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Abstract

Drug discovery typically consists of multiple steps, including identifying a target
protein key to a disease’s etiology, validating that interacting with this target
could prevent symptoms or cure the disease, discovering a small molecule or
biologic therapeutic to interact with it, and optimizing the candidate molecule
through a complex landscape of required properties. Drug discovery related tasks
often involve prediction and generation while considering multiple entities
that potentially interact, which poses a challenge for typical AI models.
For this purpose we present MAMMAL - Molecular Aligned Multi-Modal
Architecture and Language - a method that we applied to create a versatile
multi-task foundation model ibm/biomed.omics.bl.sm.ma-ted-458m that learns
from large-scale biological datasets (2 billion samples) across diverse modalities,
including proteins, small molecules, and genes. We introduce a prompt syntax
that supports a wide range of classification, regression, and generation tasks. It
allows combining different modalities and entity types as inputs and/or outputs.
Our model handles combinations of tokens and scalars and enables the genera-
tion of small molecules and proteins, property prediction, and transcriptomic lab
test predictions. We evaluated the model on 11 diverse downstream tasks span-
ning different steps within a typical drug discovery pipeline, where it reaches
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new SOTA in 9 tasks and is comparable to SOTA in 2 tasks. This perfor-
mance is achieved while using a unified architecture serving all tasks,
in contrast to the original SOTA performance achieved using tailored
architectures.
The model code and pretrained weights are publicly available at https://
github.com/BiomedSciAI/biomed-multi-alignment and https://huggingface.co/
ibm/biomed.omics.bl.sm.ma-ted-458m.
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Fig. 1 (A) We introduce a multi-aligned model pretrained on six datasets, each containing tens
to hundreds of millions of data points. These data points include protein sequences, small molecules,
and gene expression profiles, with a combined sample size of 2 billion. (B) The multi-aligned model
combines flexible encoder-only and encoder-decoder components. It takes sequences as input, which
may contain any combination of tokens and scalar elements, processed by an encoder stack consisting
of self-attention blocks. In encoder-only mode, a dedicated token prediction head outputs logits for
token predictions, with an optional scalar prediction head for scalar outputs. In encoder-decoder
mode, residual connections inject features from the encoder’s final hidden layer into each decoder
layer, and a decoder-specific prediction head outputs the final logits. (C) Diverse downstream tasks
performed by the multi-aligned model, mapped to their contributions within the steps of a typical drug
discovery pipeline. (D) Diverse downstream tasks performed by the multi-aligned model, categorized
by data type used in the fine-tuning process. (E) Performance of the multi-aligned model across a
diverse set of tasks compared to SOTA.
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1 Introduction

Drug discovery traditionally follows a multi-step pipeline that begins with identifying
disease-associated proteins, progresses to finding compounds that can effectively target
these proteins, and culminates in the optimization of drug candidates to meet rigorous
standards for efficacy and safety. This process is both costly and labor-intensive [1],
requiring extensive laboratory assays that measure drug-target interactions, assess
cellular changes in disease-relevant cell lines, and validate therapeutic efficacy and
safety [1? –3]. Drugs in development can be either small molecules, which are stable,
easy to manufacture, and suitable for oral delivery [4], or biologic therapeutics, such as
engineered antibodies, which offer high specificity but require complex manufacturing
and are typically administered by injection [5].

Accelerating drug discovery has become a central focus in biomedical research,
aiming to streamline target identification, drug design, and testing [6–8]. Analyzing
gene expression profiles, particularly from single-cell RNA sequencing (RNA-seq), has
emerged as a key tool for distinguishing between cell populations associated with differ-
ent diseases [9–12]. This analysis enhances our understanding of disease mechanisms,
facilitates the identification of new drug targets, and allows for the examination of
drug effects across various cell types [13, 14]. In drug design, trained generative mod-
els are utilized to synthesize new drug candidates for further exploration [15–17]. As
high-throughput screening assays for measuring drug binding affinity are costly and
challenging to scale, accurately predicting drug-target interactions can significantly
enhance drug design, improving both efficacy and precision. Overall, predictive mod-
eling of binding affinity, toxicity, and efficacy in the early stages of the pipeline can
reduce reliance on expensive late-stage testing, ultimately saving time and resources
in drug development.

When creating predictive and generative AI models, one of the key challenges in the
field involves the question - how should different modalities and entities be combined as
inputs/outputs to a model ?[18] This uncertainty is especially dominant in predictive
and generative tasks that involve interaction between entities, for example, predicting
whether a specific antibody and a protein target are likely to bind or not.

In this work, we introduce the MAMMAL (Molecular Aligned Multi-Modal Archi-
tecture and Language) method, and develop a multi-aligned foundation model paired
with a prompt syntax that integrates multiple data domains to support a wide range
of drug discovery tasks. The multi-aligned model, which enables aligning multiple
entities into a single prompt, has been extensively pre-trained on 2 billion samples
from diverse datasets, using auxiliary tasks of mask infilling, denoising, generation,
and classification. The multi-aligned model is compatible with both encoder-decoder
and encoder-only architectures and effectively incorporates numerical values through
continuous token embedding, enhancing numerical precision and reducing vocabulary
size. We rigorously evaluate the multi-aligned model across 11 downstream tasks -
spanning classification, regression, and generation - covering key stages of the drug
discovery pipeline across three primary domains: small molecules, proteins, and gene
expression profiles. The multi-aligned model achieves state-of-the-art performance in
9 tasks and matches top performance in the remaining 2 tasks. The model is publicly
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available on https://huggingface.co/ibm/biomed.omics.bl.sm.ma-ted-458m under the
name ibm/biomed.omics.bl.sm.ma-ted-458m

2 Methods

The MAMMAL method is built around three core components: the model architec-
ture, the molecular prompt syntax, and extensive pretraining. In Subsection 2.1, we
detail the architecture and its enhancements to the standard transformer framework.
Subsection 2.2 focuses on the molecular prompt syntax, a key feature that enables the
support of a diverse range of pretraining and downstream tasks for drug discovery.
Finally, Subsection 2.3 outlines the pretraining process, which fascilitates leveraging
large, cross-domain datasets and handling multiple entities simultaneously.

2.1 MAMMAL Architecture

The MAMMAL framework builds on the transformer architecture introduced by
Vaswani et al. [19], and is inspired by the T5 framework [20] to formulate tasks as
sequence-to-sequence problems within a unified model. MAMMAL introduces three
primary features:

• Task modeling in either an encoder-only mode, akin to BERT [21], or an encoder-
decoder autoregressive mode [19]. The weights of the encoder stack are shared
across both modes, enabling multi-task training that integrates tasks from both
types. Model parameter updates are performed through gradient accumulation
across all tasks.

• Integral support for the molecular prompt syntax through the new Modular
Tokenizer component, which facilitates the extension of molecular domain vocab-
ularies and the incorporation of new domain vocabularies without necessitating
the retraining of existing models.

• Supporting numerical values (scalar) as both inputs being fed into the model, and
also as outputs that the model can learn to predict. This is done in a continuous
way, not requiring any binning or translation to a discrete space.

More details on the architecture and how scalars inputs and outputs are supported
can be found in Appendix A

2.2 Prompt Syntax

The prompt syntax employs a nomenclature of special tags that represent elements
of molecular entities, molecular sequences, and their attributes, as well as interactions
within the broader molecular system. It is designed to accommodate multiple data
domains by providing tokenization hints for different segments of the input sequence,
with all tokenizers supporting a common set of special tokens, such as ⟨EOS⟩. Numeric
values are handled by a designated tokenizer, and the syntax is applicable to both
model inputs and outputs. Furthermore, the syntax is extensible, allowing for the
addition of new tags to each tokenizer or to the common set of special tokens. The
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Table 1 Pretraining Tasks

Name Domain Entity
Type

Task Type Dataset Number of
Samples

Protein LM Biologic General
Protein

Spans Masking
LM

Uniref90 [22] 180M

Antibody LM Biologic Antibody Spans Masking
LM

OAS [23] 650M

Small Molecule
LM

Small
Molecules

Small
Molecule

Spans Masking
LM

ZINC [24] +

PubChem [25]
200M

Cell Genes LM Single
Cell
Transcript-
omics

Cell
Genes

Spans Masking
LM

CELLxGENE [26] 30M

Protein-Protein
Interaction

Biologic General
Protein

Classification STRING [27] 780M

Protein-Protein
Interaction
Gen.

Biologic General
protein

Generation STRING [27] 390M

Antibody
Denoise

Biologic Antibody Denoise
Sequence

OAS [23] 650M

Details on the pretraining tasks that were used while training ibm/biomed.omics.bl.sm

.ma-ted-458m.
”Number of Samples” describes the post filtering number of samples actually used. A single model
was pretrained with all of the listed tasks, accumulating knowledge spanning multiple domains.

modular tokenizer ensures backward compatibility of newly trained models with exist-
ing ones, even after the introduction of new tags or domain-specific tokenizers. More
details and examples of the prompt syntax can be found in Appendix B.

2.3 Pretraining

MAMMAL is designed as a comprehensive foundation model, capable of spanning
multiple domains and accommodating a variety of entities. It is intended to support
diverse task types, ranging from representation-focused tasks to generation-oriented
ones. To achieve this, MAMMAL is trained on multiple tasks concurrently. Pretraining
was conducted on 2 billion samples sourced from six datasets, which are all publicly
available, covering three distinct domains across seven tasks. Table 1 summarizes these
tasks, detailing the relevant domains, entity types, and specific datasets. Additional
details about the pretraining are provided in Appendix C.

2.4 Evaluation

We compiled a comprehensive set of 11 benchmarks covering multiple data domains
and task types, including classification, regression and generation, as well as single-
entity, multi-entity, and multi-domain tasks. These benchmarks address key stages
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of the drug discovery process: identifying target cell types (Cell Type) and advanc-
ing precision medicine (Cancer-Drug Response 1-3); predicting drug efficacy (BBBP)
and safety (ClinTox); predicting the binding affinity of small-molecule drugs to tar-
get proteins (DTI); predicting interactions of biological drugs (PPI); and designing
new drugs, such as antibodies, to target specific proteins (Ab Infilling). A key crite-
rion in selecting benchmarks was the availability of predefined train, validation, and
test splits. For benchmarks with train-validation-test splits, we fine-tuned the model
ibm/biomed.omics.bl.sm.ma-ted-458m on the training set, selected the best check-
point based on validation performance, and reported final results on the test set.
Unless otherwise noted, standard errors were estimated by training the models with
three different random seeds and calculating the standard deviation of their perfor-
mance on the test set. Detailed descriptions of each benchmark and the fine-tuning
methods used to adapt our pre-trained model for these tasks are provided alongside
the evaluation results for each benchmark. In one of the benchmarks (DTI), we report
performance using the normalized root mean square error (NRMSE), calculated by
dividing the root mean square error by the standard deviation of the labels in the test
set. We consider our models to outperform the existing SOTA when the improvement
in performance, measured by |SOTA−MAMMAL| / SOTA, exceeds 1%.

3 Results

Below, we present each benchmark used to evaluate ibm/biomed.omics.bl.sm

.ma-ted-458m, along with performance results from the corresponding fine-tuned
models. Each benchmark description includes background on the task, its significance
for drug discovery, relevant prior models, and data statistics. A summary of the bench-
marks, along with SOTA and MAMMAL results, is presented in Table 2 and visualized
in Figure 1(E). Examples of encoder inputs and decoder labels for each benchmark
are provided in Table S1.

3.1 Cell Type Annotation

Cell type prediction enables researchers to distinguish between different cell popu-
lations, such as those associated with various diseases [9–12]. It is also crucial for
understanding how diseases or drugs affect different cell types. In recent years, a vari-
ety of methods have been developed for this task, including approaches based on
marker genes, correlation-based techniques, and annotation using classification [37].
Recent advances in transformer-based and large-scale foundation models [28, 38, 39]
have improved performance by utilizing the full list of genes as input, in contrast to
earlier methods where gene selection was based on highly Variable genes (HVG).

The input for this task commonly consists of gene expression (GE) values from
single-cell RNA-seq data. The benchmark we used is based on the Zheng68k dataset
[40], which is derived from human peripheral blood mononuclear cells (PBMCs) and
is widely used for evaluating cell-type annotation performance. The dataset contains
68,579 cells across 11 cell types and originally included 32,738 genes. Preprocessing
involved normalization, log-transformation of expression values and followed filtering
out non-expressed genes, leaving around 20,387 genes. Similar to the approach in [41],
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Table 2 Comparison of SOTA and MAMMAL Performance Across Benchmarks

Benchmark Domain Type Metric SOTA MAMMAL Imp.

Cell type GE cls ↑ F1 [28] 0.710 0.763±0.012 7.5 %

BBBP SM cls ↑ AUROC [29] 0.937 0.957±0.006 2.2 %

ClinTox SM cls ↑ AUROC [29] 0.948 0.986±0.007 4.0 %

Cancer-Drug
Response 1

GE+SM reg ↑ Pearson [30] 0.887 0.917±0.001 3.4 %

Cancer-Drug
Response 2

GE+SM reg ↑ Pearson [30] 0.900 0.931±0.002 3.4 %

Cancer-Drug
Response 3

GE+SM reg ↑ Pearson [31] 0.923
[0.917-0.929]

0.928±0.000 0.5 %

Ab Infilling Protein gen ↑ CDRH3-
AAR

[32] 0.375 0.446±0.002 19.0 %

AbAg Bind Protein cls ↑ AUROC [33] 0.924
[0.923-0.925]

0.928±0.002 0.4 %

TCR Bind Protein cls ↑ AUROC [34] 0.862
[0.85-0.868]

0.879±0.003 2.0 %

PPI ∆∆G Protein reg ↑ Pearson [35] 0.663 0.852±0.041 28.5 %

DTI Prot.+SM reg ↓ NRMSE 0.942±0.028
[36]

0.906±0.011 3.8 %

For NRMSE lower is better. For other metrics (AUROC, CDRH3-AAR, Pearson, Spearman, and F1)
higher is better. Each row shows results from a MAMMAL model fine-tuned from ibm/biomed.omics.bl.sm

.ma-ted-458m for the corresponding task. Abbreviations: in ”Type” column: ”cls” = classification, ”reg” =
regression, ”gen” = generation. ”Imp.” = improvement (percentage) of our model over SOTA. In ”Domain”
column: ”GE” = genes expression, ”SM” = small molecule, ”Prot.” = protein.

our model uses a ranked list of expressed gene names, ordered by their expression levels,
as input. The label to predict is provided in the cell ontology format “CL:NNNNNN”
(see Table S1).

The model ibm/biomed.omics.bl.sm.ma-ted-458m was fine-tuned and evaluated
using 5-fold cross-validation, while ensuring similar proportions of cell types across
the folds. As shown in Tables 2 and S2, MAMMAL outperforms the previous state-
of-the-art performance in both accuracy and F1, achieving a 7.5% improvement in
F1.

3.2 BBBP and ClinTox

Drugs must meet various criteria regarding both efficacy and safety. In this study,
we selected two relevant benchmarks from MoleculeNet [42], a widely used suite of
benchmarks for small-molecule drugs: BBBP and ClinTox. The task in the BBBP
benchmark is to predict the ability of drugs to penetrate the blood-brain barrier, a
crucial factor in the development of drugs targeting the central nervous system. The
ClinTox benchmark involves two related tasks: (1) predicting failure in clinical toxicity
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trials, and (2) predicting FDA approval status. The overall performance on ClinTox
is reported as the average performance across these two tasks.

MoLFormer [29], a well-established model for molecular embeddings trained on
1.1 billion SMILES sequences, has achieved state-of-the-art performance on both the
BBBP and ClinTox benchmarks. In our study, we adopted the benchmarks from [29],
which provided predefined splits for training, validation, and testing. As shown in 2,
MAMMAL surpassed MoLFormer on both benchmarks, achieving an average AUROC
of 0.937 on BBBP and 0.986 on ClinTox - representing improvements of 2.2% and 4%,
respectively, over the state of the art.

3.3 Cancer-Drug Response (CDR)

Identifying drug response at the cellular level is a critical step in the development of
new drugs. Two key public databases supporting this effort, particularly in cancer drug
development, are the Cancer Cell Line Encyclopedia (CCLE) [43] and the Genomics
of Drug Sensitivity in Cancer (GDSC) [44]. CCLE provides multi-omics profiles for
around 1,000 cancer cell lines, while GDSC offers data on the drug responses of these
lines to hundreds of drugs, commonly measured using the half-maximal inhibitory
concentration (IC50). Notable computational models addressed this task [31, 45, 46].

For our study, we used three subsets of the GDSC database: GDSC1 and GDSC2,
available through the Therapeutics Data Commons (TDC) [47], and referred in the
paper as Cancer-Drug Response 1 and Cancer-Drug Response 2 respectively; and a
subset published in [31], referred as Cancer-Drug Response 3. Table S3 summarizes
the number of cell lines, drugs, and cell-drug pairs in these datasets. We used the
random splits provided by TDC for Cancer-Drug Response 1 and 2, while for Cancer-
Drug Response 3, we followed the split methodology outlined in [31], reserving 5% of
the data for the test set, stratified by TCGA [48] pathways associated with the cancer
cell lines.

During fine-tuning we used only gene-expression profiles and SMILES represen-
tations of drugs, as shown in the example query in Table S1. Similar to the input
format for cell type annotation, gene-expression profiles were provided as ranked lists
of gene names based on their expression levels. For predicting continuous IC50 values,
MAMMAL was utilized in regression mode, taking advantage of its built-in support
for floating point scalar predictions. As demonstrated in Table 2, our model outper-
forms the current SOTA models for Cancer-Drug Response 1 and 2, achieving a 3.4%
increase in Pearson correlation values. Additionally, it yields results comparable to
the SOTA for the Cancer-Drug Response 3 benchmark, with a slight improvement of
0.5%..

3.4 Targeted Antibody Design

Antibodies are a family of proteins produced by the immune system to neutralize for-
eign antigens and are of particular interest due to their high specificity and strong
binding to target molecules [49, 50]. These characteristics have made them a cru-
cial class of therapeutics, driving significant research efforts into the design of new
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antibody-based drug candidates [5, 51–53]. Antigen-binding fragments (Fabs) of anti-
bodies consist of two amino acid chains, referred to as the heavy and light chains. Each
chain is further divided into four framework (FR) regions and three complementarity-
determining regions (CDRs). While FR regions are typically conserved, CDRs exhibit
significant variation in their amino acid composition and are generally the primary
determinants of binding affinity to the target antigen. When designing novel antibod-
ies for a specific antigen, the typical approach is to explore alternative CDRs that
could produce a new, functional antibody with high binding affinity to the target
[32, 49, 50, 54].

Recently, several deep learning methods have been developed for targeted antibody
design, framing CDR prediction as an infilling task [32, 54–59]. These models predict
missing CDR regions, represented by MASK tokens, using the amino acid sequences of
both the antigen and the antibody’s FR regions. While prior approaches often rely on
structural data, this information is scarce and challenging to obtain [60]. In contrast,
we fine-tune MAMMAL for the targeted antibody design task using only the sequence
data from the antigen and the antibody’s FR regions.

The targeted antibody design task benchmark is based on the SAbDab dataset [60].
Following the data processing outlined in [32], we filtered out samples with missing
CDRs to enable direct comparison, even though MAMMAL supports samples that
contain missing CDRs. Consistent with [32], we randomly partitioned the dataset into
training, validation, and test folds while ensuring that samples with similar heavy
CDR3 sub-sequences remained in the same fold. As demonstrated in Tables 2 and S4,
MAMMAL shows superior amino acid recovery across all masked CDRs. Notably, in
CDRH3, the most variable region, it exhibits a remarkable improvement of 19%.

3.5 Antibody-Antigen Binding Prediction

Accurate prediction of antigen-antibody binding can enhance the design and optimiza-
tion of therapeutic antibodies, leading to improved efficacy and specificity. We employ
the human epidermal growth factor receptor 2 (HER2) dataset [61] as a benchmark for
predicting antibody-antigen binding. HER2 is a key target for certain types of breast
and stomach cancers. The dataset includes variations of the clinically approved thera-
peutic antibody trastuzumab and their corresponding affinities for the HER2 antigen.
The dataset comprises 8,935 binding and 25,114 non-binding trastuzumab CDR H3
mutants, each with up to 10 mutations, following de-duplication and the removal of
samples labeled as both binding and non-binding.

The HER2 dataset was divided into train (70%), validation (15%) and test (15%)
sets. Fine-tuning involved three concurrent tasks: mask infilling for the antibody heavy
chains, and two classification tasks for antibody-antigen binding prediction: one uti-
lizing the heavy chain sequence and the other based on the CDR3 subsequence. We
focus on the heavy chain classification task for performance evaluation. As depicted in
table 2, our model achieved an average AUC of 0.879, slightly surpassing the SOTA,
which incorporated structural data that our model did not.
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3.6 T-Cell Receptor-Epitope Binding

T-cell receptor (TCR) binding to immunogenic peptides (epitopes) presented by major
histocompatibility complex (MHC) molecules is a critical mechanism in the adaptive
immune system, essential for antigen recognition and triggering immune responses.
The T-cell receptor (TCR) repertoire exhibits considerable diversity, consisting of an
α-chain and a β-chain that function together to enable T cells to recognize a wide
array of epitopes. The β-chain is especially significant, as it is crucial for the early
stages of T-cell development and possesses greater variability, which enhances the
TCR’s capacity to identify diverse pathogens effectively. However, understanding the
specific interactions between TCRs and epitopes remains a significant challenge due
to the vast variability in TCR sequences. Accurate prediction of TCR-peptide bind-
ing from sequence data could revolutionize immunology by offering deeper insights
into a patient’s immune status and disease history. This capability holds potential
applications in personalized immunotherapy, early diagnosis, and the treatment of
diseases such as cancer and autoimmune disorders. In silico tools designed to model
TCR-peptide interactions could also facilitate the study of therapeutic T-cell efficacy
and assess cross-reactivity risks, presenting a transformative opportunity for precision
medicine.

We evaluated the model on the task of predicting TCR-epitope binding from
sequence data using the Weber benchmark ([34], [62]), which consists of 47,182 TCR
β-chain epitope pairs. This dataset covers 192 distinct epitopes and includes 23,139
unique TCR β-chain sequences, with 50% of the pairs serving as negative samples cre-
ated by pairing TCR sequences with epitopes they are not known to bind. The dataset
also includes the CDR3 subsequence for each TCR β-chain , the most hypervariable
region of the chain. We used 10-fold cross-validation, using folds from the original
TITAN paper [34]. Fine-tuning involved three concurrent tasks: TCR β-chainmask
infilling and two classification tasks: (i) TCR β-chain epitope binding prediction and
(ii) TCR β-chain -CDR3 epitope binding prediction. Here, we report the performance
only for the TCR β-chain epitope binding prediction task. As depicted in table 2, our
model achieved an average AUROC of 0.879, representing a statistically significant
improvement of 2% over the SOTA, as our result falls outside the SOTA’s confidence
interval.

3.7 Protein Protein Interaction - ∆∆G Prediction

An important factor in drug design is binding affinity, commonly measured by the
equilibrium dissociation constant, KD, which is related to the Gibbs free energy ∆G
through the equation

∆G = kT ln(KD), (1)

where k is the Boltzmann constant and T is the temperature [63].
The effect of mutating several residues in a protein complex on binding affinity can

be quantified by the difference in ∆G between the mutant and the reference (wild-type)
complex. This difference is expressed as

∆∆G = ∆Gmutant −∆Gwild-type.
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Predicting ∆∆G is a central focus of numerous research efforts [64–66].
The SKEMPI dataset [63] provides information on changes in thermodynamic

parameters, including ∆G, and kinetic rate constants due to mutations in protein-
protein (PP) complexes whose structures are available in the Protein Data Bank [67].
This dataset is extensively utilized in the literature for predicting the effects of muta-
tions on binding affinity, particularly in the context of ∆∆G. A subset of SKEMPI
comprising 1,131 samples of single mutations, S1131, is widely used. We adopt S1131
as our benchmark for predicting protein-protein ∆∆G and follow the common prac-
tice of reporting 10-fold cross-validation performance on this subset. The input query
for our model includes the reference “wild-type” version of the complex and the cor-
responding mutated version, comprising only sequence data without any structural
information. We leverage MAMMAL’s support for floating-point scalars to predict
continuous ∆∆G in a regression task setting. Performance results are presented in
Table 2. As shown in Table 2, our model achieved an average Pearson correlation
of 0.852, significantly exceeding the previous sequence-only SOTA of 0.663. Com-
pared to models that incorporate structural data, our model’s performance remains
competitive, falling just 1.6% short of the SOTA performance of 0.866 [64].

3.8 Drug-Target Interaction

Predicting drug-target binding affinity plays a crucial role in the early stages of
drug discovery. Traditionally, binding affinities are measured through high-throughput
screening experiments, which, while accurate, are resource-intensive and limited in
their scalability to evaluate large sets of drug candidates. In this task, we focus on
predicting binding affinities using pKd, the negative logarithm of the dissociation con-
stant, which reflects the strength of the interaction between a small molecule (drug)
and a protein (target). We utilize the PEER(Protein sEquence undERstanding) bench-
mark [36] for drug-target interaction (DTI) prediction. This benchmark leverages data
from the BindingDB dataset [68], with a specific test split that holds out four protein
classes - estrogen receptor (ER), G-protein-coupled receptors (GPCR), ion channels,
and receptor tyrosine kinases - for assessing generalization performance on unseen
classes.

For model fine-tuning, we conducted hyperparameter optimization, selecting an
initial learning rate of 0.0004, with no dropout and no weight decay. We standardized
the pKd values based on the mean and standard deviation of the training set. For
evaluation, we transformed the predicted values back to their original scale. As shown
in Table 2, our model achieved an average NRMSE of 0.906, demonstrating a solid
improvement of 3.8% over the SOTA reported by [36].

4 Discussion

Artificial intelligence (AI) holds great promise for transforming the drug discovery pro-
cess by enhancing efficiency, accuracy, and speed. Developed with this goal in mind,
our proposed method enables the creation of AI models capable of handling diverse
tasks across multiple data domains. MAMMAL reformulates tasks as sequence-to-
sequence problems and introduces several key architectural enhancements: support
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for both encoder-only and encoder-decoder modes, a multi-domain extensible syntax
for inputs and outputs, and the direct handling of numerical values through contin-
uous token embeddings. MAMMAL has been applied to pretrain model ibm/biomed
.omics.bl.sm.ma-ted-458m while aligning inputs across diverse datasets - includ-
ing small molecule, protein, antibody, and gene expression data-using a variety of
pretraining tasks. This multi-align approach enables the integration of cross-domain
pharmaceutical knowledge into a single model and facilitates effective transfer learn-
ing to fine-tuned models for downstream applications. Demonstrated state-of-the-art
performance of the multi-align fine-tuned models across diverse tasks, spanning mul-
tiple data domains and stages of the drug discovery pipeline, strongly supports the
potential of the MAMMAL approach.

Supporting both encoder-only and encoder-decoder modes is motivated by the
observation that different tasks benefit from distinct architectures: generative tasks
with variable output lengths are well-suited to an encoder-decoder approach, while
classification and regression tasks align more effectively with an encoder-only setup.
Sharing the encoder stack across both modes optimizes it jointly across tasks, allowing
each to benefit from the collective knowledge embedded within the encoder. Addi-
tionally, the extensible molecular prompt language enables flexible task formulation
across diverse domains, unlike models constrained by fixed prompt structures. This
flexibility enhances applicability across various domains, making it a versatile tool for
researchers from different fields and promoting interdisciplinary collaboration.

Drug discovery is often hindered by a lack of large, high-quality datasets, par-
ticularly in biomedicine, where data generation and collection are costly and face
challenges related to privacy, lack of standardization, and ethical constraints. A
planned extension of our approach involves the support of free-text input, enabling
pretraining on extensive biomedical text sources like PubMed as well as the incor-
poration of free-text segments into prompts of fine-tuned models. Free text provides
rich, nuanced context and allows users greater flexibility beyond predefined formats.
The integration of large language models, which capture human narratives, with our
newly introduced multi-aligned model-demonstrated to effectively encode complex
interactions within protein complexes, between proteins and small molecules, and
between small molecules and cells, including their gene expression levels-holds promise
of creating a model capable of uncovering new scientific knowledge.

We are pleased to announce the open-source release of the the code and the
pretrained model weights for ibm/biomed.omics.bl.sm.ma-ted-458m, inviting the
community to explore, apply, and contribute to its ongoing development. By mak-
ing MAMMAL accessible, we aim to foster collaboration that enriches the platform
through the addition of new pretraining tasks and the integration of new domains,
such as DNA sequences. We believe that such collaborative efforts will strengthen
and enhance the capabilities of MAMMAL, broadening its applicability in the field of
biomedicine and ultimately leading to new discoveries in drug research.
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5 Data Availability

All datasets used in this study are publicly available.
Cell Type. Dataset (Zheng68k) was obtained from https://www.
10xgenomics.com/datasets/fresh-68-k-pbm-cs-donor-a-1-standard-1-1-0 (file:
https://cf.10xgenomics.com/samples/cell-exp/1.1.0/fresh 68k pbmc donor a/
fresh 68k pbmc donor a filtered gene bc matrices.tar.gz)

BBBP and ClinTox benchmarks were obtained from https://github.
com/IBM/molformer/tree/main/data that points to https://ibm.ent.box.com/v/
MoLFormer-data (file: finetune datasets.zip).

Cancer-Drug Response 1 and 2. GDSC1 and GDSC2 benchmarks were
accessed with random splits from the TDC library (https://pypi.org/project/
PyTDC/). Cancer-Drug Response 3. Benchmark obtained from DeepCDR [31] git
repository (https://github.com/kimmo1019/DeepCDR/tree/master/data).

DTI. Benchmark was published by [36] and available in https://torchdrug.ai/
docs/api/datasets.html#bindingdb

Ab Infilling. Data is taken from [32], which provides a preprocessed subset of
the publicly available SAbDab database [60]. The preprocessing pipeline includes a
similarity-based clustering for the data splits and sample level filtering which excludes
samples that are considered in valid in [32]. For additional information, we refer to [32]
and the publicly available codebase, https://github.com/THUNLP-MT/dyMEAN.

PPI ∆∆G. The SKEMPI S1131 dataset of non-redundant single mutations was
derived from SKEMPI [63] in [69] and can be downloaded from https://zhanggroup.
org/BindProfX/download/.

PPI. The Weber TCR binding dataset was downloaded from [62], and the HER2
antibody-antigen binding dataset was taken from the original paper [61] github
repository [70].

Pretraining. ibm/biomed.omics.bl.sm.ma-ted-458m was pre-trained over OAS
[23], Uniref90 [71], Zinc [24], PubChem [25] and CELLxGENE [26]. Appendix C
describes the pre-processing steps applied.

6 Code Availability

The model architecture, fine-tuning framework, and end-to-end examples are publicly
available at https://github.com/BiomedSciAI/biomed-multi-alignment. This reposi-
tory provides comprehensive resources for utilizing the model, including instructions
for fine-tuning, and performing inference on various tasks. The pretrained model
weights and tokenizer can be accessed via the Hugging Face model hub at https:
//huggingface.co/ibm/biomed.omics.bl.sm.ma-ted-458m.
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Appendix A Architecture - additional details

Inputs Tokens IDs:

? ? …

Multi-Align Model

Decoder

Encoder

Prompt: ?

Inputs Scalars:

Transform Using Learned Token 
Embedding

1 to model_dim
learned linear projection

model_dim
(e.g.768) tensor

model_dim
(e.g.768) tensor

Scalars Prediction Head

Encoder Logits

Decoder Logits

Classification Loss
CE, Focal, …

Regression Loss
MSE, RMSE, …

Tokens Labels: 

Scalars Labels:

300 70 22 123 768 24 99 22 …

12.7 …

?

25

97.2 …

102229 …102

+
Fig. A1 A prompt, consisting of both token ids and scalars is processed and enters the encoder.
Both the encoder and the decoder output logits which are used for classification loss. Additionally,
the output of the encoder is sent to a (learned) scalars prediction head which allows to predict scalars
for any subset of the tokens, and is used in the regression loss. In this illustration, a single scalar input
(”12.7”) is being used, and a single scalars outputs are predicted by the model (”97.2”). However,
the method fully supports an arbitrary number of input scalars and outputs.

One of the key aspects in MAMMAL method is the built in support for scalars
inputs and outputs. Figure A1 illustrates how this is achieved.

A user prompt, usually expressed as a single text line, is processed into 2 input
sequences: a. Input token IDs, which is a sequence of integer values representing tokens
in the vocabulary b. a sequence of inputs scalars (by convention, containing NaNs for
positions for which no input scalar is provided).

The input tokens ids are transformed using a learned token embedding, and the
input scalars are transformed using a learned linear transformation which projects
each single scalar element into the model dimension (e.g. 768).

Both representations are added (not concatenated) and fed into the encoder stack.
Using this approach, both tasks that use encoder-only mode and encoder-decoder
mode benefit from the ability to get as input an arbitrary number of scalars (at most
as many as the number of tokens that are being fed in ).

For scalars outputs (gene expression, binding free enery, etc.) the encoder stack has
an additional prediction head, which outputs a scalar value for every input element.
How to deal with scalars outputs in locations that there is no scalar label is up to the
user choice, but the default is to ignore those.
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The support of scalars outputs in the encoder-decoder mode is an improvement
that we intend to add in future generations of the model/method.
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Appendix B Prompt Syntax

A typical prompt is built as a combination of entities of the following types:
• SubSequence : A sequence of amino acids or other chemical representations,
such as SMILES, which may encompass a full sequence or a specific region. A
SubSequence can begin with two special tokens: 〈SUBMOLECULAR ENTITY〉 , fol-
lowed by a token indicating the SubSequence type (e.g., 〈CDR3 REGION〉 ). These
tokens are optional and may be omitted when only one SubSequence is present.

• Molecule: A complete molecule, such as a protein chain or small molecule, which
may contain multiple SubSequences corresponding to sub-regions within the
molecule. Each Molecule is initiated with two special tokens - a general token
indicating the entity’s hierarchical level, 〈MOLECULAR ENTITY TOKEN〉, followed by
a token specifying the molecule type (e.g., 〈MOLECULAR ENTITY EPITOPE〉). Addi-
tionally, Molecules can be marked with natural start and end tokens to denote
instances where truncation has occurred, either in the original database or due
to sequence length constraints.

• MolecularSystem: A quaternary structure consisting of multiple Molecules,
denoted by the 〈COMPLEX ENTITY〉 special token.

• GlobalSystem: A system comprising multiple interacting MolecularSystem enti-
ties.

• Attribute: A representation of properties or interactions among the entities.
In predictive tasks, relevant attribute values are masked, while in generative or masked
language modeling (MLM) tasks, spans within SubSequences or entire SubSequences
are masked. Tokens denoting entity types can also be masked for type prediction tasks.
Additionally, each entity may possess alternative expressions or mutations, which can
be employed for comparison tasks.

Binding: ?

Molecule: TCR beta VDJ

Organism: ?

Subsequence: AC..DF

Molecule: Epitope

Organism: 567

Subsequence: LM..VW

Fig. B2 Entity hierarchy for the task of binding prediction of two proteins, and organism prediction
of the first one.

Example 1: Illustrated in Figure B2. Given two interacting molecules – variable
region of a TCR beta chain of an unspecified organism and an epitope of organism
567, find whether they bind, and to which organism the first molecule belongs.:
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• encoder inputs = 〈@TOKENIZER-TYPE=AA〉 〈BINDING AFFINITY CLASS〉
〈SENTINEL ID 0〉 〈MOLECULAR ENTITY〉〈MOLECULAR ENTITY TCR BETA VDJ〉
〈ATTRIBUTE ORGANISM〉〈SENTINEL ID 1〉 AC...DF 〈MOLECULAR ENTITY〉
〈MOLECULAR ENTITY EPITOPE〉〈ATTRIBUTE ORGANISM〉〈5〉〈6〉〈7〉〈8〉 LM...VW 〈EOS〉

• labels = 〈@TOKENIZER-TYPE=AA〉〈SENTINEL ID 0〉〈1〉〈SENTINEL ID 1〉〈2〉〈3〉〈4〉
〈EOS〉

Molecule: TCR Beta VDJ

Subsequence: AC..DF

Molecule: TCR Alpha

Subsequence: AC..NP

Molecule: Epitope

Subsequence: LM..WY

Molecule System 1 Molecule System 2

Binding: ?

Fig. B3 Entity hierarchy for the task of binding prediction of a TCR and an epitope. ”Molecule
System 1” represents the TCR complex, ”Molecule System 2” represents the antigen, and the entire
prompt represents their interaction.

Example 2 : Illustrated in Figure B3. Given a complex entity, T-cell receptor consist-
ing of alpha and beta chains, and an epitope, predict if they bind.:

• encoder inputs = 〈@TOKENIZER-TYPE=AA〉〈BINDING AFFINITY CLASS〉
〈SENTINEL ID 0〉
〈COMPLEX ENTITY〉〈MOLECULAR ENTITY〉〈MOLECULAR ENTITY TCR BETA VDJ〉
AB...DF 〈MOLECULAR ENTITY〉〈MOLECULAR ENTITY TCR ALPHA〉 AC...NP
〈COMPLEX ENTITY〉 〈MOLECULAR ENTITY〉〈MOLECULAR ENTITY EPITOPE〉LM...WY
〈EOS〉

• labels = 〈@TOKENIZER-TYPE=AA〉〈SENTINEL ID 0〉〈1〉〈EOS〉

Example: Given two binding chains – TCR beta chain and an epitope, unmask 3
spans within the beta chain:

• labels = 〈@TOKENIZER-TYPE=AA〉〈SENTINEL ID 0〉AC〈SENTINEL ID 1〉
AD〈SENTINEL ID 2〉CD〈EOS〉

• encoder inputs = 〈@TOKENIZER-TYPE=AA〉 〈BINDING AFFINITY CLASS〉〈1〉
〈MOLECULAR ENTITY〉〈MOLECULAR ENTITY EPITOPE〉〈SEQUENCE NATURAL START〉
LM. . .WY〈SEQUENCE NATURAL END〉〈MOLECULAR ENTITY〉
〈MOLECULAR ENTITY TCR BETA VDJ〉 〈SENTINEL ID 0〉C. . . D〈SENTINEL ID 1〉
DF〈SENTINEL ID 2〉FDF 〈EOS〉
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Example 3: (for multitokenizer): DTI

• labels = 〈@TOKENIZER-TYPE=AA〉〈SENTINEL ID 0〉〈1〉〈EOS〉
• encoder inputs = 〈@TOKENIZER-TYPE=AA〉〈BINDING AFFINITY CLASS〉

〈SENTINEL ID 0〉〈@TOKENIZER-TYPE=SMILES@MAX-LEN=10〉〈MOLECULAR ENTITY〉
〈MOLECULAR ENTITY SMALL MOLECULE〉CCC=CCC
〈@TOKENIZER-TYPE=AA@MAXLEN=15〉〈MOLECULAR ENTITY〉
〈MOLECULAR ENTITY EPITOPE〉
LMNPQRSTUVWY 〈EOS〉

Examples showing how a prompt is created for several downstream tasks can be
found in Table S1

B.1 Modular Tokenizer and Meta Tokens

To support multiple modalities within a single prompt we have developed ”Modular
Tokenizer” which allows to utilize different tokenizers within a single prompt by map-
ping tokens from different domains (like SMILES carbon ”C” and amino acid cysteine
”C”) to the same ID space.

We use ”Meta Tokens” of the format 〈@TOKENIZER-TYPE=...〉 to indicate that
everything following this meta token, up to the next meta token (or the end
of the prompt) should be tokenized with the defined tokenizer. For example,
〈@TOKENIZER-TYPE=AA〉 tokenizes amino-acids, while 〈@TOKENIZER-TYPE=SMILES〉 can
tokenize SMILES. Since all of those ”sub tokenizers” must exist in a single vocabu-
lary space, our modular tokenizer orchestrates that, and provides mechanism to avoid
conflicts and for sub-tokenizers to co-exist. Additionally, we support additional instruc-
tions within a meta token beyond only expression which (sub) tokenizer should be used.
For example, 〈@TOKENIZER-TYPE=AA@MAX-LEN=1000〉 allows to restrict the maximum
length of the tokenized sequence, which provides more granular control compared to
only controlling the overall total max sequence tokenized length. It is worth empha-
sizing - meta tokens, by themselves, do not get tokenized into any token. They serve
as instructions for the modular tokenizer. Further details on the implementation can
be found on https://github.com/BiomedSciAI/fuse-med-ml/tree/master/fuse/data/
tokenizers/modular tokenizer

Appendix C Pretraining Details

C.1 Infrastructure

ibm/biomed.omics.bl.sm.ma-ted-458m model was trained on an OpenShift cluster.
It was trained for three months over two nodes with 16 A100-80G GPUs. The training
framework was implemented using FuseMedML [72] and PyTorch, with distributed
processing supported by PyTorch Fully Sharded Data Parallel (FSDP) for efficient
parallelism.
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C.2 Hyperparameters

We train ibm/biomed.omics.bl.sm.ma-ted-458m using AdamW optimizer, with the
following hyperparameters: β1 = 0.9, β2 = 0.999. We use a weight decay of 0.01
and a gradient clipping norm of 1.0. We employ 2K warmup steps until reaching the
maximum learning rate and utilize a cosine decay scheduler to decay LR to 10% of the
maximum learning rate by the end of training. The maximum sequence length was set
per task to be effective yet efficient. When required, instead of naively truncating the
end of a sequence, we first wrapped the sequence with special start and end tokens
to provide a hint for the model as to whether the beginning or end of a sequence was
truncated. Then we randomly cut a random sub-sequence with the required length.
Batch sizes were tuned per task given the maximum sequence length to maximize
GPU memory utilization.

C.3 Datasets

ibm/biomed.omics.bl.sm.ma-ted-458m was pre-trained using six diverse datasets
spanning multiple domains.
UniRef90 [71], one of the clustered databases in UniProt [22] (UniProt Reference
Clusters), groups protein sequences that share at least 90% identity and 80% sequence
overlap with the longest sequence in each cluster (the seed sequence). This clustering
approach reduces redundancy while preserving the diversity of functional sequences,
providing a rich protein dataset.
OAS [23] (Observed Antibody Space) offers unpaired antibody sequences, specifically
focusing on the variable regions of light or heavy chains. After filtering for sequences
with complete variable domains and retaining only the sequences with standard amino
acids, we finalized a dataset of approximately 650 million sequences. Each sequence is
annotated with its chain type (heavy or light) and species information.
STRING [27] is a database that integrates data from experimental findings, com-
putational predictions, and text mining to describe protein-protein interactions. We
curated a dataset of 390 million positive protein interaction pairs, considering only
pairs that had a STRING confidence score above 500. Additionally, we curated 390
million pseudo-negative pairs by randomly matching proteins from the same species,
resulting in a second dataset of 780 million samples.
CELLxGENE [26], a platform for single-cell transcriptomics data, was used to assem-
ble a dataset of gene expression sequences from individual cells. After filtering for
samples labeled as “cell” in the ’suspension type’ field, we curated a dataset of 30 mil-
lion samples. These samples were processed and converted into the Genformer format
for use in model training.
For small-molecule data, we utilized two main sources: (1) PubChem [25], a compre-
hensive chemical database maintained by NCBI, and (2) ZINC22 [24], a large library
of drug-like molecules. From PubChem, we curated a subset of 80 million “drug-like”
molecules, removing duplicates and following Lipinski’s rule of five to ensure drug-
likeness. Additionally, we sampled 120 million molecules from the ZINC22 database,
focusing on small molecules with fewer than 30 heavy atoms to ensure dense coverage
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of “drug-like” chemical space. This led to a final dataset of 200 million small-molecule
examples.

C.4 Multitask Pretraining Approach

ibm/biomed.omics.bl.sm.ma-ted-458m was pre-trained for seven tasks simultane-
ously using a multitask learning approach. Gradients from each task were aggregated
before applying optimizer updates. This approach, combined with a custom query
system, enables the model to learn from different tasks and domains during co-training.

C.5 Pretraining Tasks

Language Model Tasks. Four language model tasks were defined: (1) amino-acid
sequence representation of antibodies based on OAS database [23] (2) amino-acid
sequence representation of general proteins based on Uniref90 [22, 71] (3) smiles
representation of small molecules based on a mixture of PubChem [25] and Zinc
databases [24] (4) Genformer format representations [41] of cell genes based on CEL-
LxGENE [26]. In all language modeling tasks, we employed span-denoising (similar
to T5 [20]) with a mean noise span length of 5 and a noise density of 0.15. Addi-
tionally, a special token was introduced per entity type to make the model aware
of it (e.g., 〈MOLECULAR ENTITY TYPE ANTIBODY HEAVY CHAIN〉). When sequences were
available from different species, an additional special token was also introduced (e.g.,
〈ATTRIBUTE ORGANISM HUMAN〉)

Antibody Denoise. This task focuses on recovering corrupted antibodies, repre-
sented by amino acid sequences. The corrupted sequence is generated by first sampling
a value t from the range [1, 500], and then uniformly corrupting the amino acid tokens
with a probability proportional to t. The antibody sequences used in this task are
sourced from the OAS (Observatory of Antibody Space) dataset.

Protein-Protein Interaction. As part of the pretraining process, two tasks were
defined for learning protein-protein interactions: a classification task and a generation
task, both utilizing data from the STRING database [27]. Interactions with a score
higher than 500 are labeled as positive, while random pairs of proteins are treated as
negative interactions. For the classification task, a balanced dataset comprising both
positive and negative pairs is used. In the generation task, the model is trained on
positive pairs only, where it learns to generate an interacting protein given an input
protein.
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Appendix D Additional Results

Table S1: Examples of Encoder Inputs and Decoder Outputs for
Benchmarks

Bench. Encoder input Decoder label

Cell
type

〈@TOKENIZER-TYPE=GENE〉〈MOLECULAR
ENTITY〉〈MOLECULAR ENTITY CELL GENE

EXPRESSION RANKED〉
[MALAT1][RPL10]...[ZNF136][ZNF514]

〈CELL TYPE CLASS〉〈SENTINEL ID 0〉〈EOS〉

〈@TOKENIZER-TYPE=CELL
ATTRIBUTES〉〈SENTINEL
ID 0〉[CL:0001062] 〈EOS〉

BBBP 〈@TOKENIZER-TYPE=SMILES〉〈MOLECULAR
ENTITY〉〈MOLECULAR ENTITY SMALL

MOLECULE〉〈BBBP〉〈SENTINEL ID 0〉
〈@TOKENIZER-TYPE=SMILES@MAX-LEN=2100〉
C(Cl)Cl 〈EOS〉

〈@TOKENIZER-TYPE=SMILES〉
〈SENTINEL ID 0〉〈1〉〈EOS〉

ClinTox
Toxic

〈@TOKENIZER-TYPE=SMILES〉〈MOLECULAR
ENTITY〉〈MOLECULAR ENTITY SMALL

MOLECULE〉〈TOXICITY〉〈SENTINEL ID 0〉
〈@TOKENIZER-TYPE=SMILES@MAX-LEN=2100〉
C#CC1(CCCCC1)OC(=O)N 〈EOS〉

〈@TOKENIZER-TYPE=SMILES〉
〈SENTINEL ID 0〉〈0〉〈EOS〉

ClinTox
FDA
Approval

〈@TOKENIZER-TYPE=SMILES〉〈MOLECULAR
ENTITY〉〈MOLECULAR ENTITY SMALL

MOLECULE〉〈FDA APPR〉〈SENTINEL ID 0〉
〈@TOKENIZER-TYPE=SMILES@MAX-LEN=2100〉
C#CC1(CCCCC1)OC(=O)N 〈EOS〉

〈@TOKENIZER-TYPE=SMILES〉
〈SENTINEL ID 0〉〈1〉〈EOS〉

Cancer-
Drug
Response

〈@TOKENIZER-TYPE=SCALARS LITERALS〉
<MASK > 〈@TOKENIZER-TYPE=SMILES〉
〈MOLECULAR ENTITY〉〈MOLECULAR ENTITY

SMALL MOLECULE〉〈SMILES SEQUENCE〉
CN(C)CCOc. . . [nH]2)cc1
〈@TOKENIZER-TYPE=GENES〉〈MOLECULAR
ENTITY〉〈MOLECULAR ENTITY CELL GENE

EXPRESSION RANKED〉
[B2M][RPL10]...[ZBTB16][ZNF429] 〈EOS〉

〈@TOKENIZER-TYPE=SCALARS
LITERALS〉3.966226
〈@TOKENIZER-TYPE=SMILES〉
. . . [ZBTB16][ZNF429]

〈EOS〉

Continued on next page
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Table S1 – continued from previous page

Bench. Encoder input Decoder label

Antibody
design

〈@TOKENIZER-TYPE=AA〉〈COMPLEX ENTITY〉
〈ATTRIBUTE ORGANISM〉〈ATTRIBUTE ORGANISM

HUMAN〉〈MOLECULAR ENTITY〉〈MOLECULAR
ENTITY TYPE ANTIBODY LIGHT CHAIN〉
AB...CD〈SENTINEL ID 0〉GF...KL〈SENTINEL
ID 1〉...TC 〈MOLECULAR ENTITY〉〈MOLECULAR
ENTITY TYPE ANTIBODY HEAVY CHAIN〉
AA...DD〈SENTINEL ID 2〉FK...KF〈SENTINEL
ID 3〉...JJ 〈MOLECULAR ENTITY〉〈MOLECULAR
ENTITY EPITOPE〉AB...GK 〈EOS〉

〈@TOKENIZER-TYPE=AA〉
〈SENTINEL ID 0〉
ABC〈SENTINEL ID 1〉
DDDDD〈SENTINEL ID 2〉
EEFF. . . 〈SENTINEL ID 3〉
GKGK〈EOS〉

AbAg
Bind

〈@TOKENIZER-TYPE=AA〉 〈BINDING AFFINITY

CLASS〉〈SENTINEL ID 0〉
〈@TOKENIZER-TYPE=AA@MAX-LEN=700〉
〈MOLECULAR ENTITY〉〈MOLECULAR ENTITY

ANTIBODY HEAVY CHAIN〉 EVQ...KSC
〈@TOKENIZER-TYPE=AA@MAX-LEN=700〉
〈MOLECULAR ENTITY〉〈MOLECULAR ENTITY

ANTIGEN〉 MEL...YEG 〈EOS〉

〈@TOKENIZER-TYPE=AA〉
〈SENTINEL ID 0〉〈1〉〈EOS〉

TCR
Bind

〈@TOKENIZER-TYPE=AA〉 〈BINDING AFFINITY

CLASS〉〈SENTINEL ID 0〉
〈@TOKENIZER-TYPE=AA@MAX-LEN=700〉
〈MOLECULAR ENTITY〉〈MOLECULAR ENTITY TCR

BETA VDJ〉 TIQ...TVV
〈@TOKENIZER-TYPE=AA@MAX-LEN=170〉
〈MOLECULAR ENTITY〉〈MOLECULAR ENTITY

EPITOPE〉 LEPLVDLPI 〈EOS〉

〈@TOKENIZER-TYPE=AA〉
〈SENTINEL ID 0〉〈1〉〈EOS〉

PPI
∆∆G

〈@TOKENIZER-TYPE=AA〉〈GENERAL AFFINITY

CLASS〉〈@TOKENIZER-TYPE=SCALARS
LITERALS〉<MASK>
〈@TOKENIZER-TYPE=AA〉〈COMPLEX ENTITY〉
〈MOLECULAR ENTITY〉〈MOLECULAR ENTITY

GENERAL PROTEIN〉IS...VY
〈@TOKENIZER-TYPE=AA〉〈COMPLEX ENTITY〉
〈MOLECULAR ENTITY〉〈MOLECULAR ENTITY

GENERAL PROTEIN〉DC...KCNF ...KC

〈@TOKENIZER-TYPE=AA〉〈MUTATED〉
〈MOLECULAR ENTITY〉〈MOLECULAR ENTITY

GENERAL PROTEIN〉DC...KCQF ...KC 〈EOS〉

〈@TOKENIZER-TYPE=AA〉
〈GENERAL AFFINITY

CLASS〉
〈@TOKENIZER-TYPE=SCALARS
LITERALS〉
0.244〈@TOKENIZER-TYPE=AA〉
〈COMPLEX ENTITY〉 . . . KC
〈EOS〉

Continued on next page
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Table S1 – continued from previous page

Bench. Encoder input Decoder label

DTI 〈@TOKENIZER-TYPE=AA〉<MASK>
〈@TOKENIZER-TYPE=AA〉〈MOLECULAR ENTITY〉
〈MOLECULAR ENTITY GENERAL PROTEIN〉
CC=..〈@TOKENIZER-TYPE=SMILES〉
〈MOLECULAR ENTITY〉 〈MOLECULAR ENTITY

SMALL MOLECULE〉 AD.. 〈EOS〉

〈@TOKENIZER-TYPE=SCALARS
LITERALS〉 {standardized
pKd}

Table S2 Cell type additional results

model Accuracy F1 Precision Recall

scBERT 0.759 0.691 N/A N/A

CIForm 0.820 0.710 N/A N/A

MAMMAL 0.856±0.004 0.763±0.012 0.774±0.016 0.761±0.011

Table S3 Statistics of GDSC Datasets

Dataset # Cell lines # Drugs
# Cell-Drug

pairs

Cancer-Drug Resp.1 958 208 177K

Cancer-Drug Resp.2 805 137 92K

Cancer-Drug Resp.3 561 223 107K

Table S4 Ab Infilling additional results

model CDRH1-
AAR

CDRH2-
AAR

CDRH3-
AAR

CDRL1-
AAR

CDRL2-
AAR

CDRL3-
AAR

dyMEAN
[32]

0.757 0.685 0.375 0.755 0.831 0.521

MAMMAL 0.832
±0.003

0.742
±0.012

0.446
±0.002

0.780
±0.017

0.844
±0.012

0.724
±0.010
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