Edit on GitHub

Expressions

Every AST node in SQLGlot is represented by a subclass of Expression.

This module contains the implementation of all supported Expression types. Additionally, it exposes a number of helper functions, which are mainly used to programmatically build SQL expressions, such as sqlglot.expressions.select.


   1"""
   2## Expressions
   3
   4Every AST node in SQLGlot is represented by a subclass of `Expression`.
   5
   6This module contains the implementation of all supported `Expression` types. Additionally,
   7it exposes a number of helper functions, which are mainly used to programmatically build
   8SQL expressions, such as `sqlglot.expressions.select`.
   9
  10----
  11"""
  12
  13from __future__ import annotations
  14
  15import datetime
  16import math
  17import numbers
  18import re
  19import typing as t
  20from collections import deque
  21from copy import deepcopy
  22from enum import auto
  23
  24from sqlglot._typing import E
  25from sqlglot.errors import ParseError
  26from sqlglot.helper import (
  27    AutoName,
  28    camel_to_snake_case,
  29    ensure_collection,
  30    ensure_list,
  31    seq_get,
  32    subclasses,
  33)
  34from sqlglot.tokens import Token
  35
  36if t.TYPE_CHECKING:
  37    from sqlglot.dialects.dialect import DialectType
  38
  39
  40class _Expression(type):
  41    def __new__(cls, clsname, bases, attrs):
  42        klass = super().__new__(cls, clsname, bases, attrs)
  43
  44        # When an Expression class is created, its key is automatically set to be
  45        # the lowercase version of the class' name.
  46        klass.key = clsname.lower()
  47
  48        # This is so that docstrings are not inherited in pdoc
  49        klass.__doc__ = klass.__doc__ or ""
  50
  51        return klass
  52
  53
  54class Expression(metaclass=_Expression):
  55    """
  56    The base class for all expressions in a syntax tree. Each Expression encapsulates any necessary
  57    context, such as its child expressions, their names (arg keys), and whether a given child expression
  58    is optional or not.
  59
  60    Attributes:
  61        key: a unique key for each class in the Expression hierarchy. This is useful for hashing
  62            and representing expressions as strings.
  63        arg_types: determines what arguments (child nodes) are supported by an expression. It
  64            maps arg keys to booleans that indicate whether the corresponding args are optional.
  65        parent: a reference to the parent expression (or None, in case of root expressions).
  66        arg_key: the arg key an expression is associated with, i.e. the name its parent expression
  67            uses to refer to it.
  68        comments: a list of comments that are associated with a given expression. This is used in
  69            order to preserve comments when transpiling SQL code.
  70        _type: the `sqlglot.expressions.DataType` type of an expression. This is inferred by the
  71            optimizer, in order to enable some transformations that require type information.
  72
  73    Example:
  74        >>> class Foo(Expression):
  75        ...     arg_types = {"this": True, "expression": False}
  76
  77        The above definition informs us that Foo is an Expression that requires an argument called
  78        "this" and may also optionally receive an argument called "expression".
  79
  80    Args:
  81        args: a mapping used for retrieving the arguments of an expression, given their arg keys.
  82    """
  83
  84    key = "expression"
  85    arg_types = {"this": True}
  86    __slots__ = ("args", "parent", "arg_key", "comments", "_type", "_meta", "_hash")
  87
  88    def __init__(self, **args: t.Any):
  89        self.args: t.Dict[str, t.Any] = args
  90        self.parent: t.Optional[Expression] = None
  91        self.arg_key: t.Optional[str] = None
  92        self.comments: t.Optional[t.List[str]] = None
  93        self._type: t.Optional[DataType] = None
  94        self._meta: t.Optional[t.Dict[str, t.Any]] = None
  95        self._hash: t.Optional[int] = None
  96
  97        for arg_key, value in self.args.items():
  98            self._set_parent(arg_key, value)
  99
 100    def __eq__(self, other) -> bool:
 101        return type(self) is type(other) and hash(self) == hash(other)
 102
 103    @property
 104    def hashable_args(self) -> t.Any:
 105        args = (self.args.get(k) for k in self.arg_types)
 106
 107        return tuple(
 108            (tuple(_norm_arg(a) for a in arg) if arg else None)
 109            if type(arg) is list
 110            else (_norm_arg(arg) if arg is not None and arg is not False else None)
 111            for arg in args
 112        )
 113
 114    def __hash__(self) -> int:
 115        if self._hash is not None:
 116            return self._hash
 117
 118        return hash((self.__class__, self.hashable_args))
 119
 120    @property
 121    def this(self):
 122        """
 123        Retrieves the argument with key "this".
 124        """
 125        return self.args.get("this")
 126
 127    @property
 128    def expression(self):
 129        """
 130        Retrieves the argument with key "expression".
 131        """
 132        return self.args.get("expression")
 133
 134    @property
 135    def expressions(self):
 136        """
 137        Retrieves the argument with key "expressions".
 138        """
 139        return self.args.get("expressions") or []
 140
 141    def text(self, key) -> str:
 142        """
 143        Returns a textual representation of the argument corresponding to "key". This can only be used
 144        for args that are strings or leaf Expression instances, such as identifiers and literals.
 145        """
 146        field = self.args.get(key)
 147        if isinstance(field, str):
 148            return field
 149        if isinstance(field, (Identifier, Literal, Var)):
 150            return field.this
 151        if isinstance(field, (Star, Null)):
 152            return field.name
 153        return ""
 154
 155    @property
 156    def is_string(self) -> bool:
 157        """
 158        Checks whether a Literal expression is a string.
 159        """
 160        return isinstance(self, Literal) and self.args["is_string"]
 161
 162    @property
 163    def is_number(self) -> bool:
 164        """
 165        Checks whether a Literal expression is a number.
 166        """
 167        return isinstance(self, Literal) and not self.args["is_string"]
 168
 169    @property
 170    def is_int(self) -> bool:
 171        """
 172        Checks whether a Literal expression is an integer.
 173        """
 174        if self.is_number:
 175            try:
 176                int(self.name)
 177                return True
 178            except ValueError:
 179                pass
 180        return False
 181
 182    @property
 183    def is_star(self) -> bool:
 184        """Checks whether an expression is a star."""
 185        return isinstance(self, Star) or (isinstance(self, Column) and isinstance(self.this, Star))
 186
 187    @property
 188    def alias(self) -> str:
 189        """
 190        Returns the alias of the expression, or an empty string if it's not aliased.
 191        """
 192        if isinstance(self.args.get("alias"), TableAlias):
 193            return self.args["alias"].name
 194        return self.text("alias")
 195
 196    @property
 197    def name(self) -> str:
 198        return self.text("this")
 199
 200    @property
 201    def alias_or_name(self) -> str:
 202        return self.alias or self.name
 203
 204    @property
 205    def output_name(self) -> str:
 206        """
 207        Name of the output column if this expression is a selection.
 208
 209        If the Expression has no output name, an empty string is returned.
 210
 211        Example:
 212            >>> from sqlglot import parse_one
 213            >>> parse_one("SELECT a").expressions[0].output_name
 214            'a'
 215            >>> parse_one("SELECT b AS c").expressions[0].output_name
 216            'c'
 217            >>> parse_one("SELECT 1 + 2").expressions[0].output_name
 218            ''
 219        """
 220        return ""
 221
 222    @property
 223    def type(self) -> t.Optional[DataType]:
 224        return self._type
 225
 226    @type.setter
 227    def type(self, dtype: t.Optional[DataType | DataType.Type | str]) -> None:
 228        if dtype and not isinstance(dtype, DataType):
 229            dtype = DataType.build(dtype)
 230        self._type = dtype  # type: ignore
 231
 232    @property
 233    def meta(self) -> t.Dict[str, t.Any]:
 234        if self._meta is None:
 235            self._meta = {}
 236        return self._meta
 237
 238    def __deepcopy__(self, memo):
 239        copy = self.__class__(**deepcopy(self.args))
 240        if self.comments is not None:
 241            copy.comments = deepcopy(self.comments)
 242
 243        if self._type is not None:
 244            copy._type = self._type.copy()
 245
 246        if self._meta is not None:
 247            copy._meta = deepcopy(self._meta)
 248
 249        return copy
 250
 251    def copy(self):
 252        """
 253        Returns a deep copy of the expression.
 254        """
 255        new = deepcopy(self)
 256        new.parent = self.parent
 257        return new
 258
 259    def add_comments(self, comments: t.Optional[t.List[str]]) -> None:
 260        if self.comments is None:
 261            self.comments = []
 262        if comments:
 263            self.comments.extend(comments)
 264
 265    def append(self, arg_key: str, value: t.Any) -> None:
 266        """
 267        Appends value to arg_key if it's a list or sets it as a new list.
 268
 269        Args:
 270            arg_key (str): name of the list expression arg
 271            value (Any): value to append to the list
 272        """
 273        if not isinstance(self.args.get(arg_key), list):
 274            self.args[arg_key] = []
 275        self.args[arg_key].append(value)
 276        self._set_parent(arg_key, value)
 277
 278    def set(self, arg_key: str, value: t.Any) -> None:
 279        """
 280        Sets `arg_key` to `value`.
 281
 282        Args:
 283            arg_key (str): name of the expression arg.
 284            value: value to set the arg to.
 285        """
 286        self.args[arg_key] = value
 287        self._set_parent(arg_key, value)
 288
 289    def _set_parent(self, arg_key: str, value: t.Any) -> None:
 290        if hasattr(value, "parent"):
 291            value.parent = self
 292            value.arg_key = arg_key
 293        elif type(value) is list:
 294            for v in value:
 295                if hasattr(v, "parent"):
 296                    v.parent = self
 297                    v.arg_key = arg_key
 298
 299    @property
 300    def depth(self) -> int:
 301        """
 302        Returns the depth of this tree.
 303        """
 304        if self.parent:
 305            return self.parent.depth + 1
 306        return 0
 307
 308    def iter_expressions(self) -> t.Iterator[t.Tuple[str, Expression]]:
 309        """Yields the key and expression for all arguments, exploding list args."""
 310        for k, vs in self.args.items():
 311            if type(vs) is list:
 312                for v in vs:
 313                    if hasattr(v, "parent"):
 314                        yield k, v
 315            else:
 316                if hasattr(vs, "parent"):
 317                    yield k, vs
 318
 319    def find(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Optional[E]:
 320        """
 321        Returns the first node in this tree which matches at least one of
 322        the specified types.
 323
 324        Args:
 325            expression_types: the expression type(s) to match.
 326            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
 327
 328        Returns:
 329            The node which matches the criteria or None if no such node was found.
 330        """
 331        return next(self.find_all(*expression_types, bfs=bfs), None)
 332
 333    def find_all(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Iterator[E]:
 334        """
 335        Returns a generator object which visits all nodes in this tree and only
 336        yields those that match at least one of the specified expression types.
 337
 338        Args:
 339            expression_types: the expression type(s) to match.
 340            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
 341
 342        Returns:
 343            The generator object.
 344        """
 345        for expression, *_ in self.walk(bfs=bfs):
 346            if isinstance(expression, expression_types):
 347                yield expression
 348
 349    def find_ancestor(self, *expression_types: t.Type[E]) -> t.Optional[E]:
 350        """
 351        Returns a nearest parent matching expression_types.
 352
 353        Args:
 354            expression_types: the expression type(s) to match.
 355
 356        Returns:
 357            The parent node.
 358        """
 359        ancestor = self.parent
 360        while ancestor and not isinstance(ancestor, expression_types):
 361            ancestor = ancestor.parent
 362        return t.cast(E, ancestor)
 363
 364    @property
 365    def parent_select(self) -> t.Optional[Select]:
 366        """
 367        Returns the parent select statement.
 368        """
 369        return self.find_ancestor(Select)
 370
 371    @property
 372    def same_parent(self) -> bool:
 373        """Returns if the parent is the same class as itself."""
 374        return type(self.parent) is self.__class__
 375
 376    def root(self) -> Expression:
 377        """
 378        Returns the root expression of this tree.
 379        """
 380        expression = self
 381        while expression.parent:
 382            expression = expression.parent
 383        return expression
 384
 385    def walk(self, bfs=True, prune=None):
 386        """
 387        Returns a generator object which visits all nodes in this tree.
 388
 389        Args:
 390            bfs (bool): if set to True the BFS traversal order will be applied,
 391                otherwise the DFS traversal will be used instead.
 392            prune ((node, parent, arg_key) -> bool): callable that returns True if
 393                the generator should stop traversing this branch of the tree.
 394
 395        Returns:
 396            the generator object.
 397        """
 398        if bfs:
 399            yield from self.bfs(prune=prune)
 400        else:
 401            yield from self.dfs(prune=prune)
 402
 403    def dfs(self, parent=None, key=None, prune=None):
 404        """
 405        Returns a generator object which visits all nodes in this tree in
 406        the DFS (Depth-first) order.
 407
 408        Returns:
 409            The generator object.
 410        """
 411        parent = parent or self.parent
 412        yield self, parent, key
 413        if prune and prune(self, parent, key):
 414            return
 415
 416        for k, v in self.iter_expressions():
 417            yield from v.dfs(self, k, prune)
 418
 419    def bfs(self, prune=None):
 420        """
 421        Returns a generator object which visits all nodes in this tree in
 422        the BFS (Breadth-first) order.
 423
 424        Returns:
 425            The generator object.
 426        """
 427        queue = deque([(self, self.parent, None)])
 428
 429        while queue:
 430            item, parent, key = queue.popleft()
 431
 432            yield item, parent, key
 433            if prune and prune(item, parent, key):
 434                continue
 435
 436            for k, v in item.iter_expressions():
 437                queue.append((v, item, k))
 438
 439    def unnest(self):
 440        """
 441        Returns the first non parenthesis child or self.
 442        """
 443        expression = self
 444        while type(expression) is Paren:
 445            expression = expression.this
 446        return expression
 447
 448    def unalias(self):
 449        """
 450        Returns the inner expression if this is an Alias.
 451        """
 452        if isinstance(self, Alias):
 453            return self.this
 454        return self
 455
 456    def unnest_operands(self):
 457        """
 458        Returns unnested operands as a tuple.
 459        """
 460        return tuple(arg.unnest() for _, arg in self.iter_expressions())
 461
 462    def flatten(self, unnest=True):
 463        """
 464        Returns a generator which yields child nodes who's parents are the same class.
 465
 466        A AND B AND C -> [A, B, C]
 467        """
 468        for node, _, _ in self.dfs(prune=lambda n, p, *_: p and not type(n) is self.__class__):
 469            if not type(node) is self.__class__:
 470                yield node.unnest() if unnest else node
 471
 472    def __str__(self) -> str:
 473        return self.sql()
 474
 475    def __repr__(self) -> str:
 476        return self._to_s()
 477
 478    def sql(self, dialect: DialectType = None, **opts) -> str:
 479        """
 480        Returns SQL string representation of this tree.
 481
 482        Args:
 483            dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
 484            opts: other `sqlglot.generator.Generator` options.
 485
 486        Returns:
 487            The SQL string.
 488        """
 489        from sqlglot.dialects import Dialect
 490
 491        return Dialect.get_or_raise(dialect)().generate(self, **opts)
 492
 493    def _to_s(self, hide_missing: bool = True, level: int = 0) -> str:
 494        indent = "" if not level else "\n"
 495        indent += "".join(["  "] * level)
 496        left = f"({self.key.upper()} "
 497
 498        args: t.Dict[str, t.Any] = {
 499            k: ", ".join(
 500                v._to_s(hide_missing=hide_missing, level=level + 1)
 501                if hasattr(v, "_to_s")
 502                else str(v)
 503                for v in ensure_list(vs)
 504                if v is not None
 505            )
 506            for k, vs in self.args.items()
 507        }
 508        args["comments"] = self.comments
 509        args["type"] = self.type
 510        args = {k: v for k, v in args.items() if v or not hide_missing}
 511
 512        right = ", ".join(f"{k}: {v}" for k, v in args.items())
 513        right += ")"
 514
 515        return indent + left + right
 516
 517    def transform(self, fun, *args, copy=True, **kwargs):
 518        """
 519        Recursively visits all tree nodes (excluding already transformed ones)
 520        and applies the given transformation function to each node.
 521
 522        Args:
 523            fun (function): a function which takes a node as an argument and returns a
 524                new transformed node or the same node without modifications. If the function
 525                returns None, then the corresponding node will be removed from the syntax tree.
 526            copy (bool): if set to True a new tree instance is constructed, otherwise the tree is
 527                modified in place.
 528
 529        Returns:
 530            The transformed tree.
 531        """
 532        node = self.copy() if copy else self
 533        new_node = fun(node, *args, **kwargs)
 534
 535        if new_node is None or not isinstance(new_node, Expression):
 536            return new_node
 537        if new_node is not node:
 538            new_node.parent = node.parent
 539            return new_node
 540
 541        replace_children(new_node, lambda child: child.transform(fun, *args, copy=False, **kwargs))
 542        return new_node
 543
 544    @t.overload
 545    def replace(self, expression: E) -> E:
 546        ...
 547
 548    @t.overload
 549    def replace(self, expression: None) -> None:
 550        ...
 551
 552    def replace(self, expression):
 553        """
 554        Swap out this expression with a new expression.
 555
 556        For example::
 557
 558            >>> tree = Select().select("x").from_("tbl")
 559            >>> tree.find(Column).replace(Column(this="y"))
 560            (COLUMN this: y)
 561            >>> tree.sql()
 562            'SELECT y FROM tbl'
 563
 564        Args:
 565            expression: new node
 566
 567        Returns:
 568            The new expression or expressions.
 569        """
 570        if not self.parent:
 571            return expression
 572
 573        parent = self.parent
 574        self.parent = None
 575
 576        replace_children(parent, lambda child: expression if child is self else child)
 577        return expression
 578
 579    def pop(self: E) -> E:
 580        """
 581        Remove this expression from its AST.
 582
 583        Returns:
 584            The popped expression.
 585        """
 586        self.replace(None)
 587        return self
 588
 589    def assert_is(self, type_: t.Type[E]) -> E:
 590        """
 591        Assert that this `Expression` is an instance of `type_`.
 592
 593        If it is NOT an instance of `type_`, this raises an assertion error.
 594        Otherwise, this returns this expression.
 595
 596        Examples:
 597            This is useful for type security in chained expressions:
 598
 599            >>> import sqlglot
 600            >>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
 601            'SELECT x, z FROM y'
 602        """
 603        assert isinstance(self, type_)
 604        return self
 605
 606    def error_messages(self, args: t.Optional[t.Sequence] = None) -> t.List[str]:
 607        """
 608        Checks if this expression is valid (e.g. all mandatory args are set).
 609
 610        Args:
 611            args: a sequence of values that were used to instantiate a Func expression. This is used
 612                to check that the provided arguments don't exceed the function argument limit.
 613
 614        Returns:
 615            A list of error messages for all possible errors that were found.
 616        """
 617        errors: t.List[str] = []
 618
 619        for k in self.args:
 620            if k not in self.arg_types:
 621                errors.append(f"Unexpected keyword: '{k}' for {self.__class__}")
 622        for k, mandatory in self.arg_types.items():
 623            v = self.args.get(k)
 624            if mandatory and (v is None or (isinstance(v, list) and not v)):
 625                errors.append(f"Required keyword: '{k}' missing for {self.__class__}")
 626
 627        if (
 628            args
 629            and isinstance(self, Func)
 630            and len(args) > len(self.arg_types)
 631            and not self.is_var_len_args
 632        ):
 633            errors.append(
 634                f"The number of provided arguments ({len(args)}) is greater than "
 635                f"the maximum number of supported arguments ({len(self.arg_types)})"
 636            )
 637
 638        return errors
 639
 640    def dump(self):
 641        """
 642        Dump this Expression to a JSON-serializable dict.
 643        """
 644        from sqlglot.serde import dump
 645
 646        return dump(self)
 647
 648    @classmethod
 649    def load(cls, obj):
 650        """
 651        Load a dict (as returned by `Expression.dump`) into an Expression instance.
 652        """
 653        from sqlglot.serde import load
 654
 655        return load(obj)
 656
 657
 658IntoType = t.Union[
 659    str,
 660    t.Type[Expression],
 661    t.Collection[t.Union[str, t.Type[Expression]]],
 662]
 663ExpOrStr = t.Union[str, Expression]
 664
 665
 666class Condition(Expression):
 667    def and_(
 668        self,
 669        *expressions: t.Optional[ExpOrStr],
 670        dialect: DialectType = None,
 671        copy: bool = True,
 672        **opts,
 673    ) -> Condition:
 674        """
 675        AND this condition with one or multiple expressions.
 676
 677        Example:
 678            >>> condition("x=1").and_("y=1").sql()
 679            'x = 1 AND y = 1'
 680
 681        Args:
 682            *expressions: the SQL code strings to parse.
 683                If an `Expression` instance is passed, it will be used as-is.
 684            dialect: the dialect used to parse the input expression.
 685            copy: whether or not to copy the involved expressions (only applies to Expressions).
 686            opts: other options to use to parse the input expressions.
 687
 688        Returns:
 689            The new And condition.
 690        """
 691        return and_(self, *expressions, dialect=dialect, copy=copy, **opts)
 692
 693    def or_(
 694        self,
 695        *expressions: t.Optional[ExpOrStr],
 696        dialect: DialectType = None,
 697        copy: bool = True,
 698        **opts,
 699    ) -> Condition:
 700        """
 701        OR this condition with one or multiple expressions.
 702
 703        Example:
 704            >>> condition("x=1").or_("y=1").sql()
 705            'x = 1 OR y = 1'
 706
 707        Args:
 708            *expressions: the SQL code strings to parse.
 709                If an `Expression` instance is passed, it will be used as-is.
 710            dialect: the dialect used to parse the input expression.
 711            copy: whether or not to copy the involved expressions (only applies to Expressions).
 712            opts: other options to use to parse the input expressions.
 713
 714        Returns:
 715            The new Or condition.
 716        """
 717        return or_(self, *expressions, dialect=dialect, copy=copy, **opts)
 718
 719    def not_(self, copy: bool = True):
 720        """
 721        Wrap this condition with NOT.
 722
 723        Example:
 724            >>> condition("x=1").not_().sql()
 725            'NOT x = 1'
 726
 727        Args:
 728            copy: whether or not to copy this object.
 729
 730        Returns:
 731            The new Not instance.
 732        """
 733        return not_(self, copy=copy)
 734
 735    def as_(
 736        self,
 737        alias: str | Identifier,
 738        quoted: t.Optional[bool] = None,
 739        dialect: DialectType = None,
 740        copy: bool = True,
 741        **opts,
 742    ) -> Alias:
 743        return alias_(self, alias, quoted=quoted, dialect=dialect, copy=copy, **opts)
 744
 745    def _binop(self, klass: t.Type[E], other: t.Any, reverse: bool = False) -> E:
 746        this = self.copy()
 747        other = convert(other, copy=True)
 748        if not isinstance(this, klass) and not isinstance(other, klass):
 749            this = _wrap(this, Binary)
 750            other = _wrap(other, Binary)
 751        if reverse:
 752            return klass(this=other, expression=this)
 753        return klass(this=this, expression=other)
 754
 755    def __getitem__(self, other: ExpOrStr | t.Tuple[ExpOrStr]):
 756        return Bracket(
 757            this=self.copy(), expressions=[convert(e, copy=True) for e in ensure_list(other)]
 758        )
 759
 760    def isin(
 761        self, *expressions: t.Any, query: t.Optional[ExpOrStr] = None, copy: bool = True, **opts
 762    ) -> In:
 763        return In(
 764            this=_maybe_copy(self, copy),
 765            expressions=[convert(e, copy=copy) for e in expressions],
 766            query=maybe_parse(query, copy=copy, **opts) if query else None,
 767        )
 768
 769    def between(self, low: t.Any, high: t.Any, copy: bool = True, **opts) -> Between:
 770        return Between(
 771            this=_maybe_copy(self, copy),
 772            low=convert(low, copy=copy, **opts),
 773            high=convert(high, copy=copy, **opts),
 774        )
 775
 776    def is_(self, other: ExpOrStr) -> Is:
 777        return self._binop(Is, other)
 778
 779    def like(self, other: ExpOrStr) -> Like:
 780        return self._binop(Like, other)
 781
 782    def ilike(self, other: ExpOrStr) -> ILike:
 783        return self._binop(ILike, other)
 784
 785    def eq(self, other: t.Any) -> EQ:
 786        return self._binop(EQ, other)
 787
 788    def neq(self, other: t.Any) -> NEQ:
 789        return self._binop(NEQ, other)
 790
 791    def rlike(self, other: ExpOrStr) -> RegexpLike:
 792        return self._binop(RegexpLike, other)
 793
 794    def __lt__(self, other: t.Any) -> LT:
 795        return self._binop(LT, other)
 796
 797    def __le__(self, other: t.Any) -> LTE:
 798        return self._binop(LTE, other)
 799
 800    def __gt__(self, other: t.Any) -> GT:
 801        return self._binop(GT, other)
 802
 803    def __ge__(self, other: t.Any) -> GTE:
 804        return self._binop(GTE, other)
 805
 806    def __add__(self, other: t.Any) -> Add:
 807        return self._binop(Add, other)
 808
 809    def __radd__(self, other: t.Any) -> Add:
 810        return self._binop(Add, other, reverse=True)
 811
 812    def __sub__(self, other: t.Any) -> Sub:
 813        return self._binop(Sub, other)
 814
 815    def __rsub__(self, other: t.Any) -> Sub:
 816        return self._binop(Sub, other, reverse=True)
 817
 818    def __mul__(self, other: t.Any) -> Mul:
 819        return self._binop(Mul, other)
 820
 821    def __rmul__(self, other: t.Any) -> Mul:
 822        return self._binop(Mul, other, reverse=True)
 823
 824    def __truediv__(self, other: t.Any) -> Div:
 825        return self._binop(Div, other)
 826
 827    def __rtruediv__(self, other: t.Any) -> Div:
 828        return self._binop(Div, other, reverse=True)
 829
 830    def __floordiv__(self, other: t.Any) -> IntDiv:
 831        return self._binop(IntDiv, other)
 832
 833    def __rfloordiv__(self, other: t.Any) -> IntDiv:
 834        return self._binop(IntDiv, other, reverse=True)
 835
 836    def __mod__(self, other: t.Any) -> Mod:
 837        return self._binop(Mod, other)
 838
 839    def __rmod__(self, other: t.Any) -> Mod:
 840        return self._binop(Mod, other, reverse=True)
 841
 842    def __pow__(self, other: t.Any) -> Pow:
 843        return self._binop(Pow, other)
 844
 845    def __rpow__(self, other: t.Any) -> Pow:
 846        return self._binop(Pow, other, reverse=True)
 847
 848    def __and__(self, other: t.Any) -> And:
 849        return self._binop(And, other)
 850
 851    def __rand__(self, other: t.Any) -> And:
 852        return self._binop(And, other, reverse=True)
 853
 854    def __or__(self, other: t.Any) -> Or:
 855        return self._binop(Or, other)
 856
 857    def __ror__(self, other: t.Any) -> Or:
 858        return self._binop(Or, other, reverse=True)
 859
 860    def __neg__(self) -> Neg:
 861        return Neg(this=_wrap(self.copy(), Binary))
 862
 863    def __invert__(self) -> Not:
 864        return not_(self.copy())
 865
 866
 867class Predicate(Condition):
 868    """Relationships like x = y, x > 1, x >= y."""
 869
 870
 871class DerivedTable(Expression):
 872    @property
 873    def alias_column_names(self) -> t.List[str]:
 874        table_alias = self.args.get("alias")
 875        if not table_alias:
 876            return []
 877        return [c.name for c in table_alias.args.get("columns") or []]
 878
 879    @property
 880    def selects(self):
 881        return self.this.selects if isinstance(self.this, Subqueryable) else []
 882
 883    @property
 884    def named_selects(self):
 885        return [select.output_name for select in self.selects]
 886
 887
 888class Unionable(Expression):
 889    def union(
 890        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
 891    ) -> Unionable:
 892        """
 893        Builds a UNION expression.
 894
 895        Example:
 896            >>> import sqlglot
 897            >>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
 898            'SELECT * FROM foo UNION SELECT * FROM bla'
 899
 900        Args:
 901            expression: the SQL code string.
 902                If an `Expression` instance is passed, it will be used as-is.
 903            distinct: set the DISTINCT flag if and only if this is true.
 904            dialect: the dialect used to parse the input expression.
 905            opts: other options to use to parse the input expressions.
 906
 907        Returns:
 908            The new Union expression.
 909        """
 910        return union(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
 911
 912    def intersect(
 913        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
 914    ) -> Unionable:
 915        """
 916        Builds an INTERSECT expression.
 917
 918        Example:
 919            >>> import sqlglot
 920            >>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
 921            'SELECT * FROM foo INTERSECT SELECT * FROM bla'
 922
 923        Args:
 924            expression: the SQL code string.
 925                If an `Expression` instance is passed, it will be used as-is.
 926            distinct: set the DISTINCT flag if and only if this is true.
 927            dialect: the dialect used to parse the input expression.
 928            opts: other options to use to parse the input expressions.
 929
 930        Returns:
 931            The new Intersect expression.
 932        """
 933        return intersect(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
 934
 935    def except_(
 936        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
 937    ) -> Unionable:
 938        """
 939        Builds an EXCEPT expression.
 940
 941        Example:
 942            >>> import sqlglot
 943            >>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
 944            'SELECT * FROM foo EXCEPT SELECT * FROM bla'
 945
 946        Args:
 947            expression: the SQL code string.
 948                If an `Expression` instance is passed, it will be used as-is.
 949            distinct: set the DISTINCT flag if and only if this is true.
 950            dialect: the dialect used to parse the input expression.
 951            opts: other options to use to parse the input expressions.
 952
 953        Returns:
 954            The new Except expression.
 955        """
 956        return except_(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
 957
 958
 959class UDTF(DerivedTable, Unionable):
 960    @property
 961    def selects(self):
 962        alias = self.args.get("alias")
 963        return alias.columns if alias else []
 964
 965
 966class Cache(Expression):
 967    arg_types = {
 968        "with": False,
 969        "this": True,
 970        "lazy": False,
 971        "options": False,
 972        "expression": False,
 973    }
 974
 975
 976class Uncache(Expression):
 977    arg_types = {"this": True, "exists": False}
 978
 979
 980class Create(Expression):
 981    arg_types = {
 982        "with": False,
 983        "this": True,
 984        "kind": True,
 985        "expression": False,
 986        "exists": False,
 987        "properties": False,
 988        "replace": False,
 989        "unique": False,
 990        "indexes": False,
 991        "no_schema_binding": False,
 992        "begin": False,
 993        "clone": False,
 994    }
 995
 996
 997# https://docs.snowflake.com/en/sql-reference/sql/create-clone
 998class Clone(Expression):
 999    arg_types = {
1000        "this": True,
1001        "when": False,
1002        "kind": False,
1003        "expression": False,
1004    }
1005
1006
1007class Describe(Expression):
1008    arg_types = {"this": True, "kind": False}
1009
1010
1011class Pragma(Expression):
1012    pass
1013
1014
1015class Set(Expression):
1016    arg_types = {"expressions": False}
1017
1018
1019class SetItem(Expression):
1020    arg_types = {
1021        "this": False,
1022        "expressions": False,
1023        "kind": False,
1024        "collate": False,  # MySQL SET NAMES statement
1025        "global": False,
1026    }
1027
1028
1029class Show(Expression):
1030    arg_types = {
1031        "this": True,
1032        "target": False,
1033        "offset": False,
1034        "limit": False,
1035        "like": False,
1036        "where": False,
1037        "db": False,
1038        "full": False,
1039        "mutex": False,
1040        "query": False,
1041        "channel": False,
1042        "global": False,
1043        "log": False,
1044        "position": False,
1045        "types": False,
1046    }
1047
1048
1049class UserDefinedFunction(Expression):
1050    arg_types = {"this": True, "expressions": False, "wrapped": False}
1051
1052
1053class CharacterSet(Expression):
1054    arg_types = {"this": True, "default": False}
1055
1056
1057class With(Expression):
1058    arg_types = {"expressions": True, "recursive": False}
1059
1060    @property
1061    def recursive(self) -> bool:
1062        return bool(self.args.get("recursive"))
1063
1064
1065class WithinGroup(Expression):
1066    arg_types = {"this": True, "expression": False}
1067
1068
1069class CTE(DerivedTable):
1070    arg_types = {"this": True, "alias": True}
1071
1072
1073class TableAlias(Expression):
1074    arg_types = {"this": False, "columns": False}
1075
1076    @property
1077    def columns(self):
1078        return self.args.get("columns") or []
1079
1080
1081class BitString(Condition):
1082    pass
1083
1084
1085class HexString(Condition):
1086    pass
1087
1088
1089class ByteString(Condition):
1090    pass
1091
1092
1093class RawString(Condition):
1094    pass
1095
1096
1097class Column(Condition):
1098    arg_types = {"this": True, "table": False, "db": False, "catalog": False, "join_mark": False}
1099
1100    @property
1101    def table(self) -> str:
1102        return self.text("table")
1103
1104    @property
1105    def db(self) -> str:
1106        return self.text("db")
1107
1108    @property
1109    def catalog(self) -> str:
1110        return self.text("catalog")
1111
1112    @property
1113    def output_name(self) -> str:
1114        return self.name
1115
1116    @property
1117    def parts(self) -> t.List[Identifier]:
1118        """Return the parts of a column in order catalog, db, table, name."""
1119        return [
1120            t.cast(Identifier, self.args[part])
1121            for part in ("catalog", "db", "table", "this")
1122            if self.args.get(part)
1123        ]
1124
1125    def to_dot(self) -> Dot:
1126        """Converts the column into a dot expression."""
1127        parts = self.parts
1128        parent = self.parent
1129
1130        while parent:
1131            if isinstance(parent, Dot):
1132                parts.append(parent.expression)
1133            parent = parent.parent
1134
1135        return Dot.build(parts)
1136
1137
1138class ColumnPosition(Expression):
1139    arg_types = {"this": False, "position": True}
1140
1141
1142class ColumnDef(Expression):
1143    arg_types = {
1144        "this": True,
1145        "kind": False,
1146        "constraints": False,
1147        "exists": False,
1148        "position": False,
1149    }
1150
1151    @property
1152    def constraints(self) -> t.List[ColumnConstraint]:
1153        return self.args.get("constraints") or []
1154
1155
1156class AlterColumn(Expression):
1157    arg_types = {
1158        "this": True,
1159        "dtype": False,
1160        "collate": False,
1161        "using": False,
1162        "default": False,
1163        "drop": False,
1164    }
1165
1166
1167class RenameTable(Expression):
1168    pass
1169
1170
1171class SetTag(Expression):
1172    arg_types = {"expressions": True, "unset": False}
1173
1174
1175class Comment(Expression):
1176    arg_types = {"this": True, "kind": True, "expression": True, "exists": False}
1177
1178
1179# https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/mergetree#mergetree-table-ttl
1180class MergeTreeTTLAction(Expression):
1181    arg_types = {
1182        "this": True,
1183        "delete": False,
1184        "recompress": False,
1185        "to_disk": False,
1186        "to_volume": False,
1187    }
1188
1189
1190# https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/mergetree#mergetree-table-ttl
1191class MergeTreeTTL(Expression):
1192    arg_types = {
1193        "expressions": True,
1194        "where": False,
1195        "group": False,
1196        "aggregates": False,
1197    }
1198
1199
1200class ColumnConstraint(Expression):
1201    arg_types = {"this": False, "kind": True}
1202
1203    @property
1204    def kind(self) -> ColumnConstraintKind:
1205        return self.args["kind"]
1206
1207
1208class ColumnConstraintKind(Expression):
1209    pass
1210
1211
1212class AutoIncrementColumnConstraint(ColumnConstraintKind):
1213    pass
1214
1215
1216class CaseSpecificColumnConstraint(ColumnConstraintKind):
1217    arg_types = {"not_": True}
1218
1219
1220class CharacterSetColumnConstraint(ColumnConstraintKind):
1221    arg_types = {"this": True}
1222
1223
1224class CheckColumnConstraint(ColumnConstraintKind):
1225    pass
1226
1227
1228class CollateColumnConstraint(ColumnConstraintKind):
1229    pass
1230
1231
1232class CommentColumnConstraint(ColumnConstraintKind):
1233    pass
1234
1235
1236class CompressColumnConstraint(ColumnConstraintKind):
1237    pass
1238
1239
1240class DateFormatColumnConstraint(ColumnConstraintKind):
1241    arg_types = {"this": True}
1242
1243
1244class DefaultColumnConstraint(ColumnConstraintKind):
1245    pass
1246
1247
1248class EncodeColumnConstraint(ColumnConstraintKind):
1249    pass
1250
1251
1252class GeneratedAsIdentityColumnConstraint(ColumnConstraintKind):
1253    # this: True -> ALWAYS, this: False -> BY DEFAULT
1254    arg_types = {
1255        "this": False,
1256        "expression": False,
1257        "on_null": False,
1258        "start": False,
1259        "increment": False,
1260        "minvalue": False,
1261        "maxvalue": False,
1262        "cycle": False,
1263    }
1264
1265
1266class InlineLengthColumnConstraint(ColumnConstraintKind):
1267    pass
1268
1269
1270class NotNullColumnConstraint(ColumnConstraintKind):
1271    arg_types = {"allow_null": False}
1272
1273
1274# https://dev.mysql.com/doc/refman/5.7/en/timestamp-initialization.html
1275class OnUpdateColumnConstraint(ColumnConstraintKind):
1276    pass
1277
1278
1279class PrimaryKeyColumnConstraint(ColumnConstraintKind):
1280    arg_types = {"desc": False}
1281
1282
1283class TitleColumnConstraint(ColumnConstraintKind):
1284    pass
1285
1286
1287class UniqueColumnConstraint(ColumnConstraintKind):
1288    arg_types = {"this": False}
1289
1290
1291class UppercaseColumnConstraint(ColumnConstraintKind):
1292    arg_types: t.Dict[str, t.Any] = {}
1293
1294
1295class PathColumnConstraint(ColumnConstraintKind):
1296    pass
1297
1298
1299class Constraint(Expression):
1300    arg_types = {"this": True, "expressions": True}
1301
1302
1303class Delete(Expression):
1304    arg_types = {"with": False, "this": False, "using": False, "where": False, "returning": False}
1305
1306    def delete(
1307        self,
1308        table: ExpOrStr,
1309        dialect: DialectType = None,
1310        copy: bool = True,
1311        **opts,
1312    ) -> Delete:
1313        """
1314        Create a DELETE expression or replace the table on an existing DELETE expression.
1315
1316        Example:
1317            >>> delete("tbl").sql()
1318            'DELETE FROM tbl'
1319
1320        Args:
1321            table: the table from which to delete.
1322            dialect: the dialect used to parse the input expression.
1323            copy: if `False`, modify this expression instance in-place.
1324            opts: other options to use to parse the input expressions.
1325
1326        Returns:
1327            Delete: the modified expression.
1328        """
1329        return _apply_builder(
1330            expression=table,
1331            instance=self,
1332            arg="this",
1333            dialect=dialect,
1334            into=Table,
1335            copy=copy,
1336            **opts,
1337        )
1338
1339    def where(
1340        self,
1341        *expressions: t.Optional[ExpOrStr],
1342        append: bool = True,
1343        dialect: DialectType = None,
1344        copy: bool = True,
1345        **opts,
1346    ) -> Delete:
1347        """
1348        Append to or set the WHERE expressions.
1349
1350        Example:
1351            >>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
1352            "DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
1353
1354        Args:
1355            *expressions: the SQL code strings to parse.
1356                If an `Expression` instance is passed, it will be used as-is.
1357                Multiple expressions are combined with an AND operator.
1358            append: if `True`, AND the new expressions to any existing expression.
1359                Otherwise, this resets the expression.
1360            dialect: the dialect used to parse the input expressions.
1361            copy: if `False`, modify this expression instance in-place.
1362            opts: other options to use to parse the input expressions.
1363
1364        Returns:
1365            Delete: the modified expression.
1366        """
1367        return _apply_conjunction_builder(
1368            *expressions,
1369            instance=self,
1370            arg="where",
1371            append=append,
1372            into=Where,
1373            dialect=dialect,
1374            copy=copy,
1375            **opts,
1376        )
1377
1378    def returning(
1379        self,
1380        expression: ExpOrStr,
1381        dialect: DialectType = None,
1382        copy: bool = True,
1383        **opts,
1384    ) -> Delete:
1385        """
1386        Set the RETURNING expression. Not supported by all dialects.
1387
1388        Example:
1389            >>> delete("tbl").returning("*", dialect="postgres").sql()
1390            'DELETE FROM tbl RETURNING *'
1391
1392        Args:
1393            expression: the SQL code strings to parse.
1394                If an `Expression` instance is passed, it will be used as-is.
1395            dialect: the dialect used to parse the input expressions.
1396            copy: if `False`, modify this expression instance in-place.
1397            opts: other options to use to parse the input expressions.
1398
1399        Returns:
1400            Delete: the modified expression.
1401        """
1402        return _apply_builder(
1403            expression=expression,
1404            instance=self,
1405            arg="returning",
1406            prefix="RETURNING",
1407            dialect=dialect,
1408            copy=copy,
1409            into=Returning,
1410            **opts,
1411        )
1412
1413
1414class Drop(Expression):
1415    arg_types = {
1416        "this": False,
1417        "kind": False,
1418        "exists": False,
1419        "temporary": False,
1420        "materialized": False,
1421        "cascade": False,
1422        "constraints": False,
1423        "purge": False,
1424    }
1425
1426
1427class Filter(Expression):
1428    arg_types = {"this": True, "expression": True}
1429
1430
1431class Check(Expression):
1432    pass
1433
1434
1435class Directory(Expression):
1436    # https://spark.apache.org/docs/3.0.0-preview/sql-ref-syntax-dml-insert-overwrite-directory-hive.html
1437    arg_types = {"this": True, "local": False, "row_format": False}
1438
1439
1440class ForeignKey(Expression):
1441    arg_types = {
1442        "expressions": True,
1443        "reference": False,
1444        "delete": False,
1445        "update": False,
1446    }
1447
1448
1449class PrimaryKey(Expression):
1450    arg_types = {"expressions": True, "options": False}
1451
1452
1453# https://www.postgresql.org/docs/9.1/sql-selectinto.html
1454# https://docs.aws.amazon.com/redshift/latest/dg/r_SELECT_INTO.html#r_SELECT_INTO-examples
1455class Into(Expression):
1456    arg_types = {"this": True, "temporary": False, "unlogged": False}
1457
1458
1459class From(Expression):
1460    @property
1461    def name(self) -> str:
1462        return self.this.name
1463
1464    @property
1465    def alias_or_name(self) -> str:
1466        return self.this.alias_or_name
1467
1468
1469class Having(Expression):
1470    pass
1471
1472
1473class Hint(Expression):
1474    arg_types = {"expressions": True}
1475
1476
1477class JoinHint(Expression):
1478    arg_types = {"this": True, "expressions": True}
1479
1480
1481class Identifier(Expression):
1482    arg_types = {"this": True, "quoted": False}
1483
1484    @property
1485    def quoted(self) -> bool:
1486        return bool(self.args.get("quoted"))
1487
1488    @property
1489    def hashable_args(self) -> t.Any:
1490        if self.quoted and any(char.isupper() for char in self.this):
1491            return (self.this, self.quoted)
1492        return self.this.lower()
1493
1494    @property
1495    def output_name(self) -> str:
1496        return self.name
1497
1498
1499class Index(Expression):
1500    arg_types = {
1501        "this": False,
1502        "table": False,
1503        "using": False,
1504        "where": False,
1505        "columns": False,
1506        "unique": False,
1507        "primary": False,
1508        "amp": False,  # teradata
1509        "partition_by": False,  # teradata
1510    }
1511
1512
1513class Insert(Expression):
1514    arg_types = {
1515        "with": False,
1516        "this": True,
1517        "expression": False,
1518        "conflict": False,
1519        "returning": False,
1520        "overwrite": False,
1521        "exists": False,
1522        "partition": False,
1523        "alternative": False,
1524    }
1525
1526    def with_(
1527        self,
1528        alias: ExpOrStr,
1529        as_: ExpOrStr,
1530        recursive: t.Optional[bool] = None,
1531        append: bool = True,
1532        dialect: DialectType = None,
1533        copy: bool = True,
1534        **opts,
1535    ) -> Insert:
1536        """
1537        Append to or set the common table expressions.
1538
1539        Example:
1540            >>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
1541            'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
1542
1543        Args:
1544            alias: the SQL code string to parse as the table name.
1545                If an `Expression` instance is passed, this is used as-is.
1546            as_: the SQL code string to parse as the table expression.
1547                If an `Expression` instance is passed, it will be used as-is.
1548            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
1549            append: if `True`, add to any existing expressions.
1550                Otherwise, this resets the expressions.
1551            dialect: the dialect used to parse the input expression.
1552            copy: if `False`, modify this expression instance in-place.
1553            opts: other options to use to parse the input expressions.
1554
1555        Returns:
1556            The modified expression.
1557        """
1558        return _apply_cte_builder(
1559            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
1560        )
1561
1562
1563class OnConflict(Expression):
1564    arg_types = {
1565        "duplicate": False,
1566        "expressions": False,
1567        "nothing": False,
1568        "key": False,
1569        "constraint": False,
1570    }
1571
1572
1573class Returning(Expression):
1574    arg_types = {"expressions": True}
1575
1576
1577# https://dev.mysql.com/doc/refman/8.0/en/charset-introducer.html
1578class Introducer(Expression):
1579    arg_types = {"this": True, "expression": True}
1580
1581
1582# national char, like n'utf8'
1583class National(Expression):
1584    pass
1585
1586
1587class LoadData(Expression):
1588    arg_types = {
1589        "this": True,
1590        "local": False,
1591        "overwrite": False,
1592        "inpath": True,
1593        "partition": False,
1594        "input_format": False,
1595        "serde": False,
1596    }
1597
1598
1599class Partition(Expression):
1600    arg_types = {"expressions": True}
1601
1602
1603class Fetch(Expression):
1604    arg_types = {
1605        "direction": False,
1606        "count": False,
1607        "percent": False,
1608        "with_ties": False,
1609    }
1610
1611
1612class Group(Expression):
1613    arg_types = {
1614        "expressions": False,
1615        "grouping_sets": False,
1616        "cube": False,
1617        "rollup": False,
1618        "totals": False,
1619    }
1620
1621
1622class Lambda(Expression):
1623    arg_types = {"this": True, "expressions": True}
1624
1625
1626class Limit(Expression):
1627    arg_types = {"this": False, "expression": True}
1628
1629
1630class Literal(Condition):
1631    arg_types = {"this": True, "is_string": True}
1632
1633    @property
1634    def hashable_args(self) -> t.Any:
1635        return (self.this, self.args.get("is_string"))
1636
1637    @classmethod
1638    def number(cls, number) -> Literal:
1639        return cls(this=str(number), is_string=False)
1640
1641    @classmethod
1642    def string(cls, string) -> Literal:
1643        return cls(this=str(string), is_string=True)
1644
1645    @property
1646    def output_name(self) -> str:
1647        return self.name
1648
1649
1650class Join(Expression):
1651    arg_types = {
1652        "this": True,
1653        "on": False,
1654        "side": False,
1655        "kind": False,
1656        "using": False,
1657        "method": False,
1658        "global": False,
1659        "hint": False,
1660    }
1661
1662    @property
1663    def method(self) -> str:
1664        return self.text("method").upper()
1665
1666    @property
1667    def kind(self) -> str:
1668        return self.text("kind").upper()
1669
1670    @property
1671    def side(self) -> str:
1672        return self.text("side").upper()
1673
1674    @property
1675    def hint(self) -> str:
1676        return self.text("hint").upper()
1677
1678    @property
1679    def alias_or_name(self) -> str:
1680        return self.this.alias_or_name
1681
1682    def on(
1683        self,
1684        *expressions: t.Optional[ExpOrStr],
1685        append: bool = True,
1686        dialect: DialectType = None,
1687        copy: bool = True,
1688        **opts,
1689    ) -> Join:
1690        """
1691        Append to or set the ON expressions.
1692
1693        Example:
1694            >>> import sqlglot
1695            >>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
1696            'JOIN x ON y = 1'
1697
1698        Args:
1699            *expressions: the SQL code strings to parse.
1700                If an `Expression` instance is passed, it will be used as-is.
1701                Multiple expressions are combined with an AND operator.
1702            append: if `True`, AND the new expressions to any existing expression.
1703                Otherwise, this resets the expression.
1704            dialect: the dialect used to parse the input expressions.
1705            copy: if `False`, modify this expression instance in-place.
1706            opts: other options to use to parse the input expressions.
1707
1708        Returns:
1709            The modified Join expression.
1710        """
1711        join = _apply_conjunction_builder(
1712            *expressions,
1713            instance=self,
1714            arg="on",
1715            append=append,
1716            dialect=dialect,
1717            copy=copy,
1718            **opts,
1719        )
1720
1721        if join.kind == "CROSS":
1722            join.set("kind", None)
1723
1724        return join
1725
1726    def using(
1727        self,
1728        *expressions: t.Optional[ExpOrStr],
1729        append: bool = True,
1730        dialect: DialectType = None,
1731        copy: bool = True,
1732        **opts,
1733    ) -> Join:
1734        """
1735        Append to or set the USING expressions.
1736
1737        Example:
1738            >>> import sqlglot
1739            >>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
1740            'JOIN x USING (foo, bla)'
1741
1742        Args:
1743            *expressions: the SQL code strings to parse.
1744                If an `Expression` instance is passed, it will be used as-is.
1745            append: if `True`, concatenate the new expressions to the existing "using" list.
1746                Otherwise, this resets the expression.
1747            dialect: the dialect used to parse the input expressions.
1748            copy: if `False`, modify this expression instance in-place.
1749            opts: other options to use to parse the input expressions.
1750
1751        Returns:
1752            The modified Join expression.
1753        """
1754        join = _apply_list_builder(
1755            *expressions,
1756            instance=self,
1757            arg="using",
1758            append=append,
1759            dialect=dialect,
1760            copy=copy,
1761            **opts,
1762        )
1763
1764        if join.kind == "CROSS":
1765            join.set("kind", None)
1766
1767        return join
1768
1769
1770class Lateral(UDTF):
1771    arg_types = {"this": True, "view": False, "outer": False, "alias": False}
1772
1773
1774class MatchRecognize(Expression):
1775    arg_types = {
1776        "partition_by": False,
1777        "order": False,
1778        "measures": False,
1779        "rows": False,
1780        "after": False,
1781        "pattern": False,
1782        "define": False,
1783        "alias": False,
1784    }
1785
1786
1787# Clickhouse FROM FINAL modifier
1788# https://clickhouse.com/docs/en/sql-reference/statements/select/from/#final-modifier
1789class Final(Expression):
1790    pass
1791
1792
1793class Offset(Expression):
1794    arg_types = {"this": False, "expression": True}
1795
1796
1797class Order(Expression):
1798    arg_types = {"this": False, "expressions": True}
1799
1800
1801# hive specific sorts
1802# https://cwiki.apache.org/confluence/display/Hive/LanguageManual+SortBy
1803class Cluster(Order):
1804    pass
1805
1806
1807class Distribute(Order):
1808    pass
1809
1810
1811class Sort(Order):
1812    pass
1813
1814
1815class Ordered(Expression):
1816    arg_types = {"this": True, "desc": True, "nulls_first": True}
1817
1818
1819class Property(Expression):
1820    arg_types = {"this": True, "value": True}
1821
1822
1823class AlgorithmProperty(Property):
1824    arg_types = {"this": True}
1825
1826
1827class AutoIncrementProperty(Property):
1828    arg_types = {"this": True}
1829
1830
1831class BlockCompressionProperty(Property):
1832    arg_types = {"autotemp": False, "always": False, "default": True, "manual": True, "never": True}
1833
1834
1835class CharacterSetProperty(Property):
1836    arg_types = {"this": True, "default": True}
1837
1838
1839class ChecksumProperty(Property):
1840    arg_types = {"on": False, "default": False}
1841
1842
1843class CollateProperty(Property):
1844    arg_types = {"this": True}
1845
1846
1847class DataBlocksizeProperty(Property):
1848    arg_types = {
1849        "size": False,
1850        "units": False,
1851        "minimum": False,
1852        "maximum": False,
1853        "default": False,
1854    }
1855
1856
1857class DefinerProperty(Property):
1858    arg_types = {"this": True}
1859
1860
1861class DistKeyProperty(Property):
1862    arg_types = {"this": True}
1863
1864
1865class DistStyleProperty(Property):
1866    arg_types = {"this": True}
1867
1868
1869class EngineProperty(Property):
1870    arg_types = {"this": True}
1871
1872
1873class ToTableProperty(Property):
1874    arg_types = {"this": True}
1875
1876
1877class ExecuteAsProperty(Property):
1878    arg_types = {"this": True}
1879
1880
1881class ExternalProperty(Property):
1882    arg_types = {"this": False}
1883
1884
1885class FallbackProperty(Property):
1886    arg_types = {"no": True, "protection": False}
1887
1888
1889class FileFormatProperty(Property):
1890    arg_types = {"this": True}
1891
1892
1893class FreespaceProperty(Property):
1894    arg_types = {"this": True, "percent": False}
1895
1896
1897class InputOutputFormat(Expression):
1898    arg_types = {"input_format": False, "output_format": False}
1899
1900
1901class IsolatedLoadingProperty(Property):
1902    arg_types = {
1903        "no": True,
1904        "concurrent": True,
1905        "for_all": True,
1906        "for_insert": True,
1907        "for_none": True,
1908    }
1909
1910
1911class JournalProperty(Property):
1912    arg_types = {
1913        "no": False,
1914        "dual": False,
1915        "before": False,
1916        "local": False,
1917        "after": False,
1918    }
1919
1920
1921class LanguageProperty(Property):
1922    arg_types = {"this": True}
1923
1924
1925class DictProperty(Property):
1926    arg_types = {"this": True, "kind": True, "settings": False}
1927
1928
1929class DictSubProperty(Property):
1930    pass
1931
1932
1933class DictRange(Property):
1934    arg_types = {"this": True, "min": True, "max": True}
1935
1936
1937# Clickhouse CREATE ... ON CLUSTER modifier
1938# https://clickhouse.com/docs/en/sql-reference/distributed-ddl
1939class OnCluster(Property):
1940    arg_types = {"this": True}
1941
1942
1943class LikeProperty(Property):
1944    arg_types = {"this": True, "expressions": False}
1945
1946
1947class LocationProperty(Property):
1948    arg_types = {"this": True}
1949
1950
1951class LockingProperty(Property):
1952    arg_types = {
1953        "this": False,
1954        "kind": True,
1955        "for_or_in": True,
1956        "lock_type": True,
1957        "override": False,
1958    }
1959
1960
1961class LogProperty(Property):
1962    arg_types = {"no": True}
1963
1964
1965class MaterializedProperty(Property):
1966    arg_types = {"this": False}
1967
1968
1969class MergeBlockRatioProperty(Property):
1970    arg_types = {"this": False, "no": False, "default": False, "percent": False}
1971
1972
1973class NoPrimaryIndexProperty(Property):
1974    arg_types = {}
1975
1976
1977class OnCommitProperty(Property):
1978    arg_type = {"delete": False}
1979
1980
1981class PartitionedByProperty(Property):
1982    arg_types = {"this": True}
1983
1984
1985class ReturnsProperty(Property):
1986    arg_types = {"this": True, "is_table": False, "table": False}
1987
1988
1989class RowFormatProperty(Property):
1990    arg_types = {"this": True}
1991
1992
1993class RowFormatDelimitedProperty(Property):
1994    # https://cwiki.apache.org/confluence/display/hive/languagemanual+dml
1995    arg_types = {
1996        "fields": False,
1997        "escaped": False,
1998        "collection_items": False,
1999        "map_keys": False,
2000        "lines": False,
2001        "null": False,
2002        "serde": False,
2003    }
2004
2005
2006class RowFormatSerdeProperty(Property):
2007    arg_types = {"this": True}
2008
2009
2010class SchemaCommentProperty(Property):
2011    arg_types = {"this": True}
2012
2013
2014class SerdeProperties(Property):
2015    arg_types = {"expressions": True}
2016
2017
2018class SetProperty(Property):
2019    arg_types = {"multi": True}
2020
2021
2022class SettingsProperty(Property):
2023    arg_types = {"expressions": True}
2024
2025
2026class SortKeyProperty(Property):
2027    arg_types = {"this": True, "compound": False}
2028
2029
2030class SqlSecurityProperty(Property):
2031    arg_types = {"definer": True}
2032
2033
2034class StabilityProperty(Property):
2035    arg_types = {"this": True}
2036
2037
2038class TemporaryProperty(Property):
2039    arg_types = {}
2040
2041
2042class TransientProperty(Property):
2043    arg_types = {"this": False}
2044
2045
2046class VolatileProperty(Property):
2047    arg_types = {"this": False}
2048
2049
2050class WithDataProperty(Property):
2051    arg_types = {"no": True, "statistics": False}
2052
2053
2054class WithJournalTableProperty(Property):
2055    arg_types = {"this": True}
2056
2057
2058class Properties(Expression):
2059    arg_types = {"expressions": True}
2060
2061    NAME_TO_PROPERTY = {
2062        "ALGORITHM": AlgorithmProperty,
2063        "AUTO_INCREMENT": AutoIncrementProperty,
2064        "CHARACTER SET": CharacterSetProperty,
2065        "COLLATE": CollateProperty,
2066        "COMMENT": SchemaCommentProperty,
2067        "DEFINER": DefinerProperty,
2068        "DISTKEY": DistKeyProperty,
2069        "DISTSTYLE": DistStyleProperty,
2070        "ENGINE": EngineProperty,
2071        "EXECUTE AS": ExecuteAsProperty,
2072        "FORMAT": FileFormatProperty,
2073        "LANGUAGE": LanguageProperty,
2074        "LOCATION": LocationProperty,
2075        "PARTITIONED_BY": PartitionedByProperty,
2076        "RETURNS": ReturnsProperty,
2077        "ROW_FORMAT": RowFormatProperty,
2078        "SORTKEY": SortKeyProperty,
2079    }
2080
2081    PROPERTY_TO_NAME = {v: k for k, v in NAME_TO_PROPERTY.items()}
2082
2083    # CREATE property locations
2084    # Form: schema specified
2085    #   create [POST_CREATE]
2086    #     table a [POST_NAME]
2087    #     (b int) [POST_SCHEMA]
2088    #     with ([POST_WITH])
2089    #     index (b) [POST_INDEX]
2090    #
2091    # Form: alias selection
2092    #   create [POST_CREATE]
2093    #     table a [POST_NAME]
2094    #     as [POST_ALIAS] (select * from b) [POST_EXPRESSION]
2095    #     index (c) [POST_INDEX]
2096    class Location(AutoName):
2097        POST_CREATE = auto()
2098        POST_NAME = auto()
2099        POST_SCHEMA = auto()
2100        POST_WITH = auto()
2101        POST_ALIAS = auto()
2102        POST_EXPRESSION = auto()
2103        POST_INDEX = auto()
2104        UNSUPPORTED = auto()
2105
2106    @classmethod
2107    def from_dict(cls, properties_dict: t.Dict) -> Properties:
2108        expressions = []
2109        for key, value in properties_dict.items():
2110            property_cls = cls.NAME_TO_PROPERTY.get(key.upper())
2111            if property_cls:
2112                expressions.append(property_cls(this=convert(value)))
2113            else:
2114                expressions.append(Property(this=Literal.string(key), value=convert(value)))
2115
2116        return cls(expressions=expressions)
2117
2118
2119class Qualify(Expression):
2120    pass
2121
2122
2123# https://www.ibm.com/docs/en/ias?topic=procedures-return-statement-in-sql
2124class Return(Expression):
2125    pass
2126
2127
2128class Reference(Expression):
2129    arg_types = {"this": True, "expressions": False, "options": False}
2130
2131
2132class Tuple(Expression):
2133    arg_types = {"expressions": False}
2134
2135    def isin(
2136        self, *expressions: t.Any, query: t.Optional[ExpOrStr] = None, copy: bool = True, **opts
2137    ) -> In:
2138        return In(
2139            this=_maybe_copy(self, copy),
2140            expressions=[convert(e, copy=copy) for e in expressions],
2141            query=maybe_parse(query, copy=copy, **opts) if query else None,
2142        )
2143
2144
2145class Subqueryable(Unionable):
2146    def subquery(self, alias: t.Optional[ExpOrStr] = None, copy: bool = True) -> Subquery:
2147        """
2148        Convert this expression to an aliased expression that can be used as a Subquery.
2149
2150        Example:
2151            >>> subquery = Select().select("x").from_("tbl").subquery()
2152            >>> Select().select("x").from_(subquery).sql()
2153            'SELECT x FROM (SELECT x FROM tbl)'
2154
2155        Args:
2156            alias (str | Identifier): an optional alias for the subquery
2157            copy (bool): if `False`, modify this expression instance in-place.
2158
2159        Returns:
2160            Alias: the subquery
2161        """
2162        instance = _maybe_copy(self, copy)
2163        if not isinstance(alias, Expression):
2164            alias = TableAlias(this=to_identifier(alias)) if alias else None
2165
2166        return Subquery(this=instance, alias=alias)
2167
2168    def limit(
2169        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2170    ) -> Select:
2171        raise NotImplementedError
2172
2173    @property
2174    def ctes(self):
2175        with_ = self.args.get("with")
2176        if not with_:
2177            return []
2178        return with_.expressions
2179
2180    @property
2181    def selects(self):
2182        raise NotImplementedError("Subqueryable objects must implement `selects`")
2183
2184    @property
2185    def named_selects(self):
2186        raise NotImplementedError("Subqueryable objects must implement `named_selects`")
2187
2188    def with_(
2189        self,
2190        alias: ExpOrStr,
2191        as_: ExpOrStr,
2192        recursive: t.Optional[bool] = None,
2193        append: bool = True,
2194        dialect: DialectType = None,
2195        copy: bool = True,
2196        **opts,
2197    ) -> Subqueryable:
2198        """
2199        Append to or set the common table expressions.
2200
2201        Example:
2202            >>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
2203            'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
2204
2205        Args:
2206            alias: the SQL code string to parse as the table name.
2207                If an `Expression` instance is passed, this is used as-is.
2208            as_: the SQL code string to parse as the table expression.
2209                If an `Expression` instance is passed, it will be used as-is.
2210            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
2211            append: if `True`, add to any existing expressions.
2212                Otherwise, this resets the expressions.
2213            dialect: the dialect used to parse the input expression.
2214            copy: if `False`, modify this expression instance in-place.
2215            opts: other options to use to parse the input expressions.
2216
2217        Returns:
2218            The modified expression.
2219        """
2220        return _apply_cte_builder(
2221            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
2222        )
2223
2224
2225QUERY_MODIFIERS = {
2226    "match": False,
2227    "laterals": False,
2228    "joins": False,
2229    "pivots": False,
2230    "where": False,
2231    "group": False,
2232    "having": False,
2233    "qualify": False,
2234    "windows": False,
2235    "distribute": False,
2236    "sort": False,
2237    "cluster": False,
2238    "order": False,
2239    "limit": False,
2240    "offset": False,
2241    "locks": False,
2242    "sample": False,
2243    "settings": False,
2244    "format": False,
2245}
2246
2247
2248class Table(Expression):
2249    arg_types = {
2250        "this": True,
2251        "alias": False,
2252        "db": False,
2253        "catalog": False,
2254        "laterals": False,
2255        "joins": False,
2256        "pivots": False,
2257        "hints": False,
2258        "system_time": False,
2259    }
2260
2261    @property
2262    def db(self) -> str:
2263        return self.text("db")
2264
2265    @property
2266    def catalog(self) -> str:
2267        return self.text("catalog")
2268
2269    @property
2270    def parts(self) -> t.List[Identifier]:
2271        """Return the parts of a table in order catalog, db, table."""
2272        return [
2273            t.cast(Identifier, self.args[part])
2274            for part in ("catalog", "db", "this")
2275            if self.args.get(part)
2276        ]
2277
2278
2279# See the TSQL "Querying data in a system-versioned temporal table" page
2280class SystemTime(Expression):
2281    arg_types = {
2282        "this": False,
2283        "expression": False,
2284        "kind": True,
2285    }
2286
2287
2288class Union(Subqueryable):
2289    arg_types = {
2290        "with": False,
2291        "this": True,
2292        "expression": True,
2293        "distinct": False,
2294        **QUERY_MODIFIERS,
2295    }
2296
2297    def limit(
2298        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2299    ) -> Select:
2300        """
2301        Set the LIMIT expression.
2302
2303        Example:
2304            >>> select("1").union(select("1")).limit(1).sql()
2305            'SELECT * FROM (SELECT 1 UNION SELECT 1) AS _l_0 LIMIT 1'
2306
2307        Args:
2308            expression: the SQL code string to parse.
2309                This can also be an integer.
2310                If a `Limit` instance is passed, this is used as-is.
2311                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2312            dialect: the dialect used to parse the input expression.
2313            copy: if `False`, modify this expression instance in-place.
2314            opts: other options to use to parse the input expressions.
2315
2316        Returns:
2317            The limited subqueryable.
2318        """
2319        return (
2320            select("*")
2321            .from_(self.subquery(alias="_l_0", copy=copy))
2322            .limit(expression, dialect=dialect, copy=False, **opts)
2323        )
2324
2325    def select(
2326        self,
2327        *expressions: t.Optional[ExpOrStr],
2328        append: bool = True,
2329        dialect: DialectType = None,
2330        copy: bool = True,
2331        **opts,
2332    ) -> Union:
2333        """Append to or set the SELECT of the union recursively.
2334
2335        Example:
2336            >>> from sqlglot import parse_one
2337            >>> parse_one("select a from x union select a from y union select a from z").select("b").sql()
2338            'SELECT a, b FROM x UNION SELECT a, b FROM y UNION SELECT a, b FROM z'
2339
2340        Args:
2341            *expressions: the SQL code strings to parse.
2342                If an `Expression` instance is passed, it will be used as-is.
2343            append: if `True`, add to any existing expressions.
2344                Otherwise, this resets the expressions.
2345            dialect: the dialect used to parse the input expressions.
2346            copy: if `False`, modify this expression instance in-place.
2347            opts: other options to use to parse the input expressions.
2348
2349        Returns:
2350            Union: the modified expression.
2351        """
2352        this = self.copy() if copy else self
2353        this.this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
2354        this.expression.unnest().select(
2355            *expressions, append=append, dialect=dialect, copy=False, **opts
2356        )
2357        return this
2358
2359    @property
2360    def named_selects(self):
2361        return self.this.unnest().named_selects
2362
2363    @property
2364    def is_star(self) -> bool:
2365        return self.this.is_star or self.expression.is_star
2366
2367    @property
2368    def selects(self):
2369        return self.this.unnest().selects
2370
2371    @property
2372    def left(self):
2373        return self.this
2374
2375    @property
2376    def right(self):
2377        return self.expression
2378
2379
2380class Except(Union):
2381    pass
2382
2383
2384class Intersect(Union):
2385    pass
2386
2387
2388class Unnest(UDTF):
2389    arg_types = {
2390        "expressions": True,
2391        "ordinality": False,
2392        "alias": False,
2393        "offset": False,
2394    }
2395
2396
2397class Update(Expression):
2398    arg_types = {
2399        "with": False,
2400        "this": False,
2401        "expressions": True,
2402        "from": False,
2403        "where": False,
2404        "returning": False,
2405    }
2406
2407
2408class Values(UDTF):
2409    arg_types = {
2410        "expressions": True,
2411        "ordinality": False,
2412        "alias": False,
2413    }
2414
2415
2416class Var(Expression):
2417    pass
2418
2419
2420class Schema(Expression):
2421    arg_types = {"this": False, "expressions": False}
2422
2423
2424# https://dev.mysql.com/doc/refman/8.0/en/select.html
2425# https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/SELECT.html
2426class Lock(Expression):
2427    arg_types = {"update": True, "expressions": False, "wait": False}
2428
2429
2430class Select(Subqueryable):
2431    arg_types = {
2432        "with": False,
2433        "kind": False,
2434        "expressions": False,
2435        "hint": False,
2436        "distinct": False,
2437        "struct": False,  # https://cloud.google.com/bigquery/docs/reference/standard-sql/query-syntax#return_query_results_as_a_value_table
2438        "value": False,
2439        "into": False,
2440        "from": False,
2441        **QUERY_MODIFIERS,
2442    }
2443
2444    def from_(
2445        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
2446    ) -> Select:
2447        """
2448        Set the FROM expression.
2449
2450        Example:
2451            >>> Select().from_("tbl").select("x").sql()
2452            'SELECT x FROM tbl'
2453
2454        Args:
2455            expression : the SQL code strings to parse.
2456                If a `From` instance is passed, this is used as-is.
2457                If another `Expression` instance is passed, it will be wrapped in a `From`.
2458            dialect: the dialect used to parse the input expression.
2459            copy: if `False`, modify this expression instance in-place.
2460            opts: other options to use to parse the input expressions.
2461
2462        Returns:
2463            The modified Select expression.
2464        """
2465        return _apply_builder(
2466            expression=expression,
2467            instance=self,
2468            arg="from",
2469            into=From,
2470            prefix="FROM",
2471            dialect=dialect,
2472            copy=copy,
2473            **opts,
2474        )
2475
2476    def group_by(
2477        self,
2478        *expressions: t.Optional[ExpOrStr],
2479        append: bool = True,
2480        dialect: DialectType = None,
2481        copy: bool = True,
2482        **opts,
2483    ) -> Select:
2484        """
2485        Set the GROUP BY expression.
2486
2487        Example:
2488            >>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
2489            'SELECT x, COUNT(1) FROM tbl GROUP BY x'
2490
2491        Args:
2492            *expressions: the SQL code strings to parse.
2493                If a `Group` instance is passed, this is used as-is.
2494                If another `Expression` instance is passed, it will be wrapped in a `Group`.
2495                If nothing is passed in then a group by is not applied to the expression
2496            append: if `True`, add to any existing expressions.
2497                Otherwise, this flattens all the `Group` expression into a single expression.
2498            dialect: the dialect used to parse the input expression.
2499            copy: if `False`, modify this expression instance in-place.
2500            opts: other options to use to parse the input expressions.
2501
2502        Returns:
2503            The modified Select expression.
2504        """
2505        if not expressions:
2506            return self if not copy else self.copy()
2507
2508        return _apply_child_list_builder(
2509            *expressions,
2510            instance=self,
2511            arg="group",
2512            append=append,
2513            copy=copy,
2514            prefix="GROUP BY",
2515            into=Group,
2516            dialect=dialect,
2517            **opts,
2518        )
2519
2520    def order_by(
2521        self,
2522        *expressions: t.Optional[ExpOrStr],
2523        append: bool = True,
2524        dialect: DialectType = None,
2525        copy: bool = True,
2526        **opts,
2527    ) -> Select:
2528        """
2529        Set the ORDER BY expression.
2530
2531        Example:
2532            >>> Select().from_("tbl").select("x").order_by("x DESC").sql()
2533            'SELECT x FROM tbl ORDER BY x DESC'
2534
2535        Args:
2536            *expressions: the SQL code strings to parse.
2537                If a `Group` instance is passed, this is used as-is.
2538                If another `Expression` instance is passed, it will be wrapped in a `Order`.
2539            append: if `True`, add to any existing expressions.
2540                Otherwise, this flattens all the `Order` expression into a single expression.
2541            dialect: the dialect used to parse the input expression.
2542            copy: if `False`, modify this expression instance in-place.
2543            opts: other options to use to parse the input expressions.
2544
2545        Returns:
2546            The modified Select expression.
2547        """
2548        return _apply_child_list_builder(
2549            *expressions,
2550            instance=self,
2551            arg="order",
2552            append=append,
2553            copy=copy,
2554            prefix="ORDER BY",
2555            into=Order,
2556            dialect=dialect,
2557            **opts,
2558        )
2559
2560    def sort_by(
2561        self,
2562        *expressions: t.Optional[ExpOrStr],
2563        append: bool = True,
2564        dialect: DialectType = None,
2565        copy: bool = True,
2566        **opts,
2567    ) -> Select:
2568        """
2569        Set the SORT BY expression.
2570
2571        Example:
2572            >>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
2573            'SELECT x FROM tbl SORT BY x DESC'
2574
2575        Args:
2576            *expressions: the SQL code strings to parse.
2577                If a `Group` instance is passed, this is used as-is.
2578                If another `Expression` instance is passed, it will be wrapped in a `SORT`.
2579            append: if `True`, add to any existing expressions.
2580                Otherwise, this flattens all the `Order` expression into a single expression.
2581            dialect: the dialect used to parse the input expression.
2582            copy: if `False`, modify this expression instance in-place.
2583            opts: other options to use to parse the input expressions.
2584
2585        Returns:
2586            The modified Select expression.
2587        """
2588        return _apply_child_list_builder(
2589            *expressions,
2590            instance=self,
2591            arg="sort",
2592            append=append,
2593            copy=copy,
2594            prefix="SORT BY",
2595            into=Sort,
2596            dialect=dialect,
2597            **opts,
2598        )
2599
2600    def cluster_by(
2601        self,
2602        *expressions: t.Optional[ExpOrStr],
2603        append: bool = True,
2604        dialect: DialectType = None,
2605        copy: bool = True,
2606        **opts,
2607    ) -> Select:
2608        """
2609        Set the CLUSTER BY expression.
2610
2611        Example:
2612            >>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
2613            'SELECT x FROM tbl CLUSTER BY x DESC'
2614
2615        Args:
2616            *expressions: the SQL code strings to parse.
2617                If a `Group` instance is passed, this is used as-is.
2618                If another `Expression` instance is passed, it will be wrapped in a `Cluster`.
2619            append: if `True`, add to any existing expressions.
2620                Otherwise, this flattens all the `Order` expression into a single expression.
2621            dialect: the dialect used to parse the input expression.
2622            copy: if `False`, modify this expression instance in-place.
2623            opts: other options to use to parse the input expressions.
2624
2625        Returns:
2626            The modified Select expression.
2627        """
2628        return _apply_child_list_builder(
2629            *expressions,
2630            instance=self,
2631            arg="cluster",
2632            append=append,
2633            copy=copy,
2634            prefix="CLUSTER BY",
2635            into=Cluster,
2636            dialect=dialect,
2637            **opts,
2638        )
2639
2640    def limit(
2641        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2642    ) -> Select:
2643        """
2644        Set the LIMIT expression.
2645
2646        Example:
2647            >>> Select().from_("tbl").select("x").limit(10).sql()
2648            'SELECT x FROM tbl LIMIT 10'
2649
2650        Args:
2651            expression: the SQL code string to parse.
2652                This can also be an integer.
2653                If a `Limit` instance is passed, this is used as-is.
2654                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2655            dialect: the dialect used to parse the input expression.
2656            copy: if `False`, modify this expression instance in-place.
2657            opts: other options to use to parse the input expressions.
2658
2659        Returns:
2660            Select: the modified expression.
2661        """
2662        return _apply_builder(
2663            expression=expression,
2664            instance=self,
2665            arg="limit",
2666            into=Limit,
2667            prefix="LIMIT",
2668            dialect=dialect,
2669            copy=copy,
2670            **opts,
2671        )
2672
2673    def offset(
2674        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2675    ) -> Select:
2676        """
2677        Set the OFFSET expression.
2678
2679        Example:
2680            >>> Select().from_("tbl").select("x").offset(10).sql()
2681            'SELECT x FROM tbl OFFSET 10'
2682
2683        Args:
2684            expression: the SQL code string to parse.
2685                This can also be an integer.
2686                If a `Offset` instance is passed, this is used as-is.
2687                If another `Expression` instance is passed, it will be wrapped in a `Offset`.
2688            dialect: the dialect used to parse the input expression.
2689            copy: if `False`, modify this expression instance in-place.
2690            opts: other options to use to parse the input expressions.
2691
2692        Returns:
2693            The modified Select expression.
2694        """
2695        return _apply_builder(
2696            expression=expression,
2697            instance=self,
2698            arg="offset",
2699            into=Offset,
2700            prefix="OFFSET",
2701            dialect=dialect,
2702            copy=copy,
2703            **opts,
2704        )
2705
2706    def select(
2707        self,
2708        *expressions: t.Optional[ExpOrStr],
2709        append: bool = True,
2710        dialect: DialectType = None,
2711        copy: bool = True,
2712        **opts,
2713    ) -> Select:
2714        """
2715        Append to or set the SELECT expressions.
2716
2717        Example:
2718            >>> Select().select("x", "y").sql()
2719            'SELECT x, y'
2720
2721        Args:
2722            *expressions: the SQL code strings to parse.
2723                If an `Expression` instance is passed, it will be used as-is.
2724            append: if `True`, add to any existing expressions.
2725                Otherwise, this resets the expressions.
2726            dialect: the dialect used to parse the input expressions.
2727            copy: if `False`, modify this expression instance in-place.
2728            opts: other options to use to parse the input expressions.
2729
2730        Returns:
2731            The modified Select expression.
2732        """
2733        return _apply_list_builder(
2734            *expressions,
2735            instance=self,
2736            arg="expressions",
2737            append=append,
2738            dialect=dialect,
2739            copy=copy,
2740            **opts,
2741        )
2742
2743    def lateral(
2744        self,
2745        *expressions: t.Optional[ExpOrStr],
2746        append: bool = True,
2747        dialect: DialectType = None,
2748        copy: bool = True,
2749        **opts,
2750    ) -> Select:
2751        """
2752        Append to or set the LATERAL expressions.
2753
2754        Example:
2755            >>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
2756            'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
2757
2758        Args:
2759            *expressions: the SQL code strings to parse.
2760                If an `Expression` instance is passed, it will be used as-is.
2761            append: if `True`, add to any existing expressions.
2762                Otherwise, this resets the expressions.
2763            dialect: the dialect used to parse the input expressions.
2764            copy: if `False`, modify this expression instance in-place.
2765            opts: other options to use to parse the input expressions.
2766
2767        Returns:
2768            The modified Select expression.
2769        """
2770        return _apply_list_builder(
2771            *expressions,
2772            instance=self,
2773            arg="laterals",
2774            append=append,
2775            into=Lateral,
2776            prefix="LATERAL VIEW",
2777            dialect=dialect,
2778            copy=copy,
2779            **opts,
2780        )
2781
2782    def join(
2783        self,
2784        expression: ExpOrStr,
2785        on: t.Optional[ExpOrStr] = None,
2786        using: t.Optional[ExpOrStr | t.List[ExpOrStr]] = None,
2787        append: bool = True,
2788        join_type: t.Optional[str] = None,
2789        join_alias: t.Optional[Identifier | str] = None,
2790        dialect: DialectType = None,
2791        copy: bool = True,
2792        **opts,
2793    ) -> Select:
2794        """
2795        Append to or set the JOIN expressions.
2796
2797        Example:
2798            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
2799            'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
2800
2801            >>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
2802            'SELECT 1 FROM a JOIN b USING (x, y, z)'
2803
2804            Use `join_type` to change the type of join:
2805
2806            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
2807            'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
2808
2809        Args:
2810            expression: the SQL code string to parse.
2811                If an `Expression` instance is passed, it will be used as-is.
2812            on: optionally specify the join "on" criteria as a SQL string.
2813                If an `Expression` instance is passed, it will be used as-is.
2814            using: optionally specify the join "using" criteria as a SQL string.
2815                If an `Expression` instance is passed, it will be used as-is.
2816            append: if `True`, add to any existing expressions.
2817                Otherwise, this resets the expressions.
2818            join_type: if set, alter the parsed join type.
2819            join_alias: an optional alias for the joined source.
2820            dialect: the dialect used to parse the input expressions.
2821            copy: if `False`, modify this expression instance in-place.
2822            opts: other options to use to parse the input expressions.
2823
2824        Returns:
2825            Select: the modified expression.
2826        """
2827        parse_args: t.Dict[str, t.Any] = {"dialect": dialect, **opts}
2828
2829        try:
2830            expression = maybe_parse(expression, into=Join, prefix="JOIN", **parse_args)
2831        except ParseError:
2832            expression = maybe_parse(expression, into=(Join, Expression), **parse_args)
2833
2834        join = expression if isinstance(expression, Join) else Join(this=expression)
2835
2836        if isinstance(join.this, Select):
2837            join.this.replace(join.this.subquery())
2838
2839        if join_type:
2840            method: t.Optional[Token]
2841            side: t.Optional[Token]
2842            kind: t.Optional[Token]
2843
2844            method, side, kind = maybe_parse(join_type, into="JOIN_TYPE", **parse_args)  # type: ignore
2845
2846            if method:
2847                join.set("method", method.text)
2848            if side:
2849                join.set("side", side.text)
2850            if kind:
2851                join.set("kind", kind.text)
2852
2853        if on:
2854            on = and_(*ensure_list(on), dialect=dialect, copy=copy, **opts)
2855            join.set("on", on)
2856
2857        if using:
2858            join = _apply_list_builder(
2859                *ensure_list(using),
2860                instance=join,
2861                arg="using",
2862                append=append,
2863                copy=copy,
2864                **opts,
2865            )
2866
2867        if join_alias:
2868            join.set("this", alias_(join.this, join_alias, table=True))
2869
2870        return _apply_list_builder(
2871            join,
2872            instance=self,
2873            arg="joins",
2874            append=append,
2875            copy=copy,
2876            **opts,
2877        )
2878
2879    def where(
2880        self,
2881        *expressions: t.Optional[ExpOrStr],
2882        append: bool = True,
2883        dialect: DialectType = None,
2884        copy: bool = True,
2885        **opts,
2886    ) -> Select:
2887        """
2888        Append to or set the WHERE expressions.
2889
2890        Example:
2891            >>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
2892            "SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
2893
2894        Args:
2895            *expressions: the SQL code strings to parse.
2896                If an `Expression` instance is passed, it will be used as-is.
2897                Multiple expressions are combined with an AND operator.
2898            append: if `True`, AND the new expressions to any existing expression.
2899                Otherwise, this resets the expression.
2900            dialect: the dialect used to parse the input expressions.
2901            copy: if `False`, modify this expression instance in-place.
2902            opts: other options to use to parse the input expressions.
2903
2904        Returns:
2905            Select: the modified expression.
2906        """
2907        return _apply_conjunction_builder(
2908            *expressions,
2909            instance=self,
2910            arg="where",
2911            append=append,
2912            into=Where,
2913            dialect=dialect,
2914            copy=copy,
2915            **opts,
2916        )
2917
2918    def having(
2919        self,
2920        *expressions: t.Optional[ExpOrStr],
2921        append: bool = True,
2922        dialect: DialectType = None,
2923        copy: bool = True,
2924        **opts,
2925    ) -> Select:
2926        """
2927        Append to or set the HAVING expressions.
2928
2929        Example:
2930            >>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
2931            'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
2932
2933        Args:
2934            *expressions: the SQL code strings to parse.
2935                If an `Expression` instance is passed, it will be used as-is.
2936                Multiple expressions are combined with an AND operator.
2937            append: if `True`, AND the new expressions to any existing expression.
2938                Otherwise, this resets the expression.
2939            dialect: the dialect used to parse the input expressions.
2940            copy: if `False`, modify this expression instance in-place.
2941            opts: other options to use to parse the input expressions.
2942
2943        Returns:
2944            The modified Select expression.
2945        """
2946        return _apply_conjunction_builder(
2947            *expressions,
2948            instance=self,
2949            arg="having",
2950            append=append,
2951            into=Having,
2952            dialect=dialect,
2953            copy=copy,
2954            **opts,
2955        )
2956
2957    def window(
2958        self,
2959        *expressions: t.Optional[ExpOrStr],
2960        append: bool = True,
2961        dialect: DialectType = None,
2962        copy: bool = True,
2963        **opts,
2964    ) -> Select:
2965        return _apply_list_builder(
2966            *expressions,
2967            instance=self,
2968            arg="windows",
2969            append=append,
2970            into=Window,
2971            dialect=dialect,
2972            copy=copy,
2973            **opts,
2974        )
2975
2976    def qualify(
2977        self,
2978        *expressions: t.Optional[ExpOrStr],
2979        append: bool = True,
2980        dialect: DialectType = None,
2981        copy: bool = True,
2982        **opts,
2983    ) -> Select:
2984        return _apply_conjunction_builder(
2985            *expressions,
2986            instance=self,
2987            arg="qualify",
2988            append=append,
2989            into=Qualify,
2990            dialect=dialect,
2991            copy=copy,
2992            **opts,
2993        )
2994
2995    def distinct(
2996        self, *ons: t.Optional[ExpOrStr], distinct: bool = True, copy: bool = True
2997    ) -> Select:
2998        """
2999        Set the OFFSET expression.
3000
3001        Example:
3002            >>> Select().from_("tbl").select("x").distinct().sql()
3003            'SELECT DISTINCT x FROM tbl'
3004
3005        Args:
3006            ons: the expressions to distinct on
3007            distinct: whether the Select should be distinct
3008            copy: if `False`, modify this expression instance in-place.
3009
3010        Returns:
3011            Select: the modified expression.
3012        """
3013        instance = _maybe_copy(self, copy)
3014        on = Tuple(expressions=[maybe_parse(on, copy=copy) for on in ons if on]) if ons else None
3015        instance.set("distinct", Distinct(on=on) if distinct else None)
3016        return instance
3017
3018    def ctas(
3019        self,
3020        table: ExpOrStr,
3021        properties: t.Optional[t.Dict] = None,
3022        dialect: DialectType = None,
3023        copy: bool = True,
3024        **opts,
3025    ) -> Create:
3026        """
3027        Convert this expression to a CREATE TABLE AS statement.
3028
3029        Example:
3030            >>> Select().select("*").from_("tbl").ctas("x").sql()
3031            'CREATE TABLE x AS SELECT * FROM tbl'
3032
3033        Args:
3034            table: the SQL code string to parse as the table name.
3035                If another `Expression` instance is passed, it will be used as-is.
3036            properties: an optional mapping of table properties
3037            dialect: the dialect used to parse the input table.
3038            copy: if `False`, modify this expression instance in-place.
3039            opts: other options to use to parse the input table.
3040
3041        Returns:
3042            The new Create expression.
3043        """
3044        instance = _maybe_copy(self, copy)
3045        table_expression = maybe_parse(
3046            table,
3047            into=Table,
3048            dialect=dialect,
3049            **opts,
3050        )
3051        properties_expression = None
3052        if properties:
3053            properties_expression = Properties.from_dict(properties)
3054
3055        return Create(
3056            this=table_expression,
3057            kind="table",
3058            expression=instance,
3059            properties=properties_expression,
3060        )
3061
3062    def lock(self, update: bool = True, copy: bool = True) -> Select:
3063        """
3064        Set the locking read mode for this expression.
3065
3066        Examples:
3067            >>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
3068            "SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
3069
3070            >>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
3071            "SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
3072
3073        Args:
3074            update: if `True`, the locking type will be `FOR UPDATE`, else it will be `FOR SHARE`.
3075            copy: if `False`, modify this expression instance in-place.
3076
3077        Returns:
3078            The modified expression.
3079        """
3080
3081        inst = _maybe_copy(self, copy)
3082        inst.set("locks", [Lock(update=update)])
3083
3084        return inst
3085
3086    @property
3087    def named_selects(self) -> t.List[str]:
3088        return [e.output_name for e in self.expressions if e.alias_or_name]
3089
3090    @property
3091    def is_star(self) -> bool:
3092        return any(expression.is_star for expression in self.expressions)
3093
3094    @property
3095    def selects(self) -> t.List[Expression]:
3096        return self.expressions
3097
3098
3099class Subquery(DerivedTable, Unionable):
3100    arg_types = {
3101        "this": True,
3102        "alias": False,
3103        "with": False,
3104        **QUERY_MODIFIERS,
3105    }
3106
3107    def unnest(self):
3108        """
3109        Returns the first non subquery.
3110        """
3111        expression = self
3112        while isinstance(expression, Subquery):
3113            expression = expression.this
3114        return expression
3115
3116    @property
3117    def is_star(self) -> bool:
3118        return self.this.is_star
3119
3120    @property
3121    def output_name(self) -> str:
3122        return self.alias
3123
3124
3125class TableSample(Expression):
3126    arg_types = {
3127        "this": False,
3128        "method": False,
3129        "bucket_numerator": False,
3130        "bucket_denominator": False,
3131        "bucket_field": False,
3132        "percent": False,
3133        "rows": False,
3134        "size": False,
3135        "seed": False,
3136        "kind": False,
3137    }
3138
3139
3140class Tag(Expression):
3141    """Tags are used for generating arbitrary sql like SELECT <span>x</span>."""
3142
3143    arg_types = {
3144        "this": False,
3145        "prefix": False,
3146        "postfix": False,
3147    }
3148
3149
3150# Represents both the standard SQL PIVOT operator and DuckDB's "simplified" PIVOT syntax
3151# https://duckdb.org/docs/sql/statements/pivot
3152class Pivot(Expression):
3153    arg_types = {
3154        "this": False,
3155        "alias": False,
3156        "expressions": True,
3157        "field": False,
3158        "unpivot": False,
3159        "using": False,
3160        "group": False,
3161        "columns": False,
3162    }
3163
3164
3165class Window(Expression):
3166    arg_types = {
3167        "this": True,
3168        "partition_by": False,
3169        "order": False,
3170        "spec": False,
3171        "alias": False,
3172        "over": False,
3173        "first": False,
3174    }
3175
3176
3177class WindowSpec(Expression):
3178    arg_types = {
3179        "kind": False,
3180        "start": False,
3181        "start_side": False,
3182        "end": False,
3183        "end_side": False,
3184    }
3185
3186
3187class Where(Expression):
3188    pass
3189
3190
3191class Star(Expression):
3192    arg_types = {"except": False, "replace": False}
3193
3194    @property
3195    def name(self) -> str:
3196        return "*"
3197
3198    @property
3199    def output_name(self) -> str:
3200        return self.name
3201
3202
3203class Parameter(Expression):
3204    arg_types = {"this": True, "wrapped": False}
3205
3206
3207class SessionParameter(Expression):
3208    arg_types = {"this": True, "kind": False}
3209
3210
3211class Placeholder(Expression):
3212    arg_types = {"this": False, "kind": False}
3213
3214
3215class Null(Condition):
3216    arg_types: t.Dict[str, t.Any] = {}
3217
3218    @property
3219    def name(self) -> str:
3220        return "NULL"
3221
3222
3223class Boolean(Condition):
3224    pass
3225
3226
3227class DataTypeSize(Expression):
3228    arg_types = {"this": True, "expression": False}
3229
3230
3231class DataType(Expression):
3232    arg_types = {
3233        "this": True,
3234        "expressions": False,
3235        "nested": False,
3236        "values": False,
3237        "prefix": False,
3238    }
3239
3240    class Type(AutoName):
3241        ARRAY = auto()
3242        BIGDECIMAL = auto()
3243        BIGINT = auto()
3244        BIGSERIAL = auto()
3245        BINARY = auto()
3246        BIT = auto()
3247        BOOLEAN = auto()
3248        CHAR = auto()
3249        DATE = auto()
3250        DATETIME = auto()
3251        DATETIME64 = auto()
3252        INT4RANGE = auto()
3253        INT4MULTIRANGE = auto()
3254        INT8RANGE = auto()
3255        INT8MULTIRANGE = auto()
3256        NUMRANGE = auto()
3257        NUMMULTIRANGE = auto()
3258        TSRANGE = auto()
3259        TSMULTIRANGE = auto()
3260        TSTZRANGE = auto()
3261        TSTZMULTIRANGE = auto()
3262        DATERANGE = auto()
3263        DATEMULTIRANGE = auto()
3264        DECIMAL = auto()
3265        DOUBLE = auto()
3266        FLOAT = auto()
3267        GEOGRAPHY = auto()
3268        GEOMETRY = auto()
3269        HLLSKETCH = auto()
3270        HSTORE = auto()
3271        IMAGE = auto()
3272        INET = auto()
3273        INT = auto()
3274        INT128 = auto()
3275        INT256 = auto()
3276        INTERVAL = auto()
3277        JSON = auto()
3278        JSONB = auto()
3279        LONGBLOB = auto()
3280        LONGTEXT = auto()
3281        MAP = auto()
3282        MEDIUMBLOB = auto()
3283        MEDIUMTEXT = auto()
3284        MONEY = auto()
3285        NCHAR = auto()
3286        NULL = auto()
3287        NULLABLE = auto()
3288        NVARCHAR = auto()
3289        OBJECT = auto()
3290        ROWVERSION = auto()
3291        SERIAL = auto()
3292        SMALLINT = auto()
3293        SMALLMONEY = auto()
3294        SMALLSERIAL = auto()
3295        STRUCT = auto()
3296        SUPER = auto()
3297        TEXT = auto()
3298        TIME = auto()
3299        TIMESTAMP = auto()
3300        TIMESTAMPTZ = auto()
3301        TIMESTAMPLTZ = auto()
3302        TINYINT = auto()
3303        UBIGINT = auto()
3304        UINT = auto()
3305        USMALLINT = auto()
3306        UTINYINT = auto()
3307        UNKNOWN = auto()  # Sentinel value, useful for type annotation
3308        UINT128 = auto()
3309        UINT256 = auto()
3310        UNIQUEIDENTIFIER = auto()
3311        UUID = auto()
3312        VARBINARY = auto()
3313        VARCHAR = auto()
3314        VARIANT = auto()
3315        XML = auto()
3316
3317    TEXT_TYPES = {
3318        Type.CHAR,
3319        Type.NCHAR,
3320        Type.VARCHAR,
3321        Type.NVARCHAR,
3322        Type.TEXT,
3323    }
3324
3325    INTEGER_TYPES = {
3326        Type.INT,
3327        Type.TINYINT,
3328        Type.SMALLINT,
3329        Type.BIGINT,
3330        Type.INT128,
3331        Type.INT256,
3332    }
3333
3334    FLOAT_TYPES = {
3335        Type.FLOAT,
3336        Type.DOUBLE,
3337    }
3338
3339    NUMERIC_TYPES = {*INTEGER_TYPES, *FLOAT_TYPES}
3340
3341    TEMPORAL_TYPES = {
3342        Type.TIMESTAMP,
3343        Type.TIMESTAMPTZ,
3344        Type.TIMESTAMPLTZ,
3345        Type.DATE,
3346        Type.DATETIME,
3347        Type.DATETIME64,
3348    }
3349
3350    @classmethod
3351    def build(
3352        cls, dtype: str | DataType | DataType.Type, dialect: DialectType = None, **kwargs
3353    ) -> DataType:
3354        from sqlglot import parse_one
3355
3356        if isinstance(dtype, str):
3357            if dtype.upper() in cls.Type.__members__:
3358                data_type_exp: t.Optional[Expression] = DataType(this=DataType.Type[dtype.upper()])
3359            else:
3360                data_type_exp = parse_one(dtype, read=dialect, into=DataType)
3361
3362            if data_type_exp is None:
3363                raise ValueError(f"Unparsable data type value: {dtype}")
3364        elif isinstance(dtype, DataType.Type):
3365            data_type_exp = DataType(this=dtype)
3366        elif isinstance(dtype, DataType):
3367            return dtype
3368        else:
3369            raise ValueError(f"Invalid data type: {type(dtype)}. Expected str or DataType.Type")
3370
3371        return DataType(**{**data_type_exp.args, **kwargs})
3372
3373    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3374        return any(self.this == DataType.build(dtype).this for dtype in dtypes)
3375
3376
3377# https://www.postgresql.org/docs/15/datatype-pseudo.html
3378class PseudoType(Expression):
3379    pass
3380
3381
3382# WHERE x <OP> EXISTS|ALL|ANY|SOME(SELECT ...)
3383class SubqueryPredicate(Predicate):
3384    pass
3385
3386
3387class All(SubqueryPredicate):
3388    pass
3389
3390
3391class Any(SubqueryPredicate):
3392    pass
3393
3394
3395class Exists(SubqueryPredicate):
3396    pass
3397
3398
3399# Commands to interact with the databases or engines. For most of the command
3400# expressions we parse whatever comes after the command's name as a string.
3401class Command(Expression):
3402    arg_types = {"this": True, "expression": False}
3403
3404
3405class Transaction(Expression):
3406    arg_types = {"this": False, "modes": False}
3407
3408
3409class Commit(Expression):
3410    arg_types = {"chain": False}
3411
3412
3413class Rollback(Expression):
3414    arg_types = {"savepoint": False}
3415
3416
3417class AlterTable(Expression):
3418    arg_types = {"this": True, "actions": True, "exists": False}
3419
3420
3421class AddConstraint(Expression):
3422    arg_types = {"this": False, "expression": False, "enforced": False}
3423
3424
3425class DropPartition(Expression):
3426    arg_types = {"expressions": True, "exists": False}
3427
3428
3429# Binary expressions like (ADD a b)
3430class Binary(Condition):
3431    arg_types = {"this": True, "expression": True}
3432
3433    @property
3434    def left(self):
3435        return self.this
3436
3437    @property
3438    def right(self):
3439        return self.expression
3440
3441
3442class Add(Binary):
3443    pass
3444
3445
3446class Connector(Binary):
3447    pass
3448
3449
3450class And(Connector):
3451    pass
3452
3453
3454class Or(Connector):
3455    pass
3456
3457
3458class BitwiseAnd(Binary):
3459    pass
3460
3461
3462class BitwiseLeftShift(Binary):
3463    pass
3464
3465
3466class BitwiseOr(Binary):
3467    pass
3468
3469
3470class BitwiseRightShift(Binary):
3471    pass
3472
3473
3474class BitwiseXor(Binary):
3475    pass
3476
3477
3478class Div(Binary):
3479    pass
3480
3481
3482class Overlaps(Binary):
3483    pass
3484
3485
3486class Dot(Binary):
3487    @property
3488    def name(self) -> str:
3489        return self.expression.name
3490
3491    @classmethod
3492    def build(self, expressions: t.Sequence[Expression]) -> Dot:
3493        """Build a Dot object with a sequence of expressions."""
3494        if len(expressions) < 2:
3495            raise ValueError(f"Dot requires >= 2 expressions.")
3496
3497        a, b, *expressions = expressions
3498        dot = Dot(this=a, expression=b)
3499
3500        for expression in expressions:
3501            dot = Dot(this=dot, expression=expression)
3502
3503        return dot
3504
3505
3506class DPipe(Binary):
3507    pass
3508
3509
3510class SafeDPipe(DPipe):
3511    pass
3512
3513
3514class EQ(Binary, Predicate):
3515    pass
3516
3517
3518class NullSafeEQ(Binary, Predicate):
3519    pass
3520
3521
3522class NullSafeNEQ(Binary, Predicate):
3523    pass
3524
3525
3526class Distance(Binary):
3527    pass
3528
3529
3530class Escape(Binary):
3531    pass
3532
3533
3534class Glob(Binary, Predicate):
3535    pass
3536
3537
3538class GT(Binary, Predicate):
3539    pass
3540
3541
3542class GTE(Binary, Predicate):
3543    pass
3544
3545
3546class ILike(Binary, Predicate):
3547    pass
3548
3549
3550class ILikeAny(Binary, Predicate):
3551    pass
3552
3553
3554class IntDiv(Binary):
3555    pass
3556
3557
3558class Is(Binary, Predicate):
3559    pass
3560
3561
3562class Kwarg(Binary):
3563    """Kwarg in special functions like func(kwarg => y)."""
3564
3565
3566class Like(Binary, Predicate):
3567    pass
3568
3569
3570class LikeAny(Binary, Predicate):
3571    pass
3572
3573
3574class LT(Binary, Predicate):
3575    pass
3576
3577
3578class LTE(Binary, Predicate):
3579    pass
3580
3581
3582class Mod(Binary):
3583    pass
3584
3585
3586class Mul(Binary):
3587    pass
3588
3589
3590class NEQ(Binary, Predicate):
3591    pass
3592
3593
3594class SimilarTo(Binary, Predicate):
3595    pass
3596
3597
3598class Slice(Binary):
3599    arg_types = {"this": False, "expression": False}
3600
3601
3602class Sub(Binary):
3603    pass
3604
3605
3606class ArrayOverlaps(Binary):
3607    pass
3608
3609
3610# Unary Expressions
3611# (NOT a)
3612class Unary(Condition):
3613    pass
3614
3615
3616class BitwiseNot(Unary):
3617    pass
3618
3619
3620class Not(Unary):
3621    pass
3622
3623
3624class Paren(Unary):
3625    arg_types = {"this": True, "with": False}
3626
3627    @property
3628    def output_name(self) -> str:
3629        return self.this.name
3630
3631
3632class Neg(Unary):
3633    pass
3634
3635
3636class Alias(Expression):
3637    arg_types = {"this": True, "alias": False}
3638
3639    @property
3640    def output_name(self) -> str:
3641        return self.alias
3642
3643
3644class Aliases(Expression):
3645    arg_types = {"this": True, "expressions": True}
3646
3647    @property
3648    def aliases(self):
3649        return self.expressions
3650
3651
3652class AtTimeZone(Expression):
3653    arg_types = {"this": True, "zone": True}
3654
3655
3656class Between(Predicate):
3657    arg_types = {"this": True, "low": True, "high": True}
3658
3659
3660class Bracket(Condition):
3661    arg_types = {"this": True, "expressions": True}
3662
3663
3664class Distinct(Expression):
3665    arg_types = {"expressions": False, "on": False}
3666
3667
3668class In(Predicate):
3669    arg_types = {
3670        "this": True,
3671        "expressions": False,
3672        "query": False,
3673        "unnest": False,
3674        "field": False,
3675        "is_global": False,
3676    }
3677
3678
3679class TimeUnit(Expression):
3680    """Automatically converts unit arg into a var."""
3681
3682    arg_types = {"unit": False}
3683
3684    def __init__(self, **args):
3685        unit = args.get("unit")
3686        if isinstance(unit, (Column, Literal)):
3687            args["unit"] = Var(this=unit.name)
3688        elif isinstance(unit, Week):
3689            unit.set("this", Var(this=unit.this.name))
3690
3691        super().__init__(**args)
3692
3693
3694class Interval(TimeUnit):
3695    arg_types = {"this": False, "unit": False}
3696
3697    @property
3698    def unit(self) -> t.Optional[Var]:
3699        return self.args.get("unit")
3700
3701
3702class IgnoreNulls(Expression):
3703    pass
3704
3705
3706class RespectNulls(Expression):
3707    pass
3708
3709
3710# Functions
3711class Func(Condition):
3712    """
3713    The base class for all function expressions.
3714
3715    Attributes:
3716        is_var_len_args (bool): if set to True the last argument defined in arg_types will be
3717            treated as a variable length argument and the argument's value will be stored as a list.
3718        _sql_names (list): determines the SQL name (1st item in the list) and aliases (subsequent items)
3719            for this function expression. These values are used to map this node to a name during parsing
3720            as well as to provide the function's name during SQL string generation. By default the SQL
3721            name is set to the expression's class name transformed to snake case.
3722    """
3723
3724    is_var_len_args = False
3725
3726    @classmethod
3727    def from_arg_list(cls, args):
3728        if cls.is_var_len_args:
3729            all_arg_keys = list(cls.arg_types)
3730            # If this function supports variable length argument treat the last argument as such.
3731            non_var_len_arg_keys = all_arg_keys[:-1] if cls.is_var_len_args else all_arg_keys
3732            num_non_var = len(non_var_len_arg_keys)
3733
3734            args_dict = {arg_key: arg for arg, arg_key in zip(args, non_var_len_arg_keys)}
3735            args_dict[all_arg_keys[-1]] = args[num_non_var:]
3736        else:
3737            args_dict = {arg_key: arg for arg, arg_key in zip(args, cls.arg_types)}
3738
3739        return cls(**args_dict)
3740
3741    @classmethod
3742    def sql_names(cls):
3743        if cls is Func:
3744            raise NotImplementedError(
3745                "SQL name is only supported by concrete function implementations"
3746            )
3747        if "_sql_names" not in cls.__dict__:
3748            cls._sql_names = [camel_to_snake_case(cls.__name__)]
3749        return cls._sql_names
3750
3751    @classmethod
3752    def sql_name(cls):
3753        return cls.sql_names()[0]
3754
3755    @classmethod
3756    def default_parser_mappings(cls):
3757        return {name: cls.from_arg_list for name in cls.sql_names()}
3758
3759
3760class AggFunc(Func):
3761    pass
3762
3763
3764class ParameterizedAgg(AggFunc):
3765    arg_types = {"this": True, "expressions": True, "params": True}
3766
3767
3768class Abs(Func):
3769    pass
3770
3771
3772class Anonymous(Func):
3773    arg_types = {"this": True, "expressions": False}
3774    is_var_len_args = True
3775
3776
3777# https://docs.snowflake.com/en/sql-reference/functions/hll
3778# https://docs.aws.amazon.com/redshift/latest/dg/r_HLL_function.html
3779class Hll(AggFunc):
3780    arg_types = {"this": True, "expressions": False}
3781    is_var_len_args = True
3782
3783
3784class ApproxDistinct(AggFunc):
3785    arg_types = {"this": True, "accuracy": False}
3786    _sql_names = ["APPROX_DISTINCT", "APPROX_COUNT_DISTINCT"]
3787
3788
3789class Array(Func):
3790    arg_types = {"expressions": False}
3791    is_var_len_args = True
3792
3793
3794# https://docs.snowflake.com/en/sql-reference/functions/to_char
3795class ToChar(Func):
3796    arg_types = {"this": True, "format": False}
3797
3798
3799class GenerateSeries(Func):
3800    arg_types = {"start": True, "end": True, "step": False}
3801
3802
3803class ArrayAgg(AggFunc):
3804    pass
3805
3806
3807class ArrayAll(Func):
3808    arg_types = {"this": True, "expression": True}
3809
3810
3811class ArrayAny(Func):
3812    arg_types = {"this": True, "expression": True}
3813
3814
3815class ArrayConcat(Func):
3816    arg_types = {"this": True, "expressions": False}
3817    is_var_len_args = True
3818
3819
3820class ArrayContains(Binary, Func):
3821    pass
3822
3823
3824class ArrayContained(Binary):
3825    pass
3826
3827
3828class ArrayFilter(Func):
3829    arg_types = {"this": True, "expression": True}
3830    _sql_names = ["FILTER", "ARRAY_FILTER"]
3831
3832
3833class ArrayJoin(Func):
3834    arg_types = {"this": True, "expression": True, "null": False}
3835
3836
3837class ArraySize(Func):
3838    arg_types = {"this": True, "expression": False}
3839
3840
3841class ArraySort(Func):
3842    arg_types = {"this": True, "expression": False}
3843
3844
3845class ArraySum(Func):
3846    pass
3847
3848
3849class ArrayUnionAgg(AggFunc):
3850    pass
3851
3852
3853class Avg(AggFunc):
3854    pass
3855
3856
3857class AnyValue(AggFunc):
3858    pass
3859
3860
3861class Case(Func):
3862    arg_types = {"this": False, "ifs": True, "default": False}
3863
3864    def when(self, condition: ExpOrStr, then: ExpOrStr, copy: bool = True, **opts) -> Case:
3865        instance = _maybe_copy(self, copy)
3866        instance.append(
3867            "ifs",
3868            If(
3869                this=maybe_parse(condition, copy=copy, **opts),
3870                true=maybe_parse(then, copy=copy, **opts),
3871            ),
3872        )
3873        return instance
3874
3875    def else_(self, condition: ExpOrStr, copy: bool = True, **opts) -> Case:
3876        instance = _maybe_copy(self, copy)
3877        instance.set("default", maybe_parse(condition, copy=copy, **opts))
3878        return instance
3879
3880
3881class Cast(Func):
3882    arg_types = {"this": True, "to": True}
3883
3884    @property
3885    def name(self) -> str:
3886        return self.this.name
3887
3888    @property
3889    def to(self) -> DataType:
3890        return self.args["to"]
3891
3892    @property
3893    def output_name(self) -> str:
3894        return self.name
3895
3896    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3897        return self.to.is_type(*dtypes)
3898
3899
3900class CastToStrType(Func):
3901    arg_types = {"this": True, "expression": True}
3902
3903
3904class Collate(Binary):
3905    pass
3906
3907
3908class TryCast(Cast):
3909    pass
3910
3911
3912class Ceil(Func):
3913    arg_types = {"this": True, "decimals": False}
3914    _sql_names = ["CEIL", "CEILING"]
3915
3916
3917class Coalesce(Func):
3918    arg_types = {"this": True, "expressions": False}
3919    is_var_len_args = True
3920    _sql_names = ["COALESCE", "IFNULL", "NVL"]
3921
3922
3923class Concat(Func):
3924    arg_types = {"expressions": True}
3925    is_var_len_args = True
3926
3927
3928class SafeConcat(Concat):
3929    pass
3930
3931
3932class ConcatWs(Concat):
3933    _sql_names = ["CONCAT_WS"]
3934
3935
3936class Count(AggFunc):
3937    arg_types = {"this": False, "expressions": False}
3938    is_var_len_args = True
3939
3940
3941class CountIf(AggFunc):
3942    pass
3943
3944
3945class CurrentDate(Func):
3946    arg_types = {"this": False}
3947
3948
3949class CurrentDatetime(Func):
3950    arg_types = {"this": False}
3951
3952
3953class CurrentTime(Func):
3954    arg_types = {"this": False}
3955
3956
3957class CurrentTimestamp(Func):
3958    arg_types = {"this": False}
3959
3960
3961class CurrentUser(Func):
3962    arg_types = {"this": False}
3963
3964
3965class DateAdd(Func, TimeUnit):
3966    arg_types = {"this": True, "expression": True, "unit": False}
3967
3968
3969class DateSub(Func, TimeUnit):
3970    arg_types = {"this": True, "expression": True, "unit": False}
3971
3972
3973class DateDiff(Func, TimeUnit):
3974    _sql_names = ["DATEDIFF", "DATE_DIFF"]
3975    arg_types = {"this": True, "expression": True, "unit": False}
3976
3977
3978class DateTrunc(Func):
3979    arg_types = {"unit": True, "this": True, "zone": False}
3980
3981
3982class DatetimeAdd(Func, TimeUnit):
3983    arg_types = {"this": True, "expression": True, "unit": False}
3984
3985
3986class DatetimeSub(Func, TimeUnit):
3987    arg_types = {"this": True, "expression": True, "unit": False}
3988
3989
3990class DatetimeDiff(Func, TimeUnit):
3991    arg_types = {"this": True, "expression": True, "unit": False}
3992
3993
3994class DatetimeTrunc(Func, TimeUnit):
3995    arg_types = {"this": True, "unit": True, "zone": False}
3996
3997
3998class DayOfWeek(Func):
3999    _sql_names = ["DAY_OF_WEEK", "DAYOFWEEK"]
4000
4001
4002class DayOfMonth(Func):
4003    _sql_names = ["DAY_OF_MONTH", "DAYOFMONTH"]
4004
4005
4006class DayOfYear(Func):
4007    _sql_names = ["DAY_OF_YEAR", "DAYOFYEAR"]
4008
4009
4010class WeekOfYear(Func):
4011    _sql_names = ["WEEK_OF_YEAR", "WEEKOFYEAR"]
4012
4013
4014class LastDateOfMonth(Func):
4015    pass
4016
4017
4018class Extract(Func):
4019    arg_types = {"this": True, "expression": True}
4020
4021
4022class TimestampAdd(Func, TimeUnit):
4023    arg_types = {"this": True, "expression": True, "unit": False}
4024
4025
4026class TimestampSub(Func, TimeUnit):
4027    arg_types = {"this": True, "expression": True, "unit": False}
4028
4029
4030class TimestampDiff(Func, TimeUnit):
4031    arg_types = {"this": True, "expression": True, "unit": False}
4032
4033
4034class TimestampTrunc(Func, TimeUnit):
4035    arg_types = {"this": True, "unit": True, "zone": False}
4036
4037
4038class TimeAdd(Func, TimeUnit):
4039    arg_types = {"this": True, "expression": True, "unit": False}
4040
4041
4042class TimeSub(Func, TimeUnit):
4043    arg_types = {"this": True, "expression": True, "unit": False}
4044
4045
4046class TimeDiff(Func, TimeUnit):
4047    arg_types = {"this": True, "expression": True, "unit": False}
4048
4049
4050class TimeTrunc(Func, TimeUnit):
4051    arg_types = {"this": True, "unit": True, "zone": False}
4052
4053
4054class DateFromParts(Func):
4055    _sql_names = ["DATEFROMPARTS"]
4056    arg_types = {"year": True, "month": True, "day": True}
4057
4058
4059class DateStrToDate(Func):
4060    pass
4061
4062
4063class DateToDateStr(Func):
4064    pass
4065
4066
4067class DateToDi(Func):
4068    pass
4069
4070
4071class Day(Func):
4072    pass
4073
4074
4075class Decode(Func):
4076    arg_types = {"this": True, "charset": True, "replace": False}
4077
4078
4079class DiToDate(Func):
4080    pass
4081
4082
4083class Encode(Func):
4084    arg_types = {"this": True, "charset": True}
4085
4086
4087class Exp(Func):
4088    pass
4089
4090
4091class Explode(Func):
4092    pass
4093
4094
4095class Floor(Func):
4096    arg_types = {"this": True, "decimals": False}
4097
4098
4099class FromBase64(Func):
4100    pass
4101
4102
4103class ToBase64(Func):
4104    pass
4105
4106
4107class Greatest(Func):
4108    arg_types = {"this": True, "expressions": False}
4109    is_var_len_args = True
4110
4111
4112class GroupConcat(Func):
4113    arg_types = {"this": True, "separator": False}
4114
4115
4116class Hex(Func):
4117    pass
4118
4119
4120class If(Func):
4121    arg_types = {"this": True, "true": True, "false": False}
4122
4123
4124class Initcap(Func):
4125    arg_types = {"this": True, "expression": False}
4126
4127
4128class JSONKeyValue(Expression):
4129    arg_types = {"this": True, "expression": True}
4130
4131
4132class JSONObject(Func):
4133    arg_types = {
4134        "expressions": False,
4135        "null_handling": False,
4136        "unique_keys": False,
4137        "return_type": False,
4138        "format_json": False,
4139        "encoding": False,
4140    }
4141
4142
4143class OpenJSONColumnDef(Expression):
4144    arg_types = {"this": True, "kind": True, "path": False, "as_json": False}
4145
4146
4147class OpenJSON(Func):
4148    arg_types = {"this": True, "path": False, "expressions": False}
4149
4150
4151class JSONBContains(Binary):
4152    _sql_names = ["JSONB_CONTAINS"]
4153
4154
4155class JSONExtract(Binary, Func):
4156    _sql_names = ["JSON_EXTRACT"]
4157
4158
4159class JSONExtractScalar(JSONExtract):
4160    _sql_names = ["JSON_EXTRACT_SCALAR"]
4161
4162
4163class JSONBExtract(JSONExtract):
4164    _sql_names = ["JSONB_EXTRACT"]
4165
4166
4167class JSONBExtractScalar(JSONExtract):
4168    _sql_names = ["JSONB_EXTRACT_SCALAR"]
4169
4170
4171class JSONFormat(Func):
4172    arg_types = {"this": False, "options": False}
4173    _sql_names = ["JSON_FORMAT"]
4174
4175
4176class Least(Func):
4177    arg_types = {"expressions": False}
4178    is_var_len_args = True
4179
4180
4181class Left(Func):
4182    arg_types = {"this": True, "expression": True}
4183
4184
4185class Right(Func):
4186    arg_types = {"this": True, "expression": True}
4187
4188
4189class Length(Func):
4190    _sql_names = ["LENGTH", "LEN"]
4191
4192
4193class Levenshtein(Func):
4194    arg_types = {
4195        "this": True,
4196        "expression": False,
4197        "ins_cost": False,
4198        "del_cost": False,
4199        "sub_cost": False,
4200    }
4201
4202
4203class Ln(Func):
4204    pass
4205
4206
4207class Log(Func):
4208    arg_types = {"this": True, "expression": False}
4209
4210
4211class Log2(Func):
4212    pass
4213
4214
4215class Log10(Func):
4216    pass
4217
4218
4219class LogicalOr(AggFunc):
4220    _sql_names = ["LOGICAL_OR", "BOOL_OR", "BOOLOR_AGG"]
4221
4222
4223class LogicalAnd(AggFunc):
4224    _sql_names = ["LOGICAL_AND", "BOOL_AND", "BOOLAND_AGG"]
4225
4226
4227class Lower(Func):
4228    _sql_names = ["LOWER", "LCASE"]
4229
4230
4231class Map(Func):
4232    arg_types = {"keys": False, "values": False}
4233
4234
4235class StarMap(Func):
4236    pass
4237
4238
4239class VarMap(Func):
4240    arg_types = {"keys": True, "values": True}
4241    is_var_len_args = True
4242
4243    @property
4244    def keys(self) -> t.List[Expression]:
4245        return self.args["keys"].expressions
4246
4247    @property
4248    def values(self) -> t.List[Expression]:
4249        return self.args["values"].expressions
4250
4251
4252# https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
4253class MatchAgainst(Func):
4254    arg_types = {"this": True, "expressions": True, "modifier": False}
4255
4256
4257class Max(AggFunc):
4258    arg_types = {"this": True, "expressions": False}
4259    is_var_len_args = True
4260
4261
4262class MD5(Func):
4263    _sql_names = ["MD5"]
4264
4265
4266class Min(AggFunc):
4267    arg_types = {"this": True, "expressions": False}
4268    is_var_len_args = True
4269
4270
4271class Month(Func):
4272    pass
4273
4274
4275class Nvl2(Func):
4276    arg_types = {"this": True, "true": True, "false": False}
4277
4278
4279class Posexplode(Func):
4280    pass
4281
4282
4283class Pow(Binary, Func):
4284    _sql_names = ["POWER", "POW"]
4285
4286
4287class PercentileCont(AggFunc):
4288    arg_types = {"this": True, "expression": False}
4289
4290
4291class PercentileDisc(AggFunc):
4292    arg_types = {"this": True, "expression": False}
4293
4294
4295class Quantile(AggFunc):
4296    arg_types = {"this": True, "quantile": True}
4297
4298
4299class ApproxQuantile(Quantile):
4300    arg_types = {"this": True, "quantile": True, "accuracy": False, "weight": False}
4301
4302
4303class RangeN(Func):
4304    arg_types = {"this": True, "expressions": True, "each": False}
4305
4306
4307class ReadCSV(Func):
4308    _sql_names = ["READ_CSV"]
4309    is_var_len_args = True
4310    arg_types = {"this": True, "expressions": False}
4311
4312
4313class Reduce(Func):
4314    arg_types = {"this": True, "initial": True, "merge": True, "finish": False}
4315
4316
4317class RegexpExtract(Func):
4318    arg_types = {
4319        "this": True,
4320        "expression": True,
4321        "position": False,
4322        "occurrence": False,
4323        "group": False,
4324    }
4325
4326
4327class RegexpLike(Func):
4328    arg_types = {"this": True, "expression": True, "flag": False}
4329
4330
4331class RegexpILike(Func):
4332    arg_types = {"this": True, "expression": True, "flag": False}
4333
4334
4335# https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.functions.split.html
4336# limit is the number of times a pattern is applied
4337class RegexpSplit(Func):
4338    arg_types = {"this": True, "expression": True, "limit": False}
4339
4340
4341class Repeat(Func):
4342    arg_types = {"this": True, "times": True}
4343
4344
4345class Round(Func):
4346    arg_types = {"this": True, "decimals": False}
4347
4348
4349class RowNumber(Func):
4350    arg_types: t.Dict[str, t.Any] = {}
4351
4352
4353class SafeDivide(Func):
4354    arg_types = {"this": True, "expression": True}
4355
4356
4357class SetAgg(AggFunc):
4358    pass
4359
4360
4361class SHA(Func):
4362    _sql_names = ["SHA", "SHA1"]
4363
4364
4365class SHA2(Func):
4366    _sql_names = ["SHA2"]
4367    arg_types = {"this": True, "length": False}
4368
4369
4370class SortArray(Func):
4371    arg_types = {"this": True, "asc": False}
4372
4373
4374class Split(Func):
4375    arg_types = {"this": True, "expression": True, "limit": False}
4376
4377
4378# Start may be omitted in the case of postgres
4379# https://www.postgresql.org/docs/9.1/functions-string.html @ Table 9-6
4380class Substring(Func):
4381    arg_types = {"this": True, "start": False, "length": False}
4382
4383
4384class StandardHash(Func):
4385    arg_types = {"this": True, "expression": False}
4386
4387
4388class StrPosition(Func):
4389    arg_types = {
4390        "this": True,
4391        "substr": True,
4392        "position": False,
4393        "instance": False,
4394    }
4395
4396
4397class StrToDate(Func):
4398    arg_types = {"this": True, "format": True}
4399
4400
4401class StrToTime(Func):
4402    arg_types = {"this": True, "format": True}
4403
4404
4405# Spark allows unix_timestamp()
4406# https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.sql.functions.unix_timestamp.html
4407class StrToUnix(Func):
4408    arg_types = {"this": False, "format": False}
4409
4410
4411class NumberToStr(Func):
4412    arg_types = {"this": True, "format": True}
4413
4414
4415class FromBase(Func):
4416    arg_types = {"this": True, "expression": True}
4417
4418
4419class Struct(Func):
4420    arg_types = {"expressions": True}
4421    is_var_len_args = True
4422
4423
4424class StructExtract(Func):
4425    arg_types = {"this": True, "expression": True}
4426
4427
4428class Sum(AggFunc):
4429    pass
4430
4431
4432class Sqrt(Func):
4433    pass
4434
4435
4436class Stddev(AggFunc):
4437    pass
4438
4439
4440class StddevPop(AggFunc):
4441    pass
4442
4443
4444class StddevSamp(AggFunc):
4445    pass
4446
4447
4448class TimeToStr(Func):
4449    arg_types = {"this": True, "format": True}
4450
4451
4452class TimeToTimeStr(Func):
4453    pass
4454
4455
4456class TimeToUnix(Func):
4457    pass
4458
4459
4460class TimeStrToDate(Func):
4461    pass
4462
4463
4464class TimeStrToTime(Func):
4465    pass
4466
4467
4468class TimeStrToUnix(Func):
4469    pass
4470
4471
4472class Trim(Func):
4473    arg_types = {
4474        "this": True,
4475        "expression": False,
4476        "position": False,
4477        "collation": False,
4478    }
4479
4480
4481class TsOrDsAdd(Func, TimeUnit):
4482    arg_types = {"this": True, "expression": True, "unit": False}
4483
4484
4485class TsOrDsToDateStr(Func):
4486    pass
4487
4488
4489class TsOrDsToDate(Func):
4490    arg_types = {"this": True, "format": False}
4491
4492
4493class TsOrDiToDi(Func):
4494    pass
4495
4496
4497class Unhex(Func):
4498    pass
4499
4500
4501class UnixToStr(Func):
4502    arg_types = {"this": True, "format": False}
4503
4504
4505# https://prestodb.io/docs/current/functions/datetime.html
4506# presto has weird zone/hours/minutes
4507class UnixToTime(Func):
4508    arg_types = {"this": True, "scale": False, "zone": False, "hours": False, "minutes": False}
4509
4510    SECONDS = Literal.string("seconds")
4511    MILLIS = Literal.string("millis")
4512    MICROS = Literal.string("micros")
4513
4514
4515class UnixToTimeStr(Func):
4516    pass
4517
4518
4519class Upper(Func):
4520    _sql_names = ["UPPER", "UCASE"]
4521
4522
4523class Variance(AggFunc):
4524    _sql_names = ["VARIANCE", "VARIANCE_SAMP", "VAR_SAMP"]
4525
4526
4527class VariancePop(AggFunc):
4528    _sql_names = ["VARIANCE_POP", "VAR_POP"]
4529
4530
4531class Week(Func):
4532    arg_types = {"this": True, "mode": False}
4533
4534
4535class XMLTable(Func):
4536    arg_types = {"this": True, "passing": False, "columns": False, "by_ref": False}
4537
4538
4539class Year(Func):
4540    pass
4541
4542
4543class Use(Expression):
4544    arg_types = {"this": True, "kind": False}
4545
4546
4547class Merge(Expression):
4548    arg_types = {"this": True, "using": True, "on": True, "expressions": True}
4549
4550
4551class When(Func):
4552    arg_types = {"matched": True, "source": False, "condition": False, "then": True}
4553
4554
4555# https://docs.oracle.com/javadb/10.8.3.0/ref/rrefsqljnextvaluefor.html
4556# https://learn.microsoft.com/en-us/sql/t-sql/functions/next-value-for-transact-sql?view=sql-server-ver16
4557class NextValueFor(Func):
4558    arg_types = {"this": True, "order": False}
4559
4560
4561def _norm_arg(arg):
4562    return arg.lower() if type(arg) is str else arg
4563
4564
4565ALL_FUNCTIONS = subclasses(__name__, Func, (AggFunc, Anonymous, Func))
4566
4567
4568# Helpers
4569@t.overload
4570def maybe_parse(
4571    sql_or_expression: ExpOrStr,
4572    *,
4573    into: t.Type[E],
4574    dialect: DialectType = None,
4575    prefix: t.Optional[str] = None,
4576    copy: bool = False,
4577    **opts,
4578) -> E:
4579    ...
4580
4581
4582@t.overload
4583def maybe_parse(
4584    sql_or_expression: str | E,
4585    *,
4586    into: t.Optional[IntoType] = None,
4587    dialect: DialectType = None,
4588    prefix: t.Optional[str] = None,
4589    copy: bool = False,
4590    **opts,
4591) -> E:
4592    ...
4593
4594
4595def maybe_parse(
4596    sql_or_expression: ExpOrStr,
4597    *,
4598    into: t.Optional[IntoType] = None,
4599    dialect: DialectType = None,
4600    prefix: t.Optional[str] = None,
4601    copy: bool = False,
4602    **opts,
4603) -> Expression:
4604    """Gracefully handle a possible string or expression.
4605
4606    Example:
4607        >>> maybe_parse("1")
4608        (LITERAL this: 1, is_string: False)
4609        >>> maybe_parse(to_identifier("x"))
4610        (IDENTIFIER this: x, quoted: False)
4611
4612    Args:
4613        sql_or_expression: the SQL code string or an expression
4614        into: the SQLGlot Expression to parse into
4615        dialect: the dialect used to parse the input expressions (in the case that an
4616            input expression is a SQL string).
4617        prefix: a string to prefix the sql with before it gets parsed
4618            (automatically includes a space)
4619        copy: whether or not to copy the expression.
4620        **opts: other options to use to parse the input expressions (again, in the case
4621            that an input expression is a SQL string).
4622
4623    Returns:
4624        Expression: the parsed or given expression.
4625    """
4626    if isinstance(sql_or_expression, Expression):
4627        if copy:
4628            return sql_or_expression.copy()
4629        return sql_or_expression
4630
4631    if sql_or_expression is None:
4632        raise ParseError(f"SQL cannot be None")
4633
4634    import sqlglot
4635
4636    sql = str(sql_or_expression)
4637    if prefix:
4638        sql = f"{prefix} {sql}"
4639
4640    return sqlglot.parse_one(sql, read=dialect, into=into, **opts)
4641
4642
4643def _maybe_copy(instance: E, copy: bool = True) -> E:
4644    return instance.copy() if copy else instance
4645
4646
4647def _is_wrong_expression(expression, into):
4648    return isinstance(expression, Expression) and not isinstance(expression, into)
4649
4650
4651def _apply_builder(
4652    expression,
4653    instance,
4654    arg,
4655    copy=True,
4656    prefix=None,
4657    into=None,
4658    dialect=None,
4659    **opts,
4660):
4661    if _is_wrong_expression(expression, into):
4662        expression = into(this=expression)
4663    instance = _maybe_copy(instance, copy)
4664    expression = maybe_parse(
4665        sql_or_expression=expression,
4666        prefix=prefix,
4667        into=into,
4668        dialect=dialect,
4669        **opts,
4670    )
4671    instance.set(arg, expression)
4672    return instance
4673
4674
4675def _apply_child_list_builder(
4676    *expressions,
4677    instance,
4678    arg,
4679    append=True,
4680    copy=True,
4681    prefix=None,
4682    into=None,
4683    dialect=None,
4684    properties=None,
4685    **opts,
4686):
4687    instance = _maybe_copy(instance, copy)
4688    parsed = []
4689    for expression in expressions:
4690        if expression is not None:
4691            if _is_wrong_expression(expression, into):
4692                expression = into(expressions=[expression])
4693
4694            expression = maybe_parse(
4695                expression,
4696                into=into,
4697                dialect=dialect,
4698                prefix=prefix,
4699                **opts,
4700            )
4701            parsed.extend(expression.expressions)
4702
4703    existing = instance.args.get(arg)
4704    if append and existing:
4705        parsed = existing.expressions + parsed
4706
4707    child = into(expressions=parsed)
4708    for k, v in (properties or {}).items():
4709        child.set(k, v)
4710    instance.set(arg, child)
4711
4712    return instance
4713
4714
4715def _apply_list_builder(
4716    *expressions,
4717    instance,
4718    arg,
4719    append=True,
4720    copy=True,
4721    prefix=None,
4722    into=None,
4723    dialect=None,
4724    **opts,
4725):
4726    inst = _maybe_copy(instance, copy)
4727
4728    expressions = [
4729        maybe_parse(
4730            sql_or_expression=expression,
4731            into=into,
4732            prefix=prefix,
4733            dialect=dialect,
4734            **opts,
4735        )
4736        for expression in expressions
4737        if expression is not None
4738    ]
4739
4740    existing_expressions = inst.args.get(arg)
4741    if append and existing_expressions:
4742        expressions = existing_expressions + expressions
4743
4744    inst.set(arg, expressions)
4745    return inst
4746
4747
4748def _apply_conjunction_builder(
4749    *expressions,
4750    instance,
4751    arg,
4752    into=None,
4753    append=True,
4754    copy=True,
4755    dialect=None,
4756    **opts,
4757):
4758    expressions = [exp for exp in expressions if exp is not None and exp != ""]
4759    if not expressions:
4760        return instance
4761
4762    inst = _maybe_copy(instance, copy)
4763
4764    existing = inst.args.get(arg)
4765    if append and existing is not None:
4766        expressions = [existing.this if into else existing] + list(expressions)
4767
4768    node = and_(*expressions, dialect=dialect, copy=copy, **opts)
4769
4770    inst.set(arg, into(this=node) if into else node)
4771    return inst
4772
4773
4774def _apply_cte_builder(
4775    instance: E,
4776    alias: ExpOrStr,
4777    as_: ExpOrStr,
4778    recursive: t.Optional[bool] = None,
4779    append: bool = True,
4780    dialect: DialectType = None,
4781    copy: bool = True,
4782    **opts,
4783) -> E:
4784    alias_expression = maybe_parse(alias, dialect=dialect, into=TableAlias, **opts)
4785    as_expression = maybe_parse(as_, dialect=dialect, **opts)
4786    cte = CTE(this=as_expression, alias=alias_expression)
4787    return _apply_child_list_builder(
4788        cte,
4789        instance=instance,
4790        arg="with",
4791        append=append,
4792        copy=copy,
4793        into=With,
4794        properties={"recursive": recursive or False},
4795    )
4796
4797
4798def _combine(
4799    expressions: t.Sequence[t.Optional[ExpOrStr]],
4800    operator: t.Type[Connector],
4801    dialect: DialectType = None,
4802    copy: bool = True,
4803    **opts,
4804) -> Expression:
4805    conditions = [
4806        condition(expression, dialect=dialect, copy=copy, **opts)
4807        for expression in expressions
4808        if expression is not None
4809    ]
4810
4811    this, *rest = conditions
4812    if rest:
4813        this = _wrap(this, Connector)
4814    for expression in rest:
4815        this = operator(this=this, expression=_wrap(expression, Connector))
4816
4817    return this
4818
4819
4820def _wrap(expression: E, kind: t.Type[Expression]) -> E | Paren:
4821    return Paren(this=expression) if isinstance(expression, kind) else expression
4822
4823
4824def union(
4825    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
4826) -> Union:
4827    """
4828    Initializes a syntax tree from one UNION expression.
4829
4830    Example:
4831        >>> union("SELECT * FROM foo", "SELECT * FROM bla").sql()
4832        'SELECT * FROM foo UNION SELECT * FROM bla'
4833
4834    Args:
4835        left: the SQL code string corresponding to the left-hand side.
4836            If an `Expression` instance is passed, it will be used as-is.
4837        right: the SQL code string corresponding to the right-hand side.
4838            If an `Expression` instance is passed, it will be used as-is.
4839        distinct: set the DISTINCT flag if and only if this is true.
4840        dialect: the dialect used to parse the input expression.
4841        opts: other options to use to parse the input expressions.
4842
4843    Returns:
4844        The new Union instance.
4845    """
4846    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
4847    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
4848
4849    return Union(this=left, expression=right, distinct=distinct)
4850
4851
4852def intersect(
4853    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
4854) -> Intersect:
4855    """
4856    Initializes a syntax tree from one INTERSECT expression.
4857
4858    Example:
4859        >>> intersect("SELECT * FROM foo", "SELECT * FROM bla").sql()
4860        'SELECT * FROM foo INTERSECT SELECT * FROM bla'
4861
4862    Args:
4863        left: the SQL code string corresponding to the left-hand side.
4864            If an `Expression` instance is passed, it will be used as-is.
4865        right: the SQL code string corresponding to the right-hand side.
4866            If an `Expression` instance is passed, it will be used as-is.
4867        distinct: set the DISTINCT flag if and only if this is true.
4868        dialect: the dialect used to parse the input expression.
4869        opts: other options to use to parse the input expressions.
4870
4871    Returns:
4872        The new Intersect instance.
4873    """
4874    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
4875    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
4876
4877    return Intersect(this=left, expression=right, distinct=distinct)
4878
4879
4880def except_(
4881    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
4882) -> Except:
4883    """
4884    Initializes a syntax tree from one EXCEPT expression.
4885
4886    Example:
4887        >>> except_("SELECT * FROM foo", "SELECT * FROM bla").sql()
4888        'SELECT * FROM foo EXCEPT SELECT * FROM bla'
4889
4890    Args:
4891        left: the SQL code string corresponding to the left-hand side.
4892            If an `Expression` instance is passed, it will be used as-is.
4893        right: the SQL code string corresponding to the right-hand side.
4894            If an `Expression` instance is passed, it will be used as-is.
4895        distinct: set the DISTINCT flag if and only if this is true.
4896        dialect: the dialect used to parse the input expression.
4897        opts: other options to use to parse the input expressions.
4898
4899    Returns:
4900        The new Except instance.
4901    """
4902    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
4903    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
4904
4905    return Except(this=left, expression=right, distinct=distinct)
4906
4907
4908def select(*expressions: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
4909    """
4910    Initializes a syntax tree from one or multiple SELECT expressions.
4911
4912    Example:
4913        >>> select("col1", "col2").from_("tbl").sql()
4914        'SELECT col1, col2 FROM tbl'
4915
4916    Args:
4917        *expressions: the SQL code string to parse as the expressions of a
4918            SELECT statement. If an Expression instance is passed, this is used as-is.
4919        dialect: the dialect used to parse the input expressions (in the case that an
4920            input expression is a SQL string).
4921        **opts: other options to use to parse the input expressions (again, in the case
4922            that an input expression is a SQL string).
4923
4924    Returns:
4925        Select: the syntax tree for the SELECT statement.
4926    """
4927    return Select().select(*expressions, dialect=dialect, **opts)
4928
4929
4930def from_(expression: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
4931    """
4932    Initializes a syntax tree from a FROM expression.
4933
4934    Example:
4935        >>> from_("tbl").select("col1", "col2").sql()
4936        'SELECT col1, col2 FROM tbl'
4937
4938    Args:
4939        *expression: the SQL code string to parse as the FROM expressions of a
4940            SELECT statement. If an Expression instance is passed, this is used as-is.
4941        dialect: the dialect used to parse the input expression (in the case that the
4942            input expression is a SQL string).
4943        **opts: other options to use to parse the input expressions (again, in the case
4944            that the input expression is a SQL string).
4945
4946    Returns:
4947        Select: the syntax tree for the SELECT statement.
4948    """
4949    return Select().from_(expression, dialect=dialect, **opts)
4950
4951
4952def update(
4953    table: str | Table,
4954    properties: dict,
4955    where: t.Optional[ExpOrStr] = None,
4956    from_: t.Optional[ExpOrStr] = None,
4957    dialect: DialectType = None,
4958    **opts,
4959) -> Update:
4960    """
4961    Creates an update statement.
4962
4963    Example:
4964        >>> update("my_table", {"x": 1, "y": "2", "z": None}, from_="baz", where="id > 1").sql()
4965        "UPDATE my_table SET x = 1, y = '2', z = NULL FROM baz WHERE id > 1"
4966
4967    Args:
4968        *properties: dictionary of properties to set which are
4969            auto converted to sql objects eg None -> NULL
4970        where: sql conditional parsed into a WHERE statement
4971        from_: sql statement parsed into a FROM statement
4972        dialect: the dialect used to parse the input expressions.
4973        **opts: other options to use to parse the input expressions.
4974
4975    Returns:
4976        Update: the syntax tree for the UPDATE statement.
4977    """
4978    update_expr = Update(this=maybe_parse(table, into=Table, dialect=dialect))
4979    update_expr.set(
4980        "expressions",
4981        [
4982            EQ(this=maybe_parse(k, dialect=dialect, **opts), expression=convert(v))
4983            for k, v in properties.items()
4984        ],
4985    )
4986    if from_:
4987        update_expr.set(
4988            "from",
4989            maybe_parse(from_, into=From, dialect=dialect, prefix="FROM", **opts),
4990        )
4991    if isinstance(where, Condition):
4992        where = Where(this=where)
4993    if where:
4994        update_expr.set(
4995            "where",
4996            maybe_parse(where, into=Where, dialect=dialect, prefix="WHERE", **opts),
4997        )
4998    return update_expr
4999
5000
5001def delete(
5002    table: ExpOrStr,
5003    where: t.Optional[ExpOrStr] = None,
5004    returning: t.Optional[ExpOrStr] = None,
5005    dialect: DialectType = None,
5006    **opts,
5007) -> Delete:
5008    """
5009    Builds a delete statement.
5010
5011    Example:
5012        >>> delete("my_table", where="id > 1").sql()
5013        'DELETE FROM my_table WHERE id > 1'
5014
5015    Args:
5016        where: sql conditional parsed into a WHERE statement
5017        returning: sql conditional parsed into a RETURNING statement
5018        dialect: the dialect used to parse the input expressions.
5019        **opts: other options to use to parse the input expressions.
5020
5021    Returns:
5022        Delete: the syntax tree for the DELETE statement.
5023    """
5024    delete_expr = Delete().delete(table, dialect=dialect, copy=False, **opts)
5025    if where:
5026        delete_expr = delete_expr.where(where, dialect=dialect, copy=False, **opts)
5027    if returning:
5028        delete_expr = delete_expr.returning(returning, dialect=dialect, copy=False, **opts)
5029    return delete_expr
5030
5031
5032def insert(
5033    expression: ExpOrStr,
5034    into: ExpOrStr,
5035    columns: t.Optional[t.Sequence[ExpOrStr]] = None,
5036    overwrite: t.Optional[bool] = None,
5037    dialect: DialectType = None,
5038    copy: bool = True,
5039    **opts,
5040) -> Insert:
5041    """
5042    Builds an INSERT statement.
5043
5044    Example:
5045        >>> insert("VALUES (1, 2, 3)", "tbl").sql()
5046        'INSERT INTO tbl VALUES (1, 2, 3)'
5047
5048    Args:
5049        expression: the sql string or expression of the INSERT statement
5050        into: the tbl to insert data to.
5051        columns: optionally the table's column names.
5052        overwrite: whether to INSERT OVERWRITE or not.
5053        dialect: the dialect used to parse the input expressions.
5054        copy: whether or not to copy the expression.
5055        **opts: other options to use to parse the input expressions.
5056
5057    Returns:
5058        Insert: the syntax tree for the INSERT statement.
5059    """
5060    expr = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
5061    this: Table | Schema = maybe_parse(into, into=Table, dialect=dialect, copy=copy, **opts)
5062
5063    if columns:
5064        this = _apply_list_builder(
5065            *columns,
5066            instance=Schema(this=this),
5067            arg="expressions",
5068            into=Identifier,
5069            copy=False,
5070            dialect=dialect,
5071            **opts,
5072        )
5073
5074    return Insert(this=this, expression=expr, overwrite=overwrite)
5075
5076
5077def condition(
5078    expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
5079) -> Condition:
5080    """
5081    Initialize a logical condition expression.
5082
5083    Example:
5084        >>> condition("x=1").sql()
5085        'x = 1'
5086
5087        This is helpful for composing larger logical syntax trees:
5088        >>> where = condition("x=1")
5089        >>> where = where.and_("y=1")
5090        >>> Select().from_("tbl").select("*").where(where).sql()
5091        'SELECT * FROM tbl WHERE x = 1 AND y = 1'
5092
5093    Args:
5094        *expression: the SQL code string to parse.
5095            If an Expression instance is passed, this is used as-is.
5096        dialect: the dialect used to parse the input expression (in the case that the
5097            input expression is a SQL string).
5098        copy: Whether or not to copy `expression` (only applies to expressions).
5099        **opts: other options to use to parse the input expressions (again, in the case
5100            that the input expression is a SQL string).
5101
5102    Returns:
5103        The new Condition instance
5104    """
5105    return maybe_parse(
5106        expression,
5107        into=Condition,
5108        dialect=dialect,
5109        copy=copy,
5110        **opts,
5111    )
5112
5113
5114def and_(
5115    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
5116) -> Condition:
5117    """
5118    Combine multiple conditions with an AND logical operator.
5119
5120    Example:
5121        >>> and_("x=1", and_("y=1", "z=1")).sql()
5122        'x = 1 AND (y = 1 AND z = 1)'
5123
5124    Args:
5125        *expressions: the SQL code strings to parse.
5126            If an Expression instance is passed, this is used as-is.
5127        dialect: the dialect used to parse the input expression.
5128        copy: whether or not to copy `expressions` (only applies to Expressions).
5129        **opts: other options to use to parse the input expressions.
5130
5131    Returns:
5132        And: the new condition
5133    """
5134    return t.cast(Condition, _combine(expressions, And, dialect, copy=copy, **opts))
5135
5136
5137def or_(
5138    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
5139) -> Condition:
5140    """
5141    Combine multiple conditions with an OR logical operator.
5142
5143    Example:
5144        >>> or_("x=1", or_("y=1", "z=1")).sql()
5145        'x = 1 OR (y = 1 OR z = 1)'
5146
5147    Args:
5148        *expressions: the SQL code strings to parse.
5149            If an Expression instance is passed, this is used as-is.
5150        dialect: the dialect used to parse the input expression.
5151        copy: whether or not to copy `expressions` (only applies to Expressions).
5152        **opts: other options to use to parse the input expressions.
5153
5154    Returns:
5155        Or: the new condition
5156    """
5157    return t.cast(Condition, _combine(expressions, Or, dialect, copy=copy, **opts))
5158
5159
5160def not_(expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts) -> Not:
5161    """
5162    Wrap a condition with a NOT operator.
5163
5164    Example:
5165        >>> not_("this_suit='black'").sql()
5166        "NOT this_suit = 'black'"
5167
5168    Args:
5169        expression: the SQL code string to parse.
5170            If an Expression instance is passed, this is used as-is.
5171        dialect: the dialect used to parse the input expression.
5172        copy: whether to copy the expression or not.
5173        **opts: other options to use to parse the input expressions.
5174
5175    Returns:
5176        The new condition.
5177    """
5178    this = condition(
5179        expression,
5180        dialect=dialect,
5181        copy=copy,
5182        **opts,
5183    )
5184    return Not(this=_wrap(this, Connector))
5185
5186
5187def paren(expression: ExpOrStr, copy: bool = True) -> Paren:
5188    """
5189    Wrap an expression in parentheses.
5190
5191    Example:
5192        >>> paren("5 + 3").sql()
5193        '(5 + 3)'
5194
5195    Args:
5196        expression: the SQL code string to parse.
5197            If an Expression instance is passed, this is used as-is.
5198        copy: whether to copy the expression or not.
5199
5200    Returns:
5201        The wrapped expression.
5202    """
5203    return Paren(this=maybe_parse(expression, copy=copy))
5204
5205
5206SAFE_IDENTIFIER_RE = re.compile(r"^[_a-zA-Z][\w]*$")
5207
5208
5209@t.overload
5210def to_identifier(name: None, quoted: t.Optional[bool] = None, copy: bool = True) -> None:
5211    ...
5212
5213
5214@t.overload
5215def to_identifier(
5216    name: str | Identifier, quoted: t.Optional[bool] = None, copy: bool = True
5217) -> Identifier:
5218    ...
5219
5220
5221def to_identifier(name, quoted=None, copy=True):
5222    """Builds an identifier.
5223
5224    Args:
5225        name: The name to turn into an identifier.
5226        quoted: Whether or not force quote the identifier.
5227        copy: Whether or not to copy a passed in Identefier node.
5228
5229    Returns:
5230        The identifier ast node.
5231    """
5232
5233    if name is None:
5234        return None
5235
5236    if isinstance(name, Identifier):
5237        identifier = _maybe_copy(name, copy)
5238    elif isinstance(name, str):
5239        identifier = Identifier(
5240            this=name,
5241            quoted=not SAFE_IDENTIFIER_RE.match(name) if quoted is None else quoted,
5242        )
5243    else:
5244        raise ValueError(f"Name needs to be a string or an Identifier, got: {name.__class__}")
5245    return identifier
5246
5247
5248INTERVAL_STRING_RE = re.compile(r"\s*([0-9]+)\s*([a-zA-Z]+)\s*")
5249
5250
5251def to_interval(interval: str | Literal) -> Interval:
5252    """Builds an interval expression from a string like '1 day' or '5 months'."""
5253    if isinstance(interval, Literal):
5254        if not interval.is_string:
5255            raise ValueError("Invalid interval string.")
5256
5257        interval = interval.this
5258
5259    interval_parts = INTERVAL_STRING_RE.match(interval)  # type: ignore
5260
5261    if not interval_parts:
5262        raise ValueError("Invalid interval string.")
5263
5264    return Interval(
5265        this=Literal.string(interval_parts.group(1)),
5266        unit=Var(this=interval_parts.group(2)),
5267    )
5268
5269
5270@t.overload
5271def to_table(sql_path: str | Table, **kwargs) -> Table:
5272    ...
5273
5274
5275@t.overload
5276def to_table(sql_path: None, **kwargs) -> None:
5277    ...
5278
5279
5280def to_table(
5281    sql_path: t.Optional[str | Table], dialect: DialectType = None, **kwargs
5282) -> t.Optional[Table]:
5283    """
5284    Create a table expression from a `[catalog].[schema].[table]` sql path. Catalog and schema are optional.
5285    If a table is passed in then that table is returned.
5286
5287    Args:
5288        sql_path: a `[catalog].[schema].[table]` string.
5289        dialect: the source dialect according to which the table name will be parsed.
5290        kwargs: the kwargs to instantiate the resulting `Table` expression with.
5291
5292    Returns:
5293        A table expression.
5294    """
5295    if sql_path is None or isinstance(sql_path, Table):
5296        return sql_path
5297    if not isinstance(sql_path, str):
5298        raise ValueError(f"Invalid type provided for a table: {type(sql_path)}")
5299
5300    table = maybe_parse(sql_path, into=Table, dialect=dialect)
5301    if table:
5302        for k, v in kwargs.items():
5303            table.set(k, v)
5304
5305    return table
5306
5307
5308def to_column(sql_path: str | Column, **kwargs) -> Column:
5309    """
5310    Create a column from a `[table].[column]` sql path. Schema is optional.
5311
5312    If a column is passed in then that column is returned.
5313
5314    Args:
5315        sql_path: `[table].[column]` string
5316    Returns:
5317        Table: A column expression
5318    """
5319    if sql_path is None or isinstance(sql_path, Column):
5320        return sql_path
5321    if not isinstance(sql_path, str):
5322        raise ValueError(f"Invalid type provided for column: {type(sql_path)}")
5323    return column(*reversed(sql_path.split(".")), **kwargs)  # type: ignore
5324
5325
5326def alias_(
5327    expression: ExpOrStr,
5328    alias: str | Identifier,
5329    table: bool | t.Sequence[str | Identifier] = False,
5330    quoted: t.Optional[bool] = None,
5331    dialect: DialectType = None,
5332    copy: bool = True,
5333    **opts,
5334):
5335    """Create an Alias expression.
5336
5337    Example:
5338        >>> alias_('foo', 'bar').sql()
5339        'foo AS bar'
5340
5341        >>> alias_('(select 1, 2)', 'bar', table=['a', 'b']).sql()
5342        '(SELECT 1, 2) AS bar(a, b)'
5343
5344    Args:
5345        expression: the SQL code strings to parse.
5346            If an Expression instance is passed, this is used as-is.
5347        alias: the alias name to use. If the name has
5348            special characters it is quoted.
5349        table: Whether or not to create a table alias, can also be a list of columns.
5350        quoted: whether or not to quote the alias
5351        dialect: the dialect used to parse the input expression.
5352        copy: Whether or not to copy the expression.
5353        **opts: other options to use to parse the input expressions.
5354
5355    Returns:
5356        Alias: the aliased expression
5357    """
5358    exp = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
5359    alias = to_identifier(alias, quoted=quoted)
5360
5361    if table:
5362        table_alias = TableAlias(this=alias)
5363        exp.set("alias", table_alias)
5364
5365        if not isinstance(table, bool):
5366            for column in table:
5367                table_alias.append("columns", to_identifier(column, quoted=quoted))
5368
5369        return exp
5370
5371    # We don't set the "alias" arg for Window expressions, because that would add an IDENTIFIER node in
5372    # the AST, representing a "named_window" [1] construct (eg. bigquery). What we want is an ALIAS node
5373    # for the complete Window expression.
5374    #
5375    # [1]: https://cloud.google.com/bigquery/docs/reference/standard-sql/window-function-calls
5376
5377    if "alias" in exp.arg_types and not isinstance(exp, Window):
5378        exp.set("alias", alias)
5379        return exp
5380    return Alias(this=exp, alias=alias)
5381
5382
5383def subquery(
5384    expression: ExpOrStr,
5385    alias: t.Optional[Identifier | str] = None,
5386    dialect: DialectType = None,
5387    **opts,
5388) -> Select:
5389    """
5390    Build a subquery expression.
5391
5392    Example:
5393        >>> subquery('select x from tbl', 'bar').select('x').sql()
5394        'SELECT x FROM (SELECT x FROM tbl) AS bar'
5395
5396    Args:
5397        expression: the SQL code strings to parse.
5398            If an Expression instance is passed, this is used as-is.
5399        alias: the alias name to use.
5400        dialect: the dialect used to parse the input expression.
5401        **opts: other options to use to parse the input expressions.
5402
5403    Returns:
5404        A new Select instance with the subquery expression included.
5405    """
5406
5407    expression = maybe_parse(expression, dialect=dialect, **opts).subquery(alias)
5408    return Select().from_(expression, dialect=dialect, **opts)
5409
5410
5411def column(
5412    col: str | Identifier,
5413    table: t.Optional[str | Identifier] = None,
5414    db: t.Optional[str | Identifier] = None,
5415    catalog: t.Optional[str | Identifier] = None,
5416    quoted: t.Optional[bool] = None,
5417) -> Column:
5418    """
5419    Build a Column.
5420
5421    Args:
5422        col: Column name.
5423        table: Table name.
5424        db: Database name.
5425        catalog: Catalog name.
5426        quoted: Whether to force quotes on the column's identifiers.
5427
5428    Returns:
5429        The new Column instance.
5430    """
5431    return Column(
5432        this=to_identifier(col, quoted=quoted),
5433        table=to_identifier(table, quoted=quoted),
5434        db=to_identifier(db, quoted=quoted),
5435        catalog=to_identifier(catalog, quoted=quoted),
5436    )
5437
5438
5439def cast(expression: ExpOrStr, to: str | DataType | DataType.Type, **opts) -> Cast:
5440    """Cast an expression to a data type.
5441
5442    Example:
5443        >>> cast('x + 1', 'int').sql()
5444        'CAST(x + 1 AS INT)'
5445
5446    Args:
5447        expression: The expression to cast.
5448        to: The datatype to cast to.
5449
5450    Returns:
5451        The new Cast instance.
5452    """
5453    expression = maybe_parse(expression, **opts)
5454    return Cast(this=expression, to=DataType.build(to, **opts))
5455
5456
5457def table_(
5458    table: Identifier | str,
5459    db: t.Optional[Identifier | str] = None,
5460    catalog: t.Optional[Identifier | str] = None,
5461    quoted: t.Optional[bool] = None,
5462    alias: t.Optional[Identifier | str] = None,
5463) -> Table:
5464    """Build a Table.
5465
5466    Args:
5467        table: Table name.
5468        db: Database name.
5469        catalog: Catalog name.
5470        quote: Whether to force quotes on the table's identifiers.
5471        alias: Table's alias.
5472
5473    Returns:
5474        The new Table instance.
5475    """
5476    return Table(
5477        this=to_identifier(table, quoted=quoted),
5478        db=to_identifier(db, quoted=quoted),
5479        catalog=to_identifier(catalog, quoted=quoted),
5480        alias=TableAlias(this=to_identifier(alias)) if alias else None,
5481    )
5482
5483
5484def values(
5485    values: t.Iterable[t.Tuple[t.Any, ...]],
5486    alias: t.Optional[str] = None,
5487    columns: t.Optional[t.Iterable[str] | t.Dict[str, DataType]] = None,
5488) -> Values:
5489    """Build VALUES statement.
5490
5491    Example:
5492        >>> values([(1, '2')]).sql()
5493        "VALUES (1, '2')"
5494
5495    Args:
5496        values: values statements that will be converted to SQL
5497        alias: optional alias
5498        columns: Optional list of ordered column names or ordered dictionary of column names to types.
5499         If either are provided then an alias is also required.
5500
5501    Returns:
5502        Values: the Values expression object
5503    """
5504    if columns and not alias:
5505        raise ValueError("Alias is required when providing columns")
5506
5507    return Values(
5508        expressions=[convert(tup) for tup in values],
5509        alias=(
5510            TableAlias(this=to_identifier(alias), columns=[to_identifier(x) for x in columns])
5511            if columns
5512            else (TableAlias(this=to_identifier(alias)) if alias else None)
5513        ),
5514    )
5515
5516
5517def var(name: t.Optional[ExpOrStr]) -> Var:
5518    """Build a SQL variable.
5519
5520    Example:
5521        >>> repr(var('x'))
5522        '(VAR this: x)'
5523
5524        >>> repr(var(column('x', table='y')))
5525        '(VAR this: x)'
5526
5527    Args:
5528        name: The name of the var or an expression who's name will become the var.
5529
5530    Returns:
5531        The new variable node.
5532    """
5533    if not name:
5534        raise ValueError("Cannot convert empty name into var.")
5535
5536    if isinstance(name, Expression):
5537        name = name.name
5538    return Var(this=name)
5539
5540
5541def rename_table(old_name: str | Table, new_name: str | Table) -> AlterTable:
5542    """Build ALTER TABLE... RENAME... expression
5543
5544    Args:
5545        old_name: The old name of the table
5546        new_name: The new name of the table
5547
5548    Returns:
5549        Alter table expression
5550    """
5551    old_table = to_table(old_name)
5552    new_table = to_table(new_name)
5553    return AlterTable(
5554        this=old_table,
5555        actions=[
5556            RenameTable(this=new_table),
5557        ],
5558    )
5559
5560
5561def convert(value: t.Any, copy: bool = False) -> Expression:
5562    """Convert a python value into an expression object.
5563
5564    Raises an error if a conversion is not possible.
5565
5566    Args:
5567        value: A python object.
5568        copy: Whether or not to copy `value` (only applies to Expressions and collections).
5569
5570    Returns:
5571        Expression: the equivalent expression object.
5572    """
5573    if isinstance(value, Expression):
5574        return _maybe_copy(value, copy)
5575    if isinstance(value, str):
5576        return Literal.string(value)
5577    if isinstance(value, bool):
5578        return Boolean(this=value)
5579    if value is None or (isinstance(value, float) and math.isnan(value)):
5580        return NULL
5581    if isinstance(value, numbers.Number):
5582        return Literal.number(value)
5583    if isinstance(value, datetime.datetime):
5584        datetime_literal = Literal.string(
5585            (value if value.tzinfo else value.replace(tzinfo=datetime.timezone.utc)).isoformat()
5586        )
5587        return TimeStrToTime(this=datetime_literal)
5588    if isinstance(value, datetime.date):
5589        date_literal = Literal.string(value.strftime("%Y-%m-%d"))
5590        return DateStrToDate(this=date_literal)
5591    if isinstance(value, tuple):
5592        return Tuple(expressions=[convert(v, copy=copy) for v in value])
5593    if isinstance(value, list):
5594        return Array(expressions=[convert(v, copy=copy) for v in value])
5595    if isinstance(value, dict):
5596        return Map(
5597            keys=[convert(k, copy=copy) for k in value],
5598            values=[convert(v, copy=copy) for v in value.values()],
5599        )
5600    raise ValueError(f"Cannot convert {value}")
5601
5602
5603def replace_children(expression: Expression, fun: t.Callable, *args, **kwargs) -> None:
5604    """
5605    Replace children of an expression with the result of a lambda fun(child) -> exp.
5606    """
5607    for k, v in expression.args.items():
5608        is_list_arg = type(v) is list
5609
5610        child_nodes = v if is_list_arg else [v]
5611        new_child_nodes = []
5612
5613        for cn in child_nodes:
5614            if isinstance(cn, Expression):
5615                for child_node in ensure_collection(fun(cn, *args, **kwargs)):
5616                    new_child_nodes.append(child_node)
5617                    child_node.parent = expression
5618                    child_node.arg_key = k
5619            else:
5620                new_child_nodes.append(cn)
5621
5622        expression.args[k] = new_child_nodes if is_list_arg else seq_get(new_child_nodes, 0)
5623
5624
5625def column_table_names(expression: Expression) -> t.List[str]:
5626    """
5627    Return all table names referenced through columns in an expression.
5628
5629    Example:
5630        >>> import sqlglot
5631        >>> column_table_names(sqlglot.parse_one("a.b AND c.d AND c.e"))
5632        ['c', 'a']
5633
5634    Args:
5635        expression: expression to find table names.
5636
5637    Returns:
5638        A list of unique names.
5639    """
5640    return list(dict.fromkeys(column.table for column in expression.find_all(Column)))
5641
5642
5643def table_name(table: Table | str) -> str:
5644    """Get the full name of a table as a string.
5645
5646    Args:
5647        table: table expression node or string.
5648
5649    Examples:
5650        >>> from sqlglot import exp, parse_one
5651        >>> table_name(parse_one("select * from a.b.c").find(exp.Table))
5652        'a.b.c'
5653
5654    Returns:
5655        The table name.
5656    """
5657
5658    table = maybe_parse(table, into=Table)
5659
5660    if not table:
5661        raise ValueError(f"Cannot parse {table}")
5662
5663    return ".".join(part for part in (table.text("catalog"), table.text("db"), table.name) if part)
5664
5665
5666def replace_tables(expression: E, mapping: t.Dict[str, str]) -> E:
5667    """Replace all tables in expression according to the mapping.
5668
5669    Args:
5670        expression: expression node to be transformed and replaced.
5671        mapping: mapping of table names.
5672
5673    Examples:
5674        >>> from sqlglot import exp, parse_one
5675        >>> replace_tables(parse_one("select * from a.b"), {"a.b": "c"}).sql()
5676        'SELECT * FROM c'
5677
5678    Returns:
5679        The mapped expression.
5680    """
5681
5682    def _replace_tables(node: Expression) -> Expression:
5683        if isinstance(node, Table):
5684            new_name = mapping.get(table_name(node))
5685            if new_name:
5686                return to_table(
5687                    new_name,
5688                    **{k: v for k, v in node.args.items() if k not in ("this", "db", "catalog")},
5689                )
5690        return node
5691
5692    return expression.transform(_replace_tables)
5693
5694
5695def replace_placeholders(expression: Expression, *args, **kwargs) -> Expression:
5696    """Replace placeholders in an expression.
5697
5698    Args:
5699        expression: expression node to be transformed and replaced.
5700        args: positional names that will substitute unnamed placeholders in the given order.
5701        kwargs: keyword arguments that will substitute named placeholders.
5702
5703    Examples:
5704        >>> from sqlglot import exp, parse_one
5705        >>> replace_placeholders(
5706        ...     parse_one("select * from :tbl where ? = ?"),
5707        ...     exp.to_identifier("str_col"), "b", tbl=exp.to_identifier("foo")
5708        ... ).sql()
5709        "SELECT * FROM foo WHERE str_col = 'b'"
5710
5711    Returns:
5712        The mapped expression.
5713    """
5714
5715    def _replace_placeholders(node: Expression, args, **kwargs) -> Expression:
5716        if isinstance(node, Placeholder):
5717            if node.name:
5718                new_name = kwargs.get(node.name)
5719                if new_name:
5720                    return convert(new_name)
5721            else:
5722                try:
5723                    return convert(next(args))
5724                except StopIteration:
5725                    pass
5726        return node
5727
5728    return expression.transform(_replace_placeholders, iter(args), **kwargs)
5729
5730
5731def expand(
5732    expression: Expression, sources: t.Dict[str, Subqueryable], copy: bool = True
5733) -> Expression:
5734    """Transforms an expression by expanding all referenced sources into subqueries.
5735
5736    Examples:
5737        >>> from sqlglot import parse_one
5738        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y")}).sql()
5739        'SELECT * FROM (SELECT * FROM y) AS z /* source: x */'
5740
5741        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y"), "y": parse_one("select * from z")}).sql()
5742        'SELECT * FROM (SELECT * FROM (SELECT * FROM z) AS y /* source: y */) AS z /* source: x */'
5743
5744    Args:
5745        expression: The expression to expand.
5746        sources: A dictionary of name to Subqueryables.
5747        copy: Whether or not to copy the expression during transformation. Defaults to True.
5748
5749    Returns:
5750        The transformed expression.
5751    """
5752
5753    def _expand(node: Expression):
5754        if isinstance(node, Table):
5755            name = table_name(node)
5756            source = sources.get(name)
5757            if source:
5758                subquery = source.subquery(node.alias or name)
5759                subquery.comments = [f"source: {name}"]
5760                return subquery.transform(_expand, copy=False)
5761        return node
5762
5763    return expression.transform(_expand, copy=copy)
5764
5765
5766def func(name: str, *args, dialect: DialectType = None, **kwargs) -> Func:
5767    """
5768    Returns a Func expression.
5769
5770    Examples:
5771        >>> func("abs", 5).sql()
5772        'ABS(5)'
5773
5774        >>> func("cast", this=5, to=DataType.build("DOUBLE")).sql()
5775        'CAST(5 AS DOUBLE)'
5776
5777    Args:
5778        name: the name of the function to build.
5779        args: the args used to instantiate the function of interest.
5780        dialect: the source dialect.
5781        kwargs: the kwargs used to instantiate the function of interest.
5782
5783    Note:
5784        The arguments `args` and `kwargs` are mutually exclusive.
5785
5786    Returns:
5787        An instance of the function of interest, or an anonymous function, if `name` doesn't
5788        correspond to an existing `sqlglot.expressions.Func` class.
5789    """
5790    if args and kwargs:
5791        raise ValueError("Can't use both args and kwargs to instantiate a function.")
5792
5793    from sqlglot.dialects.dialect import Dialect
5794
5795    converted: t.List[Expression] = [maybe_parse(arg, dialect=dialect) for arg in args]
5796    kwargs = {key: maybe_parse(value, dialect=dialect) for key, value in kwargs.items()}
5797
5798    parser = Dialect.get_or_raise(dialect)().parser()
5799    from_args_list = parser.FUNCTIONS.get(name.upper())
5800
5801    if from_args_list:
5802        function = from_args_list(converted) if converted else from_args_list.__self__(**kwargs)  # type: ignore
5803    else:
5804        kwargs = kwargs or {"expressions": converted}
5805        function = Anonymous(this=name, **kwargs)
5806
5807    for error_message in function.error_messages(converted):
5808        raise ValueError(error_message)
5809
5810    return function
5811
5812
5813def true() -> Boolean:
5814    """
5815    Returns a true Boolean expression.
5816    """
5817    return Boolean(this=True)
5818
5819
5820def false() -> Boolean:
5821    """
5822    Returns a false Boolean expression.
5823    """
5824    return Boolean(this=False)
5825
5826
5827def null() -> Null:
5828    """
5829    Returns a Null expression.
5830    """
5831    return Null()
5832
5833
5834# TODO: deprecate this
5835TRUE = Boolean(this=True)
5836FALSE = Boolean(this=False)
5837NULL = Null()
class Expression:
 55class Expression(metaclass=_Expression):
 56    """
 57    The base class for all expressions in a syntax tree. Each Expression encapsulates any necessary
 58    context, such as its child expressions, their names (arg keys), and whether a given child expression
 59    is optional or not.
 60
 61    Attributes:
 62        key: a unique key for each class in the Expression hierarchy. This is useful for hashing
 63            and representing expressions as strings.
 64        arg_types: determines what arguments (child nodes) are supported by an expression. It
 65            maps arg keys to booleans that indicate whether the corresponding args are optional.
 66        parent: a reference to the parent expression (or None, in case of root expressions).
 67        arg_key: the arg key an expression is associated with, i.e. the name its parent expression
 68            uses to refer to it.
 69        comments: a list of comments that are associated with a given expression. This is used in
 70            order to preserve comments when transpiling SQL code.
 71        _type: the `sqlglot.expressions.DataType` type of an expression. This is inferred by the
 72            optimizer, in order to enable some transformations that require type information.
 73
 74    Example:
 75        >>> class Foo(Expression):
 76        ...     arg_types = {"this": True, "expression": False}
 77
 78        The above definition informs us that Foo is an Expression that requires an argument called
 79        "this" and may also optionally receive an argument called "expression".
 80
 81    Args:
 82        args: a mapping used for retrieving the arguments of an expression, given their arg keys.
 83    """
 84
 85    key = "expression"
 86    arg_types = {"this": True}
 87    __slots__ = ("args", "parent", "arg_key", "comments", "_type", "_meta", "_hash")
 88
 89    def __init__(self, **args: t.Any):
 90        self.args: t.Dict[str, t.Any] = args
 91        self.parent: t.Optional[Expression] = None
 92        self.arg_key: t.Optional[str] = None
 93        self.comments: t.Optional[t.List[str]] = None
 94        self._type: t.Optional[DataType] = None
 95        self._meta: t.Optional[t.Dict[str, t.Any]] = None
 96        self._hash: t.Optional[int] = None
 97
 98        for arg_key, value in self.args.items():
 99            self._set_parent(arg_key, value)
100
101    def __eq__(self, other) -> bool:
102        return type(self) is type(other) and hash(self) == hash(other)
103
104    @property
105    def hashable_args(self) -> t.Any:
106        args = (self.args.get(k) for k in self.arg_types)
107
108        return tuple(
109            (tuple(_norm_arg(a) for a in arg) if arg else None)
110            if type(arg) is list
111            else (_norm_arg(arg) if arg is not None and arg is not False else None)
112            for arg in args
113        )
114
115    def __hash__(self) -> int:
116        if self._hash is not None:
117            return self._hash
118
119        return hash((self.__class__, self.hashable_args))
120
121    @property
122    def this(self):
123        """
124        Retrieves the argument with key "this".
125        """
126        return self.args.get("this")
127
128    @property
129    def expression(self):
130        """
131        Retrieves the argument with key "expression".
132        """
133        return self.args.get("expression")
134
135    @property
136    def expressions(self):
137        """
138        Retrieves the argument with key "expressions".
139        """
140        return self.args.get("expressions") or []
141
142    def text(self, key) -> str:
143        """
144        Returns a textual representation of the argument corresponding to "key". This can only be used
145        for args that are strings or leaf Expression instances, such as identifiers and literals.
146        """
147        field = self.args.get(key)
148        if isinstance(field, str):
149            return field
150        if isinstance(field, (Identifier, Literal, Var)):
151            return field.this
152        if isinstance(field, (Star, Null)):
153            return field.name
154        return ""
155
156    @property
157    def is_string(self) -> bool:
158        """
159        Checks whether a Literal expression is a string.
160        """
161        return isinstance(self, Literal) and self.args["is_string"]
162
163    @property
164    def is_number(self) -> bool:
165        """
166        Checks whether a Literal expression is a number.
167        """
168        return isinstance(self, Literal) and not self.args["is_string"]
169
170    @property
171    def is_int(self) -> bool:
172        """
173        Checks whether a Literal expression is an integer.
174        """
175        if self.is_number:
176            try:
177                int(self.name)
178                return True
179            except ValueError:
180                pass
181        return False
182
183    @property
184    def is_star(self) -> bool:
185        """Checks whether an expression is a star."""
186        return isinstance(self, Star) or (isinstance(self, Column) and isinstance(self.this, Star))
187
188    @property
189    def alias(self) -> str:
190        """
191        Returns the alias of the expression, or an empty string if it's not aliased.
192        """
193        if isinstance(self.args.get("alias"), TableAlias):
194            return self.args["alias"].name
195        return self.text("alias")
196
197    @property
198    def name(self) -> str:
199        return self.text("this")
200
201    @property
202    def alias_or_name(self) -> str:
203        return self.alias or self.name
204
205    @property
206    def output_name(self) -> str:
207        """
208        Name of the output column if this expression is a selection.
209
210        If the Expression has no output name, an empty string is returned.
211
212        Example:
213            >>> from sqlglot import parse_one
214            >>> parse_one("SELECT a").expressions[0].output_name
215            'a'
216            >>> parse_one("SELECT b AS c").expressions[0].output_name
217            'c'
218            >>> parse_one("SELECT 1 + 2").expressions[0].output_name
219            ''
220        """
221        return ""
222
223    @property
224    def type(self) -> t.Optional[DataType]:
225        return self._type
226
227    @type.setter
228    def type(self, dtype: t.Optional[DataType | DataType.Type | str]) -> None:
229        if dtype and not isinstance(dtype, DataType):
230            dtype = DataType.build(dtype)
231        self._type = dtype  # type: ignore
232
233    @property
234    def meta(self) -> t.Dict[str, t.Any]:
235        if self._meta is None:
236            self._meta = {}
237        return self._meta
238
239    def __deepcopy__(self, memo):
240        copy = self.__class__(**deepcopy(self.args))
241        if self.comments is not None:
242            copy.comments = deepcopy(self.comments)
243
244        if self._type is not None:
245            copy._type = self._type.copy()
246
247        if self._meta is not None:
248            copy._meta = deepcopy(self._meta)
249
250        return copy
251
252    def copy(self):
253        """
254        Returns a deep copy of the expression.
255        """
256        new = deepcopy(self)
257        new.parent = self.parent
258        return new
259
260    def add_comments(self, comments: t.Optional[t.List[str]]) -> None:
261        if self.comments is None:
262            self.comments = []
263        if comments:
264            self.comments.extend(comments)
265
266    def append(self, arg_key: str, value: t.Any) -> None:
267        """
268        Appends value to arg_key if it's a list or sets it as a new list.
269
270        Args:
271            arg_key (str): name of the list expression arg
272            value (Any): value to append to the list
273        """
274        if not isinstance(self.args.get(arg_key), list):
275            self.args[arg_key] = []
276        self.args[arg_key].append(value)
277        self._set_parent(arg_key, value)
278
279    def set(self, arg_key: str, value: t.Any) -> None:
280        """
281        Sets `arg_key` to `value`.
282
283        Args:
284            arg_key (str): name of the expression arg.
285            value: value to set the arg to.
286        """
287        self.args[arg_key] = value
288        self._set_parent(arg_key, value)
289
290    def _set_parent(self, arg_key: str, value: t.Any) -> None:
291        if hasattr(value, "parent"):
292            value.parent = self
293            value.arg_key = arg_key
294        elif type(value) is list:
295            for v in value:
296                if hasattr(v, "parent"):
297                    v.parent = self
298                    v.arg_key = arg_key
299
300    @property
301    def depth(self) -> int:
302        """
303        Returns the depth of this tree.
304        """
305        if self.parent:
306            return self.parent.depth + 1
307        return 0
308
309    def iter_expressions(self) -> t.Iterator[t.Tuple[str, Expression]]:
310        """Yields the key and expression for all arguments, exploding list args."""
311        for k, vs in self.args.items():
312            if type(vs) is list:
313                for v in vs:
314                    if hasattr(v, "parent"):
315                        yield k, v
316            else:
317                if hasattr(vs, "parent"):
318                    yield k, vs
319
320    def find(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Optional[E]:
321        """
322        Returns the first node in this tree which matches at least one of
323        the specified types.
324
325        Args:
326            expression_types: the expression type(s) to match.
327            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
328
329        Returns:
330            The node which matches the criteria or None if no such node was found.
331        """
332        return next(self.find_all(*expression_types, bfs=bfs), None)
333
334    def find_all(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Iterator[E]:
335        """
336        Returns a generator object which visits all nodes in this tree and only
337        yields those that match at least one of the specified expression types.
338
339        Args:
340            expression_types: the expression type(s) to match.
341            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
342
343        Returns:
344            The generator object.
345        """
346        for expression, *_ in self.walk(bfs=bfs):
347            if isinstance(expression, expression_types):
348                yield expression
349
350    def find_ancestor(self, *expression_types: t.Type[E]) -> t.Optional[E]:
351        """
352        Returns a nearest parent matching expression_types.
353
354        Args:
355            expression_types: the expression type(s) to match.
356
357        Returns:
358            The parent node.
359        """
360        ancestor = self.parent
361        while ancestor and not isinstance(ancestor, expression_types):
362            ancestor = ancestor.parent
363        return t.cast(E, ancestor)
364
365    @property
366    def parent_select(self) -> t.Optional[Select]:
367        """
368        Returns the parent select statement.
369        """
370        return self.find_ancestor(Select)
371
372    @property
373    def same_parent(self) -> bool:
374        """Returns if the parent is the same class as itself."""
375        return type(self.parent) is self.__class__
376
377    def root(self) -> Expression:
378        """
379        Returns the root expression of this tree.
380        """
381        expression = self
382        while expression.parent:
383            expression = expression.parent
384        return expression
385
386    def walk(self, bfs=True, prune=None):
387        """
388        Returns a generator object which visits all nodes in this tree.
389
390        Args:
391            bfs (bool): if set to True the BFS traversal order will be applied,
392                otherwise the DFS traversal will be used instead.
393            prune ((node, parent, arg_key) -> bool): callable that returns True if
394                the generator should stop traversing this branch of the tree.
395
396        Returns:
397            the generator object.
398        """
399        if bfs:
400            yield from self.bfs(prune=prune)
401        else:
402            yield from self.dfs(prune=prune)
403
404    def dfs(self, parent=None, key=None, prune=None):
405        """
406        Returns a generator object which visits all nodes in this tree in
407        the DFS (Depth-first) order.
408
409        Returns:
410            The generator object.
411        """
412        parent = parent or self.parent
413        yield self, parent, key
414        if prune and prune(self, parent, key):
415            return
416
417        for k, v in self.iter_expressions():
418            yield from v.dfs(self, k, prune)
419
420    def bfs(self, prune=None):
421        """
422        Returns a generator object which visits all nodes in this tree in
423        the BFS (Breadth-first) order.
424
425        Returns:
426            The generator object.
427        """
428        queue = deque([(self, self.parent, None)])
429
430        while queue:
431            item, parent, key = queue.popleft()
432
433            yield item, parent, key
434            if prune and prune(item, parent, key):
435                continue
436
437            for k, v in item.iter_expressions():
438                queue.append((v, item, k))
439
440    def unnest(self):
441        """
442        Returns the first non parenthesis child or self.
443        """
444        expression = self
445        while type(expression) is Paren:
446            expression = expression.this
447        return expression
448
449    def unalias(self):
450        """
451        Returns the inner expression if this is an Alias.
452        """
453        if isinstance(self, Alias):
454            return self.this
455        return self
456
457    def unnest_operands(self):
458        """
459        Returns unnested operands as a tuple.
460        """
461        return tuple(arg.unnest() for _, arg in self.iter_expressions())
462
463    def flatten(self, unnest=True):
464        """
465        Returns a generator which yields child nodes who's parents are the same class.
466
467        A AND B AND C -> [A, B, C]
468        """
469        for node, _, _ in self.dfs(prune=lambda n, p, *_: p and not type(n) is self.__class__):
470            if not type(node) is self.__class__:
471                yield node.unnest() if unnest else node
472
473    def __str__(self) -> str:
474        return self.sql()
475
476    def __repr__(self) -> str:
477        return self._to_s()
478
479    def sql(self, dialect: DialectType = None, **opts) -> str:
480        """
481        Returns SQL string representation of this tree.
482
483        Args:
484            dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
485            opts: other `sqlglot.generator.Generator` options.
486
487        Returns:
488            The SQL string.
489        """
490        from sqlglot.dialects import Dialect
491
492        return Dialect.get_or_raise(dialect)().generate(self, **opts)
493
494    def _to_s(self, hide_missing: bool = True, level: int = 0) -> str:
495        indent = "" if not level else "\n"
496        indent += "".join(["  "] * level)
497        left = f"({self.key.upper()} "
498
499        args: t.Dict[str, t.Any] = {
500            k: ", ".join(
501                v._to_s(hide_missing=hide_missing, level=level + 1)
502                if hasattr(v, "_to_s")
503                else str(v)
504                for v in ensure_list(vs)
505                if v is not None
506            )
507            for k, vs in self.args.items()
508        }
509        args["comments"] = self.comments
510        args["type"] = self.type
511        args = {k: v for k, v in args.items() if v or not hide_missing}
512
513        right = ", ".join(f"{k}: {v}" for k, v in args.items())
514        right += ")"
515
516        return indent + left + right
517
518    def transform(self, fun, *args, copy=True, **kwargs):
519        """
520        Recursively visits all tree nodes (excluding already transformed ones)
521        and applies the given transformation function to each node.
522
523        Args:
524            fun (function): a function which takes a node as an argument and returns a
525                new transformed node or the same node without modifications. If the function
526                returns None, then the corresponding node will be removed from the syntax tree.
527            copy (bool): if set to True a new tree instance is constructed, otherwise the tree is
528                modified in place.
529
530        Returns:
531            The transformed tree.
532        """
533        node = self.copy() if copy else self
534        new_node = fun(node, *args, **kwargs)
535
536        if new_node is None or not isinstance(new_node, Expression):
537            return new_node
538        if new_node is not node:
539            new_node.parent = node.parent
540            return new_node
541
542        replace_children(new_node, lambda child: child.transform(fun, *args, copy=False, **kwargs))
543        return new_node
544
545    @t.overload
546    def replace(self, expression: E) -> E:
547        ...
548
549    @t.overload
550    def replace(self, expression: None) -> None:
551        ...
552
553    def replace(self, expression):
554        """
555        Swap out this expression with a new expression.
556
557        For example::
558
559            >>> tree = Select().select("x").from_("tbl")
560            >>> tree.find(Column).replace(Column(this="y"))
561            (COLUMN this: y)
562            >>> tree.sql()
563            'SELECT y FROM tbl'
564
565        Args:
566            expression: new node
567
568        Returns:
569            The new expression or expressions.
570        """
571        if not self.parent:
572            return expression
573
574        parent = self.parent
575        self.parent = None
576
577        replace_children(parent, lambda child: expression if child is self else child)
578        return expression
579
580    def pop(self: E) -> E:
581        """
582        Remove this expression from its AST.
583
584        Returns:
585            The popped expression.
586        """
587        self.replace(None)
588        return self
589
590    def assert_is(self, type_: t.Type[E]) -> E:
591        """
592        Assert that this `Expression` is an instance of `type_`.
593
594        If it is NOT an instance of `type_`, this raises an assertion error.
595        Otherwise, this returns this expression.
596
597        Examples:
598            This is useful for type security in chained expressions:
599
600            >>> import sqlglot
601            >>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
602            'SELECT x, z FROM y'
603        """
604        assert isinstance(self, type_)
605        return self
606
607    def error_messages(self, args: t.Optional[t.Sequence] = None) -> t.List[str]:
608        """
609        Checks if this expression is valid (e.g. all mandatory args are set).
610
611        Args:
612            args: a sequence of values that were used to instantiate a Func expression. This is used
613                to check that the provided arguments don't exceed the function argument limit.
614
615        Returns:
616            A list of error messages for all possible errors that were found.
617        """
618        errors: t.List[str] = []
619
620        for k in self.args:
621            if k not in self.arg_types:
622                errors.append(f"Unexpected keyword: '{k}' for {self.__class__}")
623        for k, mandatory in self.arg_types.items():
624            v = self.args.get(k)
625            if mandatory and (v is None or (isinstance(v, list) and not v)):
626                errors.append(f"Required keyword: '{k}' missing for {self.__class__}")
627
628        if (
629            args
630            and isinstance(self, Func)
631            and len(args) > len(self.arg_types)
632            and not self.is_var_len_args
633        ):
634            errors.append(
635                f"The number of provided arguments ({len(args)}) is greater than "
636                f"the maximum number of supported arguments ({len(self.arg_types)})"
637            )
638
639        return errors
640
641    def dump(self):
642        """
643        Dump this Expression to a JSON-serializable dict.
644        """
645        from sqlglot.serde import dump
646
647        return dump(self)
648
649    @classmethod
650    def load(cls, obj):
651        """
652        Load a dict (as returned by `Expression.dump`) into an Expression instance.
653        """
654        from sqlglot.serde import load
655
656        return load(obj)

The base class for all expressions in a syntax tree. Each Expression encapsulates any necessary context, such as its child expressions, their names (arg keys), and whether a given child expression is optional or not.

Attributes:
  • key: a unique key for each class in the Expression hierarchy. This is useful for hashing and representing expressions as strings.
  • arg_types: determines what arguments (child nodes) are supported by an expression. It maps arg keys to booleans that indicate whether the corresponding args are optional.
  • parent: a reference to the parent expression (or None, in case of root expressions).
  • arg_key: the arg key an expression is associated with, i.e. the name its parent expression uses to refer to it.
  • comments: a list of comments that are associated with a given expression. This is used in order to preserve comments when transpiling SQL code.
  • _type: the sqlglot.expressions.DataType type of an expression. This is inferred by the optimizer, in order to enable some transformations that require type information.
Example:
>>> class Foo(Expression):
...     arg_types = {"this": True, "expression": False}

The above definition informs us that Foo is an Expression that requires an argument called "this" and may also optionally receive an argument called "expression".

Arguments:
  • args: a mapping used for retrieving the arguments of an expression, given their arg keys.
Expression(**args: Any)
89    def __init__(self, **args: t.Any):
90        self.args: t.Dict[str, t.Any] = args
91        self.parent: t.Optional[Expression] = None
92        self.arg_key: t.Optional[str] = None
93        self.comments: t.Optional[t.List[str]] = None
94        self._type: t.Optional[DataType] = None
95        self._meta: t.Optional[t.Dict[str, t.Any]] = None
96        self._hash: t.Optional[int] = None
97
98        for arg_key, value in self.args.items():
99            self._set_parent(arg_key, value)
this

Retrieves the argument with key "this".

expression

Retrieves the argument with key "expression".

expressions

Retrieves the argument with key "expressions".

def text(self, key) -> str:
142    def text(self, key) -> str:
143        """
144        Returns a textual representation of the argument corresponding to "key". This can only be used
145        for args that are strings or leaf Expression instances, such as identifiers and literals.
146        """
147        field = self.args.get(key)
148        if isinstance(field, str):
149            return field
150        if isinstance(field, (Identifier, Literal, Var)):
151            return field.this
152        if isinstance(field, (Star, Null)):
153            return field.name
154        return ""

Returns a textual representation of the argument corresponding to "key". This can only be used for args that are strings or leaf Expression instances, such as identifiers and literals.

is_string: bool

Checks whether a Literal expression is a string.

is_number: bool

Checks whether a Literal expression is a number.

is_int: bool

Checks whether a Literal expression is an integer.

is_star: bool

Checks whether an expression is a star.

alias: str

Returns the alias of the expression, or an empty string if it's not aliased.

output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
def copy(self):
252    def copy(self):
253        """
254        Returns a deep copy of the expression.
255        """
256        new = deepcopy(self)
257        new.parent = self.parent
258        return new

Returns a deep copy of the expression.

def add_comments(self, comments: Optional[List[str]]) -> None:
260    def add_comments(self, comments: t.Optional[t.List[str]]) -> None:
261        if self.comments is None:
262            self.comments = []
263        if comments:
264            self.comments.extend(comments)
def append(self, arg_key: str, value: Any) -> None:
266    def append(self, arg_key: str, value: t.Any) -> None:
267        """
268        Appends value to arg_key if it's a list or sets it as a new list.
269
270        Args:
271            arg_key (str): name of the list expression arg
272            value (Any): value to append to the list
273        """
274        if not isinstance(self.args.get(arg_key), list):
275            self.args[arg_key] = []
276        self.args[arg_key].append(value)
277        self._set_parent(arg_key, value)

Appends value to arg_key if it's a list or sets it as a new list.

Arguments:
  • arg_key (str): name of the list expression arg
  • value (Any): value to append to the list
def set(self, arg_key: str, value: Any) -> None:
279    def set(self, arg_key: str, value: t.Any) -> None:
280        """
281        Sets `arg_key` to `value`.
282
283        Args:
284            arg_key (str): name of the expression arg.
285            value: value to set the arg to.
286        """
287        self.args[arg_key] = value
288        self._set_parent(arg_key, value)

Sets arg_key to value.

Arguments:
  • arg_key (str): name of the expression arg.
  • value: value to set the arg to.
depth: int

Returns the depth of this tree.

def iter_expressions(self) -> Iterator[Tuple[str, sqlglot.expressions.Expression]]:
309    def iter_expressions(self) -> t.Iterator[t.Tuple[str, Expression]]:
310        """Yields the key and expression for all arguments, exploding list args."""
311        for k, vs in self.args.items():
312            if type(vs) is list:
313                for v in vs:
314                    if hasattr(v, "parent"):
315                        yield k, v
316            else:
317                if hasattr(vs, "parent"):
318                    yield k, vs

Yields the key and expression for all arguments, exploding list args.

def find(self, *expression_types: Type[~E], bfs: bool = True) -> Optional[~E]:
320    def find(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Optional[E]:
321        """
322        Returns the first node in this tree which matches at least one of
323        the specified types.
324
325        Args:
326            expression_types: the expression type(s) to match.
327            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
328
329        Returns:
330            The node which matches the criteria or None if no such node was found.
331        """
332        return next(self.find_all(*expression_types, bfs=bfs), None)

Returns the first node in this tree which matches at least one of the specified types.

Arguments:
  • expression_types: the expression type(s) to match.
  • bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
Returns:

The node which matches the criteria or None if no such node was found.

def find_all(self, *expression_types: Type[~E], bfs: bool = True) -> Iterator[~E]:
334    def find_all(self, *expression_types: t.Type[E], bfs: bool = True) -> t.Iterator[E]:
335        """
336        Returns a generator object which visits all nodes in this tree and only
337        yields those that match at least one of the specified expression types.
338
339        Args:
340            expression_types: the expression type(s) to match.
341            bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
342
343        Returns:
344            The generator object.
345        """
346        for expression, *_ in self.walk(bfs=bfs):
347            if isinstance(expression, expression_types):
348                yield expression

Returns a generator object which visits all nodes in this tree and only yields those that match at least one of the specified expression types.

Arguments:
  • expression_types: the expression type(s) to match.
  • bfs: whether to search the AST using the BFS algorithm (DFS is used if false).
Returns:

The generator object.

def find_ancestor(self, *expression_types: Type[~E]) -> Optional[~E]:
350    def find_ancestor(self, *expression_types: t.Type[E]) -> t.Optional[E]:
351        """
352        Returns a nearest parent matching expression_types.
353
354        Args:
355            expression_types: the expression type(s) to match.
356
357        Returns:
358            The parent node.
359        """
360        ancestor = self.parent
361        while ancestor and not isinstance(ancestor, expression_types):
362            ancestor = ancestor.parent
363        return t.cast(E, ancestor)

Returns a nearest parent matching expression_types.

Arguments:
  • expression_types: the expression type(s) to match.
Returns:

The parent node.

parent_select: Optional[sqlglot.expressions.Select]

Returns the parent select statement.

same_parent: bool

Returns if the parent is the same class as itself.

def root(self) -> sqlglot.expressions.Expression:
377    def root(self) -> Expression:
378        """
379        Returns the root expression of this tree.
380        """
381        expression = self
382        while expression.parent:
383            expression = expression.parent
384        return expression

Returns the root expression of this tree.

def walk(self, bfs=True, prune=None):
386    def walk(self, bfs=True, prune=None):
387        """
388        Returns a generator object which visits all nodes in this tree.
389
390        Args:
391            bfs (bool): if set to True the BFS traversal order will be applied,
392                otherwise the DFS traversal will be used instead.
393            prune ((node, parent, arg_key) -> bool): callable that returns True if
394                the generator should stop traversing this branch of the tree.
395
396        Returns:
397            the generator object.
398        """
399        if bfs:
400            yield from self.bfs(prune=prune)
401        else:
402            yield from self.dfs(prune=prune)

Returns a generator object which visits all nodes in this tree.

Arguments:
  • bfs (bool): if set to True the BFS traversal order will be applied, otherwise the DFS traversal will be used instead.
  • prune ((node, parent, arg_key) -> bool): callable that returns True if the generator should stop traversing this branch of the tree.
Returns:

the generator object.

def dfs(self, parent=None, key=None, prune=None):
404    def dfs(self, parent=None, key=None, prune=None):
405        """
406        Returns a generator object which visits all nodes in this tree in
407        the DFS (Depth-first) order.
408
409        Returns:
410            The generator object.
411        """
412        parent = parent or self.parent
413        yield self, parent, key
414        if prune and prune(self, parent, key):
415            return
416
417        for k, v in self.iter_expressions():
418            yield from v.dfs(self, k, prune)

Returns a generator object which visits all nodes in this tree in the DFS (Depth-first) order.

Returns:

The generator object.

def bfs(self, prune=None):
420    def bfs(self, prune=None):
421        """
422        Returns a generator object which visits all nodes in this tree in
423        the BFS (Breadth-first) order.
424
425        Returns:
426            The generator object.
427        """
428        queue = deque([(self, self.parent, None)])
429
430        while queue:
431            item, parent, key = queue.popleft()
432
433            yield item, parent, key
434            if prune and prune(item, parent, key):
435                continue
436
437            for k, v in item.iter_expressions():
438                queue.append((v, item, k))

Returns a generator object which visits all nodes in this tree in the BFS (Breadth-first) order.

Returns:

The generator object.

def unnest(self):
440    def unnest(self):
441        """
442        Returns the first non parenthesis child or self.
443        """
444        expression = self
445        while type(expression) is Paren:
446            expression = expression.this
447        return expression

Returns the first non parenthesis child or self.

def unalias(self):
449    def unalias(self):
450        """
451        Returns the inner expression if this is an Alias.
452        """
453        if isinstance(self, Alias):
454            return self.this
455        return self

Returns the inner expression if this is an Alias.

def unnest_operands(self):
457    def unnest_operands(self):
458        """
459        Returns unnested operands as a tuple.
460        """
461        return tuple(arg.unnest() for _, arg in self.iter_expressions())

Returns unnested operands as a tuple.

def flatten(self, unnest=True):
463    def flatten(self, unnest=True):
464        """
465        Returns a generator which yields child nodes who's parents are the same class.
466
467        A AND B AND C -> [A, B, C]
468        """
469        for node, _, _ in self.dfs(prune=lambda n, p, *_: p and not type(n) is self.__class__):
470            if not type(node) is self.__class__:
471                yield node.unnest() if unnest else node

Returns a generator which yields child nodes who's parents are the same class.

A AND B AND C -> [A, B, C]

def sql( self, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> str:
479    def sql(self, dialect: DialectType = None, **opts) -> str:
480        """
481        Returns SQL string representation of this tree.
482
483        Args:
484            dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
485            opts: other `sqlglot.generator.Generator` options.
486
487        Returns:
488            The SQL string.
489        """
490        from sqlglot.dialects import Dialect
491
492        return Dialect.get_or_raise(dialect)().generate(self, **opts)

Returns SQL string representation of this tree.

Arguments:
  • dialect: the dialect of the output SQL string (eg. "spark", "hive", "presto", "mysql").
  • opts: other sqlglot.generator.Generator options.
Returns:

The SQL string.

def transform(self, fun, *args, copy=True, **kwargs):
518    def transform(self, fun, *args, copy=True, **kwargs):
519        """
520        Recursively visits all tree nodes (excluding already transformed ones)
521        and applies the given transformation function to each node.
522
523        Args:
524            fun (function): a function which takes a node as an argument and returns a
525                new transformed node or the same node without modifications. If the function
526                returns None, then the corresponding node will be removed from the syntax tree.
527            copy (bool): if set to True a new tree instance is constructed, otherwise the tree is
528                modified in place.
529
530        Returns:
531            The transformed tree.
532        """
533        node = self.copy() if copy else self
534        new_node = fun(node, *args, **kwargs)
535
536        if new_node is None or not isinstance(new_node, Expression):
537            return new_node
538        if new_node is not node:
539            new_node.parent = node.parent
540            return new_node
541
542        replace_children(new_node, lambda child: child.transform(fun, *args, copy=False, **kwargs))
543        return new_node

Recursively visits all tree nodes (excluding already transformed ones) and applies the given transformation function to each node.

Arguments:
  • fun (function): a function which takes a node as an argument and returns a new transformed node or the same node without modifications. If the function returns None, then the corresponding node will be removed from the syntax tree.
  • copy (bool): if set to True a new tree instance is constructed, otherwise the tree is modified in place.
Returns:

The transformed tree.

def replace(self, expression):
553    def replace(self, expression):
554        """
555        Swap out this expression with a new expression.
556
557        For example::
558
559            >>> tree = Select().select("x").from_("tbl")
560            >>> tree.find(Column).replace(Column(this="y"))
561            (COLUMN this: y)
562            >>> tree.sql()
563            'SELECT y FROM tbl'
564
565        Args:
566            expression: new node
567
568        Returns:
569            The new expression or expressions.
570        """
571        if not self.parent:
572            return expression
573
574        parent = self.parent
575        self.parent = None
576
577        replace_children(parent, lambda child: expression if child is self else child)
578        return expression

Swap out this expression with a new expression.

For example::

>>> tree = Select().select("x").from_("tbl")
>>> tree.find(Column).replace(Column(this="y"))
(COLUMN this: y)
>>> tree.sql()
'SELECT y FROM tbl'
Arguments:
  • expression: new node
Returns:

The new expression or expressions.

def pop(self: ~E) -> ~E:
580    def pop(self: E) -> E:
581        """
582        Remove this expression from its AST.
583
584        Returns:
585            The popped expression.
586        """
587        self.replace(None)
588        return self

Remove this expression from its AST.

Returns:

The popped expression.

def assert_is(self, type_: Type[~E]) -> ~E:
590    def assert_is(self, type_: t.Type[E]) -> E:
591        """
592        Assert that this `Expression` is an instance of `type_`.
593
594        If it is NOT an instance of `type_`, this raises an assertion error.
595        Otherwise, this returns this expression.
596
597        Examples:
598            This is useful for type security in chained expressions:
599
600            >>> import sqlglot
601            >>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
602            'SELECT x, z FROM y'
603        """
604        assert isinstance(self, type_)
605        return self

Assert that this Expression is an instance of type_.

If it is NOT an instance of type_, this raises an assertion error. Otherwise, this returns this expression.

Examples:

This is useful for type security in chained expressions:

>>> import sqlglot
>>> sqlglot.parse_one("SELECT x from y").assert_is(Select).select("z").sql()
'SELECT x, z FROM y'
def error_messages(self, args: Optional[Sequence] = None) -> List[str]:
607    def error_messages(self, args: t.Optional[t.Sequence] = None) -> t.List[str]:
608        """
609        Checks if this expression is valid (e.g. all mandatory args are set).
610
611        Args:
612            args: a sequence of values that were used to instantiate a Func expression. This is used
613                to check that the provided arguments don't exceed the function argument limit.
614
615        Returns:
616            A list of error messages for all possible errors that were found.
617        """
618        errors: t.List[str] = []
619
620        for k in self.args:
621            if k not in self.arg_types:
622                errors.append(f"Unexpected keyword: '{k}' for {self.__class__}")
623        for k, mandatory in self.arg_types.items():
624            v = self.args.get(k)
625            if mandatory and (v is None or (isinstance(v, list) and not v)):
626                errors.append(f"Required keyword: '{k}' missing for {self.__class__}")
627
628        if (
629            args
630            and isinstance(self, Func)
631            and len(args) > len(self.arg_types)
632            and not self.is_var_len_args
633        ):
634            errors.append(
635                f"The number of provided arguments ({len(args)}) is greater than "
636                f"the maximum number of supported arguments ({len(self.arg_types)})"
637            )
638
639        return errors

Checks if this expression is valid (e.g. all mandatory args are set).

Arguments:
  • args: a sequence of values that were used to instantiate a Func expression. This is used to check that the provided arguments don't exceed the function argument limit.
Returns:

A list of error messages for all possible errors that were found.

def dump(self):
641    def dump(self):
642        """
643        Dump this Expression to a JSON-serializable dict.
644        """
645        from sqlglot.serde import dump
646
647        return dump(self)

Dump this Expression to a JSON-serializable dict.

@classmethod
def load(cls, obj):
649    @classmethod
650    def load(cls, obj):
651        """
652        Load a dict (as returned by `Expression.dump`) into an Expression instance.
653        """
654        from sqlglot.serde import load
655
656        return load(obj)

Load a dict (as returned by Expression.dump) into an Expression instance.

class Condition(Expression):
667class Condition(Expression):
668    def and_(
669        self,
670        *expressions: t.Optional[ExpOrStr],
671        dialect: DialectType = None,
672        copy: bool = True,
673        **opts,
674    ) -> Condition:
675        """
676        AND this condition with one or multiple expressions.
677
678        Example:
679            >>> condition("x=1").and_("y=1").sql()
680            'x = 1 AND y = 1'
681
682        Args:
683            *expressions: the SQL code strings to parse.
684                If an `Expression` instance is passed, it will be used as-is.
685            dialect: the dialect used to parse the input expression.
686            copy: whether or not to copy the involved expressions (only applies to Expressions).
687            opts: other options to use to parse the input expressions.
688
689        Returns:
690            The new And condition.
691        """
692        return and_(self, *expressions, dialect=dialect, copy=copy, **opts)
693
694    def or_(
695        self,
696        *expressions: t.Optional[ExpOrStr],
697        dialect: DialectType = None,
698        copy: bool = True,
699        **opts,
700    ) -> Condition:
701        """
702        OR this condition with one or multiple expressions.
703
704        Example:
705            >>> condition("x=1").or_("y=1").sql()
706            'x = 1 OR y = 1'
707
708        Args:
709            *expressions: the SQL code strings to parse.
710                If an `Expression` instance is passed, it will be used as-is.
711            dialect: the dialect used to parse the input expression.
712            copy: whether or not to copy the involved expressions (only applies to Expressions).
713            opts: other options to use to parse the input expressions.
714
715        Returns:
716            The new Or condition.
717        """
718        return or_(self, *expressions, dialect=dialect, copy=copy, **opts)
719
720    def not_(self, copy: bool = True):
721        """
722        Wrap this condition with NOT.
723
724        Example:
725            >>> condition("x=1").not_().sql()
726            'NOT x = 1'
727
728        Args:
729            copy: whether or not to copy this object.
730
731        Returns:
732            The new Not instance.
733        """
734        return not_(self, copy=copy)
735
736    def as_(
737        self,
738        alias: str | Identifier,
739        quoted: t.Optional[bool] = None,
740        dialect: DialectType = None,
741        copy: bool = True,
742        **opts,
743    ) -> Alias:
744        return alias_(self, alias, quoted=quoted, dialect=dialect, copy=copy, **opts)
745
746    def _binop(self, klass: t.Type[E], other: t.Any, reverse: bool = False) -> E:
747        this = self.copy()
748        other = convert(other, copy=True)
749        if not isinstance(this, klass) and not isinstance(other, klass):
750            this = _wrap(this, Binary)
751            other = _wrap(other, Binary)
752        if reverse:
753            return klass(this=other, expression=this)
754        return klass(this=this, expression=other)
755
756    def __getitem__(self, other: ExpOrStr | t.Tuple[ExpOrStr]):
757        return Bracket(
758            this=self.copy(), expressions=[convert(e, copy=True) for e in ensure_list(other)]
759        )
760
761    def isin(
762        self, *expressions: t.Any, query: t.Optional[ExpOrStr] = None, copy: bool = True, **opts
763    ) -> In:
764        return In(
765            this=_maybe_copy(self, copy),
766            expressions=[convert(e, copy=copy) for e in expressions],
767            query=maybe_parse(query, copy=copy, **opts) if query else None,
768        )
769
770    def between(self, low: t.Any, high: t.Any, copy: bool = True, **opts) -> Between:
771        return Between(
772            this=_maybe_copy(self, copy),
773            low=convert(low, copy=copy, **opts),
774            high=convert(high, copy=copy, **opts),
775        )
776
777    def is_(self, other: ExpOrStr) -> Is:
778        return self._binop(Is, other)
779
780    def like(self, other: ExpOrStr) -> Like:
781        return self._binop(Like, other)
782
783    def ilike(self, other: ExpOrStr) -> ILike:
784        return self._binop(ILike, other)
785
786    def eq(self, other: t.Any) -> EQ:
787        return self._binop(EQ, other)
788
789    def neq(self, other: t.Any) -> NEQ:
790        return self._binop(NEQ, other)
791
792    def rlike(self, other: ExpOrStr) -> RegexpLike:
793        return self._binop(RegexpLike, other)
794
795    def __lt__(self, other: t.Any) -> LT:
796        return self._binop(LT, other)
797
798    def __le__(self, other: t.Any) -> LTE:
799        return self._binop(LTE, other)
800
801    def __gt__(self, other: t.Any) -> GT:
802        return self._binop(GT, other)
803
804    def __ge__(self, other: t.Any) -> GTE:
805        return self._binop(GTE, other)
806
807    def __add__(self, other: t.Any) -> Add:
808        return self._binop(Add, other)
809
810    def __radd__(self, other: t.Any) -> Add:
811        return self._binop(Add, other, reverse=True)
812
813    def __sub__(self, other: t.Any) -> Sub:
814        return self._binop(Sub, other)
815
816    def __rsub__(self, other: t.Any) -> Sub:
817        return self._binop(Sub, other, reverse=True)
818
819    def __mul__(self, other: t.Any) -> Mul:
820        return self._binop(Mul, other)
821
822    def __rmul__(self, other: t.Any) -> Mul:
823        return self._binop(Mul, other, reverse=True)
824
825    def __truediv__(self, other: t.Any) -> Div:
826        return self._binop(Div, other)
827
828    def __rtruediv__(self, other: t.Any) -> Div:
829        return self._binop(Div, other, reverse=True)
830
831    def __floordiv__(self, other: t.Any) -> IntDiv:
832        return self._binop(IntDiv, other)
833
834    def __rfloordiv__(self, other: t.Any) -> IntDiv:
835        return self._binop(IntDiv, other, reverse=True)
836
837    def __mod__(self, other: t.Any) -> Mod:
838        return self._binop(Mod, other)
839
840    def __rmod__(self, other: t.Any) -> Mod:
841        return self._binop(Mod, other, reverse=True)
842
843    def __pow__(self, other: t.Any) -> Pow:
844        return self._binop(Pow, other)
845
846    def __rpow__(self, other: t.Any) -> Pow:
847        return self._binop(Pow, other, reverse=True)
848
849    def __and__(self, other: t.Any) -> And:
850        return self._binop(And, other)
851
852    def __rand__(self, other: t.Any) -> And:
853        return self._binop(And, other, reverse=True)
854
855    def __or__(self, other: t.Any) -> Or:
856        return self._binop(Or, other)
857
858    def __ror__(self, other: t.Any) -> Or:
859        return self._binop(Or, other, reverse=True)
860
861    def __neg__(self) -> Neg:
862        return Neg(this=_wrap(self.copy(), Binary))
863
864    def __invert__(self) -> Not:
865        return not_(self.copy())
def and_( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Condition:
668    def and_(
669        self,
670        *expressions: t.Optional[ExpOrStr],
671        dialect: DialectType = None,
672        copy: bool = True,
673        **opts,
674    ) -> Condition:
675        """
676        AND this condition with one or multiple expressions.
677
678        Example:
679            >>> condition("x=1").and_("y=1").sql()
680            'x = 1 AND y = 1'
681
682        Args:
683            *expressions: the SQL code strings to parse.
684                If an `Expression` instance is passed, it will be used as-is.
685            dialect: the dialect used to parse the input expression.
686            copy: whether or not to copy the involved expressions (only applies to Expressions).
687            opts: other options to use to parse the input expressions.
688
689        Returns:
690            The new And condition.
691        """
692        return and_(self, *expressions, dialect=dialect, copy=copy, **opts)

AND this condition with one or multiple expressions.

Example:
>>> condition("x=1").and_("y=1").sql()
'x = 1 AND y = 1'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether or not to copy the involved expressions (only applies to Expressions).
  • opts: other options to use to parse the input expressions.
Returns:

The new And condition.

def or_( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Condition:
694    def or_(
695        self,
696        *expressions: t.Optional[ExpOrStr],
697        dialect: DialectType = None,
698        copy: bool = True,
699        **opts,
700    ) -> Condition:
701        """
702        OR this condition with one or multiple expressions.
703
704        Example:
705            >>> condition("x=1").or_("y=1").sql()
706            'x = 1 OR y = 1'
707
708        Args:
709            *expressions: the SQL code strings to parse.
710                If an `Expression` instance is passed, it will be used as-is.
711            dialect: the dialect used to parse the input expression.
712            copy: whether or not to copy the involved expressions (only applies to Expressions).
713            opts: other options to use to parse the input expressions.
714
715        Returns:
716            The new Or condition.
717        """
718        return or_(self, *expressions, dialect=dialect, copy=copy, **opts)

OR this condition with one or multiple expressions.

Example:
>>> condition("x=1").or_("y=1").sql()
'x = 1 OR y = 1'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether or not to copy the involved expressions (only applies to Expressions).
  • opts: other options to use to parse the input expressions.
Returns:

The new Or condition.

def not_(self, copy: bool = True):
720    def not_(self, copy: bool = True):
721        """
722        Wrap this condition with NOT.
723
724        Example:
725            >>> condition("x=1").not_().sql()
726            'NOT x = 1'
727
728        Args:
729            copy: whether or not to copy this object.
730
731        Returns:
732            The new Not instance.
733        """
734        return not_(self, copy=copy)

Wrap this condition with NOT.

Example:
>>> condition("x=1").not_().sql()
'NOT x = 1'
Arguments:
  • copy: whether or not to copy this object.
Returns:

The new Not instance.

def as_( self, alias: str | sqlglot.expressions.Identifier, quoted: Optional[bool] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Alias:
736    def as_(
737        self,
738        alias: str | Identifier,
739        quoted: t.Optional[bool] = None,
740        dialect: DialectType = None,
741        copy: bool = True,
742        **opts,
743    ) -> Alias:
744        return alias_(self, alias, quoted=quoted, dialect=dialect, copy=copy, **opts)
def isin( self, *expressions: Any, query: Union[str, sqlglot.expressions.Expression, NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.In:
761    def isin(
762        self, *expressions: t.Any, query: t.Optional[ExpOrStr] = None, copy: bool = True, **opts
763    ) -> In:
764        return In(
765            this=_maybe_copy(self, copy),
766            expressions=[convert(e, copy=copy) for e in expressions],
767            query=maybe_parse(query, copy=copy, **opts) if query else None,
768        )
def between( self, low: Any, high: Any, copy: bool = True, **opts) -> sqlglot.expressions.Between:
770    def between(self, low: t.Any, high: t.Any, copy: bool = True, **opts) -> Between:
771        return Between(
772            this=_maybe_copy(self, copy),
773            low=convert(low, copy=copy, **opts),
774            high=convert(high, copy=copy, **opts),
775        )
def is_( self, other: Union[str, sqlglot.expressions.Expression]) -> sqlglot.expressions.Is:
777    def is_(self, other: ExpOrStr) -> Is:
778        return self._binop(Is, other)
def like( self, other: Union[str, sqlglot.expressions.Expression]) -> sqlglot.expressions.Like:
780    def like(self, other: ExpOrStr) -> Like:
781        return self._binop(Like, other)
def ilike( self, other: Union[str, sqlglot.expressions.Expression]) -> sqlglot.expressions.ILike:
783    def ilike(self, other: ExpOrStr) -> ILike:
784        return self._binop(ILike, other)
def eq(self, other: Any) -> sqlglot.expressions.EQ:
786    def eq(self, other: t.Any) -> EQ:
787        return self._binop(EQ, other)
def neq(self, other: Any) -> sqlglot.expressions.NEQ:
789    def neq(self, other: t.Any) -> NEQ:
790        return self._binop(NEQ, other)
def rlike( self, other: Union[str, sqlglot.expressions.Expression]) -> sqlglot.expressions.RegexpLike:
792    def rlike(self, other: ExpOrStr) -> RegexpLike:
793        return self._binop(RegexpLike, other)
class Predicate(Condition):
868class Predicate(Condition):
869    """Relationships like x = y, x > 1, x >= y."""

Relationships like x = y, x > 1, x >= y.

class DerivedTable(Expression):
872class DerivedTable(Expression):
873    @property
874    def alias_column_names(self) -> t.List[str]:
875        table_alias = self.args.get("alias")
876        if not table_alias:
877            return []
878        return [c.name for c in table_alias.args.get("columns") or []]
879
880    @property
881    def selects(self):
882        return self.this.selects if isinstance(self.this, Subqueryable) else []
883
884    @property
885    def named_selects(self):
886        return [select.output_name for select in self.selects]
class Unionable(Expression):
889class Unionable(Expression):
890    def union(
891        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
892    ) -> Unionable:
893        """
894        Builds a UNION expression.
895
896        Example:
897            >>> import sqlglot
898            >>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
899            'SELECT * FROM foo UNION SELECT * FROM bla'
900
901        Args:
902            expression: the SQL code string.
903                If an `Expression` instance is passed, it will be used as-is.
904            distinct: set the DISTINCT flag if and only if this is true.
905            dialect: the dialect used to parse the input expression.
906            opts: other options to use to parse the input expressions.
907
908        Returns:
909            The new Union expression.
910        """
911        return union(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
912
913    def intersect(
914        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
915    ) -> Unionable:
916        """
917        Builds an INTERSECT expression.
918
919        Example:
920            >>> import sqlglot
921            >>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
922            'SELECT * FROM foo INTERSECT SELECT * FROM bla'
923
924        Args:
925            expression: the SQL code string.
926                If an `Expression` instance is passed, it will be used as-is.
927            distinct: set the DISTINCT flag if and only if this is true.
928            dialect: the dialect used to parse the input expression.
929            opts: other options to use to parse the input expressions.
930
931        Returns:
932            The new Intersect expression.
933        """
934        return intersect(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
935
936    def except_(
937        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
938    ) -> Unionable:
939        """
940        Builds an EXCEPT expression.
941
942        Example:
943            >>> import sqlglot
944            >>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
945            'SELECT * FROM foo EXCEPT SELECT * FROM bla'
946
947        Args:
948            expression: the SQL code string.
949                If an `Expression` instance is passed, it will be used as-is.
950            distinct: set the DISTINCT flag if and only if this is true.
951            dialect: the dialect used to parse the input expression.
952            opts: other options to use to parse the input expressions.
953
954        Returns:
955            The new Except expression.
956        """
957        return except_(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)
def union( self, expression: Union[str, sqlglot.expressions.Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Unionable:
890    def union(
891        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
892    ) -> Unionable:
893        """
894        Builds a UNION expression.
895
896        Example:
897            >>> import sqlglot
898            >>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
899            'SELECT * FROM foo UNION SELECT * FROM bla'
900
901        Args:
902            expression: the SQL code string.
903                If an `Expression` instance is passed, it will be used as-is.
904            distinct: set the DISTINCT flag if and only if this is true.
905            dialect: the dialect used to parse the input expression.
906            opts: other options to use to parse the input expressions.
907
908        Returns:
909            The new Union expression.
910        """
911        return union(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)

Builds a UNION expression.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("SELECT * FROM foo").union("SELECT * FROM bla").sql()
'SELECT * FROM foo UNION SELECT * FROM bla'
Arguments:
  • expression: the SQL code string. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Union expression.

def intersect( self, expression: Union[str, sqlglot.expressions.Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Unionable:
913    def intersect(
914        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
915    ) -> Unionable:
916        """
917        Builds an INTERSECT expression.
918
919        Example:
920            >>> import sqlglot
921            >>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
922            'SELECT * FROM foo INTERSECT SELECT * FROM bla'
923
924        Args:
925            expression: the SQL code string.
926                If an `Expression` instance is passed, it will be used as-is.
927            distinct: set the DISTINCT flag if and only if this is true.
928            dialect: the dialect used to parse the input expression.
929            opts: other options to use to parse the input expressions.
930
931        Returns:
932            The new Intersect expression.
933        """
934        return intersect(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)

Builds an INTERSECT expression.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("SELECT * FROM foo").intersect("SELECT * FROM bla").sql()
'SELECT * FROM foo INTERSECT SELECT * FROM bla'
Arguments:
  • expression: the SQL code string. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Intersect expression.

def except_( self, expression: Union[str, sqlglot.expressions.Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Unionable:
936    def except_(
937        self, expression: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
938    ) -> Unionable:
939        """
940        Builds an EXCEPT expression.
941
942        Example:
943            >>> import sqlglot
944            >>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
945            'SELECT * FROM foo EXCEPT SELECT * FROM bla'
946
947        Args:
948            expression: the SQL code string.
949                If an `Expression` instance is passed, it will be used as-is.
950            distinct: set the DISTINCT flag if and only if this is true.
951            dialect: the dialect used to parse the input expression.
952            opts: other options to use to parse the input expressions.
953
954        Returns:
955            The new Except expression.
956        """
957        return except_(left=self, right=expression, distinct=distinct, dialect=dialect, **opts)

Builds an EXCEPT expression.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("SELECT * FROM foo").except_("SELECT * FROM bla").sql()
'SELECT * FROM foo EXCEPT SELECT * FROM bla'
Arguments:
  • expression: the SQL code string. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Except expression.

class UDTF(DerivedTable, Unionable):
960class UDTF(DerivedTable, Unionable):
961    @property
962    def selects(self):
963        alias = self.args.get("alias")
964        return alias.columns if alias else []
class Cache(Expression):
967class Cache(Expression):
968    arg_types = {
969        "with": False,
970        "this": True,
971        "lazy": False,
972        "options": False,
973        "expression": False,
974    }
class Uncache(Expression):
977class Uncache(Expression):
978    arg_types = {"this": True, "exists": False}
class Create(Expression):
981class Create(Expression):
982    arg_types = {
983        "with": False,
984        "this": True,
985        "kind": True,
986        "expression": False,
987        "exists": False,
988        "properties": False,
989        "replace": False,
990        "unique": False,
991        "indexes": False,
992        "no_schema_binding": False,
993        "begin": False,
994        "clone": False,
995    }
class Clone(Expression):
 999class Clone(Expression):
1000    arg_types = {
1001        "this": True,
1002        "when": False,
1003        "kind": False,
1004        "expression": False,
1005    }
class Describe(Expression):
1008class Describe(Expression):
1009    arg_types = {"this": True, "kind": False}
class Pragma(Expression):
1012class Pragma(Expression):
1013    pass
class Set(Expression):
1016class Set(Expression):
1017    arg_types = {"expressions": False}
class SetItem(Expression):
1020class SetItem(Expression):
1021    arg_types = {
1022        "this": False,
1023        "expressions": False,
1024        "kind": False,
1025        "collate": False,  # MySQL SET NAMES statement
1026        "global": False,
1027    }
class Show(Expression):
1030class Show(Expression):
1031    arg_types = {
1032        "this": True,
1033        "target": False,
1034        "offset": False,
1035        "limit": False,
1036        "like": False,
1037        "where": False,
1038        "db": False,
1039        "full": False,
1040        "mutex": False,
1041        "query": False,
1042        "channel": False,
1043        "global": False,
1044        "log": False,
1045        "position": False,
1046        "types": False,
1047    }
class UserDefinedFunction(Expression):
1050class UserDefinedFunction(Expression):
1051    arg_types = {"this": True, "expressions": False, "wrapped": False}
class CharacterSet(Expression):
1054class CharacterSet(Expression):
1055    arg_types = {"this": True, "default": False}
class With(Expression):
1058class With(Expression):
1059    arg_types = {"expressions": True, "recursive": False}
1060
1061    @property
1062    def recursive(self) -> bool:
1063        return bool(self.args.get("recursive"))
class WithinGroup(Expression):
1066class WithinGroup(Expression):
1067    arg_types = {"this": True, "expression": False}
class CTE(DerivedTable):
1070class CTE(DerivedTable):
1071    arg_types = {"this": True, "alias": True}
class TableAlias(Expression):
1074class TableAlias(Expression):
1075    arg_types = {"this": False, "columns": False}
1076
1077    @property
1078    def columns(self):
1079        return self.args.get("columns") or []
class BitString(Condition):
1082class BitString(Condition):
1083    pass
class HexString(Condition):
1086class HexString(Condition):
1087    pass
class ByteString(Condition):
1090class ByteString(Condition):
1091    pass
class RawString(Condition):
1094class RawString(Condition):
1095    pass
class Column(Condition):
1098class Column(Condition):
1099    arg_types = {"this": True, "table": False, "db": False, "catalog": False, "join_mark": False}
1100
1101    @property
1102    def table(self) -> str:
1103        return self.text("table")
1104
1105    @property
1106    def db(self) -> str:
1107        return self.text("db")
1108
1109    @property
1110    def catalog(self) -> str:
1111        return self.text("catalog")
1112
1113    @property
1114    def output_name(self) -> str:
1115        return self.name
1116
1117    @property
1118    def parts(self) -> t.List[Identifier]:
1119        """Return the parts of a column in order catalog, db, table, name."""
1120        return [
1121            t.cast(Identifier, self.args[part])
1122            for part in ("catalog", "db", "table", "this")
1123            if self.args.get(part)
1124        ]
1125
1126    def to_dot(self) -> Dot:
1127        """Converts the column into a dot expression."""
1128        parts = self.parts
1129        parent = self.parent
1130
1131        while parent:
1132            if isinstance(parent, Dot):
1133                parts.append(parent.expression)
1134            parent = parent.parent
1135
1136        return Dot.build(parts)
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''

Return the parts of a column in order catalog, db, table, name.

def to_dot(self) -> sqlglot.expressions.Dot:
1126    def to_dot(self) -> Dot:
1127        """Converts the column into a dot expression."""
1128        parts = self.parts
1129        parent = self.parent
1130
1131        while parent:
1132            if isinstance(parent, Dot):
1133                parts.append(parent.expression)
1134            parent = parent.parent
1135
1136        return Dot.build(parts)

Converts the column into a dot expression.

class ColumnPosition(Expression):
1139class ColumnPosition(Expression):
1140    arg_types = {"this": False, "position": True}
class ColumnDef(Expression):
1143class ColumnDef(Expression):
1144    arg_types = {
1145        "this": True,
1146        "kind": False,
1147        "constraints": False,
1148        "exists": False,
1149        "position": False,
1150    }
1151
1152    @property
1153    def constraints(self) -> t.List[ColumnConstraint]:
1154        return self.args.get("constraints") or []
class AlterColumn(Expression):
1157class AlterColumn(Expression):
1158    arg_types = {
1159        "this": True,
1160        "dtype": False,
1161        "collate": False,
1162        "using": False,
1163        "default": False,
1164        "drop": False,
1165    }
class RenameTable(Expression):
1168class RenameTable(Expression):
1169    pass
class SetTag(Expression):
1172class SetTag(Expression):
1173    arg_types = {"expressions": True, "unset": False}
class Comment(Expression):
1176class Comment(Expression):
1177    arg_types = {"this": True, "kind": True, "expression": True, "exists": False}
class MergeTreeTTLAction(Expression):
1181class MergeTreeTTLAction(Expression):
1182    arg_types = {
1183        "this": True,
1184        "delete": False,
1185        "recompress": False,
1186        "to_disk": False,
1187        "to_volume": False,
1188    }
class MergeTreeTTL(Expression):
1192class MergeTreeTTL(Expression):
1193    arg_types = {
1194        "expressions": True,
1195        "where": False,
1196        "group": False,
1197        "aggregates": False,
1198    }
class ColumnConstraint(Expression):
1201class ColumnConstraint(Expression):
1202    arg_types = {"this": False, "kind": True}
1203
1204    @property
1205    def kind(self) -> ColumnConstraintKind:
1206        return self.args["kind"]
class ColumnConstraintKind(Expression):
1209class ColumnConstraintKind(Expression):
1210    pass
class AutoIncrementColumnConstraint(ColumnConstraintKind):
1213class AutoIncrementColumnConstraint(ColumnConstraintKind):
1214    pass
class CaseSpecificColumnConstraint(ColumnConstraintKind):
1217class CaseSpecificColumnConstraint(ColumnConstraintKind):
1218    arg_types = {"not_": True}
class CharacterSetColumnConstraint(ColumnConstraintKind):
1221class CharacterSetColumnConstraint(ColumnConstraintKind):
1222    arg_types = {"this": True}
class CheckColumnConstraint(ColumnConstraintKind):
1225class CheckColumnConstraint(ColumnConstraintKind):
1226    pass
class CollateColumnConstraint(ColumnConstraintKind):
1229class CollateColumnConstraint(ColumnConstraintKind):
1230    pass
class CommentColumnConstraint(ColumnConstraintKind):
1233class CommentColumnConstraint(ColumnConstraintKind):
1234    pass
class CompressColumnConstraint(ColumnConstraintKind):
1237class CompressColumnConstraint(ColumnConstraintKind):
1238    pass
class DateFormatColumnConstraint(ColumnConstraintKind):
1241class DateFormatColumnConstraint(ColumnConstraintKind):
1242    arg_types = {"this": True}
class DefaultColumnConstraint(ColumnConstraintKind):
1245class DefaultColumnConstraint(ColumnConstraintKind):
1246    pass
class EncodeColumnConstraint(ColumnConstraintKind):
1249class EncodeColumnConstraint(ColumnConstraintKind):
1250    pass
class GeneratedAsIdentityColumnConstraint(ColumnConstraintKind):
1253class GeneratedAsIdentityColumnConstraint(ColumnConstraintKind):
1254    # this: True -> ALWAYS, this: False -> BY DEFAULT
1255    arg_types = {
1256        "this": False,
1257        "expression": False,
1258        "on_null": False,
1259        "start": False,
1260        "increment": False,
1261        "minvalue": False,
1262        "maxvalue": False,
1263        "cycle": False,
1264    }
class InlineLengthColumnConstraint(ColumnConstraintKind):
1267class InlineLengthColumnConstraint(ColumnConstraintKind):
1268    pass
class NotNullColumnConstraint(ColumnConstraintKind):
1271class NotNullColumnConstraint(ColumnConstraintKind):
1272    arg_types = {"allow_null": False}
class OnUpdateColumnConstraint(ColumnConstraintKind):
1276class OnUpdateColumnConstraint(ColumnConstraintKind):
1277    pass
class PrimaryKeyColumnConstraint(ColumnConstraintKind):
1280class PrimaryKeyColumnConstraint(ColumnConstraintKind):
1281    arg_types = {"desc": False}
class TitleColumnConstraint(ColumnConstraintKind):
1284class TitleColumnConstraint(ColumnConstraintKind):
1285    pass
class UniqueColumnConstraint(ColumnConstraintKind):
1288class UniqueColumnConstraint(ColumnConstraintKind):
1289    arg_types = {"this": False}
class UppercaseColumnConstraint(ColumnConstraintKind):
1292class UppercaseColumnConstraint(ColumnConstraintKind):
1293    arg_types: t.Dict[str, t.Any] = {}
class PathColumnConstraint(ColumnConstraintKind):
1296class PathColumnConstraint(ColumnConstraintKind):
1297    pass
class Constraint(Expression):
1300class Constraint(Expression):
1301    arg_types = {"this": True, "expressions": True}
class Delete(Expression):
1304class Delete(Expression):
1305    arg_types = {"with": False, "this": False, "using": False, "where": False, "returning": False}
1306
1307    def delete(
1308        self,
1309        table: ExpOrStr,
1310        dialect: DialectType = None,
1311        copy: bool = True,
1312        **opts,
1313    ) -> Delete:
1314        """
1315        Create a DELETE expression or replace the table on an existing DELETE expression.
1316
1317        Example:
1318            >>> delete("tbl").sql()
1319            'DELETE FROM tbl'
1320
1321        Args:
1322            table: the table from which to delete.
1323            dialect: the dialect used to parse the input expression.
1324            copy: if `False`, modify this expression instance in-place.
1325            opts: other options to use to parse the input expressions.
1326
1327        Returns:
1328            Delete: the modified expression.
1329        """
1330        return _apply_builder(
1331            expression=table,
1332            instance=self,
1333            arg="this",
1334            dialect=dialect,
1335            into=Table,
1336            copy=copy,
1337            **opts,
1338        )
1339
1340    def where(
1341        self,
1342        *expressions: t.Optional[ExpOrStr],
1343        append: bool = True,
1344        dialect: DialectType = None,
1345        copy: bool = True,
1346        **opts,
1347    ) -> Delete:
1348        """
1349        Append to or set the WHERE expressions.
1350
1351        Example:
1352            >>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
1353            "DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
1354
1355        Args:
1356            *expressions: the SQL code strings to parse.
1357                If an `Expression` instance is passed, it will be used as-is.
1358                Multiple expressions are combined with an AND operator.
1359            append: if `True`, AND the new expressions to any existing expression.
1360                Otherwise, this resets the expression.
1361            dialect: the dialect used to parse the input expressions.
1362            copy: if `False`, modify this expression instance in-place.
1363            opts: other options to use to parse the input expressions.
1364
1365        Returns:
1366            Delete: the modified expression.
1367        """
1368        return _apply_conjunction_builder(
1369            *expressions,
1370            instance=self,
1371            arg="where",
1372            append=append,
1373            into=Where,
1374            dialect=dialect,
1375            copy=copy,
1376            **opts,
1377        )
1378
1379    def returning(
1380        self,
1381        expression: ExpOrStr,
1382        dialect: DialectType = None,
1383        copy: bool = True,
1384        **opts,
1385    ) -> Delete:
1386        """
1387        Set the RETURNING expression. Not supported by all dialects.
1388
1389        Example:
1390            >>> delete("tbl").returning("*", dialect="postgres").sql()
1391            'DELETE FROM tbl RETURNING *'
1392
1393        Args:
1394            expression: the SQL code strings to parse.
1395                If an `Expression` instance is passed, it will be used as-is.
1396            dialect: the dialect used to parse the input expressions.
1397            copy: if `False`, modify this expression instance in-place.
1398            opts: other options to use to parse the input expressions.
1399
1400        Returns:
1401            Delete: the modified expression.
1402        """
1403        return _apply_builder(
1404            expression=expression,
1405            instance=self,
1406            arg="returning",
1407            prefix="RETURNING",
1408            dialect=dialect,
1409            copy=copy,
1410            into=Returning,
1411            **opts,
1412        )
def delete( self, table: Union[str, sqlglot.expressions.Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Delete:
1307    def delete(
1308        self,
1309        table: ExpOrStr,
1310        dialect: DialectType = None,
1311        copy: bool = True,
1312        **opts,
1313    ) -> Delete:
1314        """
1315        Create a DELETE expression or replace the table on an existing DELETE expression.
1316
1317        Example:
1318            >>> delete("tbl").sql()
1319            'DELETE FROM tbl'
1320
1321        Args:
1322            table: the table from which to delete.
1323            dialect: the dialect used to parse the input expression.
1324            copy: if `False`, modify this expression instance in-place.
1325            opts: other options to use to parse the input expressions.
1326
1327        Returns:
1328            Delete: the modified expression.
1329        """
1330        return _apply_builder(
1331            expression=table,
1332            instance=self,
1333            arg="this",
1334            dialect=dialect,
1335            into=Table,
1336            copy=copy,
1337            **opts,
1338        )

Create a DELETE expression or replace the table on an existing DELETE expression.

Example:
>>> delete("tbl").sql()
'DELETE FROM tbl'
Arguments:
  • table: the table from which to delete.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Delete: the modified expression.

def where( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Delete:
1340    def where(
1341        self,
1342        *expressions: t.Optional[ExpOrStr],
1343        append: bool = True,
1344        dialect: DialectType = None,
1345        copy: bool = True,
1346        **opts,
1347    ) -> Delete:
1348        """
1349        Append to or set the WHERE expressions.
1350
1351        Example:
1352            >>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
1353            "DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
1354
1355        Args:
1356            *expressions: the SQL code strings to parse.
1357                If an `Expression` instance is passed, it will be used as-is.
1358                Multiple expressions are combined with an AND operator.
1359            append: if `True`, AND the new expressions to any existing expression.
1360                Otherwise, this resets the expression.
1361            dialect: the dialect used to parse the input expressions.
1362            copy: if `False`, modify this expression instance in-place.
1363            opts: other options to use to parse the input expressions.
1364
1365        Returns:
1366            Delete: the modified expression.
1367        """
1368        return _apply_conjunction_builder(
1369            *expressions,
1370            instance=self,
1371            arg="where",
1372            append=append,
1373            into=Where,
1374            dialect=dialect,
1375            copy=copy,
1376            **opts,
1377        )

Append to or set the WHERE expressions.

Example:
>>> delete("tbl").where("x = 'a' OR x < 'b'").sql()
"DELETE FROM tbl WHERE x = 'a' OR x < 'b'"
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Delete: the modified expression.

def returning( self, expression: Union[str, sqlglot.expressions.Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Delete:
1379    def returning(
1380        self,
1381        expression: ExpOrStr,
1382        dialect: DialectType = None,
1383        copy: bool = True,
1384        **opts,
1385    ) -> Delete:
1386        """
1387        Set the RETURNING expression. Not supported by all dialects.
1388
1389        Example:
1390            >>> delete("tbl").returning("*", dialect="postgres").sql()
1391            'DELETE FROM tbl RETURNING *'
1392
1393        Args:
1394            expression: the SQL code strings to parse.
1395                If an `Expression` instance is passed, it will be used as-is.
1396            dialect: the dialect used to parse the input expressions.
1397            copy: if `False`, modify this expression instance in-place.
1398            opts: other options to use to parse the input expressions.
1399
1400        Returns:
1401            Delete: the modified expression.
1402        """
1403        return _apply_builder(
1404            expression=expression,
1405            instance=self,
1406            arg="returning",
1407            prefix="RETURNING",
1408            dialect=dialect,
1409            copy=copy,
1410            into=Returning,
1411            **opts,
1412        )

Set the RETURNING expression. Not supported by all dialects.

Example:
>>> delete("tbl").returning("*", dialect="postgres").sql()
'DELETE FROM tbl RETURNING *'
Arguments:
  • expression: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Delete: the modified expression.

class Drop(Expression):
1415class Drop(Expression):
1416    arg_types = {
1417        "this": False,
1418        "kind": False,
1419        "exists": False,
1420        "temporary": False,
1421        "materialized": False,
1422        "cascade": False,
1423        "constraints": False,
1424        "purge": False,
1425    }
class Filter(Expression):
1428class Filter(Expression):
1429    arg_types = {"this": True, "expression": True}
class Check(Expression):
1432class Check(Expression):
1433    pass
class Directory(Expression):
1436class Directory(Expression):
1437    # https://spark.apache.org/docs/3.0.0-preview/sql-ref-syntax-dml-insert-overwrite-directory-hive.html
1438    arg_types = {"this": True, "local": False, "row_format": False}
class ForeignKey(Expression):
1441class ForeignKey(Expression):
1442    arg_types = {
1443        "expressions": True,
1444        "reference": False,
1445        "delete": False,
1446        "update": False,
1447    }
class PrimaryKey(Expression):
1450class PrimaryKey(Expression):
1451    arg_types = {"expressions": True, "options": False}
class Into(Expression):
1456class Into(Expression):
1457    arg_types = {"this": True, "temporary": False, "unlogged": False}
class From(Expression):
1460class From(Expression):
1461    @property
1462    def name(self) -> str:
1463        return self.this.name
1464
1465    @property
1466    def alias_or_name(self) -> str:
1467        return self.this.alias_or_name
class Having(Expression):
1470class Having(Expression):
1471    pass
class Hint(Expression):
1474class Hint(Expression):
1475    arg_types = {"expressions": True}
class JoinHint(Expression):
1478class JoinHint(Expression):
1479    arg_types = {"this": True, "expressions": True}
class Identifier(Expression):
1482class Identifier(Expression):
1483    arg_types = {"this": True, "quoted": False}
1484
1485    @property
1486    def quoted(self) -> bool:
1487        return bool(self.args.get("quoted"))
1488
1489    @property
1490    def hashable_args(self) -> t.Any:
1491        if self.quoted and any(char.isupper() for char in self.this):
1492            return (self.this, self.quoted)
1493        return self.this.lower()
1494
1495    @property
1496    def output_name(self) -> str:
1497        return self.name
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
class Index(Expression):
1500class Index(Expression):
1501    arg_types = {
1502        "this": False,
1503        "table": False,
1504        "using": False,
1505        "where": False,
1506        "columns": False,
1507        "unique": False,
1508        "primary": False,
1509        "amp": False,  # teradata
1510        "partition_by": False,  # teradata
1511    }
class Insert(Expression):
1514class Insert(Expression):
1515    arg_types = {
1516        "with": False,
1517        "this": True,
1518        "expression": False,
1519        "conflict": False,
1520        "returning": False,
1521        "overwrite": False,
1522        "exists": False,
1523        "partition": False,
1524        "alternative": False,
1525    }
1526
1527    def with_(
1528        self,
1529        alias: ExpOrStr,
1530        as_: ExpOrStr,
1531        recursive: t.Optional[bool] = None,
1532        append: bool = True,
1533        dialect: DialectType = None,
1534        copy: bool = True,
1535        **opts,
1536    ) -> Insert:
1537        """
1538        Append to or set the common table expressions.
1539
1540        Example:
1541            >>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
1542            'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
1543
1544        Args:
1545            alias: the SQL code string to parse as the table name.
1546                If an `Expression` instance is passed, this is used as-is.
1547            as_: the SQL code string to parse as the table expression.
1548                If an `Expression` instance is passed, it will be used as-is.
1549            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
1550            append: if `True`, add to any existing expressions.
1551                Otherwise, this resets the expressions.
1552            dialect: the dialect used to parse the input expression.
1553            copy: if `False`, modify this expression instance in-place.
1554            opts: other options to use to parse the input expressions.
1555
1556        Returns:
1557            The modified expression.
1558        """
1559        return _apply_cte_builder(
1560            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
1561        )
def with_( self, alias: Union[str, sqlglot.expressions.Expression], as_: Union[str, sqlglot.expressions.Expression], recursive: Optional[bool] = None, append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Insert:
1527    def with_(
1528        self,
1529        alias: ExpOrStr,
1530        as_: ExpOrStr,
1531        recursive: t.Optional[bool] = None,
1532        append: bool = True,
1533        dialect: DialectType = None,
1534        copy: bool = True,
1535        **opts,
1536    ) -> Insert:
1537        """
1538        Append to or set the common table expressions.
1539
1540        Example:
1541            >>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
1542            'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
1543
1544        Args:
1545            alias: the SQL code string to parse as the table name.
1546                If an `Expression` instance is passed, this is used as-is.
1547            as_: the SQL code string to parse as the table expression.
1548                If an `Expression` instance is passed, it will be used as-is.
1549            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
1550            append: if `True`, add to any existing expressions.
1551                Otherwise, this resets the expressions.
1552            dialect: the dialect used to parse the input expression.
1553            copy: if `False`, modify this expression instance in-place.
1554            opts: other options to use to parse the input expressions.
1555
1556        Returns:
1557            The modified expression.
1558        """
1559        return _apply_cte_builder(
1560            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
1561        )

Append to or set the common table expressions.

Example:
>>> insert("SELECT x FROM cte", "t").with_("cte", as_="SELECT * FROM tbl").sql()
'WITH cte AS (SELECT * FROM tbl) INSERT INTO t SELECT x FROM cte'
Arguments:
  • alias: the SQL code string to parse as the table name. If an Expression instance is passed, this is used as-is.
  • as_: the SQL code string to parse as the table expression. If an Expression instance is passed, it will be used as-is.
  • recursive: set the RECURSIVE part of the expression. Defaults to False.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified expression.

class OnConflict(Expression):
1564class OnConflict(Expression):
1565    arg_types = {
1566        "duplicate": False,
1567        "expressions": False,
1568        "nothing": False,
1569        "key": False,
1570        "constraint": False,
1571    }
class Returning(Expression):
1574class Returning(Expression):
1575    arg_types = {"expressions": True}
class Introducer(Expression):
1579class Introducer(Expression):
1580    arg_types = {"this": True, "expression": True}
class National(Expression):
1584class National(Expression):
1585    pass
class LoadData(Expression):
1588class LoadData(Expression):
1589    arg_types = {
1590        "this": True,
1591        "local": False,
1592        "overwrite": False,
1593        "inpath": True,
1594        "partition": False,
1595        "input_format": False,
1596        "serde": False,
1597    }
class Partition(Expression):
1600class Partition(Expression):
1601    arg_types = {"expressions": True}
class Fetch(Expression):
1604class Fetch(Expression):
1605    arg_types = {
1606        "direction": False,
1607        "count": False,
1608        "percent": False,
1609        "with_ties": False,
1610    }
class Group(Expression):
1613class Group(Expression):
1614    arg_types = {
1615        "expressions": False,
1616        "grouping_sets": False,
1617        "cube": False,
1618        "rollup": False,
1619        "totals": False,
1620    }
class Lambda(Expression):
1623class Lambda(Expression):
1624    arg_types = {"this": True, "expressions": True}
class Limit(Expression):
1627class Limit(Expression):
1628    arg_types = {"this": False, "expression": True}
class Literal(Condition):
1631class Literal(Condition):
1632    arg_types = {"this": True, "is_string": True}
1633
1634    @property
1635    def hashable_args(self) -> t.Any:
1636        return (self.this, self.args.get("is_string"))
1637
1638    @classmethod
1639    def number(cls, number) -> Literal:
1640        return cls(this=str(number), is_string=False)
1641
1642    @classmethod
1643    def string(cls, string) -> Literal:
1644        return cls(this=str(string), is_string=True)
1645
1646    @property
1647    def output_name(self) -> str:
1648        return self.name
@classmethod
def number(cls, number) -> sqlglot.expressions.Literal:
1638    @classmethod
1639    def number(cls, number) -> Literal:
1640        return cls(this=str(number), is_string=False)
@classmethod
def string(cls, string) -> sqlglot.expressions.Literal:
1642    @classmethod
1643    def string(cls, string) -> Literal:
1644        return cls(this=str(string), is_string=True)
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
class Join(Expression):
1651class Join(Expression):
1652    arg_types = {
1653        "this": True,
1654        "on": False,
1655        "side": False,
1656        "kind": False,
1657        "using": False,
1658        "method": False,
1659        "global": False,
1660        "hint": False,
1661    }
1662
1663    @property
1664    def method(self) -> str:
1665        return self.text("method").upper()
1666
1667    @property
1668    def kind(self) -> str:
1669        return self.text("kind").upper()
1670
1671    @property
1672    def side(self) -> str:
1673        return self.text("side").upper()
1674
1675    @property
1676    def hint(self) -> str:
1677        return self.text("hint").upper()
1678
1679    @property
1680    def alias_or_name(self) -> str:
1681        return self.this.alias_or_name
1682
1683    def on(
1684        self,
1685        *expressions: t.Optional[ExpOrStr],
1686        append: bool = True,
1687        dialect: DialectType = None,
1688        copy: bool = True,
1689        **opts,
1690    ) -> Join:
1691        """
1692        Append to or set the ON expressions.
1693
1694        Example:
1695            >>> import sqlglot
1696            >>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
1697            'JOIN x ON y = 1'
1698
1699        Args:
1700            *expressions: the SQL code strings to parse.
1701                If an `Expression` instance is passed, it will be used as-is.
1702                Multiple expressions are combined with an AND operator.
1703            append: if `True`, AND the new expressions to any existing expression.
1704                Otherwise, this resets the expression.
1705            dialect: the dialect used to parse the input expressions.
1706            copy: if `False`, modify this expression instance in-place.
1707            opts: other options to use to parse the input expressions.
1708
1709        Returns:
1710            The modified Join expression.
1711        """
1712        join = _apply_conjunction_builder(
1713            *expressions,
1714            instance=self,
1715            arg="on",
1716            append=append,
1717            dialect=dialect,
1718            copy=copy,
1719            **opts,
1720        )
1721
1722        if join.kind == "CROSS":
1723            join.set("kind", None)
1724
1725        return join
1726
1727    def using(
1728        self,
1729        *expressions: t.Optional[ExpOrStr],
1730        append: bool = True,
1731        dialect: DialectType = None,
1732        copy: bool = True,
1733        **opts,
1734    ) -> Join:
1735        """
1736        Append to or set the USING expressions.
1737
1738        Example:
1739            >>> import sqlglot
1740            >>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
1741            'JOIN x USING (foo, bla)'
1742
1743        Args:
1744            *expressions: the SQL code strings to parse.
1745                If an `Expression` instance is passed, it will be used as-is.
1746            append: if `True`, concatenate the new expressions to the existing "using" list.
1747                Otherwise, this resets the expression.
1748            dialect: the dialect used to parse the input expressions.
1749            copy: if `False`, modify this expression instance in-place.
1750            opts: other options to use to parse the input expressions.
1751
1752        Returns:
1753            The modified Join expression.
1754        """
1755        join = _apply_list_builder(
1756            *expressions,
1757            instance=self,
1758            arg="using",
1759            append=append,
1760            dialect=dialect,
1761            copy=copy,
1762            **opts,
1763        )
1764
1765        if join.kind == "CROSS":
1766            join.set("kind", None)
1767
1768        return join
def on( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Join:
1683    def on(
1684        self,
1685        *expressions: t.Optional[ExpOrStr],
1686        append: bool = True,
1687        dialect: DialectType = None,
1688        copy: bool = True,
1689        **opts,
1690    ) -> Join:
1691        """
1692        Append to or set the ON expressions.
1693
1694        Example:
1695            >>> import sqlglot
1696            >>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
1697            'JOIN x ON y = 1'
1698
1699        Args:
1700            *expressions: the SQL code strings to parse.
1701                If an `Expression` instance is passed, it will be used as-is.
1702                Multiple expressions are combined with an AND operator.
1703            append: if `True`, AND the new expressions to any existing expression.
1704                Otherwise, this resets the expression.
1705            dialect: the dialect used to parse the input expressions.
1706            copy: if `False`, modify this expression instance in-place.
1707            opts: other options to use to parse the input expressions.
1708
1709        Returns:
1710            The modified Join expression.
1711        """
1712        join = _apply_conjunction_builder(
1713            *expressions,
1714            instance=self,
1715            arg="on",
1716            append=append,
1717            dialect=dialect,
1718            copy=copy,
1719            **opts,
1720        )
1721
1722        if join.kind == "CROSS":
1723            join.set("kind", None)
1724
1725        return join

Append to or set the ON expressions.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("JOIN x", into=Join).on("y = 1").sql()
'JOIN x ON y = 1'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Join expression.

def using( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Join:
1727    def using(
1728        self,
1729        *expressions: t.Optional[ExpOrStr],
1730        append: bool = True,
1731        dialect: DialectType = None,
1732        copy: bool = True,
1733        **opts,
1734    ) -> Join:
1735        """
1736        Append to or set the USING expressions.
1737
1738        Example:
1739            >>> import sqlglot
1740            >>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
1741            'JOIN x USING (foo, bla)'
1742
1743        Args:
1744            *expressions: the SQL code strings to parse.
1745                If an `Expression` instance is passed, it will be used as-is.
1746            append: if `True`, concatenate the new expressions to the existing "using" list.
1747                Otherwise, this resets the expression.
1748            dialect: the dialect used to parse the input expressions.
1749            copy: if `False`, modify this expression instance in-place.
1750            opts: other options to use to parse the input expressions.
1751
1752        Returns:
1753            The modified Join expression.
1754        """
1755        join = _apply_list_builder(
1756            *expressions,
1757            instance=self,
1758            arg="using",
1759            append=append,
1760            dialect=dialect,
1761            copy=copy,
1762            **opts,
1763        )
1764
1765        if join.kind == "CROSS":
1766            join.set("kind", None)
1767
1768        return join

Append to or set the USING expressions.

Example:
>>> import sqlglot
>>> sqlglot.parse_one("JOIN x", into=Join).using("foo", "bla").sql()
'JOIN x USING (foo, bla)'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, concatenate the new expressions to the existing "using" list. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Join expression.

class Lateral(UDTF):
1771class Lateral(UDTF):
1772    arg_types = {"this": True, "view": False, "outer": False, "alias": False}
class MatchRecognize(Expression):
1775class MatchRecognize(Expression):
1776    arg_types = {
1777        "partition_by": False,
1778        "order": False,
1779        "measures": False,
1780        "rows": False,
1781        "after": False,
1782        "pattern": False,
1783        "define": False,
1784        "alias": False,
1785    }
class Final(Expression):
1790class Final(Expression):
1791    pass
class Offset(Expression):
1794class Offset(Expression):
1795    arg_types = {"this": False, "expression": True}
class Order(Expression):
1798class Order(Expression):
1799    arg_types = {"this": False, "expressions": True}
class Cluster(Order):
1804class Cluster(Order):
1805    pass
class Distribute(Order):
1808class Distribute(Order):
1809    pass
class Sort(Order):
1812class Sort(Order):
1813    pass
class Ordered(Expression):
1816class Ordered(Expression):
1817    arg_types = {"this": True, "desc": True, "nulls_first": True}
class Property(Expression):
1820class Property(Expression):
1821    arg_types = {"this": True, "value": True}
class AlgorithmProperty(Property):
1824class AlgorithmProperty(Property):
1825    arg_types = {"this": True}
class AutoIncrementProperty(Property):
1828class AutoIncrementProperty(Property):
1829    arg_types = {"this": True}
class BlockCompressionProperty(Property):
1832class BlockCompressionProperty(Property):
1833    arg_types = {"autotemp": False, "always": False, "default": True, "manual": True, "never": True}
class CharacterSetProperty(Property):
1836class CharacterSetProperty(Property):
1837    arg_types = {"this": True, "default": True}
class ChecksumProperty(Property):
1840class ChecksumProperty(Property):
1841    arg_types = {"on": False, "default": False}
class CollateProperty(Property):
1844class CollateProperty(Property):
1845    arg_types = {"this": True}
class DataBlocksizeProperty(Property):
1848class DataBlocksizeProperty(Property):
1849    arg_types = {
1850        "size": False,
1851        "units": False,
1852        "minimum": False,
1853        "maximum": False,
1854        "default": False,
1855    }
class DefinerProperty(Property):
1858class DefinerProperty(Property):
1859    arg_types = {"this": True}
class DistKeyProperty(Property):
1862class DistKeyProperty(Property):
1863    arg_types = {"this": True}
class DistStyleProperty(Property):
1866class DistStyleProperty(Property):
1867    arg_types = {"this": True}
class EngineProperty(Property):
1870class EngineProperty(Property):
1871    arg_types = {"this": True}
class ToTableProperty(Property):
1874class ToTableProperty(Property):
1875    arg_types = {"this": True}
class ExecuteAsProperty(Property):
1878class ExecuteAsProperty(Property):
1879    arg_types = {"this": True}
class ExternalProperty(Property):
1882class ExternalProperty(Property):
1883    arg_types = {"this": False}
class FallbackProperty(Property):
1886class FallbackProperty(Property):
1887    arg_types = {"no": True, "protection": False}
class FileFormatProperty(Property):
1890class FileFormatProperty(Property):
1891    arg_types = {"this": True}
class FreespaceProperty(Property):
1894class FreespaceProperty(Property):
1895    arg_types = {"this": True, "percent": False}
class InputOutputFormat(Expression):
1898class InputOutputFormat(Expression):
1899    arg_types = {"input_format": False, "output_format": False}
class IsolatedLoadingProperty(Property):
1902class IsolatedLoadingProperty(Property):
1903    arg_types = {
1904        "no": True,
1905        "concurrent": True,
1906        "for_all": True,
1907        "for_insert": True,
1908        "for_none": True,
1909    }
class JournalProperty(Property):
1912class JournalProperty(Property):
1913    arg_types = {
1914        "no": False,
1915        "dual": False,
1916        "before": False,
1917        "local": False,
1918        "after": False,
1919    }
class LanguageProperty(Property):
1922class LanguageProperty(Property):
1923    arg_types = {"this": True}
class DictProperty(Property):
1926class DictProperty(Property):
1927    arg_types = {"this": True, "kind": True, "settings": False}
class DictSubProperty(Property):
1930class DictSubProperty(Property):
1931    pass
class DictRange(Property):
1934class DictRange(Property):
1935    arg_types = {"this": True, "min": True, "max": True}
class OnCluster(Property):
1940class OnCluster(Property):
1941    arg_types = {"this": True}
class LikeProperty(Property):
1944class LikeProperty(Property):
1945    arg_types = {"this": True, "expressions": False}
class LocationProperty(Property):
1948class LocationProperty(Property):
1949    arg_types = {"this": True}
class LockingProperty(Property):
1952class LockingProperty(Property):
1953    arg_types = {
1954        "this": False,
1955        "kind": True,
1956        "for_or_in": True,
1957        "lock_type": True,
1958        "override": False,
1959    }
class LogProperty(Property):
1962class LogProperty(Property):
1963    arg_types = {"no": True}
class MaterializedProperty(Property):
1966class MaterializedProperty(Property):
1967    arg_types = {"this": False}
class MergeBlockRatioProperty(Property):
1970class MergeBlockRatioProperty(Property):
1971    arg_types = {"this": False, "no": False, "default": False, "percent": False}
class NoPrimaryIndexProperty(Property):
1974class NoPrimaryIndexProperty(Property):
1975    arg_types = {}
class OnCommitProperty(Property):
1978class OnCommitProperty(Property):
1979    arg_type = {"delete": False}
class PartitionedByProperty(Property):
1982class PartitionedByProperty(Property):
1983    arg_types = {"this": True}
class ReturnsProperty(Property):
1986class ReturnsProperty(Property):
1987    arg_types = {"this": True, "is_table": False, "table": False}
class RowFormatProperty(Property):
1990class RowFormatProperty(Property):
1991    arg_types = {"this": True}
class RowFormatDelimitedProperty(Property):
1994class RowFormatDelimitedProperty(Property):
1995    # https://cwiki.apache.org/confluence/display/hive/languagemanual+dml
1996    arg_types = {
1997        "fields": False,
1998        "escaped": False,
1999        "collection_items": False,
2000        "map_keys": False,
2001        "lines": False,
2002        "null": False,
2003        "serde": False,
2004    }
class RowFormatSerdeProperty(Property):
2007class RowFormatSerdeProperty(Property):
2008    arg_types = {"this": True}
class SchemaCommentProperty(Property):
2011class SchemaCommentProperty(Property):
2012    arg_types = {"this": True}
class SerdeProperties(Property):
2015class SerdeProperties(Property):
2016    arg_types = {"expressions": True}
class SetProperty(Property):
2019class SetProperty(Property):
2020    arg_types = {"multi": True}
class SettingsProperty(Property):
2023class SettingsProperty(Property):
2024    arg_types = {"expressions": True}
class SortKeyProperty(Property):
2027class SortKeyProperty(Property):
2028    arg_types = {"this": True, "compound": False}
class SqlSecurityProperty(Property):
2031class SqlSecurityProperty(Property):
2032    arg_types = {"definer": True}
class StabilityProperty(Property):
2035class StabilityProperty(Property):
2036    arg_types = {"this": True}
class TemporaryProperty(Property):
2039class TemporaryProperty(Property):
2040    arg_types = {}
class TransientProperty(Property):
2043class TransientProperty(Property):
2044    arg_types = {"this": False}
class VolatileProperty(Property):
2047class VolatileProperty(Property):
2048    arg_types = {"this": False}
class WithDataProperty(Property):
2051class WithDataProperty(Property):
2052    arg_types = {"no": True, "statistics": False}
class WithJournalTableProperty(Property):
2055class WithJournalTableProperty(Property):
2056    arg_types = {"this": True}
class Properties(Expression):
2059class Properties(Expression):
2060    arg_types = {"expressions": True}
2061
2062    NAME_TO_PROPERTY = {
2063        "ALGORITHM": AlgorithmProperty,
2064        "AUTO_INCREMENT": AutoIncrementProperty,
2065        "CHARACTER SET": CharacterSetProperty,
2066        "COLLATE": CollateProperty,
2067        "COMMENT": SchemaCommentProperty,
2068        "DEFINER": DefinerProperty,
2069        "DISTKEY": DistKeyProperty,
2070        "DISTSTYLE": DistStyleProperty,
2071        "ENGINE": EngineProperty,
2072        "EXECUTE AS": ExecuteAsProperty,
2073        "FORMAT": FileFormatProperty,
2074        "LANGUAGE": LanguageProperty,
2075        "LOCATION": LocationProperty,
2076        "PARTITIONED_BY": PartitionedByProperty,
2077        "RETURNS": ReturnsProperty,
2078        "ROW_FORMAT": RowFormatProperty,
2079        "SORTKEY": SortKeyProperty,
2080    }
2081
2082    PROPERTY_TO_NAME = {v: k for k, v in NAME_TO_PROPERTY.items()}
2083
2084    # CREATE property locations
2085    # Form: schema specified
2086    #   create [POST_CREATE]
2087    #     table a [POST_NAME]
2088    #     (b int) [POST_SCHEMA]
2089    #     with ([POST_WITH])
2090    #     index (b) [POST_INDEX]
2091    #
2092    # Form: alias selection
2093    #   create [POST_CREATE]
2094    #     table a [POST_NAME]
2095    #     as [POST_ALIAS] (select * from b) [POST_EXPRESSION]
2096    #     index (c) [POST_INDEX]
2097    class Location(AutoName):
2098        POST_CREATE = auto()
2099        POST_NAME = auto()
2100        POST_SCHEMA = auto()
2101        POST_WITH = auto()
2102        POST_ALIAS = auto()
2103        POST_EXPRESSION = auto()
2104        POST_INDEX = auto()
2105        UNSUPPORTED = auto()
2106
2107    @classmethod
2108    def from_dict(cls, properties_dict: t.Dict) -> Properties:
2109        expressions = []
2110        for key, value in properties_dict.items():
2111            property_cls = cls.NAME_TO_PROPERTY.get(key.upper())
2112            if property_cls:
2113                expressions.append(property_cls(this=convert(value)))
2114            else:
2115                expressions.append(Property(this=Literal.string(key), value=convert(value)))
2116
2117        return cls(expressions=expressions)
@classmethod
def from_dict(cls, properties_dict: Dict) -> sqlglot.expressions.Properties:
2107    @classmethod
2108    def from_dict(cls, properties_dict: t.Dict) -> Properties:
2109        expressions = []
2110        for key, value in properties_dict.items():
2111            property_cls = cls.NAME_TO_PROPERTY.get(key.upper())
2112            if property_cls:
2113                expressions.append(property_cls(this=convert(value)))
2114            else:
2115                expressions.append(Property(this=Literal.string(key), value=convert(value)))
2116
2117        return cls(expressions=expressions)
class Properties.Location(sqlglot.helper.AutoName):
2097    class Location(AutoName):
2098        POST_CREATE = auto()
2099        POST_NAME = auto()
2100        POST_SCHEMA = auto()
2101        POST_WITH = auto()
2102        POST_ALIAS = auto()
2103        POST_EXPRESSION = auto()
2104        POST_INDEX = auto()
2105        UNSUPPORTED = auto()

An enumeration.

POST_CREATE = <Location.POST_CREATE: 'POST_CREATE'>
POST_NAME = <Location.POST_NAME: 'POST_NAME'>
POST_SCHEMA = <Location.POST_SCHEMA: 'POST_SCHEMA'>
POST_WITH = <Location.POST_WITH: 'POST_WITH'>
POST_ALIAS = <Location.POST_ALIAS: 'POST_ALIAS'>
POST_EXPRESSION = <Location.POST_EXPRESSION: 'POST_EXPRESSION'>
POST_INDEX = <Location.POST_INDEX: 'POST_INDEX'>
UNSUPPORTED = <Location.UNSUPPORTED: 'UNSUPPORTED'>
Inherited Members
enum.Enum
name
value
class Qualify(Expression):
2120class Qualify(Expression):
2121    pass
class Return(Expression):
2125class Return(Expression):
2126    pass
class Reference(Expression):
2129class Reference(Expression):
2130    arg_types = {"this": True, "expressions": False, "options": False}
class Tuple(Expression):
2133class Tuple(Expression):
2134    arg_types = {"expressions": False}
2135
2136    def isin(
2137        self, *expressions: t.Any, query: t.Optional[ExpOrStr] = None, copy: bool = True, **opts
2138    ) -> In:
2139        return In(
2140            this=_maybe_copy(self, copy),
2141            expressions=[convert(e, copy=copy) for e in expressions],
2142            query=maybe_parse(query, copy=copy, **opts) if query else None,
2143        )
def isin( self, *expressions: Any, query: Union[str, sqlglot.expressions.Expression, NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.In:
2136    def isin(
2137        self, *expressions: t.Any, query: t.Optional[ExpOrStr] = None, copy: bool = True, **opts
2138    ) -> In:
2139        return In(
2140            this=_maybe_copy(self, copy),
2141            expressions=[convert(e, copy=copy) for e in expressions],
2142            query=maybe_parse(query, copy=copy, **opts) if query else None,
2143        )
class Subqueryable(Unionable):
2146class Subqueryable(Unionable):
2147    def subquery(self, alias: t.Optional[ExpOrStr] = None, copy: bool = True) -> Subquery:
2148        """
2149        Convert this expression to an aliased expression that can be used as a Subquery.
2150
2151        Example:
2152            >>> subquery = Select().select("x").from_("tbl").subquery()
2153            >>> Select().select("x").from_(subquery).sql()
2154            'SELECT x FROM (SELECT x FROM tbl)'
2155
2156        Args:
2157            alias (str | Identifier): an optional alias for the subquery
2158            copy (bool): if `False`, modify this expression instance in-place.
2159
2160        Returns:
2161            Alias: the subquery
2162        """
2163        instance = _maybe_copy(self, copy)
2164        if not isinstance(alias, Expression):
2165            alias = TableAlias(this=to_identifier(alias)) if alias else None
2166
2167        return Subquery(this=instance, alias=alias)
2168
2169    def limit(
2170        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2171    ) -> Select:
2172        raise NotImplementedError
2173
2174    @property
2175    def ctes(self):
2176        with_ = self.args.get("with")
2177        if not with_:
2178            return []
2179        return with_.expressions
2180
2181    @property
2182    def selects(self):
2183        raise NotImplementedError("Subqueryable objects must implement `selects`")
2184
2185    @property
2186    def named_selects(self):
2187        raise NotImplementedError("Subqueryable objects must implement `named_selects`")
2188
2189    def with_(
2190        self,
2191        alias: ExpOrStr,
2192        as_: ExpOrStr,
2193        recursive: t.Optional[bool] = None,
2194        append: bool = True,
2195        dialect: DialectType = None,
2196        copy: bool = True,
2197        **opts,
2198    ) -> Subqueryable:
2199        """
2200        Append to or set the common table expressions.
2201
2202        Example:
2203            >>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
2204            'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
2205
2206        Args:
2207            alias: the SQL code string to parse as the table name.
2208                If an `Expression` instance is passed, this is used as-is.
2209            as_: the SQL code string to parse as the table expression.
2210                If an `Expression` instance is passed, it will be used as-is.
2211            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
2212            append: if `True`, add to any existing expressions.
2213                Otherwise, this resets the expressions.
2214            dialect: the dialect used to parse the input expression.
2215            copy: if `False`, modify this expression instance in-place.
2216            opts: other options to use to parse the input expressions.
2217
2218        Returns:
2219            The modified expression.
2220        """
2221        return _apply_cte_builder(
2222            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
2223        )
def subquery( self, alias: Union[str, sqlglot.expressions.Expression, NoneType] = None, copy: bool = True) -> sqlglot.expressions.Subquery:
2147    def subquery(self, alias: t.Optional[ExpOrStr] = None, copy: bool = True) -> Subquery:
2148        """
2149        Convert this expression to an aliased expression that can be used as a Subquery.
2150
2151        Example:
2152            >>> subquery = Select().select("x").from_("tbl").subquery()
2153            >>> Select().select("x").from_(subquery).sql()
2154            'SELECT x FROM (SELECT x FROM tbl)'
2155
2156        Args:
2157            alias (str | Identifier): an optional alias for the subquery
2158            copy (bool): if `False`, modify this expression instance in-place.
2159
2160        Returns:
2161            Alias: the subquery
2162        """
2163        instance = _maybe_copy(self, copy)
2164        if not isinstance(alias, Expression):
2165            alias = TableAlias(this=to_identifier(alias)) if alias else None
2166
2167        return Subquery(this=instance, alias=alias)

Convert this expression to an aliased expression that can be used as a Subquery.

Example:
>>> subquery = Select().select("x").from_("tbl").subquery()
>>> Select().select("x").from_(subquery).sql()
'SELECT x FROM (SELECT x FROM tbl)'
Arguments:
  • alias (str | Identifier): an optional alias for the subquery
  • copy (bool): if False, modify this expression instance in-place.
Returns:

Alias: the subquery

def limit( self, expression: Union[str, sqlglot.expressions.Expression, int], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2169    def limit(
2170        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2171    ) -> Select:
2172        raise NotImplementedError
def with_( self, alias: Union[str, sqlglot.expressions.Expression], as_: Union[str, sqlglot.expressions.Expression], recursive: Optional[bool] = None, append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Subqueryable:
2189    def with_(
2190        self,
2191        alias: ExpOrStr,
2192        as_: ExpOrStr,
2193        recursive: t.Optional[bool] = None,
2194        append: bool = True,
2195        dialect: DialectType = None,
2196        copy: bool = True,
2197        **opts,
2198    ) -> Subqueryable:
2199        """
2200        Append to or set the common table expressions.
2201
2202        Example:
2203            >>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
2204            'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
2205
2206        Args:
2207            alias: the SQL code string to parse as the table name.
2208                If an `Expression` instance is passed, this is used as-is.
2209            as_: the SQL code string to parse as the table expression.
2210                If an `Expression` instance is passed, it will be used as-is.
2211            recursive: set the RECURSIVE part of the expression. Defaults to `False`.
2212            append: if `True`, add to any existing expressions.
2213                Otherwise, this resets the expressions.
2214            dialect: the dialect used to parse the input expression.
2215            copy: if `False`, modify this expression instance in-place.
2216            opts: other options to use to parse the input expressions.
2217
2218        Returns:
2219            The modified expression.
2220        """
2221        return _apply_cte_builder(
2222            self, alias, as_, recursive=recursive, append=append, dialect=dialect, copy=copy, **opts
2223        )

Append to or set the common table expressions.

Example:
>>> Select().with_("tbl2", as_="SELECT * FROM tbl").select("x").from_("tbl2").sql()
'WITH tbl2 AS (SELECT * FROM tbl) SELECT x FROM tbl2'
Arguments:
  • alias: the SQL code string to parse as the table name. If an Expression instance is passed, this is used as-is.
  • as_: the SQL code string to parse as the table expression. If an Expression instance is passed, it will be used as-is.
  • recursive: set the RECURSIVE part of the expression. Defaults to False.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified expression.

class Table(Expression):
2249class Table(Expression):
2250    arg_types = {
2251        "this": True,
2252        "alias": False,
2253        "db": False,
2254        "catalog": False,
2255        "laterals": False,
2256        "joins": False,
2257        "pivots": False,
2258        "hints": False,
2259        "system_time": False,
2260    }
2261
2262    @property
2263    def db(self) -> str:
2264        return self.text("db")
2265
2266    @property
2267    def catalog(self) -> str:
2268        return self.text("catalog")
2269
2270    @property
2271    def parts(self) -> t.List[Identifier]:
2272        """Return the parts of a table in order catalog, db, table."""
2273        return [
2274            t.cast(Identifier, self.args[part])
2275            for part in ("catalog", "db", "this")
2276            if self.args.get(part)
2277        ]

Return the parts of a table in order catalog, db, table.

class SystemTime(Expression):
2281class SystemTime(Expression):
2282    arg_types = {
2283        "this": False,
2284        "expression": False,
2285        "kind": True,
2286    }
class Union(Subqueryable):
2289class Union(Subqueryable):
2290    arg_types = {
2291        "with": False,
2292        "this": True,
2293        "expression": True,
2294        "distinct": False,
2295        **QUERY_MODIFIERS,
2296    }
2297
2298    def limit(
2299        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2300    ) -> Select:
2301        """
2302        Set the LIMIT expression.
2303
2304        Example:
2305            >>> select("1").union(select("1")).limit(1).sql()
2306            'SELECT * FROM (SELECT 1 UNION SELECT 1) AS _l_0 LIMIT 1'
2307
2308        Args:
2309            expression: the SQL code string to parse.
2310                This can also be an integer.
2311                If a `Limit` instance is passed, this is used as-is.
2312                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2313            dialect: the dialect used to parse the input expression.
2314            copy: if `False`, modify this expression instance in-place.
2315            opts: other options to use to parse the input expressions.
2316
2317        Returns:
2318            The limited subqueryable.
2319        """
2320        return (
2321            select("*")
2322            .from_(self.subquery(alias="_l_0", copy=copy))
2323            .limit(expression, dialect=dialect, copy=False, **opts)
2324        )
2325
2326    def select(
2327        self,
2328        *expressions: t.Optional[ExpOrStr],
2329        append: bool = True,
2330        dialect: DialectType = None,
2331        copy: bool = True,
2332        **opts,
2333    ) -> Union:
2334        """Append to or set the SELECT of the union recursively.
2335
2336        Example:
2337            >>> from sqlglot import parse_one
2338            >>> parse_one("select a from x union select a from y union select a from z").select("b").sql()
2339            'SELECT a, b FROM x UNION SELECT a, b FROM y UNION SELECT a, b FROM z'
2340
2341        Args:
2342            *expressions: the SQL code strings to parse.
2343                If an `Expression` instance is passed, it will be used as-is.
2344            append: if `True`, add to any existing expressions.
2345                Otherwise, this resets the expressions.
2346            dialect: the dialect used to parse the input expressions.
2347            copy: if `False`, modify this expression instance in-place.
2348            opts: other options to use to parse the input expressions.
2349
2350        Returns:
2351            Union: the modified expression.
2352        """
2353        this = self.copy() if copy else self
2354        this.this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
2355        this.expression.unnest().select(
2356            *expressions, append=append, dialect=dialect, copy=False, **opts
2357        )
2358        return this
2359
2360    @property
2361    def named_selects(self):
2362        return self.this.unnest().named_selects
2363
2364    @property
2365    def is_star(self) -> bool:
2366        return self.this.is_star or self.expression.is_star
2367
2368    @property
2369    def selects(self):
2370        return self.this.unnest().selects
2371
2372    @property
2373    def left(self):
2374        return self.this
2375
2376    @property
2377    def right(self):
2378        return self.expression
def limit( self, expression: Union[str, sqlglot.expressions.Expression, int], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2298    def limit(
2299        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2300    ) -> Select:
2301        """
2302        Set the LIMIT expression.
2303
2304        Example:
2305            >>> select("1").union(select("1")).limit(1).sql()
2306            'SELECT * FROM (SELECT 1 UNION SELECT 1) AS _l_0 LIMIT 1'
2307
2308        Args:
2309            expression: the SQL code string to parse.
2310                This can also be an integer.
2311                If a `Limit` instance is passed, this is used as-is.
2312                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2313            dialect: the dialect used to parse the input expression.
2314            copy: if `False`, modify this expression instance in-place.
2315            opts: other options to use to parse the input expressions.
2316
2317        Returns:
2318            The limited subqueryable.
2319        """
2320        return (
2321            select("*")
2322            .from_(self.subquery(alias="_l_0", copy=copy))
2323            .limit(expression, dialect=dialect, copy=False, **opts)
2324        )

Set the LIMIT expression.

Example:
>>> select("1").union(select("1")).limit(1).sql()
'SELECT * FROM (SELECT 1 UNION SELECT 1) AS _l_0 LIMIT 1'
Arguments:
  • expression: the SQL code string to parse. This can also be an integer. If a Limit instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Limit.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The limited subqueryable.

def select( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Union:
2326    def select(
2327        self,
2328        *expressions: t.Optional[ExpOrStr],
2329        append: bool = True,
2330        dialect: DialectType = None,
2331        copy: bool = True,
2332        **opts,
2333    ) -> Union:
2334        """Append to or set the SELECT of the union recursively.
2335
2336        Example:
2337            >>> from sqlglot import parse_one
2338            >>> parse_one("select a from x union select a from y union select a from z").select("b").sql()
2339            'SELECT a, b FROM x UNION SELECT a, b FROM y UNION SELECT a, b FROM z'
2340
2341        Args:
2342            *expressions: the SQL code strings to parse.
2343                If an `Expression` instance is passed, it will be used as-is.
2344            append: if `True`, add to any existing expressions.
2345                Otherwise, this resets the expressions.
2346            dialect: the dialect used to parse the input expressions.
2347            copy: if `False`, modify this expression instance in-place.
2348            opts: other options to use to parse the input expressions.
2349
2350        Returns:
2351            Union: the modified expression.
2352        """
2353        this = self.copy() if copy else self
2354        this.this.unnest().select(*expressions, append=append, dialect=dialect, copy=False, **opts)
2355        this.expression.unnest().select(
2356            *expressions, append=append, dialect=dialect, copy=False, **opts
2357        )
2358        return this

Append to or set the SELECT of the union recursively.

Example:
>>> from sqlglot import parse_one
>>> parse_one("select a from x union select a from y union select a from z").select("b").sql()
'SELECT a, b FROM x UNION SELECT a, b FROM y UNION SELECT a, b FROM z'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Union: the modified expression.

is_star: bool

Checks whether an expression is a star.

class Except(Union):
2381class Except(Union):
2382    pass
class Intersect(Union):
2385class Intersect(Union):
2386    pass
class Unnest(UDTF):
2389class Unnest(UDTF):
2390    arg_types = {
2391        "expressions": True,
2392        "ordinality": False,
2393        "alias": False,
2394        "offset": False,
2395    }
class Update(Expression):
2398class Update(Expression):
2399    arg_types = {
2400        "with": False,
2401        "this": False,
2402        "expressions": True,
2403        "from": False,
2404        "where": False,
2405        "returning": False,
2406    }
class Values(UDTF):
2409class Values(UDTF):
2410    arg_types = {
2411        "expressions": True,
2412        "ordinality": False,
2413        "alias": False,
2414    }
class Var(Expression):
2417class Var(Expression):
2418    pass
class Schema(Expression):
2421class Schema(Expression):
2422    arg_types = {"this": False, "expressions": False}
class Lock(Expression):
2427class Lock(Expression):
2428    arg_types = {"update": True, "expressions": False, "wait": False}
class Select(Subqueryable):
2431class Select(Subqueryable):
2432    arg_types = {
2433        "with": False,
2434        "kind": False,
2435        "expressions": False,
2436        "hint": False,
2437        "distinct": False,
2438        "struct": False,  # https://cloud.google.com/bigquery/docs/reference/standard-sql/query-syntax#return_query_results_as_a_value_table
2439        "value": False,
2440        "into": False,
2441        "from": False,
2442        **QUERY_MODIFIERS,
2443    }
2444
2445    def from_(
2446        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
2447    ) -> Select:
2448        """
2449        Set the FROM expression.
2450
2451        Example:
2452            >>> Select().from_("tbl").select("x").sql()
2453            'SELECT x FROM tbl'
2454
2455        Args:
2456            expression : the SQL code strings to parse.
2457                If a `From` instance is passed, this is used as-is.
2458                If another `Expression` instance is passed, it will be wrapped in a `From`.
2459            dialect: the dialect used to parse the input expression.
2460            copy: if `False`, modify this expression instance in-place.
2461            opts: other options to use to parse the input expressions.
2462
2463        Returns:
2464            The modified Select expression.
2465        """
2466        return _apply_builder(
2467            expression=expression,
2468            instance=self,
2469            arg="from",
2470            into=From,
2471            prefix="FROM",
2472            dialect=dialect,
2473            copy=copy,
2474            **opts,
2475        )
2476
2477    def group_by(
2478        self,
2479        *expressions: t.Optional[ExpOrStr],
2480        append: bool = True,
2481        dialect: DialectType = None,
2482        copy: bool = True,
2483        **opts,
2484    ) -> Select:
2485        """
2486        Set the GROUP BY expression.
2487
2488        Example:
2489            >>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
2490            'SELECT x, COUNT(1) FROM tbl GROUP BY x'
2491
2492        Args:
2493            *expressions: the SQL code strings to parse.
2494                If a `Group` instance is passed, this is used as-is.
2495                If another `Expression` instance is passed, it will be wrapped in a `Group`.
2496                If nothing is passed in then a group by is not applied to the expression
2497            append: if `True`, add to any existing expressions.
2498                Otherwise, this flattens all the `Group` expression into a single expression.
2499            dialect: the dialect used to parse the input expression.
2500            copy: if `False`, modify this expression instance in-place.
2501            opts: other options to use to parse the input expressions.
2502
2503        Returns:
2504            The modified Select expression.
2505        """
2506        if not expressions:
2507            return self if not copy else self.copy()
2508
2509        return _apply_child_list_builder(
2510            *expressions,
2511            instance=self,
2512            arg="group",
2513            append=append,
2514            copy=copy,
2515            prefix="GROUP BY",
2516            into=Group,
2517            dialect=dialect,
2518            **opts,
2519        )
2520
2521    def order_by(
2522        self,
2523        *expressions: t.Optional[ExpOrStr],
2524        append: bool = True,
2525        dialect: DialectType = None,
2526        copy: bool = True,
2527        **opts,
2528    ) -> Select:
2529        """
2530        Set the ORDER BY expression.
2531
2532        Example:
2533            >>> Select().from_("tbl").select("x").order_by("x DESC").sql()
2534            'SELECT x FROM tbl ORDER BY x DESC'
2535
2536        Args:
2537            *expressions: the SQL code strings to parse.
2538                If a `Group` instance is passed, this is used as-is.
2539                If another `Expression` instance is passed, it will be wrapped in a `Order`.
2540            append: if `True`, add to any existing expressions.
2541                Otherwise, this flattens all the `Order` expression into a single expression.
2542            dialect: the dialect used to parse the input expression.
2543            copy: if `False`, modify this expression instance in-place.
2544            opts: other options to use to parse the input expressions.
2545
2546        Returns:
2547            The modified Select expression.
2548        """
2549        return _apply_child_list_builder(
2550            *expressions,
2551            instance=self,
2552            arg="order",
2553            append=append,
2554            copy=copy,
2555            prefix="ORDER BY",
2556            into=Order,
2557            dialect=dialect,
2558            **opts,
2559        )
2560
2561    def sort_by(
2562        self,
2563        *expressions: t.Optional[ExpOrStr],
2564        append: bool = True,
2565        dialect: DialectType = None,
2566        copy: bool = True,
2567        **opts,
2568    ) -> Select:
2569        """
2570        Set the SORT BY expression.
2571
2572        Example:
2573            >>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
2574            'SELECT x FROM tbl SORT BY x DESC'
2575
2576        Args:
2577            *expressions: the SQL code strings to parse.
2578                If a `Group` instance is passed, this is used as-is.
2579                If another `Expression` instance is passed, it will be wrapped in a `SORT`.
2580            append: if `True`, add to any existing expressions.
2581                Otherwise, this flattens all the `Order` expression into a single expression.
2582            dialect: the dialect used to parse the input expression.
2583            copy: if `False`, modify this expression instance in-place.
2584            opts: other options to use to parse the input expressions.
2585
2586        Returns:
2587            The modified Select expression.
2588        """
2589        return _apply_child_list_builder(
2590            *expressions,
2591            instance=self,
2592            arg="sort",
2593            append=append,
2594            copy=copy,
2595            prefix="SORT BY",
2596            into=Sort,
2597            dialect=dialect,
2598            **opts,
2599        )
2600
2601    def cluster_by(
2602        self,
2603        *expressions: t.Optional[ExpOrStr],
2604        append: bool = True,
2605        dialect: DialectType = None,
2606        copy: bool = True,
2607        **opts,
2608    ) -> Select:
2609        """
2610        Set the CLUSTER BY expression.
2611
2612        Example:
2613            >>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
2614            'SELECT x FROM tbl CLUSTER BY x DESC'
2615
2616        Args:
2617            *expressions: the SQL code strings to parse.
2618                If a `Group` instance is passed, this is used as-is.
2619                If another `Expression` instance is passed, it will be wrapped in a `Cluster`.
2620            append: if `True`, add to any existing expressions.
2621                Otherwise, this flattens all the `Order` expression into a single expression.
2622            dialect: the dialect used to parse the input expression.
2623            copy: if `False`, modify this expression instance in-place.
2624            opts: other options to use to parse the input expressions.
2625
2626        Returns:
2627            The modified Select expression.
2628        """
2629        return _apply_child_list_builder(
2630            *expressions,
2631            instance=self,
2632            arg="cluster",
2633            append=append,
2634            copy=copy,
2635            prefix="CLUSTER BY",
2636            into=Cluster,
2637            dialect=dialect,
2638            **opts,
2639        )
2640
2641    def limit(
2642        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2643    ) -> Select:
2644        """
2645        Set the LIMIT expression.
2646
2647        Example:
2648            >>> Select().from_("tbl").select("x").limit(10).sql()
2649            'SELECT x FROM tbl LIMIT 10'
2650
2651        Args:
2652            expression: the SQL code string to parse.
2653                This can also be an integer.
2654                If a `Limit` instance is passed, this is used as-is.
2655                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2656            dialect: the dialect used to parse the input expression.
2657            copy: if `False`, modify this expression instance in-place.
2658            opts: other options to use to parse the input expressions.
2659
2660        Returns:
2661            Select: the modified expression.
2662        """
2663        return _apply_builder(
2664            expression=expression,
2665            instance=self,
2666            arg="limit",
2667            into=Limit,
2668            prefix="LIMIT",
2669            dialect=dialect,
2670            copy=copy,
2671            **opts,
2672        )
2673
2674    def offset(
2675        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2676    ) -> Select:
2677        """
2678        Set the OFFSET expression.
2679
2680        Example:
2681            >>> Select().from_("tbl").select("x").offset(10).sql()
2682            'SELECT x FROM tbl OFFSET 10'
2683
2684        Args:
2685            expression: the SQL code string to parse.
2686                This can also be an integer.
2687                If a `Offset` instance is passed, this is used as-is.
2688                If another `Expression` instance is passed, it will be wrapped in a `Offset`.
2689            dialect: the dialect used to parse the input expression.
2690            copy: if `False`, modify this expression instance in-place.
2691            opts: other options to use to parse the input expressions.
2692
2693        Returns:
2694            The modified Select expression.
2695        """
2696        return _apply_builder(
2697            expression=expression,
2698            instance=self,
2699            arg="offset",
2700            into=Offset,
2701            prefix="OFFSET",
2702            dialect=dialect,
2703            copy=copy,
2704            **opts,
2705        )
2706
2707    def select(
2708        self,
2709        *expressions: t.Optional[ExpOrStr],
2710        append: bool = True,
2711        dialect: DialectType = None,
2712        copy: bool = True,
2713        **opts,
2714    ) -> Select:
2715        """
2716        Append to or set the SELECT expressions.
2717
2718        Example:
2719            >>> Select().select("x", "y").sql()
2720            'SELECT x, y'
2721
2722        Args:
2723            *expressions: the SQL code strings to parse.
2724                If an `Expression` instance is passed, it will be used as-is.
2725            append: if `True`, add to any existing expressions.
2726                Otherwise, this resets the expressions.
2727            dialect: the dialect used to parse the input expressions.
2728            copy: if `False`, modify this expression instance in-place.
2729            opts: other options to use to parse the input expressions.
2730
2731        Returns:
2732            The modified Select expression.
2733        """
2734        return _apply_list_builder(
2735            *expressions,
2736            instance=self,
2737            arg="expressions",
2738            append=append,
2739            dialect=dialect,
2740            copy=copy,
2741            **opts,
2742        )
2743
2744    def lateral(
2745        self,
2746        *expressions: t.Optional[ExpOrStr],
2747        append: bool = True,
2748        dialect: DialectType = None,
2749        copy: bool = True,
2750        **opts,
2751    ) -> Select:
2752        """
2753        Append to or set the LATERAL expressions.
2754
2755        Example:
2756            >>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
2757            'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
2758
2759        Args:
2760            *expressions: the SQL code strings to parse.
2761                If an `Expression` instance is passed, it will be used as-is.
2762            append: if `True`, add to any existing expressions.
2763                Otherwise, this resets the expressions.
2764            dialect: the dialect used to parse the input expressions.
2765            copy: if `False`, modify this expression instance in-place.
2766            opts: other options to use to parse the input expressions.
2767
2768        Returns:
2769            The modified Select expression.
2770        """
2771        return _apply_list_builder(
2772            *expressions,
2773            instance=self,
2774            arg="laterals",
2775            append=append,
2776            into=Lateral,
2777            prefix="LATERAL VIEW",
2778            dialect=dialect,
2779            copy=copy,
2780            **opts,
2781        )
2782
2783    def join(
2784        self,
2785        expression: ExpOrStr,
2786        on: t.Optional[ExpOrStr] = None,
2787        using: t.Optional[ExpOrStr | t.List[ExpOrStr]] = None,
2788        append: bool = True,
2789        join_type: t.Optional[str] = None,
2790        join_alias: t.Optional[Identifier | str] = None,
2791        dialect: DialectType = None,
2792        copy: bool = True,
2793        **opts,
2794    ) -> Select:
2795        """
2796        Append to or set the JOIN expressions.
2797
2798        Example:
2799            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
2800            'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
2801
2802            >>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
2803            'SELECT 1 FROM a JOIN b USING (x, y, z)'
2804
2805            Use `join_type` to change the type of join:
2806
2807            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
2808            'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
2809
2810        Args:
2811            expression: the SQL code string to parse.
2812                If an `Expression` instance is passed, it will be used as-is.
2813            on: optionally specify the join "on" criteria as a SQL string.
2814                If an `Expression` instance is passed, it will be used as-is.
2815            using: optionally specify the join "using" criteria as a SQL string.
2816                If an `Expression` instance is passed, it will be used as-is.
2817            append: if `True`, add to any existing expressions.
2818                Otherwise, this resets the expressions.
2819            join_type: if set, alter the parsed join type.
2820            join_alias: an optional alias for the joined source.
2821            dialect: the dialect used to parse the input expressions.
2822            copy: if `False`, modify this expression instance in-place.
2823            opts: other options to use to parse the input expressions.
2824
2825        Returns:
2826            Select: the modified expression.
2827        """
2828        parse_args: t.Dict[str, t.Any] = {"dialect": dialect, **opts}
2829
2830        try:
2831            expression = maybe_parse(expression, into=Join, prefix="JOIN", **parse_args)
2832        except ParseError:
2833            expression = maybe_parse(expression, into=(Join, Expression), **parse_args)
2834
2835        join = expression if isinstance(expression, Join) else Join(this=expression)
2836
2837        if isinstance(join.this, Select):
2838            join.this.replace(join.this.subquery())
2839
2840        if join_type:
2841            method: t.Optional[Token]
2842            side: t.Optional[Token]
2843            kind: t.Optional[Token]
2844
2845            method, side, kind = maybe_parse(join_type, into="JOIN_TYPE", **parse_args)  # type: ignore
2846
2847            if method:
2848                join.set("method", method.text)
2849            if side:
2850                join.set("side", side.text)
2851            if kind:
2852                join.set("kind", kind.text)
2853
2854        if on:
2855            on = and_(*ensure_list(on), dialect=dialect, copy=copy, **opts)
2856            join.set("on", on)
2857
2858        if using:
2859            join = _apply_list_builder(
2860                *ensure_list(using),
2861                instance=join,
2862                arg="using",
2863                append=append,
2864                copy=copy,
2865                **opts,
2866            )
2867
2868        if join_alias:
2869            join.set("this", alias_(join.this, join_alias, table=True))
2870
2871        return _apply_list_builder(
2872            join,
2873            instance=self,
2874            arg="joins",
2875            append=append,
2876            copy=copy,
2877            **opts,
2878        )
2879
2880    def where(
2881        self,
2882        *expressions: t.Optional[ExpOrStr],
2883        append: bool = True,
2884        dialect: DialectType = None,
2885        copy: bool = True,
2886        **opts,
2887    ) -> Select:
2888        """
2889        Append to or set the WHERE expressions.
2890
2891        Example:
2892            >>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
2893            "SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
2894
2895        Args:
2896            *expressions: the SQL code strings to parse.
2897                If an `Expression` instance is passed, it will be used as-is.
2898                Multiple expressions are combined with an AND operator.
2899            append: if `True`, AND the new expressions to any existing expression.
2900                Otherwise, this resets the expression.
2901            dialect: the dialect used to parse the input expressions.
2902            copy: if `False`, modify this expression instance in-place.
2903            opts: other options to use to parse the input expressions.
2904
2905        Returns:
2906            Select: the modified expression.
2907        """
2908        return _apply_conjunction_builder(
2909            *expressions,
2910            instance=self,
2911            arg="where",
2912            append=append,
2913            into=Where,
2914            dialect=dialect,
2915            copy=copy,
2916            **opts,
2917        )
2918
2919    def having(
2920        self,
2921        *expressions: t.Optional[ExpOrStr],
2922        append: bool = True,
2923        dialect: DialectType = None,
2924        copy: bool = True,
2925        **opts,
2926    ) -> Select:
2927        """
2928        Append to or set the HAVING expressions.
2929
2930        Example:
2931            >>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
2932            'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
2933
2934        Args:
2935            *expressions: the SQL code strings to parse.
2936                If an `Expression` instance is passed, it will be used as-is.
2937                Multiple expressions are combined with an AND operator.
2938            append: if `True`, AND the new expressions to any existing expression.
2939                Otherwise, this resets the expression.
2940            dialect: the dialect used to parse the input expressions.
2941            copy: if `False`, modify this expression instance in-place.
2942            opts: other options to use to parse the input expressions.
2943
2944        Returns:
2945            The modified Select expression.
2946        """
2947        return _apply_conjunction_builder(
2948            *expressions,
2949            instance=self,
2950            arg="having",
2951            append=append,
2952            into=Having,
2953            dialect=dialect,
2954            copy=copy,
2955            **opts,
2956        )
2957
2958    def window(
2959        self,
2960        *expressions: t.Optional[ExpOrStr],
2961        append: bool = True,
2962        dialect: DialectType = None,
2963        copy: bool = True,
2964        **opts,
2965    ) -> Select:
2966        return _apply_list_builder(
2967            *expressions,
2968            instance=self,
2969            arg="windows",
2970            append=append,
2971            into=Window,
2972            dialect=dialect,
2973            copy=copy,
2974            **opts,
2975        )
2976
2977    def qualify(
2978        self,
2979        *expressions: t.Optional[ExpOrStr],
2980        append: bool = True,
2981        dialect: DialectType = None,
2982        copy: bool = True,
2983        **opts,
2984    ) -> Select:
2985        return _apply_conjunction_builder(
2986            *expressions,
2987            instance=self,
2988            arg="qualify",
2989            append=append,
2990            into=Qualify,
2991            dialect=dialect,
2992            copy=copy,
2993            **opts,
2994        )
2995
2996    def distinct(
2997        self, *ons: t.Optional[ExpOrStr], distinct: bool = True, copy: bool = True
2998    ) -> Select:
2999        """
3000        Set the OFFSET expression.
3001
3002        Example:
3003            >>> Select().from_("tbl").select("x").distinct().sql()
3004            'SELECT DISTINCT x FROM tbl'
3005
3006        Args:
3007            ons: the expressions to distinct on
3008            distinct: whether the Select should be distinct
3009            copy: if `False`, modify this expression instance in-place.
3010
3011        Returns:
3012            Select: the modified expression.
3013        """
3014        instance = _maybe_copy(self, copy)
3015        on = Tuple(expressions=[maybe_parse(on, copy=copy) for on in ons if on]) if ons else None
3016        instance.set("distinct", Distinct(on=on) if distinct else None)
3017        return instance
3018
3019    def ctas(
3020        self,
3021        table: ExpOrStr,
3022        properties: t.Optional[t.Dict] = None,
3023        dialect: DialectType = None,
3024        copy: bool = True,
3025        **opts,
3026    ) -> Create:
3027        """
3028        Convert this expression to a CREATE TABLE AS statement.
3029
3030        Example:
3031            >>> Select().select("*").from_("tbl").ctas("x").sql()
3032            'CREATE TABLE x AS SELECT * FROM tbl'
3033
3034        Args:
3035            table: the SQL code string to parse as the table name.
3036                If another `Expression` instance is passed, it will be used as-is.
3037            properties: an optional mapping of table properties
3038            dialect: the dialect used to parse the input table.
3039            copy: if `False`, modify this expression instance in-place.
3040            opts: other options to use to parse the input table.
3041
3042        Returns:
3043            The new Create expression.
3044        """
3045        instance = _maybe_copy(self, copy)
3046        table_expression = maybe_parse(
3047            table,
3048            into=Table,
3049            dialect=dialect,
3050            **opts,
3051        )
3052        properties_expression = None
3053        if properties:
3054            properties_expression = Properties.from_dict(properties)
3055
3056        return Create(
3057            this=table_expression,
3058            kind="table",
3059            expression=instance,
3060            properties=properties_expression,
3061        )
3062
3063    def lock(self, update: bool = True, copy: bool = True) -> Select:
3064        """
3065        Set the locking read mode for this expression.
3066
3067        Examples:
3068            >>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
3069            "SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
3070
3071            >>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
3072            "SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
3073
3074        Args:
3075            update: if `True`, the locking type will be `FOR UPDATE`, else it will be `FOR SHARE`.
3076            copy: if `False`, modify this expression instance in-place.
3077
3078        Returns:
3079            The modified expression.
3080        """
3081
3082        inst = _maybe_copy(self, copy)
3083        inst.set("locks", [Lock(update=update)])
3084
3085        return inst
3086
3087    @property
3088    def named_selects(self) -> t.List[str]:
3089        return [e.output_name for e in self.expressions if e.alias_or_name]
3090
3091    @property
3092    def is_star(self) -> bool:
3093        return any(expression.is_star for expression in self.expressions)
3094
3095    @property
3096    def selects(self) -> t.List[Expression]:
3097        return self.expressions
def from_( self, expression: Union[str, sqlglot.expressions.Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2445    def from_(
2446        self, expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
2447    ) -> Select:
2448        """
2449        Set the FROM expression.
2450
2451        Example:
2452            >>> Select().from_("tbl").select("x").sql()
2453            'SELECT x FROM tbl'
2454
2455        Args:
2456            expression : the SQL code strings to parse.
2457                If a `From` instance is passed, this is used as-is.
2458                If another `Expression` instance is passed, it will be wrapped in a `From`.
2459            dialect: the dialect used to parse the input expression.
2460            copy: if `False`, modify this expression instance in-place.
2461            opts: other options to use to parse the input expressions.
2462
2463        Returns:
2464            The modified Select expression.
2465        """
2466        return _apply_builder(
2467            expression=expression,
2468            instance=self,
2469            arg="from",
2470            into=From,
2471            prefix="FROM",
2472            dialect=dialect,
2473            copy=copy,
2474            **opts,
2475        )

Set the FROM expression.

Example:
>>> Select().from_("tbl").select("x").sql()
'SELECT x FROM tbl'
Arguments:
  • expression : the SQL code strings to parse. If a From instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a From.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def group_by( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2477    def group_by(
2478        self,
2479        *expressions: t.Optional[ExpOrStr],
2480        append: bool = True,
2481        dialect: DialectType = None,
2482        copy: bool = True,
2483        **opts,
2484    ) -> Select:
2485        """
2486        Set the GROUP BY expression.
2487
2488        Example:
2489            >>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
2490            'SELECT x, COUNT(1) FROM tbl GROUP BY x'
2491
2492        Args:
2493            *expressions: the SQL code strings to parse.
2494                If a `Group` instance is passed, this is used as-is.
2495                If another `Expression` instance is passed, it will be wrapped in a `Group`.
2496                If nothing is passed in then a group by is not applied to the expression
2497            append: if `True`, add to any existing expressions.
2498                Otherwise, this flattens all the `Group` expression into a single expression.
2499            dialect: the dialect used to parse the input expression.
2500            copy: if `False`, modify this expression instance in-place.
2501            opts: other options to use to parse the input expressions.
2502
2503        Returns:
2504            The modified Select expression.
2505        """
2506        if not expressions:
2507            return self if not copy else self.copy()
2508
2509        return _apply_child_list_builder(
2510            *expressions,
2511            instance=self,
2512            arg="group",
2513            append=append,
2514            copy=copy,
2515            prefix="GROUP BY",
2516            into=Group,
2517            dialect=dialect,
2518            **opts,
2519        )

Set the GROUP BY expression.

Example:
>>> Select().from_("tbl").select("x", "COUNT(1)").group_by("x").sql()
'SELECT x, COUNT(1) FROM tbl GROUP BY x'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Group. If nothing is passed in then a group by is not applied to the expression
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Group expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def order_by( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2521    def order_by(
2522        self,
2523        *expressions: t.Optional[ExpOrStr],
2524        append: bool = True,
2525        dialect: DialectType = None,
2526        copy: bool = True,
2527        **opts,
2528    ) -> Select:
2529        """
2530        Set the ORDER BY expression.
2531
2532        Example:
2533            >>> Select().from_("tbl").select("x").order_by("x DESC").sql()
2534            'SELECT x FROM tbl ORDER BY x DESC'
2535
2536        Args:
2537            *expressions: the SQL code strings to parse.
2538                If a `Group` instance is passed, this is used as-is.
2539                If another `Expression` instance is passed, it will be wrapped in a `Order`.
2540            append: if `True`, add to any existing expressions.
2541                Otherwise, this flattens all the `Order` expression into a single expression.
2542            dialect: the dialect used to parse the input expression.
2543            copy: if `False`, modify this expression instance in-place.
2544            opts: other options to use to parse the input expressions.
2545
2546        Returns:
2547            The modified Select expression.
2548        """
2549        return _apply_child_list_builder(
2550            *expressions,
2551            instance=self,
2552            arg="order",
2553            append=append,
2554            copy=copy,
2555            prefix="ORDER BY",
2556            into=Order,
2557            dialect=dialect,
2558            **opts,
2559        )

Set the ORDER BY expression.

Example:
>>> Select().from_("tbl").select("x").order_by("x DESC").sql()
'SELECT x FROM tbl ORDER BY x DESC'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Order.
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Order expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def sort_by( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2561    def sort_by(
2562        self,
2563        *expressions: t.Optional[ExpOrStr],
2564        append: bool = True,
2565        dialect: DialectType = None,
2566        copy: bool = True,
2567        **opts,
2568    ) -> Select:
2569        """
2570        Set the SORT BY expression.
2571
2572        Example:
2573            >>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
2574            'SELECT x FROM tbl SORT BY x DESC'
2575
2576        Args:
2577            *expressions: the SQL code strings to parse.
2578                If a `Group` instance is passed, this is used as-is.
2579                If another `Expression` instance is passed, it will be wrapped in a `SORT`.
2580            append: if `True`, add to any existing expressions.
2581                Otherwise, this flattens all the `Order` expression into a single expression.
2582            dialect: the dialect used to parse the input expression.
2583            copy: if `False`, modify this expression instance in-place.
2584            opts: other options to use to parse the input expressions.
2585
2586        Returns:
2587            The modified Select expression.
2588        """
2589        return _apply_child_list_builder(
2590            *expressions,
2591            instance=self,
2592            arg="sort",
2593            append=append,
2594            copy=copy,
2595            prefix="SORT BY",
2596            into=Sort,
2597            dialect=dialect,
2598            **opts,
2599        )

Set the SORT BY expression.

Example:
>>> Select().from_("tbl").select("x").sort_by("x DESC").sql(dialect="hive")
'SELECT x FROM tbl SORT BY x DESC'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a SORT.
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Order expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def cluster_by( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2601    def cluster_by(
2602        self,
2603        *expressions: t.Optional[ExpOrStr],
2604        append: bool = True,
2605        dialect: DialectType = None,
2606        copy: bool = True,
2607        **opts,
2608    ) -> Select:
2609        """
2610        Set the CLUSTER BY expression.
2611
2612        Example:
2613            >>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
2614            'SELECT x FROM tbl CLUSTER BY x DESC'
2615
2616        Args:
2617            *expressions: the SQL code strings to parse.
2618                If a `Group` instance is passed, this is used as-is.
2619                If another `Expression` instance is passed, it will be wrapped in a `Cluster`.
2620            append: if `True`, add to any existing expressions.
2621                Otherwise, this flattens all the `Order` expression into a single expression.
2622            dialect: the dialect used to parse the input expression.
2623            copy: if `False`, modify this expression instance in-place.
2624            opts: other options to use to parse the input expressions.
2625
2626        Returns:
2627            The modified Select expression.
2628        """
2629        return _apply_child_list_builder(
2630            *expressions,
2631            instance=self,
2632            arg="cluster",
2633            append=append,
2634            copy=copy,
2635            prefix="CLUSTER BY",
2636            into=Cluster,
2637            dialect=dialect,
2638            **opts,
2639        )

Set the CLUSTER BY expression.

Example:
>>> Select().from_("tbl").select("x").cluster_by("x DESC").sql(dialect="hive")
'SELECT x FROM tbl CLUSTER BY x DESC'
Arguments:
  • *expressions: the SQL code strings to parse. If a Group instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Cluster.
  • append: if True, add to any existing expressions. Otherwise, this flattens all the Order expression into a single expression.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def limit( self, expression: Union[str, sqlglot.expressions.Expression, int], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2641    def limit(
2642        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2643    ) -> Select:
2644        """
2645        Set the LIMIT expression.
2646
2647        Example:
2648            >>> Select().from_("tbl").select("x").limit(10).sql()
2649            'SELECT x FROM tbl LIMIT 10'
2650
2651        Args:
2652            expression: the SQL code string to parse.
2653                This can also be an integer.
2654                If a `Limit` instance is passed, this is used as-is.
2655                If another `Expression` instance is passed, it will be wrapped in a `Limit`.
2656            dialect: the dialect used to parse the input expression.
2657            copy: if `False`, modify this expression instance in-place.
2658            opts: other options to use to parse the input expressions.
2659
2660        Returns:
2661            Select: the modified expression.
2662        """
2663        return _apply_builder(
2664            expression=expression,
2665            instance=self,
2666            arg="limit",
2667            into=Limit,
2668            prefix="LIMIT",
2669            dialect=dialect,
2670            copy=copy,
2671            **opts,
2672        )

Set the LIMIT expression.

Example:
>>> Select().from_("tbl").select("x").limit(10).sql()
'SELECT x FROM tbl LIMIT 10'
Arguments:
  • expression: the SQL code string to parse. This can also be an integer. If a Limit instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Limit.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Select: the modified expression.

def offset( self, expression: Union[str, sqlglot.expressions.Expression, int], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2674    def offset(
2675        self, expression: ExpOrStr | int, dialect: DialectType = None, copy: bool = True, **opts
2676    ) -> Select:
2677        """
2678        Set the OFFSET expression.
2679
2680        Example:
2681            >>> Select().from_("tbl").select("x").offset(10).sql()
2682            'SELECT x FROM tbl OFFSET 10'
2683
2684        Args:
2685            expression: the SQL code string to parse.
2686                This can also be an integer.
2687                If a `Offset` instance is passed, this is used as-is.
2688                If another `Expression` instance is passed, it will be wrapped in a `Offset`.
2689            dialect: the dialect used to parse the input expression.
2690            copy: if `False`, modify this expression instance in-place.
2691            opts: other options to use to parse the input expressions.
2692
2693        Returns:
2694            The modified Select expression.
2695        """
2696        return _apply_builder(
2697            expression=expression,
2698            instance=self,
2699            arg="offset",
2700            into=Offset,
2701            prefix="OFFSET",
2702            dialect=dialect,
2703            copy=copy,
2704            **opts,
2705        )

Set the OFFSET expression.

Example:
>>> Select().from_("tbl").select("x").offset(10).sql()
'SELECT x FROM tbl OFFSET 10'
Arguments:
  • expression: the SQL code string to parse. This can also be an integer. If a Offset instance is passed, this is used as-is. If another Expression instance is passed, it will be wrapped in a Offset.
  • dialect: the dialect used to parse the input expression.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def select( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2707    def select(
2708        self,
2709        *expressions: t.Optional[ExpOrStr],
2710        append: bool = True,
2711        dialect: DialectType = None,
2712        copy: bool = True,
2713        **opts,
2714    ) -> Select:
2715        """
2716        Append to or set the SELECT expressions.
2717
2718        Example:
2719            >>> Select().select("x", "y").sql()
2720            'SELECT x, y'
2721
2722        Args:
2723            *expressions: the SQL code strings to parse.
2724                If an `Expression` instance is passed, it will be used as-is.
2725            append: if `True`, add to any existing expressions.
2726                Otherwise, this resets the expressions.
2727            dialect: the dialect used to parse the input expressions.
2728            copy: if `False`, modify this expression instance in-place.
2729            opts: other options to use to parse the input expressions.
2730
2731        Returns:
2732            The modified Select expression.
2733        """
2734        return _apply_list_builder(
2735            *expressions,
2736            instance=self,
2737            arg="expressions",
2738            append=append,
2739            dialect=dialect,
2740            copy=copy,
2741            **opts,
2742        )

Append to or set the SELECT expressions.

Example:
>>> Select().select("x", "y").sql()
'SELECT x, y'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def lateral( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2744    def lateral(
2745        self,
2746        *expressions: t.Optional[ExpOrStr],
2747        append: bool = True,
2748        dialect: DialectType = None,
2749        copy: bool = True,
2750        **opts,
2751    ) -> Select:
2752        """
2753        Append to or set the LATERAL expressions.
2754
2755        Example:
2756            >>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
2757            'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
2758
2759        Args:
2760            *expressions: the SQL code strings to parse.
2761                If an `Expression` instance is passed, it will be used as-is.
2762            append: if `True`, add to any existing expressions.
2763                Otherwise, this resets the expressions.
2764            dialect: the dialect used to parse the input expressions.
2765            copy: if `False`, modify this expression instance in-place.
2766            opts: other options to use to parse the input expressions.
2767
2768        Returns:
2769            The modified Select expression.
2770        """
2771        return _apply_list_builder(
2772            *expressions,
2773            instance=self,
2774            arg="laterals",
2775            append=append,
2776            into=Lateral,
2777            prefix="LATERAL VIEW",
2778            dialect=dialect,
2779            copy=copy,
2780            **opts,
2781        )

Append to or set the LATERAL expressions.

Example:
>>> Select().select("x").lateral("OUTER explode(y) tbl2 AS z").from_("tbl").sql()
'SELECT x FROM tbl LATERAL VIEW OUTER EXPLODE(y) tbl2 AS z'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def join( self, expression: Union[str, sqlglot.expressions.Expression], on: Union[str, sqlglot.expressions.Expression, NoneType] = None, using: Union[str, sqlglot.expressions.Expression, List[Union[str, sqlglot.expressions.Expression]], NoneType] = None, append: bool = True, join_type: Optional[str] = None, join_alias: Union[sqlglot.expressions.Identifier, str, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2783    def join(
2784        self,
2785        expression: ExpOrStr,
2786        on: t.Optional[ExpOrStr] = None,
2787        using: t.Optional[ExpOrStr | t.List[ExpOrStr]] = None,
2788        append: bool = True,
2789        join_type: t.Optional[str] = None,
2790        join_alias: t.Optional[Identifier | str] = None,
2791        dialect: DialectType = None,
2792        copy: bool = True,
2793        **opts,
2794    ) -> Select:
2795        """
2796        Append to or set the JOIN expressions.
2797
2798        Example:
2799            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
2800            'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
2801
2802            >>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
2803            'SELECT 1 FROM a JOIN b USING (x, y, z)'
2804
2805            Use `join_type` to change the type of join:
2806
2807            >>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
2808            'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
2809
2810        Args:
2811            expression: the SQL code string to parse.
2812                If an `Expression` instance is passed, it will be used as-is.
2813            on: optionally specify the join "on" criteria as a SQL string.
2814                If an `Expression` instance is passed, it will be used as-is.
2815            using: optionally specify the join "using" criteria as a SQL string.
2816                If an `Expression` instance is passed, it will be used as-is.
2817            append: if `True`, add to any existing expressions.
2818                Otherwise, this resets the expressions.
2819            join_type: if set, alter the parsed join type.
2820            join_alias: an optional alias for the joined source.
2821            dialect: the dialect used to parse the input expressions.
2822            copy: if `False`, modify this expression instance in-place.
2823            opts: other options to use to parse the input expressions.
2824
2825        Returns:
2826            Select: the modified expression.
2827        """
2828        parse_args: t.Dict[str, t.Any] = {"dialect": dialect, **opts}
2829
2830        try:
2831            expression = maybe_parse(expression, into=Join, prefix="JOIN", **parse_args)
2832        except ParseError:
2833            expression = maybe_parse(expression, into=(Join, Expression), **parse_args)
2834
2835        join = expression if isinstance(expression, Join) else Join(this=expression)
2836
2837        if isinstance(join.this, Select):
2838            join.this.replace(join.this.subquery())
2839
2840        if join_type:
2841            method: t.Optional[Token]
2842            side: t.Optional[Token]
2843            kind: t.Optional[Token]
2844
2845            method, side, kind = maybe_parse(join_type, into="JOIN_TYPE", **parse_args)  # type: ignore
2846
2847            if method:
2848                join.set("method", method.text)
2849            if side:
2850                join.set("side", side.text)
2851            if kind:
2852                join.set("kind", kind.text)
2853
2854        if on:
2855            on = and_(*ensure_list(on), dialect=dialect, copy=copy, **opts)
2856            join.set("on", on)
2857
2858        if using:
2859            join = _apply_list_builder(
2860                *ensure_list(using),
2861                instance=join,
2862                arg="using",
2863                append=append,
2864                copy=copy,
2865                **opts,
2866            )
2867
2868        if join_alias:
2869            join.set("this", alias_(join.this, join_alias, table=True))
2870
2871        return _apply_list_builder(
2872            join,
2873            instance=self,
2874            arg="joins",
2875            append=append,
2876            copy=copy,
2877            **opts,
2878        )

Append to or set the JOIN expressions.

Example:
>>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y").sql()
'SELECT * FROM tbl JOIN tbl2 ON tbl1.y = tbl2.y'
>>> Select().select("1").from_("a").join("b", using=["x", "y", "z"]).sql()
'SELECT 1 FROM a JOIN b USING (x, y, z)'

Use join_type to change the type of join:

>>> Select().select("*").from_("tbl").join("tbl2", on="tbl1.y = tbl2.y", join_type="left outer").sql()
'SELECT * FROM tbl LEFT OUTER JOIN tbl2 ON tbl1.y = tbl2.y'
Arguments:
  • expression: the SQL code string to parse. If an Expression instance is passed, it will be used as-is.
  • on: optionally specify the join "on" criteria as a SQL string. If an Expression instance is passed, it will be used as-is.
  • using: optionally specify the join "using" criteria as a SQL string. If an Expression instance is passed, it will be used as-is.
  • append: if True, add to any existing expressions. Otherwise, this resets the expressions.
  • join_type: if set, alter the parsed join type.
  • join_alias: an optional alias for the joined source.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Select: the modified expression.

def where( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2880    def where(
2881        self,
2882        *expressions: t.Optional[ExpOrStr],
2883        append: bool = True,
2884        dialect: DialectType = None,
2885        copy: bool = True,
2886        **opts,
2887    ) -> Select:
2888        """
2889        Append to or set the WHERE expressions.
2890
2891        Example:
2892            >>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
2893            "SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
2894
2895        Args:
2896            *expressions: the SQL code strings to parse.
2897                If an `Expression` instance is passed, it will be used as-is.
2898                Multiple expressions are combined with an AND operator.
2899            append: if `True`, AND the new expressions to any existing expression.
2900                Otherwise, this resets the expression.
2901            dialect: the dialect used to parse the input expressions.
2902            copy: if `False`, modify this expression instance in-place.
2903            opts: other options to use to parse the input expressions.
2904
2905        Returns:
2906            Select: the modified expression.
2907        """
2908        return _apply_conjunction_builder(
2909            *expressions,
2910            instance=self,
2911            arg="where",
2912            append=append,
2913            into=Where,
2914            dialect=dialect,
2915            copy=copy,
2916            **opts,
2917        )

Append to or set the WHERE expressions.

Example:
>>> Select().select("x").from_("tbl").where("x = 'a' OR x < 'b'").sql()
"SELECT x FROM tbl WHERE x = 'a' OR x < 'b'"
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

Select: the modified expression.

def having( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2919    def having(
2920        self,
2921        *expressions: t.Optional[ExpOrStr],
2922        append: bool = True,
2923        dialect: DialectType = None,
2924        copy: bool = True,
2925        **opts,
2926    ) -> Select:
2927        """
2928        Append to or set the HAVING expressions.
2929
2930        Example:
2931            >>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
2932            'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
2933
2934        Args:
2935            *expressions: the SQL code strings to parse.
2936                If an `Expression` instance is passed, it will be used as-is.
2937                Multiple expressions are combined with an AND operator.
2938            append: if `True`, AND the new expressions to any existing expression.
2939                Otherwise, this resets the expression.
2940            dialect: the dialect used to parse the input expressions.
2941            copy: if `False`, modify this expression instance in-place.
2942            opts: other options to use to parse the input expressions.
2943
2944        Returns:
2945            The modified Select expression.
2946        """
2947        return _apply_conjunction_builder(
2948            *expressions,
2949            instance=self,
2950            arg="having",
2951            append=append,
2952            into=Having,
2953            dialect=dialect,
2954            copy=copy,
2955            **opts,
2956        )

Append to or set the HAVING expressions.

Example:
>>> Select().select("x", "COUNT(y)").from_("tbl").group_by("x").having("COUNT(y) > 3").sql()
'SELECT x, COUNT(y) FROM tbl GROUP BY x HAVING COUNT(y) > 3'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, it will be used as-is. Multiple expressions are combined with an AND operator.
  • append: if True, AND the new expressions to any existing expression. Otherwise, this resets the expression.
  • dialect: the dialect used to parse the input expressions.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input expressions.
Returns:

The modified Select expression.

def window( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2958    def window(
2959        self,
2960        *expressions: t.Optional[ExpOrStr],
2961        append: bool = True,
2962        dialect: DialectType = None,
2963        copy: bool = True,
2964        **opts,
2965    ) -> Select:
2966        return _apply_list_builder(
2967            *expressions,
2968            instance=self,
2969            arg="windows",
2970            append=append,
2971            into=Window,
2972            dialect=dialect,
2973            copy=copy,
2974            **opts,
2975        )
def qualify( self, *expressions: Union[str, sqlglot.expressions.Expression, NoneType], append: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Select:
2977    def qualify(
2978        self,
2979        *expressions: t.Optional[ExpOrStr],
2980        append: bool = True,
2981        dialect: DialectType = None,
2982        copy: bool = True,
2983        **opts,
2984    ) -> Select:
2985        return _apply_conjunction_builder(
2986            *expressions,
2987            instance=self,
2988            arg="qualify",
2989            append=append,
2990            into=Qualify,
2991            dialect=dialect,
2992            copy=copy,
2993            **opts,
2994        )
def distinct( self, *ons: Union[str, sqlglot.expressions.Expression, NoneType], distinct: bool = True, copy: bool = True) -> sqlglot.expressions.Select:
2996    def distinct(
2997        self, *ons: t.Optional[ExpOrStr], distinct: bool = True, copy: bool = True
2998    ) -> Select:
2999        """
3000        Set the OFFSET expression.
3001
3002        Example:
3003            >>> Select().from_("tbl").select("x").distinct().sql()
3004            'SELECT DISTINCT x FROM tbl'
3005
3006        Args:
3007            ons: the expressions to distinct on
3008            distinct: whether the Select should be distinct
3009            copy: if `False`, modify this expression instance in-place.
3010
3011        Returns:
3012            Select: the modified expression.
3013        """
3014        instance = _maybe_copy(self, copy)
3015        on = Tuple(expressions=[maybe_parse(on, copy=copy) for on in ons if on]) if ons else None
3016        instance.set("distinct", Distinct(on=on) if distinct else None)
3017        return instance

Set the OFFSET expression.

Example:
>>> Select().from_("tbl").select("x").distinct().sql()
'SELECT DISTINCT x FROM tbl'
Arguments:
  • ons: the expressions to distinct on
  • distinct: whether the Select should be distinct
  • copy: if False, modify this expression instance in-place.
Returns:

Select: the modified expression.

def ctas( self, table: Union[str, sqlglot.expressions.Expression], properties: Optional[Dict] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Create:
3019    def ctas(
3020        self,
3021        table: ExpOrStr,
3022        properties: t.Optional[t.Dict] = None,
3023        dialect: DialectType = None,
3024        copy: bool = True,
3025        **opts,
3026    ) -> Create:
3027        """
3028        Convert this expression to a CREATE TABLE AS statement.
3029
3030        Example:
3031            >>> Select().select("*").from_("tbl").ctas("x").sql()
3032            'CREATE TABLE x AS SELECT * FROM tbl'
3033
3034        Args:
3035            table: the SQL code string to parse as the table name.
3036                If another `Expression` instance is passed, it will be used as-is.
3037            properties: an optional mapping of table properties
3038            dialect: the dialect used to parse the input table.
3039            copy: if `False`, modify this expression instance in-place.
3040            opts: other options to use to parse the input table.
3041
3042        Returns:
3043            The new Create expression.
3044        """
3045        instance = _maybe_copy(self, copy)
3046        table_expression = maybe_parse(
3047            table,
3048            into=Table,
3049            dialect=dialect,
3050            **opts,
3051        )
3052        properties_expression = None
3053        if properties:
3054            properties_expression = Properties.from_dict(properties)
3055
3056        return Create(
3057            this=table_expression,
3058            kind="table",
3059            expression=instance,
3060            properties=properties_expression,
3061        )

Convert this expression to a CREATE TABLE AS statement.

Example:
>>> Select().select("*").from_("tbl").ctas("x").sql()
'CREATE TABLE x AS SELECT * FROM tbl'
Arguments:
  • table: the SQL code string to parse as the table name. If another Expression instance is passed, it will be used as-is.
  • properties: an optional mapping of table properties
  • dialect: the dialect used to parse the input table.
  • copy: if False, modify this expression instance in-place.
  • opts: other options to use to parse the input table.
Returns:

The new Create expression.

def lock( self, update: bool = True, copy: bool = True) -> sqlglot.expressions.Select:
3063    def lock(self, update: bool = True, copy: bool = True) -> Select:
3064        """
3065        Set the locking read mode for this expression.
3066
3067        Examples:
3068            >>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
3069            "SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
3070
3071            >>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
3072            "SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
3073
3074        Args:
3075            update: if `True`, the locking type will be `FOR UPDATE`, else it will be `FOR SHARE`.
3076            copy: if `False`, modify this expression instance in-place.
3077
3078        Returns:
3079            The modified expression.
3080        """
3081
3082        inst = _maybe_copy(self, copy)
3083        inst.set("locks", [Lock(update=update)])
3084
3085        return inst

Set the locking read mode for this expression.

Examples:
>>> Select().select("x").from_("tbl").where("x = 'a'").lock().sql("mysql")
"SELECT x FROM tbl WHERE x = 'a' FOR UPDATE"
>>> Select().select("x").from_("tbl").where("x = 'a'").lock(update=False).sql("mysql")
"SELECT x FROM tbl WHERE x = 'a' FOR SHARE"
Arguments:
  • update: if True, the locking type will be FOR UPDATE, else it will be FOR SHARE.
  • copy: if False, modify this expression instance in-place.
Returns:

The modified expression.

is_star: bool

Checks whether an expression is a star.

class Subquery(DerivedTable, Unionable):
3100class Subquery(DerivedTable, Unionable):
3101    arg_types = {
3102        "this": True,
3103        "alias": False,
3104        "with": False,
3105        **QUERY_MODIFIERS,
3106    }
3107
3108    def unnest(self):
3109        """
3110        Returns the first non subquery.
3111        """
3112        expression = self
3113        while isinstance(expression, Subquery):
3114            expression = expression.this
3115        return expression
3116
3117    @property
3118    def is_star(self) -> bool:
3119        return self.this.is_star
3120
3121    @property
3122    def output_name(self) -> str:
3123        return self.alias
def unnest(self):
3108    def unnest(self):
3109        """
3110        Returns the first non subquery.
3111        """
3112        expression = self
3113        while isinstance(expression, Subquery):
3114            expression = expression.this
3115        return expression

Returns the first non subquery.

is_star: bool

Checks whether an expression is a star.

output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
class TableSample(Expression):
3126class TableSample(Expression):
3127    arg_types = {
3128        "this": False,
3129        "method": False,
3130        "bucket_numerator": False,
3131        "bucket_denominator": False,
3132        "bucket_field": False,
3133        "percent": False,
3134        "rows": False,
3135        "size": False,
3136        "seed": False,
3137        "kind": False,
3138    }
class Tag(Expression):
3141class Tag(Expression):
3142    """Tags are used for generating arbitrary sql like SELECT <span>x</span>."""
3143
3144    arg_types = {
3145        "this": False,
3146        "prefix": False,
3147        "postfix": False,
3148    }

Tags are used for generating arbitrary sql like SELECT x.

class Pivot(Expression):
3153class Pivot(Expression):
3154    arg_types = {
3155        "this": False,
3156        "alias": False,
3157        "expressions": True,
3158        "field": False,
3159        "unpivot": False,
3160        "using": False,
3161        "group": False,
3162        "columns": False,
3163    }
class Window(Expression):
3166class Window(Expression):
3167    arg_types = {
3168        "this": True,
3169        "partition_by": False,
3170        "order": False,
3171        "spec": False,
3172        "alias": False,
3173        "over": False,
3174        "first": False,
3175    }
class WindowSpec(Expression):
3178class WindowSpec(Expression):
3179    arg_types = {
3180        "kind": False,
3181        "start": False,
3182        "start_side": False,
3183        "end": False,
3184        "end_side": False,
3185    }
class Where(Expression):
3188class Where(Expression):
3189    pass
class Star(Expression):
3192class Star(Expression):
3193    arg_types = {"except": False, "replace": False}
3194
3195    @property
3196    def name(self) -> str:
3197        return "*"
3198
3199    @property
3200    def output_name(self) -> str:
3201        return self.name
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
class Parameter(Expression):
3204class Parameter(Expression):
3205    arg_types = {"this": True, "wrapped": False}
class SessionParameter(Expression):
3208class SessionParameter(Expression):
3209    arg_types = {"this": True, "kind": False}
class Placeholder(Expression):
3212class Placeholder(Expression):
3213    arg_types = {"this": False, "kind": False}
class Null(Condition):
3216class Null(Condition):
3217    arg_types: t.Dict[str, t.Any] = {}
3218
3219    @property
3220    def name(self) -> str:
3221        return "NULL"
class Boolean(Condition):
3224class Boolean(Condition):
3225    pass
class DataTypeSize(Expression):
3228class DataTypeSize(Expression):
3229    arg_types = {"this": True, "expression": False}
class DataType(Expression):
3232class DataType(Expression):
3233    arg_types = {
3234        "this": True,
3235        "expressions": False,
3236        "nested": False,
3237        "values": False,
3238        "prefix": False,
3239    }
3240
3241    class Type(AutoName):
3242        ARRAY = auto()
3243        BIGDECIMAL = auto()
3244        BIGINT = auto()
3245        BIGSERIAL = auto()
3246        BINARY = auto()
3247        BIT = auto()
3248        BOOLEAN = auto()
3249        CHAR = auto()
3250        DATE = auto()
3251        DATETIME = auto()
3252        DATETIME64 = auto()
3253        INT4RANGE = auto()
3254        INT4MULTIRANGE = auto()
3255        INT8RANGE = auto()
3256        INT8MULTIRANGE = auto()
3257        NUMRANGE = auto()
3258        NUMMULTIRANGE = auto()
3259        TSRANGE = auto()
3260        TSMULTIRANGE = auto()
3261        TSTZRANGE = auto()
3262        TSTZMULTIRANGE = auto()
3263        DATERANGE = auto()
3264        DATEMULTIRANGE = auto()
3265        DECIMAL = auto()
3266        DOUBLE = auto()
3267        FLOAT = auto()
3268        GEOGRAPHY = auto()
3269        GEOMETRY = auto()
3270        HLLSKETCH = auto()
3271        HSTORE = auto()
3272        IMAGE = auto()
3273        INET = auto()
3274        INT = auto()
3275        INT128 = auto()
3276        INT256 = auto()
3277        INTERVAL = auto()
3278        JSON = auto()
3279        JSONB = auto()
3280        LONGBLOB = auto()
3281        LONGTEXT = auto()
3282        MAP = auto()
3283        MEDIUMBLOB = auto()
3284        MEDIUMTEXT = auto()
3285        MONEY = auto()
3286        NCHAR = auto()
3287        NULL = auto()
3288        NULLABLE = auto()
3289        NVARCHAR = auto()
3290        OBJECT = auto()
3291        ROWVERSION = auto()
3292        SERIAL = auto()
3293        SMALLINT = auto()
3294        SMALLMONEY = auto()
3295        SMALLSERIAL = auto()
3296        STRUCT = auto()
3297        SUPER = auto()
3298        TEXT = auto()
3299        TIME = auto()
3300        TIMESTAMP = auto()
3301        TIMESTAMPTZ = auto()
3302        TIMESTAMPLTZ = auto()
3303        TINYINT = auto()
3304        UBIGINT = auto()
3305        UINT = auto()
3306        USMALLINT = auto()
3307        UTINYINT = auto()
3308        UNKNOWN = auto()  # Sentinel value, useful for type annotation
3309        UINT128 = auto()
3310        UINT256 = auto()
3311        UNIQUEIDENTIFIER = auto()
3312        UUID = auto()
3313        VARBINARY = auto()
3314        VARCHAR = auto()
3315        VARIANT = auto()
3316        XML = auto()
3317
3318    TEXT_TYPES = {
3319        Type.CHAR,
3320        Type.NCHAR,
3321        Type.VARCHAR,
3322        Type.NVARCHAR,
3323        Type.TEXT,
3324    }
3325
3326    INTEGER_TYPES = {
3327        Type.INT,
3328        Type.TINYINT,
3329        Type.SMALLINT,
3330        Type.BIGINT,
3331        Type.INT128,
3332        Type.INT256,
3333    }
3334
3335    FLOAT_TYPES = {
3336        Type.FLOAT,
3337        Type.DOUBLE,
3338    }
3339
3340    NUMERIC_TYPES = {*INTEGER_TYPES, *FLOAT_TYPES}
3341
3342    TEMPORAL_TYPES = {
3343        Type.TIMESTAMP,
3344        Type.TIMESTAMPTZ,
3345        Type.TIMESTAMPLTZ,
3346        Type.DATE,
3347        Type.DATETIME,
3348        Type.DATETIME64,
3349    }
3350
3351    @classmethod
3352    def build(
3353        cls, dtype: str | DataType | DataType.Type, dialect: DialectType = None, **kwargs
3354    ) -> DataType:
3355        from sqlglot import parse_one
3356
3357        if isinstance(dtype, str):
3358            if dtype.upper() in cls.Type.__members__:
3359                data_type_exp: t.Optional[Expression] = DataType(this=DataType.Type[dtype.upper()])
3360            else:
3361                data_type_exp = parse_one(dtype, read=dialect, into=DataType)
3362
3363            if data_type_exp is None:
3364                raise ValueError(f"Unparsable data type value: {dtype}")
3365        elif isinstance(dtype, DataType.Type):
3366            data_type_exp = DataType(this=dtype)
3367        elif isinstance(dtype, DataType):
3368            return dtype
3369        else:
3370            raise ValueError(f"Invalid data type: {type(dtype)}. Expected str or DataType.Type")
3371
3372        return DataType(**{**data_type_exp.args, **kwargs})
3373
3374    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3375        return any(self.this == DataType.build(dtype).this for dtype in dtypes)
@classmethod
def build( cls, dtype: str | sqlglot.expressions.DataType | sqlglot.expressions.DataType.Type, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **kwargs) -> sqlglot.expressions.DataType:
3351    @classmethod
3352    def build(
3353        cls, dtype: str | DataType | DataType.Type, dialect: DialectType = None, **kwargs
3354    ) -> DataType:
3355        from sqlglot import parse_one
3356
3357        if isinstance(dtype, str):
3358            if dtype.upper() in cls.Type.__members__:
3359                data_type_exp: t.Optional[Expression] = DataType(this=DataType.Type[dtype.upper()])
3360            else:
3361                data_type_exp = parse_one(dtype, read=dialect, into=DataType)
3362
3363            if data_type_exp is None:
3364                raise ValueError(f"Unparsable data type value: {dtype}")
3365        elif isinstance(dtype, DataType.Type):
3366            data_type_exp = DataType(this=dtype)
3367        elif isinstance(dtype, DataType):
3368            return dtype
3369        else:
3370            raise ValueError(f"Invalid data type: {type(dtype)}. Expected str or DataType.Type")
3371
3372        return DataType(**{**data_type_exp.args, **kwargs})
def is_type( self, *dtypes: str | sqlglot.expressions.DataType | sqlglot.expressions.DataType.Type) -> bool:
3374    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3375        return any(self.this == DataType.build(dtype).this for dtype in dtypes)
class DataType.Type(sqlglot.helper.AutoName):
3241    class Type(AutoName):
3242        ARRAY = auto()
3243        BIGDECIMAL = auto()
3244        BIGINT = auto()
3245        BIGSERIAL = auto()
3246        BINARY = auto()
3247        BIT = auto()
3248        BOOLEAN = auto()
3249        CHAR = auto()
3250        DATE = auto()
3251        DATETIME = auto()
3252        DATETIME64 = auto()
3253        INT4RANGE = auto()
3254        INT4MULTIRANGE = auto()
3255        INT8RANGE = auto()
3256        INT8MULTIRANGE = auto()
3257        NUMRANGE = auto()
3258        NUMMULTIRANGE = auto()
3259        TSRANGE = auto()
3260        TSMULTIRANGE = auto()
3261        TSTZRANGE = auto()
3262        TSTZMULTIRANGE = auto()
3263        DATERANGE = auto()
3264        DATEMULTIRANGE = auto()
3265        DECIMAL = auto()
3266        DOUBLE = auto()
3267        FLOAT = auto()
3268        GEOGRAPHY = auto()
3269        GEOMETRY = auto()
3270        HLLSKETCH = auto()
3271        HSTORE = auto()
3272        IMAGE = auto()
3273        INET = auto()
3274        INT = auto()
3275        INT128 = auto()
3276        INT256 = auto()
3277        INTERVAL = auto()
3278        JSON = auto()
3279        JSONB = auto()
3280        LONGBLOB = auto()
3281        LONGTEXT = auto()
3282        MAP = auto()
3283        MEDIUMBLOB = auto()
3284        MEDIUMTEXT = auto()
3285        MONEY = auto()
3286        NCHAR = auto()
3287        NULL = auto()
3288        NULLABLE = auto()
3289        NVARCHAR = auto()
3290        OBJECT = auto()
3291        ROWVERSION = auto()
3292        SERIAL = auto()
3293        SMALLINT = auto()
3294        SMALLMONEY = auto()
3295        SMALLSERIAL = auto()
3296        STRUCT = auto()
3297        SUPER = auto()
3298        TEXT = auto()
3299        TIME = auto()
3300        TIMESTAMP = auto()
3301        TIMESTAMPTZ = auto()
3302        TIMESTAMPLTZ = auto()
3303        TINYINT = auto()
3304        UBIGINT = auto()
3305        UINT = auto()
3306        USMALLINT = auto()
3307        UTINYINT = auto()
3308        UNKNOWN = auto()  # Sentinel value, useful for type annotation
3309        UINT128 = auto()
3310        UINT256 = auto()
3311        UNIQUEIDENTIFIER = auto()
3312        UUID = auto()
3313        VARBINARY = auto()
3314        VARCHAR = auto()
3315        VARIANT = auto()
3316        XML = auto()

An enumeration.

ARRAY = <Type.ARRAY: 'ARRAY'>
BIGDECIMAL = <Type.BIGDECIMAL: 'BIGDECIMAL'>
BIGINT = <Type.BIGINT: 'BIGINT'>
BIGSERIAL = <Type.BIGSERIAL: 'BIGSERIAL'>
BINARY = <Type.BINARY: 'BINARY'>
BIT = <Type.BIT: 'BIT'>
BOOLEAN = <Type.BOOLEAN: 'BOOLEAN'>
CHAR = <Type.CHAR: 'CHAR'>
DATE = <Type.DATE: 'DATE'>
DATETIME = <Type.DATETIME: 'DATETIME'>
DATETIME64 = <Type.DATETIME64: 'DATETIME64'>
INT4RANGE = <Type.INT4RANGE: 'INT4RANGE'>
INT4MULTIRANGE = <Type.INT4MULTIRANGE: 'INT4MULTIRANGE'>
INT8RANGE = <Type.INT8RANGE: 'INT8RANGE'>
INT8MULTIRANGE = <Type.INT8MULTIRANGE: 'INT8MULTIRANGE'>
NUMRANGE = <Type.NUMRANGE: 'NUMRANGE'>
NUMMULTIRANGE = <Type.NUMMULTIRANGE: 'NUMMULTIRANGE'>
TSRANGE = <Type.TSRANGE: 'TSRANGE'>
TSMULTIRANGE = <Type.TSMULTIRANGE: 'TSMULTIRANGE'>
TSTZRANGE = <Type.TSTZRANGE: 'TSTZRANGE'>
TSTZMULTIRANGE = <Type.TSTZMULTIRANGE: 'TSTZMULTIRANGE'>
DATERANGE = <Type.DATERANGE: 'DATERANGE'>
DATEMULTIRANGE = <Type.DATEMULTIRANGE: 'DATEMULTIRANGE'>
DECIMAL = <Type.DECIMAL: 'DECIMAL'>
DOUBLE = <Type.DOUBLE: 'DOUBLE'>
FLOAT = <Type.FLOAT: 'FLOAT'>
GEOGRAPHY = <Type.GEOGRAPHY: 'GEOGRAPHY'>
GEOMETRY = <Type.GEOMETRY: 'GEOMETRY'>
HLLSKETCH = <Type.HLLSKETCH: 'HLLSKETCH'>
HSTORE = <Type.HSTORE: 'HSTORE'>
IMAGE = <Type.IMAGE: 'IMAGE'>
INET = <Type.INET: 'INET'>
INT = <Type.INT: 'INT'>
INT128 = <Type.INT128: 'INT128'>
INT256 = <Type.INT256: 'INT256'>
INTERVAL = <Type.INTERVAL: 'INTERVAL'>
JSON = <Type.JSON: 'JSON'>
JSONB = <Type.JSONB: 'JSONB'>
LONGBLOB = <Type.LONGBLOB: 'LONGBLOB'>
LONGTEXT = <Type.LONGTEXT: 'LONGTEXT'>
MAP = <Type.MAP: 'MAP'>
MEDIUMBLOB = <Type.MEDIUMBLOB: 'MEDIUMBLOB'>
MEDIUMTEXT = <Type.MEDIUMTEXT: 'MEDIUMTEXT'>
MONEY = <Type.MONEY: 'MONEY'>
NCHAR = <Type.NCHAR: 'NCHAR'>
NULL = <Type.NULL: 'NULL'>
NULLABLE = <Type.NULLABLE: 'NULLABLE'>
NVARCHAR = <Type.NVARCHAR: 'NVARCHAR'>
OBJECT = <Type.OBJECT: 'OBJECT'>
ROWVERSION = <Type.ROWVERSION: 'ROWVERSION'>
SERIAL = <Type.SERIAL: 'SERIAL'>
SMALLINT = <Type.SMALLINT: 'SMALLINT'>
SMALLMONEY = <Type.SMALLMONEY: 'SMALLMONEY'>
SMALLSERIAL = <Type.SMALLSERIAL: 'SMALLSERIAL'>
STRUCT = <Type.STRUCT: 'STRUCT'>
SUPER = <Type.SUPER: 'SUPER'>
TEXT = <Type.TEXT: 'TEXT'>
TIME = <Type.TIME: 'TIME'>
TIMESTAMP = <Type.TIMESTAMP: 'TIMESTAMP'>
TIMESTAMPTZ = <Type.TIMESTAMPTZ: 'TIMESTAMPTZ'>
TIMESTAMPLTZ = <Type.TIMESTAMPLTZ: 'TIMESTAMPLTZ'>
TINYINT = <Type.TINYINT: 'TINYINT'>
UBIGINT = <Type.UBIGINT: 'UBIGINT'>
UINT = <Type.UINT: 'UINT'>
USMALLINT = <Type.USMALLINT: 'USMALLINT'>
UTINYINT = <Type.UTINYINT: 'UTINYINT'>
UNKNOWN = <Type.UNKNOWN: 'UNKNOWN'>
UINT128 = <Type.UINT128: 'UINT128'>
UINT256 = <Type.UINT256: 'UINT256'>
UNIQUEIDENTIFIER = <Type.UNIQUEIDENTIFIER: 'UNIQUEIDENTIFIER'>
UUID = <Type.UUID: 'UUID'>
VARBINARY = <Type.VARBINARY: 'VARBINARY'>
VARCHAR = <Type.VARCHAR: 'VARCHAR'>
VARIANT = <Type.VARIANT: 'VARIANT'>
XML = <Type.XML: 'XML'>
Inherited Members
enum.Enum
name
value
class PseudoType(Expression):
3379class PseudoType(Expression):
3380    pass
class SubqueryPredicate(Predicate):
3384class SubqueryPredicate(Predicate):
3385    pass
class All(SubqueryPredicate):
3388class All(SubqueryPredicate):
3389    pass
class Any(SubqueryPredicate):
3392class Any(SubqueryPredicate):
3393    pass
class Exists(SubqueryPredicate):
3396class Exists(SubqueryPredicate):
3397    pass
class Command(Expression):
3402class Command(Expression):
3403    arg_types = {"this": True, "expression": False}
class Transaction(Expression):
3406class Transaction(Expression):
3407    arg_types = {"this": False, "modes": False}
class Commit(Expression):
3410class Commit(Expression):
3411    arg_types = {"chain": False}
class Rollback(Expression):
3414class Rollback(Expression):
3415    arg_types = {"savepoint": False}
class AlterTable(Expression):
3418class AlterTable(Expression):
3419    arg_types = {"this": True, "actions": True, "exists": False}
class AddConstraint(Expression):
3422class AddConstraint(Expression):
3423    arg_types = {"this": False, "expression": False, "enforced": False}
class DropPartition(Expression):
3426class DropPartition(Expression):
3427    arg_types = {"expressions": True, "exists": False}
class Binary(Condition):
3431class Binary(Condition):
3432    arg_types = {"this": True, "expression": True}
3433
3434    @property
3435    def left(self):
3436        return self.this
3437
3438    @property
3439    def right(self):
3440        return self.expression
class Add(Binary):
3443class Add(Binary):
3444    pass
class Connector(Binary):
3447class Connector(Binary):
3448    pass
class And(Connector):
3451class And(Connector):
3452    pass
class Or(Connector):
3455class Or(Connector):
3456    pass
class BitwiseAnd(Binary):
3459class BitwiseAnd(Binary):
3460    pass
class BitwiseLeftShift(Binary):
3463class BitwiseLeftShift(Binary):
3464    pass
class BitwiseOr(Binary):
3467class BitwiseOr(Binary):
3468    pass
class BitwiseRightShift(Binary):
3471class BitwiseRightShift(Binary):
3472    pass
class BitwiseXor(Binary):
3475class BitwiseXor(Binary):
3476    pass
class Div(Binary):
3479class Div(Binary):
3480    pass
class Overlaps(Binary):
3483class Overlaps(Binary):
3484    pass
class Dot(Binary):
3487class Dot(Binary):
3488    @property
3489    def name(self) -> str:
3490        return self.expression.name
3491
3492    @classmethod
3493    def build(self, expressions: t.Sequence[Expression]) -> Dot:
3494        """Build a Dot object with a sequence of expressions."""
3495        if len(expressions) < 2:
3496            raise ValueError(f"Dot requires >= 2 expressions.")
3497
3498        a, b, *expressions = expressions
3499        dot = Dot(this=a, expression=b)
3500
3501        for expression in expressions:
3502            dot = Dot(this=dot, expression=expression)
3503
3504        return dot
@classmethod
def build( self, expressions: Sequence[sqlglot.expressions.Expression]) -> sqlglot.expressions.Dot:
3492    @classmethod
3493    def build(self, expressions: t.Sequence[Expression]) -> Dot:
3494        """Build a Dot object with a sequence of expressions."""
3495        if len(expressions) < 2:
3496            raise ValueError(f"Dot requires >= 2 expressions.")
3497
3498        a, b, *expressions = expressions
3499        dot = Dot(this=a, expression=b)
3500
3501        for expression in expressions:
3502            dot = Dot(this=dot, expression=expression)
3503
3504        return dot

Build a Dot object with a sequence of expressions.

class DPipe(Binary):
3507class DPipe(Binary):
3508    pass
class SafeDPipe(DPipe):
3511class SafeDPipe(DPipe):
3512    pass
class EQ(Binary, Predicate):
3515class EQ(Binary, Predicate):
3516    pass
class NullSafeEQ(Binary, Predicate):
3519class NullSafeEQ(Binary, Predicate):
3520    pass
class NullSafeNEQ(Binary, Predicate):
3523class NullSafeNEQ(Binary, Predicate):
3524    pass
class Distance(Binary):
3527class Distance(Binary):
3528    pass
class Escape(Binary):
3531class Escape(Binary):
3532    pass
class Glob(Binary, Predicate):
3535class Glob(Binary, Predicate):
3536    pass
class GT(Binary, Predicate):
3539class GT(Binary, Predicate):
3540    pass
class GTE(Binary, Predicate):
3543class GTE(Binary, Predicate):
3544    pass
class ILike(Binary, Predicate):
3547class ILike(Binary, Predicate):
3548    pass
class ILikeAny(Binary, Predicate):
3551class ILikeAny(Binary, Predicate):
3552    pass
class IntDiv(Binary):
3555class IntDiv(Binary):
3556    pass
class Is(Binary, Predicate):
3559class Is(Binary, Predicate):
3560    pass
class Kwarg(Binary):
3563class Kwarg(Binary):
3564    """Kwarg in special functions like func(kwarg => y)."""

Kwarg in special functions like func(kwarg => y).

class Like(Binary, Predicate):
3567class Like(Binary, Predicate):
3568    pass
class LikeAny(Binary, Predicate):
3571class LikeAny(Binary, Predicate):
3572    pass
class LT(Binary, Predicate):
3575class LT(Binary, Predicate):
3576    pass
class LTE(Binary, Predicate):
3579class LTE(Binary, Predicate):
3580    pass
class Mod(Binary):
3583class Mod(Binary):
3584    pass
class Mul(Binary):
3587class Mul(Binary):
3588    pass
class NEQ(Binary, Predicate):
3591class NEQ(Binary, Predicate):
3592    pass
class SimilarTo(Binary, Predicate):
3595class SimilarTo(Binary, Predicate):
3596    pass
class Slice(Binary):
3599class Slice(Binary):
3600    arg_types = {"this": False, "expression": False}
class Sub(Binary):
3603class Sub(Binary):
3604    pass
class ArrayOverlaps(Binary):
3607class ArrayOverlaps(Binary):
3608    pass
class Unary(Condition):
3613class Unary(Condition):
3614    pass
class BitwiseNot(Unary):
3617class BitwiseNot(Unary):
3618    pass
class Not(Unary):
3621class Not(Unary):
3622    pass
class Paren(Unary):
3625class Paren(Unary):
3626    arg_types = {"this": True, "with": False}
3627
3628    @property
3629    def output_name(self) -> str:
3630        return self.this.name
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
class Neg(Unary):
3633class Neg(Unary):
3634    pass
class Alias(Expression):
3637class Alias(Expression):
3638    arg_types = {"this": True, "alias": False}
3639
3640    @property
3641    def output_name(self) -> str:
3642        return self.alias
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
class Aliases(Expression):
3645class Aliases(Expression):
3646    arg_types = {"this": True, "expressions": True}
3647
3648    @property
3649    def aliases(self):
3650        return self.expressions
class AtTimeZone(Expression):
3653class AtTimeZone(Expression):
3654    arg_types = {"this": True, "zone": True}
class Between(Predicate):
3657class Between(Predicate):
3658    arg_types = {"this": True, "low": True, "high": True}
class Bracket(Condition):
3661class Bracket(Condition):
3662    arg_types = {"this": True, "expressions": True}
class Distinct(Expression):
3665class Distinct(Expression):
3666    arg_types = {"expressions": False, "on": False}
class In(Predicate):
3669class In(Predicate):
3670    arg_types = {
3671        "this": True,
3672        "expressions": False,
3673        "query": False,
3674        "unnest": False,
3675        "field": False,
3676        "is_global": False,
3677    }
class TimeUnit(Expression):
3680class TimeUnit(Expression):
3681    """Automatically converts unit arg into a var."""
3682
3683    arg_types = {"unit": False}
3684
3685    def __init__(self, **args):
3686        unit = args.get("unit")
3687        if isinstance(unit, (Column, Literal)):
3688            args["unit"] = Var(this=unit.name)
3689        elif isinstance(unit, Week):
3690            unit.set("this", Var(this=unit.this.name))
3691
3692        super().__init__(**args)

Automatically converts unit arg into a var.

TimeUnit(**args)
3685    def __init__(self, **args):
3686        unit = args.get("unit")
3687        if isinstance(unit, (Column, Literal)):
3688            args["unit"] = Var(this=unit.name)
3689        elif isinstance(unit, Week):
3690            unit.set("this", Var(this=unit.this.name))
3691
3692        super().__init__(**args)
class Interval(TimeUnit):
3695class Interval(TimeUnit):
3696    arg_types = {"this": False, "unit": False}
3697
3698    @property
3699    def unit(self) -> t.Optional[Var]:
3700        return self.args.get("unit")
class IgnoreNulls(Expression):
3703class IgnoreNulls(Expression):
3704    pass
class RespectNulls(Expression):
3707class RespectNulls(Expression):
3708    pass
class Func(Condition):
3712class Func(Condition):
3713    """
3714    The base class for all function expressions.
3715
3716    Attributes:
3717        is_var_len_args (bool): if set to True the last argument defined in arg_types will be
3718            treated as a variable length argument and the argument's value will be stored as a list.
3719        _sql_names (list): determines the SQL name (1st item in the list) and aliases (subsequent items)
3720            for this function expression. These values are used to map this node to a name during parsing
3721            as well as to provide the function's name during SQL string generation. By default the SQL
3722            name is set to the expression's class name transformed to snake case.
3723    """
3724
3725    is_var_len_args = False
3726
3727    @classmethod
3728    def from_arg_list(cls, args):
3729        if cls.is_var_len_args:
3730            all_arg_keys = list(cls.arg_types)
3731            # If this function supports variable length argument treat the last argument as such.
3732            non_var_len_arg_keys = all_arg_keys[:-1] if cls.is_var_len_args else all_arg_keys
3733            num_non_var = len(non_var_len_arg_keys)
3734
3735            args_dict = {arg_key: arg for arg, arg_key in zip(args, non_var_len_arg_keys)}
3736            args_dict[all_arg_keys[-1]] = args[num_non_var:]
3737        else:
3738            args_dict = {arg_key: arg for arg, arg_key in zip(args, cls.arg_types)}
3739
3740        return cls(**args_dict)
3741
3742    @classmethod
3743    def sql_names(cls):
3744        if cls is Func:
3745            raise NotImplementedError(
3746                "SQL name is only supported by concrete function implementations"
3747            )
3748        if "_sql_names" not in cls.__dict__:
3749            cls._sql_names = [camel_to_snake_case(cls.__name__)]
3750        return cls._sql_names
3751
3752    @classmethod
3753    def sql_name(cls):
3754        return cls.sql_names()[0]
3755
3756    @classmethod
3757    def default_parser_mappings(cls):
3758        return {name: cls.from_arg_list for name in cls.sql_names()}

The base class for all function expressions.

Attributes:
  • is_var_len_args (bool): if set to True the last argument defined in arg_types will be treated as a variable length argument and the argument's value will be stored as a list.
  • _sql_names (list): determines the SQL name (1st item in the list) and aliases (subsequent items) for this function expression. These values are used to map this node to a name during parsing as well as to provide the function's name during SQL string generation. By default the SQL name is set to the expression's class name transformed to snake case.
@classmethod
def from_arg_list(cls, args):
3727    @classmethod
3728    def from_arg_list(cls, args):
3729        if cls.is_var_len_args:
3730            all_arg_keys = list(cls.arg_types)
3731            # If this function supports variable length argument treat the last argument as such.
3732            non_var_len_arg_keys = all_arg_keys[:-1] if cls.is_var_len_args else all_arg_keys
3733            num_non_var = len(non_var_len_arg_keys)
3734
3735            args_dict = {arg_key: arg for arg, arg_key in zip(args, non_var_len_arg_keys)}
3736            args_dict[all_arg_keys[-1]] = args[num_non_var:]
3737        else:
3738            args_dict = {arg_key: arg for arg, arg_key in zip(args, cls.arg_types)}
3739
3740        return cls(**args_dict)
@classmethod
def sql_names(cls):
3742    @classmethod
3743    def sql_names(cls):
3744        if cls is Func:
3745            raise NotImplementedError(
3746                "SQL name is only supported by concrete function implementations"
3747            )
3748        if "_sql_names" not in cls.__dict__:
3749            cls._sql_names = [camel_to_snake_case(cls.__name__)]
3750        return cls._sql_names
@classmethod
def sql_name(cls):
3752    @classmethod
3753    def sql_name(cls):
3754        return cls.sql_names()[0]
@classmethod
def default_parser_mappings(cls):
3756    @classmethod
3757    def default_parser_mappings(cls):
3758        return {name: cls.from_arg_list for name in cls.sql_names()}
class AggFunc(Func):
3761class AggFunc(Func):
3762    pass
class ParameterizedAgg(AggFunc):
3765class ParameterizedAgg(AggFunc):
3766    arg_types = {"this": True, "expressions": True, "params": True}
class Abs(Func):
3769class Abs(Func):
3770    pass
class Anonymous(Func):
3773class Anonymous(Func):
3774    arg_types = {"this": True, "expressions": False}
3775    is_var_len_args = True
class Hll(AggFunc):
3780class Hll(AggFunc):
3781    arg_types = {"this": True, "expressions": False}
3782    is_var_len_args = True
class ApproxDistinct(AggFunc):
3785class ApproxDistinct(AggFunc):
3786    arg_types = {"this": True, "accuracy": False}
3787    _sql_names = ["APPROX_DISTINCT", "APPROX_COUNT_DISTINCT"]
class Array(Func):
3790class Array(Func):
3791    arg_types = {"expressions": False}
3792    is_var_len_args = True
class ToChar(Func):
3796class ToChar(Func):
3797    arg_types = {"this": True, "format": False}
class GenerateSeries(Func):
3800class GenerateSeries(Func):
3801    arg_types = {"start": True, "end": True, "step": False}
class ArrayAgg(AggFunc):
3804class ArrayAgg(AggFunc):
3805    pass
class ArrayAll(Func):
3808class ArrayAll(Func):
3809    arg_types = {"this": True, "expression": True}
class ArrayAny(Func):
3812class ArrayAny(Func):
3813    arg_types = {"this": True, "expression": True}
class ArrayConcat(Func):
3816class ArrayConcat(Func):
3817    arg_types = {"this": True, "expressions": False}
3818    is_var_len_args = True
class ArrayContains(Binary, Func):
3821class ArrayContains(Binary, Func):
3822    pass
class ArrayContained(Binary):
3825class ArrayContained(Binary):
3826    pass
class ArrayFilter(Func):
3829class ArrayFilter(Func):
3830    arg_types = {"this": True, "expression": True}
3831    _sql_names = ["FILTER", "ARRAY_FILTER"]
class ArrayJoin(Func):
3834class ArrayJoin(Func):
3835    arg_types = {"this": True, "expression": True, "null": False}
class ArraySize(Func):
3838class ArraySize(Func):
3839    arg_types = {"this": True, "expression": False}
class ArraySort(Func):
3842class ArraySort(Func):
3843    arg_types = {"this": True, "expression": False}
class ArraySum(Func):
3846class ArraySum(Func):
3847    pass
class ArrayUnionAgg(AggFunc):
3850class ArrayUnionAgg(AggFunc):
3851    pass
class Avg(AggFunc):
3854class Avg(AggFunc):
3855    pass
class AnyValue(AggFunc):
3858class AnyValue(AggFunc):
3859    pass
class Case(Func):
3862class Case(Func):
3863    arg_types = {"this": False, "ifs": True, "default": False}
3864
3865    def when(self, condition: ExpOrStr, then: ExpOrStr, copy: bool = True, **opts) -> Case:
3866        instance = _maybe_copy(self, copy)
3867        instance.append(
3868            "ifs",
3869            If(
3870                this=maybe_parse(condition, copy=copy, **opts),
3871                true=maybe_parse(then, copy=copy, **opts),
3872            ),
3873        )
3874        return instance
3875
3876    def else_(self, condition: ExpOrStr, copy: bool = True, **opts) -> Case:
3877        instance = _maybe_copy(self, copy)
3878        instance.set("default", maybe_parse(condition, copy=copy, **opts))
3879        return instance
def when( self, condition: Union[str, sqlglot.expressions.Expression], then: Union[str, sqlglot.expressions.Expression], copy: bool = True, **opts) -> sqlglot.expressions.Case:
3865    def when(self, condition: ExpOrStr, then: ExpOrStr, copy: bool = True, **opts) -> Case:
3866        instance = _maybe_copy(self, copy)
3867        instance.append(
3868            "ifs",
3869            If(
3870                this=maybe_parse(condition, copy=copy, **opts),
3871                true=maybe_parse(then, copy=copy, **opts),
3872            ),
3873        )
3874        return instance
def else_( self, condition: Union[str, sqlglot.expressions.Expression], copy: bool = True, **opts) -> sqlglot.expressions.Case:
3876    def else_(self, condition: ExpOrStr, copy: bool = True, **opts) -> Case:
3877        instance = _maybe_copy(self, copy)
3878        instance.set("default", maybe_parse(condition, copy=copy, **opts))
3879        return instance
class Cast(Func):
3882class Cast(Func):
3883    arg_types = {"this": True, "to": True}
3884
3885    @property
3886    def name(self) -> str:
3887        return self.this.name
3888
3889    @property
3890    def to(self) -> DataType:
3891        return self.args["to"]
3892
3893    @property
3894    def output_name(self) -> str:
3895        return self.name
3896
3897    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3898        return self.to.is_type(*dtypes)
output_name: str

Name of the output column if this expression is a selection.

If the Expression has no output name, an empty string is returned.

Example:
>>> from sqlglot import parse_one
>>> parse_one("SELECT a").expressions[0].output_name
'a'
>>> parse_one("SELECT b AS c").expressions[0].output_name
'c'
>>> parse_one("SELECT 1 + 2").expressions[0].output_name
''
def is_type( self, *dtypes: str | sqlglot.expressions.DataType | sqlglot.expressions.DataType.Type) -> bool:
3897    def is_type(self, *dtypes: str | DataType | DataType.Type) -> bool:
3898        return self.to.is_type(*dtypes)
class CastToStrType(Func):
3901class CastToStrType(Func):
3902    arg_types = {"this": True, "expression": True}
class Collate(Binary):
3905class Collate(Binary):
3906    pass
class TryCast(Cast):
3909class TryCast(Cast):
3910    pass
class Ceil(Func):
3913class Ceil(Func):
3914    arg_types = {"this": True, "decimals": False}
3915    _sql_names = ["CEIL", "CEILING"]
class Coalesce(Func):
3918class Coalesce(Func):
3919    arg_types = {"this": True, "expressions": False}
3920    is_var_len_args = True
3921    _sql_names = ["COALESCE", "IFNULL", "NVL"]
class Concat(Func):
3924class Concat(Func):
3925    arg_types = {"expressions": True}
3926    is_var_len_args = True
class SafeConcat(Concat):
3929class SafeConcat(Concat):
3930    pass
class ConcatWs(Concat):
3933class ConcatWs(Concat):
3934    _sql_names = ["CONCAT_WS"]
class Count(AggFunc):
3937class Count(AggFunc):
3938    arg_types = {"this": False, "expressions": False}
3939    is_var_len_args = True
class CountIf(AggFunc):
3942class CountIf(AggFunc):
3943    pass
class CurrentDate(Func):
3946class CurrentDate(Func):
3947    arg_types = {"this": False}
class CurrentDatetime(Func):
3950class CurrentDatetime(Func):
3951    arg_types = {"this": False}
class CurrentTime(Func):
3954class CurrentTime(Func):
3955    arg_types = {"this": False}
class CurrentTimestamp(Func):
3958class CurrentTimestamp(Func):
3959    arg_types = {"this": False}
class CurrentUser(Func):
3962class CurrentUser(Func):
3963    arg_types = {"this": False}
class DateAdd(Func, TimeUnit):
3966class DateAdd(Func, TimeUnit):
3967    arg_types = {"this": True, "expression": True, "unit": False}
class DateSub(Func, TimeUnit):
3970class DateSub(Func, TimeUnit):
3971    arg_types = {"this": True, "expression": True, "unit": False}
class DateDiff(Func, TimeUnit):
3974class DateDiff(Func, TimeUnit):
3975    _sql_names = ["DATEDIFF", "DATE_DIFF"]
3976    arg_types = {"this": True, "expression": True, "unit": False}
class DateTrunc(Func):
3979class DateTrunc(Func):
3980    arg_types = {"unit": True, "this": True, "zone": False}
class DatetimeAdd(Func, TimeUnit):
3983class DatetimeAdd(Func, TimeUnit):
3984    arg_types = {"this": True, "expression": True, "unit": False}
class DatetimeSub(Func, TimeUnit):
3987class DatetimeSub(Func, TimeUnit):
3988    arg_types = {"this": True, "expression": True, "unit": False}
class DatetimeDiff(Func, TimeUnit):
3991class DatetimeDiff(Func, TimeUnit):
3992    arg_types = {"this": True, "expression": True, "unit": False}
class DatetimeTrunc(Func, TimeUnit):
3995class DatetimeTrunc(Func, TimeUnit):
3996    arg_types = {"this": True, "unit": True, "zone": False}
class DayOfWeek(Func):
3999class DayOfWeek(Func):
4000    _sql_names = ["DAY_OF_WEEK", "DAYOFWEEK"]
class DayOfMonth(Func):
4003class DayOfMonth(Func):
4004    _sql_names = ["DAY_OF_MONTH", "DAYOFMONTH"]
class DayOfYear(Func):
4007class DayOfYear(Func):
4008    _sql_names = ["DAY_OF_YEAR", "DAYOFYEAR"]
class WeekOfYear(Func):
4011class WeekOfYear(Func):
4012    _sql_names = ["WEEK_OF_YEAR", "WEEKOFYEAR"]
class LastDateOfMonth(Func):
4015class LastDateOfMonth(Func):
4016    pass
class Extract(Func):
4019class Extract(Func):
4020    arg_types = {"this": True, "expression": True}
class TimestampAdd(Func, TimeUnit):
4023class TimestampAdd(Func, TimeUnit):
4024    arg_types = {"this": True, "expression": True, "unit": False}
class TimestampSub(Func, TimeUnit):
4027class TimestampSub(Func, TimeUnit):
4028    arg_types = {"this": True, "expression": True, "unit": False}
class TimestampDiff(Func, TimeUnit):
4031class TimestampDiff(Func, TimeUnit):
4032    arg_types = {"this": True, "expression": True, "unit": False}
class TimestampTrunc(Func, TimeUnit):
4035class TimestampTrunc(Func, TimeUnit):
4036    arg_types = {"this": True, "unit": True, "zone": False}
class TimeAdd(Func, TimeUnit):
4039class TimeAdd(Func, TimeUnit):
4040    arg_types = {"this": True, "expression": True, "unit": False}
class TimeSub(Func, TimeUnit):
4043class TimeSub(Func, TimeUnit):
4044    arg_types = {"this": True, "expression": True, "unit": False}
class TimeDiff(Func, TimeUnit):
4047class TimeDiff(Func, TimeUnit):
4048    arg_types = {"this": True, "expression": True, "unit": False}
class TimeTrunc(Func, TimeUnit):
4051class TimeTrunc(Func, TimeUnit):
4052    arg_types = {"this": True, "unit": True, "zone": False}
class DateFromParts(Func):
4055class DateFromParts(Func):
4056    _sql_names = ["DATEFROMPARTS"]
4057    arg_types = {"year": True, "month": True, "day": True}
class DateStrToDate(Func):
4060class DateStrToDate(Func):
4061    pass
class DateToDateStr(Func):
4064class DateToDateStr(Func):
4065    pass
class DateToDi(Func):
4068class DateToDi(Func):
4069    pass
class Day(Func):
4072class Day(Func):
4073    pass
class Decode(Func):
4076class Decode(Func):
4077    arg_types = {"this": True, "charset": True, "replace": False}
class DiToDate(Func):
4080class DiToDate(Func):
4081    pass
class Encode(Func):
4084class Encode(Func):
4085    arg_types = {"this": True, "charset": True}
class Exp(Func):
4088class Exp(Func):
4089    pass
class Explode(Func):
4092class Explode(Func):
4093    pass
class Floor(Func):
4096class Floor(Func):
4097    arg_types = {"this": True, "decimals": False}
class FromBase64(Func):
4100class FromBase64(Func):
4101    pass
class ToBase64(Func):
4104class ToBase64(Func):
4105    pass
class Greatest(Func):
4108class Greatest(Func):
4109    arg_types = {"this": True, "expressions": False}
4110    is_var_len_args = True
class GroupConcat(Func):
4113class GroupConcat(Func):
4114    arg_types = {"this": True, "separator": False}
class Hex(Func):
4117class Hex(Func):
4118    pass
class If(Func):
4121class If(Func):
4122    arg_types = {"this": True, "true": True, "false": False}
class Initcap(Func):
4125class Initcap(Func):
4126    arg_types = {"this": True, "expression": False}
class JSONKeyValue(Expression):
4129class JSONKeyValue(Expression):
4130    arg_types = {"this": True, "expression": True}
class JSONObject(Func):
4133class JSONObject(Func):
4134    arg_types = {
4135        "expressions": False,
4136        "null_handling": False,
4137        "unique_keys": False,
4138        "return_type": False,
4139        "format_json": False,
4140        "encoding": False,
4141    }
class OpenJSONColumnDef(Expression):
4144class OpenJSONColumnDef(Expression):
4145    arg_types = {"this": True, "kind": True, "path": False, "as_json": False}
class OpenJSON(Func):
4148class OpenJSON(Func):
4149    arg_types = {"this": True, "path": False, "expressions": False}
class JSONBContains(Binary):
4152class JSONBContains(Binary):
4153    _sql_names = ["JSONB_CONTAINS"]
class JSONExtract(Binary, Func):
4156class JSONExtract(Binary, Func):
4157    _sql_names = ["JSON_EXTRACT"]
class JSONExtractScalar(JSONExtract):
4160class JSONExtractScalar(JSONExtract):
4161    _sql_names = ["JSON_EXTRACT_SCALAR"]
class JSONBExtract(JSONExtract):
4164class JSONBExtract(JSONExtract):
4165    _sql_names = ["JSONB_EXTRACT"]
class JSONBExtractScalar(JSONExtract):
4168class JSONBExtractScalar(JSONExtract):
4169    _sql_names = ["JSONB_EXTRACT_SCALAR"]
class JSONFormat(Func):
4172class JSONFormat(Func):
4173    arg_types = {"this": False, "options": False}
4174    _sql_names = ["JSON_FORMAT"]
class Least(Func):
4177class Least(Func):
4178    arg_types = {"expressions": False}
4179    is_var_len_args = True
class Left(Func):
4182class Left(Func):
4183    arg_types = {"this": True, "expression": True}
class Length(Func):
4190class Length(Func):
4191    _sql_names = ["LENGTH", "LEN"]
class Levenshtein(Func):
4194class Levenshtein(Func):
4195    arg_types = {
4196        "this": True,
4197        "expression": False,
4198        "ins_cost": False,
4199        "del_cost": False,
4200        "sub_cost": False,
4201    }
class Ln(Func):
4204class Ln(Func):
4205    pass
class Log(Func):
4208class Log(Func):
4209    arg_types = {"this": True, "expression": False}
class Log2(Func):
4212class Log2(Func):
4213    pass
class Log10(Func):
4216class Log10(Func):
4217    pass
class LogicalOr(AggFunc):
4220class LogicalOr(AggFunc):
4221    _sql_names = ["LOGICAL_OR", "BOOL_OR", "BOOLOR_AGG"]
class LogicalAnd(AggFunc):
4224class LogicalAnd(AggFunc):
4225    _sql_names = ["LOGICAL_AND", "BOOL_AND", "BOOLAND_AGG"]
class Lower(Func):
4228class Lower(Func):
4229    _sql_names = ["LOWER", "LCASE"]
class Map(Func):
4232class Map(Func):
4233    arg_types = {"keys": False, "values": False}
class StarMap(Func):
4236class StarMap(Func):
4237    pass
class VarMap(Func):
4240class VarMap(Func):
4241    arg_types = {"keys": True, "values": True}
4242    is_var_len_args = True
4243
4244    @property
4245    def keys(self) -> t.List[Expression]:
4246        return self.args["keys"].expressions
4247
4248    @property
4249    def values(self) -> t.List[Expression]:
4250        return self.args["values"].expressions
class MatchAgainst(Func):
4254class MatchAgainst(Func):
4255    arg_types = {"this": True, "expressions": True, "modifier": False}
class Max(AggFunc):
4258class Max(AggFunc):
4259    arg_types = {"this": True, "expressions": False}
4260    is_var_len_args = True
class MD5(Func):
4263class MD5(Func):
4264    _sql_names = ["MD5"]
class Min(AggFunc):
4267class Min(AggFunc):
4268    arg_types = {"this": True, "expressions": False}
4269    is_var_len_args = True
class Month(Func):
4272class Month(Func):
4273    pass
class Nvl2(Func):
4276class Nvl2(Func):
4277    arg_types = {"this": True, "true": True, "false": False}
class Posexplode(Func):
4280class Posexplode(Func):
4281    pass
class Pow(Binary, Func):
4284class Pow(Binary, Func):
4285    _sql_names = ["POWER", "POW"]
class PercentileCont(AggFunc):
4288class PercentileCont(AggFunc):
4289    arg_types = {"this": True, "expression": False}
class PercentileDisc(AggFunc):
4292class PercentileDisc(AggFunc):
4293    arg_types = {"this": True, "expression": False}
class Quantile(AggFunc):
4296class Quantile(AggFunc):
4297    arg_types = {"this": True, "quantile": True}
class ApproxQuantile(Quantile):
4300class ApproxQuantile(Quantile):
4301    arg_types = {"this": True, "quantile": True, "accuracy": False, "weight": False}
class RangeN(Func):
4304class RangeN(Func):
4305    arg_types = {"this": True, "expressions": True, "each": False}
class ReadCSV(Func):
4308class ReadCSV(Func):
4309    _sql_names = ["READ_CSV"]
4310    is_var_len_args = True
4311    arg_types = {"this": True, "expressions": False}
class Reduce(Func):
4314class Reduce(Func):
4315    arg_types = {"this": True, "initial": True, "merge": True, "finish": False}
class RegexpExtract(Func):
4318class RegexpExtract(Func):
4319    arg_types = {
4320        "this": True,
4321        "expression": True,
4322        "position": False,
4323        "occurrence": False,
4324        "group": False,
4325    }
class RegexpLike(Func):
4328class RegexpLike(Func):
4329    arg_types = {"this": True, "expression": True, "flag": False}
class RegexpILike(Func):
4332class RegexpILike(Func):
4333    arg_types = {"this": True, "expression": True, "flag": False}
class RegexpSplit(Func):
4338class RegexpSplit(Func):
4339    arg_types = {"this": True, "expression": True, "limit": False}
class Repeat(Func):
4342class Repeat(Func):
4343    arg_types = {"this": True, "times": True}
class Round(Func):
4346class Round(Func):
4347    arg_types = {"this": True, "decimals": False}
class RowNumber(Func):
4350class RowNumber(Func):
4351    arg_types: t.Dict[str, t.Any] = {}
class SafeDivide(Func):
4354class SafeDivide(Func):
4355    arg_types = {"this": True, "expression": True}
class SetAgg(AggFunc):
4358class SetAgg(AggFunc):
4359    pass
class SHA(Func):
4362class SHA(Func):
4363    _sql_names = ["SHA", "SHA1"]
class SHA2(Func):
4366class SHA2(Func):
4367    _sql_names = ["SHA2"]
4368    arg_types = {"this": True, "length": False}
class SortArray(Func):
4371class SortArray(Func):
4372    arg_types = {"this": True, "asc": False}
class Split(Func):
4375class Split(Func):
4376    arg_types = {"this": True, "expression": True, "limit": False}
class Substring(Func):
4381class Substring(Func):
4382    arg_types = {"this": True, "start": False, "length": False}
class StandardHash(Func):
4385class StandardHash(Func):
4386    arg_types = {"this": True, "expression": False}
class StrPosition(Func):
4389class StrPosition(Func):
4390    arg_types = {
4391        "this": True,
4392        "substr": True,
4393        "position": False,
4394        "instance": False,
4395    }
class StrToDate(Func):
4398class StrToDate(Func):
4399    arg_types = {"this": True, "format": True}
class StrToTime(Func):
4402class StrToTime(Func):
4403    arg_types = {"this": True, "format": True}
class StrToUnix(Func):
4408class StrToUnix(Func):
4409    arg_types = {"this": False, "format": False}
class NumberToStr(Func):
4412class NumberToStr(Func):
4413    arg_types = {"this": True, "format": True}
class FromBase(Func):
4416class FromBase(Func):
4417    arg_types = {"this": True, "expression": True}
class Struct(Func):
4420class Struct(Func):
4421    arg_types = {"expressions": True}
4422    is_var_len_args = True
class StructExtract(Func):
4425class StructExtract(Func):
4426    arg_types = {"this": True, "expression": True}
class Sum(AggFunc):
4429class Sum(AggFunc):
4430    pass
class Sqrt(Func):
4433class Sqrt(Func):
4434    pass
class Stddev(AggFunc):
4437class Stddev(AggFunc):
4438    pass
class StddevPop(AggFunc):
4441class StddevPop(AggFunc):
4442    pass
class StddevSamp(AggFunc):
4445class StddevSamp(AggFunc):
4446    pass
class TimeToStr(Func):
4449class TimeToStr(Func):
4450    arg_types = {"this": True, "format": True}
class TimeToTimeStr(Func):
4453class TimeToTimeStr(Func):
4454    pass
class TimeToUnix(Func):
4457class TimeToUnix(Func):
4458    pass
class TimeStrToDate(Func):
4461class TimeStrToDate(Func):
4462    pass
class TimeStrToTime(Func):
4465class TimeStrToTime(Func):
4466    pass
class TimeStrToUnix(Func):
4469class TimeStrToUnix(Func):
4470    pass
class Trim(Func):
4473class Trim(Func):
4474    arg_types = {
4475        "this": True,
4476        "expression": False,
4477        "position": False,
4478        "collation": False,
4479    }
class TsOrDsAdd(Func, TimeUnit):
4482class TsOrDsAdd(Func, TimeUnit):
4483    arg_types = {"this": True, "expression": True, "unit": False}
class TsOrDsToDateStr(Func):
4486class TsOrDsToDateStr(Func):
4487    pass
class TsOrDsToDate(Func):
4490class TsOrDsToDate(Func):
4491    arg_types = {"this": True, "format": False}
class TsOrDiToDi(Func):
4494class TsOrDiToDi(Func):
4495    pass
class Unhex(Func):
4498class Unhex(Func):
4499    pass
class UnixToStr(Func):
4502class UnixToStr(Func):
4503    arg_types = {"this": True, "format": False}
class UnixToTime(Func):
4508class UnixToTime(Func):
4509    arg_types = {"this": True, "scale": False, "zone": False, "hours": False, "minutes": False}
4510
4511    SECONDS = Literal.string("seconds")
4512    MILLIS = Literal.string("millis")
4513    MICROS = Literal.string("micros")
class UnixToTimeStr(Func):
4516class UnixToTimeStr(Func):
4517    pass
class Upper(Func):
4520class Upper(Func):
4521    _sql_names = ["UPPER", "UCASE"]
class Variance(AggFunc):
4524class Variance(AggFunc):
4525    _sql_names = ["VARIANCE", "VARIANCE_SAMP", "VAR_SAMP"]
class VariancePop(AggFunc):
4528class VariancePop(AggFunc):
4529    _sql_names = ["VARIANCE_POP", "VAR_POP"]
class Week(Func):
4532class Week(Func):
4533    arg_types = {"this": True, "mode": False}
class XMLTable(Func):
4536class XMLTable(Func):
4537    arg_types = {"this": True, "passing": False, "columns": False, "by_ref": False}
class Year(Func):
4540class Year(Func):
4541    pass
class Use(Expression):
4544class Use(Expression):
4545    arg_types = {"this": True, "kind": False}
class Merge(Expression):
4548class Merge(Expression):
4549    arg_types = {"this": True, "using": True, "on": True, "expressions": True}
class When(Func):
4552class When(Func):
4553    arg_types = {"matched": True, "source": False, "condition": False, "then": True}
class NextValueFor(Func):
4558class NextValueFor(Func):
4559    arg_types = {"this": True, "order": False}
def maybe_parse( sql_or_expression: Union[str, sqlglot.expressions.Expression], *, into: Union[str, Type[sqlglot.expressions.Expression], Collection[Union[str, Type[sqlglot.expressions.Expression]]], NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, prefix: Optional[str] = None, copy: bool = False, **opts) -> sqlglot.expressions.Expression:
4596def maybe_parse(
4597    sql_or_expression: ExpOrStr,
4598    *,
4599    into: t.Optional[IntoType] = None,
4600    dialect: DialectType = None,
4601    prefix: t.Optional[str] = None,
4602    copy: bool = False,
4603    **opts,
4604) -> Expression:
4605    """Gracefully handle a possible string or expression.
4606
4607    Example:
4608        >>> maybe_parse("1")
4609        (LITERAL this: 1, is_string: False)
4610        >>> maybe_parse(to_identifier("x"))
4611        (IDENTIFIER this: x, quoted: False)
4612
4613    Args:
4614        sql_or_expression: the SQL code string or an expression
4615        into: the SQLGlot Expression to parse into
4616        dialect: the dialect used to parse the input expressions (in the case that an
4617            input expression is a SQL string).
4618        prefix: a string to prefix the sql with before it gets parsed
4619            (automatically includes a space)
4620        copy: whether or not to copy the expression.
4621        **opts: other options to use to parse the input expressions (again, in the case
4622            that an input expression is a SQL string).
4623
4624    Returns:
4625        Expression: the parsed or given expression.
4626    """
4627    if isinstance(sql_or_expression, Expression):
4628        if copy:
4629            return sql_or_expression.copy()
4630        return sql_or_expression
4631
4632    if sql_or_expression is None:
4633        raise ParseError(f"SQL cannot be None")
4634
4635    import sqlglot
4636
4637    sql = str(sql_or_expression)
4638    if prefix:
4639        sql = f"{prefix} {sql}"
4640
4641    return sqlglot.parse_one(sql, read=dialect, into=into, **opts)

Gracefully handle a possible string or expression.

Example:
>>> maybe_parse("1")
(LITERAL this: 1, is_string: False)
>>> maybe_parse(to_identifier("x"))
(IDENTIFIER this: x, quoted: False)
Arguments:
  • sql_or_expression: the SQL code string or an expression
  • into: the SQLGlot Expression to parse into
  • dialect: the dialect used to parse the input expressions (in the case that an input expression is a SQL string).
  • prefix: a string to prefix the sql with before it gets parsed (automatically includes a space)
  • copy: whether or not to copy the expression.
  • **opts: other options to use to parse the input expressions (again, in the case that an input expression is a SQL string).
Returns:

Expression: the parsed or given expression.

def union( left: Union[str, sqlglot.expressions.Expression], right: Union[str, sqlglot.expressions.Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Union:
4825def union(
4826    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
4827) -> Union:
4828    """
4829    Initializes a syntax tree from one UNION expression.
4830
4831    Example:
4832        >>> union("SELECT * FROM foo", "SELECT * FROM bla").sql()
4833        'SELECT * FROM foo UNION SELECT * FROM bla'
4834
4835    Args:
4836        left: the SQL code string corresponding to the left-hand side.
4837            If an `Expression` instance is passed, it will be used as-is.
4838        right: the SQL code string corresponding to the right-hand side.
4839            If an `Expression` instance is passed, it will be used as-is.
4840        distinct: set the DISTINCT flag if and only if this is true.
4841        dialect: the dialect used to parse the input expression.
4842        opts: other options to use to parse the input expressions.
4843
4844    Returns:
4845        The new Union instance.
4846    """
4847    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
4848    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
4849
4850    return Union(this=left, expression=right, distinct=distinct)

Initializes a syntax tree from one UNION expression.

Example:
>>> union("SELECT * FROM foo", "SELECT * FROM bla").sql()
'SELECT * FROM foo UNION SELECT * FROM bla'
Arguments:
  • left: the SQL code string corresponding to the left-hand side. If an Expression instance is passed, it will be used as-is.
  • right: the SQL code string corresponding to the right-hand side. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Union instance.

def intersect( left: Union[str, sqlglot.expressions.Expression], right: Union[str, sqlglot.expressions.Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Intersect:
4853def intersect(
4854    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
4855) -> Intersect:
4856    """
4857    Initializes a syntax tree from one INTERSECT expression.
4858
4859    Example:
4860        >>> intersect("SELECT * FROM foo", "SELECT * FROM bla").sql()
4861        'SELECT * FROM foo INTERSECT SELECT * FROM bla'
4862
4863    Args:
4864        left: the SQL code string corresponding to the left-hand side.
4865            If an `Expression` instance is passed, it will be used as-is.
4866        right: the SQL code string corresponding to the right-hand side.
4867            If an `Expression` instance is passed, it will be used as-is.
4868        distinct: set the DISTINCT flag if and only if this is true.
4869        dialect: the dialect used to parse the input expression.
4870        opts: other options to use to parse the input expressions.
4871
4872    Returns:
4873        The new Intersect instance.
4874    """
4875    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
4876    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
4877
4878    return Intersect(this=left, expression=right, distinct=distinct)

Initializes a syntax tree from one INTERSECT expression.

Example:
>>> intersect("SELECT * FROM foo", "SELECT * FROM bla").sql()
'SELECT * FROM foo INTERSECT SELECT * FROM bla'
Arguments:
  • left: the SQL code string corresponding to the left-hand side. If an Expression instance is passed, it will be used as-is.
  • right: the SQL code string corresponding to the right-hand side. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Intersect instance.

def except_( left: Union[str, sqlglot.expressions.Expression], right: Union[str, sqlglot.expressions.Expression], distinct: bool = True, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Except:
4881def except_(
4882    left: ExpOrStr, right: ExpOrStr, distinct: bool = True, dialect: DialectType = None, **opts
4883) -> Except:
4884    """
4885    Initializes a syntax tree from one EXCEPT expression.
4886
4887    Example:
4888        >>> except_("SELECT * FROM foo", "SELECT * FROM bla").sql()
4889        'SELECT * FROM foo EXCEPT SELECT * FROM bla'
4890
4891    Args:
4892        left: the SQL code string corresponding to the left-hand side.
4893            If an `Expression` instance is passed, it will be used as-is.
4894        right: the SQL code string corresponding to the right-hand side.
4895            If an `Expression` instance is passed, it will be used as-is.
4896        distinct: set the DISTINCT flag if and only if this is true.
4897        dialect: the dialect used to parse the input expression.
4898        opts: other options to use to parse the input expressions.
4899
4900    Returns:
4901        The new Except instance.
4902    """
4903    left = maybe_parse(sql_or_expression=left, dialect=dialect, **opts)
4904    right = maybe_parse(sql_or_expression=right, dialect=dialect, **opts)
4905
4906    return Except(this=left, expression=right, distinct=distinct)

Initializes a syntax tree from one EXCEPT expression.

Example:
>>> except_("SELECT * FROM foo", "SELECT * FROM bla").sql()
'SELECT * FROM foo EXCEPT SELECT * FROM bla'
Arguments:
  • left: the SQL code string corresponding to the left-hand side. If an Expression instance is passed, it will be used as-is.
  • right: the SQL code string corresponding to the right-hand side. If an Expression instance is passed, it will be used as-is.
  • distinct: set the DISTINCT flag if and only if this is true.
  • dialect: the dialect used to parse the input expression.
  • opts: other options to use to parse the input expressions.
Returns:

The new Except instance.

def select( *expressions: Union[str, sqlglot.expressions.Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Select:
4909def select(*expressions: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
4910    """
4911    Initializes a syntax tree from one or multiple SELECT expressions.
4912
4913    Example:
4914        >>> select("col1", "col2").from_("tbl").sql()
4915        'SELECT col1, col2 FROM tbl'
4916
4917    Args:
4918        *expressions: the SQL code string to parse as the expressions of a
4919            SELECT statement. If an Expression instance is passed, this is used as-is.
4920        dialect: the dialect used to parse the input expressions (in the case that an
4921            input expression is a SQL string).
4922        **opts: other options to use to parse the input expressions (again, in the case
4923            that an input expression is a SQL string).
4924
4925    Returns:
4926        Select: the syntax tree for the SELECT statement.
4927    """
4928    return Select().select(*expressions, dialect=dialect, **opts)

Initializes a syntax tree from one or multiple SELECT expressions.

Example:
>>> select("col1", "col2").from_("tbl").sql()
'SELECT col1, col2 FROM tbl'
Arguments:
  • *expressions: the SQL code string to parse as the expressions of a SELECT statement. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expressions (in the case that an input expression is a SQL string).
  • **opts: other options to use to parse the input expressions (again, in the case that an input expression is a SQL string).
Returns:

Select: the syntax tree for the SELECT statement.

def from_( expression: Union[str, sqlglot.expressions.Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Select:
4931def from_(expression: ExpOrStr, dialect: DialectType = None, **opts) -> Select:
4932    """
4933    Initializes a syntax tree from a FROM expression.
4934
4935    Example:
4936        >>> from_("tbl").select("col1", "col2").sql()
4937        'SELECT col1, col2 FROM tbl'
4938
4939    Args:
4940        *expression: the SQL code string to parse as the FROM expressions of a
4941            SELECT statement. If an Expression instance is passed, this is used as-is.
4942        dialect: the dialect used to parse the input expression (in the case that the
4943            input expression is a SQL string).
4944        **opts: other options to use to parse the input expressions (again, in the case
4945            that the input expression is a SQL string).
4946
4947    Returns:
4948        Select: the syntax tree for the SELECT statement.
4949    """
4950    return Select().from_(expression, dialect=dialect, **opts)

Initializes a syntax tree from a FROM expression.

Example:
>>> from_("tbl").select("col1", "col2").sql()
'SELECT col1, col2 FROM tbl'
Arguments:
  • *expression: the SQL code string to parse as the FROM expressions of a SELECT statement. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression (in the case that the input expression is a SQL string).
  • **opts: other options to use to parse the input expressions (again, in the case that the input expression is a SQL string).
Returns:

Select: the syntax tree for the SELECT statement.

def update( table: str | sqlglot.expressions.Table, properties: dict, where: Union[str, sqlglot.expressions.Expression, NoneType] = None, from_: Union[str, sqlglot.expressions.Expression, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Update:
4953def update(
4954    table: str | Table,
4955    properties: dict,
4956    where: t.Optional[ExpOrStr] = None,
4957    from_: t.Optional[ExpOrStr] = None,
4958    dialect: DialectType = None,
4959    **opts,
4960) -> Update:
4961    """
4962    Creates an update statement.
4963
4964    Example:
4965        >>> update("my_table", {"x": 1, "y": "2", "z": None}, from_="baz", where="id > 1").sql()
4966        "UPDATE my_table SET x = 1, y = '2', z = NULL FROM baz WHERE id > 1"
4967
4968    Args:
4969        *properties: dictionary of properties to set which are
4970            auto converted to sql objects eg None -> NULL
4971        where: sql conditional parsed into a WHERE statement
4972        from_: sql statement parsed into a FROM statement
4973        dialect: the dialect used to parse the input expressions.
4974        **opts: other options to use to parse the input expressions.
4975
4976    Returns:
4977        Update: the syntax tree for the UPDATE statement.
4978    """
4979    update_expr = Update(this=maybe_parse(table, into=Table, dialect=dialect))
4980    update_expr.set(
4981        "expressions",
4982        [
4983            EQ(this=maybe_parse(k, dialect=dialect, **opts), expression=convert(v))
4984            for k, v in properties.items()
4985        ],
4986    )
4987    if from_:
4988        update_expr.set(
4989            "from",
4990            maybe_parse(from_, into=From, dialect=dialect, prefix="FROM", **opts),
4991        )
4992    if isinstance(where, Condition):
4993        where = Where(this=where)
4994    if where:
4995        update_expr.set(
4996            "where",
4997            maybe_parse(where, into=Where, dialect=dialect, prefix="WHERE", **opts),
4998        )
4999    return update_expr

Creates an update statement.

Example:
>>> update("my_table", {"x": 1, "y": "2", "z": None}, from_="baz", where="id > 1").sql()
"UPDATE my_table SET x = 1, y = '2', z = NULL FROM baz WHERE id > 1"
Arguments:
  • *properties: dictionary of properties to set which are auto converted to sql objects eg None -> NULL
  • where: sql conditional parsed into a WHERE statement
  • from_: sql statement parsed into a FROM statement
  • dialect: the dialect used to parse the input expressions.
  • **opts: other options to use to parse the input expressions.
Returns:

Update: the syntax tree for the UPDATE statement.

def delete( table: Union[str, sqlglot.expressions.Expression], where: Union[str, sqlglot.expressions.Expression, NoneType] = None, returning: Union[str, sqlglot.expressions.Expression, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Delete:
5002def delete(
5003    table: ExpOrStr,
5004    where: t.Optional[ExpOrStr] = None,
5005    returning: t.Optional[ExpOrStr] = None,
5006    dialect: DialectType = None,
5007    **opts,
5008) -> Delete:
5009    """
5010    Builds a delete statement.
5011
5012    Example:
5013        >>> delete("my_table", where="id > 1").sql()
5014        'DELETE FROM my_table WHERE id > 1'
5015
5016    Args:
5017        where: sql conditional parsed into a WHERE statement
5018        returning: sql conditional parsed into a RETURNING statement
5019        dialect: the dialect used to parse the input expressions.
5020        **opts: other options to use to parse the input expressions.
5021
5022    Returns:
5023        Delete: the syntax tree for the DELETE statement.
5024    """
5025    delete_expr = Delete().delete(table, dialect=dialect, copy=False, **opts)
5026    if where:
5027        delete_expr = delete_expr.where(where, dialect=dialect, copy=False, **opts)
5028    if returning:
5029        delete_expr = delete_expr.returning(returning, dialect=dialect, copy=False, **opts)
5030    return delete_expr

Builds a delete statement.

Example:
>>> delete("my_table", where="id > 1").sql()
'DELETE FROM my_table WHERE id > 1'
Arguments:
  • where: sql conditional parsed into a WHERE statement
  • returning: sql conditional parsed into a RETURNING statement
  • dialect: the dialect used to parse the input expressions.
  • **opts: other options to use to parse the input expressions.
Returns:

Delete: the syntax tree for the DELETE statement.

def insert( expression: Union[str, sqlglot.expressions.Expression], into: Union[str, sqlglot.expressions.Expression], columns: Optional[Sequence[Union[str, sqlglot.expressions.Expression]]] = None, overwrite: Optional[bool] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Insert:
5033def insert(
5034    expression: ExpOrStr,
5035    into: ExpOrStr,
5036    columns: t.Optional[t.Sequence[ExpOrStr]] = None,
5037    overwrite: t.Optional[bool] = None,
5038    dialect: DialectType = None,
5039    copy: bool = True,
5040    **opts,
5041) -> Insert:
5042    """
5043    Builds an INSERT statement.
5044
5045    Example:
5046        >>> insert("VALUES (1, 2, 3)", "tbl").sql()
5047        'INSERT INTO tbl VALUES (1, 2, 3)'
5048
5049    Args:
5050        expression: the sql string or expression of the INSERT statement
5051        into: the tbl to insert data to.
5052        columns: optionally the table's column names.
5053        overwrite: whether to INSERT OVERWRITE or not.
5054        dialect: the dialect used to parse the input expressions.
5055        copy: whether or not to copy the expression.
5056        **opts: other options to use to parse the input expressions.
5057
5058    Returns:
5059        Insert: the syntax tree for the INSERT statement.
5060    """
5061    expr = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
5062    this: Table | Schema = maybe_parse(into, into=Table, dialect=dialect, copy=copy, **opts)
5063
5064    if columns:
5065        this = _apply_list_builder(
5066            *columns,
5067            instance=Schema(this=this),
5068            arg="expressions",
5069            into=Identifier,
5070            copy=False,
5071            dialect=dialect,
5072            **opts,
5073        )
5074
5075    return Insert(this=this, expression=expr, overwrite=overwrite)

Builds an INSERT statement.

Example:
>>> insert("VALUES (1, 2, 3)", "tbl").sql()
'INSERT INTO tbl VALUES (1, 2, 3)'
Arguments:
  • expression: the sql string or expression of the INSERT statement
  • into: the tbl to insert data to.
  • columns: optionally the table's column names.
  • overwrite: whether to INSERT OVERWRITE or not.
  • dialect: the dialect used to parse the input expressions.
  • copy: whether or not to copy the expression.
  • **opts: other options to use to parse the input expressions.
Returns:

Insert: the syntax tree for the INSERT statement.

def condition( expression: Union[str, sqlglot.expressions.Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Condition:
5078def condition(
5079    expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts
5080) -> Condition:
5081    """
5082    Initialize a logical condition expression.
5083
5084    Example:
5085        >>> condition("x=1").sql()
5086        'x = 1'
5087
5088        This is helpful for composing larger logical syntax trees:
5089        >>> where = condition("x=1")
5090        >>> where = where.and_("y=1")
5091        >>> Select().from_("tbl").select("*").where(where).sql()
5092        'SELECT * FROM tbl WHERE x = 1 AND y = 1'
5093
5094    Args:
5095        *expression: the SQL code string to parse.
5096            If an Expression instance is passed, this is used as-is.
5097        dialect: the dialect used to parse the input expression (in the case that the
5098            input expression is a SQL string).
5099        copy: Whether or not to copy `expression` (only applies to expressions).
5100        **opts: other options to use to parse the input expressions (again, in the case
5101            that the input expression is a SQL string).
5102
5103    Returns:
5104        The new Condition instance
5105    """
5106    return maybe_parse(
5107        expression,
5108        into=Condition,
5109        dialect=dialect,
5110        copy=copy,
5111        **opts,
5112    )

Initialize a logical condition expression.

Example:
>>> condition("x=1").sql()
'x = 1'

This is helpful for composing larger logical syntax trees:

>>> where = condition("x=1")
>>> where = where.and_("y=1")
>>> Select().from_("tbl").select("*").where(where).sql()
'SELECT * FROM tbl WHERE x = 1 AND y = 1'
Arguments:
  • *expression: the SQL code string to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression (in the case that the input expression is a SQL string).
  • copy: Whether or not to copy expression (only applies to expressions).
  • **opts: other options to use to parse the input expressions (again, in the case that the input expression is a SQL string).
Returns:

The new Condition instance

def and_( *expressions: Union[str, sqlglot.expressions.Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Condition:
5115def and_(
5116    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
5117) -> Condition:
5118    """
5119    Combine multiple conditions with an AND logical operator.
5120
5121    Example:
5122        >>> and_("x=1", and_("y=1", "z=1")).sql()
5123        'x = 1 AND (y = 1 AND z = 1)'
5124
5125    Args:
5126        *expressions: the SQL code strings to parse.
5127            If an Expression instance is passed, this is used as-is.
5128        dialect: the dialect used to parse the input expression.
5129        copy: whether or not to copy `expressions` (only applies to Expressions).
5130        **opts: other options to use to parse the input expressions.
5131
5132    Returns:
5133        And: the new condition
5134    """
5135    return t.cast(Condition, _combine(expressions, And, dialect, copy=copy, **opts))

Combine multiple conditions with an AND logical operator.

Example:
>>> and_("x=1", and_("y=1", "z=1")).sql()
'x = 1 AND (y = 1 AND z = 1)'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether or not to copy expressions (only applies to Expressions).
  • **opts: other options to use to parse the input expressions.
Returns:

And: the new condition

def or_( *expressions: Union[str, sqlglot.expressions.Expression, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Condition:
5138def or_(
5139    *expressions: t.Optional[ExpOrStr], dialect: DialectType = None, copy: bool = True, **opts
5140) -> Condition:
5141    """
5142    Combine multiple conditions with an OR logical operator.
5143
5144    Example:
5145        >>> or_("x=1", or_("y=1", "z=1")).sql()
5146        'x = 1 OR (y = 1 OR z = 1)'
5147
5148    Args:
5149        *expressions: the SQL code strings to parse.
5150            If an Expression instance is passed, this is used as-is.
5151        dialect: the dialect used to parse the input expression.
5152        copy: whether or not to copy `expressions` (only applies to Expressions).
5153        **opts: other options to use to parse the input expressions.
5154
5155    Returns:
5156        Or: the new condition
5157    """
5158    return t.cast(Condition, _combine(expressions, Or, dialect, copy=copy, **opts))

Combine multiple conditions with an OR logical operator.

Example:
>>> or_("x=1", or_("y=1", "z=1")).sql()
'x = 1 OR (y = 1 OR z = 1)'
Arguments:
  • *expressions: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether or not to copy expressions (only applies to Expressions).
  • **opts: other options to use to parse the input expressions.
Returns:

Or: the new condition

def not_( expression: Union[str, sqlglot.expressions.Expression], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts) -> sqlglot.expressions.Not:
5161def not_(expression: ExpOrStr, dialect: DialectType = None, copy: bool = True, **opts) -> Not:
5162    """
5163    Wrap a condition with a NOT operator.
5164
5165    Example:
5166        >>> not_("this_suit='black'").sql()
5167        "NOT this_suit = 'black'"
5168
5169    Args:
5170        expression: the SQL code string to parse.
5171            If an Expression instance is passed, this is used as-is.
5172        dialect: the dialect used to parse the input expression.
5173        copy: whether to copy the expression or not.
5174        **opts: other options to use to parse the input expressions.
5175
5176    Returns:
5177        The new condition.
5178    """
5179    this = condition(
5180        expression,
5181        dialect=dialect,
5182        copy=copy,
5183        **opts,
5184    )
5185    return Not(this=_wrap(this, Connector))

Wrap a condition with a NOT operator.

Example:
>>> not_("this_suit='black'").sql()
"NOT this_suit = 'black'"
Arguments:
  • expression: the SQL code string to parse. If an Expression instance is passed, this is used as-is.
  • dialect: the dialect used to parse the input expression.
  • copy: whether to copy the expression or not.
  • **opts: other options to use to parse the input expressions.
Returns:

The new condition.

def paren( expression: Union[str, sqlglot.expressions.Expression], copy: bool = True) -> sqlglot.expressions.Paren:
5188def paren(expression: ExpOrStr, copy: bool = True) -> Paren:
5189    """
5190    Wrap an expression in parentheses.
5191
5192    Example:
5193        >>> paren("5 + 3").sql()
5194        '(5 + 3)'
5195
5196    Args:
5197        expression: the SQL code string to parse.
5198            If an Expression instance is passed, this is used as-is.
5199        copy: whether to copy the expression or not.
5200
5201    Returns:
5202        The wrapped expression.
5203    """
5204    return Paren(this=maybe_parse(expression, copy=copy))

Wrap an expression in parentheses.

Example:
>>> paren("5 + 3").sql()
'(5 + 3)'
Arguments:
  • expression: the SQL code string to parse. If an Expression instance is passed, this is used as-is.
  • copy: whether to copy the expression or not.
Returns:

The wrapped expression.

def to_identifier(name, quoted=None, copy=True):
5222def to_identifier(name, quoted=None, copy=True):
5223    """Builds an identifier.
5224
5225    Args:
5226        name: The name to turn into an identifier.
5227        quoted: Whether or not force quote the identifier.
5228        copy: Whether or not to copy a passed in Identefier node.
5229
5230    Returns:
5231        The identifier ast node.
5232    """
5233
5234    if name is None:
5235        return None
5236
5237    if isinstance(name, Identifier):
5238        identifier = _maybe_copy(name, copy)
5239    elif isinstance(name, str):
5240        identifier = Identifier(
5241            this=name,
5242            quoted=not SAFE_IDENTIFIER_RE.match(name) if quoted is None else quoted,
5243        )
5244    else:
5245        raise ValueError(f"Name needs to be a string or an Identifier, got: {name.__class__}")
5246    return identifier

Builds an identifier.

Arguments:
  • name: The name to turn into an identifier.
  • quoted: Whether or not force quote the identifier.
  • copy: Whether or not to copy a passed in Identefier node.
Returns:

The identifier ast node.

def to_interval( interval: str | sqlglot.expressions.Literal) -> sqlglot.expressions.Interval:
5252def to_interval(interval: str | Literal) -> Interval:
5253    """Builds an interval expression from a string like '1 day' or '5 months'."""
5254    if isinstance(interval, Literal):
5255        if not interval.is_string:
5256            raise ValueError("Invalid interval string.")
5257
5258        interval = interval.this
5259
5260    interval_parts = INTERVAL_STRING_RE.match(interval)  # type: ignore
5261
5262    if not interval_parts:
5263        raise ValueError("Invalid interval string.")
5264
5265    return Interval(
5266        this=Literal.string(interval_parts.group(1)),
5267        unit=Var(this=interval_parts.group(2)),
5268    )

Builds an interval expression from a string like '1 day' or '5 months'.

def to_table( sql_path: Union[str, sqlglot.expressions.Table, NoneType], dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **kwargs) -> Optional[sqlglot.expressions.Table]:
5281def to_table(
5282    sql_path: t.Optional[str | Table], dialect: DialectType = None, **kwargs
5283) -> t.Optional[Table]:
5284    """
5285    Create a table expression from a `[catalog].[schema].[table]` sql path. Catalog and schema are optional.
5286    If a table is passed in then that table is returned.
5287
5288    Args:
5289        sql_path: a `[catalog].[schema].[table]` string.
5290        dialect: the source dialect according to which the table name will be parsed.
5291        kwargs: the kwargs to instantiate the resulting `Table` expression with.
5292
5293    Returns:
5294        A table expression.
5295    """
5296    if sql_path is None or isinstance(sql_path, Table):
5297        return sql_path
5298    if not isinstance(sql_path, str):
5299        raise ValueError(f"Invalid type provided for a table: {type(sql_path)}")
5300
5301    table = maybe_parse(sql_path, into=Table, dialect=dialect)
5302    if table:
5303        for k, v in kwargs.items():
5304            table.set(k, v)
5305
5306    return table

Create a table expression from a [catalog].[schema].[table] sql path. Catalog and schema are optional. If a table is passed in then that table is returned.

Arguments:
  • sql_path: a [catalog].[schema].[table] string.
  • dialect: the source dialect according to which the table name will be parsed.
  • kwargs: the kwargs to instantiate the resulting Table expression with.
Returns:

A table expression.

def to_column( sql_path: str | sqlglot.expressions.Column, **kwargs) -> sqlglot.expressions.Column:
5309def to_column(sql_path: str | Column, **kwargs) -> Column:
5310    """
5311    Create a column from a `[table].[column]` sql path. Schema is optional.
5312
5313    If a column is passed in then that column is returned.
5314
5315    Args:
5316        sql_path: `[table].[column]` string
5317    Returns:
5318        Table: A column expression
5319    """
5320    if sql_path is None or isinstance(sql_path, Column):
5321        return sql_path
5322    if not isinstance(sql_path, str):
5323        raise ValueError(f"Invalid type provided for column: {type(sql_path)}")
5324    return column(*reversed(sql_path.split(".")), **kwargs)  # type: ignore

Create a column from a [table].[column] sql path. Schema is optional.

If a column is passed in then that column is returned.

Arguments:
  • sql_path: [table].[column] string
Returns:

Table: A column expression

def alias_( expression: Union[str, sqlglot.expressions.Expression], alias: str | sqlglot.expressions.Identifier, table: Union[bool, Sequence[str | sqlglot.expressions.Identifier]] = False, quoted: Optional[bool] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, copy: bool = True, **opts):
5327def alias_(
5328    expression: ExpOrStr,
5329    alias: str | Identifier,
5330    table: bool | t.Sequence[str | Identifier] = False,
5331    quoted: t.Optional[bool] = None,
5332    dialect: DialectType = None,
5333    copy: bool = True,
5334    **opts,
5335):
5336    """Create an Alias expression.
5337
5338    Example:
5339        >>> alias_('foo', 'bar').sql()
5340        'foo AS bar'
5341
5342        >>> alias_('(select 1, 2)', 'bar', table=['a', 'b']).sql()
5343        '(SELECT 1, 2) AS bar(a, b)'
5344
5345    Args:
5346        expression: the SQL code strings to parse.
5347            If an Expression instance is passed, this is used as-is.
5348        alias: the alias name to use. If the name has
5349            special characters it is quoted.
5350        table: Whether or not to create a table alias, can also be a list of columns.
5351        quoted: whether or not to quote the alias
5352        dialect: the dialect used to parse the input expression.
5353        copy: Whether or not to copy the expression.
5354        **opts: other options to use to parse the input expressions.
5355
5356    Returns:
5357        Alias: the aliased expression
5358    """
5359    exp = maybe_parse(expression, dialect=dialect, copy=copy, **opts)
5360    alias = to_identifier(alias, quoted=quoted)
5361
5362    if table:
5363        table_alias = TableAlias(this=alias)
5364        exp.set("alias", table_alias)
5365
5366        if not isinstance(table, bool):
5367            for column in table:
5368                table_alias.append("columns", to_identifier(column, quoted=quoted))
5369
5370        return exp
5371
5372    # We don't set the "alias" arg for Window expressions, because that would add an IDENTIFIER node in
5373    # the AST, representing a "named_window" [1] construct (eg. bigquery). What we want is an ALIAS node
5374    # for the complete Window expression.
5375    #
5376    # [1]: https://cloud.google.com/bigquery/docs/reference/standard-sql/window-function-calls
5377
5378    if "alias" in exp.arg_types and not isinstance(exp, Window):
5379        exp.set("alias", alias)
5380        return exp
5381    return Alias(this=exp, alias=alias)

Create an Alias expression.

Example:
>>> alias_('foo', 'bar').sql()
'foo AS bar'
>>> alias_('(select 1, 2)', 'bar', table=['a', 'b']).sql()
'(SELECT 1, 2) AS bar(a, b)'
Arguments:
  • expression: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • alias: the alias name to use. If the name has special characters it is quoted.
  • table: Whether or not to create a table alias, can also be a list of columns.
  • quoted: whether or not to quote the alias
  • dialect: the dialect used to parse the input expression.
  • copy: Whether or not to copy the expression.
  • **opts: other options to use to parse the input expressions.
Returns:

Alias: the aliased expression

def subquery( expression: Union[str, sqlglot.expressions.Expression], alias: Union[sqlglot.expressions.Identifier, str, NoneType] = None, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **opts) -> sqlglot.expressions.Select:
5384def subquery(
5385    expression: ExpOrStr,
5386    alias: t.Optional[Identifier | str] = None,
5387    dialect: DialectType = None,
5388    **opts,
5389) -> Select:
5390    """
5391    Build a subquery expression.
5392
5393    Example:
5394        >>> subquery('select x from tbl', 'bar').select('x').sql()
5395        'SELECT x FROM (SELECT x FROM tbl) AS bar'
5396
5397    Args:
5398        expression: the SQL code strings to parse.
5399            If an Expression instance is passed, this is used as-is.
5400        alias: the alias name to use.
5401        dialect: the dialect used to parse the input expression.
5402        **opts: other options to use to parse the input expressions.
5403
5404    Returns:
5405        A new Select instance with the subquery expression included.
5406    """
5407
5408    expression = maybe_parse(expression, dialect=dialect, **opts).subquery(alias)
5409    return Select().from_(expression, dialect=dialect, **opts)

Build a subquery expression.

Example:
>>> subquery('select x from tbl', 'bar').select('x').sql()
'SELECT x FROM (SELECT x FROM tbl) AS bar'
Arguments:
  • expression: the SQL code strings to parse. If an Expression instance is passed, this is used as-is.
  • alias: the alias name to use.
  • dialect: the dialect used to parse the input expression.
  • **opts: other options to use to parse the input expressions.
Returns:

A new Select instance with the subquery expression included.

def column( col: str | sqlglot.expressions.Identifier, table: Union[sqlglot.expressions.Identifier, str, NoneType] = None, db: Union[sqlglot.expressions.Identifier, str, NoneType] = None, catalog: Union[sqlglot.expressions.Identifier, str, NoneType] = None, quoted: Optional[bool] = None) -> sqlglot.expressions.Column:
5412def column(
5413    col: str | Identifier,
5414    table: t.Optional[str | Identifier] = None,
5415    db: t.Optional[str | Identifier] = None,
5416    catalog: t.Optional[str | Identifier] = None,
5417    quoted: t.Optional[bool] = None,
5418) -> Column:
5419    """
5420    Build a Column.
5421
5422    Args:
5423        col: Column name.
5424        table: Table name.
5425        db: Database name.
5426        catalog: Catalog name.
5427        quoted: Whether to force quotes on the column's identifiers.
5428
5429    Returns:
5430        The new Column instance.
5431    """
5432    return Column(
5433        this=to_identifier(col, quoted=quoted),
5434        table=to_identifier(table, quoted=quoted),
5435        db=to_identifier(db, quoted=quoted),
5436        catalog=to_identifier(catalog, quoted=quoted),
5437    )

Build a Column.

Arguments:
  • col: Column name.
  • table: Table name.
  • db: Database name.
  • catalog: Catalog name.
  • quoted: Whether to force quotes on the column's identifiers.
Returns:

The new Column instance.

def cast( expression: Union[str, sqlglot.expressions.Expression], to: str | sqlglot.expressions.DataType | sqlglot.expressions.DataType.Type, **opts) -> sqlglot.expressions.Cast:
5440def cast(expression: ExpOrStr, to: str | DataType | DataType.Type, **opts) -> Cast:
5441    """Cast an expression to a data type.
5442
5443    Example:
5444        >>> cast('x + 1', 'int').sql()
5445        'CAST(x + 1 AS INT)'
5446
5447    Args:
5448        expression: The expression to cast.
5449        to: The datatype to cast to.
5450
5451    Returns:
5452        The new Cast instance.
5453    """
5454    expression = maybe_parse(expression, **opts)
5455    return Cast(this=expression, to=DataType.build(to, **opts))

Cast an expression to a data type.

Example:
>>> cast('x + 1', 'int').sql()
'CAST(x + 1 AS INT)'
Arguments:
  • expression: The expression to cast.
  • to: The datatype to cast to.
Returns:

The new Cast instance.

def table_( table: sqlglot.expressions.Identifier | str, db: Union[sqlglot.expressions.Identifier, str, NoneType] = None, catalog: Union[sqlglot.expressions.Identifier, str, NoneType] = None, quoted: Optional[bool] = None, alias: Union[sqlglot.expressions.Identifier, str, NoneType] = None) -> sqlglot.expressions.Table:
5458def table_(
5459    table: Identifier | str,
5460    db: t.Optional[Identifier | str] = None,
5461    catalog: t.Optional[Identifier | str] = None,
5462    quoted: t.Optional[bool] = None,
5463    alias: t.Optional[Identifier | str] = None,
5464) -> Table:
5465    """Build a Table.
5466
5467    Args:
5468        table: Table name.
5469        db: Database name.
5470        catalog: Catalog name.
5471        quote: Whether to force quotes on the table's identifiers.
5472        alias: Table's alias.
5473
5474    Returns:
5475        The new Table instance.
5476    """
5477    return Table(
5478        this=to_identifier(table, quoted=quoted),
5479        db=to_identifier(db, quoted=quoted),
5480        catalog=to_identifier(catalog, quoted=quoted),
5481        alias=TableAlias(this=to_identifier(alias)) if alias else None,
5482    )

Build a Table.

Arguments:
  • table: Table name.
  • db: Database name.
  • catalog: Catalog name.
  • quote: Whether to force quotes on the table's identifiers.
  • alias: Table's alias.
Returns:

The new Table instance.

def values( values: Iterable[Tuple[Any, ...]], alias: Optional[str] = None, columns: Union[Iterable[str], Dict[str, sqlglot.expressions.DataType], NoneType] = None) -> sqlglot.expressions.Values:
5485def values(
5486    values: t.Iterable[t.Tuple[t.Any, ...]],
5487    alias: t.Optional[str] = None,
5488    columns: t.Optional[t.Iterable[str] | t.Dict[str, DataType]] = None,
5489) -> Values:
5490    """Build VALUES statement.
5491
5492    Example:
5493        >>> values([(1, '2')]).sql()
5494        "VALUES (1, '2')"
5495
5496    Args:
5497        values: values statements that will be converted to SQL
5498        alias: optional alias
5499        columns: Optional list of ordered column names or ordered dictionary of column names to types.
5500         If either are provided then an alias is also required.
5501
5502    Returns:
5503        Values: the Values expression object
5504    """
5505    if columns and not alias:
5506        raise ValueError("Alias is required when providing columns")
5507
5508    return Values(
5509        expressions=[convert(tup) for tup in values],
5510        alias=(
5511            TableAlias(this=to_identifier(alias), columns=[to_identifier(x) for x in columns])
5512            if columns
5513            else (TableAlias(this=to_identifier(alias)) if alias else None)
5514        ),
5515    )

Build VALUES statement.

Example:
>>> values([(1, '2')]).sql()
"VALUES (1, '2')"
Arguments:
  • values: values statements that will be converted to SQL
  • alias: optional alias
  • columns: Optional list of ordered column names or ordered dictionary of column names to types. If either are provided then an alias is also required.
Returns:

Values: the Values expression object

def var( name: Union[str, sqlglot.expressions.Expression, NoneType]) -> sqlglot.expressions.Var:
5518def var(name: t.Optional[ExpOrStr]) -> Var:
5519    """Build a SQL variable.
5520
5521    Example:
5522        >>> repr(var('x'))
5523        '(VAR this: x)'
5524
5525        >>> repr(var(column('x', table='y')))
5526        '(VAR this: x)'
5527
5528    Args:
5529        name: The name of the var or an expression who's name will become the var.
5530
5531    Returns:
5532        The new variable node.
5533    """
5534    if not name:
5535        raise ValueError("Cannot convert empty name into var.")
5536
5537    if isinstance(name, Expression):
5538        name = name.name
5539    return Var(this=name)

Build a SQL variable.

Example:
>>> repr(var('x'))
'(VAR this: x)'
>>> repr(var(column('x', table='y')))
'(VAR this: x)'
Arguments:
  • name: The name of the var or an expression who's name will become the var.
Returns:

The new variable node.

def rename_table( old_name: str | sqlglot.expressions.Table, new_name: str | sqlglot.expressions.Table) -> sqlglot.expressions.AlterTable:
5542def rename_table(old_name: str | Table, new_name: str | Table) -> AlterTable:
5543    """Build ALTER TABLE... RENAME... expression
5544
5545    Args:
5546        old_name: The old name of the table
5547        new_name: The new name of the table
5548
5549    Returns:
5550        Alter table expression
5551    """
5552    old_table = to_table(old_name)
5553    new_table = to_table(new_name)
5554    return AlterTable(
5555        this=old_table,
5556        actions=[
5557            RenameTable(this=new_table),
5558        ],
5559    )

Build ALTER TABLE... RENAME... expression

Arguments:
  • old_name: The old name of the table
  • new_name: The new name of the table
Returns:

Alter table expression

def convert(value: Any, copy: bool = False) -> sqlglot.expressions.Expression:
5562def convert(value: t.Any, copy: bool = False) -> Expression:
5563    """Convert a python value into an expression object.
5564
5565    Raises an error if a conversion is not possible.
5566
5567    Args:
5568        value: A python object.
5569        copy: Whether or not to copy `value` (only applies to Expressions and collections).
5570
5571    Returns:
5572        Expression: the equivalent expression object.
5573    """
5574    if isinstance(value, Expression):
5575        return _maybe_copy(value, copy)
5576    if isinstance(value, str):
5577        return Literal.string(value)
5578    if isinstance(value, bool):
5579        return Boolean(this=value)
5580    if value is None or (isinstance(value, float) and math.isnan(value)):
5581        return NULL
5582    if isinstance(value, numbers.Number):
5583        return Literal.number(value)
5584    if isinstance(value, datetime.datetime):
5585        datetime_literal = Literal.string(
5586            (value if value.tzinfo else value.replace(tzinfo=datetime.timezone.utc)).isoformat()
5587        )
5588        return TimeStrToTime(this=datetime_literal)
5589    if isinstance(value, datetime.date):
5590        date_literal = Literal.string(value.strftime("%Y-%m-%d"))
5591        return DateStrToDate(this=date_literal)
5592    if isinstance(value, tuple):
5593        return Tuple(expressions=[convert(v, copy=copy) for v in value])
5594    if isinstance(value, list):
5595        return Array(expressions=[convert(v, copy=copy) for v in value])
5596    if isinstance(value, dict):
5597        return Map(
5598            keys=[convert(k, copy=copy) for k in value],
5599            values=[convert(v, copy=copy) for v in value.values()],
5600        )
5601    raise ValueError(f"Cannot convert {value}")

Convert a python value into an expression object.

Raises an error if a conversion is not possible.

Arguments:
  • value: A python object.
  • copy: Whether or not to copy value (only applies to Expressions and collections).
Returns:

Expression: the equivalent expression object.

def replace_children( expression: sqlglot.expressions.Expression, fun: Callable, *args, **kwargs) -> None:
5604def replace_children(expression: Expression, fun: t.Callable, *args, **kwargs) -> None:
5605    """
5606    Replace children of an expression with the result of a lambda fun(child) -> exp.
5607    """
5608    for k, v in expression.args.items():
5609        is_list_arg = type(v) is list
5610
5611        child_nodes = v if is_list_arg else [v]
5612        new_child_nodes = []
5613
5614        for cn in child_nodes:
5615            if isinstance(cn, Expression):
5616                for child_node in ensure_collection(fun(cn, *args, **kwargs)):
5617                    new_child_nodes.append(child_node)
5618                    child_node.parent = expression
5619                    child_node.arg_key = k
5620            else:
5621                new_child_nodes.append(cn)
5622
5623        expression.args[k] = new_child_nodes if is_list_arg else seq_get(new_child_nodes, 0)

Replace children of an expression with the result of a lambda fun(child) -> exp.

def column_table_names(expression: sqlglot.expressions.Expression) -> List[str]:
5626def column_table_names(expression: Expression) -> t.List[str]:
5627    """
5628    Return all table names referenced through columns in an expression.
5629
5630    Example:
5631        >>> import sqlglot
5632        >>> column_table_names(sqlglot.parse_one("a.b AND c.d AND c.e"))
5633        ['c', 'a']
5634
5635    Args:
5636        expression: expression to find table names.
5637
5638    Returns:
5639        A list of unique names.
5640    """
5641    return list(dict.fromkeys(column.table for column in expression.find_all(Column)))

Return all table names referenced through columns in an expression.

Example:
>>> import sqlglot
>>> column_table_names(sqlglot.parse_one("a.b AND c.d AND c.e"))
['c', 'a']
Arguments:
  • expression: expression to find table names.
Returns:

A list of unique names.

def table_name(table: sqlglot.expressions.Table | str) -> str:
5644def table_name(table: Table | str) -> str:
5645    """Get the full name of a table as a string.
5646
5647    Args:
5648        table: table expression node or string.
5649
5650    Examples:
5651        >>> from sqlglot import exp, parse_one
5652        >>> table_name(parse_one("select * from a.b.c").find(exp.Table))
5653        'a.b.c'
5654
5655    Returns:
5656        The table name.
5657    """
5658
5659    table = maybe_parse(table, into=Table)
5660
5661    if not table:
5662        raise ValueError(f"Cannot parse {table}")
5663
5664    return ".".join(part for part in (table.text("catalog"), table.text("db"), table.name) if part)

Get the full name of a table as a string.

Arguments:
  • table: table expression node or string.
Examples:
>>> from sqlglot import exp, parse_one
>>> table_name(parse_one("select * from a.b.c").find(exp.Table))
'a.b.c'
Returns:

The table name.

def replace_tables(expression: ~E, mapping: Dict[str, str]) -> ~E:
5667def replace_tables(expression: E, mapping: t.Dict[str, str]) -> E:
5668    """Replace all tables in expression according to the mapping.
5669
5670    Args:
5671        expression: expression node to be transformed and replaced.
5672        mapping: mapping of table names.
5673
5674    Examples:
5675        >>> from sqlglot import exp, parse_one
5676        >>> replace_tables(parse_one("select * from a.b"), {"a.b": "c"}).sql()
5677        'SELECT * FROM c'
5678
5679    Returns:
5680        The mapped expression.
5681    """
5682
5683    def _replace_tables(node: Expression) -> Expression:
5684        if isinstance(node, Table):
5685            new_name = mapping.get(table_name(node))
5686            if new_name:
5687                return to_table(
5688                    new_name,
5689                    **{k: v for k, v in node.args.items() if k not in ("this", "db", "catalog")},
5690                )
5691        return node
5692
5693    return expression.transform(_replace_tables)

Replace all tables in expression according to the mapping.

Arguments:
  • expression: expression node to be transformed and replaced.
  • mapping: mapping of table names.
Examples:
>>> from sqlglot import exp, parse_one
>>> replace_tables(parse_one("select * from a.b"), {"a.b": "c"}).sql()
'SELECT * FROM c'
Returns:

The mapped expression.

def replace_placeholders( expression: sqlglot.expressions.Expression, *args, **kwargs) -> sqlglot.expressions.Expression:
5696def replace_placeholders(expression: Expression, *args, **kwargs) -> Expression:
5697    """Replace placeholders in an expression.
5698
5699    Args:
5700        expression: expression node to be transformed and replaced.
5701        args: positional names that will substitute unnamed placeholders in the given order.
5702        kwargs: keyword arguments that will substitute named placeholders.
5703
5704    Examples:
5705        >>> from sqlglot import exp, parse_one
5706        >>> replace_placeholders(
5707        ...     parse_one("select * from :tbl where ? = ?"),
5708        ...     exp.to_identifier("str_col"), "b", tbl=exp.to_identifier("foo")
5709        ... ).sql()
5710        "SELECT * FROM foo WHERE str_col = 'b'"
5711
5712    Returns:
5713        The mapped expression.
5714    """
5715
5716    def _replace_placeholders(node: Expression, args, **kwargs) -> Expression:
5717        if isinstance(node, Placeholder):
5718            if node.name:
5719                new_name = kwargs.get(node.name)
5720                if new_name:
5721                    return convert(new_name)
5722            else:
5723                try:
5724                    return convert(next(args))
5725                except StopIteration:
5726                    pass
5727        return node
5728
5729    return expression.transform(_replace_placeholders, iter(args), **kwargs)

Replace placeholders in an expression.

Arguments:
  • expression: expression node to be transformed and replaced.
  • args: positional names that will substitute unnamed placeholders in the given order.
  • kwargs: keyword arguments that will substitute named placeholders.
Examples:
>>> from sqlglot import exp, parse_one
>>> replace_placeholders(
...     parse_one("select * from :tbl where ? = ?"),
...     exp.to_identifier("str_col"), "b", tbl=exp.to_identifier("foo")
... ).sql()
"SELECT * FROM foo WHERE str_col = 'b'"
Returns:

The mapped expression.

def expand( expression: sqlglot.expressions.Expression, sources: Dict[str, sqlglot.expressions.Subqueryable], copy: bool = True) -> sqlglot.expressions.Expression:
5732def expand(
5733    expression: Expression, sources: t.Dict[str, Subqueryable], copy: bool = True
5734) -> Expression:
5735    """Transforms an expression by expanding all referenced sources into subqueries.
5736
5737    Examples:
5738        >>> from sqlglot import parse_one
5739        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y")}).sql()
5740        'SELECT * FROM (SELECT * FROM y) AS z /* source: x */'
5741
5742        >>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y"), "y": parse_one("select * from z")}).sql()
5743        'SELECT * FROM (SELECT * FROM (SELECT * FROM z) AS y /* source: y */) AS z /* source: x */'
5744
5745    Args:
5746        expression: The expression to expand.
5747        sources: A dictionary of name to Subqueryables.
5748        copy: Whether or not to copy the expression during transformation. Defaults to True.
5749
5750    Returns:
5751        The transformed expression.
5752    """
5753
5754    def _expand(node: Expression):
5755        if isinstance(node, Table):
5756            name = table_name(node)
5757            source = sources.get(name)
5758            if source:
5759                subquery = source.subquery(node.alias or name)
5760                subquery.comments = [f"source: {name}"]
5761                return subquery.transform(_expand, copy=False)
5762        return node
5763
5764    return expression.transform(_expand, copy=copy)

Transforms an expression by expanding all referenced sources into subqueries.

Examples:
>>> from sqlglot import parse_one
>>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y")}).sql()
'SELECT * FROM (SELECT * FROM y) AS z /* source: x */'
>>> expand(parse_one("select * from x AS z"), {"x": parse_one("select * from y"), "y": parse_one("select * from z")}).sql()
'SELECT * FROM (SELECT * FROM (SELECT * FROM z) AS y /* source: y */) AS z /* source: x */'
Arguments:
  • expression: The expression to expand.
  • sources: A dictionary of name to Subqueryables.
  • copy: Whether or not to copy the expression during transformation. Defaults to True.
Returns:

The transformed expression.

def func( name: str, *args, dialect: Union[str, sqlglot.dialects.dialect.Dialect, Type[sqlglot.dialects.dialect.Dialect], NoneType] = None, **kwargs) -> sqlglot.expressions.Func:
5767def func(name: str, *args, dialect: DialectType = None, **kwargs) -> Func:
5768    """
5769    Returns a Func expression.
5770
5771    Examples:
5772        >>> func("abs", 5).sql()
5773        'ABS(5)'
5774
5775        >>> func("cast", this=5, to=DataType.build("DOUBLE")).sql()
5776        'CAST(5 AS DOUBLE)'
5777
5778    Args:
5779        name: the name of the function to build.
5780        args: the args used to instantiate the function of interest.
5781        dialect: the source dialect.
5782        kwargs: the kwargs used to instantiate the function of interest.
5783
5784    Note:
5785        The arguments `args` and `kwargs` are mutually exclusive.
5786
5787    Returns:
5788        An instance of the function of interest, or an anonymous function, if `name` doesn't
5789        correspond to an existing `sqlglot.expressions.Func` class.
5790    """
5791    if args and kwargs:
5792        raise ValueError("Can't use both args and kwargs to instantiate a function.")
5793
5794    from sqlglot.dialects.dialect import Dialect
5795
5796    converted: t.List[Expression] = [maybe_parse(arg, dialect=dialect) for arg in args]
5797    kwargs = {key: maybe_parse(value, dialect=dialect) for key, value in kwargs.items()}
5798
5799    parser = Dialect.get_or_raise(dialect)().parser()
5800    from_args_list = parser.FUNCTIONS.get(name.upper())
5801
5802    if from_args_list:
5803        function = from_args_list(converted) if converted else from_args_list.__self__(**kwargs)  # type: ignore
5804    else:
5805        kwargs = kwargs or {"expressions": converted}
5806        function = Anonymous(this=name, **kwargs)
5807
5808    for error_message in function.error_messages(converted):
5809        raise ValueError(error_message)
5810
5811    return function

Returns a Func expression.

Examples:
>>> func("abs", 5).sql()
'ABS(5)'
>>> func("cast", this=5, to=DataType.build("DOUBLE")).sql()
'CAST(5 AS DOUBLE)'
Arguments:
  • name: the name of the function to build.
  • args: the args used to instantiate the function of interest.
  • dialect: the source dialect.
  • kwargs: the kwargs used to instantiate the function of interest.
Note:

The arguments args and kwargs are mutually exclusive.

Returns:

An instance of the function of interest, or an anonymous function, if name doesn't correspond to an existing sqlglot.expressions.Func class.

def true() -> sqlglot.expressions.Boolean:
5814def true() -> Boolean:
5815    """
5816    Returns a true Boolean expression.
5817    """
5818    return Boolean(this=True)

Returns a true Boolean expression.

def false() -> sqlglot.expressions.Boolean:
5821def false() -> Boolean:
5822    """
5823    Returns a false Boolean expression.
5824    """
5825    return Boolean(this=False)

Returns a false Boolean expression.

def null() -> sqlglot.expressions.Null:
5828def null() -> Null:
5829    """
5830    Returns a Null expression.
5831    """
5832    return Null()

Returns a Null expression.