
SHNTOOL(1) local SHNTOOL(1)

NAME
shntool − a multi-purpose WAVE data processing and reporting utility

SYNOPSIS
shntoolmode...
shntool [CORE OPTION]

DESCRIPTION
shntool is a command-line utility to view and/or modify WAVE data and properties. It runs in several dif-
ferent operating modes, and supports various lossless audio formats.

shntool is comprised of three parts - its core,modemodules, andformat modules. Thishelps to make the
code easier to maintain, as well as aid other programmers in developing new functionality. The distribution
archive contains a file named ’modules.howto’ that describes how to create a new mode or format module,
for those so inclined.

Mode modules
shntool performs various functions on WAVE data through the use of mode modules. The core ofshntool
is simply a wrapper around the mode modules. In fact, whenshntool is run with a valid mode as its first
argument, it essentially runs the main procedure for the specified mode, and quits.shntool comes with sev-
eral built-in modes, described below:

len Displays length, size and properties of PCM WAVE data

fix Fixes sector-boundary problems with CD-quality PCM WAVE data

hash Computes the MD5 or SHA1 fingerprint of PCM WAVE data

pad Pads CD(hyquality files not aligned on sector boundaries with silence

join Joins PCM WAVE data from multiple files into one

split Splits PCM WAVE data from one file into multiple files

cat Writes PCM WAVE data from one or more files to the terminal

cmp Compares PCM WAVE data in two files

cue Generates a CUE sheet or split points from a set of files

conv Converts files from one format to another

info Displays detailed information about PCM WAVE data

strip Strips extra RIFF chunks and/or writes canonical headers

gen Generates CD-quality PCM WAVE data files containing silence

trim Trims PCM WAVE silence from the ends of files

For more information on the meaning of the various command-line options for each mode, see theMODE-
SPECIFIC OPTIONS section below.

For convenience, each mode can specify an alternate name or alias that will invoke it (this feature is cur-
rently only available on systems that support symbolic or hard linking).In particular, each mode is aliased
to ’shn<mode>’. For instance, runningshnlen is equivalent to runningshntool len - thus saving a few
keystrokes.

Format modules
File formats are abstracted fromshntool through the use of format modules.They provide a means for
shntool to tranparently read and/or write different file formats. This abstraction allows shntool to

shntool 3.0.10 March 2009 1

SHNTOOL(1) local SHNTOOL(1)

concentrate on its job without worrying about the details of each file format.

The following formats are currently supported:

wav RIFF WAVE file format

aiff Audio Interchange File Format (AIFF and uncompressed/sowt AIFF−C only) (via ’sox’):
<http://sox.sourceforge.net/>

shn Shorten low complexity wav eform coder (via ’shorten’):
<http://www.softsound.com/Shorten.html>
<http://www.etree.org/shnutils/shorten/>

flac Free Lossless Audio Codec (via ’flac’):
<http://flac.sourceforge.net/>

ape Monkey’s Audio Compressor (via ’mac’):
<http://www.monkeysaudio.com/>
<http://supermmx.org/linux/mac/>

alac Apple Lossless Audio Codec (via ’alac’):
<http://craz.net/programs/itunes/alac.html>

tak (T)om’s lossless (A)udio (K)ompressor (via ’takc’):
<http://www.thbeck.de/Tak/Tak.html>

ofr OptimFROG Lossless WAVE Audio Coder (via ’ofr’):
<http://www.losslessaudio.org/>

tta TTA Lossless Audio Codec (via ’ttaenc’):
<http://tta.sourceforge.net/>

als MPEG−4 Audio Lossless Coding (via ’mp4als’):
<http://www.nue.tu−berlin.de/forschung/projekte/ -
lossless/mp4als.html>

wv Wa vPack Hybrid Lossless Audio Compression (via ’wavpack’ and ’wvunpack’):
<http://www.wavpack.com/>

lpac Lossless Predictive Audio Compression (via ’lpac’):
<http://www.nue.tu−berlin.de/wer/liebchen/lpac.html>

la Lossless Audio (via ’la’):
<http://www.lossless−audio.com/>

bonk Bonk lossy/lossless audio compressor (via ’bonk’):
<http://www.logarithmic.net/pfh/bonk>

kxs Ke xis lossless WAV fi le compressor (via ’kexis’):
<http://www.sourceforge.net/projects/kexis/>

mkw MKW Audio Compression format (via ’mkwcon’):
<http://www.etree.org/shnutils/mkwcon/>

cust Custom output format module (output only, useful for encoding to a format thatshntool
does not yet support)

term sends output to the terminal

null sends output to /dev/null (output only, useful for dry-runs in several modes, such asfix
mode orstrip mode)

When reading files for input,shntool automatically discovers which, if any, format module handles each
file. In modes where files are created as output, you can specify what the output format should be - other-
wise,shntool decides for you by selecting the first format module it finds that supports output (in a default

shntool 3.0.10 March 2009 2

SHNTOOL(1) local SHNTOOL(1)

installation, this will be thewav format).

CORE OPTIONS
Modeless

When run without a mode,shntool takes these options:

−m Show detailed mode module information

−f Show detailed format module information

−a Show default format module arguments

−v Show version information

−h Show a help screen

GLOBAL OPTIONS
All modes

All modes support the following options:

−D Print debugging information

−F file Specify a file containing a list of filenames to process.This overrides any files specified on the
command line or on the terminal.

NOTE: Most modes will accept input filenames from a single source, according to the following
order of precedence: file specified by the−F option, otherwise filenames on the command line,
otherwise filenames read from the terminal.

−H Print times in h:mm:ss.{ff,nnn} format, instead of m:ss.{ff,nnn}

−P type
Specify progress indicator type.type is one of: {pct, dot, spin, face, none}. pct shows the com-
pletion percentage of each operation.dot shows the progress of each operation by displaying a ’.’
after each 10% step toward completion.spinshows a spinning progress indicator. faceshows the
progress of each operation by displaying six emoticons that become increasingly happy as the
operation nears completion.noneprevents any progress completion information from being dis-
played. Thedefault ispct.

−h Show the help screen for this mode

−i fmt Specify input file format decoder and/or arguments. Theformat is: "fmt decoder [arg1 ... argN]",
and must be surrounded by quotes.If arguments are given, then one of them must contain "%f",
which will be replaced with the input filename. Examples:

−i ’ shn shorten−2.3b’ (use official shorten−2.3b instead of later versions; leave default arguments
untouched)

−i ’ shn shorten −x −d 2048 %f −’ (force shorten to skip the first 2048 bytes of each file)

−q Suppress non-critical output (quiet mode).Output that normally goes to stderr will not be dis-
played, other than errors or debugging information (if specified).

−r val Reorder input files?val is one of: {ask, ascii, natural, none}. The default isnatural.

−v Show version information

−w Suppress warnings

−− Indicates that everything following it is a filename

shntool 3.0.10 March 2009 3

SHNTOOL(1) local SHNTOOL(1)

Output modes
Additionally, any mode that creates output files supports the the following options:

−O val Overwrite existing files?val is one of: {ask, always, never}. The default isask.

−a str Prefixstr to base part of output filenames

−d dir Specify output directory

−o str Specify output file format extension, encoder and/or arguments. Format is: "fmt [ext=abc]
[encoder [arg1 ... argN (%f = filename)]]", and must be surrounded by quotes. If arguments are
given, then one of them must contain "%f", which will be replaced with the output filename.
Examples:

−o ’ shn shorten −v2 − %f’ (create shorten files without seek tables)

−o ’ flac flake − %f ’ (use alternate flac encoder)

−o ’ aiff ext=aif ’ (override default aiff extension of ’aiff’ w ith ’aif’)

−o ’cust ext=mp3 lame −−quiet − %f’ (create mp3 files using lame)

−z str Postfixstr to base part of output filenames

MODE-SPECIFIC OPTIONS
len mode options

−U unit
Specifies the unit in which the totals will be printed.unit is one of: {b, kb, mb, gb, tb}. The
default isb.

−c Do not show column names

−t Do not show totals line

−u unit Specifies the unit in which each file will be printed.unit is one of: {b, kb, mb, gb, tb}. The
default isb.

len mode output

The output of len mode may seem cryptic at first, because it attempts to convey a lot of informa-
tion in just a little bit of space. But it is quite easy to read once you know what the columns repre-
sent; and in certain columns, what each character in the column means. Each column is explained
below.

length Shows the length of the WAVE data, in m:ss.nnn (millisecond) format.If the data is CD-
quality, then m:ss.ff is shown instead, where ff is a number from 00 to 74 that best
approximates the number of frames (2352-byte blocks) remaining after m:ss.If all files
are CD-quality, the total length will be shown in m:ss.ff format; otherwise it will be in
m:ss.nnn format.NOTE: CD-quality files are rounded to the nearest frame; all other files
are rounded to the nearest millisecond.

expanded size
Shows the total size of all WAVE chunks within the file (header, data and any extra RIFF
chunks). Essentiallythis is the size that the file would be if it were converted to .wav for-
mat, e.g. withshntoolconv.

NOTE: Do not rely on this field for audio size! If you simply want to know how many
bytes of audio are in a file, run it throughinfo mode, and look at the "data size" field in its
output.

shntool 3.0.10 March 2009 4

SHNTOOL(1) local SHNTOOL(1)

cdr Shows properties related to CD-quality files.A ’ c’ in the first slot indicates that the
WAVE data is not [C]D-quality. A ’b’ in the second slot indicates that the CD-quality
WAVE data is not cut on a sector [b]oundary. An ’s’ in the third slot indicates that the
CD-quality WAVE data is too [s]hort to be burned.

A ’ −’ in any of these slots indicates that the particular property is OK or normal.An ’x’
in any of these slots indicates that the particular property does not apply to this file, or
cannot be determined.

WAVE Shows properties of the WAVE data. An ’h’ in the first slot indicates that the WAVE
[h]eader is not canonical. An ’e’ in the second slot indicates that the WAVE file contains
[e]xtra RIFF chunks.

A ’ −’ in any of these slots indicates that the particular property is OK or normal.An ’x’
in any of these slots indicates that the particular property does not apply to this file, or
cannot be determined.

problems
Shows problems detected with the WAVE header, WAVE data, or the file itself.A ’ 3’ in
the first slot indicates that the file contains an ID[3]v2 header. An ’a’ in the second slot
indicates that the audio data is not block-[a]ligned.An ’i’ in the third slot indicates that
the WAVE header is [i]nconsistent about data size and/or file size.A ’ t’ in the fourth slot
indicates that the WAVE file seems to be [t]runcated.A ’ j’ in the fifth slot indicates that
the WAVE file seems to have [j]unk appended to it.

A ’ −’ in any of these slots indicates that the particular problem was not detected. An ’x’
in any of these slots indicates that the particular problem does not apply to this file, or
cannot be determined.

fmt Shows which file format handled this file.

ratio Shows the compression ratio for this file.

filename
Shows the name of the file that’s being inspected.

fix mode options
NOTE: file names for files created infix mode will be based on the input file name with the string ’−fixed’
appended to it, and the extension will be the default extension of the output file format.For example, with
an output file format ofshn the file ’foo.wav’ would become ’foo−fixed.shn’. Thiscan be overridden with
the−a and/or−z global options described above.

−b Shift track breaks backward to the previous sector boundary. This is the default.

−c Check whether fixing is needed, without actually fixing anything. shntool will exit with status 0 if
fixing is needed, and status 1 otherwise.This can be useful in shell scripts, e.g.: "if shntool fix −c
*; then shntool fix *; else ...; fi"

−f Shift track breaks forward to the next sector boundary.

−k Specifies that all files should be processed, even if the first several of them wouldn’t be altered,
aside from a possible file format change. The default is to skip the first N files that wouldn’t be
changed from a WAVE data perspective in order to avoid unnecessary work.

−n Specifies that the last file created should not be padded with silence to make its WAVE data size a
multiple of 2352 bytes. The default is to pad the last file.

−u Round track breaks to the nearest sector boundary.

shntool 3.0.10 March 2009 5

SHNTOOL(1) local SHNTOOL(1)

hash mode options
−c Specifies that the composite fingerprint for all input files should be generated, instead of the

default of one fingerprint per file.The composite fingerprint is simply the fingerprint of the WAVE
data from all input files taken as a whole in the order given, and is identical to the one that would
be generated from the joined file if the same files were joined into one large file, with no padding
added. Thisoption can be used to fingerprint file sets, or to identify file sets in which track breaks
have been moved around, but no audio has been modified in any way (e.g. no padding added, no
resampling done, etc.).

−m Generate MD5 fingerprints. This is the default.

−s Generate SHA1 fingerprints.

pad mode options
NOTE: file names for files created inpad mode will be based on the input file name with the string
’−prepadded’ or ’−postpadded’ appended to it, and the extension will be the default extension of the output
file format. For example, with an output file format ofshnand pre-padding specified on the command line,
the file ’foo.wav’ would become ’foo−prepadded.shn’.This can be overridden with the−a and/or−z global
options described above.

Be aware that some output format encoders (e.g. flac, ape) automatically strip headers and/or extra RIFF
chunks.

−b Specifies that the file created should be padded at the beginning with silence to make its WAVE
data size a multiple of 2352 bytes.

−e Specifies that the file created should be padded at the end with silence to make its WAVE data size
a multiple of 2352 bytes. This is the default action.

join mode options
NOTE: file names for files created injoin mode will be prefixed with ’joined.’, and the extension will be
the default extension of the output file format.For example, with an output file format ofwav the files
’files*.wav’ would become ’joined.wav’. This can be overridden with the−a and/or−z global options
described above.

−b Specifies that the file created should be padded at the beginning with silence to make its WAVE
data size a multiple of 2352 bytes.Note that this option does not apply if the input files are not
CD-quality, since padding is undefined in that case.

−e Specifies that the file created should be padded at the end with silence to make its WAVE data size
a multiple of 2352 bytes. This is the default action. Note that this option does not apply if the
input files are not CD-quality, since padding is undefined in that case.

−n Specifies that the file created should not be padded with silence to make its WAVE data size a mul-
tiple of 2352 bytes.Note that this option does not apply if the input files are not CD-quality, since
padding is undefined in that case.

split mode options
NOTE: file names for files created insplit mode are of the form prefixNNN.ext, where NNN is the output
file number, and ’ext’ is the default extension of the output file format.If an output file format of ’wav’ i s
used, and the prefix is not altered via the−n switch described below, then the output file names will be
"split−track01.wav", "split−track02.wav", etc. This can be overridden with the−a and/or−z global options
described above.

For information on specifying split points, see theSpecifying split pointssection below.

−c num Specifies the number to start counting from when naming output files. The default is 1.

−e len Prefix each track withlen amount of lead-in taken from the previous track. len must be given in
bytes, m:ss, m:ss.ff or m:ss.nnn format.

shntool 3.0.10 March 2009 6

SHNTOOL(1) local SHNTOOL(1)

−f file Specifies a file from which to read split point data. If not given, then split points are read from the
terminal.

−l len Specifies that the input file should be split into smaller files based on multiples of thelen time
interval. len must be given in bytes, m:ss, m:ss.ff or m:ss.nnn format.

−m str Specifies a character manipulation string for filenames generated from CUE sheets. These charac-
ters, taken one-by-one, represent from/to character translation.They must always be in pairs.
Some examples:

:− Translate all instances of ’:’ to ’−’

:−/− Translate both ’:’ and ’/’ to ’−’

:−/_*x Translate ’:’ to ’−’, ’/’ to ’_’, and ’*’ to ’x’

−n fmt Specifies the file count output format. The default is %02d, which gives two-digit zero-padded
numbers (01, 02, 03, ...).

−t fmt Name output files in user-specified format based on CUE sheet fields.The following formatting
strings are recognized:

%p Performer

%a Album

%t Track title

%n Track number

−u len Postfix each track withlen amount of lead-out taken from the next track.len must be given in
bytes, m:ss, m:ss.ff or m:ss.nnn format.

−x list Only extract tracks inlist (comma separated, may contain ranges). Examples include:

7 Only extract track 7

3−5 Only extract tracks 3 through 5

2−6,9,11−13
Only extract tracks 2 through 6, 9, and 11 through 13

Specifying split points
Split points simply mark places within the WAVE data of the input file where tracks will be split.
They can be specified in any combination of the following formats:

bytes where bytes is a specific byte offset

m:ss where m = minutes and ss = seconds

m:ss.ff where m = minutes, ss = seconds and ff = frames (75 per second, so ff ranges from 00 to
74)

m:ss.nnn
where m = minutes, ss = seconds and nnn = milliseconds (will be rounded to closest sec-
tor boundary, or the first sector boundary if the closest one happens to be the beginning of
the file)

CUE sheet
- a simple CUE sheet, in which each "INDEX 01 m:ss:ff" line is converted to a m:ss.ff
split point

shntool 3.0.10 March 2009 7

SHNTOOL(1) local SHNTOOL(1)

Split points must be given in increasing order, and must appear one per line. If the byte offset cal-
culated from the final split point equals the input file’s WAVE data size, then it is ignored.Since
split points specify locations within the input file where tracks will be split, N split points will cre-
ate N+1 output files. All m:ss formats will create splits on sector boundaries whenever the input
file is CD-quality; to force non-sector-aligned splits, use the exact byte format.

cat mode options
−c Specifies that extra RIFF chunks should be suppressed from the output.The default is to write the

extra RIFF chunks.

−d Specifies that the WAVE data should be suppressed from the output. The default is to write the
data.

−e Specifies that the WAVE header should be suppressed from the output.The default is to write the
header.

−n Specifies that the NULL pad byte at end of odd−sized data chunks should be suppressed from the
output, if present. The default is to write the NULL pad byte.This option only applies when
WAVE data is also written, otherwise it is ignored.

cmp mode options
−c secs Sets the number of seconds of audio to use for the byte-shift comparison buffer. This option only

makes sense with the−soption. Thedefault is 3 seconds.

−f fuzz Sets the "fuzz factor" for determining whether byte-shifted data is identical.fuzz is a positive
integer that represents the maximum number of allowable byte mismatches between the two files
in the area searched by the−s option. Thisallows one to check for differing bytes between to files
that (a) are byte-shifted and (b) contain at least one error in the area searched by the−s option.
The higher the fuzz factor, the longer the search takes, so set it low to begin with (8 or so), and
increase it in small steps if needed. NOTE: this switch can only be used with the−sswitch.

−l List offsets and values of all differing bytes. Output is similar to ’cmp −l’; in particular, offsets are
1-based. Canbe used with the−sswitch.

−s Check to see whether the WAVE data contained in the input files are identical modulo a byte-shift.
Currently, this will only detect differences up to the first 529200 bytes (equal to 3 seconds of CD-
quality data). This can be used to compare WAVE data within a pre-burned file to WAVE data in
the corresponding track ripped from the burned CD, which is useful if the ripped track came from
a CD burned TAO, and thus might have a 2-second gap of silence at the beginning. Thisoption
can also help identify a CD burner/CD reader combined read/write offset.

cue mode options
−c Specifies that a simple CUE sheet should be output.This is the default action.NOTE: all input

files must be CD-quality for CUE sheets to be valid.

−s Specifies that split points in explicit byte-offset format should be output.

conv mode options
NOTE: file names for files created inconvmode will be named based on the input file name.Specifically,
if the input file name ends with the default file extension for that file’s format, then the default extension for
the desired output format will replace it; otherwise, it will be appended to it.For example, for an output
format ofshnand awav input file named ’file.wav’, the converted file will be named ’file.shn’, since ’.wav’
is the default extension for thewav format. Onthe other hand, given the same situation above, but with an
input file named ’file.wav e’, the converted file will be named ’file.wav e.shn’, since ’.wav e’ does not match
’.wav’. This can be overridden with the−a and/or−z global options described above.

Be aware that some output format encoders (e.g. flac, ape) automatically strip headers and/or extra RIFF
chunks, while others (e.g. sox) might adjust WAVE data sizes in rare instances in order to align the audio on

shntool 3.0.10 March 2009 8

SHNTOOL(1) local SHNTOOL(1)

a block boundary.

−t Read WAVE data from the terminal.

info mode options
This mode doesn’t support any additional options.

strip mode options
NOTE: file names for files created instrip mode will be based on the input file name with the string
’−stripped’ appended to it, and the extension will be the default extension of the output file format.For
example, with an output file format ofwav the file ’bar.shn’ would become ’bar−stripped.wav’. This can
be overridden with the−a and/or−z global options described above.

Be aware that some output format encoders (e.g. flac, ape) automatically strip headers and/or extra RIFF
chunks, while others (e.g. sox) might adjust WAVE data sizes in rare instances in order to align the audio on
a block boundary.

−c Specifies that extra RIFF chunks should not be stripped. The default is to remove everything that
appears after the first data chunk.

−e Specifies that WAVE headers should not be made canonical. The default is to canonicalize head-
ers.

gen mode options
NOTE: file names for files created ingen mode will be prefixed with ’silence.’, and the extension will be
the default extension of the output file format.For example, with an output file format ofwav the generated
file would become ’silence.wav’. This can be overridden with the−a and/or−z global options described
above.

−l len Generate files containinglen amount of silence.len must be given in bytes, m:ss, m:ss.ff or
m:ss.nnn format.

trim mode options
NOTE: file names for files created intrim mode will be based on the input file name with the string
’−trimmed’ appended to it, and the extension will be the default extension of the output file format.For
example, with an output file format ofshn the file ’foo.wav’ would become ’foo−trimmed.shn’. This can
be overridden with the−a and/or−z global options described above.

−b Only trim silence from the beginning of files

−e Only trim silence from the end of files

ENVIRONMENT VARIABLES
ST_DEBUG

If set, shntool will print debugging information. This is analogous to the−D global option, with
the exception that debugging is enabled immediately, instead of when the command-line is parsed.

ST_<FORMAT>_DEC
Specify input file format decoder and/or arguments. Replace<FORMAT> with the format you
wish to modify, e.g. ST_SHN_DEC. The format of this variable is analagous to the−i global
option, except that the initial format is not included. Examples:

ST_SHN_DEC=’shorten−2.3b’

ST_SHN_DEC=’shorten −x −d 2048 %f −’

shntool 3.0.10 March 2009 9

SHNTOOL(1) local SHNTOOL(1)

ST_<FORMAT>_ENC
Specify output file format extension, encoder and/or arguments. Replace<FORMAT> with the
format you wish to modify, e.g. ST_SHN_ENC. The format of this variable is analagous to the
−o global option, except that the initial format is not included. Examples:

ST_SHN_ENC=’shorten −v2 − %f’

ST_FLAC_ENC=’flake − %f’

ST_AIFF_ENC=’ext=aif’

ST_CUST_ENC=’ext=mp3 lame −−quiet − %f’

Note that command-line options take precedence over any of these environment variables.

EXIT STATUS
Generally speaking,shntool will exit with status 0 upon success, and status 1 if it encounters an error. The
only exception is when the ’quit’ option is selected from within the interactive file reordering menu, in
which case the exist status will be 255.

NOTES
shntool is a misnomer, since it processes WAVE data, not shorten data. The name is a holdover from its
early days as ’shnlen’, a program created specifically to extract information about WAVE data stored within
.shn files.

Aliases forshntool are prefixed with ’shn’ instead of ’wav’ to avoid possible collisions with existing pro-
grams.

AUTHOR
Jason Jordan <shnutils at freeshell dot org>

Please send all bug reports to the above address.

The latest version ofshntool can always be found at <http://www.etree.org/shnutils/> or <http://shnu-
tils.freeshell.org/>.

COPYRIGHT
Copyright (C) 2000−2009 Jason Jordan

This is free software. You may redistribute copies of it under the terms of the GNU General Public License
<http://www.gnu.org/licenses/gpl.html>. Thereis NO WARRANTY, to the extent permitted by law.

REVISION
$Id: shntool.1,v 1.140 2009/03/30 05:59:25 jason Exp $

shntool 3.0.10 March 2009 10

