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Abstract
This presentation deals with generative and predictive models based on kernel methods.

After introducing our kernel library, We illustrate these models with a toy-example of risk
framework based on time series forecasting, that could be used for real-time P&L explanation
of large derivative portfolios, or other risk measures as Expected Positive Exposure or Credit
Valuation Risk.

1 Introduction
In this jupyter notebook presentation, we would like to introduce our internal AI library, highlighting
it with two interesting applications of machine learning to finance, namely:

• Synthetic data generation. For finance applications, there exists numerous applications,
among them are time series forecast of risk sources that we illustrate in this presentation.
The most-known technologies for producing synthetic datas are neural networks based, as for
instance GAN, WGAN, CLGAN, that are at heart of synthetic images or videos production.

• Predictives methods. Here too, applications for finance are numerous, and we illustrate here
an application to real-time P&L computations. The most-known technologies for predictive
methods are for instance neural networks, decision trees, etc...

For this presentation, we used our open source library, codpy 1. Codpy is a kernel based technology
(RHKS - Reproducing Kernel Hilbert Space theory), that we have developped and are using for
the internal needs at MPG-Partners. Codpy is an alternative library to other AI libraries (pytorch,
theano, tensorflow, etc. . . ) that has some nice properties for finance applications:

• It is an explainable method. All produced results come with computable error estimates
allowing to qualify them. Error estimates allow moreover to link naturally to Optimal
Transport Theory based tools, used thoroughly by this library.

• It is a performing and accurate library, particularly while dealing with sparse input data
(small training set).

• It can compute efficiently a wide zoo of differential operators. Indeed, this library was thought
primarily to solve mathematical physics based problems, and is used to approximate some
dynamical systems described by a PDE (Partial Differential Equations) model.

∗MPG-Partners, 136 Boulevard Haussmann, 75008 Paris, France. jean-marc.mercier@mpg-partners.com
1The codpy user manual is accessible clicking here. For installation, follow the guidelines clicking here.
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2 A quick tour to kernels methods
2.1 Predictive methods with kernels
Artificial Intelligence (AI) is mainly based over predictions, that are nothing else but extrapolation
methods.

AI Vocabulary:. X, f(X) is the training set. Z is the test set, fz is the prediction set, f(Z)
is the reference (ground truth) value. Y is the parameter set, that are internal parameters to a
prediction algorithm.

2.1.1 Projection (extrapolation) and differential operators

Kernel methods define a quite simple prediction operator, that we present now briefly. Let X (resp.
Y,Z) be a set of Nx (resp. Ny, NZ) distinct points in dimension D, f any continuous, vector
valued, function. Notations

X := {xn
d}

Nx,D
n,d=1 ∈ RNx,D, f(X) ∈ RNx,Df (2.1)

Let k be a kernel, that is a symmetric and positive definite (see [2] for a definition) scalar function
k : X ×X 7→ R. Consider K(X,Y ) the Gram matrix, i.e. K(X,Y ) := (k(xn, ym))Nx,Ny

n,m=1. We define
a prediction as

fZ := Pk(X,Y, Z)f(X), Pk(X,Y, Z) := K(Y,Z)K(X,Y )−1. (2.2)

The inverse is computed using a least-squares approach, as follows, K(X,Y )−1 =
(K(Y,X)K(X,Y ) + ε)−1K(Y,X), where ε is a (optional) regularization term, as is the
Tychonov regularization method, or other ones. A classical choice for the parameter set are Y = X
(extrapolation), or Y ⊂ X (interpolation - Nystrom method). Starting from the formula (2.2), we
can define all kind of differential operators, as for instance the gradient

∇fZ = (∇ZK)(Y, Z)K(X,Y )−1f(X). (2.3)

CoDpy function: fz = op.projection(X,Y, Z, f(X), k, ...),∇fZ = op.nabla(X,Y, Z, f(X), k, ...).

2.1.2 Illustration with MNIST : hand-written recognition

2.2 Error estimates
The projection operator (2.2) benefits from the following error estimate (see [5]), that are confidence
levels

‖f(Z)− fZ‖`2 ≤ Dk(X,Y, Z)‖f‖Hk
, (2.4)

where Dk(X,Y, Z) := Dk(X,Y ) + Dk(Y,Z), and where the discrepancy between two discrete
probability measures X and Y , induced by a kernel k is

Dk

(
X,Y

)2 :=
∑Nx

n,m=1 k(xn, xm)
N2

x

+
∑Ny

n,m k(yn, ym)
N2

y

−
2
∑Nx,Ny

n,m=1 k(xn, ym)
NxNy

, (2.5)

CoDpy function: Dk

(
X,Y

)2 = op.Dnm(X,Y, k), ‖f‖Hk
= op.norm(X, f(X), k)

3



2.2.1 Illustration with MNIST : discrepancy errors and scores

2.3 Clustering method
CoDpy defines a clustering method as follows:

Ȳ = arg inf
Y ∈RD,NY

Dk(X,Y ), (2.6)

called sharp discrepancy sequences. This approach is an alternative to more classical clustering
algorithms as K-means ones. CoDpy function: op.sharp_discrepancy(X,Y,k,. . . ).

2.3.1 Illustration with the MNIST : clustering and scores enhancement

In this section, we would like to illustrate some benchmarks capabilities of our framework, as well
as illustrating a first method to synthetic data generation, that is clustering.

A comparison between methods. Clustering provides an alternative, and interesting way to
synthetic data generation. Codpy provides facilities to plug painlessly other algorithms libraries. We
take advantages to benchmark scikit’s k-means algorithm implementation, based over minimization
of the “inertia” functional, that is the sum of distances of all points to the centroid in a cluster.
We compare k-means to codpy clustering method (sharp dicrepancy sequences) in what follows.

## C:\informatique\Python39\lib\site-packages\sklearn\cluster\_kmeans.py:1334: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=4.
## warnings.warn(
## C:\informatique\Python39\lib\site-packages\sklearn\cluster\_kmeans.py:1334: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=4.
## warnings.warn(
## C:\informatique\Python39\lib\site-packages\sklearn\cluster\_kmeans.py:1334: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=4.
## warnings.warn(
## C:\informatique\Python39\lib\site-packages\sklearn\cluster\_kmeans.py:1334: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=4.
## warnings.warn(
## C:\informatique\Python39\lib\site-packages\sklearn\cluster\_kmeans.py:1334: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=4.
## warnings.warn(
## C:\informatique\Python39\lib\site-packages\sklearn\cluster\_kmeans.py:1334: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=4.
## warnings.warn(
## C:\informatique\Python39\lib\site-packages\sklearn\cluster\_kmeans.py:1334: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=4.
## warnings.warn(
## C:\informatique\Python39\lib\site-packages\sklearn\cluster\_kmeans.py:1334: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=4.
## warnings.warn(

Note that the cluster centroids themselves are 784-dimensional points, and can themselves be
interpreted as the “typical” digit within the cluster. Figure 1 plots some examples of computed
clusters, interpreted as images. As can be seen, they are perfectly recognizable.

We illustrate a benchmark plot, displaying the computed performance indicator of scikit’s k-means
and codpy’s MMD minimization-based algorithm in terms of MMD, inertia, accuracy scores (when
applicable) and execution time. The higher the scores and the lower are the inertia and MMD the
better.
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Figure 1: Scikit and codpy clusters interpreted as images

5



100 200
Ny

0.75

0.80

0.85

0.90
sc

or
es

codpy
k-means

100 200
Ny

0.2

0.4

di
sc

re
pa

nc
y_

er
ro

rs

codpy
k-means

100 200
Ny

15000

20000

25000

in
er

tia

codpy
k-means

The scores are quite high, compared to supervised methods for similar size of training set.
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2.4 Generative methods with kernels - A quick introduction to the sam-
pler method

A generative method is a method that take as input discrete samples of a given distribu-
tion, and reproduce it, hypothesizing that this distribution is continuous. CoDpy function:
alg.sampler(X,Y,k,. . . )

For illustration goals, we apply this algorithm for two bi-modal distributions based on a Gaussian
and a Student’s distribution namely N (0, 1) and t(ν = 5). We use here two distinct sets (training
set X and test set Z) to highlight some convergence properties of the sampler algorithm:

• IID : X,Z are iid samples of X.

• SDS : X,Z are sharp discrepancy sequences (SDS) of X.

For both sets, the size of the training set is Nx = 1000, whereas the size of the test set is Nz = 500.
We plot the results computed by the sampler algorithm in Figure 2 (resp. Figure 3) for the IID
case (resp. SDS case).

10 5 0 5
0.0

0.1

0.2

0.3
Gaussian distribution

sampled
generated

5 0 5
0.0

0.1

0.2

0.3
t-distribution

sampled
generated

Figure 2: Density of generated IID distributions

Once generated, we compute various statistic indicators to check the similarities between both
distributions (historical and generated)

Table 1: Statistics of IID-generated distributions

Mean Variance Skewness Kurtosis KS test
-0.047(0.39) 0.0047(-0.077) 26(26) -1.9(-1.9) 0.0024(0.05)

As can be seen, these algorithms are sensitive to input data. In particular, using clustering methods
improves algorithm performances.

Table 2: Statistics of SDS-generated distributions

Mean Variance Skewness Kurtosis KS test
0.013(0.17) 0.0013(-0.068) 26(26) -1.9(-1.9) 0.15(0.05)
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Figure 3: Density of generated SDS distributions

2.4.1 Retrieve any distribution, in any dimension. . .

The previous distribution is a 3-dimensional one, with three stocks market data. We outlight here
that synthetic data generation is a general approach, and one can consider any distributions, as for
instance the MNIST database, consisting of 60000 hand-written digits, having 28x28=784 pixels
resolution. We consider it as a discrete 784-dimensional distribution having 60000 samples, the
figure ?? showing the first hundred ones

The incentive to use this data set is to illustrate how our algorithms scale with dimensionalities, as
well as linking towards classical learning machine problems.
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2.4.2 Illustration : resample the MNIST

Note that this resampling function is a general one, and one can generate from any distribution.
For instance, the same algorithm applied to the hand-written digits distribution ?? produced the
following resampling examples 2

3 Application settings - Input data
3.1 Retrieve market data
Let us download real market data, retrieved from January 1, 2016 to December 31, 2021, for three
assets: Google, Apple and Amazon. These data are plot Figure ??.
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To produce this figure, we use the following global settings:

Table 3: Global settings

begin date end date pricing date symbols
01/06/2016 01/06/2022 01/06/2022 c("AAPL", "GOOGL", "AMZN")

2We learnt from a distribution consisting of the first 500 over the 60000 hand-written digits of the MNIST
database images for performance purposes.
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3.2 Set a portfolio of instruments
We define a payoff function as P (t, x) 7→ P (t, x) ∈ RDP , with DP corresponding to the number of
instrument. We consider here a single instrument DP = 1, the instrument being a basket option
written on our underlyings. We represent this payoff in a two-dimensional figure with axis basket
values in Figure 4.

80 60 40 20 0 20
basket values (%K)

0

5

10

15

20

25

30

pa
yo

ff 
va

lu
es

Figure 4: A payoff of an basket option
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3.3 Set a pricing engine
We define a pricing function as a payoff, that is a vector-valued function (t, x) 7→ P (t, x) ∈ RDP .
We represent this pricing function in a two-dimensional figure 5 with axis basket values.

The pricing function here is selected as a simple Black and Scholes formula, hence hypothesizing
that the basket values are log normal 3
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Figure 5: Pricing as a function of time

3this choice is made for performance purposes here, but any pricing function can be plugged in.
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4 Synthetic market data generation
4.1 Fit a model to the historical distribution
A model can be described by a stochastic differential equation. For instance consider a log-normal
process, described by Xt = µXt +XtσdBt, Bt being the standard Brownian motion, having solution
Xt = Xs exp((t−s)(µ−σ2/2) +

√
t− sσN (0, 1)), N (0, 1) being the normal law. Fitting this model

to historical data plot at figure ?? would consist in fitting the parameters µ, σ to the historical
data.
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Figure 6: Log return distribution of historical market data

Synthetic data generation introduces somehow a new paradigm, where known processes (as the
standard Brownian Bt), are replaced by unknown random variable to fit. So instead of (??),
consider the following problem : define a process, having form

Xt = Xs exp((t− s)µ+
√
t− sX), (4.1)

where X is an unknown random variable to fit to historical data. To that aim, consider the log
transformation

X = ln(Xt)− ln(Xs)− (t− s)µ√
t− s

, (4.2)
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in order to separate the random variable X to fit to historical data. Figure 6 plots the ditribution
retrieved from our historical data after the transformation (4.1).
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4.2 Generate the distribution
We then provide a function, producing a continuous sampling function from any discrete input
distribution. Figure 7 is a result of a resample of the historical distribution
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Figure 7: Log return distribution of generated market data

4.2.1 Check generated paths

In the table 4, we compute various statistical indicators, as the fourth moments and Kolmogorov-
Smirnov tests, to challenge our generated data against the original one.

Table 4: Stats for historical (generated) data

AAPL AMZN GOOGL
Mean 0.0013(0.002) 0.001(0.0018) 0.00073(0.0012)
Variance -0.48(-0.26) -0.14(0.026) -0.48(-0.26)
Skewness 0.0003(0.00025) 0.00031(0.00027) 0.00025(0.00019)
Kurtosis 7.4(4.2) 3.7(3) 6.5(3.5)
KS test 0.41(0.05) 0.36(0.05) 0.49(0.05)
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4.3 Build and check generated paths
Ten examples of re-generated paths in figure 8. These paths can be used for Monte-Carlo sampling,
and we can also build PDE (Partial Differential Equations) pricers, whatever the dimensions are.
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Figure 8: Ten examples of generated paths
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5 Predictive pricing methods
5.1 Training set - VaR scenarios
According to (2.4), the interpolation error committed by the projection operator Pk (2.2), defined
on a set X, is driven at any point z by the quantity Dk(z,X). We plot at Figure 9 the isocontours
of this error function for two distinct sets (red dots).

• (right) X is generated as VaR scenarios for three dates t0 − 1, t0, t0 + 1, with 10 days horizon.

• (left) X is the historical data set.

The test set is generated as VaR scenarios with 5 days horizon (blue dots).
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Figure 9: Training and test set

The blue dots in Figure 9 is the test set Z, and corresponds to simulated, intraday, market
values. This figure motivates the VaR-type scenario dataset on the left-hand side to minimize the
interpolation error. Note that using the historical data set, might be of interest, if only historical
data are available.

Notice finally that there are three sets of red points at Figure 9-(a), as we considered VaR scenarios
at three different times t0−1, t0, t0 + 1, because we are interested in approximating time derivatives
for risk management, as the theta ∂tP .
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5.2 Predict prices
We plot the results of two methods to extrapolate the pricer function on the test set Z (codpy
= kernel prediction, taylor = Taylor second order approximation) in Figure 10.We also plot the
reference price (exact = reference price).
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Figure 10: Prices output
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5.3 Predict greeks
We can also compute greeks, using the operator (∇P )Z defined at (2.3). Here too, we plot
the results of two methods to extrapolate the gradient of the pricer function on the test set Z
(codpy = kernel prediction, taylor = Taylor second order approximation) in Figure 11. We also
plot the reference greeks (exact = reference greeks). This figure should thus produce (∇P )Z =(
(∂tP )Z , (∂x0P )Z , . . . , (∂xD

P )Z

)
, that are D + 1 plots.
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6 Conclusions
6.1 What are the main points highlighted by this presentation

• Synthetic data generation is a general, very handy tool, allowing to model and resample not
only any given random variables, but also conditionally to other variables. For instance, we
use our algorithms to generate synthetic risk measures conditioned to customers data.

• In this presentation, we start exploring a quite interesting application to risk modelling : we
can revisit existing diffusion models, based usually on simple processes as Brownian motions,
and propose a general method to calibration. Doing so, we hope to model risk sources more
accurately.

• Predictive methods allow to approximate computationally expensive risk valuation functions
by learning them from quite few discrete examples. This allows to build fast, real-time,
pricing solutions, even for huge portfolios.

• However, one must be very careful as predictive methods, in the context of synthetic data
generation, can be quite challenging, particularly while computing derivatives (greeks). We
provide solutions, as clustering methods, to enhance the accuracy of such indicators.

6.2 Going further
• As we can resample from historical data, calibrating these data to quite general model, we

can generate our own Monte-Carlo pricers built on top of these models.

• In the same vein, we can also build high dimensional PDE pricers using these models, a
technology similar to Cox trees, but working whatever the number of risk sources are.

• PDE pricers avoid the "Monte-Carlo of Monte-Carlo" trap for risk-management systems.
They allow to estimate risk measures as EEPE, or CVA, in very efficient manner.

• This presentation can be seen as a toy-prototype of a risk management system based on
these ideas.
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