
Filling N-sided holes usingcombined subdivision schemesAdi LevinAbstract. A new method is presented for calculating N -sided surfacepatches. The algorithm generates a subdivision surface which satis�esarbitrary C1 boundary conditions. The proposed subdivision scheme isbased on a Catmull-Clark type subdivision scheme that operates in thesurface interior. Near the boundary we introduce new subdivision rulesthat involve the given boundary conditions. The generated subdivisionsurface is C2-continuous except at one extraordinary point. In the neigh-borhood of this point the surface curvature is bounded.x1. BackgroundThe problem of constructing N -sided surface patches occurs frequently incomputer-aided geometric design. The N -sided patch is required to connectsmoothly to given surfaces surrounding a polygonal hole, as shown in Fig. 1.Referring to [10,25,26], N -sided patches can be generated basically intwo ways. Either the polygonal domain, which is to be mapped into 3D, issubdivided in the parametric plane, or one uniform equation is used to rep-resent the entire patch. In the former case triangular or rectangular elementsare put together [2,6,12,20,23] or recursive subdivision methods are applied[5,8,24]. In the latter case either the known control-point based methods aregeneralized or a weighted sum of 3D interpolants gives the surface equation[1,3,4,22,26].The method presented in this paper is a recursive subdivision schemespecially designed to consider arbitrary boundary conditions. Subdivisionschemes provide e�cient algorithms for the design, representation and pro-cessing of smooth surfaces of arbitrary topological type. Their simplicity andtheir multiresolution structure make them attractive for applications in 3Dsurface modeling, and in computer graphics [7,9,11,13,19,27,28].The subdivision scheme presented in this paper falls into the category ofcombined subdivision schemes [14,15,17,18], where the underlying surface isSaint-Malo Proceedings 1XXX, XXX, and Larry L. Schumaker (eds.), pp. 1{8.Copyright oc 2000 by Vanderbilt University Press, Nashville, TN.ISBN 1-xxxxx-xxx-x.All rights of reproduction in any form reserved.
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Fig. 1. A 5 sided and a 3 sided surface patch.represented not only by a control net, but also by the given boundary con-ditions. The scheme repeatedly applies a subdivision operator to the controlnet, which becomes more and more dense. In the limit, the vertices of thecontrol net converge to a smooth surface. Samples of the boundary conditionsparticipate in every iteration of the subdivision, and as a result the limit sur-face satis�es the given conditions, regardless of their representation. Thus,our scheme performs so-called trans�nite interpolation.The motivation behind the speci�c subdivision rules, and the smoothnessanalysis of the scheme are presented in [16]. In the following sections, wedescribe Catmull-Clark's scheme, and we present the details of our scheme.x2. Catmull-Clark subdivisionA net � = (V;E) consists of a set of vertices V and the topologicalinformation of the net E, in terms of edges and faces. A net is closed wheneach edge is shared by exactly two faces.Camull-Clark's subdivision scheme is de�ned over closed nets of arbitrarytopology, as an extension of the tensor product bi-cubic B-spline subdivisionscheme [5,8]. Variants of the original scheme were analyzed by Ball and Storry[24]. Our algorithm employs a variant of Catmull-Clark's scheme due to Sabin[21], which generates limit surfaces that are C2-continuous everywhere exceptat a �nite number of irregular points. In the neighborhood of those pointsthe surface curvature is bounded. The irregular points come from vertices ofthe original control net that have valency other than 4, and from faces of theoriginal control net that are not quadrilateral.Given a net �, the vertices V 0 of the new net �0 = (V 0; E0) are calculatedby applying the following rules on � (see Fig. 2):1. For each old face f , make a new face-vertex v(f) as the weighted averageof the old vertices of f , with weights Wm that depend on the valency m ofeach vertex.2. For each old edge e, make a new edge-vertex v(e) as the weighted averageof the old vertices of e and the new face vertices associated with the two faces



Filling N-sided holes using combined subdivision schemes 3originally sharing e. The weightsWm (which are the same as the weights usedin rule 1) depend on the valency m of each vertex.3. For each old vertex v, make a new vertex-vertex v(v) at the point givenby the following linear combination, whose coe�cients �m; �m; 
m depend onthe valency m of v:�m� (the centroid of the new edge vertices of the edges meeting at v) +�m� (the centroid of the new face vertices of the faces sharing those edges) +
m � v.
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v(v)Fig. 2. Catmull-Clark's scheme.The topology E0 of the new net is calculated by the following rule: Foreach old face f and for each vertex v of f , make a new quadrilateral facewhose edges join v(f) and v(v) to the edge vertices of the edges of f sharingv (see Fig. 2).We present the procedure for calculating the weights mentioned above,as formulated by Sabin in [21]: Let m > 2 denote a vertex valency. Letk := cos(�=m). Let x be the unique real root ofx3 + (4k2 � 3)x� 2k = 0;satisfying x > 1. ThenWm = x2 + 2kx� 3; �m = 1;
m = kx+ 2k2 � 1x2(kx+ 1) ; �m = �
m:The weights Wm and 
m for m = 3; : : : ; 7 are given byW3 = 1:23606797749979 : : : 
3 = 0:06524758424985 : : :W4 = 1:00000000000000000 
4 = 0:25000000000000000W5 = 0:71850240323974 : : : 
5 = 0:40198344690335 : : :W6 = 0:52233339335931 : : : 
6 = 0:52342327689253 : : :W7 = 0:39184256502794 : : : 
7 = 0:61703187134796 : : :Remark: The original paper by Sabin [21] contains a mistake: the formulasfor the parameters �; � and 
 that appear in x4 there, are � := 1; 
 := ��.



4 Adi Levinx3. The boundary conditionsThe input to our scheme consists of N smooth curves given in a paramet-ric representation cj : [0; 2]! IR3 over the parameter interval [0; 2], and cor-responding cross-boundary derivative functions dj : [0; 2] ! IR3 (see Fig. 3).We say that the boundary conditions are C0-compatible at the j-th corner ifcj(2) = cj+1(0):We say that the boundary conditions are C1-compatible ifdj(0) = �c0j�1(2);dj(2) = c0j+1(0):We say that the boundary conditions are C2-compatible if the curves cj haveH�older continuous second derivatives, the functions dj have H�older continuousderivatives, and the following twist compatibility condition is satis�ed:d0j(2) = �d0j+1(0): (1)The requirement of H�older continuity is used in [16] for the proof of C2-continuiuty in case the boundary conditions are C2-compatible.
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Fig. 3. The input data (left) and the initial control net (right).x4. The algorithmIn this section we describe our algorithm for the design of an N -sidedpatch satisfying the boundary conditions described in x3. The key ingredientsof the algorithm are two formulas for calculating the boundary vertices of thenet. These formulas are given in x4.3 and x4.4.



Filling N-sided holes using combined subdivision schemes 5x4.1. Constructing an initial control netThe algorithm starts by constructing an initial control net, whose faces areall quadrilateral, with 2N boundary vertices and one middle vertex, as shownin Fig. 3. The boundary vertices are placed at the parameter values 0; 1; 2 onthe given curves. The middle vertex can be arbitrarily chosen by the designer,and it controls the shape of the resulting surface.x4.2. A single iteration of subdivisionWe denote by n denote the iteration number, where n = 0 corresponds tothe �rst iteration. In the n-th iteration we perform three steps: First, werelocate the boundary vertices according to the rules given below in x4.3 -x4.4. Then, we apply Sabin's variant of Catmull-Clark's scheme to calculatethe new net topology and the position of the new internal vertices. For thepurpose of choosing appropriate weights in the averaging process, we considerthe boundary vertices as if they all have valency 4. This makes up for thefact that the net is not closed. In the third and �nal step, we sample theboundary vertices from the given curves at uniformly spaced parameter valueswith interval length 2�(n+1).x4.3. A smooth boundary ruleLet v denote a boundary vertex corresponding to the parameter 0 < u < 2 onthe curve cj . Let w denote the unique internal vertex which shares an edgewith v (see Fig. 4 (left) ). In the �rst step of the n-th iteration we calculatethe position of the v by the following formula:v = 2cj(u)� 12w � 14 �cj �u+ 2�n�+ cj �u� 2�n���2�n 112 �dj �u+ 2�n�+ dj �u� 2�n��+ 2�n 23dj(u):x4.4. A corner ruleLet v denote a boundary vertex corresponding to the point cj�1(2) = cj(0).Let w be the unique internal vertex sharing a face with v (see Fig. 4 (right)). In the �rst step of the n-th iteration we calculate the position of v by thefollowing formula:v = 52cj(0) + 14w � �cj(2�n) + cj�1(2� 2�n)�+ 18cj(21�n)+18cj�1(2� 21�n) + 2�n 2948 (dj(0) + dj�1(2))� 2�n 112dj(2�n)�2�n 112dj�1(2� 2�n)� 2�n 148 �dj(21�n) + dj�1(2� 21�n)� :x5. Properties of our scheme
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Fig. 4. The stencils for the smooth boundary rule (left) and the cornerrule (right).In [16] we prove that the vertices generated by the above procedureconverge to a surface which is C2-continuous almost everywhere, providedthat the boundary conditions are C2-compatible (as de�ned in x3). The onlypoint where the surface is not C2-continuous is a middle-point (correspond-ing to the middle vertex, which has valency N), where the surface is onlyG1-continuous. In the neighborhood of this extraordinary point, the surfacecurvature is bounded.The limit surface interpolates the given curves, for C0-compatible bound-ary conditions. For C1-compatible boundary conditions, the tangent plane ofthe limit surface at the point cj(u) is spanned by the vectors c0j(u) and dj(u),thus the surface satis�es C1-boundary conditions. Furthermore, due to thelocality of this scheme, the limit surface is C2 near the boundaries except atpoints where the C2-compatibility condition is not satis�ed.The surfaces in Fig. 5 demonstrate that the limit surface behaves mod-erately even in the presence of wavy boundary conditions. The limit surfacesare C2-continuous near the boundary except at corners where the twist com-patibility condition (1) is not satis�ed.

Fig. 5. A 5-sided and a 3-sided surface patch with wavy boundary curves.
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