5.000') * Decimal('2.5')
Decimal('12.5', 4)
Dividing Decimal instances results in a Decimal instance with precision at least equal to max(0, numerator.precision - denominator.precision), but may be greater, if needed.
>>> Decimal('5.2000') / Decimal('2.5')
Decimal('2.08', 3)
>>> Decimal('5.2003') / Decimal('2.5')
Decimal('2.08012')
In operations with other numerical types the precision of the result is at least equal to the precision of the involved Decimal instance, but may be greater, if neccessary. If the needed precision exceeds decimalfp.LIMIT_PREC, an instance of fractions.Fraction is returned.
>>> 3 * Decimal('7.5')
Decimal('22.5')
>>> Decimal(5) * 0.25
Decimal('1.25')
>>> Decimal('3') * Fraction(1, 7)
Fraction(3, 7)
Rounding¶
Decimal supports rounding via the built-in function round.
Note
In Python 2.x the function round uses the rounding mode ROUND_HALF_UP and always returns a float, while in Python 3.x it rounds according to ROUND_HALF_EVEN and returns an int when called with one argument, otherwise the same type as the number to be rounded.
Python 2.x:
>>> round(Decimal('12.345'))
12.0
>>> round(Decimal('12.345'), 2)
12.35
>>> round(Decimal('1234.5'), -2)
1200.0
Python 3.x:
>>> round(Decimal('12.345'))
12
>>> round(Decimal('12.345'), 2)
Decimal('12.34')
>>> round(Decimal('1234.5'), -2)
Decimal(1200)
In addition, via the method adjusted() a Decimal with a different precision can be derived, supporting all rounding modes defined by the standard library module decimal.
>>> d = Decimal('12.345')
>>> d.adjusted(2) # default rounding mode is ROUND_HALF_EVEN !
Decimal('12.34')
>>> d.adjusted(2, ROUND_HALF_UP)
Decimal('12.35')
>>> d.adjusted(1, ROUND_UP)
Decimal('12.4')
For the details of the different rounding modes see the documentation of the standard library module decimal.
Class Decimal¶
- class decimalfp.Decimal¶
Decimal number with a given number of fractional digits.
Parameters: - value (see below) – numerical value (default: 0)
- precision (int) – number of fractional digits (default: None)
If value is given, it must either be a string (type str or unicode in Python 2.x, bytes or str in Python 3.x), an instance of number.Integral (for example int or long in Python 2.x, int in Python 3.x), number.Rational (for example fractions.Fraction), decimal.Decimal or float or be convertable to a float or an int.
If a string is given as value, it must be a string in one of two formats:
- [+|-]<int>[.<frac>][<e|E>[+|-]<exp>] or
- [+|-].<frac>[<e|E>[+|-]<exp>].
Returns: Decimal instance derived from value according to precision The value is always adjusted to the given precision or the precision is calculated from the given value, if no precision is given. For performance reasons, in the latter case the conversion of a numbers.Rational (like fractions.Fraction) or a float tries to give an exact result as a Decimal only up to a fixed limit of fractional digits. This limit defaults to 32 and is accessible as decimalfp.LIMIT_PREC.
Raises: - TypeError – precision is given, but not of type int.
- TypeError – value is not an instance of the types listed above and not convertable to float or int.
- ValueError – precision is given, but not >= 0.
- ValueError – value can not be converted to a Decimal (with a number of fractional digits <= LIMIT_PREC if no precision is given).
Decimal instances are immutable.
- __abs__¶
abs(self)
- __add__¶
x + y
- __ceil__()¶
math.ceil(self)
- __div__¶
x / y
- __eq__¶
x.__eq__(y) <==> x==y
- __floor__()¶
math.floor(self)
- __format__()¶
Return self converted to a string according to given format specifier.
Parameters: fmtSpec (str) – a standard format specifier for a number Returns: self converted to a string according to fmtSpec Return type: str
- __ge__¶
x.__ge__(y) <==> x>=y
- __gt__¶
x.__gt__(y) <==> x>y
- __hash__¶
hash(self)
- __le__¶
x.__le__(y) <==> x<=y
- __lt__¶
x.__lt__(y) <==> x<y
- __mul__¶
x * y
- __neg__¶
-self
- __pos__¶
+self
- __pow__¶
x ** y
If y is an integer (or a Rational with denominator = 1), the result will be a Decimal. Otherwise, the result will be a float or complex since roots are generally irrational.
mod must always be None (otherwise a TypeError is raised).
- __radd__¶
x.__radd__(y) <==> y+x
- __rdiv__¶
x.__rdiv__(y) <==> y/x
- __repr__¶
repr(self)
- __rmul__¶
x.__rmul__(y) <==> y*x
- __round__()¶
round(self [, ndigits])
Round self to a given precision in decimal digits (default 0). ndigits may be negative.
Note: This method is called by the built-in round function only in Python 3.x! It returns an int when called with one argument, otherwise a Decimal.
- __rsub__¶
x.__rsub__(y) <==> y-x
- __rtruediv__¶
x.__rtruediv__(y) <==> y/x
- __str__¶
str(self)
- __sub__¶
x - y
- __truediv__¶
x / y
- adjusted()¶
Return copy of self, adjusted to the given precision, using the given rounding mode.
Parameters: - precision (int) – number of fractional digits (default: None)
- rounding (str) – rounding mode (default: None)
Returns: Decimal instance derived from self, adjusted to the given precision, using the given rounding mode
If no precision is given, the result is adjusted to the minimum precision preserving x == x.adjusted().
If no rounding mode is given, the default mode from the current context (from module decimal) is used.
If the given precision is less than the precision of self, the result is rounded and thus information may be lost.
- as_integer_ratio()¶
Return the pair of numerator and denominator with the smallest positive denominator, whose ratio is equal to self.
- as_tuple()¶
Return a tuple (sign, coeff, exp) so that self == (-1) ** sign * coeff * 10 ** exp.
- denominator¶
Return the smallest positive denominator from the pairs of integers, whose ratio is equal to self.
- static from_decimal()¶
Convert a finite decimal number to a Decimal.
Parameters: d (see below) – decimal number to be converted to a Decimal d can be of type Decimal, numbers.Integral or decimal.Decimal.
Returns: Decimal instance derived from d
Raises: - TypeError – d is not an instance of the types listed above.
- ValueError – d can not be converted to a Decimal.
- static from_float()¶
Convert a finite float (or int) to a Decimal.
Parameters: f (float or int) – number to be converted to a Decimal
Returns: Decimal instance derived from f
Raises: - TypeError – f is neither a float nor an int.
- ValueError – f can not be converted to a Decimal with a precision <= LIMIT_PREC.
Beware that Decimal.from_float(0.3) != Decimal(‘0.3’).
- static from_real()¶
Convert a Real number to a Decimal.
Parameters: Returns: Decimal instance derived from r
Raises: - TypeError – r is not an instance of numbers.Real.
- ValueError – exact is True and r can not exactly be converted to a Decimal with a precision <= LIMIT_PREC.
If exact is False and r can not exactly be represented by a Decimal with a precision <= LIMIT_PREC, the result is rounded to a precision = LIMIT_PREC.
- imag¶
The imaginary part of self.
Returns 0 (Real numbers have no imaginary component).
- magnitude¶
Return magnitude of self in terms of power to 10, i.e. the smallest integer exp so that 10 ** exp >= self.
- numerator¶
Return the numerator from the pair of integers with the smallest positive denominator, whose ratio is equal to self.
- precision¶
Return precision of self.
- real¶
The real part of self.
Returns self (Real numbers are their real component).
Rounding modes¶
Decimal supports all rounding modes defined by the standard library module decimal: ROUND_DOWN, ROUND_UP, ROUND_HALF_DOWN, ROUND_HALF_UP, ROUND_HALF_EVEN, ROUND_CEILING, ROUND_FLOOR and ROUND_05UP. It uses the rounding mode set as default in that module.
As shortcut to get or set the rounding mode, the module decimalfp provides the following two functions: